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The irreducible mass of Christodoulou-Ruffini-Hawking mass formula
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We reveal three new discoveries in black hole physics previously unexplored in the
Hawking era. These results are based on the remarkable 1971 discovery of the irreducible
mass of the black hole by Christodoulou and Ruffini, and subsequently confirmed by
Hawking.

1. The Horizon Mass Theorem shows that the mass at the event horizon of any black
hole: neutral, charged, or rotating, depends only on twice its irreducible mass observed
at infinity.

2. The External Energy Conjecture proposes that the electrostatic and rotational energy
of a general black hole exist completely outside the horizon due to the nature of the
irreducible mass.

3. The Moment of Inertia Property shows that every Kerr black hole has a moment of
inertia. When the rotation stops, there is an irreducible moment of inertia as a result of
the irreducible mass.

Thus after 50 years, the irreducible mass has gained a new and profound significance.
No longer is it just a limiting value in energy extraction, it can also determine black hole
dynamics and structure. What is believed to be a black hole is a physical body with an
extended structure. Astrophysical black holes are likely to be massive compact objects
from which light cannot escape.

Keywords: Black holes; quasi-local energy; irreducible mass; Kerr metric; moment of
inertia.

1. 50th Anniversary 1971-2021

This article is to celebrate the 50th anniversary of the discovery of the mass-energy
formula of a Kerr-Newman black hole in 1971 by introducing three new results re-
cently found in black hole physics. Surprisingly, these results all invove the concept
of the irreducible mass.

First, congratulations to Demetrios Christodoulou and Remo Ruffini for their
remarkable discovery of the irreducible mass® of the black hole and confirmed by
Hawking,? one of the most important concepts in black hole physics.

This year is also the 50th anniversary of the renormalization of Yang-Mills the-
ory® in 1971. Congratulations to Gerard 't Hooft and the late Martinus Veltman
for their elucidation of the quantum structure of electroweak interactions, one of
the great achievements in 20th Century physics.
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The irreducible mass formula discovered by Christodoulou and Ruffin in 1971 is
the following:!

Q2 2 J2c2
Yicn, ) TaceaE (1)

rr

M2 = <Mirr

Here M is the total mass of the Kerr-Newman black hole, Mj,.. is the irreducible
mass; @ is the electric charge and J is the angular momentum. All quantities are
reckoned according to the distant observer. When @ and J are zero, the irreducible
mass is the mass of a Schwarzschild black hole. 50 years later, the irreducible mass
has gained unexpected new and profound significance besides energy extraction. It
can also determine black hole dynamics and structure.

It is especially appropriate to explain the many definitions of a black hole in
physics.* The mathematical black hole in general relativity has a singularity hidden
by a horizon. However, neither singularity nor horizon has been observed. Compact
objects like the one at the center of our galaxy are also called black holes in common
usuage, even though their nature is still unknown. This is pointed out in the 2020
Nobel Prize in Physics citation. To Roger Penrose, the citation is ‘for the discovery
that black hole formation is a robust prediction of the general theory of relativity’.
To Reinhard Genzel and Andrea Ghez, the citatation is ‘for the discovery of a
supermassive compact object at the center of our galaxy’. The term black hole
is avoided. Strictly speaking, the black hole has not been discovered, but only a
black hole-like object has been observed in astyrophysics. The Laplace ‘dark star’
introduced the concept of the black hole as a massive body from which light cannot
escape due to its strong gravity.

Between 1965-1985, several important theorems on classical black holes were
gradually discovered. They are known as:

(1
(2
(3
(4

Singularity Theorem (1965),°

Area Non-decrease Theorem (1972),°
Uniqueness Theorem (1975),7
Positive Energy Theorem (1983).%

—_— N —

These theorems have been well discussed for many years in general relativity and
accepted as basic properties of the classical black hole. In recent years, three new
results on black holes previously unexplored in the Hawking era are found. They
were developed using the quasi-local energy approach and angular momentum con-
sideration. Remarkably, they all contain the irreducible mass of Christodoulou and
Ruffini. They are:

(5) Horizon Mass Theorem (2005),°
(6) External Energy Conjecture (2017),'°
(7) Moment of Inertia Property (2018).!
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These results are derived completely within general relativity and therefore legiti-
mate. They add new properties to the classical black hole with potential to resolve
several long-standing paradoxes in black hole physics.

2. Horizon Mass Theorem

Theorem. For neutral and charged black holes, the horizon mass is always twice
the irreducible mass observed at infinity.

For rotating black holes, the horizon mass is found to be extremely close to twice
the irreducible mass for all rotations. It is conjectured that a rigorous proof will
eventually show that the horizon mass is exactly twice the irreducible mass.

In notation, it is simply
M(ry) = 2M;p, (2)

where 74 is the horizon radius of the black hole. The theorem relates the mass
of a black hole observed at the event horizon to its irreducible mass observed at
infinity. The irreducible mass does not contain electrostatic and rotational energy.
The Horizon Mass Theorem is the final outcome of quasi-local mass applied to black
holes.

The quasi-local energy is one of the most important concepts in general relativity
after decades of searching for a consistent definition of gravitational energy. It was
finally obtained in 1993. The Brown and York expression'? for quasi-local energy
is given in terms of the total mean curvature of a surface bounding a volume for a
gravitational system in four-dimensional spacetime. The total energy E , including
binding energy, is given in the form of an integral,

: / Pavo(k — k), (3)
2B

c
where o is the determinant of the metric defined on the two-dimensional surface

~8’nG

2B : k is the trace of the extrinsic curvature of the surface, and ko , the trace of
the curvature of a reference space. For asymptotically flat reference spacetime, k° is
taken to be zero. The expression in Eq.(3) is the basis for establishing the Horizon
Mass Theorem.

For a Schwarzschild black hole, the total energy contained in a sphere enclosing
the black hole at a coordinate distance r is calculated, > 14

_2GM
rc?

7‘C4

E(r) = el

(4)

At the Schwarzschild radius, r = r, = 2GM/c? |, the above equation reduces to

2GM) ct

E(r) = < =)o 2Mc?, (5)
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giving the first case of the Horizon Mass Theorem in Schwarzschild spacetime, i.e.
M(ry)=2M .

For a Reissner-Nordstrom black hole enclosed within a radius at coordinate r,
the total energy calculated is now [9],

2
i e

rc? r2cd

T‘C4

E(r)=—

z (6)

Here M is the total mass of the black hole including electrostatic energy observed
at infinity, and @ is the electric charge.

The irreducible mass is the final mass of the black hole when its charge is neu-
tralized by adding oppositely charged particles, extracting energy from the black
hole. It is defined as in electrostatics,

QZ
M = Miypr + ————. 7
* 4GMirr ( )
Inverting the equation to solve for M;,.., we find
M M Q?
Mirr = e - . 8
2 * 2 GM? (8)

The horizon radius of a Reissner-Nordstrom black hole is known to be

GM GM Q2
s eI TER ©)

Combining Eq.(6) and Eq.(9), we find the mass contained within the horizon to be

E(C?;) = M(ry) M”LMm’ (o)

ie. M(ry) = 2M;.,. This is the second case of the Horizon Mass Theorem in

Reissner-Nordstrom spacetime. It is seen that the horizon mass of the charged black
hole depends only on the energy of the black hole when it is neutral.

We proceed next to the case for a slowly rotating black hole with mass M and
angular momentum J . The total energy contained within a sphere of radius r can
only be given by an approximate expression. This is due to the complexity of the
Kerr metric, and more importantly, due to the fact that the Kerr metric only has
axial symmetry instead of spherical symmetry. At the horizon, it is found that,'®

ret 2GM o2
Em =g 1-Vi-7a +r_2]
a2t 2G M 2G M 2GM o2
1+ 222 J1- N ah!
+ 6rG 2+ rc? +( + rc? ) rc2 + r2 + (11)

where a = J/Mec is the angular momentun length paraneter. The leading term of
the expression is similar to the energy expression in the Reissner-Nordstrom case,
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suggesting that the mass at the horizon is twice the irreducible mass. The next term
depends on o?, adding a small contribution to the leading term.

The irreducible mass of a Kerr black hole is the final mass when its rotational
energy is completely extracted by adding external particles, such as in the Penrose
process.'6 It is given in the form

M?  M? 1 J2c2

wz, = M0 M

2 2 G2 MA (12)

The horizon radius in this case is,

GM GM J2c?
=zt Ve (13)

An approximate relation for the horizon energy is therefore found,
E(ry) ~ 2M;. + O(a?). (14)

The conclusion is that there is very little rotational energy insiide the Kerr black
hole.

It is natural to extend the quasi-local energy investigation to include higher ro-
tations, and logically, all rotations. However, a severe challenge appeared at this
stage and progress on black hole rotation in this approach stopped. The calcula-
tions became extremely difficult to perform. No analytical expression or numerical
evaluation could achieve an exact expression for the horizon mass of the Kerr black
hole. An analysis of the horizon mass in the teleparallel equivalent formulation of
general relativity!'” reveals that it is strikingly close to twice the irreducible mass
2M;,., for all range of the parameter 0 < o < GM/c?. The tiny discrepancy is likely
due to evaluating method and describing the spherical horizon region in a system
with intrinsic axial symmetry. A general principle based on equipartition of energy
at the horizon also suggests the horizon mass result for the Kerr black hole'® by
invoking one-half of the horizon mass for compensating the negative gravitational
potential energy and the other half for supplying the irreducible mass.

We give a heuristic argument for the Horizon Mass Theorem with the area con-
cept of a black hole.? It has been known from the Kerr metric that the area at the
event horizon of a Kerr black hole for all rotations is'

B 1670 G2 M?

A=dr(r? +a?) —r (15)

C

and the area of a Schwarzschild black hole of mass Mg and radius Rg is

2GMS>2 _ 167G2M3

(16)

A47TR§47T( :

c? c
The two areas can be related by invoking Hawking’s Area Non-decrease Theorem
in the energy extraction process. The theorem asserts that the area of a Kerr black
hole is the same as the area of the final Schwarzschild black hole when rotational

energy is extracted in a smooth and reversible process. Since the horizon mass of the
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Schwarzschild black hole is proven to be twice its asymptotic mass Mg, the horizon
mass of the Kerr black hole in this process is therefore 2M,,.,.. The result applies to
all rotations. It is believed that a rigorous mathematical proof will eventually show
that the horizon mass is exactly twice the irreducible mass.

The Horizon Mass Theorem is crucial for understanding processes occuring near
the horizon, such as the merging of two black holes,!? and quantum emission of
Hawking radiation.2’

3. External Energy Conjecture

Proposition. The electrostatic energy and rotational energy of a general black hole
exist completely outside the horizon.

The conjecture is a direct consequence of the irreducible mass in the Horizon Mass
Theorem.

By definition, the irreducible mass does not contain rotational energy or elec-
trostatic energy. A rotating black hole does not have rotational energy inside the
horizon; therefore rotational energy exists outside the surface. Similarly, an elec-
trically charged black hole does not have electrostatic energy inside. Electrostatic
energy exists only outside, like that of a conductor. When quantum particles carry-
ing electric charges and spins reach the black hole, they are forbidden to enter inside.
They can only stay outside or at the surface. Since all matter particles in Nature
are quantum particles, this makes the interior of the black hole completely hollow.
Classical particles do not exist in Nature; they are a tool in classical mechanics.

We may generalize the External Energy Conjecture to include other energies of
a black hole and introduce a new paradigm.'!

External Energy Paradigm:

All energies of a black hole are external quantities. They include: constituent
mass, gravitational energy, electrostatic energy, magnetic enerqgy, rotational
energy, heat energy, etc.

The validity of this paradigm will be demonstrated in the next section in which the
moment of inertia of a black hole is presented.

4. Moment of Inertia Property

Statement. A black hole with an angular momentum and an angular velocity at
the event horizon has a moment of inertia given by:

coefficient x Kerr mass x (ergosphere radius)* .
When rotation stops, there is an irreducible moment of inertia given by:

irreducible mass x (Schwarzschild radius)? .
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The result of this statement is derived solely from the Kerr metric and is therefore
a bona fide property of general relativity. Every black hole has a moment of inertia,
even when it is not rotating. Moment of inertia indicates structure of the black hole.

The Kerr metric?' discovered in 1963 ushered in a new epoch in general relativity
and in astrophysics. It is absolutely indispensable for the study of rotating black
holes. We demonstrate the existence of moment of inertia uniquely from the Kerr
metric, using angular momentum and angular velocity consideration. We present
the Kerr metric in an explicit form of the Boyer-Lindquist coordinates?? (¢, 7,0, ¢)
so that the metric coefficients can be readily extracted for calculation. It contains
two constants o = J/Mc and m = GM/c? for the stationary case,

r? + a?cos® — 2mr dmarsin?
ds® = 2dt* + (| ———- | cdodt
N ( 72 + a2cos20 ) ¢ - 72 + a2cos20 cdé
B [(r? + a2)(r? + a®cos?0) + 2mra?sin?0] sin20dg?

r? 4+ a2cos?0

dr?
2 2., .2 2
—(r* + a®cos?0) (dO* + ———— | . 17

(r+ )( +7’2+a22m7’> (17)
The Kerr spacetime rotates with different angular velocities at different locations.
The angular velocity at a point is defined as the change in azimuthal angle ¢ with
respect to the change in coordinate time ¢. It can be expressed in terms of the metric
coefficients as

d
0= do _ _ 9o (18)
dt 9o
where g:y = g+ - At the equatorial region, § = 90° , the angular velocity expression
at a distance r can be written as

- 2marc
(2 4+ a?)r2 + 2mra2’

(19)

Further simplification can be achieved at the event horizon r = r, , using the
identity % 4+ o = 2mry | ie.
ac

Q= ———
2 2
7’++oz

(20)

In terms of actual physical quantities, we have an exact algebraic relation for the
angular velocity of the Kerr black hole,

J
M
Q4 (J) = : (21)
2G2M? J2c2
PV e

C

Given an angular momentun J and a Kerr mass M determined by a distant ob-
server, the angular velocity at the event horizon can be obtained in radians/sec.
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Equivalently, we can express the angular momentum .J in terms of the angular
velocity Q through the moment of inertia I(£2) in the form

J() =1I(Q)-Q. (22)
We find, from Eq.(21), after substantial algebra,
2
()
c
J(Qy) = Q. 23
(24) oz (23)
1+ 5 —
c c

The crucial step here is to extract a radius factor in the above relation. It is recog-
nized that the factor 2GM/c? is the ergosphere radius at the equator, since M is
the Kerr mass which includes rotational energy. Accordingly, the moment of inertia

of the Kerr black hole is
9 2
()
c

1(Q4) = - <2GM>2 o (24)

c? c?

It is further recognized that the entire denominator in the above expression becomes
a dimensionless number and acts as a numerical coefficient. The structure of the
Kerr black hole is therefore,

coefficient x Kerr mass x (ergosphere radius)?.

As angular momentum is continually reduced in the energy extraction process,
a slowly rotating black hole is formed. In the static limit, the quantity Qi — 0
first, the Kerr mass becomes the irreducible mass, M — M,,, and the coefficient
becomes exactly equal to 1. The moment of inertia of a Schwarzschild black hole is
derived. It is the limiting value of the moment of inertia of the Kerr black hole in
Eq.(24), given by

I = MgR2. (25)

There is an irreducible moment of inertia of the Kerr black hole as a result of the
irreducible mass. It is the rotatonal analogue of the rest mass of a moving body
E =mc?.

A further observation that leads quickly to the irreducible moment of inertia is
by considering the angular momentum definition in the Kerr metric J = Mac and

the angular velocity Q4 at the horizon found in Eq.(20). We find,

J
I= o =M (r} +o®) = /M2, + M2, (ri + 7). (26)
As the rotational parameter o — 0, the rotational mass M,.,; — 0; while the horizon

radius ry — Rg. In the limit, I = M;,, R% = MgR%. If one directly puts J = 0 and
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Q4 = 0 in the definition I = J/Q, , one would get an undefined result 0/0. The
static limit of the Kerr black hole hole has the structure,

irreducible mass x (Schwarzschild radius)?.

A Schwarzschild black hole does not have an axis of rotation. Introducing an axis
destroys its spherical symmetry. The center is therefore the point of symmetry. The
moment of inertia I = MgR?% is a statement about the mass distribution of a body
with respect to the center in that the total mass is to be located at the Schwarzschild
radius. A natural interpretation is that the static black hole is a hollow massive shell.
This would go against the Equivalence Principle and the Singularity Theorem. It is
possible that the static black hole resulting from the energy extraction process of a
Kerr black hole is fundamentally different from the original Schwarzschild black hole.
The static black hole derived from a Kerr black hole may be a quasi-black hole. A
quasi-black hole has the same exterior spacetime as that of the Schwarzschild black
hole but without the conceptual difficulties associated with the latter.23 Singularity
does not exist because particles are forbidden to cross the horizon by the very
presence of the moment of inertia. The black hole firewall is such a scenario.?* The
quasi-black hole would also provide a physical surface where electric charges can
stay instead of hovering without cause in the case of the charged black hole. In
addition, if the surface area is identified as the entropy of a black hole according to
Bekenstein?® and Hawking,® then it is logical to expect that all mass of the quasi-
black hole is at the surface. The moment of inertia is a new property of the Kerr
black hole.

5. Epilogue

After 50 years, the irreducible mass has progressed from the gedanken Penrose pro-
cess to quantum energy extraction in gamma-ray bursts and active galactic nuclei
emissions.?® Instead of being a cold and inert body, the real black hole is a highly
active object. The irreducible mass further plays a central role in newly discovered
black hole properties. These results may resolve some of the long-standing para-
doxes in black hole physics.
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