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We study a resurgence structure of a quantum field theory with a phase transition to uncover
relations between resurgence and phase transitions. In particular, we focus on three-dimensional
N = 4 supersymmetric quantum electrodynamics (SQED) with multiple hypermultiplets, where
a second-order quantum phase transition has recently been proposed in the large-flavor limit.
We provide interpretations of the phase transition from the viewpoints of Lefschetz thimbles
and resurgence. For this purpose, we study the Lefschetz thimble structure and properties of the
large-flavor expansion for the partition function obtained by the supersymmetric localization. We
show that the second-order phase transition is understood as a phenomenon where a Stokes and an
anti-Stokes phenomenon occur simultaneously. The order of the phase transition is determined
by how saddles collide at the critical point. In addition, the phase transition accompanies an
infinite number of Stokes phenomena due to the supersymmetry. These features are appropriately
mapped to the Borel plane structures as the resurgence theory expects. Given the lessons from
SQED, we provide a more general discussion on the relationship between the resurgence and
phase transitions. In particular, we show how the information on the phase transition is decoded
from the Borel resummation technique.

Subject Index B14, B17, B34, B87

1. Introduction

One of the most important problems in quantum field theory (QFT) is to determine phase structures
in the space of parameters. It is connected to significant information such as symmetries, energy
gap, critical phenomena, topological order, etc. In particular, second-order phase transitions are
essential as they often describe the starts and goals of renormalization group flows. It is natural to
expect that phase transitions are technically related to (anti-)Stokes phenomena as they both describe
some discontinuous behaviors of physical quantities in a certain limit of parameters. A well-known
example of this is the connection between first-order phase transitions and anti-Stokes phenomena,
as switches of dominant saddle points occur across anti-Stokes lines. However, the connections for
higher-order cases are less clear, and it seems necessary to study them in a systematic framework. One
such approach to describe Stokes phenomena is resurgence theory [1], which has recently attracted
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much attention in the context of QFTs.! This paper aims to study relations between phase transitions
and resurgence in QFTs.

Resurgence theory has a long history of applications to quantum mechanics and differential equa-
tions. It has often been used to cure situations where perturbative expansions are not convergent. It
typically gives relations between non-perturbative effects and large-order behaviors of perturbative
series. There have been applications of resurgence to many physical systems, including quantum
mechanics [7-36], hydrodynamics [37—44], integrable systems [45—52], non-critical string theory
[53-57], and string theory [58—71], as well as QFTs. Recently there have also been various applica-
tions to QFTs, such as two-dimensional QFTs [72—88], the three-dimensional (3d) Chern—Simons
theory [89—96] and Skyrme model [97], four-dimensional non-supersymmetric QFTs [98—108], and
supersymmetric (SUSY) gauge theories in various dimensions [65,109—122].2 However, most works
have focused on systems without phase transitions, while we will mention some works related to
phase transitions.

In this paper we study the resurgence structure of a QFT model with a phase transition to study the
relations between resurgence and phase transitions. We take two approaches to address this problem.
The first approach is Lefschetz thimble (steepest descents) analysis [9,10,130].> For a Lagrangian
QFT, physical observables admit path integral representations and we can decompose them in terms
of Lefschetz thimbles associated with saddle points in the field configuration space. In general, the
structure of such a thimble decomposition can change discontinuously as parameters vary continu-
ously in the theory under consideration. When this happens, asymptotic expansions around saddle
points exhibit discontinuous changes of their forms, called Stokes phenomena. Other interesting phe-
nomena related to thimble decomposition are anti-Stokes phenomena, where dominantly contributing
saddles are switched as parameters vary while the thimble structures themselves are unchanged. As
mentioned above, anti-Stokes phenomena typically induce a first-order phase transition which is
often discussed in theoretical physics simply by comparing values of actions at saddle points. Here
we mainly focus on relations between second-order phase transitions and Stokes phenomena. The
other approach is to interpret from the viewpoint of Borel resummation. The information from such
phenomena is expected to be encoded in a perturbative series. The Borel resummation technique
enables us to decode such information. Therefore, if the resurgence theory works, then we can
approach phase transitions (typically by non-perturbative effects) from perturbative expansions.

Here we mainly study three-dimensional N' = 4 supersymmetric quantum electrodynamics
(SQED) with multiple hypermultiplets to obtain lessons on the relations between resurgence and
phase transitions. It was recently proposed by Russo and Tierz [143] that there is a quantum second-
order phase transition in SQED based on saddle point analysis in the large-flavor limit. They argued
that the number of dominant saddle points changes across a particular value of the Fayet—Illiopoulos
(FI) parameter and, assuming that they all contribute to the path integral, induces the phase transition.
We provide interpretations of the phase transition from the viewpoints of Lefschetz thimbles and
resurgence. We first justify the assumption in Ref. [143] that all the dominant complex saddles con-
tribute to the path integral by Lefschetz thimble analysis. Then we interpret the second-order phase
transition as simultaneous Stokes and anti-Stokes phenomena. Our results show that the resurgence

! See, e.g., the reviews in Refs. [2-6] for details.

2 There are also studies on relations to renormalization [51,123—127], thermalization [128], and large charge
expansions [129].

3 See also Refs. [131-142].
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theory works for describing the second-order phase transition of SQED. Given the lessons from
SQED, we finally provide a more generic discussion on the relations between resurgence and phase
transitions. In particular, we show generally that the orders of phase transitions are determined by
how saddle points collide and scatter as a parameter varies through a critical point. We also show how
information of the phase transition is decoded from the Borel resummation technique. We believe
that our results open up potential applications of resurgence to quantum field theories.

Let us also comment on previous works closely related to this paper.* Reference [147] studied
thimble structures of simple fermionic systems such as zero-dimensional versions of the Gross—
Neveu model and Nambu—Jona-Lasinio model, and one-dimensional gauge theory coupled to a
massive fermion with a Chern—Simons term. In particular, it was found in the zero-dimensional
Gross—Neveu model that there was a jump in the number of contributing thimbles at the second-
order chiral phase transition point in the massless case. An interesting link between anti-Stokes lines
and Lee—Yang zeros was also demonstrated. There are also interesting works on the two-dimensional
pure U (N) Yang—Mills theory on the lattice [81,148,149], which is technically reduced to a unitary
matrix model called the Gross—Witten—Wadia model [150,151].> It was found that a condensation
of complex saddle points occurred at the third-order phase transition point in the large-N limit.
Historically, physicists have studied simple models to draw lessons and to uncover general laws.
The field of resurgence and its relation to QFT phase transitions is not an exception either. Now is
a good time to broaden the reach of resurgence toward more realistic QFTs. The SQED studied in
this paper should be a nice first step along this direction since it is more realistic; nevertheless, its
partition function is expressed in a simple manner thanks to the supersymmetry.

This paper is organized as follows. In Sect. 2 we review the work by Russo and Tierz [143]. In
Sect. 3 we provide interpretations of the phase transition from the viewpoint of Lefschetz thimbles.
In Sect. 4 we discuss relations between the phase transition and resurgence structures. In Sect. 5,
given the lessons from the SQED example, we give a more generic point of view on relations
between the resurgence and phase transitions. Section 6 is devoted to conclusion and discussions.
In App. A we explain details of the calculations of the 1/N; flavor expansion, where 2Ny is the
number of SQED hypermultiplets. In App. B we present thimble structures for larger arg(Ny), while
the main text focuses around arg(Ny) = 0. In App. C we make some comments on the Padé-
Uniformized approximation based on comparisons with the standard Padé approximation in some
simple examples. In Apps. D and E we study resurgence structures of the 1/Ny expansion from the
viewpoint of a difference equation for finite values of the FI parameter 7 and the rescaled parameter
A = n/Ny, respectively. In App. F we point out a possible relation between the Borel singularities
and complex supersymmetric solutions found in Ref. [115].

2. Quantum phase transition in the 3d A" = 4 SQED

In this section we review the arguments of Ref. [143] to find the quantum phase transition in 3d
N = 4 SQED with a large number of hypermultiplets. Let us consider a 3d N' = 4 SUSY U(1)
gauge theory coupled to 2Ny hypermultiplets with charge 1. We turn on an FI term and a real mass
associated with a U (1) subgroup of the SU (2Ny) flavor symmetry.®

4 See also Refs. [47-52,144—-146] for works indirectly related to this context.

5 The Painlevé equations were further studied in Refs. [152,153]

8 The U(1) subgroup rotates N, hypermultiplets with charge +1 and the other N, hypermultiplets with
charge —1.
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Applying the SUSY localization [154], the path integral is dominated by saddle points and one
can exactly compute the $3 partition function of this theory as [155—157]

00 eino
Z-= f do — @.1)
—oo [2cosh 2 - 2 cosh 25|

where 7 is the FI parameter and m is the real mass. The integral variable o is the Coulomb branch
parameter and the factor in the denominator is the one-loop determinant of the hypermultiplets.’
Now we are interested in the 't Hooft-like limit:

Ny = 00,  A=-L =fixed. 2.2)
Ny
For this purpose, it is convenient to write the partition function as
z— L f ” do e300, (2.3)
2V )
where S(o) is the “action” defined by

S(o) = Nf[—iko + In(cosh o + cosh m)]. (2.4)

In the large-Ny limit, the integral is dominated by saddle points satisfying

o) = Ny (—ir 4+ —Smho 0 2.5)
o) =N | —i =0. .
4 cosh o + coshm

This equation is solved by

" (—A coshm £ iA(L, m)
o, = log

o ) +2min (nel), (2.6)

where
A(h,m) = v 1 — A2 sinh? m. (2.7)

The action at the nth saddle point is

—i+A—kcoshmiiA> coshm+ A

i
S(oF) =Ne|—=1 27k |. 2.8
@) f[ 2 n( it A —Acoshm T iA T 0T ”"} @38)

Note that the saddles and the action values are complex in general. Also, note that the action can be
written as

S(o,5) = S(0F) + 2wnNya. (2.9)

7 The integral in Eq. (2.1) can be solved exactly as

V27 TN, +in)T (N — i) _L-wn,
= er W +”?) ( /N 71”3)P21Nf_ (cosh m)
2% T(N;) (sinhm)r='/2 = =3+

with the associated Legendre polynomial P}’ (x) [143], but this form does not seem particularly useful for our
purpose.
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This implies that the most dominant saddle point for real A is either o = a(;r oro = o, if it

contributes to the integral.
The authors of Ref. [143] observed that dominant saddles change at A = A, with

1

A .
™ sinhm

(2.10)

For the subcritical region A < A, only a single saddle, 00+ , dominates the integral. For the super-
critical region A > A, two saddles, 00+ and o, contribute to the integral with equal weights.
Reference [143] numerically checked that these saddle approximations agree with the exact analytic
expression of Eq. (2.1) at the large-Ny limit. The second derivative of the “free energy” jumps at
A = Ac as

PF | e <1 + s ) A< e,

A/ 1=22 sinh? m (2.11)

A > Ac.
This implies that the system exhibits a second-order phase transition at A = Ac.

3. Lefschetz thimble structures

In general, saddles with smaller RS give larger weights. However, such saddles do not necessarily
contribute to the path integral. This is because the original integration contour may not be deformed
to the Lefschetz thimbles (steepest descent paths) associated with such saddles. Also note that the
“free energy” of a partition function on a general manifold is not necessarily real since it is not
interpreted as a thermodynamic one. This means that contributing saddles cannot be determined
only by requiring the free energy to be real. For these reasons, we should study Lefschetz thimble
structures to describe quantum phase transitions.

In this section we interpret the quantum phase transition in terms of Lefschetz thimbles of the
integral in Eq. (2.1) obtained by SUSY localization. This provides a more precise justification for
the arguments in Ref. [143] reviewed in the previous section. For this purpose, we first extend the
Coulomb branch parameter o € R to complex values z € C, since saddle points and the associated
Lefschetz thimbles are complex-valued in general. As we saw in the last section, we have infinitely
many saddle points o.F satisfying the saddle point equation. Contributing saddles are determined
by looking at the Lefschetz thimbles (or the steepest descents) obtained by deforming the original
contour without changing the value of the integral. This can depend on the original integral contour,
the parameters (A, m) and properties of the (dual) Lefschetz thimbles as explained below.

The Lefschetz thimbles 7 associated with the saddle points 0" are defined as solutions of the
differential equation called the flow equation,

d. 2S5
il B [Z], 3.1)
ds TE 0z
with the initial conditions
. _ _+
lim z(s) =o0,, (3.2)
§—>—00
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where s is the flow parameter along the Lefschetz thimbles. Using the flow equation, we can easily
prove the following properties:

d
— ReS[z(s)]

d
> —1
s > 0, 75 mS[z(s)]

= 0. (3.3)
N

TiE

These indicate that integrals along Lefschetz thimbles are rapidly convergent and non-oscillating.
We can express the original contour Cr as a linear combination of Lefschetz thimbles:

Ce=Y_ Y KkJr (3.4)

+ n=—o0

If k,fc is nonzero, it implies that ani contributes to the integral while we have no contributions from
the saddle points with &= = 0. It is known that each expansion coefficient k= is an integer since k-
is identified with the intersection number between the original contour Cr and the dual thimble (or
the steepest ascent contour) K associated with o5, which is defined by

d 3s
dz) 9kl lim z(s) = oF. (3.5)
ds Kk 0z s—+00

In general, k& depends on (g, m) but its dependence is not continuous since kf is an integer. Typically
ki is a constant or a step function, and the latter case leads us to a Stokes phenomenon.

3.1. Real positive Ny

First, let us briefly see the Lefschetz thimble structures for real positive Ny, i.e. arg(Ny) = 0. We have
numerically solved the flow equations and show the results at some representative values of (m, 1)
in Fig. 1. We immediately see that the Lefschetz thimbles pass multiple saddle points in both the
subcritical (A < A.)and supercritical (A > X¢) regions. Although we have explicitly shown the results
only at two values of (m, A), we have checked that this feature holds unless the parameters cross the
phase boundary. The thimble structures imply that the decomposition in terms of the thimbles is not
well defined at arg(Ny) = 0 and the Stokes coefficient has a discrete change. In other words, the
present case arg(Ny) = 0 is on Stokes lines.

The appearance of the Stokes lines here is natural because we have infinitely many saddle points
with the same imaginary part of the action atarg(Ny) = 0, although this is not sufficient but necessary
to get the Stokes lines. This can be explicitly seen as follows. In the subcritical region A < A, one
can easily show that all the saddle points are purely imaginary and their actions are real:

ImSE) =0 for A <. (3.6)

In the supercritical region A > X, the imaginary parts of the actions at the saddles are nonzero but
they satisfy

Im(SF) = —Im(S7), Im(Sy) = Im(Sy), forall mand A > Ae. (3.7)

The above structure essentially comes from the fact that the action at the saddles depends on # only
via the term 27t nANy, as seen from Eq. (2.9). This motivates us to take complex Ny to go beyond the
Stokes lines and understand the thimble structures more precisely.
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Fig. 1. Illustrations of the Lefschetz thimble structures of the integral in Eq. (2.1) for arg(N,) = 0. (In these
figures, m = 1, for which A, >~ 0.85). The blue circle and orange triangle symbols indicate the saddles o
and o, , respectively. The Lefschetz thimbles associated with them are drawn as lines with the same colors.
The gray wavy lines and cross symbols indicate the branch cuts and singularities of the action in Eq. (2.4),
which essentially come from the logarithm. Left: At A = 0.4 < A, as a representative of the subcritical region.
Right: At A = 1.2 > X, as a representative of the supercritical region.

3.2. Complex N,
Let us take Ny to be complex while keeping A real,’

0 = arg(Ny), (3.8)

and study the Lefschetz thimble structures. In the main text we study the thimble structures only
around 6 = 0. See App. B for the non-small-6 case.

Let us first focus on the subcritical region A < A presented in Fig. 2. Regardless of the sign of
0, the dual thimble IC(J)r intersects once with the original integration contour Cr. This means that the
original integral contour Cr can be deformed to the thimble j0+. Indeed, we can apply Cauchy’s
integral formula since the integrand decreases at infinity on the upper-half plane. Thus, we find a
unique thimble decomposition

Cr=kyJy, ki=1 (3.9)

In other words, there is no Stokes phenomenon in the subcritical region.

The structures in the supercritical region A > X are shown in Fig. 3. We observe qualitatively
different behaviors compared with the subcritical region.” Firstly, multiple saddle points contribute
to the integral. In particular, two saddle points ng always contribute as their dual thimbles always
intersect with the original integral contour Cr. This justifies the arguments in Ref. [143] reviewed
in Sect. 2. Note that this fact is a priori nontrivial since the saddles are complex. Secondly, the
intersection numbers k;il jump discontinuously as the phase 6 is changed. The thimble structures
depend not only on the si_gn of 6 but also on the absolute value |6|. Specifically, a common feature for
each sign &+ of af is that the saddle points a,il do not contribute for sign(6) = F. The dependence

8 To keep A real, we should also take arg(n) = 6 since A = n/N;.
? It is common that the saddle points o with n < 0 never contribute.
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Fig. 2. Illustrations of the Lefschetz thimble structure for the subcritical region A = 0.4 < A, withm = 1.
Small phases 8 = —0.025 (left) and 6 = 40.025 (right) are given to illustrate behaviors around 6 = 0. The
solid lines show the Lefschetz thimbles, while the dashed lines are the dual thimbles associated with saddle
points. The opaque saddles and thimbles contribute to the integral, while the translucent ones do not. In this
case, the contributing saddle o,” does not change for any small 6.

on the absolute value |#| is more intricate. At & = +0.025, shown at the top right of Fig. 3, we see
that ol+ contributes while on+ with n > 2 do not contribute. Similarly, at 6 = 4-0.015, shown at the
bottom right of Fig. 3, we see that ‘71+ and 02+ contribute but o, with n > 3 do not contribute. As we
further decrease |6|, we find the following structure (although we do not explicitly show the plots).
For finite 6 > 0 (¢ < 0), we have contributions from the saddle points o, with 1 < n < M, (9)
(0, with 1 <n < M_(0)), where M (6) is an integer such that

Mi@®) — 0o as 6 — 0. (3.10)

In summary, the above analysis suggests the following thimble structure in the supercritical region:

Cr=kiT +ky Ty + Y. kiJE, (3.11)
+.n>1
where
- 0 (0=-0) _ 1 (6=-0)
ki =k =1, ko, = L @=10) =1, © = +0) (3.12)

This indicates an infinite number of Stokes phenomena at & = 0 in the supercritical region.

3.3.  Phase transition and thimble structures

We clarify the relation between the phase transition and the above Lefschetz thimble analysis.
Whether the saddles contribute to the integral was a priori nontrivial since all of them are complex
for A > 0. Our Lefschetz thimble analysis showed that only a single saddle 00+ contributes to
the integral in the subcritical region A < A, while multiple saddles a,fc with n > 0 contribute in
the supercritical region A > A.. Among them, only two saddles aoi survive the large-flavor limit.
Thus, the dominant saddles jump at the critical point A = X, from 00+ to aoi, which causes the
phase transition. These provide a more precise interpretation of the phase transition in terms of the
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-1.0 -0.5

Fig. 3. Illustrations of the thimble structure for the supercritical region A = 1.2 > A, with m = 1. Small
phases 6 = —0.025 (top left), & = +0.025 (top right), 6 = —0.015 (bottom left), and 8 = +0.015 (bottom
right) are given to illustrate behaviors around & = 0. Contrary to the subcritical region, the contributing saddles
change discontinuously. As the phase approaches 6§ — =0, saddle points o, * with larger n contribute to the
path integral.

Lefschetz thimble analysis. All of these behaviors come from (anti-)Stokes phenomena and therefore
these motivate us to study, in more detail, the relation between the phase transition and (anti-)Stokes
phenomena. This will be summarized in Sect. 5.

Also, note that the periodicity of the action in Eq. (2.4) along the imaginary axis causes an infinite
number of Stokes phenomena at arg(Ny) = 0. Such a property is typical in sphere partition functions
of N' > 4 supersymmetric gauge theories with FI terms and without diagonal Chern—Simons terms.
This infinite number of Stokes phenomena are inevitably related to the phase transition, as we will
see in more detail in Sect. 5.

Finally, we briefly provide some preparation for the next section. We have collected the thimble
structures for larger values of arg(Ny), as summarized in App. B. For non-small arg(Ny), we have
encountered a subtlety essentially coming from the logarithmic branch cuts in the action of Eq. (2.4):
when a thimble crosses the branch cuts once, the action changes its value by +27iNy, where the
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sign depends on the direction of the crossing. Note that this modifies the condition for having Stokes
phenomena as the imaginary part of the action is changed. Appendix B demonstrates that the Stokes
phenomena due to this effect indeed happen in our problem. For instance, in the subcritical region
(A, m) = (0.4,1) we found numerically that the Lefschetz thimble associated with the saddle 00+
crosses one of the branch cuts once and then passes the neighboring saddle crl+ around arg(Ny) =~
—1.190. The appearance of this Stokes phenomenon cannot be understood without taking the effect
of the branch cuts into account as follows. The existence of the branch cut implies that the condition
for having Stokes phenomena between the saddles o, and 00+ is modified as

R [S(o*,f) — S(a(;r) + 27riNfZ] =0, (3.13)
which is solved by
1
tanf = ——7Z. (3.14)
ni

This condition specifically for the above case corresponds to 8 = arctan(—1/A)|;—g4 =~ —1.190,
which agrees with the result in App. B. Similarly, in the supercritical region (A, m) = (1.2,1) we
found the Stokes phenomenon between o, and 00+ coming from the effect of the branch cuts for
0 ~= —0.039.

From the viewpoint of the resurgence theory, the information of Stokes phenomena is encoded in
the 1/Ny expansion of the partition function in Eq. (2.1). The Stokes phenomena observed in the
figures in App. B are associated with the Borel singularities of the 1/Ny expansion. Relations between
Stokes phenomena and Borel singularities in one-dimensional integrals are shown in Refs. [158—
160], although some of the assumptions there are violated in SQED due to the logarithmic branch
cuts in the action. We will discuss corresponding Borel singularities in the next section.

4. Borel singularities and resurgence structure

In this section we consider the 1/Ny expansion of the partition function in Eq. (2.1) and study
its resurgence structure from the viewpoint of the Borel resummation method. We numerically
compute the 1/Ny expansion up to 50th order and then study the structures of the Borel singularities.
We confirm that the locations of the Borel singularities are consistent with the Lefschetz thimble
structure. The resurgence structure of trans-series with respect to n or A, instead of 1/Ny, is discussed
in Apps. D and E.

4.1.  Numerical study of Borel singularities

Let us focus on the 1/Ny expansion around the saddle point o = a(;r . It can be computed in the
standard way and the expansion takes the form (see App. A for details)

do e V5@ — o=NyS(eg) , 4.1
/:70+ SN(UO Z NZ .
where

S(o) = NyS(0). 4.2)
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The coefficients are given by

e i (—l)nF (% + Y’ —|—n) Z’Q@—n(n)

, (4.3)
= ra/2r(n+1)
where
n M3
0 , 25 S(k+3)(o_+)
cr(n) = ( ck/ek> , cr = 0+ (4.4)
=), 430 §r0)) T

This implies that the coefficient a; grows factorially and the formal 1/Ny expansion is not conver-
gent. We therefore apply the Borel resummation technique to control the divergence. Let us write
the perturbation series as

1 X a
F (E) =y N_lf (4.5)

and define its Borel transformation by

o0

BF(t)=)_ F(Z + l)t = szz (4.6)

=0

Then, the Borel resummation of the function /' (1/Ny) is given by

Fe ( 1 ) = N / dt e V' BE (1), 4.7
Ny c

where BF (?) is a simple analytic continuation of the series in Eq. (4.6) and the integration contour

C is chosen so that arg(Nyt) = 0. The Borel resummation discontinuously changes if the integration

contour crosses a singularity of BF'(¢). From the viewpoint of resurgence, the Borel singularities

must correspond to Stokes phenomena summarized in App. B.

4.1.1. The Padé approximation and its improvement

As seen from Eq. (4.6), the Borel transformation is defined in terms of an infinite number of the
perturbative coefficients. In practice, we often encounter the situation where we know only a finite
number of the coefficients and have to estimate (the analytic continuation of) the Borel transformation
from the limited perturbative data in some way. One of the standard ways to do this is the so-called
Borel-Padé approximation, where we replace the Borel transformation BF (¢) in Eq. (4.7) by its Padé
approximation. The Padé approximation with degrees (m, n) is defined by a rational function,

Py (1)

mn 4.8
Pran(t) = 00)’ (4.8)

where P,,(t) and O,(¢) are polynomials of degrees m and n, respectively. The explicit forms of
the polynomials are determined such that the small-# expansion of P, ,(¢) agrees with the Borel
transformation up to a desired order L:

L
> bet' = Pua) + O, m4n=L. (4.9)
£=0
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While there are various possible choices of (m,n) given L, it is empirically known that the Padé
approximation often has better accuracy when m and »n are close. Therefore, here we take m = n =
L/2 with even L and do not pursue (m,n) dependence. This particular case is called the diagonal
Padé approximation. In practice, we will present results for L = 50 as representative.

In general, the Padé approximation is good at approximating meromorphic functions since it has
only pole-type singularities. For cases with branch cuts, the Padé approximation typically becomes
worse as it is impossible to express branch cuts in terms of a rational function in the exact sense.
It is known that when the Padé approximation works for the cases with branch cuts, sets of dense
poles appear around the locations of the branch cuts.!? It is also known that the Padé approximation
generically gives better descriptions for singularities closer to the origin ¢ = 0. In particular, the
location of the closest singularity is expected to be predicted when (m, n) is larger because this
information is closely related to the radius of the convergence of the small-# expansion. In other
words, it is typically hard to detect Borel singularities far away from the origin when (m, n) is not
so large.

There are various ways to improve the Padé approximation in Eq. (4.8). Here we use one of the
improvements called the Padé-Uniformized approximation [161], which can be used when we know
information on the location of a branch cut in the Borel transformation BF (t). This is constructed
as follows.!! Suppose that the function BF (?) has a branch cut ending at = s. We send the Borel
t-plane to a u-plane by the uniformization map

t
t— u(t) =—1In (1——), (4.10)
s
which can be inverted as
ur> tw) =s(1 —e). (4.11)

Note that the singularity at # = s in the #-plane is mapped to infinity in the u-plane. Then we construct
the standard Padé approximation in the u-plane, meaning that we construct a rational approximation
Pm.n(u) such that

L
Pua) = > by + 0@, m+n=L, (4.12)
=0

where the coefficient b}, is defined to satisfy

L

L
Y bt =) b (t@)’ + 0. (4.13)

=0 =0

Finally, we come back to the ¢#-plane and approximate the Borel transformation as

BE(t) ~ Ppa(u()). (4.14)

19Tn other words, many poles in the Padé approximation are consumed to resemble the jump around the
branch cuts, and we typically need larger (m, n).

! Another way to treat branch cuts is to use functions with branch cuts for approximation (e.g. fractional
power of some simple functions). See Refs. [162—167] for such approaches.
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The uniformization map sends the branch cut singularity to infinity, where the standard Padé approx-
imation does not see it. Instead, it sends a region away from the branch cut singularity to a region
around the origin. Thus, we can avoid pole resources of the Padé approximation being wasted on the
branch cut. Also, thanks to the logarithm of the uniformization map, the order of Borel singularities

I/n is mapped just to ¢*/" and logarithmic singu-

affects only the scale of u. For example, 1/(1 — 7)
larities are mapped to regular points. Another good example is In(1 — #), which is simply mapped
to —u. For the above reasons, the Padé-Uniformized approximation is safer than the standard Padé

approximation in our particular application.

4.1.2.  Subcritical region

Let us focus on the subcritical region A < Ac. In the left panel of Fig. 4 we present the locations
of poles of the standard Padé approximation for the Borel transformation BF (#), which is expected
to approximate the Borel singularities. The red crosses indicate the poles of the Padé approximant
while the other symbols denote the values of the saddle point actions subtracted by the values of o*o+
and their counterparts on different Riemann sheets.!? The colored symbols among them denote the
saddles at which Stokes phenomena are expected to occur from the Lefschetz thimble analysis in
the previous section. In other words, a symbol associated with a saddle o is colored if there exists
arg(Ny) such that!3

S[S(o,F) — S(ogh) + 2miNZ] = 0. (4.15)

From the viewpoint of resurgence, we expect that the Borel singularities are located at these color
symbols.

In the left panel of Fig. 4 we see a bunching of poles around the point corresponding to the
saddle o, and stretched along the negative real axis. According to general expectation on the Padé
approximation, this signals that the Borel transformation has a branch-cut-type singularity ending
on the point corresponding to o, along the negative real axis. This is consistent with the expectation
that we have Stokes phenomena with o,,". We also see good agreement between the locations of the
poles and the action values at Nyt = § (01+ )£ 2mi—S (a(;L ) as expected from the thimble analysis.
However, it seems that we do not have a similar agreement for the other saddles, in particular when
we go away from the origin. One reason is that the Padé approximation becomes worse outside
the convergence radius. Another reason is that there is a branch cut on the Borel ¢-plane. The Padé
approximant has limited pole resources to resemble the genuine Borel plane structure. In our case
there are only L/2 = 25 poles. If there is a branch cut, a lot of poles are consumed to resemble it.
Indeed, a lot of poles are accumulated on the negative real axis. Thus, it seems more appropriate to
use the Padé-Uniformized approximation using the input that we have a branch cut ending on the
point Nyt = S(o ) + 27i — S(ag).

In the right panel of Fig. 4 we show the result of the Padé-Uniformized approximation where we
have eliminated the expected branch cut by the uniformization map in EQ. (4.10). We first see that

12 Recall the arguments at the end of Sect. 3.3. The thimble structures for non-small arg(N,) studied in
App. B imply that we have to take care of situations where thimbles cross the branch cuts and then the action
is shifted by 27 iN,Z.

13 For example, as discussed at the end of Sect. 3.3 and demonstrated in App. B, this condition for (A, m) =
(0.4, 1) is satisfied when arg(N;) = —1.190. Therefore, the circles on the ray arg(¢#) = — arg(N,) = 1.190 are
colored.
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Fig. 4. Illustrations of the Borel plane structure for the subcritical region A = 0.4 < X, obtained by the
standard Padé approximation (left panel) and the Padé-Uniformized approximation (right panel). The red
cross symbols indicate the locations of poles found by the approximations. The circle/triangle symbols on the
real axis indicate the values of the saddle point actions relative to the action of o, which are specifically
Nt = S(0;F) — S(oy). The same symbols beyond the real axis are their counterparts on different Riemann
sheets obtained by shifting those on the real axis by 27iZ. The colored symbols among them denote the saddles
at which Stokes phenomena are expected to occur from the Lefschetz thimble analysis.

there is no longer a bunching of dense poles as appeared in the standard Padé approximant. This
confirms that the uniformization map has successfully removed the branch cut. Because of this, we
expect that the Padé-Uniformized approximation gives a better description of other singularities.
Indeed, the result shows better agreement between the locations of poles and the expected Borel
singularities around the origin. In particular, note that there is no Borel singularity on the positive
real axis. This is consistent with the Lefschetz thimble structure around arg(Ny) = 0 as shown in
Fig. 1. However, we see some poles around the real axis which do not coincide with action values.
It seems that they are artifacts of the Padé approximation; for details, see App. C.

4.1.3.  Supercritical region

The results for the supercritical region A > A, are shown in Fig. 5. As in the subcritical case, the
left panels are the result of the standard Padé approximation while the right panels denote the Padé-
Uniformized approximation. The upper and lower panels are essentially the same but we plot them
at different scales for convenience. Note that the actions of the saddles o, and o, are different by
purely imaginary values even on the same Riemann surface.

Let us first focus on the result of the standard Padé approximation shown in the left panels of Fig. 5.
We easily see that there is again a bunching of poles around the point corresponding to the saddle
o, , but now they are stretched along the upper imaginary axis in contrast to the subcritical case. This
again implies that the Borel transformation has a branch cut ending on the point corresponding to
o, along the upper imaginary axis. While this agrees with the expectation from the resurgence, we
do not see good agreement beyond that saddle. Therefore, we again improve the Padé approximation
assuming the information on the branch cut as in the subcritical region.

The right panels of Fig. 5 show the result of the Padé-Uniformized approximation. The expected
branch cut has been eliminated by the uniformization map in Eq. (4.10) and one can check that the
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Fig. 5. Illustrations of the Borel plane structure for the supercritical region A = 1.2 > A, obtained by the
Padé approximation (left panels) and the Padé-Uniformized approximation (right panels). The lower panels

are zoomed versions of the upper ones.

bunching of dense poles is indeed absent in this case. We now see better agreement: there are poles

around the expected locations of the Borel singularities. This is consistent with the Lefschetz thimble

structure around arg(Ny) = 0 as shown Fig. 2. However, we still have missing singularities away

from the origin. For details, see App. C.

4.2.  Analytical study of Borel singularities for large )\

In Sect. 4.1 we numerically found the Borel singularities at 277iZ in the supercritical region, as
demonstrated in the right panel of Fig. 5. We infer this class of singularities corresponds to the
saddle 00+ on different Riemann sheets. Here we provide an analytical justification for that. We

analytically prove that the Borel transformation of the 1/Ny expansion around the saddle point of

has singularities at 277iZ in the large-A limit.

Let us consider the large-A limit A >> A. and A >> 1. The saddle point a,;t in this limit is expanded

as
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: 1
Gi=:Fm+(2n+l)ni+i+O(A—2>. (4.16)

The action values at these saddle points are
1
Sl = Nf[:l:ikm 4+ 2n+ )mx —log A + 1 + log (i sinh m)] + 0O (X) . (4.17)

We are interested in the perturbative coefficients in the leading order of the large-A limit. Let us
expand the action around the saddle points:

o
1
S(0) =S4 + )~V @hse", (4.18)
n=2
where we regard o = O(N, f_l/ 2), and the first few derivatives of the action are
S(o) = Ny[—iro + log (cosh o + coshm)],
sinh o
(cosho + coshm) |’

SD(o) =Ny [—ik +

h o inh? &
S8y =N [ (cosh (;Oj— coshm)  (cosh csr + cosh m)? ] (4.19)
Noting that
1 A
cosho + coshm |, _,n =¥ sinh m’ (4.20)
we can approximate S (o) as
SM(6) 2 —Ny(=1)"(n — 1)! < sinh o )n = —N;(n—DIGW)".  (421)
cosho +coshm ) |,_sn
Therefore, the action becomes
1
S[o] 2 S[o?]— Ny 2:; —(i250)"
= S[o}]1+ Ny (irdo + log (1 — ird0)) . (4.22)

Then, the perturbative series in the large-A limit is generated by
F(Nf;2) = / " dbo &N o og 1o (4.23)
—00

One can rewrite this integral in the form of a Laplace transformation as in the Borel resummation
formula if we make a change of variable as

t =ildo + log (1 — irdo). (4.24)
Noting that this equation is rewritten as

—e'~ 1 = (ixdo — 1)o7, (4.25)
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we can write the solution as
1 —1
do = — (1+w (=€), (4.26)
i

where W (z) is the Lambert W function defined as a solution of

z=ue" & u=W(). (4.27)
Then, using
z z
dVZZ( = z(1 T(W)(z))’ 429
we find
F(Np;h) = % / dt e’Vf"%. (4.29)
It seems natural to identify
— _ i1
BF(t) = %% (4.30)
Some important features of the Lambert I function are:
© W (z) has a branch cut along (—oo, —e™1).
o W(—eh)=-1.
© The small-z expansion of W (z) has a radius of convergence e L.
Thus, the Borel transformation in the large-A limit has the branch cut singularities at
t = 2miZ. (4.31)

One might wonder why we now do not have the singularities beyond the imaginary axis which
appeared in the numerical study represented in Fig. 5. This is because of the large-A limit: the
singularities beyond the imaginary axis go to infinity as A — oo. This is most transparent in the
formula in Eq. (4.17) for the asymptotic behaviors for the action.

We can see that the above Borel singularities come from the branch cuts in the o -plane as follows.
The variable ¢ of the Borel plane is related to the o-plane by the map in Eq. (4.26). Therefore, the
origin ¢ = 0 is associated with a saddle o = 0, while infinity is associated with the branch cut
singularity o = 1/iA. An interval [0, 27r] is associated with a closed loop which starts from the
saddle §o = 0 and runs around the branch cut singularity §o = 1/iA back to the saddle. Since there
is a logarithmic branch cut on the §o-plane, we reach the next Riemann sheet once we move along
the closed loop. Thus, the Borel singularities at t = 2wiZ are associated with the saddles on the
different Riemann sheets. Such a relation should hold even when A is not large, as long as we are in
the supercritical region.

The above structures technically come from the fact that the action in Eq. (2.4) has a periodic
structure and the logarithm branch cuts. Physically this type of factor originates from one-loop
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Fig. 6. An illustration of collision and scattering of saddles for n = 2. As the parameter A is varied through
the critical point A = A, two saddles oy, o7 collide at o = o, and are scattered with an angle Sr.

contributions of hypermultiplets in the localization formula of S partition functions [155—157]. This
indicates that the above structures hold not only for SQED but also for more general supersymmetric
gauge theories.

5. Lessons from 3d A =4 SQED

In this section, given the lessons from SQED obtained in the previous sections, we provide a more
generic discussion on relations between resurgence and phase transitions. In particular, we discuss
how the orders of phase transitions are described from the viewpoint of (anti-)Stokes phenomena.

5.1.  Phase transitions as collisions of saddles

Let us consider a generic theory whose partition function is described by a one-dimensional integral
of the form

e NFO) — /do e—NS(A;a)’ (5.1)

where S(A;0) is the “action” and (N, 1) are some parameters specifying the theory. Suppose that
the theory undergoes a phase transition at A = A in the limit N — oo, accompanying a collision
and a scattering of n saddles at ¢ = o,. We do not consider phase transitions simply by anti-Stokes
phenomena, which have been often discussed in the context of Lefschetz thimble analysis. Here we
show that the order of phase transition is determined by the scattering angle of the saddles. More
specifically, we prove the following statement: if the n saddles collide and scatter with a scattering
angle B as we vary the parameter A through the critical point & = A (as illustrated in Fig. 6), then
we have the phase transition of order [(n 4+ 1)8], where [x] is the smallest integer greater than or
equal to x.

Before moving on to the proof, let us recall some basics on phase transition. We have a pth-order
phase transition at A = A, when the pth derivative of the “free energy” F (1) becomes singular at
A = A¢ given its non-singular lower derivatives; that is,

[FP (e £0)| =00 or FP(h;—0) #FP (ke +0), (5.2)
with

[FEP (o £0)| <00 and FEP (o —0) = F€<P) G 4 0). (5:3)
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The order p is related to the behavior of the free energy around the critical point as follows. Suppose
that the free energy is expanded around the critical point as

C + ALY for A1 < 0,
F(h= ¢+ 80) 5.4
( o+ 0A) C + Br)Y  for 82 > 0, (54)

where 4, B, and C are complex constants and ¥ > (. Note that the free energy is not necessarily
real since it is not necessarily interpreted as the thermodynamic free energy for QFT on a generic
manifold.'* If y ¢ Z, the phase transition is of order p = [y]. Similarly, if y € Z and 4 # B, then
the order of the phase transition is p = [y] while there is no phase transition for 4 = B. In what
follows, we consider only the case with 4 # B and the exponent y independent of the sign of 5A.
This is a consequence of a saddle collision, as we will see soon.

Now we provide the proof. As mentioned above, we are interested in the situation where the n
saddles collide and scatter at ¢ = o, in varying the parameter A through the critical point A.. This
means that the saddle point equation at A = X has a root with the degeneracy n. Therefore, the
action around o = o is expanded as!?

S0 =0¢) =ag(h) + ai(MNdo + -+ ap 1 (M)Sa" T 4+ (5.5)
The coefficient a;(A) is constrained by the condition that the saddles collide at A = A as
ai(M) = ¢i6A% + - .. (5.6)

Without loss of generality, one can shift the action by an appropriate constant to make ag(1)
independent of A:

ap(2) = co. (5.7)

Furthermore, using the condition that the saddle point equation has a root with degeneracy n, we
find

ai(ke) =0 i=1,...,n), (5.8)
ant1(Ae) # 0. (5.9)
Combining the above conditions for the coefficient leads us to
¢=0, or ¢;#0,0>0 (i=1,...,n), (5.10)
cnt1 #0, aygp1 = 0. (5.11)
Solving the saddle point equation
O=ai(A)+ -+ m+ Dayr1(A)So”™ + - -+ (5.12)
around the collision point o = 0, the saddle point around the critical point is simply written as

Som =~ sudAP (m=0,...,n—1), (5.13)

141t is interpreted as the thermodynamic free energy when QFT is put on a manifold including S'.
15 Note that the configuration o = o is not a saddle point for A # A, generically.
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where s,, 1S a some constant and

o o2 Up

ﬁ:min(—,— _) (5.14)

n'n—1 1

Around the critical point §A = 0, each saddle acquires a phase (—1)#. This implies that the » saddles
collide and scatter with an angle 8. Then, the action at the saddle o, takes the value

Sy 2 co + Tu(81)"TDB, (5.15)

with a constant 7p,.
At the phase transition point there is a jump of the contributing saddle points in various ways. For
example, in the case where the contributing saddles jump as oy — o1, the free energy changes as

) co+ T80V for s < 0, (5.16)
T co+ Ti(81) DB for sA > 0. ‘
In the case where the contributing saddles jump as o9 — oy, .. .,0,_1, the free energy changes as
To(82)"TDA for 81 < 0
p~ | ot To0h) g o= (5.17)
co+ (To+ -+ + T (V)™ for §1 > 0.

In any case, the phase transition is of order [(n + 1) 87, and this completes the proof. Our argument
also shows a connection between the order of the phase transition and the anti-Stokes line. The
formula in Eq. (5.15) for the action shows that the anti-Stokes line is given by N [(SA)(”+1)’3] =0.
Thus, one can also read off the order of the phase transition by looking at the anti-Stokes line.

5.2.  Thimbles and Borel singularities around critical points

In this subsection we demonstrate the discussion in the last subsection using the integral
representation of the Airy function whose “action” is given by

~ io3
S(h;0) = 5 - iro. (5.18)

We refer to this example as the Airy-type model. As we will see soon, this example corresponds to
n=2,a = 1/2, and has common features with the SQED Eq. (2.1) in the context of the argument
in this section.

5.2.1. Lefschetz thimbles
The Airy-type model corresponds to

co =0, cl1 = —i, o =1, cy =0, c3 = — a3 = 0. (5.19)
The saddle points in this example are simply given by
oy = £A12, (5.20)

which indicates that the two saddles collide at o = 0 for A = 0. Therefore, in the notation of the
previous subsection, we have

o, =0, Ao =0, Sop = 861172, (5.21)
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and
2 : (5.22)
n= a=—. .
’ 2
The action at the saddle o is given by
Sy = :|:§(8)L) . (5.23)
This leads us to the standard Airy-type Stokes graph
Stokes line: S[i(51)*/?1 =0,  Anti-Stokes line: R[i(51)%/?] = 0. (5.24)
We can find the (dual) thimbles by solving
d ds d ds
L a9 _ @) , K+ @9 _ _ (@) (5.25)
ds Ao |onp, ds Ao |onp,

In Fig. 7 we show how the thimbles change as the phase arg(§A) increases. As arg(é)) is increased
from a negative value we encounter a Stokes phenomenon atarg(§1) = —m, an anti-Stokes phenome-
nonatarg(éA) = —2m/3, a Stokes phenomenon at arg(§A) = —m/3, and an anti-Stokes phenomenon
at arg(éA) = 0. In particular, we observe a jump of the contributing saddles at arg(61) = —m/3 (as
well as arg(5A) = 4 /3): we have a contribution only from ¢ = o for arg(§A) < —m/3 while
we have contributions from the two saddles 0 = 0 and 0 = o_ atarg(5A) = —/3 + 0. Thisis a
manifestation of the Stokes phenomenon. The free energy also jumps as

95}
+
Il

20 $133/2

A for 61

S ) 5(=d2) or §A < 0, (5.26)
St+S5- =0 for 61 > 0,

which implies a second-order phase transition.

Next, let us increase 6A from —1 to 1, keeping J61 = 0. As 61 goes from —1 to 0, the two
saddles (in the top left panel of Fig. 7) approach the origin along the imaginary axis. At A = 0,
they collide and change their directions. As §A goes from 0 to +1, the two saddles (in the bottom
right panel of Fig. 7) depart the origin along the real axis. In other words, the two saddles collide
with an angle /2 at the phase transition. Also, we remark that, during the phase transition, we cross
the anti-Stokes line arg(§A) = —27 /3 and the Stokes line arg(§1) = —m /3. Thus, the second-order
phase transition is understood as a phenomenon in which an anti-Stokes and a Stokes phenomenon
occur simultaneously. To summarize, the second-order phase transition in the Airy-type model is
interpreted as follows:

(1) Contributing saddles jump as 04 — o4,0_.
(2) The two saddles collide and scatter with a scattering angle /2.
(3) A Stokes phenomenon and an anti-Stokes phenomenon occur simultaneously.

5.2.2.  Borel singularities
The “partition function” of the Airy-type model is defined as

Z() = f do e~ NS(i0), (5.27)
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Fig. 7. Illustrations of the thimble structures of the Airy-type model for |§A| = 1. The blue circle and orange
triangle symbols indicate the saddles oy and o7, respectively. The Lefschetz thimbles associated with them are
drawn as lines with the same colors. The dual thimbles are drawn as dashed lines. The opaque saddles and
thimbles contribute to the integral, while the translucent ones do not. The phase of 6\ is arg(6A) = —m + 0.01
(top left), —2m /3 (top right), —7/3 4 0.01 (bottom left), and 0 (bottom right).

Let us consider the 1/N expansion around the “trivial” saddle o, = A!/2. Using the formula in
App. A, the perturbative series is formally given by

= i23/2
| do e < e <l> (5.28)
J+ l)u / N N
where
1 > q r3l+1/2)
F(— =Z—l, 4= . (5.29)
N N 32(—iA3/2)IT(1/2)T 21 + 1)

Note that the coefficient grows factorially. The analytic continuation of its Borel transformation is
~ 15 3t
BF(t) =F1 | =, =, ——=>- | - 5.30
(=2 1(6 g 4(_1.)\3/2)) (5.30)

22/47

1202 JequianoN €z Uo Jasn sauyjoljqiqienusz-AS3d Ad Z1212€9/709€01/01/120z/eoe/daid/wod dno-olwapede//:sdyy woj papeojumo(



PTEP 2021, 103B04 T. Fujimori et al.

This function has a Borel singularity (branch cut singularity) at

4(—ir*?
= JEATT) (5.31)
3
This Borel singularity corresponds to the “non-trivial saddle” o_ = —A!/2, and it collides with

the origin corresponding to the “trivial saddle” at the critical point A = 0. The scattering angle is
—3r/2 ~ /2. After the collision (A > 0), the Borel singularity is on the imaginary axis. This
means that an anti-Stokes phenomenon occurs: RS, = RS_ = 0. Thus, the collision of saddles is
appropriately encoded in the perturbative series as expected by the resurgence theory.

5.3.  Second-order SQED phase transition revisited

In this section we revisit the second-order phase transition in SQED based on the previous subsections
to further clarify the relationship between phase transition and resurgence.

5.3.1.  Lefschetz thimble analysis
From the Lefschetz thimble analysis in Sect. 3, we have seen that the SQED around the second-order
phase transition point has the following properties:

(1) Contributing saddle points jump as 00+ — 00+ N/

(i) The two saddles collide and scatter with scattering angle /2.

+

(iii) An infinite number of Stokes phenomena associated with saddles o,_ , occur.

n

The first two points are common with the Airy-type model in the previous subsection. This is because
the SQED “action” in Eq. (2.4) has a similar expansion to one of the Airy-type models around the
critical point. Thus, the second-order SQED phase transition is interpreted in a similar way as the
Airy-type model. The third point is particular for SQED. The difference essentially comes from the
fact that SQED has an infinite number of saddles periodically distributed along the imaginary axis.
Once thimbles run along the imaginary axis after a phase transition, they inevitably pass through the
periodic saddles. Such thimble behavior causes an infinite number of Stokes phenomena. Technically
the appearance of the periodic saddles is due to the cosh factors originating from the one-loop
determinant of the hypermultiplets in the SUSY localization of the $3 partition function. Therefore,
we expect that the above features also appear in other SUSY gauge theories on S°.

5.3.2.  Borel resummation
In the language of the Borel resummation, the second-order phase transition has the following
features:

(I) In the supercritical region, the two Borel singularities line up along the imaginary axis on the
Borel plane.
(I) The two Borel singularities collide and scatter with a scattering angle /2 as we cross the
critical point.
(IIT) The 1/Ny expansion becomes Borel non-summable along the positive real axis in the
supercritical region.

(D), (II), and (III) here correspond to (i), (ii), and (iii) of the Lefschetz thimble analysis, respectively,
as expected from the resurgence theory. The first point means that the saddle points associated

23/47

1202 JequianoN €z Uo Jasn sauyjoljqiqienusz-AS3d Ad Z1212€9/709€01/01/120z/eoe/daid/wod dno-olwapede//:sdyy woj papeojumo(



PTEP 2021, 103B04 T. Fujimori et al.

with the Borel singularities along the imaginary axis have the same real part of the actions and
therefore contribute to the integral with equal weights in the supercritical region. The second point
is a counterpart of the collision of two saddles from the viewpoint of the Borel resummation. The
relation between Borel singularities and saddle points implies that the collision of two saddles in
the o-plane leads to one of the two Borel singularities in the #-plane. Thus, we can also decode the
order of the phase transition purely from how the Borel singularities collide. The third point means
that the thimbles cross the multiple saddle points for arg(Ny) = 0 as shown in Fig. 1. In the SQED
case, the Borel non-summability detects the infinite number of periodic saddles which come from
the contribution from the hypermultiplets.

Finally, let us consider the Stokes graph. The second-order phase transition is interpreted in terms
of the Stokes graph as follows:

o The anti-Stokes line is given by R[(81)3/3] = 0.
© A Stokes phenomenon and an anti-Stokes phenomenon associated with saddles aoi occur
simultaneously.

These points are analogous to the Airy-type model discussed in Sect. 5.2. The only difference is that
the infinite number of Stokes phenomena associated with a,io occur simultaneously.

6. Conclusions and discussion

We have studied the resurgence structure of a quantum field theory with a phase transition to uncover
relations between resurgence and phase transitions. In particular, we focused on three-dimensional
N = 4 SQED, which undergoes the second-order quantum phase transition in the large-flavor
limit [143]. We approached the problem from the viewpoints of the Lefschetz thimbles and Borel
resummation. In the Lefschetz thimble approach, we specifically studied the thimble structures of the
integral representation of the partition function obtained by the supersymmetric localization [155—
157]. We first justified the assumption in Ref. [ 143] that all the dominant complex saddles contribute
to the integral by the Lefschetz thimble analysis. Then we found that there is a collision of the two
saddles and a jump of the contributing saddle points as we cross the critical value of the parameter
A = n/Ny. While this is the Stokes phenomenon, we saw that an anti-Stokes phenomenon also
occurs at the same time. Thus, we interpret the second-order phase transition as simultaneous Stokes
and anti-Stokes phenomena. Our result also shows that the phase transition accompanies an infinite
number of Stokes phenomena associated with the other saddles. This behavior technically comes
from the fact that the action in Eq. (2.4) has a periodic structure which originates physically from
one-loop contributions of hypermultiplets in the localization formula of §3 partition functions. This
indicates that the above structures hold not only for SQED but also for more general supersymmetric
gauge theories.

In the Borel resummation approach, we saw that the thimble structures are appropriately mapped to
the Borel plane structures of the large-flavor expansion, as expected from the resurgence theory. We
found the Borel singularities, two of which correspond to the two saddles. The two Borel singularities
line up vertically along the imaginary axis after the phase transition. This is a sign that the two saddles
contribute to the integral with equal weights. At the phase transition, the two Borel singularities collide
as the two saddles. The scattering angle of the Borel singularities at the collision is related to the order
of the phase transition. We also saw that the large-flavor expansion becomes Borel non-summable
along the positive real axis in the supercritical region, due to an infinite number of Borel singularities.
This reflects the infinite number of Stokes phenomena.
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Given the lessons from SQED, we provided more generic discussion on the relations between
resurgence and phase transitions. We considered a one-dimensional integral of the form in Eq. (5.1)
and showed that if the # saddles collide and scatter with a scattering angle Bz as we vary the parameter
A through the critical point A = A, then we have a phase transition of order [(n+ 1) 87]. Our argument
also showed that we have anti-Stokes phenomena at the critical point, where the anti-Stokes line is
given by N [(8)»)“’“”3 ] = 0. This implies that one can also read off the order of the phase transition
by looking at the anti-Stokes line. We also argued that the above behaviors are naturally translated
into the language of the Borel plane. This means that the order of phase transitions can also be
determined by tracking how Borel singularities move as the parameter varies. This implies that we
can read off information on phase structures purely in terms of perturbative expansions. The above
results apply to more general theories as long as they reduce to the form in Eq. (5.1).

Finally, we revisited the second-order SQED quantum phase transition from the above viewpoints.
In the case of SQED, the two saddles UJ“ and o, collide and scatter with /2 as we cross the
critical point A = XA¢. Therefore, we have (n, 8) = (2,1/2) in the formula [(n + 1)87 for the order
of the phase transition, and this agrees with the fact that the second-order phase transition occurs.
From the viewpoint of Stokes graphs, the second-order phase transition is essentially described as
the standard Airy-type graph. This clarifies that the second-order phase transition is understood
as a phenomenon where Stokes and anti-Stokes phenomena occur at the same time. This is in
clear contrast to the common understanding that a first-order phase transition is associated with an
anti-Stokes phenomenon. All of the above results support that resurgence works for describing the
second-order SQED phase transition.

We have obtained good news which may be useful in developing studies of resurgence on the techni-
cal side. Originally, the correspondence between saddles and Borel singularities in one-dimensional
integrals was shown in Refs. [158—160]. It is not guaranteed that we can naively apply the correspon-
dence to SQED because some of their assumptions are violated due to the logarithmic branch cuts
in the action. Nevertheless, our results suggest that the correspondence still holds even in SQED.
This seems to imply that one can extend the correspondence beyond the class of integrals studied in
Refs. [158-160]. It would be interesting to pursue this direction.

We believe that our results give a good step forward in understanding the connections between
phase transitions and resurgence. Yet there are still various questions and tasks which should be
addressed as next steps. First, it is important to understand the physical meaning of the second-
order SQED phase transition. For instance, we have not understood yet whether there is a change
of symmetries around the critical point, whether the critical point describes some conformal field
theory, and so on. Second, we have not identified interpretations of the saddle points in SQED in
the language of the original path integral. It seems that they are closely related to the complex
supersymmetric solutions found in Ref. [115], as discussed in App. F. We need further studies to
clarify the relations more precisely. Third, it would be interesting to study the relations between
Lee—Yang zeros and the Stokes graph. While the authors of Ref. [147] found that Lee—Yang zeros
are on anti-Stokes curves in the zero-dimensional Gross—Neveu-like model, the SQED studied in
this paper does not seem to have such a property. This may suggest that the situation in SQED
is different from the zero-dimensional Gross—Neveu-like model. Fourth, it would be illuminating
to study resurgence structures with respect to other SQED parameters such as the FI parameter .
There may be interesting relations to the resurgence structure of the large-flavor expansion as in the
two-dimensional pure U (N) Yang—Mills theory on the lattice, where interesting connections were
found among expansions by 1/N, Yang—Mills coupling, and ’t Hooft coupling [81,148,149]. Finally,
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it is technically important to improve the Padé-Uniformized approximation for cases with multiple
branch cuts in Borel planes. It seems that improvement of the approximation is hindered by the
non-trivial topology of Riemann sheets due to the branch cuts. Such a problem often arises in the
context of resurgence and therefore further studies are desired.

While this paper has focused on connections between resurgence and phase transitions, more
generally, it would be very interesting to explore relations between resurgence and phases themselves
rather than their transitions. It is known that information on phases in quantum field theories are
partially captured by ’t Hooft anomalies, including phases beyond the Ginzburg—Landau or Nambu
paradigm. While ’t Hooft anomalies are typically easy to calculate and give quite robust information
on phases, they rely on the existence of symmetries.'® In contrast, analysis of resurgence does not
require symmetries and gives detailed information while it is technically much more complicated.
Therefore, they play complementary roles. In this paper we have discussed that some features of
phase transitions are captured by qualitative behaviors of the objects appearing in the analysis of
resurgence. It would be great if one can find similar connections for ’t Hooft anomalies.!” It might
open a door to a shining world of non-perturbative physics.
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Appendix A. Details of the large-flavor expansion

In this appendix we compute the coefficients of the 1/Ny expansion of the partition function around
a general saddle point o,. First, to make the Ny dependence transparent, we introduce

S(0) = NrS(0). (A.1)

16 This is not necessarily true for “anomalies in the space of coupling constants,” which was recently proposed
[168,169].
17 See Ref. [36] for a very recent work on quantum mechanics in a similar spirit.
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Then we expand S(o) as

// X S(k+3)
( *)( . O_*)z + Z S (O'*) (O’ _ *)k+3’

S(0) = S(o) +
pare (k +3)!

(A.2)

and regard the last term as a perturbation. Next, we rewrite the contribution from the saddle o, to
the integral in Eq. (2.1) as

- 0 N Sk+3) TN e
/ do e_S(U) = e_NfS(a*)/ do Z l _ Z NfS (G*) (0_ o U*)k+3 e_Nfsz!( )(O'—O'*)z
n! (k +3)!
* * n=0 k=0
n

- 2 00 l)n 0 Ek+3 )

_ NS0 / —&

—e N _ Ck e, (A.3)

VNS - Z : Z N.E

S/

where 7, 1s the Lefschetz thimble associated with o, and

k+3

275 S(k+3)(6 )
(k + 3) (S//(O— ))k 43

cr = (A4)

To proceed, we also introduce

(Z ck/ek/) = " &m)e”. (A.5)
k=0 k=0

Then, exchanging the integration and summation, the formal 1/Ny expansion is computed as

e_NfS(U*) Z (=D"¢m 1 /OO d ri__?yn—i-ke—fz
NfS”(o ) TN
S

(=D"T <% + 3n+k> Ee(n) 1
['(1/2)C(n+ 1) ok

~ > 00
= e_NfS(U*) N—n : :
/
NfS /(o’*) n,k=0, 3n+k=even

S 2 ad ay
_ NS |
=e N —§ —, (A.6)
NrS"(04) 1= N;

B 2 (—1y (3 + €+ n) E2p—n(n)
a=), r1/2rm+1 '

where

(A7)
n=0

Appendix B. Lefschetz thimble structures for larger arg(/V,)

In this appendix we study the thimble structures for larger values of & = arg(Ny) than in Sect. 3.2
to understand the Stokes phenomena more precisely. It appears that the larger arg(Ny) region is not
directly related to the phase transition itself since originally the parameters were real. However, this
is essential to understanding the Borel plane structures, as discussed in Sect. 4.
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Fig. B.1. Illustrations of the Lefschetz thimble structures for the subcritical region A < A.. (In these figures,

m = 1, for which A = 0.4.) Larger phases are given, —7 < 6 < 0, so that we can observe Stokes phenomena

(left) and thimble structures (right) between them. Reflecting the figures along the imaginary axis corresponds

to flipping the sign of .

As mentioned at the end of Sect. 3.3, for non-small arg(Ny) we have to take the effects of the branch

cuts into account. Namely, when thimbles cross the branch cuts, the action is shifted by 27iN/Z,
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Fig. B.1. Continued.

and this effect modifies the condition for having Stokes phenomena. We will see soon that Stokes
phenomena due to this effect indeed occur in this problem.

In Fig. B.1 we summarize the Lefschetz thimble structures for (A,m) = (0.4, 1) with various
—m < arg(Ny) < 0 as representative of the subcritical region A < A¢. Reflecting these figures along
the vertical axis corresponds to flipping the sign of arg(Ny). Thus, these figures practically cover
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Fig. B.1. Continued.

the full region — < arg(Ny) < +m. In the figures on the left side, Stokes phenomena occur. For
example, at arg(Ny) = —1.190, the Lefschetz thimble associated with saddle 00+ (blue line) passes
also through other saddles O';;O. This is nothing but a Stokes phenomenon. One can easily check
that the condition for having Stokes phenomena,

S[S(o," ) — S(oy) + 27iNsZ] = 0, (B.1)

is satisfied by arg(Ny) = —1.190.

In Fig. B.2 we summarize the thimble structures for the supercritical region A > A. with various
—m < arg(Ny) < +m (specifically, (A, m) = (1.2,1) in the figures). In the figures on the left side,
Stokes phenomena occur. For example, at arg(Ny) = —0.039 the Lefschetz thimble associated with
the saddle 00+ (blue line) passes also through another saddle o . This means that

S[S(o7) — S(og) + 2miN;Z]1 = 0 (B.2)

holds at arg(Ny) = —0.039. This is also a Stokes phenomenon. These structures are consistent with
the Borel plane structures discussed in Sect. 4.
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Fig. B.2. Illustrations of the Lefschetz thimble structures for the supercritical region A > A.. (In these figures,
m = 1, for which A = 0.4.) Larger phases are given, —7 < 6 < 0, so that we can observe Stokes phenomena
(left) and thimble structures (right) between them.
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Appendix C. Comments on the Padé-Uniformized approximation

In the main text we saw that the Padé approximation becomes worse due to branch cuts. The branch
cut singularities were associated with a saddle o, in both the subcritical and supercritical regions.
To make matters worse, there are other signs of branch cuts on the Borel ¢-plane. Figure C.1 is
an example. We set m = 10 (for which A, = 9.0 x 107°) so that singularities gather around the
origin and the Padé¢ approximation works better. We can see signs of branch cuts associated not only
with a saddle o, but also with four other saddles afl. We claim that even the Padé-Uniformized
approximation is obstructed by these branch cuts. In this appendix we discuss this point by studying
some simple examples of applications of the Padé-Uniformized approximation.

Appendix C.1. Single branch cut

Let us start with the simplest case. Consider, for example, a function which has a single branch cut,

BF(t) = (C.1)

(1 -0l
and a uniformization map
u=y@t) =—In(l —1). (C2)

In Fig. C.2 we compare the standard Padé approximation with the Padé-Uniformized approximation
for this example. We see that the Padé-Uniformized approximation works well in this case.

Appendix C.2. Multiple branch cuts

Next let us consider the following example with two branch cuts:

BF(t) =

(1 =50 +nl/5 (C.3)

The result is shown in Fig. C.3. We see that the approximation becomes worse. In the Padé-
Uniformized approximation (right panel) we can see that there is a pair of singularities above and
below the negative real axis. This is an artifact due to the uniformization map, as explained below.
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Fig. C.1. Illustrations of the Borel plane structure for the supercritical region. In this figure we set m = 10
and A = 1.0 x 1073 > A, = 9.0 x 1075, The left panel is obtained by the Padé approximation, and the right
panel by the Padé-Uniformized approximation.
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Fig. C.2. Comparison of the Padé and the Padé-Uniformized approximations (25,25) in the case of a single
branch cut. Left: The Padé approximation. Right: The Padé-Uniformized approximation, where the branch cut
is removed by the uniformization map.

The nth Riemann sheet of the Borel ¢-plane is sent to the region

—nw < Su < +nw (C4)
by the uniformization map. The branch cut which starts from the singularity # = —1 is sent to
Nu < —In 2, Su = 2mn. (C.5)

Then, the Padé-Uniformized approximation on the z-plane (or the standard Padé approximation on
the u-plane) resembles singularities at

u=—In2+2min. (C.6)
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Fig. C.3. Comparison of the Padé and the Padé-Uniformized approximation (25,25) in the case with two
branch cuts. One of the branch cuts is removed by the uniformization map.

Ideally, all of these are sent back to the same point 1 = —1 by the inverse map,
t=¢w)=1—-e" (C.7)

However, since the approximation becomes worse away from the origin # = 0, the singularities found
(particularly with |r| > 0) are not sent back exactly to # = —1. As a result, the Padé-Uniformized
approximation returns multiple singularities around ¢ = —1. The pair of singularities in the right
panel of Fig. C.3 corresponds to n = 1. Other pairs of singularities corresponding to larger |n| are
missing simply because they are too far away from the origin u = 0.

Such artifacts cause trouble since they are indistinguishable from other genuine singularities. Let
us consider, for example, the function

1

BF () = A=A+ B G=—0G+1)

(C.8)

The result of the Padé(-Uniformized) approximation is shown in Fig. C.4. The two poles t = +i are
sent to

u=—In(1=Fi), (C.9)
while the branch cut singularities # = %1 are sent to
u=—In242min. (C.10)

These two singularities u = — In 2+ 2w in are further away from the poles ¥ = — In(1 5 7). Then, the
approximation for the two singularities is disturbed by the poles. As a result, the Padé-Uniformized
approximation returns the poles which originate in #+ = =i, but with much worse artifacts which
originate in ¢+ = £1. Indeed, in the right panel of Fig. C.4 the pair of artifacts is indistinguishable
from the genuine poles. We claim that some of the singularities found in Sect. 4.1 are these types of
artifact.
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Fig. C.4. Comparison of the Padé and the Padé-Uniformized approximation (25,25) in the case of two branch
cuts and two poles. One of the branch cuts is removed by the uniformization map.
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Fig. C.5. Comparison of the Padé and the Padé-Uniformized approximation (25,25) in the case of two branch
cuts. The two singularities t = %1 are mapped to u = *o0o. The multiple branch cuts are eliminated by the
map.

Appendix C.3. On elimination of multiple branch cuts

One possible way to avoid such multiple branch cuts is to consider the map
u=vy)=—In(1 —1)+In(1+1), (C.11)

which sends the singularities at t = 41 to u = F00. However, this map causes other branch cuts
on the u-plane. As a result, the Padé-Uniformized approximation returns a lot of artifacts along the
imaginary axis, as shown in Fig. C.5. It seems that the problem resides in the non-trivial topology
of the Borel #-plane due to multiple branch cuts.

For the above reasons, the multiple branch cuts worsen the Padé-Uniformized approximation. Some
artifacts are indistinguishable from other genuine singularities. Also, multiple branch cuts are not
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eliminated simultaneously, at least by naive maps. Further improvements of the Padé-Uniformized
approximation are left for future work.

Appendix D. Transseries for finite 5

In this appendix we derive the transseries for finite  from the viewpoint of a difference equation. See
Refs. [2,170] for the technical details. We consider the formal transseries satisfying the difference
equation (x = Ny)

Zx+1D)=f(x)Z(x)+gx)Z(x—1), (D.1)
where
(2x — 1) cosh(m) (x — 1?2 +7n?
/@) 2x sinh? (m) ’ &) 4dx(x — 1) sinh? (m) (D-2)

We introduce P(x) = Z(x — 1), and Eq. (D.1) can be written as a vectorial expression:
Z(x+1)=MMx)Z(x), (D.3)

where Z(x) = (Z(x), P(x)) ", and the 2 x 2 matrix M (x) is defined as

M(x) = (f (lx) g g‘)) ~ A (T+x7'4) + 0 ?), (D.4)
cosh(m) 1
_ [ sinn2m)  4sinh%(m) _ 0 0
A ( 1 0 ) ’ 4 (2 cosh(m) —1) ' (D-5)

The transseries structure generally depends on the form of the difference equation and is uniquely
determined from the change of asymptotic series by acting the shift operator (see App. D.1 for
details). In order to obtain the transseries based on the difference equation, one needs to diagonalize
A and A. By using an invertible matrix U to diagonalize A, one finds that

A =UAU"! =: diag(h_, A1), (D.6)
_cosh(m) £1 1 0.7
~ 2sinh*(m)  2(cosh(m) F 1)’ :

» _ 1 1 + cosh(m)

4= UAU_I = (_l 4+ czosh(m) g ioih(m)_l> > (D.8)

2 cosh(m)+1 2
_ ainh2 1 cosh(m)

U= ( ; H;l; N cosﬁ(m)>, (D.9)

sinh“(m) 5 —=—5—

= Zx+1)=MxZkx), (D.10)

where M (x) := UM(x)U~! and Z(x) := UZ(x). Next, we consider the diagonalization for A by
employing the technique in App. D.2. In order to do so we act W (x) from the left as

Zx+1)=MxZLx), Zx) :=WxZX), (D.11)
where

M) =W+ DMEW (), We) =I+x"1V, (D.12)
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and

- 1
diag,,[A4] =: diag(a—, ay), ax =—7. (D.13)

Hence,

o0
Zx)= D Y 0uCe e, (D.14)
={+—} n=0

N

where the transseries in terms of x is completely determined, but is not for other parameters such
as m and n. Hence, oy = o(m,n) and ¢y, = c;,(m,n) in general. Since c4 g is relevant only to
the normalization, one can take c+ ¢ = 1 without loss of generality. o+ can be determined from the
partition function, and are given by

o+(m,n) =0, o_(m,n) = /27 (1 + cosh m). (D.15)

Notice that c4 ,,~¢ are recursively determined from the difference equation.

Appendix D.1. Properties of the shift operator T

We define the shift operator 7" as T[f(x)] = f(x + 1). It satisfies the following homomorphic
properties for summation and multiplication:

Tf(x) + g0 =T )]+ Tlg)], (D.16)
Tf(x) - g =T (0] TgW)]. (D.17)

The action of T to transmonomials gives

-1 _;_ & 1\, 1-n
Tlx ]_XH_,;( D', (D.18)
TRl = o+ D =21+ ) =20 ) & @-D n‘ @zntD - (D.19)
n=0 ’
Tle M) = e MO+ — =1 gmhx (D.20)
O o (_l)n—i-lx—n
Tllog(x)] = log(x 4+ 1) = log(x) + log(1 +x~ ") = log(x) + Z — (D.21)
n=1

Notice that when g(x + 1) = g(x), the action of T to g(x) gives the identity map. As one can see
easily, for example, the below type of transseries is closed under the action of the shift operator 7'

(0,0] (0,0]
_ _ T _ _
Z e ”log“cn’kx“ ke Z e ”log“c;lkx“ k. (D.22)
n,k=0 n,k=0

The type of transseries and the propagation of integration constants are determined by the form of
the difference equation such as (non)linearity, (non)autonomous, and so on.
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Appendix D.2. Diagonalization of M (x)

Suppose f(x) is a transseries determined by a difference equation having the form f(x + 1) =
M (x)f (x), where M (x) is a function satisfying M (x) ~ A(1 +x~14) + O(x~?) with constant A and
A. Assume that A is positive. If the transseries includes e~ #*x¢, since the action of 7' gives

Tle™x = e e "X (1 +ax~ ! + 0(x), (D.23)
u and a are determined from A and A4, respectively, as
uw = —log(A), a=A. (D.24)
We can extend £ (x) to multi-variables, f(x) = (f1 (x),...,/~ o',
fx+ 1) =Mx)fx), (D.25)
where M (x) is an N x N matrix given by
M) = A (I+x""4) +0x™2), (D.26)

with constants matrix A and 4. Assume that A is diagonalizable by an invertible matrix U and that
all the eigenvalues are positive. By acting U from the left on both sides, one can obtain that

foe+ 1) =Mufx), (D.27)
where
M) = Al+x"'4) + 02, (D.28)
A =UAU"" =: diag(r1, ..., N), (D.29)
A=U4U"". (D.30)

In order to diagonalize [\;1, we redefine f (x) and the difference equation as

f(x+1) = Mf©), (D.31)
f(x) = wiw), (D.32)
W) =T+x"'v, (D.33)

with an N x N constant matrix ¥ and M (x) given by
M@x) =W+ DM@ W (x)
=+ G+ D) M@ (+x'7) "
~A+x7H [V, A1+ Ad) + 072, (D.34)

where [4, B] := AB — BA. Notice that all the diagonal parts of /' can be taken as zero and one can
determine other N (N — 1)-components of V' such that

[V, Al + Ad = diag),[AA] = Adiag,,[4], (D.35)
diag,,[A] =: diag(ay, .. .,an), (D.36)

where diag),[4] is a diagonal matrix having diagonal parts of 4.
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Appendix E. Transseries for a finite A = /N,

Let us rewrite the recursion relation in Eq. (D.1) in terms of a fixed A = n/Ny:

Zx+1D)=f(x)Z(x)+gx)Z(x —1), (E.1)
where
(2x — 1) cosh(m) (x — )2 +x%22
— =_ . E.2
/() 2xsinh?(m) gw) 4x(x — 1) sinh?(m) (E-2)

If we ignore the extra dependence of Z(x,n) on x through n = A/x, we find that the vectorial
recursion relation for Z(x) = (Z(x), P(x)) " is modified to

Z(x+ 1) =Mx)ZL(x), (E.3)
M(x) = (f (lx) & E)X)> ~T (I+x7"A) + 0672, (E4)
cosh(m) _ 2241 0 0
= (sinhz(m) 4sinh2(m)>, A= (2cosh(m) A2_1>. (E.5)
1 0 TR AL
By diagonalizing the matrix I, we find two exponents . :

M) =T (]1 +x—1A) +OGD), (E.6)
['=U0ruv-! =: diag(ys, y-), (E.7)
A=UAU!, (E.8)

_coshm =+ /1 —22 sinh? m (E.9)
== 2 sinh? m . .

These two exponents are degenerate when

1

A== )
sinh m

(E.10)

which agrees with the critical point A in Eq. (2.10) for the phase transition.

Appendix F. A possible relation between the Borel singularities and complex SUSY
solutions

In this appendix we point out that a path integral interpretation of the Borel singularities appearing
in the main text may be complex supersymmetric solutions (CSS) as found in Ref. [115]. It was
proposed that Borel transformation of large Chern—Simons level expansion include the factor

Bzt)> ] (F.1)

_ ng—np’
css =50

where np (nr) is the number of bosonic (fermionic) solutions. In the SQED studied in this paper
there are two types of CSS with ng —np # 0, more precisely ng —ng = Ny. Actions of the solutions
are

Scss = Nf(2nn)\. Film), (F.2)
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while the action at the saddle points Gni in the localization formula is

(F.3)

SF :Nf[z,m,\ _ %mg (“hcoshm FiA)(=i+H) coshm A]

(—hcoshm £iMG+r) | 8T 1+

Comparing this with Eq. (F.2), we find that these actions agree when X is large (A > 1). Thus, it
seems plausible that the Borel singularities correspond to the CSS in the original path integral, at
least for large A. It would be interesting to extend the analysis in this appendix to finite A.
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