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Thèse présentée en vue de l’obtention du titre de Docteur en Sciences

Promoteur: Frank Ferrari Année académique 2012–2013



Composition du Jury:

- Marc Henneaux (ULB et Instituts Solvay, président),

- Andrès Collinucci (ULB et Instituts Solvay, secrétaire),
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Avant-propos

Cette thèse est le fruit du travail fourni durant ces quatre dernières années passées à
l’Université Libre de Bruxelles en tant qu’étudiant en doctorat. Elle est destinée aux
membres de mon jury de thèse afin qu’ils puissent en évaluer la qualité. Cependant,
de nombreux néophytes sont ou seront curieux de savoir ce qu’elle contient et, a
fortiori, ce qui m’a occupé et passionné pendant ces années d’études. C’est pourquoi
j’ai décidé d’écrire, en français, ces quelques lignes d’explications très générales et
non-techniques à propos du contexte dans lequel mes travaux s’inscrivent ainsi que
l’objet de ceux-ci.

À l’heure actuelle, il est possible de décrire avec une redoudable précision un
nombre impressionnant de phénomènes naturels, allant du mouvement des planètes
jusqu’aux interactions entre les particules dites élémentaires. Dans la conception
actuelle de la physique moderne, la quasi-totalité des phénomènes observés dans la
nature découle, au moins en principe, de quatre forces (aussi appelées “interactions”)
regroupées comme suit:

- la force gravitationnelle. La meilleure description que nous en avons est donnée
par la théorie de la Relativité Générale d’Einstein. Elle décrit par exemple le
mouvement des astres et des satellites, et fut élaborée au début du XXe.

- Les forces non-gravitationnelles: la force éléctromagnétique, la force faible et
la force forte. Alors que la première est bien connue et décrit par exemple le
courant électrique ou la lumière, les deux dernières sont moins familières. La
raison est que ces deux forces ne sont observables qu’aux échelles sub-atomiques,
et ne font donc pas partie de notre expérience quotidienne directe. Elles sont
néanmoins indispensables pour comprendre par exemple la cohésion des noyaux
des atomes ou la radioactivité. La théorie décrivant ces trois interactions est
appelée le Modèle Standard de la Physique des Particules et fut élaborée au
cours du XXe siècle.

Cette situation n’est cependant pas totalement satisfaisante. En e↵et, nous n’avons
par exemple pas encore de description complète du Big Bang, qui est souvent présenté
comme étant “le début de l’univers”. En fait, les théories mentionnées ci-dessus ne
permettent pas de décrire la physique dans ce régime extrême. L’origine du problème
est essentiellement la suivante: la Relativié Générale n’est qu’une approximation.
Plus précisément, cette description de l’interaction gravitationnelle n’est plus valable
si l’on considère des systèmes dont la taille caractéristique est inférieure à 10�35m, qui
est l’ordre de grandeur d’une constante appelée la constante de Planck. En d’autres
termes, la description microscopique de la gravitation est inconnue. Les physiciens
cherchent donc une théorie valable aux échelles microscopiques et telle que, si l’on se
restreint aux systèmes macroscopiques, elle cöıncide avec la Relativité Générale.

Afin de bien comprendre la problématique, il est utile de considérer l’analogie sui-
vante. Jusqu’au XIXe siècle, les scientifiques décrivaient la matière en considérant
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qu’elle était un milieu continu. Cette description était tout à fait satisfaisante,
jusqu’au jour où certaines observations faites au microscope suggérèrent que l’hy-
pothèse du continu n’était en fait pas valable aux échelles de l’ordre de 10�6m. La
raison est qu’en réalité, la matière est composée d’atomes et de molécules, et n’est
donc pas un milieu continu. L’hypothèse du continu est donc une approximation, qui
permet de décrire e↵ectivement la matière lorsque l’on considère de grands systèmes:
on dit qu’il s’agit d’une théorie e↵ective. Dans cet exemple, la théorie microscopique
est donc la théorie atomique, qui fut largement acceptée par la communauté scien-
tifique durant le XXe siècle.

Remarquons que dans cet exemple, la théorie microscopique et la théorie e↵ective
sont très di↵érentes. D’une part, les atomes et les molécules sont décrits par leurs
positions et leurs vitesses. D’autre part, si l’on considère par exemple un milieu
continu comme un gaz, celui-ci est décrit par des propriétés telles que sa pression, sa
température et son volume. Ces propriétés sont donc propres aux milieux continus,
et n’ont aucun sens à l’échelle microscopique. Pour cette raison, on les appelle des
propriétés émergentes : elles ne sont pas fondamentales, mais sont nécessaires à la
description e↵ective du système.

La Relativité Générale est donc une théorie e↵ective, dont la description micro-
scopique est encore inconnue. À l’instar de la physique des milieux continus, il se
pourrait donc qu’il y ait des ingrédients de la Relativité Générale qui ne soient pas
fondamentaux mais emergents. Si cela s’avère correct, lesquels sont-ils?

Sans entrer dans trop de détails, de nombreuses considérations théoriques suggè-
rent fortement que l’une des propriétés émergentes de la Relativité Générale soit
l’existence-même des dimensions spatiales dans lesquelles nous vivons. En d’autres
termes, la théorie microscopique que nous cherchons est une théorie décrivant des
phénomènes physiques ayant lieu dans un univers ayant moins de trois dimensions
spatiales. L’existence de ces dernières ne serait donc pas un ingrédient fondamen-
tal, mais plutôt la conséquence de nouvelles interactions encore à déterminer. Hors
du régime microscopique, ces interactions se comportent comme si il y avait des di-
mensions spatiales supplémentaires, c’est-à-dire que les dimensions émergent de la
description microscopique.

Afin de mieux comprendre ces concepts relativement abstraits, nous avons dans
cette thèse construit et étudié des modèles simples les illustrant. En particulier,
nous décrivons explicitement comment les dimensions spatiales émergent à partir
d’interactions plus fondamentales. Il est intéressant de remarquer que dans ces
modèles, ces nouvelles interactions sont en fait du même type que celles du Modèle
Standard de la Physique des Particules mentionné plus haut, ce qui suggère qu’une
théorie unifiant toutes les interactions de la nature est de ce type.

Par l’analyse de ces modèles, nous essayons donc de répondre aux questions sui-
vantes : quelle est la nature profonde des dimensions spatiales ? Pourquoi vivons-
nous dans un espace à trois dimensions ? Grâce aux modèles de gravitation émergente
dont nous disposons aujourd’hui, ces questions ne sont plus uniquement des questions
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philosophiques, mais aussi des questions scientifiques précises et bien posées. Dans
cette thèse, nous avons donc modestement essayé d’apporter des éléments de réponse
à ces problématiques, qui m’ont toujours fasciné.
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In this thesis, we explain and illustrate on several examples how to derive supergravity
solutions by computing observables in the corresponding dual, lower-dimensional field
theory. In particular, no a priori knowledge on the gravitational dual is assumed,
including its dimensionality. The basic idea to construct the pre-geometric models
is to consider the world-volume theory of probe D-branes in the presence of a large
number N of higher-dimensional background branes. In the standard decoupling
limit, the probes are moving only in the flat directions parallel to the background
D-branes. We show however that the quantum e↵ective action of the probe world-
volume theory, obtained at large N using standard vector model techniques, has
the required field content to be interpreted as the action describing the probes in a
higher-dimensional, curved and classical spacetime. The properties of the emerging
supergravity solution are easily found by comparing the quantum e↵ective action of
the pre-geometric model with the non-abelian D-brane action. In all the examples
we consider, this allows us to derive the metric, the dilaton and various form fields,
overall performing exclusively field theoretic computations.

The first part of the thesis consists of introductory chapters, where we review
vector models at large N , aspects of brane physics in supergravity and string theory
and the gauge/gravity correspondence. The second part contains the original contri-
butions of this thesis, consisting of various explicit emergent geometry examples.
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Henry Lambert and Florian Spinnler.
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Chapter 1

Introduction

The quest for the theory of quantum gravity is far from being over. There is indeed
up to now no completely satisfactory description of the gravitational field at the
quantum level, despite many interesting developments for instance in string theory.
In this thesis, we explore in detail scenarios in which the gravitational interaction is
basically not a fundamental interaction but is rather an emergent concept. This is
done in the context of the gauge/gravity correspondence, which o↵ers a very natural
framework for such emergent geometry scenarios. After recalling the general context
in which these developments take place, we present in the second section of this
chapter what has been done more precisely during the thesis, leaving the technical
developments for the next chapters and part 2.

1.1 General context

The theory of General Relativity is a very successful theory that allows us to de-
scribe with remarkable accuracy the gravitational force at the classical level. The
gravitational interaction is elegantly described in terms of a metric on the spacetime
manifold, and the dynamics of the metric is given by Einstein’s equations. In this
context, the very existence of spacetime is assumed from the start. This descrip-
tion is expected to be reliable at least as long as the spacetime curvature is much
smaller than the Planck length, which is of the order of magnitude of 10�35 meters.
At smaller scales, the gravitational field is not expected to be classical anymore, and
a new description of the gravitational interaction is required. Typically, we suspect
new degrees of freedom to appear at these very small scales. New degrees of freedom
are also required to account for the entropy associated to realistic black holes.

Superstring theory (see [3–7] for standard references) is at present the most de-
veloped proposal for a quantum theory of gravity. It is a UV complete theory and
its spectrum automatically contains a graviton, which describes fluctuations of the
gravitational field. Moreover, superstring theory reduces in the low-energy limit to
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supergravity. It also describes the non-gravitational interactions of the type of those
present in the Standard Model, and thus yields interesting proposals for a unified
theory of all the fundamental interactions of Nature. It is also possible to construct
black holes in string theory and in specific cases it is even possible to reproduce the
associated entropy formula [8]. However, superstring theory is consistent only in ten
spacetime dimensions, and to reproduce a four-dimensional world like ours requires
appropriate compactifications of six dimensions. Such modifications of the original
theory bring a lot of problems, starting with the fact that there seems to be a huge
number of compactification possibilities [9]. This is the so-called “landscape prob-
lem” and suggests that string theory is actually losing its predictive power [10], as
the number of parameters that must be tuned to specify a “good” compactification
seems to be very large. Moreover, it is di�cult to answer questions about the nature
of the Big Bang singularity or the fate of an evaporating black hole and the associated
information paradox directly in the context of string theory.

Despite these various drawbacks, string theory provides us with a very interesting
and powerful conjecture, stating that certain ordinary gauge theories are equivalent to
superstring theories [11–14]. This actually brings us back to the original motivation of
string theory as a theory for the strong interaction in the end of the sixties. It is only
later on, when it was realised that the spin 2 massless particle present in the string
spectrum could be interpreted as the graviton, that string theory became a candidate
for a theory of quantum gravity unifying all known fundamental interactions. In
fact, the presence of a graviton in the strongly coupled regime of gauge theories is
already a hint that gravity may be an emergent phenomenon. This is more precisely
formulated in the aforementioned conjectured equivalence (or duality), which in the
best understood example relates a conformal gauge field theory in four dimensions to a
superstring theory on a ten-dimensional curved background containing an AdS factor:
this is the AdS/CFT correspondence, which is an example of a broader gauge/gravity
duality. The correspondence is a realisation of the holographic principle [15,16], which
states that a theory of gravity in a D-dimensional spacetime is equivalent to a non-
gravitational theory in d < D dimensions. It is di�cult to emphasize enough why the
gauge/gravity correspondence is so important to, at least, theoretical physicists. Not
only does it provide very nice examples of emergent spacetime scenarios, but it may
also be used as an e↵ective tool to compute strong coupling e↵ects in gauge theories:
in fact, the strong coupling regime of the gauge theory is dual to the classical limit of
superstring theory. One can then address issues about the strong coupling regime of
the gauge theory (that are in general very di�cult to answer from first principles) by
much simpler questions in classical supergravity; in other words, the less understood
regime on the field theory side is related to the best understood regime of superstring
theory! This opened up the possibility of understanding real-world strong coupling
e↵ects in terms of some gravitational theory. While we are not (yet?) in a position to
study directly concrete problems like quark confinement, a lot of progress has been
made to extend the original AdS/CFT correspondence to non-conformal and/or less-
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or even non-supersymmetric set-ups. From this viewpoint, the dual gravitational
theory is simply an auxiliary theory that is cooked up to allow for interesting e↵ects
on the field theory side.

More in the spirit of the holographic principle, which was first suggested by proper-
ties of classical gravity like the black hole area law, the viewpoint in this thesis will be
di↵erent: we would like to understand the fundamental nature of gravity by directly
studying gauge theories at strong coupling. In fact, we shall consider that gravity
and spacetime are emergent concepts : at the fundamental level we typically have a
Yang-Mills SU(N) gauge theory with coupling gYM, in which there are no ingredients
associated to gravity: in this sense, the models are “pre-geometric.” However, at
large N and strong ’t Hooft coupling g2YMN where the theory naively gets extremely
complicated, a very simple, classical description is available at the cost of introducing
new dimensions and a new interaction corresponding to gravity.

One should not be surprised if this way of understanding the fundamental nature
of gravity turns out to be correct. In fact, most of the phenomena that surrounds us
are of this type, that is to say, emergent. For instance, hydrodynamics is very well
approximated by the Navier-Stokes equations, which provides an excellent description
of the immensely complicated system composed of a macroscopic number of molecules
of water. It would be rather remarkable that gravity, which from a historical point
of view was the first interaction to be precisely described, would actually turn out to
be fundamental!

Let us mention that the idea of emergent gravity is actually older than the gau-
ge/gravity correspondence or even than the holographic principle. In 1967, Sakha-
rov [17] proposed a theory of “induced gravity,” which is inspired by condensed matter
systems having an e↵ective description in terms of curved geometries. However,
these “world crystal” models are not good candidates for our universe, because they
typically predict huge values for the cosmological constant. Moreover, it turned out
that models having the graviton as a composite particle are severely constrained
by the Weinberg-Witten theorem [18]. Using S-matrix techniques, they studied the
existence of interacting massless spin two particles in unitary theories with a conserved
energy-momentum tensor in flat space. The conclusions include a no-go theorem
excluding most of the naive emergent gravity scenarios. Interestingly, the basic idea of
holography provides an obvious way out of the theorem, as in holographic scenarios,
the composite graviton propagates in a spacetime containing (at least) one extra
dimension than in the original theory.

Let us add a word of caution. In emergent spacetime models that we consider
in this thesis, we always deal with emerging spacelike dimensions. The problem
of emergent time is very subtle and there is no concrete, well-understood example
where the field theory is Euclidean while the dual gravitational theory is Lorentzian.
We refer to [19] for a general presentation of ideas related to emergent spacetime,
including a discussion on time emergence and associated conceptual puzzles.
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1.2 About this thesis

In this thesis, we illustrate on several examples how we can derive non-trivial super-
gravity solutions dual to certain gauge field theories from the computation of particu-
lar observables in the gauge theory. The fact that we are able to derive full spacetime
geometries (including non-trivial Ramond-Ramond and Neveu-Schwarz forms, if any)
from purely field theoretic computations provides good evidence for the validity of
the rather general emergent geometry framework that we use.

The examples that we present are built in string theory, where we consider the
field theory describing the low-energy limit of probe D-branes in the presence of a
large number N of background D-branes. Taking the usual decoupling limit of this
system, the resulting theory describes the probes living in the spacetime parallel to
the background D-branes. We then show that the quantum e↵ective action for the
probe D-branes, obtained by integrating out the fields associated to the presence
of the background branes, has the field content required to interpret the probes as
moving in a higher-dimensional, curved spacetime.

By comparing the probe e↵ective action to the D-brane action for arbitrary back-
ground, the properties of the emergent spacetime are straightforwardly extracted. We
are able to determine in this way the metric, the dilaton, the Kalb-Ramond two-form,
as well as the non-trivial Ramond-Ramond form field sourced by the background D-
branes. We thus derive a solution of the supergravity equations in ten dimensions by
exclusively performing computations in a lower-dimensional, ordinary gauge theory.

In the course of the derivation, we identify the mechanism by which the emerging
classical coordinates appear in the original gauge theory. They correspond to compos-
ite scalar operators which are classical in the large N limit. From a technical point of
view, this is closely related to the well-known trick of introducing auxiliary variables
to solve vector models in a very elegant way. In this thesis however, we show on
several examples that this simple trick has a very interesting physical interpretation
in terms of emergent, classical coordinates.

Let us explain the logic of the presentation of this work while presenting its con-
tent. In part 1, we review the relevant background for the developments presented in
part 2, which is based on the two published papers [1, 2].

Part 1: As a starter, we review in chapter 2 how vector models may be solved at
large N using auxiliary variables. We focus on the simplest O(N)-invariant model
with quartic interaction, which already features all the properties necessary to un-
derstand how a classical dimension can emerge from a field theory at large N . When
we consider more involved pre-geometric models (see part 2), it is essentially thanks
to these properties that an interpretation in terms of a higher-dimensional, classical
spacetime is possible. For this reason, we close the chapter by a clear summary of
the key ingredients.

In chapter 3, we review some basic facts about branes. We first review in section
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3.1 what are branes in supergravity, from a purely classical point of view. We derive
the extremal brane solutions, compute their tension and charges and discuss their
regularity. We decided to include quite a few details in the presentation. The reason
is that we will find some of these brane solutions in part 2 of the thesis by a radically
di↵erent approach, involving exclusively ordinary gauge field theory computations.
Having at hand the two kinds of derivation in detail, we hope to be able to appreciate
how non-trivial and miraculous is the fact that gauge theories contain gravity.

Our next task will be to set the stage on which our pre-geometric models are con-
structed. This requires to understand various properties of D-branes in string theory
that we review in section 3.2. The presentation is not self-contained, and many results
will be directly taken out of the literature. We will nevertheless briefly review the ori-
gin of many D-brane properties, sometimes simply by sketching the argument (when
not included in standard textbooks, references containing the proofs are provided).
We will in particular discuss the action describing the world-volume dynamics of a
D-brane and present its non-abelian generalisation. We close this section by the pre-
sentation of several low-energy non-abelian D-brane actions in flat space and various
dimensions, including the fermionic fields and the associated supersymmetry trans-
formations. We construct these actions using supersymmetry and the technique of
trivial dimensional reduction, that we describe in detail; in particular, we include the
full technical treatment of fermions for the reduction from six to two dimensions in
subsection 3.3.4.

In chapter 4, we review the original argument leading to the AdS/CFT conjecture.
We also review how the decoupling limit is defined on Dp-branes, with a special
emphasis on the D5-brane case. This is the last ingredient we need to construct our
pre-geometric models.

Part 2: The original contributions of this thesis are presented. In chapter 5 we
review the general emergent geometry framework, and explain the general ideas un-
derlying our derivations. We explain how to construct the pre-geometric models by
taking the corresponding decoupling limit of the probe D-brane action in flat space
built in chapter 3. We also describe how the dual geometry can be extracted from
the models. Finally, we move to the concrete examples that we have studied dur-
ing this thesis. In section 6, we derive the supergravity dual of three deformations
of N = 4 super-Yang-Mills in four dimensions: the Coulomb branch deformation,
the non-commutative deformation and the �-deformation. In section 7 we derive
the near-horizon geometry of the supergravity solution sourced by a large number of
D5-branes.

We close this thesis with some conclusions and possible future directions.
All our notations and conventions are summarized in appendix A. Appendix B

presents general considerations relevant for the dimensional reduction of section 3.3.
In appendix C, we briefly review the supergravity solutions (derived in our emergent
geometry framework in sections 6.5 and 6.6) that are proposed to be dual to the
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non-commutative and �-deformations of N = 4 super-Yang-Mills in four dimensions.
Finally, explicit formulas for the terms up to order five of the non-abelian D-instanton
action are provided in appendix D.
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Chapter 2

Elements of large N vector models

Quantum field theories are usually studied in the realm of perturbation theory, where
the coupling constant g is assumed to be small. The reason is technical: at least in
principle, it is easy to compute observables like scattering amplitudes as an asymp-
totic power series in g, and one reaches the desired accuracy by computing up to
a su�ciently high order in g. There are however many interesting strong coupling
e↵ects in Nature, and it is thus necessary to go beyond perturbation theory to under-
stand these phenomena. We know only few examples of quantum field theories that
are solvable at strong coupling. Some of these models have enough supersymmetries
to constrain the dynamics so strongly that we can solve it at any values of the cou-
pling constant. Others enjoy the property of being solvable, or at least they simplify,
when the rank N of their gauge group goes to infinity. In particular, when the fields
transform as vectors under the gauge group, an explicit resolution can be possible in
a power series in 1/N .

In this chapter we review how we can solve the simplest O(N) vector model, with
quartic interaction, when N ! 1 (standard references on vector models are [20–22]).
The resolution relies on the existence of a scalar composite operator whose quantum
fluctuations tend to zero as N ! 1. Integrating out the original variables, one
then obtain an e↵ective field theory for the classical scalar operator, from which the
dynamics of the original fields is easily recovered. Our approach will be pedestrian
and we shall not try to give a complete treatment of the subject. In fact, we are
mostly interested in the trick itself, that actually lies at the heart of the mechanism
responsible for the emergence of classical coordinates in emergent geometry models,
as we will explain in detail in part 2 of this thesis.

We start by defining the model and discuss the issue of defining a non-trivial
large N limit. We then introduce an auxiliary scalar field that reduces on-shell to a
scalar composite operator that is classical at large N . We explain how to compute its
e↵ective action and illustrate the procedure in some detail by showing that it has a
kinetic term, as in chapter 7 we will consider very similar computations. We close this
chapter by summarizing the main steps of the reasoning, highlighting the properties
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that will turn out to be crucial in the emergent geometry framework explained in part
2 of this thesis.

2.1 A simple model and a useful trick

We consider N scalar fields (Q1, . . . , QN) = ~Q. Their dynamics in Euclidean d-di-
mensional spacetime is defined by the O(N)-invariant Lagrangian

L( ~Q) =
1

2
@
µ

Qf@
µ

Qf +
m2

2
~Q2 +

g

8
( ~Q2)2 (2.1.1)

where ~Q2 = QfQf , 1  f  N and 1  µ  d. A generic diagram generated by
(2.1.1) scales as gaN b for some numbers a and b; see figure 2.1 for several examples of
diagrams contributing to the process (f, f) ! (f 0, f 0) for some f and f 0 fixed, with
1  f, f 0  N . Note that a loop does not necessarily brings a power of N . On the
other hand, only loop diagrams can have an explicit dependence on N ; in particular, b
is always non-negative. In order to have a well-defined limit for N ! 1, we therefore
need to scale g as some negative power of N in such a way that the total power
of N in gaN b is non-positive. It turns out that this requirement is fulfilled when
g ⇠ N�1, that is, we take the large N limit while keeping the combination � ⌘ gN
fixed. In principle, one should then analyse all diagrams of the theory, to any order
in perturbation theory, and verify that indeed N b�a do not diverge when N ! 1.
This will typically require some topological and combinatoric analysis, which is very
di�cult to do directly on a generic diagram generated by the Lagrangian (2.1.1).
There is fortunately a more clever way to proceed.

The trick is to define a new theory by the Lagrangian

L( ~Q,�) = L( ~Q)� 1

2g

⇣

�� g

2
~Q2
⌘2

. (2.1.2)

The new field � is not a dynamical field, as there is no kinetic term for it in the
Lagrangian (2.1.2). We can thus eliminate � in (2.1.2) by replacing it by the solution
�
?

of its equation of motion, which reads

�
?

=
g

2
~Q2 =

�

2N
~Q2 , (2.1.3)

where we inserted the finite combination � = gN . Since L( ~Q,�
?

) = L( ~Q), we con-
clude that the two Lagrangians (2.1.1) and (2.1.2) define the same theory. Let us
take a closer look at the interaction vertices of the theory (2.1.2). Expanding the
square, we find

L( ~Q,�) =
1

2
@
µ

Qf@
µ

Qf +
m2

2
~Q2 � N

2�
�2 +

1

2
�~Q2 . (2.1.4)
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Figure 2.1: Some diagrams contributing to the scattering (f, f) ! (f 0, f 0) with their
scaling in the coupling g and the parameter N in the theory defined by the Lagrangian
(2.1.1). Observe that the presence of a loop in a diagram does not necessarily bring
a factor on N .

The crucial point here is that there are no self-interaction terms for the original vector
variables ~Q in (2.1.4). Moreover, the only interaction term is of the form �~Q2. The
corresponding Feynman diagram is shown on figure 2.2, diagram (a), with the dashed
line representing the field �.

Let us remark that although the saddle point �
?

given in (2.1.3) is real, the field
� must be imaginary o↵-shell in order to have a positive quadratic term in (2.1.4).

Since the field � does not carry any O(N) indices, a loop for the fields ~Q auto-
matically brings a factor of N . Moreover, any “propagator” for the auxiliary field �
will bring a factor of 1/N to the diagram. At fixed �, the dependence on N of any
diagram in the theory (2.1.4) is thus trivial to determine: for L loops of the origi-
nal fields ~Q and P “propagators” of the auxiliary field �, the diagram will behave
as NL�P . Diagrams similar to those of the original theory shown in figure 2.1 are
presented in figure 2.3.

Let us now consider all diagrams with only dashed external lines. The knowledge of
these diagrams allows us to recover the diagrams of the original theory (2.1.1) easily,
since the only interactions between the auxiliary field � and the vector variables
~Q is the diagram (a) of figure 2.2. The diagrams with only dashed external lines
are contained in the e↵ective action Se↵(�) for the auxiliary field �, obtained by
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(a) (b)

Figure 2.2: With a dashed line representing the new field �, (a) is the only interaction
vertex in Lagrangian (2.1.4). (b) represents a typical loop for the fields ~Q.

integrating out the original vector variables ~Q:

e�Se↵(�) ⌘
Z

D ~Q e�S( ~Q,�) , (2.1.5)

where D ~Q stands for the formal integration measure over the fields ~Q and S( ~Q,�)
is the action associated with Lagrangian (2.1.4). Since the variables ~Q appear only
quadratically in the Lagrangian (2.1.4), the integral in (2.1.5) is trivial to perform.
The result may be formally written as

Se↵(�) =
N

2
tr log

�

�@
µ

@
µ

+ (m2 + �)
�

� N

2�

Z

ddx�(x)2 . (2.1.6)

Let us already observe one of the key features of this e↵ective action: being propor-
tional to N , it is classical when N is large. We shall have more to say about this
in section 2.2. For now, let us study the quantum e↵ective action (2.1.6) for any
values of N . We write � = �0 + ' where �0 is a solution of the equation of motion
derived from (2.1.6) and we expand Se↵(�0 + ') in powers of '. An infinite number
of vertices are generated in this way; we represent these vertices by blob-vertices, see
figure 2.4. Moreover, a generic term in the expansion in ' will typically contain an
infinite number of derivatives, reflecting the fact that the theory (2.1.6) is non-local.
If we further expand in derivatives of ', it is easy to show that the theory (2.1.6)
contains a kinetic term for the fluctuation '. In other words, the auxiliary field �
acquired a non-trivial dynamics thanks to the quantum e↵ects of the original vector
variables ~Q. The computation of the aforementioned kinetic term is very similar to
the computations that we will perform in more sophisticated models in part 2 of this
thesis, so let us work out in detail the case of d = 4 to see how it goes. For con-
venience, we absorb �0 in a redefinition of m2 from now on. We expand the log in
(2.1.6) using the formula

log(1 + x) = �
1
X

k=1

(�x)k

k
· (2.1.7)
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/ 1
N / 1

N

/ 1
N2 / 1

N

Figure 2.3: Some diagrams of the theory (2.1.4) with their scaling in N , with � = gN
kept fixed. Note that the power of N is very easy to find, because the field � does
not carry O(N) indices.

Figure 2.4: Some vertices of the e↵ective theory (2.1.6) for the auxiliary field �.
Notice that the tadpole diagram is zero because we expand � around the saddle point
�0.

Setting � ⌘ (�@
µ

@
µ

+m2)�1, the quadratic term in � is given by

S(2)
e↵ (�) = �1

2
tr (��)2 . (2.1.8)

The operator � admits the following integral representation:

�(x, y) =

Z

d4p

(2⇡)4
eip·(x�y)

p2 +m2
· (2.1.9)

Inserting formula (2.1.9) into (2.1.8) and performing some trivial integrations, we find

tr (��)2 =

Z

d4k

(2⇡)4
d4p

(2⇡)4
�̃(k)�̃(�k)

(p2 +m2)((p� k)2 +m2)
, (2.1.10)

where �̃ denotes the Fourier transform of �,

�̃(k) ⌘
Z

d4x �(x)e�ik·x . (2.1.11)
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The derivative expansion of the field � is equivalent to a Taylor expansion in powers
of the four-momentum k in the integrand of (2.1.10). Using

1

(p+ k)2 +m2
=

1

p2 +m2
� 2p · k
(p2 +m2)2

+
4(p · k)2

(p2 +m2)3
� k2

(p2 +m2)2
+O(k3) , (2.1.12)

and focusing on the term with two derivatives (namely the term with (p · k)2 and k2

in the expansion (2.1.12)), we find the following kinetic term:

S2
e↵(�)

�

�

@

2 = � ⇡2N

18m2

Z

d4x @
µ

�@
µ

� . (2.1.13)

As promised, the auxiliary field � introduced to make the original vector variables ~Q
appear quadratically in the Lagrangian (2.1.2) becomes dynamical once the original
variables ~Q have been integrated out. This is an important ingredient of our mecha-
nism for emergent coordinates, as we will see in part 2 of this work. Notice that the
unusual minus sign in (2.1.13) should not worry us because as explained earlier, the
field � is imaginary o↵-shell.

2.2 The solution at large N

Let us now consider the theory defined by the e↵ective action (2.1.6) in the regime
where N ! 1 and � is fixed. As we already noted, N appears only as a global factor
in (2.1.6) and therefore the quantum fluctuations of the field � are suppressed when
N is large: the field � is thus classical when N ! 1. The dominant diagrams are
therefore the tree diagrams built out of the vertices contained in the e↵ective action
(2.1.6) and shown on figure 2.4, with the dashed lines connected to the external
~Q-lines by the vertex (a) of figure 2.2. For instance, the scattering (f, f) ! (f 0, f 0)
considered above is determined in the large N limit by the sum of three tree diagrams:

' + +

, (2.2.1)

where the diagram with the dark blob on the left-hand side represents the (full)
four-point function. The diagrams on the right-hand side of (2.2.1) can be straight-
forwardly computed using the action (2.1.6). Let us stress that in terms of the original
fields ~Q, the diagrams on the right-hand side of (2.2.1) include the whole series of

the dominant bubble diagrams for the fields ~Q, which contain diagrams with arbitrary
high number of loops (a typical diagram is shown on figure 2.5).
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Figure 2.5: A typical leading multi-loop diagram at large N in the theory (2.1.1).

The present study of the O(N) vector model at large N is far from complete. We
could for instance compute critical exponents, compare with the usual perturbative
treatment, discuss symmetry breaking and determine the first 1/N corrections. As
we will not need these developments explicitly, we refer the interested reader to the
literature [20–22] for more on these topics.

2.3 Summary of the key ingredients

The mechanism presented in the two previous sections plays a crucial role in the
emergent geometry framework used in part 2 of this thesis. Let us therefore list the
steps that we have followed and emphasize the crucial elements.

- Our starting point was a vector model for the interacting fields ~Q with the
Lagrangian (2.1.1). We then considered an equivalent theory, defined by the
Lagrangian (2.1.2), that contains an auxiliary field � such that the original
vector variables only appear quadratically, see (2.1.4). Let us insist on the fact
that this extra field � may be eliminated by solving its (algebraic) equation of
motion (2.1.3), thus reproducing the original action (2.1.1).

- The original fields ~Q are trivially integrated out using the Lagrangian (2.1.4)
containing the auxiliary scalar field. We thus obtain the e↵ective action Se↵(�)
for � (see equation (2.1.5)), from which one can reconstruct very easily all the
scattering amplitudes of the original theory (2.1.1) for the vector variables ~Q.
In the e↵ective theory (2.1.4), the field � is dynamical thanks to the quantum
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e↵ects of the original variables.

- Since N appears only as a global factor in the e↵ective action for �, the field �
is classical in the large N limit.

When we will consider models of emergent space, we will apply step by step the above
reasoning to particular vector-like models. Moreover, it is exactly the properties em-
phasized in the last two steps that will allow us to conclude that a classical geometry
has emerged.
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Chapter 3

Aspects of brane physics

In this chapter we review some elementary aspects of brane physics, first from the
supergravity point of view and then from the string perspective. Anticipating our
needs for the second part of this thesis, we shall mainly focus on type IIB superstring
theory.

3.1 Brane solutions in supergravity

We present the derivation of the well-known extremal p-brane solutions in supergrav-
ity (see e.g. [23] for a review). We decided to include this derivation in this work in
order to be able to appreciate how curious and intriguing is the fact that (at least some
of) these solutions may be recovered from the radically di↵erent approach presented
in part 2 of this thesis.

3.1.1 p-brane solutions

Needless to say, finding exact and non-trivial solutions to supergravity equations is
very challenging. These equations are in general highly non-linear coupled partial
di↵erential equations, and it is only under suitable simplifying assumptions that an
analytic treatment is possible. The first step that we take on the road to simplification
is to consider a truncation of the original theory by setting various fields to zero
already at the level of the action. When the solutions of the resulting simplified
equations of motion are still solutions of the original theory, we say that we have a
consistent truncation of the original supergravity theory. The next step is to make
Ansätze for the solution. This is a delicate step, as not enough constraints might not
lead to an exact analytical treatment, while too many might not allow for interesting
solutions.

In this section, we define an action generalizing several consistent truncations of
type IIA and type IIB supergravity in ten dimensions, present its equations of motion
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and derive the extremal p-brane solutions. We will actually be slightly more general
and keep the spacetime dimension D > 2 as a free parameter. The precise relation
between the action we consider and the type IIB supergravity action is presented in
subsection 3.1.6.

Without loss of generality, we work in the Euclidean D-dimensional spacetime
RD. The spacetime indices are labelled by M,N, . . . with 1  M,N, . . .  D. The
dynamical fields remaining after the consistent truncation are the spacetime metric
g
MN

, a scalar field1 � and an (n � 1)-form gauge potential A[n�1] (we denote by a
subscript in square brackets the degree of the forms that we shall encounter). The
action that we consider reads2

S = � 1

22

Z

dDx
p
g



R� 1

2
r

M

�rM�� 1

2n!
ea�F2

[n]

�

, (3.1.1)

where F[n] ⌘ dA[n�1], F2
[n] ⌘ F[n]M1···MnFM1···Mn

[n] , a is a free parameter and we intro-

duced the constant  with dimensions of (length)
D�2
2 in order to have a dimensionless

action. Newton’s constant GN in D dimensions is related to  by

22 = 16⇡GN . (3.1.2)

The equations of motion derived from action (3.1.1) read

R
MN

=
1

2
@
M

� @
N

�+ S
MN

, (3.1.3a)

⇤� =
a

2n!
ea�F2

[n] , (3.1.3b)

r
M1

⇣

ea�FM1M2···Mn

[n]

⌘

= 0 , (3.1.3c)

where the box-operator ⇤ is defined as usual by ⇤ ⌘ gMNr
M

r
N

and where the
source term S

MN

is defined by

S
MN

⌘ ea�

2(n� 1)!

✓

F[n]MM2···MnF
M2···Mn

[n]N � n� 1

n(D � 2)
g
MN

F2
[n]

◆

. (3.1.4)

The Ansatz that we are going to consider is motivated by invariance properties.
If we look for a solution that preserves some supersymmetries of the untruncated
action, this solution must necessarily also be invariant under the translations given
by the anti-commutator of the conserved supercharges. Motivated by this, we consider
solutions to equations (3.1.3) that are invariant under the d-dimensional Euclidean
group ISO(d), where d < D is a fixed number. Let us denote (x1, . . . , xd) = (xµ) with
1  µ  d ⌘ p + 1 the coordinates corresponding to the directions along which the

1This scalar field should not be confused with the auxiliary field introduced in chapter 2.
2The unusual global minus sign comes from the fact that we are working in the Euclidean.
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solution is translation invariant, and (xd+1, . . . , xD) = (ym) with 1  m  D � d the
coordinates corresponding to the remaining directions. Assuming that the Euclidean
time coordinate is included in the coordinates xµ, we can see the d-dimensional region
covered by the coordinates xµ as the d-dimensional volume swiped by a spatial p-
dimensional hypersurface called the p-brane. Thus a 0-brane is a particle, a 1-brane
is a string, a 2-brane is a membrane and so on. The xµs thus correspond to the parallel
directions while the yms correspond to the transverse directions of the p-brane.

We further simplify the situation by asking that the solution is isotropic in the
transverse space, that is, the solution should be invariant under the rotations acting
on the ym. The metric g

MN

in our coordinates (xµ, ym) must then take the form

ds2 = g
MN

dxMdxN = e2A(r) �
µ⌫

dxµdx⌫ + e2B(r) �
mn

dymdyn (3.1.5)

for some functions A and B of r ⌘
p
ymym. The scalar field � can depend only on r,

� = �(r) . (3.1.6)

Concerning the gauge potential A[n�1], we first have to understand which values the
degree (n � 1) can take. In principle, one could start by keeping n arbitrary and
study the equations of motion (3.1.3) with the conditions (3.1.5) and (3.1.6). It
will then turn out that it is only for some specific values of n depending on D and
d that solutions with a non-trivial gauge field exist. This can be understood more
simply by considering the physical interpretation of our Ansatz: a p-brane with a non-
trivial gauge field can be seen as a p-dimensional extended object carrying a non-zero
charge density. We are thus looking for gauge potentials that can be coupled to a
p-dimensional object. There are two possibilities. The simpler one is inspired by the
charged point-particle coupling which looks like

Z

C
A[1]µ

dxµ

d⌧
d⌧ =

Z

C
A[1] , (3.1.7)

where C is the world-line of the particle and ⌧ is a world-line parameter. The obvious
generalization to p-dimensional sources is

Z

V
A[p+1] , (3.1.8)

where V is the p-brane world-volume. The coupling (3.1.8) is called the elementary
(or electric) coupling, and thus a p-brane solution sourcing a non-trivial (p+1)-form
gauge potential is called an electric p-brane. Similarly to the familiar point-particle
case, the electric charge q

e

carried by the electric p-brane is obtained by integrating
the Hodge dual ?F[d+1] of the gauge field-strength over a (D � d � 1)-dimensional
hypersurface ⌃

D�d�1 of constant Euclidean time,

q
e

=
1

22

Z

⌃D�d�1

?(ea�F[d+1]) . (3.1.9)
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The factor of ea� is necessary to ensure that q
e

is conserved when the equation of
motion (3.1.3c) is satisfied. Our definition of the Hodge ?-operator is the same as
in [24] and is given in the appendix, see (A.2.1). As we will see when we compute the
charges of our solutions in subsection 3.1.2, it is only for a particular choice of the
hypersurface ⌃

D�d�1 that the charge is non-zero.
There is another way extended objects can couple to gauge fields. This comes

from the observation that one can also define a charge for a p-brane by integrating
directly the field-strength F[D�d�1] of the gauge potential A[D�d�2] over ⌃D�d�1. This
charge is conserved independently of the equations of motion thanks to the Bianchi
identity dF[D�d�1] = 0 and is thus dubbed “topological.” Notice that, in the language
of di↵erential forms, the equation of motion (3.1.3c) for F[D�d�1] reads

d ? (ea�F[D�d�1]) = 0 . (3.1.10)

We thus see that it is locally possible to define a dual gauge potential for the com-
bination ?(ea�F[D�d�1]), that would directly couple to the p-brane by a term similar
to (3.1.8). This coupling is called the solitonic (or magnetic) coupling, and thus a
p-brane solution sourcing a non-trivial (D � d � 2)-form gauge potential is called a
magnetic p-brane. Including convenient numerical coe�cients, the magnetic charge
q
m

is defined by

q
m

=
1

22

Z

⌃D�d�1

F[D�d�1] . (3.1.11)

The degrees d and D� d� 2 of the gauge potentials for the electric and magnetic
Ansätze respectively are related by the duality transformation defined by d̃ = D�d�2.
This transformation is idem potent: ˜̃d = d. The case p = 3 in D = 10 dimensions,
that will be important for us in chapters 4 and 6, is such that d̃ = d = 4 and
as a consequence its electric and magnetic field-strengths coincide: it is a self-dual
solution of the equations of motion (3.1.3). Section 3.1.3 is devoted to the study of
this particular solution. For the rest of this subsection, we assume d 6= d̃.

We now turn to the constraints imposed by the invariance conditions defining the
p-brane solution on the two possible field-strengths that can couple to the p-brane.
The reason why we consider the field-strengths rather than the gauge potentials is
because the field-strengths are gauge-covariant quantities, and the consequence of
invariance properties of the solution are thus easily written down. In both the electric
and the magnetic cases, there is not much freedom. In the case of the electric p-brane,
where n = d+ 1, it is easy to see that the only possible field-strength is

F[d+1]µ1···µdm
= @

m

eC(r)✏
µ1···µd

, (3.1.12)

with all other components (not related to those shown in (3.1.12) by permutations
of the indices) vanishing, and where C is some function of r to be determined later.
The completely antisymmetric tensor in d dimensions ✏

µ1···µd
is defined in appendix

A. The field-strength (3.1.12) identically satisfies the Bianchi identity dF[d+1] = 0.
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For the magnetic p-brane, the symmetry properties defining our Ansatz are easily
shown to impose

F[d̃+1]m1···md̃+1
= h(r) ym✏

mm1···md̃+1
(3.1.13)

with all other components vanishing, where h is some function of r and we used the
completely antisymmetric tensor in d̃+2 dimensions ✏

m1···md̃+2
defined in appendix A.

The function h turns out to be completely fixed (up to a multiplicative constant) by
the Bianchi identity dF[d̃+1] = 0, which reduces to a di↵erential equation for h. The
solution reads

h(r) =
�

rd̃+2
, (3.1.14)

where � is some constant. This yields the following expression for F[d̃+1]:

F[d̃+1]m1···md̃+1
= �

ym

rd̃+2
✏
mm1···md̃+1

. (3.1.15)

Let us now plug our two Ansätze (3.1.5), (3.1.6) and (3.1.12) or (3.1.15) into
the equations of motion for the metric and the scalar field given in (3.1.3). The
resulting systems of equations are conveniently packaged by defining a parameter &,
with & = +1 for the electric Ansatz and & = �1 for the magnetic Ansatz, and read

A00 + (d̃+ 1)
A0

r
+ dA02 + d̃A0B0 =

d̃

2(D � 2)
S2
&

, (3.1.16a)

B00 + dA0B0 + d̃B02 + (2d̃+ 1)
B0

r
+ d

A0

r
=

�d

2(D � 2)
S2
&

, (3.1.16b)

d̃B00 + dA00 � 2dA0B0 + dA02 � d̃B02 � d̃
B0

r
� d

A0

r
+

1

2
�02 =

1

2
S2
&

, (3.1.16c)

�00 + (d̃+ 1)
�0

r
+ d̃B0�0 + dA0�0 = �a&

2
S2
&

, (3.1.16d)

where a prime denotes the di↵erentiation with respect to r and we set

S+1 ⌘ C 0e
a
2��dA+C , (3.1.17)

S�1 ⌘
�e

a
2��d̃B

rd̃+1
· (3.1.18)

We shall consider the equation of motion for the gauge fields (3.1.3c) shortly. Our
task now is to look for a solution of the equations (3.1.16). These equations are
however still rather complicated, and an easy analytic solution is still out of reach.
We thus add an extra constraint on the derivatives of the functions A and B, reading

dA0 + d̃B0 = 0 . (3.1.19)
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Although we will not present this viewpoint here, the condition (3.1.19) actually
comes from the requirement that the p-brane solution is invariant under some super-
symmetry transformations. Combining (3.1.19) with the equations (3.1.16) we get
the following equations

r2A =
d̃

2(D � 2)
S2
&

, (3.1.20a)

r2� = �a&

2
S2
&

, (3.1.20b)

d(D � 2)A02 +
d̃

2
�02 =

d̃

2
S2
&

, (3.1.20c)

where r2 ⌘ gmnr
m

r
n

. When acting on a function of r only, as in (3.1.20), r2

reduces to the operator @2
r

+ (d̃+1)/r @
r

. We now arrive at the last constraint of the
p-brane solution. Consistently with the first two equations of (3.1.20), we impose the
following linear relation between A0 and �0,

A0 = � & d̃

a(D � 2)
�0 . (3.1.21)

Thanks to this last simplifying condition, we are now in a position to solve exactly
the remaining di↵erential equations (3.1.20). Equation (3.1.20c) boils down to

r2e
&�
2a � = 0 , (3.1.22)

where for convenience we set

� ⌘ a2 +
2dd̃

D � 2
· (3.1.23)

Equation (3.1.22) implies that e
&�
2a � is a harmonic function H in the transverse space

and is thus parameterised in general by two integration constants. One of the two
integration constants is fixed by the asymptotic behaviour of � that we choose to be
simply �(r) ! 0 when r ! 1.3 The solution of (3.1.22) therefore reads

e
&�
2a �(r) = H(r) = 1 +

k

rd̃
, (3.1.24)

where k is the remaining integration constant. Since k is of dimension (length)d̃, it
sets the mass scale of the solution. The precise physical interpretation of k will be
given when we compute the ADM mass of the solution in section 3.1.2. Similarly to
the case of the Schwarzschild black hole, naked singularities are avoided if we restrict
our attention to k > 0. Using asymptotic flatness in the transverse direction to fix

3This is not restricting the asymptotic value of the dilaton field � that appears in string theory,
as we will see on the precise relation between � and �, see formula (3.1.60).
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the integration constants in the solution of (3.1.19) and (3.1.21), we finally find the
metric

ds2 = H� 4d̃
(D�2)� �

µ⌫

dxµdx⌫ +H
4d

(D�2)� �
mn

dymdyn . (3.1.25)

We now specialize to the electric Ansatz (3.1.12), as in this case we still have to
find the function C. The equation of motion (3.1.3c) with & = +1 reduces to

C 00 + (d̃+ 1)
C 0

r
+ C 02 +

�

a
�0C 0 = 0 . (3.1.26)

Equation (3.1.26) is actually a consequence of equations (3.1.20). Eliminating the
second derivative of � using its own equation of motion in (3.1.20), we find the
following first order di↵erential equation for C:

�

eC
�0
= �

p
�

a
�0e�

a
2�+dA . (3.1.27)

We fix the integration constant in the solution of (3.1.27) to zero. The function C is
finally found to be given by

eC =
2p
�
e�

�
2a� . (3.1.28)

In the case of the magnetic Ansatz (3.1.15), the equation of motion (3.1.3) for
the gauge field is trivially satisfied. The remaining equations in (3.1.20) are satisfied
when the constant � is given by

� =
2d̃kp
�

· (3.1.29)

3.1.2 Tension, charges and scalar curvature

We now wish to compute the mass associated to the p-brane metric (3.1.25). In fact,
the total mass of the solution is trivially divergent as the volume of the p-brane is
infinite. In the transverse space however, the p-brane is represented as a point and the
metric is asymptotically flat, and thus we will obtain a finite result if we compute the
ADM “mass” of this point-like object by integrating over the hypersphere of infinite
radius in transverse space S?

1 ⌘ {xµ fixed, r ! 1}. This corresponds to computing
the density of mass per unit of p-volume, that is, the tension ⌧

p

of the p-brane; the
dimensions of ⌧

p

are thus (length)�d. The tension ⌧
p

is thus given by the standard
ADM formula:

⌧
p

⌘ 1

22

Z

S

?
1

(@
j

g
ij

� @
i

g
jj

) dd̃+1S
i

, (3.1.30)

where 2  i, j, . . .  D if x1 is taken to be the Euclidean time. The volume elements
dd̃+1S

i

are non-zero only for i = m and read

dd̃+1S
m

= y
m

rd̃d⌦
d̃+1 , (3.1.31)
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where d⌦
d̃+1 is the volume element of the unit (d̃ + 1)-dimensional round sphere.

Plugging the metric (3.1.25) into (3.1.30) we find

⌧
p

=
2Vol(S d̃+1)d̃k

2�
, (3.1.32)

where Vol(S d̃+1) is the volume of the unit (d̃ + 1)-dimensional round sphere. As
anticipated, the constant k sets the mass scale of the solution (3.1.25).

We now compute the electric and the magnetic charges defined by equations (3.1.9)
and (3.1.11) for the electric and the magnetic solutions (3.1.12) and (3.1.15) respec-
tively. To get a non-zero result for q

e

and q
m

, one must choose the hypersurface ⌃
d̃+1

to be the transverse hypersphere S?
r

⌘ {xµ and r fixed}. Of course the result must be
independent of r, which is a good thing to check on our explicit solutions. Plugging
(3.1.12) with the function C given by (3.1.28) into (3.1.9) one gets

q
e

=
Vol(S d̃+1)d̃k

2
p
�

, (3.1.33)

while plugging (3.1.15) with � given by (3.1.29) into (3.1.11) yields

q
m

=
Vol(S d̃+1)d̃k

2
p
�

· (3.1.34)

Note that if we change the sign in the electric and magnetic field-strengths Ansätze
(3.1.12) and (3.1.15), the equations of motion (3.1.3) are unchanged and the signs of
the associated charges (3.1.33) and (3.1.34) are simply flipped. The p-brane tension
(3.1.32) and charges (3.1.33), (3.1.34) are such that

⌧
p

=
2q

ep
�

(for & = +1) and ⌧
p

=
2q

mp
�

(for & = �1). (3.1.35)

Although we will not present the details of this fact, equalities (3.1.35) are actually
a particular case of more general statements known as the BPS inequalities

⌧
p

� 2|q
e

|p
�

(for & = +1) and ⌧
p

� 2|q
m

|p
�

(for & = �1), (3.1.36)

that must be satisfied by any solutions and are consequences of the superalgebra. The
p-brane solutions that we have constructed thus saturate the BPS inequalities, which
can in turn be shown to be equivalent to the fact that the p-brane solution preserves
some supercharges of the original (untruncated) theory. In other words, the p-brane
that we consider is a BPS solution.

Let us now address the question of the regularity of the metric (3.1.25). The only
candidate for a singularity is the point r = 0, where the p-brane itself is located and
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where the harmonic function H given in (3.1.24) diverges. Let us show that there is
indeed a curvature singularity at r = 0. For a metric of the form

ds2 = e2A(r)�
µ⌫

dxµdx⌫ + e2B(r)dymdym , (3.1.37)

with arbitrary functions A(r) and B(r), the scalar curvature R reads

R = �e�2B
⇣

2dA00 + 2(d̃+ 1)B00 + d̃(d+ 1)A0B0 + d̃(d̃+ 1)B02

+ d2A02 + 2d(d̃+ 1)
A0

r
+ 2(d̃+ 1)2

B0

r

⌘

, (3.1.38)

where we remind the reader that a prime denotes the di↵erentiation with respect to
r. Focusing on the metric (3.1.25), we find

R / r�
2a2

� for r ' 0 . (3.1.39)

Hence for a 6= 0, the p-brane solution has a curvature singularity at r = 0. Moreover,
r = 0 is an event horizon of the metric (3.1.25). When a = 0, the geometry is
regular and the scalar field � is decoupled from the metric and the gauge potential.
A particular case of this situation is analysed in subsection 3.1.3.

Summary of the electric and magnetic p-brane solution

Let us summarize what we have done and found in this section. We started from action
(3.1.1) that reduces, for particular values of the parameter a, to consistent truncations
of supergravity actions. We then solved the equations of motion (3.1.3) deriving from
action (3.1.1) by assuming that the solution is invariant under the Euclidean group
in d dimensions and isotropic in the remaining D � d dimensions. We argued that
the solution admits non-trivial gauge fields of degree n only for n = d + 1 (electric
solution) and n = D � d� 1 (magnetic solution). Assuming that some supercharges
are preserved (see equation (3.1.19) and the discussion below) and adding an extra
simplifying condition (3.1.21), we were able to fully solve the equations of motion for
both types of p-brane. The solutions read

ds2 = H� 4d̃
(D�2)� �

µ⌫

dxµdx⌫ +H
4d

(D�2)� �
mn

dymdyn , (3.1.40a)

e� = H
2a&
� , H(r) = 1 +

k

rd̃
, (3.1.40b)

F[d+1] =
2d̃k y

m

✏
µ1···µd

d!
p
�H2rd̃+2

dxµ1 ^ · · · ^ dxµd ^ dym (electric, & = +1) , (3.1.40c)

F[d̃+1] =
2d̃k ym✏

mm1···md̃+1

(d̃+ 1)!
p
�rd̃+2

dym1 ^ · · · ^ dymd̃+1 (magnetic, & = �1) . (3.1.40d)
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The dual dimension d̃ is defined by d̃ ⌘ D � d � 2 and � ⌘ a2 + 2dd̃/(D � 2).
The tension ⌧

p

, the electric charge q
e

and the magnetic charge q
m

are related to the
integration constant k by

⌧
p

=
2q

e,mp
�

=
2Vol(S d̃+1)d̃k

2�
(3.1.41)

for the electric and the magnetic solution respectively.
As a consistency check, it is easy to show using the explicit formula for the electric

solution F[d+1] in (3.1.40c) that the combination

F̃[d̃+1] ⌘ ?(ea�F[d+1]) (3.1.42)

is equal (up to an irrelevant sign) to the magnetic solution (3.1.40d) and satisfies the
equations of motion (3.1.3) with F replaced by F̃ and a replaced by �a, as it should.

3.1.3 The self-dual 3-brane in D = 10

Let us now consider the particular case of D = 10, n = 5 and a = 0. As we will
see in subsection 3.1.6, this corresponds to the Ramond-Ramond five-form of type
IIB supergravity theory. The special property of this situation can be traced back
to the fact that the dimension d = 4 of the brane carrying the F[5]-charge is equal

to the dual dimension d̃ = 8 � d = 4. As a consequence, it is impossible to have a
non-trivial pure electric solution: if we impose the electric Ansatz (3.1.12), then we
have ?F[5] = 0, that is, F[5] = 0 since ?2 is always proportional to the identity (see
(A.2.2)). Similarly, it is impossible to have a pure magnetic solution. We are thus
naturally led to consider a dyonic solution, that is, a solution having both non-zero
electric and magnetic charges. The field-strength F[5] then satisfies the self-duality4

condition:
? F[5] = �iF[5] . (3.1.43)

An immediate consequence of the self-duality condition (3.1.43) is that it is impossible
to write a kinetic term for F[5] as we did for the other n-form fields until now. More
precisely, we have the identity F[5] ^ ?F[5] = 0, as can be seen by the following
manipulation:

F[5] ^ ?F[5] = ?F[5] ^ F[5] = (�1)25F[5] ^ ?F[5] = 0 , (3.1.44)

where in the first equality we used the self-duality condition (3.1.43). The self-dual
field-strength F[5] is thus absent from the action (3.1.1), and is therefore also absent
from the equations of motion obtained by varying it. To circumvent this technical

4Formula ?2 = �1 (valid when acting on five-forms in the Euclidean) also allows for the condition
?F[5] = iF[5].
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obstruction, we simply impose by hand the self-duality condition (3.1.43) at the level
of the equations of motion. This procedure yields the following equations of motion:

R
MN

=
1

2
@
M

�@
N

�+
1

2.4!
F[5]MM2···M5F[5]N

M2···M5 , r2� = 0 , (3.1.45a)

�iF[5] = ?F[5] , r
M1F[5]

M1M2···M5 = 0 . (3.1.45b)

Notice that there is no source term in the equation of motion for the scalar field �:
it is a free field, and we take � = constant. Since � must go to zero as r ! 1, we
must have � = 0 everywhere. For the metric, we consider the usual Ansatz (3.1.5)
with the extra constraint (3.1.19),

ds2 = e2A(r)�
µ⌫

dxµdx⌫ + e�2A(r)dymdym , (3.1.46)

where A(r) is some function to be determined and we set the integration constant
in the solution of (3.1.19) to zero to ensure that the metric is asymptotically flat
as r ! 1. For the form F[5] we impose simultaneously the conditions (3.1.12) and
(3.1.13):

F[5]µ1···µ4m = @
m

eC(r)✏
µ1···µ4 , F[5]m1···m5 = h(r)ym✏

mm1···m5 , (3.1.47)

where C(r) and h(r) are two functions of r =
p
ymym. The condition dF[5] = 0 yields

h(r) = �r�6 for some constant � and C is fixed in term of A and � by the self-duality
condition (3.1.43). Moreover, the equation of motion d ? F[5] = 0 is automatically
satisfied. The equations (3.1.45) reduce to

A00 +
5A0

r
=
�2e8A

2r10
, 8A02 =

�2e8A

r10
· (3.1.48)

These equations imply that e�4A is a harmonic function, e�4A ⌘ H = 1+k r�4, while
the constant � must be related to k by the relation

� = 2
p
2k . (3.1.49)

The full solution for the self-dual 3-brane thus reads

ds2 = H�1/2�
µ⌫

dxµdx⌫ +H1/2dymdym , (3.1.50)

F[5]m1···m5 = 2
p
2k ✏

m1···m5m

ym

r6
, F[5]mµ1···µ4 =

2i
p
2k y

m

H2r6
✏
µ1···µ4 , (3.1.51)

H = 1 +
k

r4
, � = 0 . (3.1.52)

The tension (3.1.30) and the charges (3.1.9), (3.1.11) for this solution read

⌧
p

=
2Vol(S5)k

2
, q

e

= �iq
m

= � i
p
2Vol(S5)k

2
· (3.1.53)
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In particular we have the following relation between the tension, the electric and
magnetic charges:

⌧ 2
p

= |q
e

|2 + |q
m

|2 , (3.1.54)

which is (the Euclidean version of) the BPS equality for dyonic states in supergravity
[25, 26]. To close this discussion on the special case of the self-dual 3-brane, let us
remark that the scalar curvature (3.1.38) for the metric in (3.1.50) is regular:

R ' � 8p
k

for r ' 0. (3.1.55)

In fact, one can show that the solution has no curvature singularity. This is in contrast
with the cases where a 6= 0, as discussed previously in subsection 3.1.2.

3.1.4 Multi-centered solutions and p-brane stack

Let us now discuss a very simple generalisation of the p-brane solutions that we
described (valid also for the self-dual 3-brane in D = 10). In our general analysis of
subsection 3.1.1, we encountered two linear di↵erential equations: one for the function
h(r) appearing in the magnetic Ansatz (3.1.15) and one for the combination e

&�
2a � in

(3.1.22). The obvious generalisation of the solutions (3.1.14) and (3.1.24) for h(r)
and H(r) respectively is to consider a linear combination of such solutions. With the
asymptotic condition H ! 1 as r ! 1, this yields the following new solutions:

h(~y) =
N

X

↵=1

�
↵

|~y � ~y
↵

|d̃+2
, H(~y) = 1 +

N

X

↵=1

k
↵

|~y � ~y
↵

|d̃
, (3.1.56)

where N is a fixed number. In (3.1.56), we use the convenient vector notation for
(ym) = ~y and �

↵

, k
↵

and ym
↵

are some constants with 1  ↵  N . The equations of
motion require the constants �

↵

to be related to the k
↵

s by

�
↵

=
2d̃k

↵p
�

· (3.1.57)

Of course the SO(d̃+2) invariance in the transverse space is broken by this solution,
which describes N parallel p-branes located at di↵erent positions in transverse space,
~y
↵

being the position of the brane ↵. The tension and the total charges turn out to
be simply given by the sum of the tension and the charges of the individual branes.
In particular, the BPS condition (3.1.35) is still satisfied. When all the ~y

↵

coincide,
we have a stack of N p-branes on top of each other.

The self-dual case n = 5 with D = 10 studied in subsection 3.1.3 allows for a
similar generalisation, the only di↵erence being that the constants �

↵

and k
↵

are now
related by

�
↵

= 2
p
2k

↵

(Self-dual solution n = 5, D = 10, a = 0). (3.1.58)
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To close this subsection, let us mention that it is also possible to find non-BPS
solutions to the equations of motion (3.1.3) that are still invariant under the Euclidean
group in d dimensions. The constraint (3.1.19) is not satisfied for these solutions, and
they have two horizons in transverse space, much like the non-extremal Reissner-
Nortström solution in four dimensions. We will not present these solutions (known
as black p-branes) and we refer the interested reader to the original literature [27] for
more details (for a review, see e.g. [23]). The solutions that we derived here are thus
called extremal p-branes.

3.1.5 Einstein metric versus string metric

The metric g
MN

in action (3.1.1) is conventionally called the Einstein metric, and
di↵ers from the so-called string metric g(s)MN

, arising in string theory from particular
excitations of closed strings. The closed string spectrum also contains a scalar field
� called the dilaton, and we would like to establish the link between g(s)MN

, g
MN

, �
and the scalar field � that we considered so far. The di↵erence between the Einstein
metric and the string metric comes from the fact that the low-energy e↵ective action
for the string metric g(s)MN

and for the dilaton � typically has the form
Z

dDx
p
g(s) e

�2�
�

R(g(s)) + 4g(s)
MN@

M

�@
N

�+ · · ·
�

, (3.1.59)

where · · · represents terms which depend on the considered string theory (see subsec-
tion 3.1.6 for an example in D = 10), R(g(s)) is the Ricci scalar for the metric g(s)MN

and � is allowed to have a non-vanishing vacuum expectation value �0. The scalar
field �, which was assumed to be zero at infinity, is related to � through the relation

�̃ ⌘ �� �0 =

r

D � 2

8
� , (3.1.60)

the proportionality factor being fixed by matching the kinetic terms. To bring the
action (3.1.1) into the form of (3.1.59), we simply need to set

g
MN

= e�4�̃/(D�2)g(s)MN

. (3.1.61)

The action (3.1.1) with g
MN

and � expressed in terms of g(s)MN

and � using (3.1.60)
and (3.1.61) then reads

S = � 1

220

Z

dDx
p
g(s) e

�2�
h

R(g(s)) + 4g(s)
MN@

M

�@
N

�

� 1

2n!
e(
p

8
D�2a+

4(n�1)
D�2 )(���0) F2

[n](s)

i

, (3.1.62)

where we introduced the constant 0 = e��0 and where the subscript (s) on F2
[n](s)

means that we contracted the indices using the string frame metric g(s)MN

; explicitly,

F2
[n](s) ⌘ g(s)

M1N1 · · · g(s)MnNnF[n]M1···MnF[n]N1···Nn . (3.1.63)
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For future reference, let us note that using the formula (A.2.3) relating the Hodge
?-operators associated to metrics di↵ering by a conformal factor, we have

? (ea�F[n]) = ?(s)(e
1
2 (a+

n�5
2 )�F[n]) , (3.1.64)

where ?(s) is the Hodge ?-operator for the string frame metric g(s)MN

.

3.1.6 The case of type IIB supergravity

In this section we focus on the case D = 10, and consider the low-energy limit of type
IIB superstring theory. The action can be found for example in [3] and reads

SIIB = SNS + SR + SCS , (3.1.65)

with the various pieces given by5

SNS = � 1

220

Z

d10x
p
g(s)e

�2�
⇣

R(g(s)) + 4g(s)
MN@

M

�@
N

�� 1

12
H2

[3]

⌘

, (3.1.66a)

SR =
1

420

Z

d10x
p
g(s)

⇣

F 2
[1] +

1

3!
F̃ 2
[3] +

1

2.5!
F̃ 2
[5]

⌘

, (3.1.66b)

SCS = � i

420

Z

C[4] ^H[3] ^ F[3] , (3.1.66c)

where H[3] = dB[2] is the field-strength of the Kalb-Ramond field B[2]MN

, F[5] = dC[4],
F[1] = dC[0] where C[0] is a scalar field called the axion and we set

F̃[3] ⌘ F[3] � C[0]H[3] , F̃[5] ⌘ F[5] �
1

2
C[2] ^H[3] +

1

2
B[2] ^ F[3] . (3.1.67)

The form fields C[q] are called the Ramond-Ramond form fields (RR for short), while
B[2] is called the Neveu-Schwarz form field (NS for short). The equations of motion of
type IIB supergravity are obtained by adding the self-duality condition ?F̃[5] = �iF̃[5]

to the equations of motion derived from the action (3.1.65). This rather ad hoc
procedure is necessary because the kinetic term of a self-dual 5-form is identically
zero, as we explained in subsection 3.1.1.

Consistent truncations of (3.1.65) are obtained by setting all but one of the field-
strengths H[3], F[1], F[3] and F[5] to zero. If we denote by F[n] the field (either RR of
NS) that we do not set to zero, the action (3.1.65) reduces to

S = � 1

220

Z

d10x
p
g(s)

h

e�2�
�

R(g(s))+4g(s)
MN@

M

�@
N

�
�

� 1

2n!
e2↵� F 2

[n](s)

i

, (3.1.68)

5We remind the reader that we are working in the Euclidean, hence the di↵erent signs and factors
of i with [3].
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where the parameter ↵ is 0 for a RR field and �1 for the NS field. Matching (3.1.68)
with (3.1.62) requires the two following identifications:

↵ =
1

2

⇣

a+
n� 5

2

⌘

, F[n] = e(↵+1)�0F[n] . (3.1.69)

Both for the RR and NS fields we find � = 4, where � was defined in (3.1.23). The
relation (3.1.41) between the tension and the charges thus reduces to

⌧
p

= q
e,m

=
(7� p)Vol(S8�p)k

22
, (3.1.70)

for the electric and the magnetic solution respectively. Let us observe that an electric
source for F[1] corresponds to an object whose world-volume has zero dimension: it
is simply a point in spacetime.

Let us now determine the behaviour of the brane tension (3.1.32) in ten dimensions
when the asymptotic value of the dilaton �0 varies. Of course in expression (3.1.32)
for ⌧

p

there is no explicit dependence on �0 because we started from action (3.1.1) in
which there is no explicit reference to �0. But now that we have carefully identified
the action (3.1.1) with the type IIB action (3.1.65), we see that there are two di↵er-
ent places where �0 is hidden: first, the parameter  is related to 0, which is �0

independent, by  = e�00. Second, we learned that F[n] is actually �0-dependent,
see (3.1.69). As a consequence, for the electric Ansatz the charge q

e

defined in (3.1.9)
and associated to F[n] depends on �0. Defining the electric charge Q

e

associated to
the field F[n] by

Q
e

⌘ 1

220

Z

⌃D�d�1

?(ea�F[d+1]) , (3.1.71)

we find that the �0 dependence of q
e

is given by

q
e

= e(↵�1)�0Q
e

. (3.1.72)

Since the physical tension ⌧
p

of the solution is equal to the charge q
e

(see formula
(3.1.70)), we conclude that ⌧

p

has the following dependence on �0:

⌧
p

/
⇢

e��0 for RR fields (↵ = 0) ,
e�2�0 for NS fields (↵ = �1) .

(3.1.73)

Note in particular that the behaviour of the tension is independent of the dimension-
ality of the brane. Similar considerations apply for the magnetic solution and the
self-dual 3-brane.

For future reference, let us write explicitly the RR field sourced by a 5-brane in
D = 10 dimensions. In this case we have p = 5 and a = �1 and thus the harmonic
function H and the scalar field � are given by

H(r) = e�2� = 1 +
k

r2
· (3.1.74)
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The Einstein and string metrics are respectively given by

ds2 = H�1/4�
µ⌫

dxµdx⌫ +H3/4dymdym , (3.1.75a)

ds2(s) = H�1/2�
µ⌫

dxµdx⌫ +H1/2dymdym , (3.1.75b)

while the electric field F[7] and its dual F[3] = ?(s)F[7] read6

F[7] =
1

gs6!
@
m

H�1✏
µ1···µ6dx

µ1 ^ · · · ^ dxµ6 ^ dym , (3.1.76a)

F[3] = � 1

gs3!
@
m

H ✏
mm1m2m3dy

m1 ^ dym2 ^ dym3 . (3.1.76b)

3.2 Branes in string theory

The extended objects that we described as solutions of supergravity theories in the
previous section are generically singular. Since superstring theory is a UV-complete
theory for the supergravity fields, it must contain regular extended objects that re-
duce, in the supergravity limit, to brane solutions. The fact that the supergravity
brane solutions are singular means that close to the singularity, the supergravity
approximation breaks down and finite ↵0 e↵ects cannot be neglected anymore.

In this section we review the concept of Dirichlet-branes (D-branes for short), a
particular type of branes of string theory. We start by considering the bosonic oriented
closed string theory and recall the basics of T-duality. Then we move to open strings
and show how D-branes naturally arise by T-duality. We explain why D-branes have
to be considered as dynamical objects and present their e↵ective action in a general
string background. The discussion is extended to superstring theory and we discuss
the coupling between D-branes and RR fields. We also discuss the low-energy non-
abelian D-brane action that describes the collective dynamics of a stack of D-branes,
as well as its limitations. Preparing the ground for the applications presented in part 2
of this thesis, we then write the actions for the bosonic and fermionic fields describing
the low-energy limit of a stack of D9-branes in a trivial closed string background. We
then deduce by T-duality the action for a stack of D5-branes. Next, we explain how
the D5-brane theory is modified if we add D9-branes into the system, and we write
explicitly the terms that will later be important to us. We further reduce the theory
down to two dimensions, yielding (part of) the action of the D1/D5 system. This
latter step is explained in detail, including the treatment of the spinor fields in the
process of dimensional reduction. Finally, by continuing to reduce the theory down
to zero dimension, we describe the D(�1)/D3 system. The actions for the D(�1)/D3
and the D1/D5 systems, in the decoupling limit reviewed in chapter 4, will be our
starting points for the computations presented in chapters 6 and 7 respectively.

6Remember that ↵ = 0 for RR fields and thus using formula (3.1.64) we have ?(ea�F[n]) = ?(s)F[n].
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Standard references on string theory are [3–7] (see also e.g. [28] for a useful set of
lecture notes) and for references on D-branes see e.g. [29, 30]. Since these references
contain all technical details, we will not derive all the relevant formulas in this section,
but simply state the results, briefly recall their origin and, more importantly, stress
their physical interpretation.

3.2.1 T-duality and D-Branes

A natural way to introduce the concept of D-branes is through T-duality, a remarkable
property of string theory that we now describe. We consider the theory of bosonic
oriented closed strings propagating on flat Euclidean spacetime. The string spectrum
generically contains a tachyon and at the massless level there is a scalar particle, a
graviton and an antisymmetric two-form excitation. The fields describing coherent
states of these massless particles are the dilaton �, the metric g(s)MN

and the Kalb-
Ramond two-form B[2]MN

, where the spacetime indices are 1  M,N  D. For
definiteness, we assume thatXD is the Euclidean time. Except in particular situations
(like for example the linear dilaton CFT), consistency of the quantum world-sheet
theory requires D = 26.

The presence of the tachyon in the spectrum suggests that the bosonic string
theory is ill-defined. Despite this, there are a lot of interesting things to learn by
considering the bosonic string, most of which will essentially remain true when we
consider superstrings in subsection 3.2.5. Of course there can also be tachyons in
superstring spectra, but this will simply mean that we are considering an unstable
state, which will eventually decay into a tachyon-free, stable one [31].

Let us get started and consider a target space with topology R25 ⇥ S1 where
the circle S1 is of radius R and is taken in a direction di↵erent from X26, say along
the coordinate X25 for definiteness: X25 is thus identified with X25 + 2⇡R. As
a consequence of the periodicity of X25, the momentum component p25 must be
quantized according to

p25 =
n

R
, n 2 Z . (3.2.1)

Moreover, in deriving the spectrum of this theory, we must take into account new
configurations that are winding around the circle S1, that is, such that

X25(⌧, � + 2⇡) = X25(⌧, �) + 2w⇡R , w 2 Z . (3.2.2)

The winding number w counts the number of times the closed string winds around
the compact dimension. It is a new conserved quantum number, and will thus label
the states of the theory.

We now consider the physics from the viewpoint of the non-compact dimensions
Xµ, with µ ranging on all values from 1 to 26, except 25. Let us take a look at
the mass spectrum M2 = pµp

µ

of the quantized string. We introduce the complex
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coordinates (z, z̄) on the world-sheet, related to the usual coordinates (⌧, �) on the
cylinder by

z = e⌧+i� , z̄ = e⌧�i� . (3.2.3)

Using the coodinates (z, z̄), X25 decomposes as

X25(z, z̄) = X25
L

(z) +X25
R

(z̄) , (3.2.4)

with the left-moving and right-moving pieces given in terms of the oscillators ↵25
n

and
↵̃25
n

respectively by

X25
L

(z) =
x25

2
� i

r

↵0

2
↵25
0 log z + i

r

↵0

2

X

n 6=0

1

n
↵25
n

z�n , (3.2.5a)

X25
R

(z̄) =
x̃25

2
� i

r

↵0

2
↵̃25
0 log z̄ + i

r

↵0

2

X

n 6=0

1

n
↵̃25
n

z̄�n , (3.2.5b)

where (x25+ x̃25)/2 is the position of the string center of mass. The condition (3.2.2)
implies that w is related to ↵25

0 and ↵̃25
0 through

wR =

r

↵0

2
(↵25

0 � ↵̃25
0 ) , (3.2.6)

while the 25th component p25 of the momentum is as usual given by

p25 =
n

R
=

1p
2↵0

(↵25
0 + ↵̃25

0 ) . (3.2.7)

Defining the standard number operators N and Ñ for the left- and right-moving
sectors by

N =
1
X

n=1

↵M

�n

↵M

n

, Ñ =
1
X

n=1

↵̃M

�n

↵̃M

n

, (3.2.8)

the mass-squared operator M2 for the states in the uncompactified world reads

M2 =
n2

R2
+

w2R2

↵02 +
2

↵0

⇣

N + Ñ � 2
⌘

. (3.2.9)

Consistency of the quantum theory also require to have the following relation between
N and Ñ :

nw +N � Ñ = 0 , (3.2.10)

which reduces for zero winding number w = 0 to the usual level matching condition.
Let us now determine the massless states in the spectrum (3.2.9) satisfying the

constraint (3.2.10) for a generic compactification radius R. In this case, the condition
M2 = 0 implies n = w = 0, which combined with (3.2.10) yields N = Ñ = 1. This
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is basically the same spectrum as in the uncompactified theory, the only di↵erence
being that the states are now arranged into representations of the Euclidean group
in 25 dimensions instead of 26: nothing really interesting happened.

We now consider also the massive states of the spectrum defined by (3.2.9) and
(3.2.10). To get some intuition, let us see what happens as we vary the radius R. For
larger and larger R, the winding energies w2R2/↵02 increase, as we might expect since
it takes more energy to wind a string around a larger loop. Meanwhile, the momentum
quanta n2/R2 decrease as the compactified dimension is bigger and bigger. In the
limiting case where R ! 1, the winding modes are excluded from the spectrum while
the momentum quanta go to a continuum, and we recover our original, uncompactified
theory. The take-home message of this paragraph is the following: the fact that one
sector of the energy spectrum goes to a continuum (here the momentum modes) is
the typical signature of the appearance of an uncompactified direction (here X25).

On the other hand, when R gets smaller and smaller, the momentum energies
n2/R2 increase while the winding energies w2R2/↵02 decrease. In the limit R ! 0,
the momentum modes are completely excluded from the spectrum, reflecting the fact
that the compactified direction X25 has disappeared: geometrically, the compactified
dimension is shrunk to zero. The crucial point is that the winding energies, however,
go to a continuum and we essentially end up with the same spectrum as in the
R ! 1 limit, describing 26 dimensions. Since the direction X25 disappeared, there
must be a new dimension X 025 appearing in the theory. Momentum quanta along this
new dimension correspond, in the original theory, to winding quanta. The roles of
momentum and winding are thus exchanged as we consider R ! 0 instead of R ! 1,
despite their very di↵erent nature as quantum numbers.

Although remarkable, this result should not be a complete surprise to us, since
the theory is consistent only in 26 dimensions. Loosely speaking, if we try to di-
mensionally reduce the theory on a circle, consistency of the theory prevents us from
reaching our goal by making a new dimension appear. Note also that this is really a
stringy e↵ect, as for point-like particles there is no notion of winding number. The
conclusion is that from the viewpoint of the uncompactified dimensions, the theories
R ! 1 and R ! 0 are equivalent : it is impossible to make the di↵erence between the
two limits; we say that the two theories are dual to each other. The precise duality
transformation, exchanging momentum and winding, is given by

R 7! R0 =
↵0

R
, n $ w , (3.2.11)

where R0 sets the periodicity of the dual coordinate X 025, defined by

X 025(z, z̄) ⌘ X25
L

(z)�X25
R

(z̄) . (3.2.12)

As expected, the constraint (3.2.10) and the spectrum (3.2.9) take the same form
before and after the transformation (3.2.11), provided we interpret R0 as the radius
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of the new compactified dimension. The duality transformation (3.2.11) is called a
T-duality transformation, the letter “T” standing for “Target-space.”

What happens to the vibration modes in the direction X25 when R ! 0? Of
course, since the dimension X25 disappears as R ! 0, it is meaningless to say that the
string vibrates in this direction. According to (3.2.12) the e↵ect of the transformation
(3.2.11) on the left-moving and right-moving oscillators ↵25

�n

and ↵̃25
�n

respectively
reads

↵25
�n

7! ↵25
�n

, ↵̃25
�n

7! �↵̃25
�n

. (3.2.13)

The oscillator modes in the shrunk direction X25 are thus re-interpreted as oscillator
modes in the new dimension X 025 (up to a sign flip for the right-moving sector). We
thus conclude that the string vibrates in the new dimension X 025 as a consequence of
its vibrations in the original dimension X25.

Let us remark that to show the equivalence between two theories, we should not
content ourselves by showing that the spectra of both theories coincide, as interactions
might be di↵erent. In fact, using (3.2.12), one can show that interactions between
the excitations of the two dual spectra are essentially unchanged and thus T-duality
is an exact duality of perturbative bosonic closed string theory.

Before we add open strings in the game, let us present the spacetime e↵ective
action Sclosed for the closed bosonic string fields and determine how the dilaton field
� transforms under T-duality. The action Sclosed is defined by the requirement that
its equations of motion are equivalent to the condition that the world-sheet theory
has no conformal anomaly. When the spacetime curvature is small in string units,
the action Sclosed reads

Sclosed = � 1

220

Z

d26x
p
g(s) e

�2�
⇣

R� 1

12
H[3]MNP

HMNP

[3] + 4@
M

�@M�
⌘

, (3.2.14)

where H[3] = dB[2] and the indices are raised using the inverse metric g(s)MN . The
constant 0 has dimensions of (length)24 and is related to Newton’s constant in 26
dimensions using  = 0e�0 and (3.1.2), where �0 is the vacuum expectation value of
the dilaton �. If we compactify one direction, say X25 as above, on a circle of radius
R, then the e↵ective Newton’s constant 225/8⇡ in the uncompactified 25 dimensions
is related to  by

1

225
=

2⇡R

2
· (3.2.15)

On the other hand, the constant 25 must be invariant under T-duality, as it measures
the strength of the gravitational interactions in the uncompactified spacetime. Using
the relation between the radius R and its T-dual R0 in (3.2.11), we deduce that the
constant  in the original theory must transforms under T-duality as

 7!
p
↵0

R
 . (3.2.16)
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The dilaton � must transform to accommodate (3.2.16), namely

e� 7! Rp
↵0
e� . (3.2.17)

Although we will not present it here, it is also possible to find the transformation laws
of the other closed string fields G

MN

and B
MN

under T-duality. The resulting rules
have been derived in [32–34] (see also [35]) and are known as the Buscher’s rules.

We now consider the addition of oriented open strings in the theory. Since the
open string endpoints are loose, there is no notion of conserved winding number as
a winding string around the compactified dimension can be un-winded continuously.
In the limit R ! 0, the direction X25 disappears and the string endpoints are thus
restricted to move in the remaining 24 uncompactified dimensions. To see this explic-
itly, observe that while the original coordinate X25 satisfies the Neumann boundary
condition

@
n

X25 = 0 at endpoints (� = 0 and ⇡), (3.2.18)

where @
n

denotes the derivative in the direction normal to the world-sheet boundary,
the new coordinate X 025 automatically satisfies Dirichlet boundary condition, that is,

@
t

X 025 = 0 at endpoints (� = 0 and ⇡), (3.2.19)

where @
t

denotes the derivative in the direction tangent to the world-sheet boundary.
On the other hand, the oscillators in the direction X25 of the open string transform
into oscillators vibrating in the new direction X 025, similarly to the closed string
modes: despite the original dimension has disappeared, the open strings still vibrate
in 26 directions. We thus conclude that in the T-dual picture, we have a bosonic
string theory in 26 dimensions with open string endpoints restricted to move on a
24-dimensional hyperplane called a D24-brane, where “D” stands for “Dirichlet.”

In the original uncompactified theory, the spacetime fields describing coherent
states of massless excitations of the strings include an abelian gauge field A

M

. This
gauge field is truly a field on the whole spacetime, A

M

(XN), since the photon state
arising from the quantization of the open string can have momentum in any of the 26
directions. In the T-dual picture, however, the Dirichlet conditions prevent the open
string from having momentum in the new direction X 025. As a consequence, the fields
associated to the open string massless states are functions only of the 25 coordinates
that are parallel to the D24-brane: we say that the D24-brane has a field “living”
on it. It is thus natural to split A

M

(Xµ) into fields transforming under irreducible
representation of the world-volume symmetry group: we have a gauge field A

µ

(X⌫)
and a scalar field

Z(Xµ) = A25(X
µ) . (3.2.20)

We will shortly give a nice geometric interpretation to the scalar field Z.
To conclude this subsection, let us examine what happens when we perform a

T-duality transformation along the dual coordinate X 025 itself. For the closed string
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sector, there is nothing really new as R0 ! 0: the momentum modes along X 025

decouple while the winding modes go to a continuum, reproducing the original di-
rection X25. For the open strings, however, we have a novelty: winding number is
well-defined. Indeed, as the endpoints are confined on the D24-brane, an un-winding
process would require the endpoint to move along the compactified direction X 025

which is transverse to the D24-brane: this is by definition impossible. The spectrum
thus contains winding modes as well and, analogously to the closed string case, these
form a continuum when R0 ! 0. The net e↵ect is to reintroduce the dependence
on the original coordinate X25 in the open string fields: they are again fields on the
26-dimensional spacetime. As a conclusion, two T-duality transformations along the
same direction leave the theory unchanged. Moreover, if we apply several T-duality
transformations in di↵erent directions, we will decrease the dimension of the hyper-
plane where the open string endpoints move, thus producing Dp-branes for various
values of p  25, the D25-brane corresponding to the case where the open string
endpoints are free to move in any direction, which is nothing but the original theory
with open strings satisfying Neumann boundary conditions in every directions. For
a Dp-brane, the open string satisfies Dirichlet boundary conditions in D � p � 1 di-
rections (geometrically corresponding to the transverse directions of the Dp-brane)
and Neumann boundary conditions in the remaining p directions (geometrically cor-
responding to the parallel directions of the Dp-brane). Generalising the discussion
of the previous paragraph, we see that a Dp-brane has one gauge field A

µ

(X⌫) with
1  µ, ⌫  p + 1 living on it, as well as one scalar Z

m

for each transverse direction
Xp+m with 1  m  D � p � 1. A T-duality along a parallel direction transforms
a Dp-brane into a D(p � 1)-brane, while a T-duality transformation in a transverse
direction maps it to a D(p+ 1)-brane.

3.2.2 Chan-Patton factors and Wilson lines

Let us now extend the discussion to oriented open strings with Chan-Patton factors
labelled by (i, j) with 1  i, j  n. The gauge field arising from the massless states of
the open string is now an n⇥n matrix A

M

= (A
M

i

j

) transforming under the adjoint
representation of the gauge group U(n). Moreover, as the endpoints are now labelled
by the indices (i, j), we may interpret n as the number of D-branes: in the T-dual
picture and when the gauge field is trivial, the open string is attached to the D-brane
i at one end and to the D-brane j at the other end.

We now consider the non-trivial background gauge field A
M

given by

A
µ

= 0 , A25 =
1

2⇡R
diag(✓1, . . . , ✓n) , (3.2.21)

where the ✓1, . . . , ✓n = (✓
i

) are some real numbers. In a non-compact space, a constant
gauge field is always pure gauge. Although the gauge field component A25 can be
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written as

A25 = �i⇤ @25⇤ with ⇤ = diag(e
i✓1X

25

2⇡R , . . . , e
i✓nX25

2⇡R ) , (3.2.22)

A
M

is not pure gauge for generic (✓
i

) because ⇤ is not a well-defined function on the
circle of radius R. To find out what is the e↵ect of the background field (3.2.21) on the
open string spectrum, recall that an open string couples to a non-trivial background
gauge field A

M

through its boundary. At the world-sheet level, we simply have to
add a term of the form

Z

@M
A

M

dXM , (3.2.23)

where @M is the world-sheet boundary. The new spectrum, including the e↵ect of
the coupling (3.2.23) and with A

M

given by (3.2.21), reads

M2 =

✓

2⇡l � ✓
i

+ ✓
j

2⇡R

◆2

+
N � 1

↵0
, (3.2.24)

where the quantized internal momentum is p25 = l/R with l 2 Z and (i, j) are the
Chan-Patton labels of the state. As a consequence of (3.2.24), the scalar field Z is
massive when ✓

i

6= ✓
j

. This has a very natural interpretation in the T-dual picture.
Let us compute the length of the open string in the dual direction X 025: it is given by
the di↵erence �X 025 of X 025 evaluated at one end minus X 025 evaluated at the other
end and reads

�X 025 = (2⇡l � ✓
i

+ ✓
j

)R0 , (3.2.25)

where R0 = ↵0/R is the dual radius. Formula (3.2.25) indicates that the endpoints
are not lying on the same hyperplane, but rather lie in parallel hyperplanes separated
by |✓

i

� ✓
j

|R0: the e↵ect of the non-trivial expectation value (3.2.21) is to separate
the D-branes. The contribution proportional to ✓

i

� ✓
j

in the mass formula (3.2.24)
corresponds to the energy that is necessary to stretch a string between two separated
D-branes. In particular, there are no massless states for the string stretched between
two fixed D-branes.7 Moreover, according to (3.2.20), the scalar state of the open
string corresponds to fluctuations of the distance between the D-branes. We thus
conclude that for a Dp-brane, the D � p� 1 scalar fields Z

m

determine the shape of
the D-brane. In other words, the Z

m

are the embedding functions of the D-brane into
spacetime.

If ✓
i

6= ✓
j

for all 1  i 6= j  n, we have one U(1) gauge potential for each
D-branes. The total gauge group is then simply U(1)n. When D-brane i is brought
on top of D-brane j, that is, when we set ✓

i

= ✓
j

, the (i, j) string is not stretched
anymore and formula (3.2.24) allows for new massless states. These correspond to
extra gauge bosons, indicating a gauge symmetry enhancement. For r  n D-branes
brought on top of each other, the gauge symmetry group gets enhanced according to

U(1)n ! U(1)n�r ⇥ U(r) . (3.2.26)

7Except for exceptional values of ✓i, ✓j and l, of course.
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Conversely, a non-zero vacuum expectation value for the scalar fields Z
m

breaks part
of the gauge symmetry group by giving masses to the gauge bosons. This picture thus
provides us with a nice geometrical representation of the Higgs symmetry breaking
mechanism occuring on the D-brane world-volume theory.

Now that we have seen that a gauge field background like (3.2.21) describes sep-
arated D-branes, we might wonder “where” the open string fields of this system are
living. As the n parallel Dp-branes have the same dimension, the open string fields
will depend on p+ 1 coordinates, and may thus be seen to live in an auxiliary space-
time of dimension d = p + 1. Alternatively, we could imagine that the fields live on
all the n Dp-branes at the same time.

Let us now consider another interesting set-up: the parallel Dp/Dq system, with
p > q for definiteness. It is composed of a Dq-brane lying in directions parallel to
the Dp-branes, and stretched open strings have thus three di↵erent possible boundary
conditions: either both endpoints satisfy Neumann boundary conditions (abbreviated
“NN boundary conditions”), or both satisfy Dirichlet boundary conditions (abbrevi-
ated “DD boundary conditions”), or one endpoint satisfies Neumann boundary condi-
tions while the other satisfies Dirichlet boundary conditions (abbreviated “mixed” or
“ND boundary conditions”). The quantization of the strings in this set-up turn out
to be quite interesting, as the fields associated to the states arising from the stretched
strings depend only on the q + 1 coordinates parallel to the Dq-brane. The basic
reason is that there is no momentum in the directions involving at least one Dirichlet
condition. Since there are q + 1 NN boundary conditions, the fields corresponding to
the stretched strings live on the Dq-brane world-volume.

3.2.3 D-brane dynamics: the Dirac-Born-Infeld action

We now wish to address the question of D-brane dynamics, focusing for now on a
single D-brane (the case of several D-branes will be considered in subsection 3.2.6).
As we have seen in section 3.2.2, the most general set-up with one D-brane includes
a world-volume gauge field A

µ

and one scalar Z
m

for each direction transverse to
the D-brane Xm, 1  m  D � p � 1. These, together with the usual closed string
background fields �, G

MN

and B
MN

, are constrained by the requirement that the
world-sheet theory has no conformal anomaly.

We should thus in principle compute the �-functions of the world-sheet theory
in a general background to obtain the D-brane dynamics. Next, we should find an
action such that its equations of motion reproduce the conditions obtained by setting
to zero the �-functions. Instead of carrying this lengthy program, it is much easier
to guess the resulting action and motivate it by showing that it is consistent with
various requirement like T-duality and gauge invariance. In the case of the bosonic
string, this yields the following action known as the Dirac-Born-Infeld action:

SDBI = T
p

Z

⌃

dd⇠ e��
q

det
⇥

P(G+B[2]) + 2⇡↵0F
⇤

, (3.2.27)
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where T
p

is a parameter that we will shortly relate to the D-brane tension, ⌃ is the
world-volume of the D-brane, ⇠a with 1  a  d are some coordinates on ⌃, P denotes
the pullback of tensors from spacetime to ⌃ and F = dA is the field-strength for the
world-volume gauge potential A = A

a

d⇠a. The action (3.2.27) depends on the D
world-sheet scalars XM through the closed string background fields �(X), G

MN

(X)
and B

MN

(X) on one hand and on the other hand trough the pullback, since by
definition

P (G+B[2])ab =
@XM

@⇠a
@XN

@⇠b
(G+B[2])MN

. (3.2.28)

Finally, the determinant in (3.2.27) is taken over d ⇥ d matrices. The Dirac-Born-
Infeld action is valid only for constant gauge field F and is exact to all orders in
↵0.

The action (3.2.27) is manifestly invariant under world-volume reparametrizations
⇠a 7! ⇠0a, reflecting the fact that not all the D scalar fields XM are dynamical. In the
so-called static gauge, we set

⇠a = Xa , 1  a  d . (3.2.29)

This choice completely fixes the reparametrization ambiguity. The remaining dy-
namical fields are, in addition to the gauge potential A

µ

, the D � d scalar fields
Zm = Xd+m, with 1  m  D � d, describing the transverse embedding coordinates
of the D-brane and introduced in the paragraph below (3.2.20).

Let us now turn to the motivations for the D-brane action (3.2.27). First of all,
the interactions of the D-brane action should be weighted by the open string coupling
e�/2, because they are given by the low-energy limit of disk amplitudes. We thus need
to have a global factor e�� multiplying the Lagrangian.8

Next, consider the D-brane with vanishing B-field and world-volume gauge field F .
Then the simplest candidate for a coordinate invariant Lagrangian, focusing on low-
derivative terms, is simply the volume density

p

det P(G) induced by the spacetime
metric G. The coe�cient T

p

e�� thus corresponds to the physical tension of the D-
brane.

To find out how the D-brane Lagrangian depends on the world-volume gauge field,
let us consider a flat D2-brane along directions X1 and X2 with a constant field-
strength F12. An admissible world-volume gauge potential consists of Aµ with A1

independent of X2 and A2 = X1F12. If we now perform a T-duality transformation
in the direction X2, the D2-brane is mapped onto a D1-brane lying along the X1

direction. Moreover, according to our discussion of subsection 3.2.2, the scalar field
living on the D1-brane is determined by the component A2 of the gauge potential. In
other words, the D1-brane is not located at the origin in the new direction X 02, but

8This is similar to what happens for an ordinary Yang-Mills gauge theory with coupling con-
stant gYM, where it appears as a global factor g�2

YM in front of the action (possibibly after a field
redefinition).
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rather at the position given by

X 02 = 2⇡↵0A2 = 2⇡↵0X1F12 . (3.2.30)

Up to proportionality factors that we will discuss shortly, the D2-brane action should
match the D1-brane action to which it is dual to. We already know the latter: in the
static gauge ⇠0 = X0, ⇠1 = X1, it is proportional to

Z

dX0dX1
p

det P(G) =

Z

dX0dX1
p

1 + (@1X 02)2

=

Z

dX0dX1
p

1 + (2⇡↵0F12)2 . (3.2.31)

As expected, (3.2.31) reproduces (up to a constant factor) the postulated D-brane
action (3.2.27) for flat space and vanishing B-field. To generalise to a D-brane of any
dimensionality p+1 and for general (constant) world-volume field-strength F , we can
simply boost and rotate the world-volume coordinates to make F block-diagonal, each
bloc being a two-by-two matrix. Repeating the steps for the case p = 2 above for each
bloc, we end up with an action containing products of terms similar to (1+(2⇡↵0F12)2)
but for each two-dimensional plane along the D-brane world-volume, building up for
us the determinant det(1+ 2⇡↵0F ) under the square-root in (3.2.27).

Finally, let us understand where the B-field dependence in the D-brane action
(3.2.27) comes from. Remember that the B-field and the gauge potential form
A

M

dXM couple to the word-sheet through the terms

i

2⇡↵0

Z

M
B[2] + i

Z

@M
A

M

dXM , (3.2.32)

where M is the world-sheet and @M its boundary. Recall also that there are gauge
invariances associated to the fields A and B[2]: the spacetime physics is invariant under
the two di↵erent gauge transformations A

M

7! A
M

+@
M

� and B[2] 7! B[2]+d⇣, where
� is a function and ⇣ = ⇣

M

dXM is a one-form. The world-sheet theory must therefore
be invariant under these transformations. Under the former, the world-sheet terms
(3.2.32) are obviously invariant. Under the latter, the world-sheet action (3.2.32) is
invariant provided we also transform A

M

according to

A
M

7! A
M

� 1

2⇡↵0 ⇣M , (3.2.33)

which is not an ordinary gauge transformation for A
M

since ⇣
M

is arbitrary. As a
consequence, the world-volume field-strength F transforms according to

F 7! F � 1

2⇡↵0P(d⇣) . (3.2.34)
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The D-brane action must also be invariant under this gauge transformation. Since
we already know how the world-volume field-strength F enters in the Lagrangian, we
simply have to replace F by the invariant combination

F +
1

2⇡↵0P(B[2]) . (3.2.35)

We have thus fully motivated the form of the general D-brane action (3.2.27).

3.2.4 The D-brane tension

The arguments of section (3.2.3) proved that the D-brane action (3.2.27) was con-
sistent with T-duality and gauge invariance. The parameter T

p

however remains
unknown at this stage. Before we explain how it can be determined explicitly, let us
derive a recursion relation for T

p

using T-duality. Consider a static Dp-brane wrapped
on the p-torus T p = S1 ⇥ · · · ⇥ S1 (with p factors of S1), each circle S1 having an
arbitrary radius R

i

, 1  i  p, and with trivial world-volume and spacetime fields.
From the viewpoint of the remaining transverse directions, the D-brane is point-like
and its energy is given by its e↵ective tension T

p

e��0 times its internal volume. The
energy of the D-brane thus reads

T
p

e��0Vol(T p) = T
p

e��0

p

Y

i=1

(2⇡R
i

) . (3.2.36)

By T-duality along, say, the Xp direction, the energy (3.2.36) must match the energy
of a D(p� 1)-brane wrapped around the (p� 1)-torus T p�1 with circles of radius R

i

,
with 1  i  p� 1, which reads

T
p�1e

��̃0

p�1
Y

i=1

(2⇡R
i

) , (3.2.37)

where �̃0 is the dilaton expectation value in the T-dual theory. It is related to the
original dilaton expectation value �0 using formula (3.2.17). Matching (3.2.36) with
(3.2.37) yields the following recursion formula for the D-brane tensions:

T
p

=
T
p�1

2⇡
p
↵0

· (3.2.38)

Let us now explain how one can actually find the value of the D-brane tension T
p

.
The idea is to compute the scattering amplitude measuring the coupling between a
closed string mode and the D-brane in two di↵erent ways: on one hand, it is computed
using the total action Sclosed +SDBI in the semi-classical approximation, where Sclosed

gives the dynamics of the closed background fields �, G
MN

, B
MN

and is given in
(3.2.14). On the other hand, we can compute the scattering amplitude directly in
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string theory; the value of T
p

is then fixed by asking that the two results match in the
small ↵0 limit and at weak string coupling. As this procedure is explained in detail
in the literature, we will not reproduce it here. The result reads

T
p

=

p
⇡

240
(4⇡2↵0)

11�p
2 (bosonic string) . (3.2.39)

Of course, the result (3.2.39) satisfies the T-duality consistency requirement (3.2.38).
Note that because we are using a semi-classical approximation, the global coe�cient
of the action Sclosed+SDBI does matter, and indeed the result (3.2.39) fixes the value of
the combination T

p

0 (in terms of the microscopic parameter ↵0) instead of fixing the
relative coe�cient T

p

20. This is due to the fact that for a typical path integral weight
such as e�S/~, the leading term in the semi-classical approximation is proportional to
~�1.

3.2.5 D-branes in superstring theories

We now move to superstring theories, which are consistent in ten-dimensional space-
times. The spectrum of the theory is richer than in the bosonic case: in particular, the
closed string massless spectrum now contains excitations of spacetime gauge poten-
tials C[q] called the Ramond-Ramond fields (RR fields for short) as well as a number
of fermionic superpartners. The possible values of q depend on the considered super-
string theory. For example, type IIB superstring theory reduces in the low-energy
approximation to type IIB supergravity, which contains RR forms C[q] for q = 0, 2, 4,
as we have reviewed in subsection 3.1.6. The properties of electric and magnetic RR
sources in the supergravity approximation have been studied in section 3.1.

There is an important di↵erence between the RR gauge fields and the gauge field
arising from open string excitations: for the latter, the associated charges are from
the start identified with the open string endpoints, while non-trivial RR fields are not
straightforwardly related to any explicit source in the theory, and in fact fundamental
strings turn out to be neutral under the RR fields. Still, the RR sources in superstring
theory are intimately related to the open string endpoints: they turn out to be the D-
branes. The first evidence for this is the fact that D-branes have their tension behaving
like g�1

s , exactly like RR sources in supergravity as we have shown in subsection
3.1.6, see in particular equation (3.1.73). Moreover, D-branes in superstring theory
turn out to be BPS configurations, and must then carry conserved charges. Since
a p-dimensional object naturally sources a (p + 1)-form gauge potential through the
electric coupling, D-branes are perfect candidates for RR sources. These arguments
can be strengthened by superstring amplitude computations showing explicitly that
D-branes have the correct coupling to RR fields.

Under a T-duality transformation, the chiral type IIB superstring theory is map-
ped to the non-chiral type IIA superstring theory. The reason is essentially because
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as we have seen in the bosonic case, T-duality amounts to a world-sheet parity trans-
formation on the right-movers only, see (3.2.12). World-sheet supersymmetry then
requires that one also changes the sign of the world-sheet right-moving fermions,
hence the chirality change in the theory. By performing two T-duality transforma-
tions, we recover the original type IIB theory. Since we have RR field-strengths F[q+1]

with q = 0, 2, 4, we must have Dp-branes with p = �1, 1, 3. Moreover, by T-duality,
we must also have Dp-branes with p = 5, 7, which are nothing but the magnetic
sources for the original field-strengths F[q+1] for q = 0 and 2. Finally, the case p = 9
corresponds to the space-filling brane.

Since D-branes couple to RR fields, it follows that the D-brane action SDBI should
be extended to describe the interactions between the D-brane and non-trivial RR
fields. The precise coupling is given by the Wess-Zumino (or Chern-Simons) action
SCS, reading

SCS = iµ
p

Z

⌃

h

X

q

P
�

C[q] ^ eB[2]
�

^ e2⇡↵
0
F

i

top
, (3.2.40)

where the sum over q runs over the values allowed in a given theory and the e↵ect
of the subscript “top” is to select the form of degree p + 1 in the square brackets.
The prefactor µ

p

corresponds to the charge of the Dp-brane, and the factor i comes
from the fact that we are working in the Euclidean. The general form of (3.2.40)
can be understood by arguments based on the consistency with T-duality and gauge
invariance, similarly to the discussion we did for the Dirac-Born-Infeld action, see
below (3.2.27). Basically, the pull-back P(C[q]) will require, in the T-dual picture, the
presence of the world-volume field-strength in a way very similarly to what appears
in (3.2.40). The B-field dependence comes from the requirement of gauge invariance
under B[2] 7! B[2] + d⇣, F 7! F � P(d⇣)/(2⇡↵0).

The complete Dp-brane action is thus obtained by adding the Dirac-Born-Infeld
action (3.2.27) to the Chern-Simons action (3.2.40). Moreover, the Dp-brane charge
µ
p

can be determined by comparing field theory amplitudes to the actual superstring
result in the semi-classical approximation. The result yields µ

p

= T
p

, as required by
supersymmetry. One can also determine the value of T

p

. The result reads

T
p

=

p
⇡

0
(4⇡2↵0)

3�p
2 (Superstrings) . (3.2.41)

Let us compare the fundamental string tension ⌧F ⌘ (2⇡↵0)�1 ⌘ `�2
s to the D-string

tension ⌧1 = T1/gs. Using (3.2.41), we have

⌧F
⌧1

=
gs0

8⇡7/2↵02 · (3.2.42)

It turns out to be very convenient for various formulas to define the string coupling
as the ratio (3.2.42). In other words, we choose the additive normalisation of � such
that

⌧F
⌧1

= e� = gs . (3.2.43)
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With this choice, the constant  is given by

 = 8⇡7/2↵02gs , (3.2.44)

while T
p

reads

T
p

= ⌧
p

gs =
1

(2⇡)p↵0(p+1)/2
· (3.2.45)

For future reference, let us also express the constant k introduced in section 3.1 and
related to the tension ⌧

p

by (3.1.70) in terms of the microscopic parameters ↵0 and
gs:

k = 25�p⇡
5�p
2 gs↵

0 7�p
2 �

⇣7� p

2

⌘

. (3.2.46)

3.2.6 Non-abelian extension of the D-brane action

So far, we have only considered the low-energy dynamics of a single Dp-brane moving
in a general background. The next natural step is to study the dynamics of a stack
of N Dp-branes on top of each other which, according to the discussion of subsection
3.2.2, have an U(N) world-volume gauge invariance. In principle, one could compute
tree-level string amplitudes in the low-energy limit to find the D-brane action. This is
however a very tedious and complicated procedure in general. Fortunately, the result
can be determined by considering consistency of the total action with T-duality [36].
We now briefly review the steps of the rationale.

Let us first give some details on the non-abelian D-brane theory in flat space. The
bosonic sector of the theory contains two types of fields: an U(N) gauge potential
A

µ

and 9 � p scalar fields Xm describing the fluctuations of the D-brane shape in
transverse space. The scalar fields are now N ⇥ N matrices transforming in the
adjoint representation of the gauge group U(N). Since the configuration preserves half
of the original supercharges, the low-energy action for the world-volume theory must
be super-Yang-Mills theory in p + 1 dimensions with sixteen real supercharges, the
bosonic fields A

µ

and Xm being supplemented with their fermionic superpartners. In
our conventions, the corresponding Yang-Mills coupling gYM appears as g�2

YM in front
of the gauge field kinetic term 1

4
trF

µ⌫

F
µ⌫

. By analogy with the abelian case, we
deduce by expanding the square-root in (3.2.27) that gYM is related to the Dp-brane
e↵ective tension ⌧

p

through

g2YM =
1

(2⇡↵0)2⌧
p

= (2⇡)p�2gs↵
0 p�3

2 . (3.2.47)

In particular, g2YM has the dimensions of (length)p�3 and thus for p  3, the theory
is renormalizable while for p > 3 it is not.9 In the limiting case p = 3 where gYM is

9This is not in itself a problem, because remember that these are low-energy actions. In gen-
eral, the UV completion of this system involves new degrees of freedom corresponding to massive
excitations of the strings.
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dimensionless, the world-volume is four-dimensional and the theory is N = 4 super-
Yang-Mills on which we will have more to say in chapter 4 and in part 2 of this thesis.
The action for super-Yang-Mills in p+1 dimensions typically contains potential terms
involving commutators of the scalar fields Xm, as we will shortly see for the special
cases p = 5, 1 and �1 in subsections 3.3.2, 3.3.4 and 3.3.5 respectively.

When the closed string background is arbitrary, things are more complicated. The
most naive modification of (3.2.27) and (3.2.40) would be to simply put the integrands
in a trace on the gauge group U(N) and replace the scalar field derivatives appearing
in the pull-backs by gauge-covariant derivatives. The resulting candidate for the
non-abelian D-brane action is however clearly incorrect, as for example it does not
reproduce the potential terms involving commutators of the scalar fields in flat space.
Moreover, the action is not consistent with T-duality, and should thus be further
modified. Note, however, that for N D9-branes there are no scalar fields because the
brane is space-filling, and the above naive procedure turns out to yields the correct
action (up to the symmetrized trace prescription that we will shortly define). One
can then infer the lower-dimensional non-abelian D-brane actions by acting with T-
duality transformations and using the Buscher’s rules for the transformations of the
background fields. This procedure typically yields the various commutators of the
scalar fields Xm that were missing in the first naive guess.

The above reasoning fixes the explicit dependence on the scalar fields Xm and the
gauge potential A

µ

. There is however a place where the scalar fields appear implicitly:
that is through the background fields, which in the abelian case are evaluated at the
D-brane position. Now that the “position” is given by N ⇥ N matrices, we must
define precisely how the dependence on Xm is implemented. Let us illustrate how
this is done for instance on the dilaton �. In the abelian case and in the static gauge,
it is evaluated at Xm: �(Xm), where Xm are the scalar fields. In the non-abelian
case, we write Xm = xm1

N⇥N

+ 2⇡↵0�m where xm are some numbers and �m are
some N ⇥N matrices, and we expand �(Xm) about xm1 as

�(Xm = xm1+ 2⇡↵0�m) =
1
X

n=0

(2⇡↵0)n

n!
�m1 · · ·�mn(@

x

m1 · · · @
x

mn )�(xm) . (3.2.48)

Since each term of the sum in (3.2.48) is completely symmetrized in the indices
m1, . . . ,mn

, the order in which the fields �mi appear does not matter. For the other
background fields G

MN

, B
MN

and the various RR forms C[q], we proceed in a similar
way.

There is one last complication. In fact, the above procedure is ambiguous because
we did not specified in which order we should write the di↵erent matrices appearing in
the action. The last step thus consists of defining the symmetrized trace prescription,
that we denote by Str and define as the U(N) trace of the completely symmetric
combination of the three quantities F

ab

, D
a

�m and [�m,�n], where we write

Xm = xm1+ 2⇡↵0�m (3.2.49)
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as above. This ad hoc procedure yields the correct result for the low-energy non-
abelian D-brane action at least up to fifth order in F

ab

and �m. At sixth order
however, discrepancies with direct superstring amplitude computations have been
noticed [37,38], so one should not trust this procedure beyond fifth order.

We now present the result for the bosonic sector of the non-abelian D-brane action
(known as Myers’ action) in a general closed string background. In the Euclidean,
the action is SDBI + SCS with

SDBI = T
p

Z

dp+1⇠ Str

✓

e�
q

det
⇥

P(T )
ab

+ 2⇡↵0F
ab

⇤

det(Qm

n

)

◆

, (3.2.50a)

SCS = iµ
p

Z

Str

✓

P
h

e2⇡i↵
0
◆�◆�

⇣

X

q

C[q] ^ eB[2]

⌘i

^ e2⇡↵
0
F

◆

top

. (3.2.50b)

The parameters T
p

and µ
p

are simply given by their values in the abelian case multi-
plied by N . Explicitly,

T
p

= µ
p

= ⌧
p

gs =
N

(2⇡)p↵0(p+1)/2
· (3.2.51)

Some definitions are in order to understand the actions (3.2.50). The spacetime tensor
T is defined by

T
MN

⌘ E
MN

+ E
Mm

(Q�1 � �)m
k

EknE
nN

, (3.2.52)

where E
MN

⌘ G
MN

+ B[2]MN

, Qm

n

⌘ �m
n

+ 2⇡i↵0[�m,�k]E
kn

and Emn is defined
as the inverse of E

mn

, i.e. E
mn

Enk = �k
m

. We remind the reader that the indices
1  M,N  10 are ten-dimensional spacetime indices, 1  m,n, k  9�p are indices
corresponding to the directions transverse to the Dp-brane and 1  a, b  p + 1
label the parallel directions. The first determinant under the square-root in (3.2.50a)
is taken over (p + 1) ⇥ (p + 1) matrices carrying the indices a, b, while the second
determinant is taken over (9 � p) ⇥ (9 � p) matrices carrying the indices m,n. We
also remind the reader that the pull-back operator P is, in the static gauge, given by

P(T )
ab

⌘ T
ab

+D
b

XnT
an

+D
a

XmT
mb

+D
a

XmD
b

XnT
mn

, (3.2.53)

where Xm = xm1 + 2⇡↵0�m are the matrix coordinates in the transverse space and
D

a

denotes the gauge-covariant derivative, and similarly for any q-form.
In (3.2.50b), we used the interior product ◆

�

, which is defined on any spacetime
n-form ! = 1

n!
!
M1···Mndx

M1 ^ · · · ^ dxMn by

◆
�

(!) ⌘ 1

(n� 1)!
�m!

mM2···Mndx
M2 ^ · · · ^ dxMn . (3.2.54)

In particular, acting twice with ◆
�

produces a commutator of the scalar fields �m:

◆
�

◆
�

(!) =
1

(n� 2)!
�m�n!

nmM3···Mndx
M3 ^ · · · ^ dxMn

= � 1

2(n� 2)!
[�m,�n]!

mnM3···Mndx
M3 ^ · · · ^ dxMn . (3.2.55)
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A particular feature of the non-abelian Chern-Simons action (3.2.50b) is that thanks
to the presence of commutators of �m, it allows for couplings involving gauge poten-
tials of degrees higher than the Dp-brane dimension p+ 1. For example, in the type
IIB theory, a stack of K D-instantons is coupled to a five-form F[5] through terms of
the form

�m1 [�m2 ,�m3 ][�m4 ,�m5 ] , (3.2.56)

that appear when we expand (3.2.50b). Note also that this term is of fifth order in
�m, and is thus in the range of validity of Myers’ action. Finally, one should not forget
that all background fields present in (3.2.50) are evaluated at Xm and are expanded
as explained above formula (3.2.48).

The actions (3.2.50) describe only the bosonic sector of the low-energy spacetime
theory; however, a complete description should also include the various fermions
required by supersymmetry. Unfortunately the full supersymmetric completion of the
non-abelian theory SDBI + SCS is not known (for more on this topic, see e.g. [39, 40]
and references therein). In chapter 5 we will sketch a procedure from which the full
supersymmetric D-brane action can be determined, at least in some particular (but
still non-trivial) backgrounds.

3.3 Explicit low-energy actions of some D-brane
systems

To close this chapter, we provide explicit formulas for low-energy non-abelian D-
brane actions in flat spacetime, including the fermionic fields and the corresponding
supersymmetry transformations for systems that will be of interest in part 2. The
strategy that we follow to find these actions is by using T-duality, the starting point
being the action for N space-filling D9-branes. In this case, the low-energy action
is pure super-Yang-Mills in ten dimensions with sixteen supercharges. Since we are
in the field theory limit, T-duality transformation amounts to trivial dimensional
reduction. Anticipating our needs for the computations in part 2, the presentation
will be rather explicit.

We start by writing the low-energy action for N D9-brane in flat space. We
then present the result of dimensional reduction from ten to six dimensions, yield-
ing the N D5-brane world-volume theory. We then move to a di↵erent set-up: we
consider a stack of K D5-branes parallel to N D9-branes. Let us introduce some
terminology, that will be meaningful in part 2: in any system that we consider, the
lower-dimensional D-branes are called probe D-branes, while the higher-dimensional
ones are called background D-branes. Moreover, we will always consider in this thesis
the case where the background D-branes have four dimensions more than the probe
D-branes. The reason is because these systems still preserve one quarter of the origi-
nal thirty-two supercharges. The total low-energy action is still quite complicated and
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tedious to determine from first principles, as it typically requires to compute various
low-energy string scattering amplitudes.10 Fortunately, as we will explain in section
5.2, we do not need to know all the terms in the action to find the emergent geometry.
The only part of the action that we will actually need and will consider here is the
one containing only fields associated to strings having at least one endpoint on the
probe D-brane stack. In particular, we shall not consider the couplings between these
fields and those coming from strings with both endpoints attached to the background
D-branes. On the other hand, we need to know the terms in the action describing
the dynamics of the fields associated to the open strings stretched between the two
stacks of D-branes, as well as their couplings to the probe D-brane fields. The result
is strongly constrained by supersymmetry: we simply need to add hypermultiplets
transforming under the bi-fundamental of the gauge group U(N)⇥U(K), as it should
for fields coming from open strings attached to the two stacks. Once these hypermul-
tiplets are added to the action for K D5-branes, we continue to dimensionally reduce
the theory down to two dimensions, yielding the terms of the action of the D1/D5
system that will be relevant for us in chapter 7. For completeness, we present the de-
tails of the dimensional reduction from six to two dimensions, including the treatment
of the fermions. We finish by presenting the relevant terms of the zero-dimensional
theory of the D(–1)-branes in the D(–1)/D3 system, that will be relevant for us in
chapter 6.

We remind the reader that our conventions are summarized in appendix A. See
also appendix B for general considerations about dimensional reduction.

3.3.1 D9-brane action in flat space

We consider the low-energy limit of a stack of N space-filling D9-branes in the trivial
closed string background. Working in the Euclidean, the spacetime symmetry group
is SO(10) and the gauge group is U(N). The field content is as follows: there is a
gauge potential A

M

with 1  M  10 in ten dimensions together with a fermionic
superpartner � sitting in the Majorana-Weyl spinor representation of SO(10) and in
the adjoint representation of the gauge group U(N). Without loss of generality, we
choose the chirality of � to be positive, i.e. it is a left-handed Weyl spinor. Since there
are no transverse directions, there are no scalar fields living on the D9-brane world-
volume. Moreover, the system must be invariant under sixteen real supercharges,
fixing completely the Lagrangian that we denote by LD9. Explicitly,

LD9 =
1

(2⇡)4gs`6s
trU(N)

⇣

`�4
s +

1

4
F
MN

F
MN

+
i

2
�̄�

M

r
M

�
⌘

, (3.3.1)

where gs = e�0 is the string coupling set by the constant dilaton � = �0 and the ten
32⇥ 32 matrices �

M

satisfy the Euclidean Cli↵ord algebra

{�
M

,�
N

} = 2�
MN

132⇥32 . (3.3.2)

10Note that these computations have been done for the D(�1)/D3 system in [41,42].
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The field-strength F
MN

and the covariant derivative r
M

� are defined by

F
MN

⌘ @
M

A
N

� @
N

A
M

+ i[A
M

, A
N

] , r
M

� ⌘ @
M

�+ i[A
M

,�] . (3.3.3)

The global factor in (3.3.1) is fixed by the D9-brane tension ⌧9, see formula (3.2.51)
with p = 9, while the kinetic term for the gauge potential A

M

is found by expand-
ing the non-abelian Dirac-Born-Infeld action (3.2.50a) in the limit of small ↵0 and
evaluated in the trivial closed string background. Since we set all RR fields to zero,
the non-abelian Chern-Simons action (3.2.50b) vanishes. The gauge-invariant kinetic
term for the fermionic field � is normalized such that the Lagrangian (3.3.1) is invari-
ant under the following supersymmetry transformations:

�A
M

= �i"̄�
M

� , �� =
1

2
F
MN

�
MN

" , (3.3.4)

where �
MN

⌘ 1
2
[�

M

,�
N

] and " is any constant left-handed Majorana-Weyl spinor in
ten dimensions. Finally, the Dirac conjugate �̄ of � is defined by

�̄ ⌘ �TC , (3.3.5)

where �T is the transposed of � while C is the charge conjugation matrix in ten
dimensions such that

C�
M

C�1 = ��T

M

, C† = C�1 = �CT = C . (3.3.6)

3.3.2 D5-brane action from T-duality: dimensional reduction

Starting from the D9-brane Lagrangian (3.3.1), it is trivial to obtain the low-energy
world-volume theory of N D5-branes by performing four T-duality transformations
in di↵erent directions parallel to the D9-brane. In practice, this simply amounts to
perform trivial dimensional reductions.

The procedure of trivial dimensional reduction, including the precise treatment
of fermions, will be explained in detail when we obtain the low-energy action of the
D1/D5 system. For the case at hand, let us simply present the result.

The six-dimensional theory describing a stack of N D5-branes is invariant under
the spacetime symmetry group SO(6), R-symmetry group SO(4) and gauge group
U(N). The field content is as follows: there is a gauge potential A

r

with 1  r  6,
together with its superpartner ⇤

↵

with 1  ↵  2 transforming as a left-handed Weyl
spinor of SO(4), as well as four adjoint scalars a

µ

with 1  µ  4 transforming under
the fundamental of SO(4) and their superpartner ⇤̄↵̇ with 1  ↵̇  2 transforming as
right-handed Weyl spinors of SO(4).

For later convenience, we also introduce an auxiliary field D
µ⌫

in the adjoint of
U(N) and satisfying the self-duality condition D

µ⌫

= 1
2
✏
µ⌫⇢�

D
⇢�

. The field D
µ⌫

has
the dimensions of (length)�2 and has no kinetic term. It could thus be integrated out
trivially, by simply replacing it by the solution of its algebraic equation of motion.
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The Lagrangian LD5 for the N D5-brane world-volume theory, obtained by di-
mensional reduction from (3.3.1) and after the introduction of the auxiliary field D

µ⌫

reads

LD5 =
1

2(2⇡)4gs`2s
trU(N)

⇣

2`�4
s +

1

2
F
rs

F
rs

+r
r

a
µ

r
r

a
µ

+ 2i [a
µ

, a
⌫

]D
µ⌫

+ i⇤↵

a

⌃̄ab

r

r
r

⇤
↵b

� i⇤̄a

↵̇

⌃
rab

r
r

⇤̄↵̇b + 2i�
µ↵↵̇

⇤↵

a

[a
µ

, ⇤̄↵̇a]�D
µ⌫

D
µ⌫

⌘

, (3.3.7)

with 1  a, b  4 being the indices for the spinor representation of SO(6). The various
matrices ⌃

r

, ⌃̄
r

, �
µ

and �̄
µ

are defined in appendix A. The Lagrangian (3.3.7) is invari-
ant (up to total derivative terms) under the following supersymmetry transformations

�A
r

= �i"↵
a

⌃̄ab

r

⇤
↵b

, (3.3.8a)

�⇤
↵a

= F
rs

⌃ b

rsa

"
↵b

� ~D · ~� �

↵

"
�a

, (3.3.8b)

�a
µ

= �"↵
a

�
µ↵↵̇

⇤̄↵̇a , (3.3.8c)

�⇤̄↵̇a = ir
r

a
µ

⌃̄ab

r

�̄↵̇↵

µ

"
↵b

, (3.3.8d)

�D
µ⌫

= �i"↵
a

⌃̄ab

r

r
r

⇤
�b

� �

µ⌫↵

, (3.3.8e)

where "↵
a

are the supersymmetry parameters. Note that we have only written half
of the supersymmetry transformations. We do not need the other half explicitly
because in the next subsection, when we add hypermultiplets to describe the presence
of background D9-branes, half of the supercharges will be broken. Of course the
complete set of supersymmetry transformations can be trivially deduced from the
supersymmetry transformations (3.3.4) of the original ten-dimensional theory.

3.3.3 The D5/D9 system: addition of hypermultiplets

We now consider the system composed of a stack of K D5-branes parallel to N D9-
branes on top of each other, and focus on the D5-brane world-volume theory. This
system breaks half of the supercharges of the original D5-brane theory, and is thus
invariant under eight real supercharges that can be chosen to be those written explic-
itly in (3.3.8). Moreover, the field content must now include the fields associated to
the strings having one endpoint on a D9-brane and the other endpoint on a D5-brane.
From the D5-brane world-volume viewpoint, these are fields in the bi-fundamental
of U(N) ⇥ U(K). We thus need to add hypermultiplets to the Lagrangian (3.3.7)
containing the bosonic scalar fields q

↵fi

and q†fi
↵

where 1  f  N and 1  i  K
transforming as right-handed Weyl spinors of the internal SO(4) symmetry group,
together with their fermionic superpartners �

afi

and �̃afi. The total six-dimensional
Lagrangian is obtained by adding the hypermultiplet Lagrangian LHM to LD5 given
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in (3.3.7), with LHM given by

LHM =
1

2
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r

q†↵fr
r
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q
�f

. (3.3.9)

The covariant derivatives in (3.3.9) are defined by

r
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, (3.3.10)

with A i

r j

⌘ �A i

rj

, and similarly for �
afi

, �̃afi. The supersymmetry transformations
leaving the total Lagrangian LD5+LHM unchanged (up to a total derivative) are given
by
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.

The theory LD5 + LHM is still invariant under the internal group SO(4) ⇠ SU(2)+ ⇥
SU(2)�, but the R-symmetry group consists only of the SU(2)+ factor, as the super-
charges of the original D5-brane world-volume theory forming a doublet of SU(2)�
are broken by the presence of the hypermultiplets.

Note that since in the total Lagrangian LD5 + LHM there is no gauge potential
for the U(N) gauge group, the latter is a flavour group from the six-dimensional
viewpoint. Of course the full low-energy action for the D5/D9 system includes a
kinetic term for the U(N) gauge field, but as will explain in chapter 5, we do not
need to consider it for our purposes.

3.3.4 The D1/D5 system

We now explain how to obtain the Lagrangian describing K D1-branes (also called
D-strings) in the presence of N D5-branes from the D5/D9 Lagrangian (given by the
sum of the Lagrangian (3.3.7) for the adjoint sector and the Lagrangian (3.3.9) for the
hypermultiplets) by trivial dimensional reduction. Although this is a straightforward
procedure, we present here the machinery of dimensional reduction in full detail,
including the treatment of the spinor fields. In appendix B we review some general
considerations on dimensional reduction.

After the dimensional reduction down to two dimensions, the six-dimensional
spacetime symmetry group SO(6) yields the two-dimensional spacetime symmetry
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group SO(2) and a new global SO(4)0 ⇠ SU(2)0+ ⇥ SU(2)0�, where we put primes
in order to avoid any confusion with the SO(4) symmetry group corresponding to
rotation in the direction transverse to both the D1- and the D5-branes. The fields
of the six-dimensional theory are then reorganized into representations of SO(2) and
SO(4)0, while their transformation laws under U(K), U(N), SO(4) ⇠ SU(2)+⇥SU(2)�
are left unchanged.

Let �
a

and  a be any left- and right-handed six-dimensional Weyl spinors respec-
tively. Since a two-dimensional Weyl spinor has only one component, each six-dimen-
sional Weyl spinor yields four two-dimensional Weyl spinors, that will mix with each
other under a transformation of the internal symmetry group SO(4)0. Performing
the reduction along the directions x3, x4, x5 and x6, it is very convenient to look for a
basis in which the generators S(6)

(2+m)(2+n) have a simple expression in terms of the four-

dimensional generators of the spinor representation of SO(4)0 S(4)
mn

, with 1  m,n  4.
We then consider a new basis for the left- and right-handed six-dimensional spinors,
defined using two four-by-four unitary matrices U and V in terms of which the spinors
�0
a

and  0a in the new basis read

�0
a

= U
a

b�
b

,  0a = V a

b

 b . (3.3.12)

Under the change of basis (3.3.12), the matrices ⌃
r

are transformed into ⌃0
r

with

⌃0
r

= U⌃
r

V �1 . (3.3.13)

We choose the matrices U and V such that

⌃0
(2+m)(2+n) = �

✓

�
mn

0
0 �̄

mn

◆

. (3.3.14)

Using the explicit value for the matrices ⌃
A

and ⌃̄
A

in appendix A.5, we find that
the matrices U and V can be taken to be

U =

0

B

B

@

0 0 0 �1
1 0 0 0
0 0 1 0
0 1 0 0

1

C

C

A

, V =

0

B

B

@

1 0 0 0
0 0 0 1
0 1 0 0
0 0 �1 0

1

C

C

A

. (3.3.15a)

In this basis, the six-dimensional generators along the reduced directions S 0(6)
(2+m)(2+n)

read

S 0(6)
(2+m)(2+n) = �i

0

B

B

@

�
mn

0 0 0
0 �̄

mn

0 0
0 0 �

mn

0
0 0 0 �̄

mn

1

C

C

A

= S(4)
mn

⌦ 12 , (3.3.16)

where S(4)
mn

are the four-dimensional generators given explicitly in (A.4.11). Formula
(3.3.16) shows that �01 and �02 are the components of a left-handed Weyl spinor in
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four dimensions, while �03 and �04 are the components of a right-handed Weyl spinor
in four dimensions. We thus write

(�0
⇣

) ⌘
✓

�01
�02

◆

, (�0⇣̇) ⌘
✓

�03
�04

◆

, (3.3.17)

where 1  ⇣, ⇣̇  2 are the indices for the left- and right-handed Weyl spinors of
SO(4)0 respectively. Similarly, the right-handed six-dimensional spinor  0a is rewritten
in terms of left- and right-handed four-dimensional spinors according to

( 0
⇣

) ⌘
✓

 01

 02

◆

, ( 0⇣̇) ⌘
✓

 03

 04

◆

. (3.3.18)

Let us now look at how the components of the four-dimensional Weyl spinors in
(3.3.17) and (3.3.18) transform under a two-dimensional spacetime transformation.

In the basis defined by (3.3.14), the generator S 0(6)
12 reads

S 0(6)
12 =

1

2

✓

12 ⌦ �3 0
0 �12 ⌦ �3

◆

. (3.3.19)

As a consequence, �01 and �
0
2 are left-handed two-dimensional Weyl spinor and �03 and

�04 are right-handed two-dimensional Weyl spinor, while  01 and  02 are right-handed
two-dimensional Weyl spinor and  03 and  04 are left-handed two-dimensional Weyl
spinors.

Let us now look at the six-dimensional scalar �
a

 a. Using the definitions (3.3.12),
we have

�
a

 a = �0
a

(UV T )a
b

�0b = �0⇣�0
⇣

+ �0⇣̇�0
⇣̇

, (3.3.20)

where we used the explicit expressions (3.3.15) for the matrices U and V and the
conventions (A.4.13) for rising and lowering four-dimensional Weyl spinor indices.
Finally, for the kinetic term, we must work out the combinations ⌃0

I

v
I

and ⌃̄0
I

v
I

,
where v

I

is a two-dimensional vector. Using formula (3.3.13) together with (A.5.1)
and (3.3.15), we find

⌃0
I

v
I

= �2

✓

v̄12 0
0 v12

◆

, ⌃̄0
I

v
I

= �2

✓

v12 0
0 v̄12

◆

, (3.3.21)

where we have defined the numbers v and v̄ by

v ⌘ 1

2
(v1 � iv2) , v̄ ⌘ 1

2
(v1 + iv2) . (3.3.22)

We are now ready to apply the dimensional reduction to the fermions of the
D5/D9 system. As we have seen in subsection 3.3.3, the six-dimensional theory
contains the following Weyl spinors: ⇤↵

a

, ⇤̄a

↵̇

,�a and �̃a. Using our change of basis
defined in (3.3.12), we apply the decompositions (3.3.17) and (3.3.18) to the left- and
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right-handed six-dimensional Weyl spinors respectively. This yields the following new
fermions: ⇤0

⇣

,⇤0⇣̇ , ⇤̄0
⇣

,⇤̄0⇣̇ ,�0
⇣

,�0⇣̇ ,�̃0
⇣

and �̃0⇣̇ . From now on, we delete all the primes in
order to avoid the clutter.

Before we write explicitly the Lagrangian resulting from the dimensional reduc-
tion, let us summarize its field content and make explicit the various symmetry prop-
erties. All these symmetry properties of the fields are also summarized in table A.2
in appendix A.

The six dimensional vector multiplet yields the two-dimensional gauge field A
I

,
the four scalars �

m

= A2+m

transforming in the vector representation of SO(4)0 and
the spinors ⇤

↵⇣

, ⇤
↵⇣̇

transforming in the representations (1/2, 0)1/2 and (0, 1/2)�1/2

of SO(4)0⇥SO(2). The adjoint hypermultiplet yields four scalars a
µ

and spinors ⇤̄
↵̇⇣

,
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Finally, the fundamental hypermultiplets yield the scalars q↵

f

and q̃↵f together with
fermions (�

⇣f
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of SO(4)0 ⇥ SO(2) respectively. Let us also note that the theory is invariant under
worldsheet parity transformations which act by exchanging the SU(2)0+ and SU(2)0�
factors of SO(4)0.

We are now ready to write down the Lagrangian. Using formulas (3.3.20) and
(3.3.21), the result of the dimensional reduction from six to two dimensions yields:
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where r ⌘ (r1 � ir2)/2 and r̄ ⌘ (r1 + ir2)/2 and we used the expression for the
D-string tension ⌧2 in terms of `s and gs, see (3.2.51).

We can also deduce the supersymmetry transformations leaving the Lagrangian
(3.3.23) unchanged (up to a total derivative) from (3.3.11). The supersymmetry
parameters "↵

a

split according to (3.3.17) into two four-dimensional Weyl spinors "↵
⇣

and "↵⇣̇ (where we deleted the primes as above). The supersymmetry transformations
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leaving (3.3.23) invariant (up to total derivatives) are given by
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where we set A ⌘ (A1 � iA2)/2 and Ā ⌘ (A1 + iA2)/2
Let us insist on the fact that the Lagrangian (3.3.23) is not the Lagrangian for

the full D1/D5 system since we did not consider the couplings to the fields living on
the background D5-branes.

3.3.5 The D(–1)/D3 system

We can further reduce the theory (3.3.23) down to zero dimension. This yields the
terms in the Lagrangian for the zero-dimensional theory living on the K D(–1)-
branes in the presence of N D3-branes that will be relevant for us in chapter 6. It
is actually much easier to reduce directly the theory in six dimensions obtained by
adding (3.3.7) and (3.3.9) down to zero dimensions, since then the whole spacetime
symmetry group SO(6) becomes altogether an internal, R-symmetry group. The
decomposition of the original fields in terms of representations of the symmetry group
of the lower-dimensional theory is trivial. In particular, the gauge field A

r

decomposes
into six scalar �

A

, with 1  A  6. Setting X
µ

= `2saµ and  ̄↵̇a ⌘ �i`2s ⇤̄
↵̇a for later
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convenience, the result reads
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The supersymmetry transformations leaving (3.3.24) invariant are straightforwardly
obtained from (3.3.11) and read
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Notice that the theory (3.3.24) being a theory in zero dimension, the “fields” are
more properly called “moduli.” They organize themselves into a vector multiplet
(�

A

,⇤
↵a

, D
µ⌫

) of six-dimensional N = 1 supersymmetry and an adjoint (X
µ

,  ̄↵̇a)
and fundamentals (q

↵

,�a, q̃↵, �̃a) hypermultiplets. Their symmetry properties are
summarized in appendix A, table A.1.
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Chapter 4

The gauge/gravity correspondence

The gauge/gravity correspondence [11–13] (for reviews see e.g. [14, 43]) is one of the
most impressive advances in theoretical physics of the last two decades. Simply put,
it states that a gauge theory on flat space is equivalent to a higher-dimensional string
theory on a curved background. It is remarkable that information about spacetime
geometry and gravity are somehow encoded into a lower-dimensional, ordinary field
theory. Moreover, the strong coupling regime of the gauge theory is related to the
regime where the gravity approximation of string theory is reliable: questions about
strong coupling e↵ects, that are usually very di�cult to address from first principles,
are then related to much easier classical gravity problems. Conversely, gravity and
extra dimensions are seen as resulting from strong coupling e↵ects of the gauge theory;
in other words, spacetime and gravity are emerging from the strongly coupled quantum
e↵ects of the lower-dimensional, gauge theory. This is a central idea exploited in this
thesis, on which we shall have more to say in part 2.

To be precise, we should talk about the gauge/gravity conjecture, as there is no
general proof of the famous correspondence. Historically, the first precise example
of a gauge/gravity duality involved on the gauge theory side the conformal N = 4
super-Yang-Mills theory in four dimensions and on the string theory side type IIB
superstring theory on AdS5 ⇥ S5. This is the celebrated AdS/CFT correspondence.
Right after its formulation, various consistency checks were completed and by now
nobody doubts the validity of the correspondence. The duality was also rapidly
extended and tested in more general contexts. The majority of the tests consisted
of computing quantities on both sides of the duality and verify that they agree (see
however [44–49]). In part 2, we illustrate how it is possible to go one step further
by completely reconstructing the emergent dimensions as well as all properties of the
dual supergravity solution directly from the gauge theory.

The goal of this chapter is to review the basic ingredients leading to the conjecture.
Although we will not make use of the conjecture, this will allows us to understand
how to construct specific pre-geometric models in part 2. We start this chapter by
presenting the original argument leading to the AdS/CFT conjecture and introduce
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the decoupling limit for D3-branes. We then explain how the decoupling limit is
generalised in other set-ups, with a particular emphasis on the case of the D5-branes
that will be important for us in chapter 7.

4.1 The original argument: the AdS/CFT corre-
spondence

Let us consider type IIB superstring theory in the presence of N D3-branes on top
of each other in flat space. At fixed energy, the coupling of a single D-brane to the
closed strings in the bulk is proportional to the string coupling gs. For N D-branes,
the coupling between the stack and the closed strings is thus gsN . We consider two
regimes, depending on the value of gsN . Firstly, when gsN ⌧ 1, the backreaction
of the D-branes on the ambient spacetime is negligible. The original description of
D-branes in flat space as hyperplanes where open strings can end is thus reliable, and
the open strings interact with the excitations around flat space of the closed strings.
Secondly, when gsN � 1, the backreaction of the D-branes cannot be neglected
anymore. The closed strings therefore propagate on the curved geometry sourced by
the D-branes.

The basic idea leading to the conjecture is to compare these two regimes in a
particular low-energy limit, such that while ↵0 ! 0, the strings attached to the D3-
branes decouples from the closed strings in the bulk. For this reason, it is called
the decoupling limit. We now describe and discuss the e↵ect of this limit on the two
regimes.

4.1.1 First regime: gsN ⌧ 1. The open string picture

Since the backreaction of the N D3-branes can be neglected, the low-energy dynamics
of the massless excitations of the open and closed strings in this system is simply
given by the total action SIIB+SDBI+SCS with the type IIB supergravity action SIIB

given in (3.1.65), while SDBI and SCS are given in (3.2.50) and where the fields are
expanded around the trivial, flat spacetime. For instance, for the graviton h

MN

, we
write G

MN

= �
MN

+ h
MN

and expand the action in powers of h
MN

, the constant 
given in (3.2.44) being introduced in order to have a canonically normalised kinetic
term for h

MN

.
As ↵0 ! 0, the gravitational constant  / ↵02 goes to zero. In other words, the

gravitational interaction becomes weaker and weaker at low-energies. We thus end
up with open strings that are completely decoupled from the closed strings, which
propagates freely in the bulk. The important point is that unlike the gravitational
sector, the gauge theory living on D3-branes remains non-trivial in the limit ; it is
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N = 4 super-Yang-Mills in four dimensions with a finite coupling constant

gYM =
p

2⇡gs =
p
2⇡e�0 , (4.1.1)

see (3.2.47) with p = 3 and where � = �0 is the constant value of the dilaton.
In conclusion, the low-energy limit of theN D3-brane system in this picture consist

of N = 4 super-Yang-Mills in four dimensions plus free closed strings excitations
around flat space.

Let us mention that if we consider a constant RR scalar C[0], the D3-brane world-
volume theory has a non-zero #-angle given by

# = �2⇡C[0] . (4.1.2)

4.1.2 Second regime: gsN � 1. The closed string picture

In this regime, the backreaction of the D3-branes on spacetime cannot be neglected
anymore. At low energies, the strings propagate on the non-trivial geometry sourced
by the N D3-branes which we will shortly show to be well approximated by the solu-
tion of type IIB supergravity derived in section 3.1. Choosing the origin in transverse
space where the D3-branes are located, the string frame metric ds2(s) and the dilaton
� of this solution read

ds2(s) = H�1/2�
µ⌫

dxµdx⌫ +H1/2�
mn

dymdyn , e� = e�0 = gs , (4.1.3)

with 1  µ, ⌫  4 and 1  m,n  6 labelling the parallel and transverse directions
respectively and where H is a harmonic function in transverse space,

H = 1 +
k

r4
with r2 = ymym . (4.1.4)

The constant k is expressed in terms of gs and ↵0 using (3.1.32), (3.2.51) and (3.2.44)
as

k = 4⇡Ngs↵
02 = �↵2 , (4.1.5)

where we set
� = 4⇡gsN . (4.1.6)

The flux of the self-dual 5-form F[5] across the 5-sphere in transverse space is inde-
pendent of the radius of the sphere and is given by

Z

S5
F[5] = 2⇡N↵0 . (4.1.7)

The supergravity approximation for this background is valid when the curvature is
small in string units. Using the expression (3.1.55) for the scalar curvature and (4.1.5)
to express k in terms of gs, N and ↵0, we have

↵0R / 1p
gsN

· (4.1.8)
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We thus conclude that the supergravity approximation is reliable precisely in the
regime that we consider, where gsN � 1.

Let us now consider the physics perceived by an observer sitting at infinity in
transverse space, that is, where r ! 1. There are no open strings in this region,
as they are attached to the D-branes that are located far away at r = 0: for this
observer, the only e↵ect of the D-branes is to source the non-trivial geometry (4.1.3).
There are two sectors of closed strings with which the observer can interact: there are
closed strings at infinity that propagate on flat space (because the metric in (4.1.3)
is asymptotically flat in the transverse directions), and there are closed strings that
propagate in the spacetime bulk. Let us imagine that the observer performs scattering
experiments by sending wave packets with fixed typical proper energy E1 = E(r !
1) towards the horizon, where E(r) is the proper energy of the wave packets at
a distance r of the D-brane stack. If a wave packet gets su�ciently close to the
horizon, say at r = r0, its energy E(r0) will be arbitrary large due to the blue-shift
e↵ect predicted by the formula

E(r)

E1
= (1 +

k

r4
)1/4 , (4.1.9)

valid for any r > 0. This suggests an interesting limit for this system. Consider that
as we take ↵0 ! 0, we choose to scale down to zero all distances r as well, in such
a way that all incoming wave packets are infinitely blue-shifted. In this case, the
low-energy approximation for the observer sitting at infinity is automatically reliable,
since E(r)/E1 ! 1 even for fixed E1. Moreover, if we also impose that the energy
E(r) of the incoming wave packets scales in such a way that it remains finite in
string units, the product

p
↵0E(r) is fixed and all massive string states are kept in

the spectrum. Using the formula (4.1.9) relating E1 to E(r) as well as the relation
(4.1.5) between the constant k and ↵0, we find that the combination r/↵0 must be
kept fixed as we take the limit ↵0 ! 0.

Let us work out the geometry in the limit ↵0 ! 0 while keeping the new coor-
dinate U ⌘ r/↵0 fixed. Using (4.1.5), the harmonic function H given by (4.1.4) is
approximated by

H ' �

↵02U4
· (4.1.10)

The metric in (4.1.3) in the near-horizon region is thus approximated by

ds2(s) ' ↵0
⇣ U2

p
�
�
µ⌫

dxµdx⌫ +

p
�

U2

�

dU2 + U2d⌦2
5

�

⌘

, (4.1.11)

where d⌦2
5 is the round metric on the unit 5-sphere in transverse space. The near-

horizon geometry (4.1.11) correspond to AdS5 ⇥ S5, with the radius of AdS5 and S5

both equal to k1/4.
In conclusion, the low-energy limit in this second regime consists of type IIB

superstring theory on AdS5 ⇥ S5 in the supergravity approximation, plus free closed
strings propagating on flat space.
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4.1.3 The correspondence

The two discussions above suggest a very interesting property. Let us consider N = 4
super-Yang-Mills in four dimensions with gauge group U(N). Although we will not
present these details here, it is known that this theory admits a non-trivial large N
limit if we keep the ’t Hooft coupling g2YMN fixed. Notice that this requires that
gYM ! 0. Moreover, in the limiting theory, g2YMN is the new coupling constant; in
particular, for large g2YMN , the theory is strongly coupled and thus becomes highly
non-trivial.

On the other hand, we have seen in subsection 4.1.1 that for gsN ⌧ 1, N = 4
super-Yang-Mills in four dimensions can be seen as the low-energy D3-brane world-
volume theory (plus free closed strings on flat space), where in this case the Yang-
Mills coupling gYM depends on gs as g2YM / gs. This implies that the ’t Hooft coupling
g2YMN / gsN is small. When g2YMN is large howerver, we have seen in subsection
4.1.2 that the same system is described by classical closed superstrings propagating
on AdS5 ⇥ S5. Moreover, the strings are weakly coupled since gs / g2YM ! 0.

We are thus very naturally lead to conjecture that the very non-trivial limit of
N = 4 super-Yang-Mills at large N and strong ’t Hooft coupling is equivalent to the
low-energy limit of perturbative type IIB superstring theory on AdS5 ⇥ S5.

In other words, the non-trivial strong ’t Hooft coupling regime of N = 4 super-
Yang-Mills at largeN becomes very simple, at the cost of introducing extra dimensions
and a new interaction corresponding to classical gravity. The extra dimensions and
the gravitational interaction are thus strong coupling e↵ects. From this point of view,
they are not fundamental properties: they are emergent concepts.

The above form of the conjecture is called the weak form. Stronger forms are
obtained by waiving the restrictions on the parameters of the system. In the medium
form, we still assume that N is large, but g2YMN is allowed to take any value. In this
case, the supergravity approximation is in general not valid, but the strings are still
weakly interacting and string perturbation theory is reliable. Finally, in the strong
form, we assume that N takes any values. The string coupling gs is thus arbitrary,
and a non-perturbative treatment of type IIB superstring theory is necessary.

Although there is no complete proof of the conjecture, the correspondence can
be checked in many ways. The first obvious check is to compare the symmetry
groups of the two sides of the duality. N = 4 super-Yang-Mills in four dimensions
is invariant under the conformal group,1 which in four dimensions is SO(5, 1) (or
SO(4, 2) in Minkowski spacetime). Moreover, the R-symmetry group acting on the
sixteen supercharges is SU(4) ⇠ SO(6). On the superstring side, the isometry group
of AdS5 ⇥ S5 is precisely SO(5, 1) ⇥ SO(6), the first and second factors being the
isometry groups of AdS5 and S5 respectively, in perfect agreement with the global
symmetries of the gauge theory.

To close this section, let us see what happens if we modify slightly our original

1Actually it is invariant under the full superconformal group.
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set-up by pulling one of the D3-branes away from the stack and bring it to a distance
r in transverse space. As explained in subsection 3.2.2, the gauge group U(N) is
broken down to U(N � 1) ⇥ U(1), as a consequence of the Higgs mechanism. The
scalar field arising from the string stretched between the separated brane and the
stack has therefore a non-zero vacuum expectation value given by U = r/↵0, which is
precisely the combination that is kept fixed in the decoupling limit. The fixed energy
U then sets the mass scale of the system. This suggests that the rescaled AdS radial
coordinate U = r/↵0 is dual to the energy scale of the gauge theory ; moreover, in
the decoupling limit, the energies on the field theory side are fixed. In the conformal
case where the N branes are on top of each other, the Yang-Mills coupling g2YM / gs
is energy-independent, consistently with the fact that for a stack of D3-branes the
dilaton e� = e�0 = gs is constant, see (4.1.3).

4.2 Generalization: the decoupling limit for Dp-
branes

It is also possible to define an interesting decoupling limit for Dp-branes for p 6= 3 [50].
The basic idea is essentially as above: we take ↵0 ! 0 while keeping the Yang-Mills
coupling gYM of the world-volume gauge theory fixed:

g2YM = (2⇡)p�2gs↵
0 p�3

2 fixed as ↵0 ! 0, (4.2.1)

where we used the formula (3.2.47) relating gYM to the stringy parameters gs and
↵0 for any p. Condition (4.2.1) requires that the string coupling gs must scale as
↵0(3�p)/2, and we are not free to tune the value of the combination gsN . Let us take
a closer look at the e↵ective couplings in the open and closed string pictures in order
to understand under which conditions they are valid. Of course, we still have to scale
the radial coordinate r in transverse space such that U = r/↵0 is kept fixed as ↵0 ! 0,
and hence the energies on the field theory side are fixed as well.

For p 6= 3, gYM is dimensionful. Since the coordinate U is interpreted as the energy
scale of the word-volume gauge theory, the e↵ective coupling ge↵ of the field theory
living on the Dp-branes is given by

g2e↵ = g2YMNUp�3 , (4.2.2)

which is indeed a dimensionless quantity. Similarly to the situation described in sub-
section 4.1.1, the D-brane backreaction is negligible when ge↵ ⌧ 1, which corresponds
to the regime where the perturbative description of the fields living on the branes is
reliable. Since p 6= 3, this condition restricts the possible values of U . Explicitly we
have

ge↵ ⌧ 1 ,
(

(g2YMN)
1

3�p ⌧ U for p < 3 ,

(g2YMN)
1

3�p � U for p > 3 .
(4.2.3)

63



Conditions (4.2.3) imply that the field theory description of the D-brane world-volume
dynamics is defined in the UV, where U ! 1, only for p < 3; in other words, the
theory is asymptotically free: the e↵ective coupling decreases at high energies. On
the other hand, for p > 3 the theory is ill-defined in the UV: as U ! 1, the coupling
grows indefinitely. As already explained in subsection 3.2.6, this simply means that
new degrees of freedom, corresponding to excitations that we neglected in the field
theory limit of the full string theory, cannot be neglected at high energies.

Let us now consider the dual picture where the open strings are absent and the
closed strings propagate on the curved geometry produced by the N Dp-branes. The
corresponding supergravity solution has been derived in section 3.1. Choosing the
origin in transverse space where the Dp-branes are located, the string frame metric
ds2(s) and the dilaton � read

ds2(s) = H� 1
2 �

µ⌫

dxµdx⌫ +H
1
2dymdym , e� = gsH

3�p
4 (4.2.4)

with 1  µ, ⌫  p + 1 and 1  m,n  9 � p labelling the parallel and transverse
directions respectively, gs = e�0 and the harmonic function in transverse space H is
given by

H = 1 +
k

r7�p

= 1 +
25�p⇡

5�p
2 gs↵0 7�p

2 �(7�p

2
)

r7�p

· (4.2.5)

In the last equality we used the explicit expression (3.2.46) for the constant k in terms
of the string parameters ↵0 and gs. In the decoupling limit (4.2.1), we find

r7�p ⌧ k . (4.2.6)

As a consequence, the geometry (4.2.4) is approximated by the near-horizon geometry,
where H ' k rp�7. The e↵ective string coupling e� in this region reads:

e� ' g
7�p
2

e↵

N
, (4.2.7)

and is thus fixed as ↵0 ! 0 for any values of p. Moreover, for p < 7, string pertur-
bation theory is reliable when ge↵ ⌧ 1, which corresponds to the regime where the
perturbation theory on the D-brane world-volume is also reliable.

In order for the supergravity approximation to be valid, we have to make sure
that the curvature in string units remains small. The scalar curvature for the metric
(4.2.4) is such that

↵0R / 1

ge↵
· (4.2.8)

We thus conclude that, similarly to the conformal case p = 3, the supergravity ap-
proximation is reliable when the perturbative description of the world-volume gauge
theory is not valid, and vice-versa. In the light of (4.2.3) and using the rescaled radius
U = r/↵0, we conclude that supergravity is not reliable when we look close to the
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D-branes when p < 3, while for p > 3 supergravity is not reliable only far away from
the D-branes.

Let us now specialize to the case p = 5 that will be of interest in chapter 7. From
the above discussion, we know that in the decoupling limit (4.2.1) with r/↵0 fixed,
the supergravity approximation is reliable close to the branes, where the system is
described in terms of the D5-brane geometry. The D5-brane solution in the near-
horizon region is deduced from the formulas (3.1.75) and (3.1.76). Explicitly, it reads

ds2(s) '

s

2⇡r2

gsN`2s
�
µ⌫

dµdx⌫ +

r

gsN`2s
2⇡r2

(dr2 + r2d⌦2
3) , (4.2.9a)

F[7] =
1

gs6!
@
m

e2�✏
µ1···µ6dx

µ1 ^ · · · ^ dxµ6 ^ dym , (4.2.9b)

e� '

s

2⇡r2

gsN`2s
, (4.2.9c)

where d⌦2
3 is the round metric on the unit radius three-sphere of constant r in

transverse space. For future reference, let us also write the three-from field-strength
F[3] ⌘ ?(s)F[7] that is magnetically sourced by the D5-branes:

F[3] =
1

3!gs
✏
m1m2m3m@me

�2�dym1 ^ dym2 ^ dym3 . (4.2.10)

As a final remark, let us mention that far way from the D5-branes in transverse
space, the e↵ective string coupling e� is large and we have to change the descrip-
tion of the system by going to the S-dual picture. The system is then described by
the classical geometry sourced by the type IIB NS5-branes, obtained by taking the
magnetic solution of section 3.1 with the values D = 10, n = 3 and a = �1.
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Part II

Examples of Emergent Geometries
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Chapter 5

The general framework

We open the second part of this thesis by presenting the general set-up in which our
emergent geometry models are constructed. We explain the basic idea as well as the
general strategy that we will apply in chapters 6 and 7 to derive various supergravity
solutions from pure field theoretic computations.

5.1 The basic idea

The basic idea is to consider the scattering of K probe branes, K being fixed, o↵
a large number N of background branes, as depicted in figure 5.1. This system
contains three types of open strings, depending on their boundary conditions. The
e↵ective action Se↵ for the probe branes can be obtained by integrating out the
background/background and background/probe open strings. In the usual decoupling
limit reviewed in chapter 4, this amounts to compute a standard gauge-theoretic path
integral. As we will see in chapters 6 and 7, Se↵ has the correct field content to match
with the non-abelian D-brane action for the probe branes moving in the non-trivial
supergravity solution created by the background branes. Using the formulas for this
non-abelian action reviewed in subsection 3.2.6, the supergravity background can
then be read o↵ straightforwardly from Se↵, as we will explain in detail.

5.2 The general strategy

We consider the path integral for a system of N � 1 background D-branes and K
probe D-branes with K fixed. In the decoupling limit, where we take ↵0 ! 0 while
keeping the Yang-Mills coupling gYM fixed, the path integral reads

Z

dµbdµp e
�Sb�Sp , (5.2.1)
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=
Boundaries

Figure 5.1: On the left, the world-sheets describing the leading large N interaction
between K probe branes and a stack of N background branes. The number of bound-
aries on the background branes world volume can be arbitrary, corresponding to a
sum over loops in the microscopic gauge theoretic path integral (5.2.1). This sum is
replaced on the right by a unique open string disk diagram in a non-trivial curved
background.

where Sb is the low energy world-volume action on the background D-branes and Sp

is the action for the probe D-brane fields, taking into account their coupling to the
background D-brane local fields.

In the simplest case already studied in [51], the background D-branes are taken to
be D3-branes while the probe D-branes are D-instantons. The action Sb is thus the
N = 4 super-Yang-Mills action and the action Sp is derived in [41,42,52]. In chapter
6, we consider deformations of this set-up: we take N = 4 super-Yang-Mills on the
Coulomb branch in section 6.4; we consider the non-commutative deformation in 6.5
and the �-deformation in 6.6. In chapter 7, the background D-branes are D5-branes
while the probes are D-strings.

From the gauge/gravity duality, we expect (5.2.1) to be equivalent to the path
integral for K D-branes in the non-trivial near-horizon closed string background gen-
erated by the background D-branes,

Z

dZd e�Se↵(Z, ) . (5.2.2)

In (5.2.2), Z and  are the probe bosonic and fermionic world-volume fields and
the e↵ective action Se↵ is the non-abelian action describing the probe moving in
ten dimensions (whose bosonic sector is reviewed in subsection 3.2.6). It depends
non-trivially on the supergravity background and can thus be used to obtain the
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supergravity fields.
In practice, to derive the emerging geometry from Se↵, we need to cast (5.2.1) in

the form (5.2.2). In order to do this, we first integrate over the background-probe
string degrees of freedom in (5.2.1). Since these fields are transforming under the
fundamental representation of U(N), they are vector-like variables from the probe
world-volume point of view. As explained in chapter 2, this integration can always be
done exactly at large N , by introducing suitable auxiliary variables. Some of these
variables turn out to correspond to emerging space coordinates, providing precisely
the required fields to write the result in the form of (5.2.2). The factor e�Se↵ is
related to a local operator D in the background D-branes world-volume gauge the-
ory. Integrating over the background-background strings in (5.2.1) then amounts to
computing the expectation value of this operator,

⌦

D
↵

(Z, ) = e�Se↵(Z, ) . (5.2.3)

This equality provides a precise mapping between any state in the background D-
branes world-volume theory, in which we take the expectation value on the left-hand
side, and a spacetime geometry, which is encoded in Se↵. When we discussed vector
models in chapter 2, we insisted on the crucial following property: the action Se↵

obtained in this way will always be proportional to N . As a result, Se↵ yields a
classical, non-fluctuating emergent geometry at large N .

In general, the computation of the expectation value of the operator D involves an
intractable sum over planar diagrams of the background D-brane world-volume theory.
However, in some interesting cases, drastic simplifications can occur. In particular,
for the deformed D(–1)/D3 systems that we study in chapter 6, it corresponds to
a one-point function which cannot be quantum corrected if conformal invariance is
unbroken. This is the case, for example, in the planar �-deformed theory studied in
section 6.6. More generally, we shall assume that when eight or more supercharges
are preserved, including when conformal invariance is broken, the expectation value
hDi is not quantum corrected or, more mildly, that the terms in the e↵ective action
Se↵ that we use to derive the supergravity background are insensitive to the possible
quantum corrections in hDi. This is a very plausible assumption, which is strongly
supported by the consistency of the results obtained in chapters 6 and 7 (see also [53]).

It is important to realize that, even when hDi is not quantum corrected, the
e↵ective action derived from (5.2.3) has an explicit non-trivial dependence on the
’t Hooft coupling constant

� = 4⇡gsN , (5.2.4)

coming from the exact integration over the probe/background degrees of freedom.
As we have explained in section 2.2, this integration amounts to summing an infinite
class of diagrams, with an arbitrary number of loops. We shall see explicit examples
in the following chapters.
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Chapter 6

Emergent geometry from Matrices

The aim of the present chapter is to study the emergence of type IIB geometries from
field theory, by considering three deformations of the conformal N = 4 super-Yang-
Mills theory with broken conformal invariance or supersymmetry.

The simplest deformation we consider is the Coulomb branch deformation, which
corresponds to turning on the vacuum expectation values of the scalar fields of the
N = 4 theory. This breaks both conformal invariance and R-symmetry but preserves
sixteen supersymmetries. The resulting dual geometry asymptotically coincides with
the usual AdS5 ⇥ S5 background in the UV but the metric and the Ramond-Ramond
five-form field-strength are modified in the IR at the scales set by the scalar expec-
tation values. As we will see, our field theory calculations yield a perfect match with
the near-horizon limit of the general multi-centered D3-brane solution reviewed in
subsection 3.1.4, for both the metric and the Ramond-Ramond five-form.

The second case we consider is the non-commutative deformation [54, 55]. It
breaks conformal invariance but preserves both supersymmetry and R-symmetry.
This model does not seem to have a UV fixed point and, accordingly, the known
supergravity dual [56, 57] does not have a boundary in the UV and it is likely that
a purely field theoretic description does not exist. However, at su�ciently large
distance scales, the model approaches the undeformed N = 4 theory and the physical
interpretation of both the field theory and its dual supergravity background become
clear. The emergent geometry we find is then fully consistent with the background
proposed in [56,57].

Finally, we investigate the so-called �-deformation [58]. In its most general form
[59], it breaks supersymmetry completely but preserves conformal invariance in the
planar limit [60,61]. The supergravity solution [59,62] is known when the deformation
parameters are small, which ensures that the ↵0 corrections can be neglected. Again,
our solution is fully consistent with supergravity, including for the Neveu-Schwarz
and Ramond-Ramond three-form field-strengths. Let us note that the form of the
dilaton was already derived from instanton calculus in previous papers (see [63, 64]
and related research in [44–49,65]).
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The plan of the chapter is as follows. In section 6.1, we give some details on the
Myers non-abelian action for D-instantons. In section 6.2, we emphasize the subtleties
associated with the use of D-instantons in backgrounds that have a non-constant
dilaton [66]. The undeformed system, which is studied in detail in [51], is reviewed
in section 6.3 and will serve as the starting point for the deformations. We then start
the study of the emergent geometry examples associated to the deformations: section
6.4 is devoted to the Coulomb branch set-up, the non-commutative deformation is
presented in section 6.5 and we finally close this chapter with the analysis of the
�-deformation in section 6.6.

Our notations and conventions as well as useful algebraic identities are presented
in appendix A. For completeness, we have also included in appendix C a brief review of
the supergravity solutions dual to the non-commutative and �-deformations. Finally,
appendix D contain explicit formulas for the non-abelian D-instanton action up to
order five.

6.1 On Myers’ D-instanton action

To analyse the action Se↵, we limit ourselves to the bosonic part, setting  = 0
in (5.2.3). As explained in subsection 3.2.6, we write the ten K ⇥ K matrices Z

M

,
1  M  10, as

Z
M

= z
M

1+ `2s✏M (6.1.1)

and expand Se↵ in powers of ✏,

Se↵ =
X

n�0

S(n)
e↵ =

X

n�0

1

n!
`2ns c

M1···Mn(z) tr ✏M1 · · · ✏Mn . (6.1.2)

The coordinates z
M

correspond to a given ten-dimensional spacetime point and we
have introduced powers of the string length `2s = 2⇡↵0 for convenience. Myers’ pre-
scription for the non-abelian D-instanton action yields the coe�cients c

M1···Mn in
terms of the supergravity fields, see formula (D.3) in appendix D. Many terms in
(D.3) are actually redundant, being fixed by general consistency conditions [66]. In
order to derive the full set of supergravity fields, it is enough to consider the following
combinations,

c = �2i⇡⌧ = 2i⇡
�

C[0] � ie��
�

(6.1.3)

c[MNP ] = �12⇡

`2s
@[M(⌧B[2] � C[2])NP ] (6.1.4)

c[MN ][PQ] = �18⇡

`4s
e��

�

G
MP

G
NQ

�G
MQ

G
NP

�

(6.1.5)

c[MNPQR] = �120i⇡

`4s
@[M

�

C[4] + C[2] ^B[2] �
1

2
⌧B[2] ^ B[2]

�

NPQR]
. (6.1.6)
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Myers’ action has two basic limitations. The first comes from the symmetrized
trace prescription [39,67] used to fix the ordering ambiguities due to the non-commu-
ting nature of the variables Z and reviewed in section 3.2.6. As we explained, this
prescription is valid up to order five in the expansion (6.1.2) but is known to fail
at higher orders. This caveat will be of no concern to us, since equations (6.1.3)–
(6.1.6) show that the expansion up to order five is su�cient to fix unambiguously the
non-trivial supergravity fields.

The second limitation comes from the fact that the formulas (6.1.3)–(6.1.6) are
valid only to leading order in the small `2s , or supergravity, approximation. This
implies that our microscopic calculations of Se↵, which do not rely on a small `2s
approximation, can be compared with Myers’ only when `2s ! 0. When comparing
our results with the known supergravity solutions, this restriction is harmless, since
the solutions are themselves known at small `2s only.

Let us point out, however, that some of the basic structural properties of the
action, which are visible in the formulas (6.1.3)–(6.1.6), must be valid to all orders
in `2s because they are consequences of the general consistency conditions discussed
in [66]. One of the most interesting properties is that the coe�cients c[MNP ] and
c[MNPQR], viewed as the components of di↵erential forms

F̂[3] ⌘
1

3!
c[MNP ] dz

M ^ dzN ^ dzP , (6.1.7)

F̂[5] ⌘
1

5!
c[MNPQR] dz

M ^ dzN ^ dzP ^ dzQ ^ dzR , (6.1.8)

must always be closed,
dF̂[3] = 0 , dF̂[5] = 0 . (6.1.9)

Locally, we can thus write

F̂[3] = �4⇡

`2s
dĈ[2] , F̂[5] = �24i⇡

`4s
dĈ[4] . (6.1.10)

Since the two- and four-form potentials Ĉ[2] and Ĉ[4] are well-defined to all order in
`2s , formulas (6.1.4) and (6.1.6) can actually be used to define the Ramond-Ramond
and Neveu-Schwarz form fields to all order in `2s ,

Ĉ[2] = ⌧B[2] � C[2] , Ĉ[4] = C[4] + C[2] ^B[2] �
1

2
⌧B[2] ^ B[2] , (6.1.11)

modulo the general gauge transformations that are discussed in [66]. One of our main
goal is to compute the forms (6.1.7) and (6.1.8) for the Coulomb branch, non-commu-
tative and �-deformations of the conformal N = 4 gauge theory. As explained in the
next section we can then use (6.1.11) to compare with supergravity in appropriate
limits.

Other properties of the Myers action will not, however, be preserved by the `2s
corrections. For example, the only general constraint on the fourth order coe�cient
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c[MN ][PQ] is that it should have the same tensorial symmetries as the Riemann tensor.
This does not imply a factorization in terms of a second rank symmetric tensor as in
(6.1.5) and thus such a factorization property is generically lost when `2s corrections
are included.

6.2 On the use of the non-abelian D-instanton ac-
tion

There is one last limitation associated with the use of D-instantons to derive the
supergravity background [66]. Intuitively, this limitation is related to the fact that
a D-instanton, sitting at a particular point, cannot be expected in general to probe
the geometry of the full spacetime manifold. This restriction is waived if the e↵ec-
tive action, evaluated at Z

M

= z
M

1, Se↵(z1) = Kc(z), does not depend on z, or,
equivalently, if the axion-dilaton ⌧ is constant. This is the case for the N = 4 gauge
theory at any point on its Coulomb branch. However, for a generic background with
non-constant axion-dilaton, the instantons are forced to sit at the critical points of
c(z) = �2i⇡⌧(z). This condition becomes strict when N ! 1, being equivalent to
the saddle-point approximation of the integral (5.2.2).

An alternative way to understand the same limitation is to study the e↵ect of
general matrix coordinate redefinitions on the e↵ective action. It is explained in [66]
that, when dc is generic, one can actually gauge away the coe�cients c

M1···Mn for
n � 2 in the expansion (6.1.2) by an allowed matrix transformation Z 7! Z 0.

For our purposes, we shall deal with this di�culty by using a perturbative ap-
proach around the AdS5 ⇥ S5 background on which the instantons can freely move.
This is possible because the non-commutative and �-deformed models are continuous
deformations of the N = 4 gauge theory and thus the associated dual backgrounds
will be themselves continuous deformations of the AdS5 ⇥ S5 background.

Let us denote by ⌘ the deformation parameter; ⌘ is the dimensionless ratio ✓/`2s
for the non-commutative theory discussed in section 6.5 or the combination ��2 for
the �-deformed theory studied in section 6.6. Let us also denote by c⇤

M1···Mn
the

coe�cients in the expansion (6.1.2) for the undeformed AdS5 ⇥ S5 background. In
our models, the gradient of the axion-dilaton and the corrections to the metric and
five-form field-strength turn out to be of order ⌘2. Hence,

c(z) = c⇤ +O(⌘2) , (6.2.1)

c[MN ][PQ](z) = c⇤[MN ][PQ](z) +O(⌘2) , (6.2.2)

c[MNPQR](z) = c⇤[MNPQR](z) +O(⌘2) , (6.2.3)

whereas the three-form field-strengths are turned on at leading order in ⌘,

c[MNP ](z) = O(⌘) . (6.2.4)
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The general variation of c[MNP ] under an arbitrary redefinition of the matrix coor-
dinates corresponds to a standard tensorial transformation under di↵eomorphisms
plus terms proportional to the gradient of c [66] which, by (6.2.1), are O(⌘2). This
means that the Neveu-Schwarz and Ramond-Ramond forms B[2] and C[2] are unam-
biguously fixed in terms of the microscopic calculation of the coe�cient c[MNP ] of the
D-instanton e↵ective action to leading order in the deformation parameter ⌘.

Moreover, since the background derived from Se↵ unambiguously matches with
the AdS5 ⇥ S5 supergravity background in the undeformed theory, we can always
choose the same coordinate systems in both points of view at ⌘ = 0. In the deformed
⌘ 6= 0 models, the coordinate systems zmic and zSUGRA used in the e↵ective action
Se↵ and in the supergravity solution respectively no longer necessarily agree, but the
discrepancy must be of order ⌘,

zmic = z
sugra

+O(⌘) . (6.2.5)

The associated ambiguity in the axion-dilaton field c(z) is then of order

�c = �z
M

@
M

c = O(⌘@c) = O(⌘3) . (6.2.6)

This means that the leading O(⌘2) non-constant term in the axion-dilaton field, see
(6.2.1), is unambiguously fixed in terms of the microscopic calculation of c(z).

The conclusion is that, by using D-instantons, we have only access to the leading
deformations of the AdS5 ⇥ S5 background, through the O(⌘) terms in B[2] and C[2]

and the O(⌘2) term in ⌧ . Beyond this order, the instantons can no longer probe
the full spacetime geometry due to the non-trivial dilaton profile. In particular, the
backreaction on the metric and five-form cannot be obtained.

Of course, the above restrictions do not apply if we use particles or higher-
dimensional branes, which can probe the geometry with their kinetic term. A concrete
example of this situation is the subject of chapter 7, where we use D-strings to probe
the geometry sourced by N D5-branes (see also [53] where the geometry sourced by
N D4-branes is derived using D-particles as probes).

6.3 The undeformed set-up

As usual, we separate the ten spacetime coordinates zM into four coordinates x
µ

parallel to the background branes and six emergent transverse coordinates (y
A

) = ~y,
with 1  µ  4 and 1  A  6. The radial coordinate r is defined by

r2 ⌘ y
A

y
A

⌘ ~y 2 . (6.3.1)

Our starting point is the microscopic probe action Sp for K D-instantons in the
undeformed conformal N = 4 model. The relevant terms can be obtained by taking
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the `s ! 0 limit of the action (3.3.24). Using notations explained in appendix A and
allowing for a non-zero #-angle, the total action reads

Sp = K
⇣8⇡2N

�
+ i#

⌘

+
4⇡2N

�
trU(K)

n

2iD
µ⌫

⇥

X
µ

, X
⌫

⇤

�
⇥

X
µ

,�
A

⇤⇥

X
µ

,�
A

⇤

� 2⇤↵

a

�
µ↵↵̇

⇥

X
µ

,  ̄↵̇a

⇤

�  ̄ a

↵̇

⌃
Aab

⇥

�
A

,  ̄↵̇b

⇤

o

+
i

2
q̃↵D

µ⌫

� �

µ⌫↵

q
�

+
1

2
q̃↵�

A

�
A

q
↵

� 1

2
�̃a⌃

Aab

�
A

�b

+
1p
2
q̃↵⇤

↵a

�a +
1p
2
�̃a⇤↵

a

q
↵

+ · · · (6.3.2)

The · · · represent couplings with the local fields of the N = 4 gauge theory living
on the background D3-brane world-volume. These terms are described in [41, 42, 51]
and enter into the computation of the expectation value (5.2.3) of the operator D ,
but play no role when this determinant is not quantum corrected. As discussed in
chapter 5, we can thus discard them for our present purposes.

Notice that the action (6.3.2) is the standard sigma model action for the ADHM
instanton moduli. The fields in the vector multiplet (�

A

,⇤
↵a

, D
µ⌫

) are auxiliary fields
that can be easily integrated out from (6.3.2) to yield the usual ADHM constraints
and measure on the instanton moduli space. However, keeping these variables is
crucial to solve the model at large N . In particular, the action (6.3.2) is quadratic
in the hypermultiplet fields, a property that would be lost if we integrate out the six
scalars �

A

. Instead, we can integrate exactly over the moduli q, q̃,�, �̃ which belong
to the fundamental of U(N). This yields an e↵ective action which is automatically
proportional to N and can thus be treated classically when N ! 1.

The microscopic actions for the deformed theories that we will study are simple
modifications of (6.3.2) and their large N limit can be studied along the same lines.
Since our goal is to obtain the bosonic e↵ective action, we shall always set ⇤

↵a

and
 ̄↵̇a to zero in the following. We also introduce the notation

Y
A

= `2s�A

, (6.3.3)

since the auxiliary fields Y
A

will turn out to play the role of the six emerging transverse
coordinates.

6.4 N = 4 on the Coulomb branch

Our first example is the Coulomb branch deformation of the conformal U(N), N = 4
gauge theory. This deformation is parameterized by the scalar expectation values as

h'
A

i = `�2
s diag(y1A, . . . , yNA

) , 1  A  6 . (6.4.1)
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6.4.1 The microscopic action

The microscopic action is modified by making the replacement

� j

Ai

�f
0

f

7! � j

Ai

�f
0

f

� h' f

0

Af

i�j
i

= � j

Ai

�f
0

f

� `�2
s y

fA

�f
0

f

�j
i

(6.4.2)

in the third line of (6.3.2). We have indicated all the U(N) and U(K) indices explicitly
for clarity. This modification is actually best understood as coming from the coupling
of the scalar fields '

A

to the moduli in the · · · part of the action (6.3.2) that we have
not written down explicitly.

6.4.2 The e↵ective action

Integrating out q, q̃,�, �̃ yields the following e↵ective action:

Se↵(X, Y,D) = K
⇣8⇡2N

�
+ i#

⌘

+
4⇡2N

`4s�
trU(K)

n

2i`4sDµ⌫

⇥

X
µ

, X
⌫

⇤

�
⇥

X
µ

, Y
A

⇤⇥

X
µ

, Y
A

⇤

o

+ ln�
q,q̃

� ln�
�,�̃

. (6.4.3)

The logarithm ln(�
q,q̃

/�
�,�̃

) is the sum of the term obtained by integrating over the
bosonic variables q, q̃,

ln�
q,q̃

=
N

X

f=1

ln det
⇣

�

Y
A

� y
fA

�2 ⌦ 12⇥2 + i`4sDµ⌫

⌦ �
µ⌫

⌘

(6.4.4)

and the term obtained by integrating over the fermionic variables �, �̃,

� ln�
�,�̃

= �
N

X

f=1

ln det
�

⌃
A

⌦
�

Y
A

� y
fA

��

. (6.4.5)

As expected, this action is proportional to N and thus can be treated classically at
large N . In particular, the fluctuations of X, Y and D are suppressed. Since the
moduli Y

A

are scalars in the N = 4 theory, they are interpreted as the six coordinates
for the emerging space transverse to the background D3-branes. Together with the
four X

µ

s, they correspond to the ten matrix coordinates Z
M

in the non-abelian D-
instanton action (6.1.2). Consequently, to compare (6.4.3) with (6.1.2), we simply
need to integrate out the additional variablesD

µ⌫

by solving the saddle-point equation

@Se↵

@D j

µ⌫i

= 0 (6.4.6)

and plugging the solution D
µ⌫

⌘ hD
µ⌫

i back into (6.4.3),

Se↵(X, Y ) = Se↵

�

X, Y, hDi
�

. (6.4.7)
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Our goal is to expand Se↵(X, Y ) as in (6.1.2), up to the fifth order and then use
(6.1.3)–(6.1.6) to read o↵ the supergravity background. We set

X
µ

= x
µ

1+ `2s✏µ , Y
A

= y
A

1+ `2s✏A (6.4.8)

and solve (6.4.6) perturbatively in ✏. Using the standard notation [✏
µ

, ✏
⌫

]+ for the
self-dual part of the commutator (see (A.4.4)) and defining the harmonic function

H(~y) =
1

N

N

X

f=1

R4

�

�~y � ~y
f

�

�

4
, (6.4.9)

where R is given by

R4 = ↵02� =
`4s�

4⇡2
, (6.4.10)

we obtain

hD
µ⌫

i = iH�1 [✏
µ

, ✏
⌫

]+ +
i`2s
2
@
A

H�1
�

✏
A

[✏
µ

, ✏
⌫

]+ + [✏
µ

, ✏
⌫

]+ ✏
A

�

+O(✏)4 . (6.4.11)

Let us note that since hDi solves the equation of motion (6.4.6), it enters into (6.4.3)
at order hDi2 and thus the expansion (6.4.11) to third order in ✏ is su�cient to get
the expansion of (6.4.3) to fifth order.

Plugging (6.4.11) into (6.4.3), expanding the determinants by using the relation

ln det(M + �M) = ln detM +
X

n�1

(�1)n+1

n
tr(M�1�M)n (6.4.12)

and computing the resulting traces by using the identities (A.4.3) and (A.5.11)–
(A.5.15) in appendix A, we find that the first, second and third order action in (6.1.2)
vanish, due to many cancellations between the bosonic and fermionic contributions
(6.4.4) and (6.4.5),

S(1)
e↵ = S(2)

e↵ = S(3)
e↵ = 0 . (6.4.13)

On the other hand, the action is non-trivial at the fourth and fifth orders,
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(6.4.15)
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6.4.3 The emergent geometry

The results of the previous subsection are consistent with the general ideas explained
in chapter 5. The e↵ective action that we have obtained can be matched with the non-
abelian action for D-instantons embedded in a non-trivial ten-dimensional emergent
geometry, with background supergravity fields fixed by comparing (6.4.13), (6.4.14)
and (6.4.15) with (D.3) or, equivalently, (6.1.3)–(6.1.6).

The conditions S(1)
e↵ = S(2)

e↵ = 0 imply that the axion-dilaton is a constant,

⌧ =
4i⇡N

�
� #

2⇡
, (6.4.16)

whereas S(3)
e↵ = 0 yields

B[2] = C[2] = 0 . (6.4.17)

On the other hand, the fourth order term (6.4.14) allows to identify the coe�cient
c[MN ][PQ] which turns out to be precisely of the required form (6.1.5), with a metric

G
µ⌫

= H�1/2�
µ⌫

, G
AB

= H1/2�
AB

, G
Aµ

= 0 . (6.4.18)

Finally, we get the completely antisymmetric coefficient c[MNPQR] from (6.4.15), which
yields the five-form field-strength by comparing with (6.1.6) and using (6.4.17),

(F[5])ABCDE

= �N`4s
⇡R4

@
F

H✏
ABCDEF

, (F[5])Aµ1···µ4 = � iN`4s
⇡R4

@
A

H�1✏
µ1···µ4 , (6.4.19)

and all the other independent components (not related to those in (6.4.19) by anti-
symmetry) vanishing.

6.4.4 Summary and discussion

To summarise, the supergravity fields derived from the expansion of the D-instanton
e↵ective action by comparing with (6.1.3)–(6.1.6), read

⌧ =
4i⇡N

�
� #

2⇡
, (6.4.20)

ds2 = H�1/2dx
µ

dx
µ

+H1/2
⇣

dr2 + r2d⌦2
5

⌘

, (6.4.21)

F[5] = �N`4s
⇡R5

⇣ r4

R4
y
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@H

@y
A

!S5 + i
R4

r4
y
A

@H�1

@y
A
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. (6.4.22)
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We have denoted the metric on the unit round five-sphere by d⌦2
5 and used the

definitions

H(~y) =
1

N

N

X

f=1

R4

�

~y � ~y
f

�4
, (6.4.23)

!AdS5 =
~y 2y

A

R3
dx1 ^ · · · ^ dx4 ^ dy

A

, (6.4.24)

!S5 =
1

5!

R5y
F

~y 6 ✏
ABCDEF

dy
A

^ · · · ^ dy
E

. (6.4.25)

The radius R is related to the string scale `s and the ’t Hooft coupling � by (6.4.10).
The solution given by (6.4.20), (6.4.21) and (6.4.22) matches the supergravity solution
for the multi-centered D3-brane background derived in subsection 3.1.3 taken in the
decoupling limit explained in chapter 4.

Let us note that the axion-dilaton ⌧ given by (6.4.20) is constant for the present
solution. The D-instantons can thus move freely on the entire spacetime geometry
and the restriction discussed in section 6.2 does not apply. Moreover, the match
between the microscopic calculation and the supergravity solution is found at finite
`2s or, equivalently, for any value of the ’t Hooft coupling �. This suggests that,
similarly to the undeformed AdS5 ⇥ S5 background [68–70], the near-horizon multi-
centered D3-brane background could be exact, with vanishing `2s corrections to both
Myers’ action and to the supergravity equations of motion.

Beyond the details of the solution, let us emphasize that general properties like
the self-duality of the five-form field-strength with respect to the metric (6.4.21),

? F5 = �iF5 , (6.4.26)

or the quantization of the five-form flux in units of the D3-brane charge,
Z

~y

2=r

2

F5 = 4⇡2`4sN(r) , (6.4.27)

where N(r) counts the number of D3-branes with ~y 2
f

< r2, which are consistency
requirements from the point of view of the closed string theory, are highly non-trivial
and rather mysterious consequences of the microscopic, field theoretic calculation of
the e↵ective action.

6.5 The non-commutative deformation

Our second example is the non-commutative deformation of the N = 4 gauge theory.
This deformation amounts to imposing non-trivial commutation relations among the
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spacetime coordinates [54, 55]. The most general deformation is parameterized by a
real antisymmetric matrix ✓

µ⌫

, with

[x
µ

, x
⌫

] = �i✓
µ⌫

. (6.5.1)

Up to an SO(4) rotation, we may assume that the only non-vanishing components
are ✓12 = �✓21 and ✓34 = �✓43, with corresponding self-dual and anti self-dual parts

✓±12 = ✓±34 =
1

2

�

✓12 ± ✓34
�

, ✓2± = ✓±
µ⌫

✓±
µ⌫

= (✓12 ± ✓34)
2 . (6.5.2)

It is convenient for some purposes discussed later in this section to make the rotation
to imaginary Euclidean time x4 ! ix4, in which case ✓34 is imaginary and (✓±)⇤ = ✓⌥.

6.5.1 The microscopic action

The non-commutative deformation can be elegantly implemented by replacing all
ordinary products fg of some functions f and g appearing in the microscopic action
by the so-called Moyal ⇤-product defined by

f ⇤ g ⌘ e�
i
2 ✓µ⌫P

f
µP

g
⌫ · (fg) , (6.5.3)

where P f

µ

and P g

µ

are the translation operators acting on f and g respectively [54,
55]. The only moduli in (6.3.2) transforming non-trivially under translations are the
matrices X

µ

, with P
µ

·X
⌫

= �i�
µ⌫

. It is then easy to check that the only term a↵ected
by the use of the ⇤-product is the commutator term,
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. (6.5.4)

This simple reasoning reproduces the well-known modification of the ADHM con-
struction in non-commutative gauge theories [71]. Note that, in particular, the action
only depends on the self-dual part ✓+

µ⌫

of the non-commutative parameters because
the modulus D

µ⌫

is itself self-dual.

6.5.2 The e↵ective action

Integrating out q, q̃,�, �̃ from the microscopic action yields
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We have singled out the D-dependent piece in the action,
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. (6.5.6)
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Let us note that the determinants appearing in (6.5.5) and (6.5.6) are special cases of
the determinants (6.4.4) and (6.4.5) studied in the previous subsection. The crucial
di↵erence comes from the saddle-point equation (6.4.6), which now picks a new term
in ✓

µ⌫

,

@S
@D i

µ⌫j

=
8⇡2

�
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[X
µ

, X
⌫

]+ j

i

+ i✓+
µ⌫

�j
i

⌘

+ `4s
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~Y 2 ⌦ 12 + i`4sD⇢

⌦ �
⇢

⌘�1 j�

i↵

� ↵

µ⌫�

= 0 .

(6.5.7)
This equation must be solved for D

µ⌫

= hD
µ⌫

i, order by order in the expansion
(6.4.8).

By using (A.4.7), we find a quadratic equation for the zeroth order solution.
Picking the root that behaves smoothly when ✓

µ⌫

! 0 yields

hD
µ⌫

i = �

8⇡2✓2+

✓

1�
q

1 + 4✓2+r4/R8

◆

✓+
µ⌫

+O(✏) (6.5.8)

in terms of the transverse radial coordinate (6.3.1) and the parameter ✓+ defined in
(6.5.2). Plugging this result into (6.5.6) and (6.5.5) and computing the determinants
using (A.4.6) and (A.5.8), we get the zeroth order coe�cient (6.5.18) for the e↵ective
action.

The first, second and completely symmetric third order coe�cients in the ex-
pansion (6.1.2) of the e↵ective action are fixed in terms of the derivatives of c by
consistency conditions [66]. To get further information, we thus need to compute the
completely antisymmetric third order coe�cient or equivalently the three-form F̂[3]

defined in (6.1.7). From (A.5.13), we see that the determinant in (6.5.5) cannot con-
tribute to the completely antisymmetric coe�cient. A priori, we thus simply need to
plug the solution of (6.5.7) to the third order in ✏ into (6.5.6). However, the algebra
to do this calculation explicitly is very tedious. Fortunately, the discussion can be
greatly simplified by using the following argument.

The basic idea is to note that the D-dependent piece (6.5.6) of the e↵ective action
and thus the saddle-point equation (6.5.7) as well depend only on the combinations
~Y 2 and [X

µ

, X
⌫

]+ = `4s [✏µ, ✏⌫ ]
+ of the matrices Y

A

s and X
µ

s. The same must be true
after plugging D

µ⌫

= hD
µ⌫

i into S. If we define

~Y 2 ⌘ r2 + `2s✏r = r2 + 2`2s~y · ~✏+ `4s~✏
2 , (6.5.9)

the expansion of S in powers of ✏ is then most conveniently written in terms of [✏
µ

, ✏
⌫

]+

and ✏
r

. It will actually be useful to replace [✏
µ

, ✏
⌫

]+ by a completely general self-dual
matrix M+

µ⌫

in (6.5.6) and (6.5.7), which is not necessarily a commutator, and solve
the equations in term of this more general matrix. We simply have to keep in mind
that M+

µ⌫

will be identified with [✏
µ

, ✏
⌫

]+ at the end of the calculation and is thus of
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order ✏2. The most general single-trace expansion up to order three then reads
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✏4
�

, (6.5.10)

where the primes denote the derivatives with respect to r2. The zeroth order coe�-
cient s(r2) is determined by the zeroth order solution (6.5.8) or equivalently (6.5.18),
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Since S does not depend on r2 and ✏
r

independently but only through the combination
r2 + `2s✏r, the expansion (6.5.10) must be invariant under the simultaneous shifts
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7! ✏
r

� a1 , (6.5.13)

for any real number a. This fixes the terms in tr ✏
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, tr ✏2
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and tr ✏3
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in terms of the
derivatives of s and the term in tr ✏
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for any self-dual ⇠+
µ⌫

. This symmetry comes from the fact that only the combination
`4sM
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µ⌫

+ i✓+
µ⌫

enters in the generalized versions of the equations (6.5.6) and (6.5.7),
in which [X

µ

, X
⌫

]+ has been replaced by `4sM
+
µ⌫

. This replacement is useful precisely
because it allows to consider the symmetry (6.5.14), by waiving the tracelessness
condition that any commutator must satisfy. The invariance of (6.5.10) under (6.5.14)
then yields
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Plugging this result into (6.5.10) for M+
µ⌫

= [✏
µ

, ✏
⌫

]+ and using (6.5.9) immediately
yields the piece

2`6ss
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of the e↵ective action contributing to the three-form F̂[3] in (6.1.7), from which we
obtain

F̂[3] = 4s0
µ⌫

y
A

dxµ ^ dx⌫ ^ dyA = d
�

2s
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dxµ ^ dx⌫

�

. (6.5.17)
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6.5.3 The emergent geometry

In this example, there is a non-trivial contribution to the action at order ✏0:

c = i#+
8⇡2N
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+N ln
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◆

. (6.5.18)

As we have discussed in section 6.2 (see also below for the details on the case at
hand), the physical content of this formula is obtained by expanding up to quadratic
order in the deformation parameter ✓+ and comparing with (6.1.3). This yields

⌧ = ie�� � C[0] = � #
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4

◆

+O
�

`�2
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�3
. (6.5.19)

To disentangle the dilaton and the axion fields from (6.5.19), one has to be careful
because the fields do not need to be real-valued in the Euclidean. It is thus convenient
to rotate the x4 coordinate to Minkowskian time which, from (6.5.1), implies that ✓34
is purely imaginary. After this rotation, the dilaton � and the axion C[0] are real and
we can then take the real and imaginary parts of (6.5.19) to find them.

Similarly, the action at third order yields Ĉ[2] as we have shown. The physical
content of this contribution is found by expanding to linear order in ✓+. From (6.1.10)
and (6.1.4), this yields

⌧B[2] � C[2] =
4i⇡N

�

r4

R4
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⌫

+O
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`�2
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�

. (6.5.20)

To disentangle the Neveu-Schwarz and Ramond-Ramond fields B[2] and C[2] from
(6.5.20), we again rotate to Minkowskian signature in which x4 and ✓34 are purely
imaginary and the fields B[2] and C[2] are real.

As a final remark, let us note that we have also computed the e↵ective action to
fourth order. As mentioned in section 6.2, only the term linear in the deformation
parameter ✓ is physical. Consistently with the supergravity solution reviewed in
appendix C.1, this linear term is found to vanish. At quadradic order in ✓, we find a
coe�cient c[MN ][PQ] which does not factorize as in (6.1.5), as expected.

6.5.4 Summary and discussion

The large N solution of the microscopic model yields an e↵ective action (6.1.2) with
c given in (6.5.18). Since c depends non-trivially on the transverse coordinates ~y,
the discussion of section 6.2 implies that the physical information contained in the
e↵ective action is obtained by expanding in ⌘± = ✓±/`2s around the undeformed
AdS5 ⇥ S5 background. Precisely, (6.5.18) can be used to find the axion-dilaton
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⌧ = ic/(2⇡) up to terms of order ⌘3, giving the predictions
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Moreover, our microscopic calculation yields a third order coe�cient c[MNP ] and thus

a three-form F̂[3] of the form (6.1.10), with a two-form potential Ĉ[2] given by

Ĉ[2] =
N`2s
2i⇡✓2+



1�
q

1 + 4✓2+r4/R8

�

✓+
µ⌫

dxµ ^ dx⌫ . (6.5.23)

From the discussion of section 6.2, we know that only the term linear in the defor-
mation parameter is physical. By using (6.1.11), we have shown that this yields the
predictions

C[2] = � r4

R4



⇣4i⇡N

�

✓34
`2s

+
#

2⇡

✓12
`2s

⌘

dx1 ^ dx2

+
⇣4i⇡N

�

✓12
`2s

+
#

2⇡

✓34
`2s

⌘

dx3 ^ dx4

�

+O
�

`�2
s ✓

�2
,

(6.5.24)

B[2] =
r4

R4



✓12
`2s

dx1 ^ dx2 +
✓34
`2s

dx3 ^ dx4

�

+O
�

`�2
s ✓

�2
. (6.5.25)

We can now compare the above results with the supergravity solution reviewed in
appendix C.1. This solution was derived in [56] and [57] independently. As explained
previously, to compare the supergravity and microscopic solutions, we must expand
in the deformation parameters ✓12/`2s and ✓34/`2s , which enter into the functions �12

and �34 defined in (C.1.7). For the axion C[0], this expansion plays no role and indeed
equations (6.5.21) and (C.1.4) match. For the dilaton field, we find a match between
(6.5.22) and (C.1.2) to quadratic order, consistently with our discussion in section
6.2. For the B[2] and C[2] fields, to compare supergravity with (6.5.25) and (6.5.21),
we must use the approximation �12 ' �34 ' 1 to keep the leading contribution in
the deformation parameter only. We again find a perfect match with the microscopic
calculation, in the regime where both can a priori be compared.

As a final remark, let us note that the dimensionless expansion parameter govern-
ing the deformation with respect to the conformal N = 4 model is not really ⌘ ⇠ ✓/`2s
but rather the combination

⌘mic =
✓ r2

R4
⇠ ✓

`2s

r2

`2s�
(6.5.26)

in the microscopic formulas (6.5.18), (6.5.23) and

⌘
sugra

=
✓

`2s

r2

R2
⇠ ✓

`2s

r2

`2s
p
�

(6.5.27)
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in the supergravity solution. In the microscopic formulas, � is a priori arbitrary, but
the supergravity solution can be trusted only at large �. The condition ⌘

sugra

⌧ 1
thus automatically implies ⌘mic ⌧ 1 in the supergravity limit. However, the condition
⌘
sugra

⌧ 1 cannot be satisfied for all r, even if we choose the deformation parameter
✓/`2s to be arbitrarily small; we have to restrict ourselves to the region r ⌧ `2s�

1/4/✓1/2,
where the solution is indeed a small deformation of the AdS5 ⇥ S5 background. This
means that, even for infinitesimal ✓, the theory is completely changed in the UV, a
well-known di�culty associated with non-commutative field theories.

6.6 The beta-deformation

Our last example of this chapter is the �-deformed N = 4 gauge theory. The most
general deformation that we study is parameterised by three real numbers �1, �2 and
�3 and breaks all supersymmetries.

To describe the solution of the model it is convenient to introduce the polar
coordinates (⇢

i

, ✓
i

), 1  i  3, defined in terms of the transverse coordinates ~y by

y1 = ⇢1 cos ✓1 , y3 = ⇢2 cos ✓2 , y5 = ⇢3 cos ✓3 ,

y2 = ⇢1 sin ✓1 , y4 = ⇢2 sin ✓2 , y6 = ⇢3 sin ✓3 , (6.6.1)

together with

r
i

=
⇢
i

p

⇢21 + ⇢22 + ⇢23
=

⇢
i

|~y|
, (6.6.2)

which satisfy the constraint
r21 + r22 + r23 = 1 . (6.6.3)

We shall also use the spherical angles (✓,�) defined by

r1 = sin ✓ cos� , r2 = sin ✓ sin� , r3 = cos ✓ . (6.6.4)

6.6.1 The microscopic action

In parallel with the case of the non-commutative theory, the �-deformation can be
implemented by replacing the ordinary products fg appearing in the microscopic
action by a ⇤-product [62]. Let us denote by Q

i

, 1  i  3, the charges associated
with the U(1)1 ⇥U(1)2 ⇥U(1)3 subgroup of SO(6) corresponding to the rotations in
the 1-2, 3-4 and 5-6 planes in ~y-space respectively. The charge assignments according
to the SU(4) quantum numbers is indicated in table A.3. The ⇤-product is then
defined by

f ⇤ g = ei⇡✏ijk�iQ
f
jQ

g
kfg , (6.6.5)

where ✏
ijk

is the totally antisymmetric symbol, the charges Qf

i

and Qg

i

act on f
and g respectively. When �1 = �2 = �3, N = 1 supersymmetry is preserved, but
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supersymmetry is completely broken otherwise. In all cases, the model is conformal
in the planar limit [60, 61].

The only terms in (6.3.2) that are a↵ected when we use the ⇤-product are the
Yukawa couplings  ̄[�,  ̄] and �̃��. To compute the bosonic part of the e↵ective
action, we only need �̃��. According to (A.5.18), the e↵ect of the ⇤-product on this
term is equivalent to replacing the matrices ⌃

A

by deformed versions ⌃̃
A

,

�̃a ⇤ ⌃
Aab

�
A

⇤ �b = �̃a⌃̃
Aab

�
A

�b . (6.6.6)

The explicit formulas for the matrices ⌃̃
A

are given in (A.5.19).

6.6.2 The e↵ective action

Integrating out q, q̃, � and �̃ from the deformed microscopic action, we get

Se↵(X, Y,D) = K
⇣8⇡2N

�
+ i#

⌘

+
4⇡2N

`4s�
tr
n

2i`4sDµ⌫

⇥

X
µ

, X
⌫

⇤

�
⇥

X
µ

, Y
A

⇤⇥

X
µ

, Y
A

⇤

o

+ ln�
q,q̃

� ln �̃
�,�̃

, (6.6.7)

where

ln�
q,q̃

= N ln det
�

~Y 2 ⌦ 12 + i`4sDµ⌫

⌦ �
µ⌫

�

, (6.6.8)

ln �̃
�,�̃

= N ln det
�

⌃̃
A

⌦ Y
A

�

. (6.6.9)

The dependence of Se↵(X, Y,D) on D
µ⌫

is exactly the same as in the undeformed
model. The solution of the saddle-point equation (6.4.6) is thus given by (6.4.11) for
~y
f

= ~0. In particular, when we write (6.4.8), hD
µ⌫

i is of order ✏2 and will contribute
to Se↵ only at order four or higher in ✏.

To leading order, (6.6.7) yields

c =
8⇡2N

�
+ i#+ 2N ln ~y 2 �N ln detU , (6.6.10)

where the matrix U is defined by

U = y
A

⌃̃
A

. (6.6.11)

The determinant of U can be computed straightforwardly in terms of the polar coor-
dinates introduced in (6.6.1),

detU = ⇢41+ ⇢42+ ⇢43+2 cos(2⇡�1)⇢
2
2⇢

2
3+2 cos(2⇡�2)⇢

2
1⇢

2
3+2 cos(2⇡�3)⇢

2
1⇢

2
2 . (6.6.12)

Plugging this result in (6.6.10) and using the coordinates r
i

defined in (6.6.2) yields

c =
8⇡2N

�
+ i#

�N ln
h

1� 4
�

r22r
2
3 sin

2(⇡�1) + r21r
2
3 sin

2(⇡�2) + r21r
2
2 sin

2(⇡�3)
�

i

. (6.6.13)
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Let us note that this result was also obtained in the context of standard instanton
calculus in [63, 64].

The e↵ective action at first and second order is fixed in terms of the derivatives of c.
New information is found in the completely antisymmetric coe�cient at order three,
which yields the three-form F̂[3] defined in (6.1.7). Expanding in ✏ using (6.4.12), we
see that both determinants (6.6.8) and (6.6.9) contribute to the third order action, but
only (6.6.9) yields a completely antisymmetric term. Explicitly, we get the following
compact result:

F̂[3] = �N

3
tr
�

U�1dU ^ U�1dU ^ U�1dU
�

. (6.6.14)

In particular, this formula makes manifest the fact that dF̂[3] = 0. However, the
evaluation of the trace on the right-hand side is extremely tedious to perform by
hand, because the explicit expressions for the matrix U and its inverse U�1 are quite
involved. We have thus implemented the calculation in Mathematica. The resulting
formulas greatly simplify when using the coordinates defined in (6.6.1), (6.6.2) and
(6.6.4). To linear order in the deformation parameters, which is all we need to compare
with supergravity, we find, for the two-form potential defined in (6.1.10),

Ĉ[2] = 8N`2s

h

!1 ^
�

�1d✓1 + �2d✓2 + �3d✓3
�

� i

4

�

�1r
2
2r

2
3 d✓2 ^ d✓3 + �2r

2
3r

2
1 d✓3 ^ d✓1 + �3r

2
1r

2
2 d✓1 ^ d✓2

�

i

+O
�

�2
�

, (6.6.15)

where the one-form !1 is defined by the condition

d!1 = r1r2r3 sin ✓ d✓ ^ d� . (6.6.16)

The general formula for arbitrary finite �
i

s is quite involved and we shall refrain from
writing it down explicitly.

6.6.3 The emergent geometry

Expanding (6.6.13) to quadratic order in the deformation parameters and using (6.1.3)
yields

e�� =
4⇡N

�

⇣

1 +
1

2
�
�

�1r
2
2r

2
3 + �2r

2
3r

2
1 + �3r

2
1r

2
2

�

+O
�

��4
�

⌘

. (6.6.17)

When the background is a small deformation of the undeformed AdS5 ⇥ S5 solution,
i.e. when ��2

i

⌧ 1, this is a perfect match with the supergravity solution (C.2.2)
and (C.2.8), consistently with the discussion in section 6.2. Similarly, (6.6.15) and
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(6.1.11) yield

B[2] =
�

4⇡N
Im Ĉ[2]
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�1r
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2r
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2
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2
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2
1r

2
2 d✓1 ^ d✓2

�

+O
�

�2
�

,

(6.6.18)

C[2] = �Re Ĉ[2] �
#

2⇡
B[2]

= �8N`2s!1 ^
�

�1d✓1 + �2d✓2 + �3d✓3
�

� #

2⇡
B[2] +O

�

�2
�

.
(6.6.19)

After making the SL(2,R) transformation C[0] 7! C[0] +
#

2⇡
, C[2] 7! C[2] � #

2⇡
B[2]

to generalize the solution to an arbitrary #-angle, we find again a match with the
supergravity background (C.2.3) and (C.2.4) in the appropriate limit.

Actually, in the present case, it seems that the discussion of section 6.2 can be
slightly refined. Indeed, because the imaginary part of c given by (6.6.10) is a con-
stant, it turns out that the general matrix coordinates redefinitions do not act on
Re F̂[3] [66]. This three-form is thus unambiguously fixed by our microscopic calcula-
tions, even when the perturbation with respect to the undeformed conformal N = 4
gauge theory is large. As a consequence, to compare with supergravity, we do not
have to impose ��2

i

to be small. The only relevant constraint is of course the validity
of the supergravity solution itself, which is the weaker condition ��4

i

⌧ 1 together
with � � 1. In this limit, we are allowed to expand the microscopic results as in
(6.6.15), since �

i

⌧ 1. However, we are not allowed to simplify the function G defined
by (C.2.8) in the supergravity solution, because ��2

i

may be large. Remarquably, we
do find agreement with the microscopic prediction, because the real part of Ĉ[2] is
related to the right-hand side of (C.2.4) which does not depend on G!

6.6.4 Summary and discussion

Let us discuss here the slightly simpler N = 1 preserving case � = �1 = �2 = �3.
In N = 1 language, the N = 4 multiplet decomposes into one vector multiplet and
three chiral multiplets �1, �2 and �3. The �-deformation then simply amounts to
replacing the N = 4 preserving superpotential term tr[�1,�2]�3 by tr(ei⇡��1�2�3 �
e�i⇡��1�3�2).

As we have shown, the large N solution of the microscopic theory yields

c =
8⇡2N

�
+ i#�N ln

�

1� 4(r21r
2
2 + r21r

2
3 + r22r

2
3) sin

2(⇡�)
�

. (6.6.20)

Expanding to second order in the deformation parameter � as required by the discus-
sion in section 6.2, we obtain the prediction

e�� =
4⇡N
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2
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�
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2
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. (6.6.21)
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Using (6.6.15), the two-form Ĉ[2] defined in (6.1.10) is found to be

Ĉ[2] =
4N`2s
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2⇡�
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
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2
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2
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2
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1� 4(r21r
2
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2
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2
3) sin
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�

, (6.6.22)

with
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1� 4(r21r
2
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2
3 + r22r

2
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2
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2
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2
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�2 sin ✓ d✓ ^ d� , (6.6.24)

dG3 =
r1r2r3

�

r23 + (r21 + r22) cos(2⇡�)
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1� 4(r21r
2
2 + r21r

2
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2
3) sin

2(⇡�)
�2 sin ✓ d✓ ^ d� . (6.6.25)

To obtain a prediction for B[2] and C[2], we are instructed by the discussion in section
6.2 to expand to linear order in the deformation parameter �. In this limit,

dG1 ' dG2 ' dG3 ' r1r2r3 sin ✓ d✓ ^ d� = d!1 (6.6.26)

and (6.1.11) then yields

C[2] = �8N`2s�!1 ^
�

d✓1 + d✓2 + d✓3
�

+O
�

�2
�

, (6.6.27)

B[2] = �`
2
s�

2⇡
�
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r21r
2
2d✓1 ^ d✓2 + r21r

2
3d✓1 ^ d✓3 + r22r

2
3d✓2 ^ d✓3

�

+O
�

�2
�

. (6.6.28)

The supergravity solution is reviewed in appendix C.2 and can be trusted as long
as the two conditions

�� 1 , ��4 ⌧ 1 , (6.6.29)

are satisfied. The discussion in section 6.2 implies that supergravity can be compared
with the above microscopic solution only when the background is a small perturbation
of the undeformed AdS5 ⇥ S5 solution. This occurs when ��2 ⌧ 1, in which case the
functions 1/

p
G and

p
G in equations (C.2.2) and (C.2.3) can be simplified. This

yields a perfect match with (6.6.21), (6.6.27) and (6.6.28).
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Chapter 7

Emergent geometry from D-Strings

In this chapter, we apply the general framework of chapter 5 to derive the emergent
near-horizon geometry of a large number of D5-branes by studying the corresponding
probe D-string world-sheet model. We start in section 7.1 by presenting the relevant
D-string microscopic pre-geometric world-sheet theory. We solve the model at large
N in section 7.3 and find that the solution is expressed as a classical action which
contains the right dynamical fields to describe the motion of the D-strings in a ten-
dimensional background. In section 7.4, we compare the expansion of this action
around a flat world-sheet with the corresponding terms derived from the D-string
action in arbitrary supergravity background. This allows us to identify the string-
frame metric, dilaton and Ramond-Ramond three-form field-strength. The result
matches perfectly the near-horizon supergravity solution sourced by the background
D5-branes.

The branes are located in R10 according to table 7.1. We denote by w
I

the two
coordinates parallel to the D-strings and by (zi) = (x

µ

, y
m

) the coordinates transverse
to the D-strings. As usual, we also define the radial coordinate r by

r2 = y
m

y
m

. (7.0.1)

1 2 3 4 5 6 7 8 9 10
D5 ⇥ ⇥ ⇥ ⇥ ⇥ ⇥
D1 ⇥ ⇥

w1 w2 x1 x2 x3 x4 y1 y2 y3 y4

(7.0.2)

Table 7.1: Location of the D1- and D5-branes in R10. The third row indicates the
notation we use for the various types of coordinates.
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7.1 The D-string microscopic action

In principle, we need the action describing the dynamics of the open string modes
of a system composed of a fixed number K of D-strings and a large number N
of D5-branes, in the appropriate decoupling limit explained in section 4.2. As we
reviewed in subsection 3.3.4, the model preserves eight supercharges and there is an
SO(2)⇥SO(4)⇥SO(4)0 global symmetry group corresponding to rotations in spacetime
preserving the brane configuration: SO(2) is associated with rotations on the D-string
world-sheet, SO(4)0 with rotations on the D5-brane world-volume transverse to the D-
strings and SO(4) with rotations transverse to both the D-strings and the D5-branes.

As explained in section 3.3, this action could be studied by evaluating appropriate
low-energy limits of open string disk diagrams with various boundary conditions. The
result is a sum of a world-sheet action for the D-strings and a world-volume action for
the D5-branes, with couplings between the D-string and D5-brane degrees of freedom.
The naive action obtained in this way for the degrees of freedom living on the D5-
branes would not be renormalizable and thus could be used only in the infrared. In
other words, the full description of the D5-brane is not field theoretic. Fortunately,
an explicit description of the D5-brane degrees of freedom and their couplings to the
D-strings will not be required for our purposes, as we have explained in section 5.2:
thanks to supersymmetry, these couplings are not expected to contribute to the terms
in the e↵ective action on which we shall focus. A similar non-renormalization theorem
was discussed in [72] in the case of D-particles. We thus focus on the D-string world-
sheet Lagrangian, without referring any longer to possible couplings to the D5-brane
fields.

7.2 The decoupling limit

The relevant terms for the D-string world-sheet theory were obtained in subsection
3.3.4 by performing the dimensional reduction of the U(K) N = 1 gauge theory in six
dimensions down to two dimensions. The theory contain one hypermultiplet in the
adjoint, corresponding to D1/D1 string degrees of freedom, and N hypermultiplets in
the fundamental corresponding to the D1/D5 strings. In this section, we implement
the decoupling explained in section 4.2 on this Lagrangian.

The scalar fields a
µ

and �
m

in the world-sheet Lagrangian (3.3.23) are associated
with the motion of the D-strings parallel and transverse to the D5-branes respectively.
The corresponding coordinates are

X
µ

= `2saµ , Y
m

= `2s�m

. (7.2.1)

To implement the decoupling of chapter 4, we take `s ! 0 while keeping X
µ

, Y
m

/`2s =
�
m

and the six-dimensional ’t Hooft coupling N`2sgs fixed. Compatibility with the
supersymmetry transformations presented in subsection 3.3.4 then require that the
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fermionic superpartners ⇤
↵

and  ̄↵̇ = `2s ⇤̄
↵̇ of �

m

and X
µ

respectively must also be
kept fixed. Introducing  

↵
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, the Lagrangian (3.3.23) then simplifies in the
scaling to
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(7.2.2)

This Lagrangian will be our starting point for the probe D-string world-sheet theory.
It is important to emphasize that the scalar fields Y

m

are non-dynamical auxiliary
variables in (7.2.2). Indeed, their kinetic term is subleading in the decoupling limit,
and thus the Y

m

s could be trivially integrated out by solving their algebraic equation
of motion. However, as explained in chapter 2 and in the next section, these fields
become dynamical due to the quantum corrections and play a central role both in the
mathematics and the physical interpretation of the solution of the model at large N .

7.3 The solution of the model at large N

We now solve the model defined by the Lagrangian (7.2.2). The crucial property is
that the fields (q, q̃,�, �̃) carry only one U(N) index and are thus vector-like variables.
The large N path integral over these fields can then always be performed exactly,
using the standard techniques for large N vector models reviewed in chapter 2. In
our case, the relevant auxiliary fields making the vector fields appear quadratically
are precisely the variables (Y

m

, 
↵⇣

, 
↵⇣̇

, D
µ⌫

) which we have already included when
writing (7.2.2). The path integral over the vector variables is then Gaussian. The
result is an e↵ective action for the auxiliary fields. Moreover, this e↵ective action is
automatically proportional to N because the vector fields have N components.

The resulting structure is thus perfectly consistent with the D-string seen as mov-
ing in a higher dimensional classical non-trivial background. Indeed, the fields Y

m

can be interpreted as the emerging coordinates which behave classically at large N
and the metric on the emerging space will be related to the kinetic term for the Y

m

.
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Let us now carry out this procedure explicitly for our model, mainly focusing on
the case of a single D-string probe.

7.3.1 Integrating out

The e↵ective action NSe↵ is given by

e�NSe↵ =

Z

dqdq̃d�d�̃ e�Sp , (7.3.1)

where Sp is the action for the Lagrangian (7.2.2). In order to derive the emergent
geometry, we can focus on the bosonic part of the e↵ective action and thus set the
fermionic fields  and  ̄ to zero. Note, however, that computing the fermionic terms
in the e↵ective action could also be done.

The integral (7.3.1) yields

Se↵(A,X, Y,D) =
1

2N`2sgs

Z

d2w trU(K)

⇣

21
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+r
I

X
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r
I

X
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+ 2i
⇥

X
µ

, X
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, X
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, X
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⌘

+ ln�
q,q̃

� ln�
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, (7.3.2)

where the determinants �
q,q̃

and �
�,�̃

are given by

�
q,q̃

= det
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. (7.3.4)

At large N , the field D
µ⌫

is fixed in terms of the other variables by the saddle point
equation

�Se↵

�D
µ⌫

= 0 . (7.3.5)

If we specialize to the case K = 1 of a single D-string probe, then the solution is
simply D

µ⌫

= 0. This follows from the vanishing of the linear term in D in the
expansion of (7.3.3) around D = 0 or, equivalently, from the commuting nature of
the X

µ

and SO(4) invariance. We thus get

Se↵(A,X, Y ) =
1
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. (7.3.6)
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7.3.2 The e↵ective action up to cubic order

We are going to use (7.3.6) up to order three in an expansion in the constant field-
strength F

IJ

and around constant values of the coordinate world-sheet fields,

X
µ

= x
µ

+ `2s✏µ , Y
m

= y
m

+ `2s✏m . (7.3.7)

Eventually, we shall match NSe↵ up to this order in the next section with the D-string
action in a general type IIB background.

The explicit computation of the expansion is straightforward. We write

ln�
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= 2 ln detK
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+ 2 tr ln(1+K�1
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') , (7.3.8)
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in terms of the bosonic and fermionic propagators
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where we use the radial coordinate r defined in (7.0.1) and with
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We then expand the traces in (7.3.8) and (7.3.9) using (6.4.12), and compute the
resulting one-loop Feynman integrals. The computation are very similar to those
presented in section 2.1, and we simply present the results.

At zeroth and first order, the contributions from the bosonic and fermionic de-
terminants cancel each other and only the constant D-string tension term in (7.3.6)
remains. At second and third order, we obtain a non-local e↵ective action, which we
write as a power series in derivatives by expanding the associated Feynman integrals
for small external momenta. Overall, we get
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+ · · ·
(7.3.14)

where the · · · stand for terms of quartic or higher order and terms with more than two
derivatives. Of course, the result is consistent with the symmetries of the microscopic
theory discussed in section 7.2, including the world-sheet parity which must come
accompanied by a parity transformation in the directions y

m

.
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7.4 Extraction of the D5 background

As explained in section 3.2, the action for a D-string moving in a general type IIB
supergravity background is the sum of a Dirac-Born-Infeld term and a Chern-Simons
term,

S =
1

`2s

Z

d2⇠ e��
q

det
⇥

P(G+B[2]) + `2sF
⇤

+
i

`2s

Z

h

P(C[0]B[2] + C[2]) + `2sC[0]F
i

,

(7.4.1)
where the fields �, G, B[2], C[0] and C[2] are the dilaton, string-frame metric, Kalb-
Ramond two-form and Ramond-Ramond potentials respectively, F is the world-sheet
field-strength and P denotes as usual the pull-back of the spacetime fields to the world-
sheet. Working in the static gauge and writing the fields Z

i

, 1  i  8, corresponding
to the coordinates transverse to the D-string world-sheet as

Z
i

= z
i

+ `2s✏i , (7.4.2)

we can expand (7.4.1) in powers of ✏
i

and F . Following the basic idea presented in
chapter 5, this expansion should match with the similar expansion (7.3.14) of the
e↵ective action describing the solution of the large N microscopic model of the D-
strings in the presence of the N D5-branes. Morevover, we should be able to derive
the supergravity background sourced by the D5-branes from the coe�cients in the
expansion (7.3.14). Let us check that this is indeed the case.

The zeroth order Lagrangian derived in this way from (7.4.1) reads

L(0) =
1

`2s

h

e��
q

det(G
IJ

+B[2]IJ) +
i

2
✏IJ

�

C[0]B[2]IJ + C[2]IJ

�

i

, (7.4.3)

where the capital Latin indices 1  I, J, . . .  2 correspond as usual to the directions
parallel to the D-string world-sheet. Matching with the microscopic result (7.3.14)
and taking into account world-sheet parity invariance yields the conditions

e��
q

det(G
IJ

+B[2]IJ) =
1

gs
, C[0]B[2]IJ + C[2]IJ = 0 , (7.4.4)

where gs = e�0 . Taking these constraints into account, the Lagrangian derived from
(7.4.1) at first order in ✏ is, up to an irrelevant total derivative,

L(1) =
1

2
F
IJ

�

�EIJ + iC[0]✏
IJ

�

, (7.4.5)

where the matrix EIJ is the inverse of G
IJ

+ B[2]IJ . Using the fact that L(1) = 0 in
(7.3.14) and world-sheet parity, we get

B[2]IJ = 0 , C[0] = 0 . (7.4.6)
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The conditions (7.4.4) thus reduce to
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, C[2]IJ = 0 . (7.4.7)

Taking these results into account as well as the fact that G
iI

= 0 from the ISO(2)
invariance of the world-sheet, the second order Lagrangian derived from (7.4.1) then
reads
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where the matrix G̃IJ is the inverse of the two-by-two matrix G
IJ

. Comparing with
(7.3.14) and using again parity invariance yields
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We thus find that the components G
IJ

and G
µ⌫

match, which shows that the metric
has the expected SO(6) isometry of the background sourced by D5-branes. We can
continue the same analysis at third order. Using the constraints on the background
that we have already derived, (7.4.1) yields the third order Lagrangian up to two
derivative terms,
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Matching with (7.3.14) and using the ISO(2) invariance and SO(6) isometry of the
background, we then obtain

B[2]ij = 0 , F[3] = dC[2] =
1
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Overall, we have derived the following type IIB supergravity background

e� =
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`2sgsN
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l

, B[2] = C[0] = 0 , (7.4.14)

which perfectly matches with the near-horizon geometry of N D5-branes, see (4.2.9a),
(4.2.9c) and (4.2.10).
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Conclusions and Outlook

In the first part of this thesis, we reviewed various topics that are necessary to under-
stand the developments of part 2, which is based on the two published papers [1, 2].
Let us quickly summarize the key steps of what we have done. We explained in
chapter 2 how to solve a simple vector model at large N by introducing an auxiliary
scalar field, that makes the original vector field appears only quadratically in the La-
grangian. The e↵ective action for the auxiliary field obtained by trivially integrating
out the original fields has two very important features: first, it comes with a global
factor of N , and thus the auxiliary scalar field is classical at large N . Second, the
scalar field becomes dynamical. In fact, since the integration over the original fields is
exact, the dynamics of the scalar field in the e↵ective action automatically includes
the e↵ects of diagrams of any loop order in the original theory; in other words, the
auxiliary field acquire a non-trivial dynamics by taking into account non-perturbative
quantum e↵ects of the original vector fields.

It is essentially these crucial properties of vector models at large N that allows us
to understand how classical, dynamical dimensions may emerge in a strongly coupled
field theory. For the concrete examples of part 2, the vector-like models that we
considered are built from the low-energy world-volume actions describing probe D-
branes in the presence of large number N of higher-dimensional background D-branes.
The vector variables are here represented by fields arising from the strings stretched
between the probes and the background D-branes. In the decoupling limit, where
↵0 ! 0 while the distance r ⇠ ↵0 between the probe branes and the background
branes goes to zero, the fields describing fluctuations of the probes in transverse space
become auxiliary because their kinetic terms are subleading in the small ↵0 limit, as
we have explicitly seen in chapter 7 in the case of D-string probes. The probes then
e↵ectively live in a flat, lower-dimensional spacetime corresponding to the background
brane world-volume. Moreover, all the vector-like fields appear quadratically in the
low-energy action thanks to the auxiliary fields. According to our previous discussion
about vector models, one should thus keep the auxiliary scalar fields, as they are
the perfect, natural candidates for the emergent dimensions. To see if this works,
we solve the low-energy world-volume theory by integrating out the vector-like fields,
producing the e↵ective action describing the probe branes. Interestingly, this e↵ective
action precisely match with the non-abelian D-brane action describing the probes
moving in a higher-dimensional, curved geometry. By reading o↵ the coe�cient of
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various terms in the e↵ective action, we are able to determine the full emergent
geometry, including the metric, the dilaton, as well as various non-trivial form fields.
In each and every examples that we consider, the spacetime geometry that we extract
in this way perfectly match with the expected supergravity solutions.1

In conclusion, the results of this thesis strongly support the validity of the emer-
gent geometry framework described in [51] and reviewed in chapter 5. One of the
main lesson is the following: space and gravity are intrinsically quantum e↵ects.
As we reviewed in chapter 4, this remarkable property was already present in the
gauge/gravity duality, but in the light of the examples studied in this thesis (as well
as those in [51,53]), this property is now manifest. As many emergent phenomenon in
physics, space and gravity correspond to an e↵ective description of a more fundamen-
tal and highly non-trivial theory, which in this case is a strongly coupled quantum
gauge theory. In particular, it is meaningless to consider the “quantization of the
gravitational field.”

Let us now turn to possible future directions. At the technical level, it would be
interesting to understand presicely why the vacuum expectation value of the operator
D , defined in section 5.2 (see in particular equation (5.2.3)) and which allows us
to compute the probe e↵ective action, is not quantum corrected in all the examples
we considered. As we explained, this property is strongly supported by our ability
to derive the correct supergravity backgrounds. Let us also repeat that in the case
of D-instantons probing the D3-brane geometry, conformal invariance is enough to
prove this property, as the expectation value hDi is expressed in terms of one-point
functions of local operators on the D3-branes [51]. On the other hand, in the non-
conformal cases that we considered, there were eight conserved supercharges and it
is very likely that this is enough to prove the non-renormalization of D .

It would also be interesting to find other models that could be studied along
the same lines as those presented in part 2. In particular, one could consider to
use D-instantons to probe other deformations of N = 4 super-Yang-Mills theory
like for instance the dipole deformation2 [73–76]. This field theory can be obtained
by introducing a deformed product for the fields charged under an SO(2) ⇠ U(1)
subgroup of the spacetime symmetry group and a U(1) factor of the total R-symmetry
group. The simpler modification of the probe is obtained by applying this deformation
directly on the undeformed probe theory, similarly to what we have done in the non-
commutative and �-deformations studied in sections 6.5 and 6.6 respectively. The
resulting e↵ective action for the scalar auxiliary fields should thus allows us to read-
o↵ the dual supergravity solution (see [62, 74,75,77] for related works).

We could aslo study how the D3-brane geometry can be derived using D3-brane
probes. The action to study can be obtained by splitting each adjoint field of N = 4
super-Yang-Mills with U(N+K) gauge group into N⇥N and K⇥K square matrices

1Up to limitations that we state clearly when the probes are D-instantons.
2Thanks to Wei Song for suggesting me this possibility.
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together with N ⇥K rectangular matrices, which corresponds to the fields associated
to the probe/background strings. These N ⇥K matrices are transforming under the
fundamental (or anti-fundamental) representation of U(N) and are thus the vector
variables which should be intergrated out by introducing suitable auxiliary fields.
Sending N to infinity and assuming that the operator D associated with this system
is not quantum corrected, which amounts to set the U(N)-adjoint fields to zero in
the vacuum expectation value hDi, one should then be able to read-o↵ the self-dual
D3-brane supergravity solution, providing a new check of the framework.

A more ambitious goal would be to address questions related to black hole physics
in the emergent geometry picture. According to the state/geometry relation (5.2.3),
this could be achieved in principle by computing the e↵ective action for the probes
when the operator D is evaluated in a thermal state of the background brane world-
volume theory. Since there are no conserved supercharges in this state, the expecta-
tion value hDi is not simply given by its classical value, and more work is necessary
to compute the terms in the e↵ective action required to read-o↵ the dual geometry.

One could also probe the geometry sourced by the D1/D5 system, where the
D1-branes are parallel to the D5-branes and wraped on a circle S1 while the other
directions parallel to the D5-branes are wraped on a four-torus T 4. When the quan-
tized momentum along the circle S1 is non-zero, the classical geometry produced by
this system is a three-charge black hole with non-zero horizon area. Moreover, the
system preserves one quarter of the original supercharges and the near-horizon region
contains a BTZ black hole with non-zero entropy [78].3 This system could be probed
using a fixed number of D-strings wraped on the S1 (see [79] for a similar set-up).
Since the full system is supersymmetric, we expect that the expectation value hDi is
not quantum corrected.

3Thanks to Geo↵rey Compère for various discussions about this set-up.
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Appendix A

Notations, conventions and useful
formulas

In this appendix, we specify all our notations and conventions. We also provide
various identities that are used in the main text.

A.1 General conventions

We work in the Euclidean throughout all chapters. The coordinates inRD are denoted
by xM or zM with 1  M  D. When we consider a flat p-brane (that can be a Dp-
brane or not), we choose the coordinates xM such that the brane extends in the first
d ⌘ p+ 1 directions. We can therefore denote by xµ with 1  µ  d and ym = xd+m

with 1  m  D�d the coordinates parallel and transverse to the brane respectively.
The radial coordinate r in transverse space is defined by r2 = ymym.

We use the standard Pauli matrices �1, �2, �3:

�1 =

✓

0 1
1 0

◆

, �1 =

✓

0 �i
i 0

◆

, �1 =

✓

1 0
0 �1

◆

. (A.1.1)

They satisfy
�
i

�
j

= �
ij

1+ i✏
ijk

�
k

, (A.1.2)

where i, j, k = 1, 2, 3 and ✏
ijk

is the completely antisymmetric tensor such that ✏123 =
+1.

Our conventions in string theory are the same as in the String Theory books by
Polchinski, see [3,4]. In particular, the dilaton � is such that the constant , related
to the ten-dimensional Newton’s constant G

N

by

22 = 16⇡G
N

, (A.1.3)

is given by (see (3.2.44))
 = 8⇡7/2↵02gs . (A.1.4)
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The parameter T
p

appearing in the D-brane action (3.2.50a) is related to the D-brane
tension ⌧

p

by
T
p

= ⌧
p

gs , (A.1.5)

where gs is the string coupling constant defined as the ratio ⌧
F

/⌧1, where ⌧
F

=
(2⇡↵0)�1 is the fundamental string tension and ⌧1 is the D-string tension. The explicit
value of T

p

reads (see (3.2.45))

T
p

= ⌧
p

gs =
1

(2⇡)p↵0(p+1)/2
=

1

(2⇡)
p�1
2 `1+p

s

, (A.1.6)

where `s is the fundamental string length defined by

`2s ⌘ 2⇡↵0 . (A.1.7)

In various expressions of chapters 3 and 4 we use the constant k, which is given in
term of the p-brane tension ⌧

p

by (3.1.32). In the case of Dp-branes in superstring
theory, it reads (see (3.2.46))

k = 25�p⇡
5�p
2 gs↵

0 7�p
2 �(

7� p

2
) = 2

3�p
2 ⇡�1gs`

7�p

s �(
7� p

2
) . (A.1.8)

The Yang-Mills coupling gYM for the low-energy world-volume action of a Dp-brane
is given by (see (3.2.47))

g2YM =
1

(2⇡↵0)2⌧
p

= (2⇡)p�2gs↵
0 p�3

2 = (2⇡)
p�1
2 gs`

p�3
s . (A.1.9)

A.2 Di↵ential Geometry

Hodge dual

The Hodge ?-operator is defined as the linear operator such that

? (dxM1 ^ · · · ^ dxMr) ⌘
p
det g

(D � r)!
✏M1...Mr

Mr+1...MD dxMr+1 ^ · · · ^ dxMD , (A.2.1)

where det g is the determinant of the metric g
MN

. When acting on a p-form, its
square is proportional to the identity:

?2 = (�1)p(D�p) . (A.2.2)

Let g0
MN

= ⇤g
MN

for some function ⇤. Then the Hodge ?-operator associated to the
metric g0 is denoted by ?0 and is proportional to ?:

? = ⇤p�D/2?0 , (A.2.3)

where p is the degree of the form on which the ?-operator acts.
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Integration

Integration of an n-form ! on a n-dimensional manifold M is defined with the fol-
lowing convention. For simplicity, we assume that xM1 , . . . , xMn are coordinates on
the whole manifold M. Then

Z

M
! =

Z

M

1

n!
!
M1···Mndx

M1 ^ · · · ^ dxMn ⌘
Z

Rn

!1···n dnx , (A.2.4)

where dnx is the Lebesgue measure on Rn.

Levi-Civita tensor

For any dimension D, we define the completely antisymmetric Levi-Civita tensor
✏
M1...MD by

✏1...D = +1 (A.2.5)

Indices are raised using the inverse metric gMN in a standard way: for instance,

✏M1
M2···Mn

⌘ gM1N1✏
N1M2...MD . (A.2.6)

As a consequence, we have

✏1...D =
1

det g
· (A.2.7)

A.3 Indices, fields and representations

For maximum clarity, the notations for the fields, indices and the associated transfor-
mation laws for the chapter 6 and 7 are presented on two separated tables, see table
A.1 and table A.2 respectively.

A.4 D = 4 algebra

There are several places where SO(4)s appear. In the D(–1)/D3 system, there is one
SO(4) corresponding to rotation in the directions parallel to the D3. In the D1/D5
system, there are two internal SO(4) symmetry groups. One of these corresponds to
the rotations in directions transverse to both the D-strings and the D5-branes: we
denote it simply by SO(4). The second, that we write SO(4)0 to avoid any ambiguity,
corresponds to rotations in the directions transverse to the D-strings and parallel to
the D5-branes. For maximum clarity, we use di↵erent indices for the representations
of SO(4) and SO(4)0:
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Spin(4) SU(4) U(N) U(K)
↵, �, ... (upper or lower) (1/2, 0) 1 1 1
↵̇, �̇, ... (upper or lower) (0, 1/2) 1 1 1

µ, ⌫, ... (1/2, 1/2) 1 1 1
a, b, ... (lower) (0, 0) 4 1 1
a, b, ... (upper) (0, 0) 4̄ 1 1

A,B, ... (0, 0) 6 1 1
f, f 0, ... (lower) (0, 0) 1 N 1
f, f 0, ... (upper) (0, 0) 1 N̄ 1
i, j, ... (lower) (0, 0) 1 1 K
i, j, ... (upper) (0, 0) 1 1 K̄
X j

µi

= `2sA
j

µi

(1/2, 1/2) 1 1 Adj
Y j

Ai

= `2s�
j

Ai

(0, 0) 6 1 Adj
 j

↵ai

= `2s⇤
j

↵ai

(1/2, 0) 4 1 Adj
 ̄↵̇aj

i

= `2s ⇤̄
↵̇aj

i

(0, 1/2) 4̄ 1 Adj
D j

µ⌫i

(1, 0) 1 1 Adj
q
↵fi

(1/2, 0) 1 N K
q̃↵fi (1/2, 0) 1 N̄ K̄
�a

fi

(0, 0) 4̄ N K
�̃afi (0, 0) 4̄ N̄ K̄

Table A.1: Conventions for the transformation laws of indices and moduli relevant
for chapter 6. For maximum clarity, we have indicated all the indices associated
to each modulus, whereas in the main text the gauge U(N) and U(K) indices are
usually suppressed. The representations of Spin(4) = SU(2)+ ⇥ SU(2)� are indicated
according to the spin in each SU(2) factor. The (1/2, 1/2) of SU(2)+ ⇥ SU(2)� and
the 6 of SU(4) = Spin(6) correspond to the fundamental representations of SO(4)
and SO(6) respectively.
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Spin(4) Spin(4)0 U(1) U(N) U(K)
I, J, . . . (0, 0) (0, 0) 1 1 1
µ, ⌫, . . . (1/2, 1/2) (0, 0) 0 1 1
m,n, . . . (0, 0) (1/2, 1/2) 0 1 1

↵, �, . . . (upper or lower) (1/2, 0) (0, 0) 0 1 1
↵̇, �̇, . . . (upper or lower) (0, 1/2) (0, 0) 0 1 1
⇣, ⇠, . . . (upper or lower) (0, 0) (1/2, 0) 0 1 1
⇣̇, ⇠̇, . . . (upper or lower) (0, 0) (0, 1/2) 0 1 1

f, f 0, . . . (lower) (0, 0) (0, 0) 0 N 1
f, f 0, . . . (upper) (0, 0) (0, 0) 0 N̄ 1
i, j, . . . (lower) (0, 0) (0, 0) 0 1 K
i, j, . . . (upper) (0, 0) (0, 0) 0 1 K̄

A
I

(0, 0) (0, 0) 1 1 Adj
X j

µi

= `2sA
j

µi

(1/2, 1/2) (0, 0) 0 1 Adj
Y j

mi

= `2s�
j

mi

(0, 0) (1/2, 1/2) 0 1 Adj
 j

↵⇣i

= `2s⇤
j

↵⇣i

(1/2, 0) (1/2, 0) 1/2 1 Adj

 j

↵⇣̇i

= `2s⇤
j

↵⇣̇i

(1/2, 0) (0, 1/2) �1/2 1 Adj

 ̄↵̇ j

⇣i

= `2s ⇤̄
↵̇ j

⇣i

(0, 1/2) (1/2, 0) �1/2 1 Adj

 ̄↵̇ j

⇣̇i

= `2s ⇤̄
↵̇ j

⇣̇i

(0, 1/2) (0, 1/2) 1/2 1 Adj

D j

µ⌫i

(1, 0) (0, 0) 0 1 Adj
q
↵fi

(1/2, 0) (0, 0) 0 N K
q̃↵fi (1/2, 0) (0, 0) 0 N̄ K̄
�
⇣fi

(0, 0) (1/2, 0) �1/2 N K
�
⇣̇fi

(0, 0) (0, 1/2) 1/2 N K

�̃ fi

⇣

(0, 0) (1/2, 0) �1/2 N̄ K̄

�̃fi

⇣̇

(0, 0) (0, 1/2) 1/2 N̄ K̄

Table A.2: Conventions for the transformation laws of indices and fields relevant for
chapter 7. For maximum clarity, we have indicated all the indices associated to
each field, whereas in the main text the gauge U(N) and U(K) indices are usually
suppressed. The representations of Spin(4) = SU(2)+ ⇥ SU(2)� and Spin(4)0 =
SU(2)0+ ⇥ SU(2)0� are indicated according to the spin in each SU(2) factor. The
(1/2, 1/2) of SU(2)+ ⇥ SU(2)� corresponds to the fundamental representations of
SO(4). The U(1) group corresponds to the world-sheet rotations under which positive
and negative chirality spinors have charge 1/2 and �1/2 respectively.
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• SO(4): for the vectors, we denote the components using the indices 1  µ, ⌫ . . . 
4, while we use the indices 1  ↵, �, . . .  2 and 1  ↵̇, �̇, . . .  2 for the left-
and right-handed Weyl spinors respectively.

• SO(4)0: for the vectors, we denote the components using the indices 1 
m,n . . .  4, while we use the indices 1  ⇣, ⇠, . . .  2 and 1  ⇣̇, ⇠̇, . . .  2 for
the left- and right-handed Weyl spinors respectively.

We define
�
µ↵↵̇

= (~�,�i12⇥2)↵↵̇ , �̄↵̇↵

µ

= (�~�,�i12⇥2)
↵̇↵ (A.4.1)

where ~� = (�
i

) are the three Pauli matrices (A.1.1) and

�
µ⌫

=
1

4
(�

µ

�̄
⌫

� �
⌫

�̄
µ

) , �̄
µ⌫

=
1

4
(�̄

µ

�
⌫

� �̄
⌫

�
µ

) . (A.4.2)

The following identity is very useful (in particular for the computations in chapter
6):

�
µ⌫

�
⇢

=
1

4
(�✏

µ⌫⇢

+ �
⌫⇢

�
µ

� �
µ⇢

�
⌫

)12 +
�

�
[⌫�µ]⇢ � �

⇢[⌫�µ]
�

, (A.4.3)

where ✏
µ⌫⇢�

is the completely antisymmetric tensor with ✏1234 = +1.
We denote by an upper “+” the projection of an antisymmetric tensor on its

self-dual part,

a+
µ⌫

⌘ 1

2
(a

µ⌫

+
1

2
✏
µ⌫⇢

a
⇢

) . (A.4.4)

With these definitions �
µ⌫

is self-dual,

�
µ⌫

= �+
µ⌫

. (A.4.5)

We have the following useful identities,

det(12 + a
µ⌫

�
µ⌫

) = 1 + a2+ , (A.4.6)
�

12 + a
µ⌫

�
µ⌫

��1
=

12 � a
⇢�

�
⇢�

1 + a2+
, (A.4.7)

where
a2+ ⌘ a+

µ⌫

a+
µ⌫

. (A.4.8)

For the computation of the e↵ective action at second and third order in chapter 7,
we use the following identities:

tr(�
µ

�̄
⌫

�
⇢

�̄
�

) = 2(�
µ⌫

�
⇢�

� �
µ⇢

�
⌫�

+ �
µ�

�
⇢⌫

� ✏
µ⌫⇢�

) , (A.4.9)

a
µ1aµ2aµ3 tr(�µ1 �̄⌫1�µ2�̄⌫2�µ3�̄⌫3 + �̄

µ1�⌫1�̄µ2�⌫2�̄µ3�⌫3) =

4
⇥

a2(a
⌫1�⌫2⌫3 + a

⌫2�⌫1⌫3 + a
⌫3�⌫1⌫2)� 4a

⌫1a⌫2a⌫3
⇤

,
(A.4.10)
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for any numbers a
µ

and where we set a2 ⌘ a
µ

a
µ

.

In the Weyl basis, the generators S(4)
µ⌫

of the spinor representation in four dimen-
sions satisfying the SO(4) algebra are

S(4)
µ⌫

= �i

✓

�
µ⌫

0
0 �̄

µ⌫

◆

. (A.4.11)

We also define the Levi-Civita symbol (✏
⇣̇⇠̇

) and its inverse (✏⇣⇠) by

(✏⇣⇠) =

✓

0 1
�1 0

◆

, (✏
⇣̇⇠̇

) =

✓

0 �1
1 0

◆

. (A.4.12)

Note that this is not the same object than the Levi-Civita tensor in two dimensions,
that we decided to define with the opposite sign, see (A.2.5). The matrices (A.4.12)
are used to raise and lower Weyl spinor indices according to the rules

�0⇣ ⌘ ✏⇣⇠�0
⇠

, �0
⇣̇

⌘ ✏
⇣̇⇠̇

�0⇠̇ . (A.4.13)

A.5 D = 6 algebra

In subsections 3.3.2, 3.3.3 and 3.3.4, the spacetime symmetry group is SO(6). Its
vectors are labelled by 1  r, s, . . .  6 while the Weyl spinors are labelle by 1 
a, b, . . .  4.
In subsection 3.3.5 and in chapter 6, there is an internal SO(6) symmetry group.
Its vectors are labelled by 1  A,B, . . .  6 while the Weyl spinors are labelle by
1  a, b, . . .  4.

To construct a Weyl representation of the six-dimensional Cli↵ord algebra, we use
the following matrices ⌃

A

:

⌃1 = �i�2 ⌦ �3 , ⌃2 = �2 ⌦ 12 , ⌃3 = �i12 ⌦ �2 , (A.5.1a)

⌃4 = �3 ⌦ �2 , ⌃5 = �i�2 ⌦ �1 , ⌃6 = �1 ⌦ �2 , (A.5.1b)

and
⌃̄

A

= ⌃†
A

. (A.5.2)

Explictly,

⌃1 =

0

B

B

@

0 �1 0 0
1 0 0 0
0 0 0 1
0 0 �1 0

1

C

C

A

, ⌃2 =

0

B

B

@

0 �i 0 0
i 0 0 0
0 0 0 �i
0 0 i 0

1

C

C

A

, ⌃3 =

0

B

B

@

0 0 �1 0
0 0 0 �1
1 0 0 0
0 1 0 0

1

C

C

A

,

⌃4 =

0

B

B

@

0 0 �i 0
0 0 0 i
i 0 0 0
0 �i 0 0

1

C

C

A

, ⌃5 =

0

B

B

@

0 0 0 �1
0 0 1 0
0 �1 0 0
1 0 0 0

1

C

C

A

, ⌃6 =

0

B

B

@

0 0 0 �i
0 0 �i 0
0 i 0 0
i 0 0 0

1

C

C

A

.

(A.5.3)
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These matrices satisfy the algebra

⌃
A

⌃̄
B

+ ⌃
B

⌃̄
A

= 2�
AB

14 (A.5.4)

as well as the relations

⌃̄ab

A

=
1

2
✏abcd⌃

Acd

, ⌃
Aab

=
1

2
✏
abcd

⌃̄cd

A

(A.5.5)

where the ✏s are as usual the completely antisymmetric symbols with ✏1234 = ✏1234 =
+1. Euclidean six-dimensional Dirac matrices, satisfying

�

�
A

,�
B

 

= 2�
AB

, (A.5.6)

can then be defined by

�
A

=

✓

0 ⌃
A

⌃̄
A

0

◆

. (A.5.7)

If ~v = (v
A

)1A6 is a six-dimensional vector, one can check that

det(v
A

⌃
A

) = ~v 4 , (A.5.8)

(v
A

⌃
A

)�1 =
v
A

⌃̄
A

~v 2 · (A.5.9)

In sections 6.4 and 6.5, we have to compute the expansion of some determinants of
the form

ln det
�

⌃
A

⌦ (v
A

+ `2s✏A)
�

= ln~v 4 +
1
X

k=1

(�1)k

k
tr
�

(v
A

⌃
A

)�1⌃
B

⌦ ✏
B

�

k

=
1
X

k=0

t(k) .

(A.5.10)
Up to order five, this is done by using the trace formulas in [51], which yield

t(1) = � 4

v2
trU(K)(~v · ~✏ ) , (A.5.11)

t(2) =
2

~v 4 trU(K)

⇥

2(~v · ~✏ )2 � ~v 2~✏ 2
⇤

, (A.5.12)

t(3) = � 4

3~v 6 trU(K)

⇥

4(~v · ~✏ )3 � 3~v 2(~v · ~✏ )~✏ 2
⇤

, (A.5.13)

t(4) =
8

~v 8 trU(K)



(~v · ~✏ )4 � ~v 2(~v · ~✏ )2~✏ 2 + 1

4
~v 4~✏ 4 � 1

8
~v 4✏

A

✏
B

✏
A

✏
B

�

, (A.5.14)

t(5) = � 4

~v 10 trU(K)



16

5
(~v · ~✏ )5 � 4~v 2(~v · ~✏ )3~✏ 2+

~v 4
�

~v · ~✏~✏ 4 � ~v · ~✏ ✏
B

✏
C

✏
B

✏
C

+ ~v · ~✏ ✏
B

~✏ 2✏
B

�

+
i

5
~v 4v

A

✏
A1···A5A✏A1 · · · ✏A5

�

. (A.5.15)
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Weyl spinors �
a

and  a in the 4 and 4̄ representations of the rotation group
Spin(6) = SU(4) transform under a six-dimensional rotation parametrized by the
antisymmetric matrix ⌦, �x

A

= �⌦
AB

x
B

, as

��
a

= �1

2
⌦

AB

⌃ b

ABa

�
b

, � a = �1

2
⌦

AB

⌃̄ a

AB b

 b , (A.5.16)

where the generators of the rotation group are defined by

⌃
AB

=
1

4

�

⌃
A

⌃̄
B

� ⌃
B

⌃̄
A

�

, ⌃̄
AB

=
1

4

�

⌃̄
A

⌃
B

� ⌃̄
B

⌃
A

�

. (A.5.17)

This yields in particular the charges under the U(1)1 ⇥ U(1)2 ⇥ U(1)3 subgroup of
SO(6) corresponding to rotations in the 1-2, 3-4 and 5-6 planes respectively, see Table
A.3.

�-deformed case

The U(1)
i

charges in Table A.3 are used to compute the ⇤-product in section 6.6. In
particular, deformed ⌃

A

matrices can be defined by the identity

 a

1 ⇤ �A

⇤  b

2⌃Aab

=  a

1�A

 b

2 ⌃̃Aab

. (A.5.18)
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Explicitly, we have

⌃̃1 =

0

B

B

@

0 �i�1��2 0 0
i��1+�2 0 0 0

0 0 0 i��1��2

0 0 �i�1+�2 0

1

C

C

A

,

⌃̃2 =

0

B

B

@

0 i�1��2�1 0 0
i��1+�2+1 0 0 0

0 0 0 i��1��2�1

0 0 i�1+�2+1 0

1

C

C

A

,

⌃̃3 =

0

B

B

@

0 0 �i��1+�3 0
0 0 0 �i�1+�3

i�1��3 0 0 0
0 i��1��3 0 0

1

C

C

A

,

⌃̃4 =

0

B

B

@

0 0 i��1+�3�1 0
0 0 0 i�1+�3+1

i�1��3+1 0 0 0
0 i��1��3�1 0 0

1

C

C

A

, (A.5.19)

⌃̃5 =

0

B

B

@

0 0 0 �i�2��3

0 0 i��2��3 0
0 �i�2+�3 0 0

i��2+�3 0 0 0

1

C

C

A

,

⌃̃6 =

0

B

B

@

0 0 0 i�2��3�1

0 0 i��2��3�1 0
0 i�2+�3+1 0 0

i��2+�3+1 0 0 0

1

C

C

A

.

y1 + iy2 y3 + iy4 y5 + iy6 �1 �2 �3 �4  1  2  3  4

U(1)1 1 0 0 1
2

1
2

�1
2

�1
2

�1
2

�1
2

1
2

1
2

U(1)2 0 1 0 1
2

�1
2

1
2

�1
2

�1
2

1
2

�1
2

1
2

U(1)3 0 0 1 1
2

�1
2

�1
2

1
2

�1
2

1
2

1
2

�1
2

Table A.3: Charges under U(1)1 ⇥ U(1)2 ⇥ U(1)3 ⇢ SO(6). The spinors �
a

and  a

are arbitrary spinors in the 4 and 4̄ representations of Spin(6) respectively.

111



Appendix B

On trivial dimensional reduction

In this appendix we present some basic considerations about trivial dimensional re-
duction. The goal is to provide the necessary tools to understand the machinery of
the computations underlying section 3.3. For a presentation on spinors in various
dimensions, see e.g. [80].

Trivial dimensional reduction is a recipe to construct a d dimensional theory from
a D > p dimensional theory, such that the lower-dimensional theory possesses some
of the symmetries and invariances of the original, higher-dimensional theory. The
recipe starts with the trivial dimensional reduction Ansatz, stating that all fields of
the original theory are independent of some coordinates. Compatibility of this Ansatz
with the spacetime symmetries requires to restrict the full spacetime transformations
to a subset of allowed transformations. The fields of the original theory must then
be reorganised into representations of the group of allowed transformations. This
last technical step is straightforward as far as bosonic fields are concerned, while for
fermions some non-trivial work might be required.

Consider a theory in D spacetime dimensions invariant under SO(D). A generic
SO(D) transformation acts on the coordinates xM with 1  M  D as

xM 7! x0M = RM

N

xN , (B.1)

where the matrix R = (RM

N

) 2 SO(D) is such that RTR = 1 and detR = 1.
Let us perform the trivial dimensional reduction on the last D � d � 1 coordinates
(xd+1, . . . , xD) = (xd+m) with 1  m  D � d. Restricting to orientation preserving
transformations in the remaining d directions (x1, . . . , xd) = (xI) with 1  I  d, the
set of allowed transformation then forms the group

SO(d)⇥ SO(D � d) ⇢ SO(D) (B.2)

formed by the D ⇥ D matrices R such that RI

d+m

= 0 and Rd+m

I

= 0 while the
submatrices (RI

J

) 2 SO(d) and (Rm

n

) 2 SO(D � d). The first factor in the de-
composition (B.2) is the new spacetime symmetry group, while the second factor
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in (B.2) is a new internal symmetry group of the lower dimensional theory. Let us
parameterise the matrix R 2 SO(D) as

R = e
i
2!MNJMN , (B.3)

where !
MN

= �!
MN

and the hermitian matrices J
MN

= J†
MN

form a basis of the
algebra so(D). The allowed transformations are then obtained by restricting to pa-
rameters !

MN

such that !
MI

= 0.
Let V M(xN) be a vector field in the original, D-dimensional theory. Under the

spacetime transformation R 2 SO(D), V M transforms as V M 7! V 0M with V 0M given
by the rule

V 0M(RN

P

xP ) = RM

P

V P (xN) . (B.4)

Under an allowed transformation RI

J

corresponding to a spacetime symmetry trans-
formation in the lower-dimensional theory, we see that V I transforms as a vector of
SO(d), while the remaining D � d components V d+m = �m are scalars of SO(d). On
the other hand, under the internal transformations (Rm

n

) 2 SO(D� d) the vector in
d dimensions V I is invariant while the D�d scalars �m transform as the fundamental
of SO(D � d).

For a spinor  of SO(D), the situation is slightly more complicated. Let us denote
by  a with 1  a  2[D/2] the components of  , where [D/2] is the integral part of

D/2, and S(D)
MN

the generators of the spinor representation of SO(D). For R 2 SO(D),
the spinor  transforms as  7!  0 where

 0a(RM

N

xN) =
�

e
i
2!MNS

(D)
MN

�

a

b

 b(xM) . (B.5)

Our goal is to identify the linear combinations of the components  a that transform
as a spinor of SO(d), or, equivalently, we need to find a basis such that S(D)

IJ

has a

simple expression in terms of S(d)
IJ

. Typically, we find a basis such that the former
is written as a tensor product of the latter with the identity matrix, allowing for a
trivial identification of the SO(d) spinors.

Let us give some details on the concrete example of subsection 3.3.4. In this
case, we have D = 6 and d = 2. Since a generic spinor in six dimensions has
eight components, it must contain four spinors in two dimensions. It is in this case
more convenient to rewrite the six-dimensional spinors in terms of spinors of the
internal symmetry group, that we denoted SO(4)0 in the main text. We thus have to
decompose a spinor in six dimensions into two spinors of SO(4)0, because a generic
spinor in four dimensions has four components; this is precisely what is done explicitly
in subsection 3.3.4. In particular, we define in (3.3.12) the change of basis which
allows us to trivially identify the spinors of SO(4)0, see (3.3.17) and (3.3.18). It was
necessary in this case to define a new basis for the left- and right-handed spinors of
SO(6) independently. The defining property of the new basis is that the matrices ⌃0

µ

have simple expressions, see (3.3.14), which yield the relation (3.3.16) between the
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six-dimensional generators S 0(6)
(2+m)(2+m) and the four dimensional ones S(4)

mn

defined in
appendix A, see (A.4.11).
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Appendix C

Some type IIB supergravity
backgrounds

In this appendix we review the known supergravity backgrounds dual to the non-
commutative and �-deformed Euclidean N = 4 super-Yang-Mills theories studied
in chapter 6. We use the standard relation between the radius R and the ’t Hooft
coupling �,

R4 = ↵02� =
`4s�

4⇡2
·

The backgrounds are written at zero bare # angle. The solutions at non-zero # can
be obtained by performing the SL(2,R) transformation C[0] 7! C[0] +

#

2⇡
, C[2] 7!

C[2]� #

2⇡
B[2] and C[4] 7! C[4]+

#

4⇡
B[2]^B[2], which automatically yields a new solution

to the supergravity equations of motion.

C.1 The dual to the non-commutative gauge the-
ory

The gravitational dual of the non-commutative deformation of the N = 4 super-
Yang-Mills theory was derived in [56, 57].1 With non-vanishing non-commutative
parameters ✓12 = �✓21 and ✓34 = �✓43, the solution for the string-frame metric and

1Our formulas can be matched with those in [57] by making the replacements R2 7! ↵0R2,
✓12 7! b̃0/(2⇡), ✓34 7! b̃/(2⇡), r 7! ↵0R2u, �/(4⇡N) 7! ĝ and C[0] 7! ��, C[2] 7! �A, F[5] 7! �F .
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the other supergravity fields reads

ds2 =
r2

R2



dx2
1 + dx2

2

�12

+
dx2

3 + dx2
4

�34

�

+
R2

r2
dr2 +R2d⌦2

5 , (C.1.1)

e�� =
4⇡N

�

p

�12�34 , (C.1.2)

B[2] =
r4

R4

✓

✓12
`2s

dx1 ^ dx2

�12

+
✓34
`2s

dx3 ^ dx4

�34

◆

, (C.1.3)

C[0] = �4i⇡N

�

✓12✓34
`4s

r4

R4
, (C.1.4)

C[2] = �4i⇡N

�

r4

R4

✓

✓34
`2s

dx1 ^ dx2

�12

+
✓12
`2s

dx3 ^ dx4

�34

◆

, (C.1.5)

C[4] =
16⇡r2

R3
!4 � 4i⇡

r6

R6

dx1 ^ dx2 ^ dx3 ^ dx4

�12�34

, (C.1.6)

where the functions �12 and �34 are defined by

�12 = 1 +

✓

✓12
`2s

◆2 r4

R4
, �34 = 1 +

✓

✓34
`2s

◆2 r4

R4
· (C.1.7)

The x1, x2, x3 and x4 are the world-volume coordinates on which the gauge theory
live, r is the transverse radial coordinate, expressed in terms of the six transverse
coordinates ~y = (y

A

)1A6 as r2 = |~y|2, d⌦2
5 is the metric on the five-dimensional

round sphere of radius one and !4 is a four-form defined in terms of the volume form

!S5 =
1

5!

R5y
F

r6
✏
ABCDEF

dy
A

^ · · · ^ dy
E

(C.1.8)

on S5 of radius R by
d!4 = !S5 . (C.1.9)

The consistency of the supergravity approximation for the above solution requires
as usual � � 1. In the far infrared region r ⌧ R`s/

p
✓ ⇠ `2s�

1/4/
p
✓, the solution

is a small deformation of the usual AdS5 ⇥ S5 background and can be compared
with the microscopic calculations presented in the main text. On the other hand,
in the far ultraviolet region r � R`s/

p
✓, the metric (C.1.1) approximates another

AdS5 ⇥ S5 space, with a new radial coordinate r̃ = 1/r. Thus there is no conformal
boundary at infinity, which signals that the non-commutative theory is not a standard
UV-complete quantum field theory.

C.2 The dual to the �-deformed theory

The gravitational dual of the �-deformed N = 4 super-Yang-Mills theory was derived
in [62] in the N = 1 supersymmetry preserving case �1 = �2 = �3 and generalized
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in [59] to arbitrary deformation parameters �1, �2 and �3. The solution for the string-
frame metric and the other non-trivial supergravity fields reads

ds2 =
r2

R2
dx

µ

dx
µ

+
R2

r2
dr2 +R2d⌦̃2

5 , (C.2.1)

e�� =
4⇡N

�
p
G

, (C.2.2)

B[2] = �`
2
s�

2⇡
G
�

�3r
2
1r

2
2d✓1 ^ d✓2 + �2r

2
1r

2
3d✓3 ^ d✓1 + �1r

2
2r

2
3d✓2 ^ d✓3

�

, (C.2.3)

C[2] = �8N`2s !1 ^
�

�1d✓1 + �2d✓2 + �3d✓3
�

, (C.2.4)

C[4] =
4N`4s
⇡

�

G!1 ^ d✓1 ^ d✓2 ^ d✓3 � i!4

�

. (C.2.5)

The coordinates x
µ

, 1  µ  4, can be viewed as the world-volume coordinates of the
background D3-branes. The coordinate r is the usual transverse radial coordinate,
expressed in terms of the six transverse coordinates ~y = (y

A

)1A6 as r2 = ~y2. The
coordinates (r

i

, ✓
i

)1i3 are defined by the relations

y1 = ⇢1 cos ✓1 , y3 = ⇢2 cos ✓2 , y5 = ⇢3 cos ✓3 ,

y2 = ⇢1 sin ✓1 , y4 = ⇢2 sin ✓2 , y6 = ⇢3 sin ✓3 (C.2.6)

and
r
i

=
⇢
i

p

⇢21 + ⇢22 + ⇢23
=

⇢
i

|~y|
, r21 + r22 + r23 = 1 . (C.2.7)

The function G is given by

1

G
= 1 + �

�

�21r
2
2r

2
3 + �22r

2
1r

2
3 + �23r

2
1r

2
2

�

. (C.2.8)

The metric (C.2.1) describes an AdS5 ⇥ S̃5 geometry for a deformed five-sphere S̃5

endowed with the metric

d⌦̃2
5 =

3
X

i=1

�

dr2
i

+Gr2
i

d✓2
i

�

+ �Gr21r
2
2r

2
3

⇣

3
X

i=1

�
i

d✓
i

⌘2

. (C.2.9)

Defining the angles ✓ and � by

r1 = sin ✓ cos� , r2 = sin ✓ sin� , r3 = cos ✓ , (C.2.10)

the one-form !1 in (C.2.4) and (C.2.5) satisfies

d!1 = r1r2r3 sin ✓ d✓ ^ d� (C.2.11)

and can be chosen to be

!1 =
1

4
sin4 ✓ cos� sin� d� . (C.2.12)
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The four-form !4 in (C.2.5) satisfies

d!4 = !AdS5 , (C.2.13)

where

!AdS5 =
1

R8
r3dx1 ^ · · · ^ dx4 ^ dr (C.2.14)

is the volume form on the unit radius AdS5 space. Explicitly, one can choose

!4 =
1

4R8
r4dx1 ^ · · · ^ dx4 . (C.2.15)

Changes of !1 and !4 by exact forms correspond to a supergravity gauge transforma-
tion.

The �-deformed theory is conformal in the planar limit, which explains the fact
that the AdS5 factor in the metric (C.1.1) is undeformed. The consistency of the
supergravity approximation requires, on top of the usual condition � � 1, that
�4
i

� ⌧ 1, as can be checked by evaluating the curvature of the deformed sphere
(C.2.9). In particular, the �

i

s must be very small. This explains why the periodicity
in the deformation parameters, (�1, �2, �3) ⌘ (�1+n1, �2+n2, �3+n3) for any integers
n1, n2, n3, which is manifest in the microscopic theory and in particular in the e↵ective
action computed in section 6.6, cannot be seen in the supergravity solution. Finally,
let us note that the background is a small deformation of the usual AdS5⇥S5 solution
when �2

i

�⌧ 1, a condition often used in the main text.
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Appendix D

Myers’ non-abelian D-instanton
action

The Myers’ non-abelian D-instanton action is obtained by adding the non-abelian
Dirac-Born-Infeld action (3.2.50a) to the non-abelian Chern-Simons action (3.2.50b),
with p = �1. Since for a D-instanton there are no parallel directions, the transverse
matrix coordinates Xm correspond to the ten-dimensional matrix coordinates XM .
Following the discussion around (3.2.49) the matrices XM are written as

XM = xM1+ `2s✏
M , (D.1)

where we decided to introduce a factor of `2s for convenience. The action SDBI + SCS

is then expanded as

Se↵ =
X

n�0

S(n)
e↵ =

X

n�0

1

n!
`2ns c

M1···Mn(z) tr(✏M1 · · · ✏Mn) . (D.2)
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Up to order five, the action is then given in terms of the type IIB supergravity fields
by the following formulas:

S(0)
e↵ = �2i⇡K⌧ ,

S(1)
e↵ = �2i⇡`2s@M⌧ tr ✏M ,

S(2)
e↵ = �i⇡`4s@M@N⌧ tr ✏M✏N ,

S(3)
e↵ =

�

� i⇡

3
`6s@M@N@P ⌧ � 2⇡`4s@[M(⌧B[2] � C[2])NP ]

�

tr ✏
M

✏
N

✏
P

,

S(4)
e↵ =

�

� i⇡

12
`8s@M@N@P@Q⌧ �

3⇡

2
`6s@M@[N(⌧B[2] � C[2])PQ] (D.3)

� ⇡`4se
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�
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✏
N
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✏
Q

,

S(5)
e↵ =

⇣

� i⇡

60
`10s @M@N@P@Q@R⌧ �

⇡

3
`8s@P@Q@R(⌧B[2] � C[2])MN

� ⇡`6s@R
�

e��(G
MP

G
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�G
MQ

G
NP
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�

� i⇡`6s@[M(C[4] + C[2] ^B[2] �
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2
B[2] ^B[2])NPQR]

⌘

tr ✏
M

✏
N

✏
P

✏
Q

✏
R

.

The complex field ⌧ is defined by

⌧ = �C[0] + ie�� . (D.4)
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