
COSMOLOGICAL RELAXATION OF THE ELECTROWEAK SCALE

J.R. ESPINOSA
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Recently, a new mechanism to generate a naturally small electroweak scale has been proposed,
the so-called ”relaxion”. It exploits the coupling of the Higgs to an axion-like field and a long
era in the early universe where the axion unchains a dynamical screening of the Higgs mass. I
present a new realization of this idea with the new feature that it leaves no signs of new physics
up to a rather large scale, 109 GeV, except for two very light and weakly coupled axion-like
states. One of these scalars can be a viable Dark Matter candidate. Such a cosmological
Higgs-axion interplay could be tested with a number of experimental strategies.

1 The Relaxion Idea

The common lore states that natural solutions to the hierachy problem of the electroweak (EW)
scale require new particles and interactions at or below the TeV scale, with supersymmetry
and composite Higgs as the two main examples. In fact, the naturalness argument is the main
(only?) argument to expect new physics at the LHC. Roughly a year ago, a solution to the
hierarchy problem that challenges this common lore was proposed: the relaxion mechanism 1.
The idea is to promote the Higgs mass term in the potential to a field-dependent quantity

V (h) =
1

2
m2

H(φ)h2 + ... =
1

2
(−Λ2 + gφΛ)h2 + ... , (1)

with the quadratic cutoff term Λ2 not required to cancel by any symmetry reason. The field φ,
the relaxion, is then supposed to roll during cosmological evolution eventually stopping at some
value φ0 such that m2

H(φ0) ∼ m2
EW � Λ2, solving in a dynamical way the hierarchy problem.

Figure 1 shows schematically the shape of the relaxion potential in the simplest realization
of this idea 1, based on the following three terms of the h− φ scalar potential:

V = −1

2

(
Λ2 − gΛφ

)
h2 + Λ3gφ+ εΛ3

ch cos(φ/f) + · · · . (2)

I have already mentioned above the first term. For φ larger (smaller) than some critical value
φc = Λ/g, the Higgs mass term is positive (negative) and the EW symmetry is unbroken (bro-
ken), 〈h〉 = 0, (〈h〉 �= 0). The second term provides a non-zero slope for φ to scan its field range
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Figure 1 – Relaxion potential. The critical value for EW breaking is marked by the dashed line.

(which has to be of order φc). We will see below that this slope is required to be very small.
The third term is crucial as it provides the feedback from EW breaking that raises barriers in φ
that stop the relaxion close to the critical φc. We then assume that φ starts, at the beginning of
inflation, with φ >∼ φc, and slow-rolls until it passes φc, at which point the Higgs mass becomes
tachyonic and a nonzero 〈h〉 turns on and raises the barriers in the third term of the potential
(2). The stopping value for φ and h is determined by the balance between the overall slope of
the φ potential and that of the barriers, which grows with higher h, resulting in

v ≡ 〈h〉 � gfΛ3

εΛ3
c

. (3)

This formula determines the EW scale in terms of fundamental parameters. It is possible to
have 〈h〉 � Λ, and therefore solve the hierarchy problem, by choosing g � 1. The small value of
g is technically natural as it is the spurion that breaks the symmetry φ→ φ+ 2πf . Moreover,
the shape of the potential (2) should be radiatively stable.

One necessary ingredient for this mechanism to work is some kind of friction that avoids the
field φ overshooting the range of vacua for which 〈h〉 is of EW size. The simplest possibility for
this is to invoke inflation to provide a slow-roll evolution of the relaxion. Usually, the number
of e-folds required for the mechanism to be natural is quite large and the inflationary sector is
the less satisfactory part of this mechanism. Although some alternatives have been proposed 2

there is room for improvement in the model-building of this sector.

What is the origin of the potential barriers in (2)? The simplest model proposed in1 identifies
φ with the QCD axion. The barriers then correspond to the axionic potential generated by
instanton effects,

V (φ) = (mu +md)〈qq̄〉 cos(φ/f) , (4)

where mu,d are the up and down quark masses and 〈qq̄〉 ∼ Λ3
QCD is the QCD quark-condensate.

Comparing with (2) we therefore have Λc ∼ ΛQCD and ε ∼ yu, where yu is the up-quark
Yukawa coupling. This is a very appealing model that could explaing the EW hierarchy with
g ∼ muΛ

3
QCD/(fΛ

3)� 1. For instance, for a cutoff Λ ∼ 107 GeV and f ∼ 109 GeV, one needs

g ∼ 10−35. a Unfortunately, the model also predicts the wrong value for the QCD theta angle [of
O(1) due to the nonzero slope of the axion potential!]. Possible solutions to this problem were
also discussed in Ref. 1. One possibility is to break the link between Λc and ΛQCD assuming a
non-QCD strong gauge sector to generate the barriers. This requires Λc below the TeV scale (as
the physics that generates Λch breaks the EW symmetry) and this introduces the coincidence
problem of why Λc is close to the EW scale.

aEven though this tiny value is technically natural, some people seem uncomfortable with such small numbers.
One should perhaps remember that (non-perturbative) baryon number violation in the SM is suppressed by factors
of order e−2π/αw ∼ 10−81.
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2 Double Scanning Model

Here I would like to discuss an alternative idea, proposed in Ref. 3, that takes Λc = Λ and
assumes the barrier to be generated as εΛ2|H|2 cos(φ/f) without breaking the EW symmetry.
This idea runs into an immediate difficulty: the potential shape is not radiatively stable. Indeed,
just by closing H in a loop, the term εΛ4

c cos(φ/f) is induced at one loop and such term produces
everywhere barriers that would stop the φ evolution before the Higgs is turned on. The problem
with such large cutoff correction to the barrier height should be reminiscent of the large cutoff
corrections to the Higgs mass. We get around it precisely in the same manner, by advocating a
field dependent barrier height with an additional scalar field that will also scan.

The crucial new ingredient of this proposal, with respect to Ref. 1, is therefore a second
scanning field, σ. The potential, up to order ε, gσ and g, reads

V (φ, σ,H) = Λ3 (gφ+ gσσ)− Λ2
(
α− gφ

Λ

)
|H|2 + λ|H|4 +A(φ, σ,H) cos (φ/f) , (5)

where the barrier height is given by

A(φ, σ,H) ≡ εΛ4

(
β + cφ

gφ

Λ
− cσ

gσ σ

Λ
+
|H|2
Λ2

)
, (6)

and we take 0 < g, gσ, ε � 1, and α, β, cφ, cσ are positive coefficients of O(1). A partial UV
completion of this model that reproduces this field dependence of A can be found in Ref. 3 (long
arXiv version).

From the above equations we see that φ scans the Higgs mass as before, while σ scans
A(φ, σ,H), the overall amplitude of the oscillating term. The dependence of A(φ, σ,H) on σ
and H is crucial for the double scanning mechanism to work, and the other terms in Eq. (6) are
added as they are generated radiatively (by H loops). The potential shape given in Eq. (5) is
radiatively stable provided ε <∼ v2/Λ2.

Figure 2 – Scalar V (φ, σ) potential. The band without barriers is in green while the barriers getting high(er) are
dark(er) brown. The blue line shows a possible slow-roll cosmological trajectory of the fields during inflation.

As in the original relaxion models 1, inflation is assumed to provide the friction needed for
the fields to slow-roll and reach the desired minimum with v � Λ. The evolution of σ is quite
simple: for ε � 1, it simply rolls down in time σ(t) = σ0 − gσΛ

3t/(3HI). The cosmological
evolution of φ passes through four different stages, depicted in Figs. 2 and 3:

I) We assume φ >∼ Λ/g and σ >∼ Λ/gσ at the beginning of inflation, so that m2
H(φ) > 0 (so

that the Higgs field is zero) and |A| is of order εΛ4. The field φ is stuck in one of the minima
separated by the barriers due to the A cos(φ/f) term in the potential.

II) With σ rolling down, the barrier height A gets smaller and smaller. Eventually the slope
of the barrier walls is smaller than the overall slope along the φ direction, [for φ∗ such that
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Figure 3 – Sketch of the four stages in the evolution of φ, marked by the blue dot, in the time-dependent effective
potential for φ obtained after integrating out σ and H but corresponding to the same potential as in Fig. 2.

A(φ∗, σ, h(φ∗)) <∼ gfΛ3, green band in Fig. 2] and φ starts to roll down too. For gσ <∼ g, φ tracks
σ: φ(t) � const. + cσgσσ(t)/(cφg), corresponding to A ≈ 0.

III) At some point φ reaches the critical value φc ≡ αΛ/g and m2
H(φ) becomes negative and

turns on H. This induces a positive contribution to A, that, for certain generic values of the
parameters of Eq. (5), bends the direction of the green-band as shown in Fig. 2. As a result,
the field φ moves out of the smooth green-band.

IV) Out of the smooth region of the potential, φ gets stuck in another minimum from
A cos(φ/f). Meanwhile, σ has continued its evolution towards its minimum, making A larger.b

Fig. 3 illustrates the φ evolution just described, showing four snapshots (corresponding to
the four stages I-IV) of the time-dependent potential V (φ) ≡ V (φ, σ(t), h(φ)), obtained by
integrating out σ and h. In stages I and II, one sees two A ≈ 0 regions moving towards each
other. These regions merge at stage III near the critical φc and disappear at stage IV.

It is worth noting that the mechanism just described works independently of the value of the
relaxion field, φi, at the begining of inflation ti, as long as φc < φi < φ∗(ti), which is a natural
and sizable range of the available field space. The cosmological evolution described above is
purely classical. Quantum fluctuations give corrections, but do not spoil the solution of the
hierarchy problem, see Ref. 3 for more details.

bThis picture brings to mind an analogy from Geology. Early geologists puzzled about large rocks that differed
in composition from the one typical of the area in which they were found. This “naturalness problem” was
eventually solved as a result of standard geological history: such rocks, known nowadays as glacial erratics, were
transported by ancient glaciers over hundreds of kilometers. In our case, φ plays the role of glacial erratic and
σ of glacier and the apparently unnatural smallness of the electroweak scale is the result of the workings of a
“cosmological glacier”.
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3 Parameter Constraints

For this model to provide a natural solution to the hierarchy problem, a number of conditions
must be satisfied:

1) The potential shape should be radiatively stable. Quantum corrections generate potential
terms like ε2Λ4 cos2(φ/f) or ε2Λ3gφ cos2(φ/f) whose amplitudes cannot be cancelled by σ simul-
taneously to A cos(φ/f). These are dangerous as they could give a barrier to φ at values above
the critical φc. However, they are subdominant to the Higgs barrier of Eq. (5) if ε <∼ v2/Λ2. This
condition also ensures that the contribution to the Higgs mass coming from εΛ2|H|2 cos(φ/f) is
at most of electroweak size and does not spoil the tracking behaviour.

2) φ gets trapped by the Higgs barrier. The feedback from a nonzero Higgs field should be
responsible for stopping the rolloing of φ. This condition gives the electroweak scale in terms of
microscopic parameters as: v2 � gΛf/ε.

In addition, two quantities crucial for the cosmological evolution of this model – HI , the
Hubble rate during inflation, and Ne, the number of e-folds – are also constrained:

3) Inflation is independent of the φ and σ evolution. For the typical energy density carried
by φ and σ to remain smaller than the inflation scale, we need Λ2/MP

<∼ HI withMP � 2.4×1018
GeV. In addition, the two fields φ and σ should be slowly-rolling during inflation, which requires
gσΛ, gΛ <∼ HI .

4) Classical roll dominates over quantum jumps. During inflation light fields are subject to
quantum fluctuations of typical size HI . This jittery motion remains smaller than the classical
field roll provided H3

I
<∼ gσΛ

3.
5) Inflation lasts long enough for scanning. The range scanned by φ and σ during the

inflationary epoch should be of the order of (or larger than) Λ/g and Λ/gσ respectively. This
requires a long enough period of inflation: Ne

>∼ H2
I /(g

2
σΛ

2).
Combining the previous parameter constraints, we find that the couplings gσ and g are

bounded to the interval Λ3/M3
P

<∼ gσ <∼ g <∼ v4/(fΛ3). As f cannot be much smaller than Λ
[the scale at which the cos(φ/f) term is generated] we get an upper bound on the cut-off of our
model:

Λ <∼ (v4M3
P )

1/7 � 2× 109GeV . (7)

Fig. 4 illustrates the constraints above for the particular choice Λ = f and gσ/g = 0.1. Notice
that the number of e-folds and the excursion of φ during inflation Δφ/MP are in general expo-
nentially large. However, for small values of the cutoff scale and the upper range of g, one has
Ne, Δφ/MP ∼ O(1).

4 Signatures

4.1 Collider Signals

The new-physics/cutoff scale of the model can be as high as Λ ∼ 109GeV, and we do not expect
new states around the weak scale. Only the two scalars σ and φ are lighter than the weak scale.
These scalars are very weakly-coupled to the SM particles and can have phenomenological impact
through astrophysical and cosmological effects only.

After φ reaches the EW minimum, A(φ, σ,H) ∼ εΛ4. The mass of φ is then determined by
the A cos(φ/f) potential term as m2

φ ∼ εΛ4/f2 ∼ gΛ5/(fv2) <∼ v2. For the σ field, higher-order

terms in gσσ/Λ, not shown for simplicity in Eq. (5), give it a mass of order m2
σ ∼ g2σΛ

2 � m2
φ.

Contours of constant mφ and mσ are shown in Fig. 4.
These two scalar fields interact with SM particles mainly through mass mixing with the

Higgs. The relevant mixing angles are θφh ∼ gΛv/m2
h and θσφ ∼ gσfv

2/Λ3 while θσh is the
maximal value between θσφθφh and g2/(16π2)[gσΛ

7/(f2v3m2
h)]. Both φ and σ decay through

their mixing with the Higgs, with widths given by Γφ ∼ θ2φhΓh(mφ) and Γσ ∼ θ2σhΓh(mσ), where

Γh(mi) is the SM Higgs width evaluated at mh = mi.
4
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Figure 4 – Parameter space of the double-scanning model able to solve the hierarchy problem through the cosmo-
logical evolution of the fields φ and σ. The plot assumes Λ = f and gσ = 0.1g.

The scalar potential (5) also produces φ-Higgs interactions: φφhh of order εΛ2/f2 and φφh
of order εvΛ2/f2. Such interactions are important for the thermal production of φ.

4.2 Cosmological Implications

For cosmological implications, the small decay widths of φ and σ must be compared with today’s
Hubble constant, H0 (for cosmological stability) and with HBBN [for potential trouble with
Big Bang Nucleosynthesis (BBN)]. In a sizeable part of the parameter space, see Fig. 4, φ is
cosmologically unstable (Γφ > H0), but sufficiently long-lived to decay after BBN [Γφ < HBBN ≡
H(T = 1MeV)]. That region of the parameter space can then be constrained by cosmology. On
the other hand, σ is cosmologically stable in most of the relevant parameter space – it decays
within the age of the universe only in a small corner of parameter space.

Abundances of φ and σ from Vacuum Misalignment. After inflation and reheating the fields φ
and σ generically end up displaced from their minima. Eventually they will fall to these minima
and will oscillate around them if their lifetimes are large enough. The energy density stored in
those oscillations scales like cold dark matter (DM) with the potential to overclose the universe
or dissociate light elements (if the decay happens during or after BBN). More concretely, we
expect that during inflation σ slow-rolled to its global minimum, located somewhere in its∼ Λ/gσ
range. This needs a number of e-folds similar to the value estimated for enough φ scanning.
Due to its quantum jittery motion during inflation, σ has an average displacement from the
minimum at the end of inflation (Δσ)i ∼

√
N eHI . This corresponds to an energy density of

the order ρσi ∼ m2
σ(Δσ)2i ∼ H4

I . The energy density stored in σ oscillations today, relative to

the critical energy density, is then Ωσ
>∼ (HIMP /Λ

2)4
(
4× 10−28/gσ

)3/2×(Λ/108GeV
)13/2

. The
bound to avoid universe overclosure turns into a lower bound for gσ as a function of Λ, shown
in Fig. 4 in the case HI = Λ2/MP .

Interestingly, σ is a good DM candidate in some regions of the allowed parameter space,
reaching to large Λ. For some values of mσ, there are other cosmological constraints. For in-
stance, for Ωσ

>∼ ΩDM/20, the mass range 10−32 eV <∼ mσ
<∼ 10−25.5 eV is excluded by structure

formation 5, while masses around mσ ∼ 10−11 eV may be constrained by Black Hole superradi-
ance 6. For the particular case mσ ∼ 10−24 eV, σ can be searched for by the SKA pulsar timing
array experiment 7.

Thermal Production of φ. Concerning φ, its initial energy density from its displacement due
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to quantum spreading is at most ρφi ∼ H4
I , and, since mφ � mσ and then T φ

osc � T σ
osc, it gives

today a negligible effect. However, one should also consider the possible thermal production of
φ. This arises mainly from the φφhh-coupling discussed above, that leads to double-production
from the thermal bath via hh → φφ. At T >∼ mh, this double-production cross-section goes
like 〈σAv〉 ∼ ε2(Λ4/f4)/T 2. So, φ can reach thermal equilibrium only for T in the interval
[mh, ε

2MP (Λ/f)
4] (in which the φ production rate is faster than the rate of expansion). This

region corresponds roughly to the area above the Γφ = HBBN line of Fig. 4 and we conclude
that in most of the parameter space φ never thermalizes.

The number density of φ produced thermally is Yφ(T ) ∼ 10−4ε2Λ4MP /(f
4T ), where Yφ =

nφ/s and s is the entropy per comoving volume. The φ production is maximal at T ∼ mh. In
the parameter region where φ is cosmologically stable, the contribution of φ to DM today is
Ωφ ∼ mφYφs0/ρc (where s0 is the present entropy density) and it varies from Ωφ

<∼ 10−4 along
the line Γφ = H0 to Ωφ

<∼ 10−10 for Γφ � 10−10H0.

Constraints from BBN and Gamma-Ray Observations. The region in parameter space in
which φ is not cosmologically stable and decays after BBN can be problematic if the decay of φ
injects into the thermal bath an energy per baryon Ep.b

>∼ O(MeV) as this would distort the light
element abundances. Since Ep.b ∼ mφYφnγ/nb, this results in the bound mφYφ

<∼ 10−12GeV
(sensitively weakened depending on the precise value of the lifetime 8). Moreover, the Cosmic
Microwave Background (CMB) constrains lifetimes ∼ [1010 − 1013] s for Ep.b down to O(eV).
Therefore, it is expected that most of the region of parameter space delimited by the lines
Γφ = HBBN and Γφ = H0 in Fig. 4 is excluded.

On the other hand, if the φ lifetime is larger than the age of the universe, there are strong
constraints from decays generating a distortion in the galactic and extra-galactic diffuse X-ray
or gamma-ray backgrounds. In particular, sub-GeV DM decaying into photons should satisfy
τDM

>∼ 1027 s. 9 Since the gamma-ray flux scales as dΦγ/dE ∝ YφΓφ, we can translate this bound
into τφ > 1027 s× Ωφ/ΩDM , and this excludes the thin brown band of Fig. 4.

However, the cosmological constraints derived above can be evaded if the temperature of the
universe never reaches mh, in which case the thermal production of φ is suppressed.

5 Conclusions and Outlook

The relaxion idea proposed in Ref. 1 represents the last twist in the long fruitful history of
interplay between particle physics and cosmology. In the past, particle physics has been a
crucial ingredient in the understanding of the universe cosmological history. If this new idea (or
some variant) turns out to be realized in nature, then cosmology would be a key ingredient for
the understanding of key parameters of particle physics. In the original formulation, the size of
the electroweak scale is an accident of the early dynamical evolution of the relaxion field and
this offers a brand new class of solutions to the hierarchy problem.

In this talk I have focused on a sequel3 to the original proposal, in which the SM can be made
natural up to a cutoff of order 109 GeV without requiring visible new-physics at present (or far
future) colliders. The model is an extension of the original one with two axion-like states φ and
σ. Its dynamical cosmological evolution and interplay with the Higgs field leads to a naturally
small electroweak scale. The only new-physics in this model consists of these two scalars, which
in most of parameter space are very light and weakly coupled to SM particles. The model
signatures are therefore to be found not at high energy colliders but rather in dedicated searches
in the sub-GeV regime or through cosmological signals.

Interestingly, σ could be a good dark matter candidate. On the ther hand, φ cannot con-
tribute to more than Ωφ

<∼ 10−10. For this maximum value, it might be detectable in gamma-ray
observations from its late decay. Part of the parameter space of this model is testable by obser-
vations of the diffuse gamma-ray background, black hole superradiance and even pulsar timing
arrays. In addition, there is a rather rich BBN and CMB phenomenology which motivates a
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more thorough study.
Concerning the relaxion paradigm in a broader context, there remain many open issues.

Current models have unpleasant features, specially in the inflationary sector, which requires to
provide rather extreme values of the number of e-folds. This is certainly a place where there is
room for improvement in model building. Alternative mechanisms to provide friction (to slow
down the field evolution) would also be welcome. It is also an open question how high the
cutoff could be pushed up as well as possible ultraviolet completions and applications to other
naturalness problems (e.g. related to supersymmetry breaking or the cosmological constant) as
well as the origin and justification of the relaxion potential. For recent work of interest along
some of these lines, the reader is directed to Refs. 11,12.
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