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Abstract
BiGONLight, Bilocal Geodesic Operators framework for Numerical Light
propagation, is a new tool for light propagation in numerical relativity.
The package implements the bilocal geodesic operators formalism, a new
framework for light propagation in general relativity. With BiGONLight it
is possible to extract observables such as angular diameter distance, luminos-
ity distance, magnification as well as new real-time observables like parallax
and redshift drift within the same computation. As a test-bed for our code we
consider two exact cosmological models, the ΛCDM and the inhomogeneous
Szekeres model, and a simulated dust Universe. All our tests show an excellent
agreement with known results.
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1. Introduction

Electromagnetic and gravitational radiation are the primary means by which cosmologists and
astronomers try to learn about the structure and the evolution of the Universe. All the infor-
mation we receive from distant objects is inferred from these signals which are affected by
the presence of cosmic structures between the source and the observer. These effects are accu-
mulated along the line of sight and they modify the perception of the observer which e.g.
can receive the image of the source as if it were in a different position on the sky or with a
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distorted shape or measure a redshift in the source light spectrum. Actually, most of the infor-
mation comes from these distortions and they will be measured with unprecedented precision
in a wider range of scales and redshift by the next generation of galaxy survey and cosmic
microwave background experiments1. On top of that, thanks to the improvements in the mod-
ern experimental apparatus, nowadays we will be able of measuring small temporal changes of
those effects, the so-called optical drift effects. They may provide important and new informa-
tion about the Universe structure and evolution, marking the beginning of real-time cosmology
[1]. In order to make the most from this revolution in observational astronomy and cosmology,
the same accuracy is required in the theoretical predictions and interpretations of what we mea-
sure. This tough task requires much effort from two sides. At one hand the most recent progress
on cosmological dynamics are represented by general-relativistic simulations of cosmic struc-
tures with no assumed symmetries employing exact solutions of Einstein equations [2–8], or
approximated treatments [9, 10]. The common ambitious aim is to have a description valid
from large to small scales which accounts for relativistic effects. On the other hand relativistic
effects in the non-linear regime have recently become to be investigated with relativistic simu-
lations in galaxy clustering and lensing observables, and the Hubble diagram, see e.g. [11–19]
and references therein.

From the point of view of the basic theory of light propagation a new approach was pre-
sented in [20]. The key ingredients of this new formulation are the bilocal geodesic operators
(BGO) which constitute the map from the portion of spacetime occupied by the observer to that
occupied by the source and give the full description of the distortion of light rays in between.
The main advantage of the BGO formalism is that it provides a unified framework to compute
all optical observables, namely those inferred from gravitational lensing effects, like e.g. mag-
nification, shear, and angular diameter distance. The novelty is that source(s) and observer(s)
are allowed to move and therefore the observables originated by the variation in time and the
motion of sources and observers, like e.g. parallax, and redshift and position drifts, are auto-
matically included, see [20]. In addition, by having the observables written in terms of the
BGO, it is easy to disentangle the contributions of the spacetime curvature from those due to
observer and source motion and construct specific new probes, e.g. for the curvature as the
distance slip investigated in [21] in the ΛCDM cosmology.

In this paper we present BiGONLight2, Bilocal Geodesic Operators framework for
Numerical Light propagation, a Mathematica package developed for extracting observ-
ables from numerically generated spacetimes using the BGO formalism. The principal aim of
the package is to provide a unified procedure to calculate multiple observables in numerical
relativity: this is guaranteed since, once that the BGO are determined from the output metric of
a numerical simulation, a all set of observables are obtained within the same computation. In
order to be compatible with the majority of the codes in numerical cosmology, BiGONLight
encodes the BGO formalism in 3 + 1 form and it uses the Mathematica powerful symbolic
algebra manipulation and precision control options.

The paper is organized as follows: in section 2, we give the fundamentals of light prop-
agation and its formulation in terms of BGOs. In section 3 we present BiGONLight and
the equations to compute the BGO in 3 + 1 form encoded into the package. The recipe to
compute observables in numerical relativity using BiGONLight and the expressions of the
observables in terms of BGO are given in section 4. The last section of this paper, section 5, is
dedicated to the code tests, which are performed in the following three cosmological models:

1 https://skatelescope.org, https://euclid-ec.org, https://lsst.org, https://litebird.jp/eng/, https://jpl.nasa.gov/missions/
spherex.
2 The package is publicly available at https://github.com/MicGrasso/bigonlight.git.
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ΛCDM (see section 5.1), Szekeres (see section 5.2), and a numerically evolved dust Universe
(see section 5.3). We draw our conclusions in section 6. In the appendix A we show how to set
physical units in BiGONLight.

Notation: Greek indices (α, β, . . .) run from 0 to 3, while Latin indices (i, j, . . .) run from
1 to 3 and refer to spatial coordinates only. Latin indices (A, B, . . .) run from 1 to 2. Tensors
and bitensors expressed in a semi-null frame (SNF) are denoted using boldface indices: Greek
boldface indices (α,β, . . .) run from 0 to 3, Latin boldface indices (a, b, . . .) run from 1 to 3
and capital Latin boldface indices (A, B, . . .) run from 1 to 2. Latin tilded indices (ã, b̃, . . .),
running from 0 to 7, denote indices for the components of the 8 × 8 BGO matrix W . A dot
denotes derivative with respect to conformal time. Quantities with a subscript 0 are meant to
be evaluated at present, whereas the subscript ‘in’ indicates the initial time. Quantities with a
subscript S (or O) are meant to be evaluated at the source (observer) position.

2. Light propagation and the bilocal geodesic operators

Let us start by considering an observer O and a source S separated by a large distance and
moving freely along their time-like worldlines. Naming NO and NS the regions of the space-
time in which the observer and the source are moving, we assume that NO and NS are causally
connected, so that any signal emitted by S is received by O at any later time. We also assume
that the typical length scales of NO and NS are small compared to the distance between them.
Within the geometric optics approximation, we can describe the signal as moving along null
geodesics γ(λ) connecting the source and the observer, such that γ(λS) = xμS and γ(λO) = xμO,
where xμO and xμS are the observer’s and source’s positions, respectively. The curve γ is given
by the geodesic equation

�σ∇σ�
μ =

D
Dλ

�μ = 0, (1)

where �μ is the tangent vector, λ is the affine parameter spanning the geodesic γ, D
Dλ ≡ �σ∇σ

is the covariant derivative along γ. A solution of equation (1) is specified by the initial position
and the initial tangent vector. In astronomy, we are the only observer performing every mea-
surement, thus it is natural to set the initial conditions (xμO, �μO) at the observer location and to
trace the geodesic back to the source. Now, if the observer is displaced by δxμO, a new geodesic
connects O and S, and it is characterized by the new initial conditions (xμO + δxμO, �μO +Δ�μO),
see figure 1, where we define Δ�μO as the covariant deviation of the tangent vector �μO, namely

Δ�μO = δ�μO + Γμ
αβ(xO)�αOδxβO. (2)

The deviations (δxμO, Δ�μO) can be used to parameterize a family of null geodesics and they
propagate according to the geodesic deviation equation (GDE)⎧⎪⎨

⎪⎩
D

Dλ
δxμ = Δ�μ

D
Dλ

Δ�μ = Rμ
��νδxν

(3)

with initial conditions

δxμ(λO) = δxμO (4)

Δ�μ(λO) = Δ�μO, (5)

3
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Figure 1. When the observations are repeated over time, the observer and the source
may change their positions. This implies that the null geodesic connecting O to S
has to change its path accordingly. This situation is described with the deviations
of the positions δxμ and of the tangent vectors Δ�μ at the two new extremes S
and O.

provided that all the geodesics of the family stay close enough to γ.3 In equation (3) Rμ
��ν

is the short-hand for the optical tidal matrix Rμ
��ν ≡ Rμ

αβν�
α�β . The standard procedure to

solve the GDE (3) was introduced by Sachs in 1961 [22]. The key quantity of this approach
is the deformation of the light bundle’s cross section, i.e. the projection of the beam on a 2D
screen spanned by two orthonormal vectors orthogonal to �μ and parallelly transported along
γ (the Sachs basis). The GDE is projected onto this basis and then re-written in terms of the
deformation matrix, a 2 × 2 matrix containing the expansion and the shear: the GDE recasted
this way gives the well-known Sachs equations, see [23] for a complete introduction to the
Sachs formalism. Despite its great success, the Sachs formalism describes only momentary
observations, so that it cannot be used to take into account what happens when the observations
are repeated in time and/or the observer and the source move. Obviously, this can be overcome
by considering a new fiducial geodesic at some later time and solving again the Sachs equations
but this procedure can be very complicated in some cases. In this paper we will use a different
approach, which accounts also for these situations in a unified framework, based on the BGOs,
introduced in [20] and summarised below.

Let us start by noticing that the GDE (3) defines a linear, bijective map W(S,O) between
its solutions (δxμS , Δ�μS ) and initial conditions (δxμO, Δ�μO), namely

δxμS = WXX
μ
νδxνO +WXL

μ
νΔ�νO

Δ�μS = WLX
μ
νδxνO +WLL

μ
νΔ�νO,

(6)

assuming the optical tidal matrix Rμ
��ν to be a smooth tensor field. The bi-tensors WXX, WXL,

WLX, WLL acting from O to S are called BGOs. Equation (6) can then be written in the more

3 Here the GDE is presented as a system of two first-order ODE. The reader may find more familiar the following form
of the GDE as a second order ODE D2

Dλ2 ξ
μ = Rμ

αβν �
α�βξμ, where ξν = δxν and D

Dλ
ξν = Δ�ν . In general, the GDE

describes the deviation between any two infinity close null-like, time-like or space-like geodesics.
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compact form (
δxS
Δ�S

)
=

(
WXX WXL

WLX WLL

)(
δxO
Δ�O

)
= W(S,O)

(
δxO
Δ�O

)
, (7)

where W(S,O) is the 8 × 8 Wroński matrix of the GDE acting from O to S. By inserting (7)
in the GDE (3), we obtain the propagation equation for the BGO

D
Dλ

W =

(
0 1

Rμ
��ν 0

)
W (8)

with initial conditions

W|O =

(
14×4 0

0 14×4

)
. (9)

The BGO W is a symplectic mapping, as firstly noticed in [24], since equation (8) for null
geodesics can be formulated as a Hamiltonian system, and it satisfies the properties

W(O,S) = W−1(S,O) (10)

W(S,O) = W(S, pλ)W(pλ,O), (11)

with pλ an arbitrary point on the fiducial geodesic γ. The usual set up is specified by giving
the initial conditions at O and by integrating the GDE backward in time, up to the source S.
The physical motivation is of course that every measurement is done from the observer posi-
tion. The BGO W(pλ,O) obtained by integrating equation (8) backwards connect the observer
with an arbitrary point pλ on the geodesic, ending at the source pλS = S. Although it is natural
to study light propagation this way, there are circumstances in which it is more convenient
to think forward in time, namely to integrate equation (8) from the source to pλ, ending at
the observer pλO = O, and obtain W(pλ,S). To this second case belong all the simulations
of cosmological dynamics, in which the Einstein equations are solved forward in time, with
initial conditions given at the end of inflation. It follows that forward integration of light prop-
agation, on-the-fly with the simulation of the spacetime dynamics, would be a cost-efficient
and time-saving methodology instead of using the natural approach for light propagation in
post-processing. These two opposing procedures find a meeting point within the BGO frame-
work, which provides a relatively easy way to transform from forward integrated W(pλ,S) to
backward integrated W(pλ,O). The transformation follows from the BGO properties and it is
found by multiplying equation (11) by W−1(S, pλ) from the left and using equation (10) to
obtain4

W(pλ,O) = W−1(S, pλ)W(S,O)

= W(pλ,S)W−1(O,S). (12)

We will give the explicit transformation rules for all the BGO components in section 3.3.
Let us finally recall that the most important feature of the BGO formalism is that it provides

a unified framework to compute optical observables, including also real-time ones, like e.g.
parallax, and redshift and position drifts [20]. In section 4 we will give the explicit expressions
of the observables considered in this work in terms of the BGO.

4 In the last equality of equation (12) we used equation (10). The symplectic property is useful for getting the inverse
matrix, see section 3.3.
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3. BiGONLight: light propagation with the BGO in numerical relativity

The BGO framework finds a natural application in studying light propagation in numerical
relativity, since it allows to obtain multiple optical observables within the same calculation
and this is easily adaptable to perform light propagation on-the-fly with a simulation of rel-
ativistic dynamics. For this purpose, we develop BiGONLight (Bilocal Geodesic Operator
framework for Numerical Light propagation), a Mathematica package which simulates
light propagation in numerical relativity within the BGO formalism, described in section 2. It
is publicly available at the repository https://github.com/MicGrasso/bigonlight.git and it works
as an external library that can be called inside a Mathamatica notebook. Mathematica
provides a large variety of numerical methods that can be used and customized to adapt
them to the particular problem. This is exploited in the functions SolveGeodesic[],
SolveEnergy[], PTransportedFrame[] and SolveBGO[] in which the user can
choose the numerical methods used to solve the system of ODE5. Another useful feature
is the Mathematica’s precision control options, which allows the user to set the pre-
cision and accuracy of numerical result through the commands WorkingPrecision,
SetPrecision and SetAccuracy. In the following we give a detailed description of the
equations for light propagation and the procedure to obtain the BGO implemented in the code.
We dedicate a separate section, section 4, to the computation of the observables once the BGO
are known.

The required input for BiGONLight are the specetime metric and the source/observer
kinematics, which can be provided in two different ways: (i) from the analytical expression
of the metric gμν and the emitter/observer four-velocities (uμ

S , uμ
O) and four-accelerations

(wμ
S , wμ

O) for some exact model, and (ii) from the output of a relativistic numerical simula-
tion of the spacetime dynamics. A large variety of numerical codes used in cosmology and
astrophysics employs the 3 + 1 formalism to solve the Einstein equations and simulate full-
GR dynamical systems. To be compatible with the numerical output generated by these codes,
in BiGONLightwe recasted the BGO formalism in the 3 + 1 form. In the following we sum-
marise some basic definitions of the 3 + 1 formalism and report the 3 + 1 version of all the
equations for light propagation used to compute the BGO. For comprehensive references of
the 3 + 1 formalism see e.g. [25–28].

The procedure of splitting a four-dimensional spacetime (M, gμν) into its 3 + 1 form, the
so-called ADM formalism, was introduced by Arnowitt, Deser and Misner in [29]. It is con-
structed by foliating a four-dimensional manifold M with a family of 3D space-like hypersur-
faces Σt, labelled by a monotonic function t, such that t = const. on each slice. This space-like
foliation defines the time-like vector field nμ, which is orthonormal to the slices and it can
be regarded as the four-velocity of Eulerian observes. The geometry on each hypersurface is
described by the following quantities:

• The induced metric γμν is defined as the covariant form of the orthogonal projector onto
the slices

γμν = gμν + nμnν (13)

and it is used to measure proper distances on Σt;

5 The user can choose between three different methods: ‘RK’ a 4th order Runge–Kutta method, ‘A’ which lets
Mathematica to decide what is the best method to use, and ‘SS’ denoting the stiffness–switching method, which
allows to switch between implicit and explicit methods to resolve stiff problems.

6
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• The covariant derivative on the slice

DνVμ = γσ
νγ

μ
ρ∇σVρ, (14)

which is written in terms of the 3D Christoffel symbol (3)Γk
i j =

1
2γ

kl(
∂γl j
∂xi + ∂γil

∂x j − ∂γi j

∂xl ),
once a coordinate system xi on Σt is introduced;

• The extrinsic curvature Kμν defined as

Kμν = −γσ
μγ

ρ
ν∇σnρ, (15)

which represents the curvature of the 3D hypersurfaces with respect to the 4D embedding
spacetime.

A natural choice for a coordinate system xμ is the one adapted to the foliation: the corre-
sponding reference frame is such that the three vectors ∂μ

i =
(

∂
∂xi

)μ
are tangent to the hyper-

surface while ∂μ
0 =

(
∂
∂t

)μ
is transverse to it. In particular, the time-like vector field

(
∂
∂t

)μ
is

tangent to a congruence of world-lines of coordinate observers and it is given by

(
∂

∂t

)μ

= αnμ + βμ, (16)

where α is the lapse function, which measures the proper time of the Eulerian observers, and
βμ is the shift vector, which quantifies the displacement on Σt of the coordinate observer

(
∂
∂t

)μ
with respect to the Eulerian observer nμ. The components of the normal vector and the metric
gμν in the adapted coordinates are written with the lapse, the shift and the induced metric as

nμ =

(
1
α

,−βi

α

)
, (17)

and

gμν =

(
βiβ

i − α2 βi

β j γi j

)
, (18)

where the Latin indices runs from 1 to 3. A generic 4D tensor is projected on the slice as

(3)Tμ1···μm
ν1 ···νn

= (4)Tρ1···ρm
σ1···σn

γμ1
ρ1
· · · γμm

ρm
γσ1

ν1
· · · γσn

νn
. (19)

BiGONLight is designed to accept as input directly the ADM quantities (α, βi, γi j, Ki j)
generated by a numerical simulation. However, the powerful symbolic algebra manipulation of
the Wolfram language allows also to use the analytical form of the metric gμν as input. In this
case, the ADM quantities are computed in BiGONLight by the function ADM[] accordingly
to equations (15), (17) and (18). On top of that, BiGONLight contains other functions to
calculate the Christoffel symbols, Christoffel[], and the Riemann tensor, Riemann[].
Note that in both cases, the input metric is provided in form of components within a specific
coordinate system and not in full tensorial form. The package is designed to work in any gauge
and any coordinate system, leaving the choice to the user. Now that we have summarized the
basics, we will describe in more details and step by step the procedure for obtaining the BGO
in the 3 + 1 decomposition: we report the 3 + 1 version of the geodesic equation following
[30] and we derive all the 3 + 1 ingredients for the evolution equation of the BGO.

7
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3.1. Geodesic equation in 3 + 1 decomposition

The first code solving the 3 + 1 geodesic equation was presented in [31] and it was used to map
the event horizon in numerical simulations with black holes (like heads-on collision of two
black holes), while a more recent formulation of the 3 + 1 geodesic equation was presented in
[30]. Here, we briefly resume the procedure in [30], since we will use their approach throughout
all our calculations.

The null geodesics representing light rays connecting source and observer is obtained by
solving

�σ∇σ�
μ = 0 (20)

where �μ is the tangent vector which obeys to the null condition

�σ�σ = 0. (21)

It is 3 + 1 decomposed as:

�μ = E(nμ + Vμ), (22)

where E is defined by E = −nμ�μ and Vμnμ = 0. In other words, EVμ is the component of
�μ tangent to Σt and Enν is the orthogonal one. Substituting equation (22) in the geodesic
equation (20) after a long but straightforward calculation, see [30], the geodesic equation
decouples in two differential equations

dE
dt

= E
(
αKikV jVk − V j∂ jα

)
, (23)

⎧⎪⎪⎨
⎪⎪⎩

dxi

dt
= αVi − βi

dVi

dt
= αV j

[
Vi

(
∂ j log α− KjkVk

)
+ 2Ki

j − (3)Γi
jkVk

]
− γ i j∂ jα− V j∂ jβ

i

(24)

for the orthogonal and the tangent components, respectively.
In the BiGONLight package the two functions EnergyEquations[] and

GeodesicEquations[] give the differential equations (23) and (24), respectively.
Next, we need to specify the initial conditions. The function InitialConditions[]
is specifically constructed to get the initial conditions for Vi and E consistent with the null
condition (21) and the decomposition (22). The ODE (23) and (24) are then solved by using
two customized versions of the Mathematica NDSolve[] function: SolveEnergy[] and
SolveGeodesic[].

3.2. Parallel transport equation in the 3 + 1 decomposition

The BGO map the changes of the deviations (δxμ, Δ�μ) between the observerO and the source
S along the photon geodesic γ, see equation (7). This is possible only if we introduce a frame
parallel transported along γ, which allows us to compare quantities at the observation point and
at source position. For our purposes, the definition and the parallel transport of the frame have
to be split into the 3 + 1 form. Let us start with the parallel transport of a generic vector eμ

along a given geodesic with tangent �μ, which is governed by

�α∇αeμ = 0. (25)

8
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The 3 + 1 decomposition of eμ reads

eμ = Cnμ + Eμ, (26)

where we have defined the orthogonal component Cnμ = −nαeαnμ and the tangent component
Eμ = γμ

αeα. The parallel transport equation (25) becomes

nμ(nα∇αC + Vα∇αC) + C(nα∇αnμ + Vα∇αnμ) + nα∇αEμ + Vα∇αEμ = 0. (27)

Now, we make use of some 3 + 1 well-known relations: for the first term we have nμ∇μC =
1
αLα
nC, in the second bracket we substitute nα∇αnμ = Dμ logα and the definition of the
extrinsic curvature ∇αnμ = −Kμ

α, and for the expansion of the last two terms we use the
two identities:

Vα∇αEμ = VαDαEμ − KαβVαEβnμ

nν∇νEμ =
1
α

(Lα
nEμ + Eν∇ν(αnμ)) =
1
α
Lα
nEμ − EνKμ

ν + Eν∂ν(log α) nμ.

We then re-write equation (27) split into two parts, the one proportional to nμ and the other
tangent to Σt as

⎧⎪⎨
⎪⎩

1
α
Lα
nC + Vν∂νC + Eν∂ν(log α) − KνρVνEρ = 0

1
α
Lα
nEμ − EνKμ

ν + VνDνEμ + C (γμνDν log α− Kμ
νVν ) = 0,

(28)

where both must vanish individually in order to satisfy the parallel transport condition (25).
The last steps consist in expanding the Lie derivative

Lα
n =
∂

∂t
− L
β (29)

and converting partial derivatives with respect to the time t into total derivative via

∂

∂t
=

d
dt

− αV j∂ j + β j∂ j. (30)

The final result for the 3 + 1 parallel transport equation is

⎧⎪⎪⎨
⎪⎪⎩

1
α

dC
dt

+ Ei∂i log α− Ki jV
iE j = 0

1
α

(
dEi

dt
+ E j∂ jβ

i

)
+ (3)Γi

jkV jEk − Ki
jE

j + C
(
γ i jD j log α− Ki

jV
j
)
= 0,

(31)

where we have only spatial indices i, j = 1, 2, 3 since all the quantities lie on Σt.
The system of equation (31) has to be solved for each vector of the frame we choose.

Following [20], we choose the SNF composed by the tetrad of vectors

φμ
α = (uμ,φμ

1,φμ
2, �μ), (32)

9
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where uμ is the matter four-velocity, �μ is the tangent of the photon geodesic. The two vectors
φμ

A are orthonormal to both uμ and �μ, namely:⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

gμνuμφμ
A = 0

gμν�
μφμ

A = 0

gμνuμ�ν = Q

gμνφ
μ

Aφ
μ

B = δAB

(33)

with Q a real number. Each vector of the SNF is then decomposed in 3 + 1 form as

φμ
α = Φαnμ + Fμ

α (34)

and parallelly propagated by solving equation (31) for its orthogonal and tangent components,
i.e. Φαnμ = −nσφ

σ
αnμ and Fμ

α = γμ
σφ

σ
α.

In BiGONLight this is demanded to the function PTransportedFrame[], which
gives as output the components in (34) of the SNF parallel transported. The function
PTransportedFrame[]usesParallelTransport[] to obtain equation (31) for each
vector of the frame and then solve them with a customised NDSolve[] function.

3.3. The optical tidal matrix and the GDE for the BGO

So far the 3 + 1 equations equations (23), (24) and (31) we presented are valid for any type of
geodesics and to parallelly transport any type of vectors along that geodesic. From now on, we
will restrict the BGO formalism to the case of a SNF parallelly propagated along a null-like
geodesic. The equation for the BGO has then to be projected onto the SNF. The result is simply
given by

d
dλ

W =

(
0 1

Rμ
��ν 0

)
W , (35)

where the only formal difference with respect to equation (8) is that the covariant deriva-
tive along the photon geodesic D/Dλ reduces to the total derivative d/dλ in the SNF. In
equation (35), the optical tidal matrix is projected in the SNF and it is given by

Rμ
��ν = hμωRω��ν = φρμRραβσ�

α�βφσ
ν , (36)

where hμω is the inverse of the induced metric of the frame defined as

hμω =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 0 0
1
Q

0 1 0 0
0 0 1 0
1
Q

0 0
1

Q2

⎞
⎟⎟⎟⎟⎟⎟⎠

(37)

with Q as in equation (33). In general Rμ
��ν is a 4 × 4 matrix with non trivial components.

However, in the SNF it is easy to use the symmetries of the Riemann tensor to show that the
components R0

��ν = R�
��ν and Rμ

��0 = Rμ
��� vanish. Now, let us use equations (22) and (34)

in (36) to write the optical tidal matrix in terms of 3 + 1 quantities

Rμ
��ν = (Φμnρ + Fμρ)RραβσE2(nαnβ + nαVβ + Vαnβ + VαVβ)(Φνnσ + Fσ

ν) (38)

10
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After some tedious but straightforward calculations, we finally obtain

Rμ
��ν = E2hμρ

[
Rβα

(
ΦρFβ

νVα +ΦνFβ
ρVα − ΦρΦνVβVα − Fα

ρFβ
ν

)
+ Cσβα

(
ΦρFσ

νVαVβ +ΦνFσ
ρVαVβ − Fα

ρFσ
νVβ − Fα

νFσ
ρVβ

)
+GωαβσFω

ρVαVβFσ
ν

]
(39)

where

Gμαβν = Rρδθσγ
ρ
μγ

δ
αγ

θ
βγ

σ
ν =

(3)Rμαβν + KμβKαν − KμνKβα (40)

Cμαβ = Rρδθσnργδ
αγ

θ
βγ

σ
μ = DαKμβ − DμKαβ (41)

Rμν = Rρδθσnργδ
νγ

θ
μnσ = LnKνα +

1
α

DνDαα+ Kρ
αKνρ (42)

are the Gauss relation, the Codazzi relation and the Ricci relation, respectively (see e.g.
[27]). In BiGONLight, the three functionsGaussRelation[],CodazziRelation[],
RicciRelation[] compute the relations in equations (40)–(42) and the function
OpticalTidalMatrix[] collects all previous results together in order to obtain the opti-
cal tidal matrix Rμ

��ν/E2 in equation (39) as output. We now have the equation for the BGO,
equation (35), projected onto the SNF and written in terms of 3 + 1 quantities. To solve it, it is
easier to change the derivation variable from the affine parameter λ to the time t according to

d
dλ

=
dt
dλ

d
dt

=
E
α

d
dt

, (43)

where we used the time component of the tangent vector in equation (22), i.e. �0 = dt/dλ =
E/α. The GDE for the BGO, equation (35), decouples in two systems of first-order ODE,
one for (WXX,WLX) and the other for (WXL,WLL), computed separately using the function
BGOequations[]:⎧⎪⎨

⎪⎩
dWXX

μ
ν

dt
=

α

E WLX
μ
ν

dWLX
μ
ν

dt
=

α

E Rμ
��σWXX

σ
ν

,

⎧⎪⎨
⎪⎩

dWXL
μ
ν

dt
=

α

E WLL
μ
ν

dWLL
μ
ν

dt
=

α

E Rμ
��σWXL

σ
ν

(44)

with initial conditions:⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

WXX
μ
ν |O = δμν

WXL
μ
ν |O = 0

WLX
μ
ν |O = 0

WLL
μ
ν |O = δμν .

(45)

The systems in equation (44) are solved separately in BiGONLight by SolveBGO[]. Get-
ting the BGO with the procedure just described is one important part of BiGONLight. Let
us recall that the only inputs required are the spacetime metric, the observer four-velocity
components and the initial and ending points.

With initial conditions in equation (45), equation (44) gives the BGO W(pλ,O) integrated
backward in time from the observer. The relation with the BGO W(pλ,S) integrated forward
in time from the source can be explicitly written down for all the BGO components from

11
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equation (12). To this end we need the inverse matrix W−1 which is easily found from the
symplectic property

WTm̃
ãΩm̃s̃W s̃

b̃ = Ωãb̃, (46)

where Ω is the 8 × 8 non-singular, skew-symmetric matrix

Ωãb̃ =

(
0 hαβ

−hγδ 0

)
, (47)

with Latin tilded indices running from 0 to 7 (ã, . . . = 0, 1, . . . , 7) and the Greek bold indices
(α = 0, 1, . . . , 3) indicate the components in the SNF. By inverting equation (46) we find

W−1 = Ω−1WTΩ

=

(
0 −hαρ

hβσ 0

)(
WXX

ν
σ WLX

μ
σ

WXL
ν
ρ WLL

μ
ρ

)(
0 hνγ

−hμδ 0

)
. (48)

The transformation from forward to backward BGO in equation (12) finally reads

WXX(pλ,O)σν = WXX(pλ,S)σαhαρ WT
LL(O,S)μρ hμν

−WXL(pλ,S)σαhαρ WLX
T (O,S)μρ hμν (49)

WXL(pλ,O)σν = −WXX(pλ,S)σαhαρ WXL
T (O,S)μρ hμν

+WXL(pλ,S)σαhαρ WXX
T (O,S)μρ hμν (50)

WLX(pλ,O)σν = WLX(pλ,S)σαhαρ WLL
T (O,S)μρ hμν

−WLL(pλ,S)σαhαρ WLX
T (O,S)μρ hμν (51)

WLL(pλ,O)σν = −WLX(pλ,S)σαhαρ WXL
T (O,S)μρ hμν

+WLL(pλ,S)σαhαρ WXX
T (O,S)μρ hμν . (52)

These relations are coded in the section ‘forward to backward transformation for W operators’
of each sample notebook in the repository https://github.com/MicGrasso/bigonlight.git.

4. Optical observables with BiGONLight

The recipe to obtain optical observables using BiGONLight can be summarized as follows.
One needs to:

(a) Specify the spacetime metric gμν and the source S and observer O kinematics, namely
four-velocity uμ and four-accelerationwμ. They can be given already in 3 + 1 components
or as 4D quantities and the functions ADM[] and Vsplit[] will do the splitting of gμν ,
and uμ and wμ respectively;

(b) Set up the initial photon geodesic using Vsplit[] for the null tangent �μ, which
gives its 3 + 1 components E and Vi. Alternatively one can give E and a vector
Vi that has to be assigned by specifying the spatial direction V2 and V3 and use
InitialConditions[] to get V1 from the null condition;

12
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(c) Obtain the geodesic equations equations (23) and (24) from GeodesicEquations[]
and EnergyEquations[], and then solve them with SolveGeodesic[] and
SolveEnergy[]6;

(d) Set up the initial conditions for the SNF according to equation (33), directly in 3 + 1
components or using SNF[], which is specifically designed to compute the SNF in 3 + 1.
Then PTransportedFrame[] will give the SNF parallel transported along the light
ray;

(e) Compute separately Rμ
��ν projected into the SNF with OpticalTidalMatrix[];

(f ) Obtain the ODE system for the BGO in equation (44) with BGOequations[] and,
together with the initial conditions in equation (45), solve it using SolveBGO[] to finally
find the full W matrix;

Note that the components of the optical tidal matrix can have a very complicated expres-
sion, that may cause problems in solving the GDE (44). This can be overcame by using an
interpolated form of Rμ

��ν : the Mathematica interpolation[] function allows to use
different methods and reach an excellent precision, see section 5.

Step (f) is the starting point to compute the optical observables, which are all given by
different combinations and/or functions of the W components. It is important to remark that
all the observables in the BGO formalism are written in terms of W(S,O), namely the map
computed from the observer to the source. As we already recalled, this is obtained directly by
integrating the GDE backward in time. However in some cases, e.g. if the spacetime model
comes from a numerical simulation, it may be more convenient to get the inverse BGO map
W−1(S,O) and then use the transformations equations (49)–(52) to obtain the W needed for
the observables.

Here we list the four observables that we study in this paper. The redshift is simply given
by its definition

1 + z =
(�σuσ) |S
(�σuσ) |O

, (53)

where �σ is the tangent to the light ray, and uσ
O and uσ

S are the observer and source four-
velocities. The same definition in 3 + 1 splitting reads:

1 + z =
ES
EO

1 −
(
γi jViU j

)
|S

1 −
(
γi jViU j

)
|O

[
1 −

(
γi jUiU j

)
|S

1 −
(
γi jUiU j

)
|O

] 1
2

. (54)

The angular diameter distance is formally given by

Dang = (�σuσ) |O
∣∣det

(
WXL

A
B

)∣∣ 1
2 , (55)

where WXL
A

B is the map between the physical size of the source and the angle subtended in
the sky, as measured at the observer position, namely

δθA = (�σuσ) |O−1(WXL
A

B

)−1
δxB

S . (56)

Conversely, the parallax distance is related to the displacement of the observer position and the
apparent angular shift of the source position, as measured from the observer

δθA = −(�σuσ) |O−1(WXL
A

C

)−1WXX
C

BδxB
O. (57)

6 For the purposes of our paper, we need to solve only photon geodesics. However, the code can be used to trace any
type of geodesics, namely time-like and space-like also, by specifying the appropriate initial tangent vector in the
3 + 1 splitting with Vsplit[].

13
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The expression for the parallax distance is

Dpar = (�σuσ) |O
∣∣det

(
WXL

A
B

)∣∣ 1
2∣∣det

(
WXX

A
B

)∣∣ 1
2
. (58)

The last observable that we consider in this paper is the redshift drift ζ, given in terms of the
BGO by [32],

ζ ≡ δ log(1 + z)
δτO

= ΞDoppler −
(

uO,
uS

1 + z

)
U

(
uO
uS

1 + z

)
. (59)

In the above expression τO is the proper time of the observer, the first term

ΞDoppler =

[
1

1 + z

(
�μwμ

)
|S(

�μuμ

)
|S

−
(
�μwμ

)
|O(

�μuμ

)
|O

]
(60)

represents the Doppler effect caused by the four-accelerationwσ of the observer and the source,
and U is an 8 × 8 matrix given by the following combinations of the BGO

U =

(
−WXL

−1ν
ρWXX

ρ
σ WXL

−1ν
ρ

WLL
μ
νWXL

−1ν
ρWXX

ρ
σ −WLX

μ
σ −WLL

μ
νWXL

−1ν
ρ

)
. (61)

Let us notice that, even if the BGO formalism is independent of the specific choice of the frame
used, the observables are dependent on this choice, as evident by the explicit dependence on uμ

O,
uμ
S , wμ

O and wμ
S in equations (55)–(60). Indeed, it is possible to transform locally between two

different frames using an appropriate Lorentz transformation, but this modifies the observables
introducing special relativistic effects like Doppler effect or aberration.

The reader can find the derivation of the equations (55)–(59) in [20, 32, 33]. All the expres-
sions in equations (55), (58) and (59) are new with respect to the standard approach, in the
sense that these observables are expressed within a new, unified framework. However, while
for Dang and Dpar there already exist analogous formulas, where instead of the BGO we have the
magnification and the parallax matrix (see [21] for the comparison), it did not exist a general
formula for the redshift drift: equation (59) looks the same for every spacetime model under
consideration. Instead, in the standard approach the redshift drift is calculated by taking the
derivative with respect to the time coordinate of the definition of the redshift, and this depends
on the specific form of the metric tensor and null-geodesic, the latter depending in turns on the
symmetries that one gives to the initial conditions. This means that the equations to get the red-
shift drift in the standard approach look different for each specific model and/or configuration
of the light rays7.

5. Code tests

In this section we test the accuracy of BiGONLightwithin well-known cosmological models.
The tests are performed by considering the following observables: redshift, angular diame-
ter distance, parallax distance, and redshift drift. We compare the results obtained with two

7 To be more precise, equation (68) is valid for the Friedmann–Lemaître–Robertson–Walker (FLRW) model only as
well as equation (96) is valid for the Szekeres model and geodesics along the symmetry axis only. Instead, equation (59)
looks the same in both cases.
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different procedures, by defining the estimator ΔO(BGO, X)

ΔO(BGO, X) ≡ OBGO − OX

OX
, (62)

where OBGO refers to equations (53), (55), (58) and (59). We consider the following three cases:
(i) the ΛCDM model, where the specetime metric is the analytical input for BiGONLight
to compute OBGO and for OX we use the analytical well-known solutions for all the four
observables, see section 5.1; (ii) the inhomogeneous Szekeres model [34], where the specetime
metric is again the analytical input for BiGONLight but to obtain OX we solve numerically
a specific differential equation for each observable, see section 5.2; (iii) the Einstein-de Sitter
model, where the input forBiGONLight are the 3 + 1 quantities coming from theEinstein
Toolkit (ET) simulation and OX is obtained analytically, see section 5.3.

It worth noting that if OX is obtained analytically, then max |ΔO(BGO, X)| represents the
simulation error: in case (i) we have just the computational error from BiGONLightwhereas
in case (iii) the final error in the observables is the combined effect of both the ET and
BiGONLight finite precision. On the other hand, if OX is obtained numerically, as in case
(ii), then ΔO(BGO, X) gives only an estimation of the accuracy of the two methods used.

5.1. The ΛCDM model

The first group of tests regards the study of light propagation in the flat ΛCDM model. This
is an exact solution of the Einstein field equations representing an homogeneous and isotropic
spacetime and the matter–energy content consists of irrotational dust of cold dark matter and
a cosmological constant Λ. The line element is given by

ds2 = a(η)2
(
−dη2 + δi jdxidx j

)
(63)

where η is the conformal time and a(η) is the scale factor, which is the solution of Einstein
equations and describes the dynamics of the model. The explicit result is found to be [35]

a(η) =
3
√

Ωm0
ΩΛ

(
1 − cn

(
y|r

))
(
√

3 − 1) + (
√

3 + 1)cn
(
y|r

) , (64)

where cn(y|r) is the Jacobi elliptic cosine function, with y =
(

4
√

3 6
√
ΩΛ

3
√
Ωm0

)
H0η, H0 being

the Hubble parameter H = 1
a

da
dη evaluated today, ΩΛ and Ωm0 are the cosmological parameters

representing the amount of dark energy (ΩΛ) and dark matter (Ωm0) today, and r =
√√

3+2
4 .

To test BiGONLightwe consider two classical observables, namely the redshift z and the
angular diameter distance Dang, and two interesting observables that are not yet measured in the
cosmological context as they belong to the new research field named real-time cosmology, see
reference [1]. One is the parallax distance which exploits the motion of the Solar System with
respect to the cosmic microwave background frame providing a baseline of 78 AU per year
for the cosmic parallax8. Cosmic parallax was first proposed in 1986 in reference [37] and it is
expected to be measured by the Gaia satellite [38], in the next few years. For discussions and
forecasts about the measurements of the cosmological parallax distance we refer to references

8 For an exhaustive definition of the parallax see e.g. reference [36], in which the author distinguishes between the
three different cases: one source observed by two observers separated by spacelike interval (classic parallax), two
sources observed by two observers separated by spacelike interval and two sources observed by one observer at two
different moments (cosmic parallax also known as position drift).
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[1, 36, 39–44] and references therein. The other is the redshift drift, i.e. the time variation of the
redshift of a source. It was first derived for the FLRW models in references [45, 46]. Since then,
and particularly in recent years, a lot of work has been done to investigate the measurability of
the redshift drift in cosmology and the information gained, see e.g. references [47–51].

The analytical expressions in the flat FLRW cosmologies for the four observables that we
consider are

zΛCDM =
a0

a
− 1 (65)

DΛCDM
ang =

a0

1 + z

∫ z

0

dz′

(1 + z′)H(z′)
(66)

DΛCDM
par =

a0

H0

∫ z
0

H0dz′

(1+z′)H(z′)

1 +
∫ z

0
H0dz′

(1+z′)H(z′)

(67)

ζΛCDM =
H0

a0

(
1 − H(z)

H0

)
, (68)

where the Hubble parameter in the ΛCDM model is given by

H(z) = H0

√
Ωm0(1 + z) +ΩΛ(1 + z)−2. (69)

We normalize the today scale factor a0 = 1 and we take H0 = 67.36 kms−1 Mpc−1, the mat-
ter parameter today Ωm0 = 0.315, and the cosmological constant parameter ΩΛ = 0.685 from
[52]. The integral in equations (66) and (67) can be solved analytically and the results is [35],∫ z

0

dz′

(1 + z′)H(z′)
=

F
[
ξ(z)|r

]
− F

[
ξ(0)|r

]
(Ωm0)

1
3 (ΩΛ)

1
6 3

1
4

(70)

where F
[
ξ(z)|r

]
the elliptic integral of the first kind, with arguments r =

√
2+

√
3

4 and

ξ(z) = arccos

⎛
⎝ 2

√
3

1 +
√

3 + (1 + z) 3
√

Ωm0
ΩΛ

− 1

⎞
⎠ . (71)

The fact that we have analytical expressions for the observables makes this model a per-
fect test-bed for the code. We compare the results from BiGONLight with the one in
equations (65)–(68) by considering the variation

ΔO(BGO,ΛCDM) ≡ OBGO − OΛCDM

OΛCDM
. (72)

As shown in figure 2, the numerical implementation of the BGO method is in excel-
lent agreement with the analytical formulas in ΛCDM, the variation ΔO being 10−22 ÷
10−31. The maximum value of ΔO, of the order of 10−22, represents the numerical error
over the observables and we reached such small values by using the precision control
options WorkingPrecision, PrecisionGoal and AccuracyGoal implemented in
Mathematica.
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Figure 2. Variations in the ΛCDM model, equation (72), for the redshift (a), the redshift
drift (b), the angular diameter distance (c), and the parallax distance (d). The variable in
the horizontal axis is the redshift in ΛCDM. The values for the cosmological parameters
are taken from [52].

5.2. The Szekeres model

The second group of code tests is performed considering an inhomogeneous cosmological
model which is an exact solution of Einstein equations, firstly presented in [53]. The line
element for the Szekeres spacetime is:

ds2 = −dt2 + e2αdx12
+ e2β(dx22

+ dx32
) (73)

withα andβ functions of the spacetime coordinates (t, x1, x2, x3) that are determined by solving
the Einstein equations. We can distinguish two different families of Szekeres models depending
whether ∂x3β �= 0 or ∂x3β = 0: the first case defines the ‘class I’ family, which is a generaliza-
tion of Lemaître–Tolman–Bondi models (with non-concentric shells), while the case ∂x3β = 0
corresponds to a simultaneous generalization of the Friedmann and Kantowski–Sachs models
and it defines the ‘class II’ family. For a cosmological formulation of the Szekeres spacetimes
see e.g. [54]. For our tests, we will use a class II Szekeres model filled with dust and a positive
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cosmological constant as presented in [34]. For this model, the line element (73) is rewritten
as:

ds2 = a(η)2
[
−dη2 + dx12

+ dx22
+ Z(η, x1, x2, x3)2dx32

]
(74)

and, for the special case of axial symmetry around x3, we have the following form for the
function Z:

Z(η, x1, x2, x3) = 1 + β+(x3)D(η) + β+(x3)B
(

x12
+ x22

)
. (75)

The function D is the growing mode solution of the first-order Newtonian density contrast
defined as δ = ρ−ρΛCDM

ρΛCDM
and it is given by, see e.g. [55],

D(η) =
a

5
2Ωm0

√
1 +

ΩΛ

Ωm0
a3

2F1

(
3
2

,
5
6

,
11
6

,−ΩΛ0

Ωm0
a3

)
, (76)

with 2F1 (a, b, c, y) being the Gaussian (or ordinary) hypergeometric function. The term B in
equation (75) is constant and given by (see appendix C in [56])

B =
5
4
H2

0Ωm0

Din

ain
, (77)

where Din = ain for initial conditions set deeply in the matter-dominated era. The function
β+ specifies the spatial distribution of the first-order density contrast and it can be related to
the peculiar gravitational potential φ0 via the cosmological Poisson equation at present time

β+ = −2
3

∂2
x3φ0

H2
0Ωm0

. (78)

For the tests, we will use a sinusoidal profile for the peculiar gravitational potential
φ0 = A sin(ωx3) withω = 2π

500 Mpc and amplitudeA such that δ0 = 0.1 for the density contrast
today.

In the following, we will present the tests over the redshift, the angular diameter distance
and the redshift drift. Contrary to the ΛCDM case, here the observables are obtained using two
numerical methods and the difference is expressed by

ΔO(BGO, Sz) ≡ OBGO − OSz

OSz
. (79)

All the three tests are done considering that the observer O is located at the origin of the ref-
erence frame, with coordinates (η0, 0, 0, 0), and she/he sees the light coming from a comoving
distant source S, with coordinates (η, 0, 0, x3). The light beam is propagating along the x3 axis,
with tangent vector �μ = (�0, 0, 0, �3).

The first observable we test is the redshift: for a photon travelling along the x3-axis it is

1 + zSz =

(
a�0

)
|S(

a�0
)
|O

, (80)

where �0 is obtained by solving the geodesic equation

d�0

dη
= −�0

(
2H+

Ż
Z

)
. (81)
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In the above expressions Z is given in equation (75), a is the scale factor (64), andH the Hubble
parameter (69) of the ΛCDM background. The variation Δz(BGO, Sz) refers to the numerical
solution of equation (81) as opposite to the 3 + 1 geodesic solved by BiGONLight.

The second observable under analysis is the angular diameter distance Dang. The standard
procedure to compute Dang is solving the Sachs focusing equation

d2Dang

dλ2
= −

(
|σ|2 + 1

2
Rμν�

μ�ν
)

Dang, (82)

where the initial conditions given at O (i.e. the focusing point) are Dang|O = 0 and dDang
dλ

∣∣∣
O
=

(�σuσ)O, and |σ| is the shear that in the Szekeres model equations (74) and (75) simply vanishes,
as shown in [57]. Using the Einstein equations to express Rμν�

μ�ν in terms of the density con-
trast and using conformal time instead of the affine parameter, the focusing equation assumes
the form

D̈Sz
ang +

�̇0

�0
ḊSz

ang = −3
2
H2

0Ωm0

a
(δ + 1)DSz

ang, (83)

where the dots refers to derivatives respect to conformal time η and the initial conditions at the
observation point are Dang|O = 0 and Ḋang

∣∣
O = (�σuσ )O

�0
O

. In synchronous-comoving gauge the

density contrast along the geodesic comes directly from the continuity equation and reads

δ = −Dβ+

Z
=

2
3

∂2
x3φ0

H2
0Ωm0

D

1 − 2
3

∂2
x3φ0

H2
0Ωm0

D − 2
3

∂2
x3φ0

H2
0Ωm0

B(x12 + x22)
. (84)

In our estimator equation (79) the angular diameter distance DSz
ang is obtained by integrating

equation (83), whereas DBGO
ang is obtained from equation (55) with BiGONLight.

The last test concerns the calculation of the redshift drift, namely the secular variation of the
redshift of the source. It was calculated for some inhomogeneous cosmological models, see e.g.
[40, 58–61], but to our knowledge there is no expression for the Szekeres model considered
here, thus we give in the following a short derivation. Let us consider that during the proper
time lapse δτO the spacetime coordinates of the observer change from xμO = (ηO , 0, 0, 0) to
Xμ
O = (ΘO, 0, 0, 0). Similarly, in the corresponding proper time lapse δτS , the spacetime coor-

dinates of the source change from xμS = (ηS , 0, 0, x3) to Xμ
S = (ΘS , 0, 0, x3). Note that in

this gauge O and S are comoving, meaning that they both have fixed spatial positions (i.e.
δxi

O = δxi
S = 0), but the time changes differently at O and at S (i.e. ΘO − ηO �= ΘS − ηS ).

The redshift and the conformal time of the source change according to9

Z(ΘS , xi
S ) = z(ηS , x3

S ) + δz(ηS , x3
S) (85)

Θ(xi
S ) = η(x3

S ) + δη(x3
S), (86)

while the same quantities at the observer position Xμ
O are Z(Xμ

O) = z(xμO) = 0 and
Θ(Xi

O) = η(xi
O) + δη(xi

O). Our final aim is to compute the redshift drift, namely

ζ =
δ ln(1 + z)

δτO
. (87)

9 On the rhs of equations (85) and (86) we use the fact that the source location xi
S has components on the x3 axis only.
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Let us begin with the variation of the source redshift with respect to the observer proper time
δz
δτO

, where it is better to obtain first dδz
dx3 (equation (91)) and dδτ

dx3 (equation (94)) separately, and
then combine them to get an ODE (equation (96)), whose solution gives the redshift drift. The
starting point are the differentials dη

dx3 and dz
dx3 . The first is simply given by the null condition

�0 = −Z�3, and reads

dη
dx3

= −Z, (88)

while dz
dx3 is obtained by differentiating equation (80) 10

dz
dx3

=
1(

a�0
)
|O

(
da
dx3

�0 +
d�0

dx3
a

)
|S =

(
a�0

)
|S(

a�0
)
|O

(
1
a

da
dη

dη
dx3

+
1
�0

d�0

dη
dη
dx3

)
|S

= (1 + z)
(
HZ + Ż

)
, (89)

where we used equations (88) and (81), and the fact that the redshift at the observer is fixed.
Now we use equation (88) to differentiate equation (86)

dδη
dx3

=
dΘ
dx3

− dη
dx3

= −Z(Θ, x3) + Z(η, x3) = −
[
Z(η, x3) + Ż(η, x3)δη

]
+ Z(η, x3)

= −Żδη, (90)

and similarly for the redshift we have

dδz
dx3

=
dZ
dx3

− dz
dx3

= (1 + z)
(
ZH + Ż

)·
δη +

(
ZH + Ż

)
δz, (91)

where we keep first-order terms in δη and δz only. Rearranging terms and using equation (89)
again, we get

d
dx3

(
δz

1 + z

)
=

(
ZH + Ż

)·
δη. (92)

The final step is to express the variation of the conformal time δη in terms of the proper time
at the observer δτO . We use their relation, which is simply

δτ =
√
|gμνδxμδxν | = a

√
| − δη2 + Z2δx32| = aδη, (93)

since δxi = 0. We need the derivative with respect to x3, which reads

dδτ
dx3

=
d(aδη)

dx3
=

da
dx3

δη + a
dδη
dx3

=

(
1
a

da
dη

dη
dx3

− Ż

)
aδη = −

(
HZ + Ż

)
δτ , (94)

and, together with equations (89) and (93), the solution of the last equality is

δη =
1
a

δτO
1 + z

. (95)

10 From now on we drop the index S, since all the quantities are evaluated at the source.
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Figure 3. Variations in the Szekeres model, equation (79), for the redshift (a), the red-
shift drift (b), and the angular diameter distance (c). The variable in the horizontal axis
is the redshift in the Szekeres model.

By changing x3 to conformal time η with the chain rule d
dx3 = dη

dx3
d

dη = −Z d
dη , we get from

equation (92) the ODE in η for the redshift drift in the Szekeres model

dζ
dη

≡ d
dη

(
δ log(1 + z)

δτO

)
= − 1

a(1 + z)

(
HZ + Ż

)·
Z

. (96)

For our test, in the estimator equation (79), ζSz is the numerical solution of equation (96)
and ζBGO is the expression in equation (59) obtained with BiGONLight. Let us mention
that we did not include the parallax distance in our study of the observables in the Szekeres
model because the forecasted measures of the parallax distance for inhomogeneous models are
nowadays all below the instrumental precision.

As for the ΛCDM model, also for the Szekeres model we have a very good agree-
ment between the observables calculated using the standard procedure and the observables
from BiGONLight. The smallness of all the variations Δz(BGO, Sz), Δζ(BGO, Sz) and
ΔDang(BGO, Sz) shown in figure 3 means that our code could be a reliable tool for light prop-
agation in inhomogeneous cosmologies, represented here with the Szekeres model, which is
computationally more complicated than the homogeneous ΛCDM case.
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Figure 4. Scale factor in EdS: ET simulation precision. The variable on the horizontal
axis is the conformal time in computational units (see appendix A).

5.3. A dust Universe in numerical relativity

The main application of the BiGONLight package is the computation of observables from
numerically simulated spacetimes. For our test we choose to use the FLRWSolver11, [5],
which is a module (or thorn) of the ET [2]: the ET is a collection of open-source codes, called
thorns, based on the Cactus framework [62], which allows to solve the Einstein equations
in the BSSN formulation of the 3 + 1 splitting [63, 64]. The role of the FLRWSolver is to
provide the initial conditions in the form of linear perturbations around a homogeneous dust
Universe, i.e. the Einstein–de Sitter (EdS) background, which are then evolved with the ET.
Here, we limit ourself to the EdS background model and set perturbations to zero. In other
words, we consider a FLRW model in which the Universe is flat and contains only cold dark
matter. The line element of the EdS model in conformal time is

ds2 = a2
EdS(η)

(
−dη2 + dx22

+ dx22
+ dx32

)
, (97)

where aEdS(η) = η2 is the scale factor. We carry out the simulation in a cubic domain −L �
{x1, x2, x3} � L with periodic boundary conditions and spatial resolution Δx = Δy = Δz =
L
20 , where L is the simulation unit length in Mpc12. The initial data are given at ηin = L and
such that γ in

i j = δi j. The simulation runs with the ET up to η0 = 33.2L, which corresponds
to integrating from redshift z = 1100 to present time z = 0, and we choose a fixed tempo-
ral resolution Δη = L

100 due to computational time convenience. To give an estimation of the

11 https://github.com/hayleyjm/FLRWSolver_public.
12 The physical value is L = 268.11 Mpc, as it is explained in appendix A.
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Figure 5. Variations in the EdS model with ET, equation (99), for the redshift (a), the
redshift drift (b), the angular diameter distance (c), and the parallax distance (d). The
variable in the horizontal axis is the redshift in EdS.

simulation error we define

Δa(ET, EdS) ≡ aET − aEdS

aEdS
, (98)

which is the variation between the analytical scale factor in EdS, i.e. aEdS = η2 and the scale
factor from the numerical simulation aET = det (γi j)

1
6 . The result, shown in figure 4, is of the

order of 10−10 and this value is determined by the specific setting that we choose for the ET
simulation.

The simulated EdS model constitutes the playground of our tests. We perform light prop-
agation with BiGONLight using forward integration in time with the method described in
section 3.3. We start from the source S, placed at redshift z = 10 in xμS = (ηS , 0, 0, 0), and we
end at the observer O. The emitted light moves along the diagonal of the cubic domain with
initial tangent vector �μS = (−1,− 1

2 , 1
2 ,

√
2

2 ), until it reaches the observer at xμO. The numerical
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accuracy in the calculation of the observables is tested by means of the variationΔO(BGO, ET)
defined as

ΔO(BGO, EdS) ≡ OBGO − OEdS

OEdS
, (99)

where OBGO is computed numerically with BiGONLight using as input the EdS model
simulated with the ET and OEdS is the analytical expression in the EdS model that reads

DEdS
ang =

2a0

H0

√
1 + z − 1

(1 + z)
3
2

, (100)

DEdS
par =

a0

H0

√
1 + z − 1

3
2

√
1 + z − 1

, (101)

ζEdS =
H0

a0
(1 −

√
1 + z). (102)

These are obtained by integrating equations (66)–(68) with Ωm0 = 1 and ΩΛ = 0. The results
are shown in figure 5. What we see is the error on ΔO(BGO, EdS) which has in principle
two contributions: one from the simulation of the EdS model and the other from the simu-
lation of light propagation. We have already isolated the second contribution coming from
BiGONLight in the ΛCDM test. Indeed, since we use the analytical solution for ΛCDM both
in the numerical and analytical computation for the observables, the error ΔO(BGO, ΛCDM)
we find in figure 2 is entirely due to the simulation of light propagation and is of the order of
10−22 ÷ 10−31. On the other hand, in figure 4 we see that the accuracy of the ET simulation
we use is much larger, i.e. of the order of 10−10, which is of the same order of the one for
ΔO(BGO, EdS) in figure 5. Therefore we can conclude that the final error on the observables
we find in figure 5 is settled by the accuracy of the ET in simulating the EdS model. Let us
finally remark that for this test we perform light propagation using forward integration, namely
from the sourceS to the observerO. We also repeated the computation ofΔO(BGO,EdS) using
backward integration, form O to S, in BiGONLight and we found the same results.

6. Conclusions

In this paper we present and test BiGONLight, a Mathematica package for relativistic
light propagation in numerical relativity. Our new code implements the BGO formalism, a new
approach to geometric optics in general relativity, firstly introduced in reference [20], which
we recasted here in the 3 + 1 form to be compatible with the structure of relativistic numer-
ical simulations. The generality of the BGO framework allows BiGONLight to be suitable
to study light propagation in different contexts: from small scales, e.g. inside our Galaxy, to
the ultra-large scales of Cosmology, as long as light propagation can be treated within the
assumptions of geometric optics. BiGONLight is extremely flexible also from the techni-
cal point of view, requiring as input only the spacetime metric and the observer and source
kinematics: the user can choose any gauge and also the type of input to use, namely numer-
ical from a relativistic simulation or analytical from an exact solution of the Einstein field
equations. An analytical solution for the spacetime metric in any perturbative scheme can be
also given as input but the code does not apply the perturbative scheme to light propagation.
This is indeed the approach we adopted in reference [56]. We plan to implement perturbation
theory in a future version of BiGONLight. A key feature of the BGO framework is that all
optical effects are encoded in the bi-ejective W map, which can be written form the observer
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O to the source S or viceversa. In this paper we give the ready-to-use transformation relations
in equations (49)–(52). This property in BiGONLightmeans that the user is free to adopt dif-
ferent approaches to trace light propagation. On one hand, one can trace the photons from the
observer to the source using the conventional backward integration, on the other hand one can
choose to do the other way around and use forward integration. This second method is partic-
ularly convenient in numerical relativity because it allows us to perform light propagation on-
the-fly with a simulation of spacetime dynamics, which employs integration forward in time by
construction.

We decide to test BiGONLight in the computation of four cosmological observables: the
redshift, the angular diameter distance, the parallax distance, and the redshift drift, the last two
being real-time observables that are new in the cosmological context. We perform three differ-
ent kinds of tests. In the first we test the accuracy of the code against the analytical results in the
ΛCDM model and we find an excellent agreement of the order of 10−22 ÷ 10−31, see figure 2.
We are able to reach this extremely good accuracy by using the precision control options and
the many well-tested numerical methods to solve ODE implemented in Mathematica. For
the second test we consider the Szekeres inhomogeneous cosmological model as presented in
references [56, 57] and we compare the BGO formalism with the standard procedures used for
the angular diameter distance and the redshift drift. Let us point out here that the BGO for-
malism provides a unified way to compute multiple observables within the same framework,
contrary to the standard approach. In particular, for the angular diameter distance we com-
pare the result obtained from the BGO, equation (55), with the one from the Sachs equation,
equation (83). For the redshift drift we compare the BGO general formula, equation (59), with
the result of the standard calculation, equation (96), that we derive here for the specific set up
for light propagation in the Szekeres model considered. Also in this case we find a very good
agreement of the order of 10−22, see figure 3. For our final test we consider the EdS back-
ground simulated with the ET together with the FLRWSolver. The numerical output of this
simulation is used to compute the observables with the BGO in BiGONLightwhich are then
compared with the usual analytical formulas. Our findings are shown in figure 5 where we see
that the accuracy on the observables calculated with BiGONLight is ruled by the accuracy of
the ET simulation, which is limited to the order of 10−10 for the specifications that we use in
our paper. Contrary to the first two tests, here the BGO are calculated by integrating the GDE
forward in time and then we use the BGO property in equation (12) to obtain the observables,
see section 4. The current version of BiGONLight is designed to perform light propagation in
post-processing and not on-the-fly, with the advantage of being able to accept input from differ-
ent numerical codes for cosmological dynamics. The Wolfram language is at the base of the
BiGONLight’s versatility, providing an entire ecosystem with build-in libraries for symbolic
and numerical computations, but also plotting functions and various types of data. The compu-
tational time required to complete the analysis depends on the calculation’s precision we want
to achieve and it can be estimated using the function AbsoluteTiming[]. For instance, to
obtain the results presented in section 5.2 for the Szekeres model, with our average laptop13, we
needed ∼105 sec to complete the analysis, and it was the most computationally expensive. For
theΛCDM model we spent∼3 × 104 sec, due to the fact we use a simpler analytical model. As
for the simulated dust Universe with the ET the computational time was only ∼2.5 × 104 sec,
since the precision of the input simulation acted as an upper limit for our computations of the
observables.

13 We used a laptop with a quad-core processor (cores clock speed 2.6 ÷ 3.5 GHz) and 16 GB of RAM.
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Appendix A. Units

Throughout this article all quantities are expressed in geometric units, i.e. units defined by
the relation G = c = 1, thus such that masses, time and lengths have the same unit of mea-
surement. For instance, we can fix a unit of length14 [length] = L and define [mass] = c2L

G as
unit of mass and [time] = L

c as unit of time: in geometric units they all reduce to [mass] =
[time] = [length] = L. Within this choice, every physical quantity Qphys can be expressed as
Qphys = QcompLα, where Qcomp is dimensionless, L is a arbitrary length to be chosen, and α is
a certain exponent. This way of writing is particularly useful in numerical simulations, where
all physical quantities are represented as dimensionless numbers and units are assigned when
analysing the results. Usually L is fixed to be a length meaningful for the specific physical situa-
tion under consideration. For example, a common choice in numerical cosmological dynamics
is to set L equal to a characteristic length of the simulation (e.g. N-body and GR hydrodynam-
ics), such as the side of the simulated box. In cosmology it is usually chosen to set L equal to
the conformal time in Mpc, i.e. L = ηphys, thus ηcomp = 1, at some special instant like e.g. at
initial time or today. This choice is particularly convenient, since conformal time is found by
integrating the Friedmann equation and reads

η =
1

H0

∫ a

0

dã
ã2E(ã)

, (A.1)

where E(a) =
√
Ωm0

( a0
a

)3
+ΩΛ for a Universe containing cold dark matter and a cosmolog-

ical constant.
For the ΛCDM model, section 5.1, and for the Szekeres model, section 5.2, we choose

L = η0 and we normalize the scale factor to 1 today. This is the natural choice for this two cases
since we studied light propagation backward in time. By integrating equation (A.1) together
with the normalization a0 = 1 for the value of the today scale factor we have

ηΛCDM =
1

H03
1
4 Ω

1
6
ΛΩ

1
3
m0

F

⎛
⎝arccos

⎛
⎝1 + (1 −

√
3) 3
√

ΩΛ
Ωm0

a

1 + (1 +
√

3) 3
√

ΩΛ
Ωm0

a

⎞
⎠ ;

√
2 +

√
3

2

⎞
⎠ , (A.2)

14 The same can be done by fixing a unit of time T to define [mass] = T c3

G as unit of mass and [length] = Tc as unit
of length, or fixing a unit of mass M to define [time] = M G

c3 as unit of time and [length] = M G
c2 as unit of length.
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with F(x; y) being the elliptic integral of the first kind. Substituting the values of the cos-
mological parameters from [52], Ωm0 = 0.315 and ΩΛ = 0.685 and expressing the Hubble
constant in Mpc, i.e. H0 = 2.2469 × 10−4 Mpc−1, equation (A.2) gives L = ηΛCDM

0 = ηSz
0 =

14.4152 Gpc.
For the EdS model, section 5.3, we study light propagation forward in time and we decided

to use the same conventions as the one implemented in the ET. Here, the simulation is carried
out in a cubic domain volume of comoving side 2L, which is initialised at initial time ηin (and
not today) and the scale factor is normalised to 1 at ηin. Let us start by integrating (A.1) for the
EdS model, i.e. Ωm0 = 1 and ΩΛ = 0, which gives

ηEdS =
2
H0

√
a
a0

. (A.3)

The value of L is set by evaluating equation (A.3) at initial time and choosing ηEdS
in = L.

Substituting ain = 1 and
√

a0 = 33.2 from the numerical simulation, and H0 = 2.2469 ×
10−4 Mpc−1 from [52] in equation (A.3), it follows that the value of L is

L = 268.11 Mpc. (A.4)

We report for completeness the dimensions of all the main quantities in units of the
characteristic length L

Physical quantities in units of L

Hubble constant Hphys
0 = Hcomp

0 L−1

Conformal time ηphys = ηcompL

Spatial coordinates xi
phys = xi

compL

Gravitational potential φphys
0 = φcomp

0 L0

Velocity field ∇φphys
0 = ∇φcomp

0 L−1

Density field ∇2φphys
0 = ∇2φcomp

0 L−2

Frequency ωphys = ωcompL−1

Angular diameter distance Dphys
ang = Dcomp

ang L

Parallax distance Dphys
par = Dcomp

par L

Redshift drift ζphys = ζcompL−1

Redshift z Dimensionless
Scale factor a(η) Dimensionless

Growing mode D(η) Dimensionless
Cosmological parameters Ωi Dimensionless
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