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The irreducible mass of Christodoulou-Ruffini-Hawking mass formula
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We reveal three new discoveries in black hole physics previously unexplored in the
Hawking era. These results are based on the remarkable 1971 discovery of the irreducible
mass of the black hole by Christodoulou and Ruffini, and subsequently confirmed by
Hawking.
1. The Horizon Mass Theorem shows that the mass at the event horizon of any black
hole: neutral, charged, or rotating, depends only on twice its irreducible mass observed
at infinity.
2. The External Energy Conjecture proposes that the electrostatic and rotational energy
of a general black hole exist completely outside the horizon due to the nature of the
irreducible mass.
3. The Moment of Inertia Property shows that every Kerr black hole has a moment of
inertia. When the rotation stops, there is an irreducible moment of inertia as a result of
the irreducible mass.
Thus after 50 years, the irreducible mass has gained a new and profound significance.
No longer is it just a limiting value in energy extraction, it can also determine black hole
dynamics and structure. What is believed to be a black hole is a physical body with an
extended structure. Astrophysical black holes are likely to be massive compact objects
from which light cannot escape.

Keywords: Black holes; quasi-local energy; irreducible mass; Kerr metric; moment of
inertia.

1. 50th Anniversary 1971–2021

This article is to celebrate the 50th anniversary of the discovery of the mass-energy

formula of a Kerr-Newman black hole in 1971 by introducing three new results re-

cently found in black hole physics. Surprisingly, these results all invove the concept

of the irreducible mass.

First, congratulations to Demetrios Christodoulou and Remo Ruffini for their

remarkable discovery of the irreducible mass1 of the black hole and confirmed by

Hawking,2 one of the most important concepts in black hole physics.

This year is also the 50th anniversary of the renormalization of Yang-Mills the-

ory3 in 1971. Congratulations to Gerard ’t Hooft and the late Martinus Veltman

for their elucidation of the quantum structure of electroweak interactions, one of

the great achievements in 20th Century physics.
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The irreducible mass formula discovered by Christodoulou and Ruffin in 1971 is

the following:1

M2 =

(
Mirr +

Q2

4GMirr

)2

+
J2c2

4G2M2
irr

. (1)

Here M is the total mass of the Kerr-Newman black hole, Mirr is the irreducible

mass; Q is the electric charge and J is the angular momentum. All quantities are

reckoned according to the distant observer. When Q and J are zero, the irreducible

mass is the mass of a Schwarzschild black hole. 50 years later, the irreducible mass

has gained unexpected new and profound significance besides energy extraction. It

can also determine black hole dynamics and structure.

It is especially appropriate to explain the many definitions of a black hole in

physics.4 The mathematical black hole in general relativity has a singularity hidden

by a horizon. However, neither singularity nor horizon has been observed. Compact

objects like the one at the center of our galaxy are also called black holes in common

usuage, even though their nature is still unknown. This is pointed out in the 2020

Nobel Prize in Physics citation. To Roger Penrose, the citation is ‘for the discovery

that black hole formation is a robust prediction of the general theory of relativity’.

To Reinhard Genzel and Andrea Ghez, the citatation is ‘for the discovery of a

supermassive compact object at the center of our galaxy’. The term black hole

is avoided. Strictly speaking, the black hole has not been discovered, but only a

black hole-like object has been observed in astyrophysics. The Laplace ‘dark star’

introduced the concept of the black hole as a massive body from which light cannot

escape due to its strong gravity.

Between 1965–1985, several important theorems on classical black holes were

gradually discovered. They are known as:

(1) Singularity Theorem (1965),5

(2) Area Non-decrease Theorem (1972),6

(3) Uniqueness Theorem (1975),7

(4) Positive Energy Theorem (1983).8

These theorems have been well discussed for many years in general relativity and

accepted as basic properties of the classical black hole. In recent years, three new

results on black holes previously unexplored in the Hawking era are found. They

were developed using the quasi-local energy approach and angular momentum con-

sideration. Remarkably, they all contain the irreducible mass of Christodoulou and

Ruffini. They are:

(5) Horizon Mass Theorem (2005),9

(6) External Energy Conjecture (2017),10

(7) Moment of Inertia Property (2018).11
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These results are derived completely within general relativity and therefore legiti-

mate. They add new properties to the classical black hole with potential to resolve

several long-standing paradoxes in black hole physics.

2. Horizon Mass Theorem

Theorem. For neutral and charged black holes, the horizon mass is always twice

the irreducible mass observed at infinity.

For rotating black holes, the horizon mass is found to be extremely close to twice

the irreducible mass for all rotations. It is conjectured that a rigorous proof will

eventually show that the horizon mass is exactly twice the irreducible mass.

In notation, it is simply

M(r+) = 2Mirr (2)

where r+ is the horizon radius of the black hole. The theorem relates the mass

of a black hole observed at the event horizon to its irreducible mass observed at

infinity. The irreducible mass does not contain electrostatic and rotational energy.

The Horizon Mass Theorem is the final outcome of quasi-local mass applied to black

holes.

The quasi-local energy is one of the most important concepts in general relativity

after decades of searching for a consistent definition of gravitational energy. It was

finally obtained in 1993. The Brown and York expression12 for quasi-local energy

is given in terms of the total mean curvature of a surface bounding a volume for a

gravitational system in four-dimensional spacetime. The total energy E , including

binding energy, is given in the form of an integral,

E =
c4

8πG

∫
2B

d2x
√
σ(k − k0), (3)

where σ is the determinant of the metric defined on the two-dimensional surface
2B ; k is the trace of the extrinsic curvature of the surface, and k0 , the trace of

the curvature of a reference space. For asymptotically flat reference spacetime, k0 is

taken to be zero. The expression in Eq.(3) is the basis for establishing the Horizon

Mass Theorem.

For a Schwarzschild black hole, the total energy contained in a sphere enclosing

the black hole at a coordinate distance r is calculated,12–14

E(r) =
rc4

G

[
1−

√
1− 2GM

rc2

]
. (4)

At the Schwarzschild radius, r = r+ = 2GM/c2 , the above equation reduces to

E(r) =

(
2GM

c2

)
c4

G
= 2Mc2, (5)
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giving the first case of the Horizon Mass Theorem in Schwarzschild spacetime, i.e.

M(r+) = 2M .

For a Reissner-Nordström black hole enclosed within a radius at coordinate r,

the total energy calculated is now [9],

E(r) =
rc4

G

[
1−

√
1− 2GM

rc2
+
GQ2

r2c4

]
. (6)

Here M is the total mass of the black hole including electrostatic energy observed

at infinity, and Q is the electric charge.

The irreducible mass is the final mass of the black hole when its charge is neu-

tralized by adding oppositely charged particles, extracting energy from the black

hole. It is defined as in electrostatics,

M = Mirr +
Q2

4GMirr
. (7)

Inverting the equation to solve for Mirr, we find

Mirr =
M

2
+
M

2

√
1− Q2

GM2
. (8)

The horizon radius of a Reissner-Nordström black hole is known to be

r+ =
GM

c2
+
GM

c2

√
1− Q2

GM2
. (9)

Combining Eq.(6) and Eq.(9), we find the mass contained within the horizon to be

E(r+)

c2
= M(r+) = M +M

√
1− Q2

GM2
, (10)

i.e. M(r+) = 2Mirr. This is the second case of the Horizon Mass Theorem in

Reissner-Nordström spacetime. It is seen that the horizon mass of the charged black

hole depends only on the energy of the black hole when it is neutral.

We proceed next to the case for a slowly rotating black hole with mass M and

angular momentum J . The total energy contained within a sphere of radius r can

only be given by an approximate expression. This is due to the complexity of the

Kerr metric, and more importantly, due to the fact that the Kerr metric only has

axial symmetry instead of spherical symmetry. At the horizon, it is found that,15

E(r) =
rc4

G

[
1−

√
1− 2GM

rc2
+
α2

r2

]

+
α2c4

6rG

[
2 +

2GM

rc2
+

(
1 +

2GM

rc2

)√
1− 2GM

rc2
+
α2

r2

]
+ · · · (11)

where α = J/Mc is the angular momentun length paraneter. The leading term of

the expression is similar to the energy expression in the Reissner-Nordström case,
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suggesting that the mass at the horizon is twice the irreducible mass. The next term

depends on α2, adding a small contribution to the leading term.

The irreducible mass of a Kerr black hole is the final mass when its rotational

energy is completely extracted by adding external particles, such as in the Penrose

process.16 It is given in the form

M2
irr =

M2

2
+
M2

2

√
1− J2c2

G2M4
. (12)

The horizon radius in this case is,

r+ =
GM

c2
+
GM

c2

√
1− J2c2

G2M4
. (13)

An approximate relation for the horizon energy is therefore found,

E(r+) ≈ 2Mirr + O(α2). (14)

The conclusion is that there is very little rotational energy insiide the Kerr black

hole.

It is natural to extend the quasi-local energy investigation to include higher ro-

tations, and logically, all rotations. However, a severe challenge appeared at this

stage and progress on black hole rotation in this approach stopped. The calcula-

tions became extremely difficult to perform. No analytical expression or numerical

evaluation could achieve an exact expression for the horizon mass of the Kerr black

hole. An analysis of the horizon mass in the teleparallel equivalent formulation of

general relativity17 reveals that it is strikingly close to twice the irreducible mass

2Mirr for all range of the parameter 0 ≤ α < GM/c2. The tiny discrepancy is likely

due to evaluating method and describing the spherical horizon region in a system

with intrinsic axial symmetry. A general principle based on equipartition of energy

at the horizon also suggests the horizon mass result for the Kerr black hole18 by

invoking one-half of the horizon mass for compensating the negative gravitational

potential energy and the other half for supplying the irreducible mass.

We give a heuristic argument for the Horizon Mass Theorem with the area con-

cept of a black hole.9 It has been known from the Kerr metric that the area at the

event horizon of a Kerr black hole for all rotations is1

A = 4π(r2+ + α2) =
16πG2M2

irr

c4
, (15)

and the area of a Schwarzschild black hole of mass MS and radius RS is

A = 4πR2
S = 4π

(
2GMS

c2

)2

=
16πG2M2

S

c4
. (16)

The two areas can be related by invoking Hawking’s Area Non-decrease Theorem

in the energy extraction process. The theorem asserts that the area of a Kerr black

hole is the same as the area of the final Schwarzschild black hole when rotational

energy is extracted in a smooth and reversible process. Since the horizon mass of the
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Schwarzschild black hole is proven to be twice its asymptotic mass MS , the horizon

mass of the Kerr black hole in this process is therefore 2Mirr. The result applies to

all rotations. It is believed that a rigorous mathematical proof will eventually show

that the horizon mass is exactly twice the irreducible mass.

The Horizon Mass Theorem is crucial for understanding processes occuring near

the horizon, such as the merging of two black holes,19 and quantum emission of

Hawking radiation.20

3. External Energy Conjecture

Proposition. The electrostatic energy and rotational energy of a general black hole

exist completely outside the horizon.

The conjecture is a direct consequence of the irreducible mass in the Horizon Mass

Theorem.

By definition, the irreducible mass does not contain rotational energy or elec-

trostatic energy. A rotating black hole does not have rotational energy inside the

horizon; therefore rotational energy exists outside the surface. Similarly, an elec-

trically charged black hole does not have electrostatic energy inside. Electrostatic

energy exists only outside, like that of a conductor. When quantum particles carry-

ing electric charges and spins reach the black hole, they are forbidden to enter inside.

They can only stay outside or at the surface. Since all matter particles in Nature

are quantum particles, this makes the interior of the black hole completely hollow.

Classical particles do not exist in Nature; they are a tool in classical mechanics.

We may generalize the External Energy Conjecture to include other energies of

a black hole and introduce a new paradigm.11

External Energy Paradigm:

All energies of a black hole are external quantities. They include: constituent

mass, gravitational energy, electrostatic energy, magnetic energy, rotational

energy, heat energy, etc.

The validity of this paradigm will be demonstrated in the next section in which the

moment of inertia of a black hole is presented.

4. Moment of Inertia Property

Statement. A black hole with an angular momentum and an angular velocity at

the event horizon has a moment of inertia given by:

coefficient × Kerr mass × (ergosphere radius)2 .

When rotation stops, there is an irreducible moment of inertia given by:

irreducible mass × (Schwarzschild radius)2 .
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The result of this statement is derived solely from the Kerr metric and is therefore

a bona fide property of general relativity. Every black hole has a moment of inertia,

even when it is not rotating. Moment of inertia indicates structure of the black hole.

The Kerr metric21 discovered in 1963 ushered in a new epoch in general relativity

and in astrophysics. It is absolutely indispensable for the study of rotating black

holes. We demonstrate the existence of moment of inertia uniquely from the Kerr

metric, using angular momentum and angular velocity consideration. We present

the Kerr metric in an explicit form of the Boyer-Lindquist coordinates22 (t, r, θ, φ)

so that the metric coefficients can be readily extracted for calculation. It contains

two constants α = J/Mc and m = GM/c2 for the stationary case,

ds2 =

(
r2 + α2cos2θ − 2mr

r2 + α2cos2θ

)
c2dt2 +

(
4mαrsin2θ

r2 + α2cos2θ

)
cdφdt

− [(r2 + α2)(r2 + α2cos2θ) + 2mrα2sin2θ]

r2 + α2cos2θ
sin2θdφ2

−(r2 + α2cos2θ)

(
dθ2 +

dr2

r2 + α2 − 2mr

)
. (17)

The Kerr spacetime rotates with different angular velocities at different locations.

The angular velocity at a point is defined as the change in azimuthal angle φ with

respect to the change in coordinate time t. It can be expressed in terms of the metric

coefficients as

Ω =
dφ

dt
= − gtφ

gφφ
. (18)

where gtφ = gφt . At the equatorial region, θ = 90◦ , the angular velocity expression

at a distance r can be written as

Ω =
2mαrc

(r2 + α2)r2 + 2mrα2
. (19)

Further simplification can be achieved at the event horizon r = r+ , using the

identity r2+ + α2 = 2mr+ , i.e.

Ω+ =
αc

r2+ + α2
. (20)

In terms of actual physical quantities, we have an exact algebraic relation for the

angular velocity of the Kerr black hole,

Ω+(J) =

J

M

2G2M2

c4

[
1 +

√
1− J2c2

G2M4

] . (21)

Given an angular momentun J and a Kerr mass M determined by a distant ob-

server, the angular velocity at the event horizon can be obtained in radians/sec.
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Equivalently, we can express the angular momentum J in terms of the angular

velocity Ω through the moment of inertia I(Ω) in the form

J(Ω) = I(Ω) · Ω. (22)

We find, from Eq.(21), after substantial algebra,

J(Ω+) =

M

(
2GM

c2

)2

1 +

(
2GM

c2

)2 Ω2
+

c2

· Ω+. (23)

The crucial step here is to extract a radius factor in the above relation. It is recog-

nized that the factor 2GM/c2 is the ergosphere radius at the equator, since M is

the Kerr mass which includes rotational energy. Accordingly, the moment of inertia

of the Kerr black hole is

I(Ω+) =

M

(
2GM

c2

)2

1 +

(
2GM

c2

)2 Ω2
+

c2

. (24)

It is further recognized that the entire denominator in the above expression becomes

a dimensionless number and acts as a numerical coefficient. The structure of the

Kerr black hole is therefore,

coefficient × Kerr mass × (ergosphere radius)2.

As angular momentum is continually reduced in the energy extraction process,

a slowly rotating black hole is formed. In the static limit, the quantity Ω2
+ → 0

first, the Kerr mass becomes the irreducible mass, M → Mirr and the coefficient

becomes exactly equal to 1. The moment of inertia of a Schwarzschild black hole is

derived. It is the limiting value of the moment of inertia of the Kerr black hole in

Eq.(24), given by

I = MSR
2
S . (25)

There is an irreducible moment of inertia of the Kerr black hole as a result of the

irreducible mass. It is the rotatonal analogue of the rest mass of a moving body

E = mc2.

A further observation that leads quickly to the irreducible moment of inertia is

by considering the angular momentum definition in the Kerr metric J = Mαc and

the angular velocity Ω+ at the horizon found in Eq.(20). We find,

I =
J

Ω+
= M

(
r2+ + α2

)
=
√
M2
irr +M2

rot

(
r2+ + α2

)
. (26)

As the rotational parameter α→ 0, the rotational mass Mrot → 0; while the horizon

radius r+ → RS . In the limit, I = MirrR
2
S = MSR

2
S . If one directly puts J = 0 and
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Ω+ = 0 in the definition I = J/Ω+ , one would get an undefined result 0/0. The

static limit of the Kerr black hole hole has the structure,

irreducible mass × (Schwarzschild radius)2.

A Schwarzschild black hole does not have an axis of rotation. Introducing an axis

destroys its spherical symmetry. The center is therefore the point of symmetry. The

moment of inertia I = MSR
2
S is a statement about the mass distribution of a body

with respect to the center in that the total mass is to be located at the Schwarzschild

radius. A natural interpretation is that the static black hole is a hollow massive shell.

This would go against the Equivalence Principle and the Singularity Theorem. It is

possible that the static black hole resulting from the energy extraction process of a

Kerr black hole is fundamentally different from the original Schwarzschild black hole.

The static black hole derived from a Kerr black hole may be a quasi-black hole. A

quasi-black hole has the same exterior spacetime as that of the Schwarzschild black

hole but without the conceptual difficulties associated with the latter.23 Singularity

does not exist because particles are forbidden to cross the horizon by the very

presence of the moment of inertia. The black hole firewall is such a scenario.24 The

quasi-black hole would also provide a physical surface where electric charges can

stay instead of hovering without cause in the case of the charged black hole. In

addition, if the surface area is identified as the entropy of a black hole according to

Bekenstein25 and Hawking,6 then it is logical to expect that all mass of the quasi-

black hole is at the surface. The moment of inertia is a new property of the Kerr

black hole.

5. Epilogue

After 50 years, the irreducible mass has progressed from the gedanken Penrose pro-

cess to quantum energy extraction in gamma-ray bursts and active galactic nuclei

emissions.26 Instead of being a cold and inert body, the real black hole is a highly

active object. The irreducible mass further plays a central role in newly discovered

black hole properties. These results may resolve some of the long-standing para-

doxes in black hole physics.
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