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Abstract

Quantum computing proposes a revolutionary paradigm that can radically transform
numerous scientific and industrial application domains. To realize this promise, these
new capabilities need software solutions that are able to effectively harness its power.
However, developers may face significant challenges when developing and executing
quantum software due to the limited availability of quantum computer hardware, high
computational demands of simulating quantum computers on classical systems, and
complicated technology stack to enable currently available accelerators into devel-
opment environments. These limitations make it difficult for the developer to create
an efficient workflow for quantum software development. In this paper, we investi-
gate the potential of using remote computational capabilities in an efficient manner
to improve the workflow of quantum software developers, by lowering the barrier of
moving between local execution and computationally more efficient remote hardware
and offering speedup in execution with simulator surroundings. The goal is to allow
the development of more complex circuits and to support an iterative software devel-
opment approach. In our experiment, with the solution presented in this paper, we
have obtained up to 5 times faster circuit execution runtime, and enabled qubit ranges
from 21 to 29 qubits with a simple plug-and-play kernel for the Jupyter notebook.
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1 Introduction

Quantum computing holds great promise as a revolutionary technology that can trans-
form various scientific and industry fields. By harnessing the principles of quantum
mechanics, quantum computers can perform complex calculations and solve problems
that are currently intractable for classical computers. This promises breakthroughs
in areas such as cryptography, optimization, drug discovery, materials science, or
machine learning.

Although quantum advantage has been declared in experiments where quantum
computing hardware has shown to provide a significant computational advantage over
classical alternatives in specific problems [1], we still have to work for the foreseeable
future with Noisy Intermediate-Scale Quantum (NISQ) computers. These comput-
ers employ a hybrid computational model in which a classical computer controls a
noisy quantum device build from a variety of qubits (e.g. superconducting [2], trapped
ions [3], nuclear spins in silicon [4] or photonic [5]) that allows noisy initial state
preparation, performing low fidelity quantum gates and noisy measurements. Even as
NISQ devices are not capable of providing the quantum advantage promised by quan-
tum algorithms [6], they are an invaluable platform for research and experimentation.

Even with the steady advancements in Quantum Computing technology in terms of
both, qubit counts and fault tolerance [7, 8], and the increasing number of hardware
vendors, the current NISQ computers still remain out of reach for constant use for
many developers. This is due to hardware scarcity, vendor dependent development
infrastructure and high operational costs of QPUs. Therefore, many quantum soft-
ware developers rely on simulators running on classical computers to experiment with
quantum software during the development process. While it is straightforward to start
the development process locally on commonly used classical computing hardware,
scaling up the development, necessitates running larger circuits on specialized more
capable environments, with efficient simulators like graphical processing units (GPU)
that may be found in high-end consumer products (e.g. mobile workstations) or in
high-performance computing infrastructure (e.g. clusters of GPUs), and from there
eventually forward to a Quantum computer. But to get the advantage provided by
the GPUs a developer is currently required to have either deep technical knowledge
to configure the software stack required for using the advanced GPU capabilities to
simulate quantum circuits up to 31 qubits [9], or to have access to a supercomputer
infrastructure enabling execution for circuits with up to 40 qubits [10].

Our approach to improving the workflow in quantum software development is
building a toolchain with a goal to enhance the execution of quantum software routines
and lower the barrier of moving between platforms. In this article, we focus on the
usage of classical quantum computing simulators as part of that workflow and to
enable the developer to move between execution platforms effortlessly while making
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advancement between development cycles and to have each code execution be as
efficient as possible. This is done by using remote computational resources efficiently
and leveraging current best known simulators and GPUs in the execution. The solution
we present to support these goals is packaged as an easy-to-use Jupyter kernel, in
which the developers are not directly exposed to the complexities of operating the
cluster where the quantum routines are executed. The solution allows an effortless
transition from the local, to remote development execution environments. This will
benefit the developer with noticeable time savings and added range as the executable
circuits grow wider (in terms of qubit count) and/or deeper (in terms of operations
applied). During the development process, the code under work is encouraged to be
developed iteratively, therefore as the execution frequency increases, the role of each
execution time adds up leading to a fragmented developer experience. Moving the
computationally intensive and time consuming executions from the developer’s local
premises to the remote cluster smoothens their workflow, leading to the possibility to
do faster and more frequent iterations during the development process.

As the contribution of this research, we will present a practice to scale up the execu-
tion platform from the local environment to the actual quantum computer, the tooling
required to support the proposed practice, and the results obtained in our experiments
with execution speedups in several quantum code benchmarks that demonstrate the
improvements with regard to development time.

The rest of the paper is organized as follows. Section 2 presents the background and
motivation behind this work. Section 3 introduces the methodology used to perform the
study and the objectives of the solution. Section 4 describes the implementation of the
solution. Section 5 describes the environment, in which we performed the evaluation
of the solution, the impact on presented workflow models and addresses threats to
validity. Section 6 concludes with some final remarks and presents the future work.

2 Background and motivation
2.1 Software development life cycle

One of the foundational literature for quantum software engineering, Talavera mani-
festo suggests embracing the coexistence of quantum and classical computing when
engineering a quantum system. [11]. The system design should allow adapting quan-
tum capabilities to classical software and into the development process. This leads to
need of redefining the development life cycle commonly used in classical software
development [12]. The software development life cycle (SDLC) of hybrid classic-
quantum applications consists of a multifaceted approach [13], as depicted in Fig.
1. At the top level, the classical software development process starts by identify-
ing user needs and deriving them into system requirements. These requirements
are transformed into a design and implemented. The result is verified against the
requirements and validated against user needs. Once the software system enters the
operational phase, any detected anomalies are used to identify potential new system
requirements if necessary. A dedicated track for quantum components is followed
within the SDLC [14], specific to the implementation of quantum technology. The
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Fig. 1 Quantum software development life cycle and areas where developers and operators interact with
quantum hardware or simulators: (1) the design and development of quantum algorithms, and (2) scheduling
and executing the computation on an available and capable quantum computer

Quantum
operations

requirements for these components are converted into a design, which is subsequently
implemented on classic computers, verified on simulators or real quantum hardware,
and integrated into the larger software system. During the operational phase, the quan-
tum software components are executed on actual quantum hardware. The scheduling
ensures efficient utilization of the scarce quantum hardware resources, while monitor-
ing capabilities enable the detection of anomalies throughout the operational stage.

As quantum computers are a limited resource, it is currently not practical to develop
quantum software components directly on hardware. Instead, developers should use
simulators that use commonly available and less expensive classical resources (e.g.,
CPUs and GPUs [15]) for the early stages of development and testing. When proceed-
ing in the development process, developers may move to more sophisticated simulators
that can simulate the noise of actual hardware. Only when the components are mature
enough, the development should be continued on quantum processing units (QPU),
the actual hardware that will be used during the execution phase. However, as the
implementation of quantum software stack trades off the visibility of the execution
process for usability [16], developers have to experiment and iterate on devices and
simulators to determine the actual behaviour of their programs. This approach ensures
that the use of quantum resources is efficient and effective.

2.2 Towards an iterative workflow for quantum development

The SDLC for quantum and hybrid application includes a quantum development phase,
which we examine closer as an internal process. The model suggests that for the quan-
tum components, the developer should follow an inner development cycle, Quantum
Circuit Lifecycle where the implementation of the quantum software starts from the
classical - quantum splitting, is followed by hardware-independent quantum circuit
development, then by hardware selection and optimization, up to the execution on
selected QPU, and finally analyzing the results [14].

In a model for quantum-classical system design proposed by Perez-Castillo et
al. [12], Incremental Commitment Spiral Model (ICSM) for quantum, authors sug-
gest an incremental and iterative approach. While these models have slightly different
scope and point of view, they share similar core ideas for the quantum development
phase. ICSM focuses on the broader perspective of system design and development
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processes. However, within the internal development cycles, it emphasizes an incre-
mental workflow with continuous adjustments and evaluations in each iteration.

Next, focusing more closely on the inner cycle of the development process, Hard-
ware Independent Implementation, where the quantum circuit is developed, tested and
verified. As part of the models this is presented as one part of a cycle, but it is important
to notice that, as well as in classical software development, the programming, testing
and validating of the quantum code is yet an other iterative and incremental process
itself. To make this part of the process as swift as possible on each iteration, every
code execution within the cycle needs to be efficient, which may only be obtained
with right selection of execution targets available from the development environment.
While these models offer clear view on wider perspective of the development process,
and suggest efficient process models, we have recognized a limitation of practical
workflow, and related tooling support.

2.3 Quantum simulation methods on classical hardware and scalability

To simulate quantum computers and quantum circuits there are several known meth-
ods which have different characteristics and use cases. One approach to simulation is
with state vector or density matrix simulation, where the full quantum states are simu-
lated and maintained throughout the execution. These methods are resource intensive
on memory, with memory demand growing exponentially with the qubit count, cre-
ating the bottleneck in simulating quantum circuits as the qubit count grows [17].
For perspective, in experiments with a GPU cluster with 2048 NVIDIA A100 GPUs,
accommodating 40 gigabytes of memory each, Willsch et al. reached limits at 42
qubits [10]. Nonetheless, alternative methods are available to improve the efficiency
of classical simulation for certain classes of quantum circuits. For example, quantum
circuits containing few non-Clifford gates can be simulated efficiently up to a higher
number of qubits using low-rank stabilizer decompositions [18]. Similarly, efficient
classical representation of quantum circuits using tensor network techniques, such as
matrix product states (MPS) or Projected Entangled Pair States (PEPS) [19], allows
one to simulate quantum circuits of an arbitrary number of qubits, as long as the MPS
structure has a low bond dimension, that is, quantum circuits with a moderate degree
of entanglement [20].

Regardless of the chosen simulation method, a developer can likely achieve perfor-
mance improvements by executing the simulation in a more powerful environment-
either by leveraging additional memory to simulate the full state or by utilizing efficient
parallel computation on GPUs, e.g. with mentioned tensor network methods [21]. That
being said, later in this article, we concentrate on the more general case of state vector
simulation.

2.4 Computing at-scale paradigms
Cloud computing allows the development of scalable applications [22], which rely on

computing resources like computing power, storage and databases that are accessed on
a pay-per-use basis. Through the extensive use of application programming interfaces
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(APIs), teams formed of software developers and operators can scale these resources
up and down in response to the users’ needs. This entails designing applications
as small, loosely coupled components that can be bundled with their dependencies
into portable containers and deployed on the immutable infrastructure. Furthermore,
integrated monitoring and logging offer valuable insights into performance, health,
and behaviour, empowering a swift response to potential anomalies.

Kubernetes is the industry-standard container orchestration platform for automat-
ing deployment, scaling, and management of containerized cloud-native applications
[23]. Developed as an open-source solution by Cloud Native Computing Foundation
(CNCF)!, together with the myriad of projects that offers supporting functionality, it
allows users to deploy applications on the managed infrastructure of the major cloud
providers (e.g., AWS EKS2, Azure AKS3, or GCP GKE4), smaller or regional cloud
providers, or on-prem — using own infrastructure.

High-performance computing (HPC) relies on using supercomputers and parallel
processing techniques to solve complex computational problems quickly and effi-
ciently, in application domains that require massive computational power [24]. HPC
systems typically consist of multiple interconnected processors or nodes that work
together to execute tasks in parallel, enabling large-scale simulations, data analysis,
and scientific computations, leveraging the Open Message Passing Interface (Open-
MPP°) compatible architectures.

Although cloud computing and HPC have distinct purposes — on-demand access
to computing resources online versus providing computing power for complex sci-
entific and computational tasks — they both face increasingly intense competition for
the utilization of specialized accelerators like GPUs, a trend noticed by vendors that
allow partitioning single GPU instances with techniques like Multi-instance GPU®.
Further, despite being operated in different ways — public cloud providers or on-prem
versus national laboratories, research institutions, and specialized HPC centres — each
approach has technical capabilities that are useful in the other domain.

For example, training machine learning models in Kubernetes with Kubeflow’
can take advantage of HPC-like resources via the MPI Operator®. Similarly, the
more sophisticated orchestration, monitoring capabilities, and integrations of the
cloud-native computing have been identified as gaps by the HPC community [25].
The industry response was to establish the High Performance Software Foundation
(HPSF)? that aims to develop solutions that are aligned with Cloud Native Computing
Foundation (CNCF)!9, the home of cloud-native development. We expect that in the

! https://www.cncf.io/.

2 https://aws.amazon.com/eks/.

3 https://azure.microsoft.com/en-us/products/kubernetes-service.
4 https://cloud.google.com/kubernetes-engine.

5 https://www.open-mpi.org.

6 https://www.nvidia.com/en-us/technologies/multi-instance-gpu/.
7 https://www.kubeflow.org.

8 https://github.com/kubeflow/mpi-operator.

9 https://hpsf.io.

10 https://www.cncf.io.
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long term, the technical implementations of the HPC and cloud-native computing to
be much closer aligned than they are today.

Quantum computing enables the existing base of cloud-native and HPC appli-
cations to accelerate appropriate computational tasks. Two notable approaches for
integrating the two software stacks are HPC-QC [26], which uses the OpenMPI, and
XACC [27] approach based on the OSGi'! architecture. Similarly, Qiskit’s quantum-
serverless [28] proposes a cloud-based approach for running hybrid classical-quantum
programs. The proposed programming model, conforming to the RAY!? computing
framework, makes it easy to scale Python workloads on a Kubernetes cluster in which
the quantum execution environment is represented by a distributed Qiskit runtime that
allows transparent access to multiple QPUs. Despite all these efforts, the integration
of quantum computing into classical paradigms is fragmented. The EuroHPC aims to
address this with the Universal Quantum Access [29] development.

With the currently available tools, a quantum software developer has easy access to
several separate tools and toolkits to begin their journey, but soon after, as the quantum
circuits get more complicated to simulate the path gets complex. When going forward
to more demanding quantum circuits, ranging from 20-30 qubits, the developer has
to choose between building their own execution environment requiring investment
in capable hardware, such as GPUs, and knowing how to build their own execution
software infrastructure stack using these building blocks. The other possible way would
be to use some of the external computation services with batch type of execution, e.g.
HPC Clusters, or some with a slightly different approach using commercial cloud-
based infrastructure with suitable hardware, demanding highly specific expertise to
set up and to use.

3 Methodology and objectives

The study was developed using the objective-centric approach of the Design Science
Research (DSR) [30] methodology, a process depicted in Fig. 2. The starting point was
to answer the research question: How to improve the experience of the iterative quan-
tum software development process? Based on the findings outlined in the background
and motivation, the research question was further refined into a set of objectives:

01 - Iterative workflow with simulators: Where in the earliest stages of quantum
circuit development, like prototyping an algorithm, local execution may be efficient,
as soon as the circuits grow wider and deeper during the development iterations, the
processing power demands for simulators in use grows fast. To keep both the change
of execution target between iterations fluent, and the execution runtimes short, the
development environment needs to support the the iterative workflow.

11 https://www.osgi.org.
12 https://www.ray.io.
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Fig. 2 Design science research methodology applied to the improve the quantum software development
process

02 - Execution speedup: GPUs provide high efficiency to quantum code execution,
but using them as a local resource is often not possible for an individual developer, and
they need to be accessed through extra layers of infrastructure and network. Despite
the overhead from using remote GPU, the developer still gets better experience, and
access to simulators that can run circuits with a larger number of qubits and depth and
simulate noise.
03 - Execution target selection: To balance the benefits of remote GPU execution -
such as speedup - with the drawbacks of increased networking overhead on small-scale
circuits, it is essential to make the process of selecting an execution target straightfor-
ward and efficient for developers.

The design and development phase consisted of determining the configurations of
a Kubernetes cluster that is able to effectively execute quantum computation tasks
using CUDA-capable quantum simulators and developing a Jupyter kernel that allows
sending the quantum computations (e.g. the content of notebook cells) to the cluster.
The demonstration phase consisted of demonstrating the use of the Jupyter kernel
for executing a quantum routine test suite on two Kubernetes clusters. During the
evaluation phase, we have assessed the results collected during the demonstration
phase. For the communication phase, we have prepared this report and published
using an open-source model of the kernel code to GitHub.
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4 Tooling support: the Python kernel for Kubernetes
4.1 Quantum development toolkits and simulators

Now we describe briefly the quantum development and execution tools that we have
used as the technology stack to build our solution and the benchmarking introduced
later in the paper.

Qiskit is a Python library and a quantum development toolkit designed to accom-
modate different types of quantum computers in the NISQ era. It allows algorithm
designers to develop applications leveraging quantum computing, circuit designers to
optimize circuits and explore its properties like error correction, verification and vali-
dation. Qiskit offers also tools to research and optimize gates, with precise control and
the ability to explore noise, apply dynamical decoupling and perform optimized con-
trol theory. Qiskit is an open-source project and currently offers dozens of additional
libraries, plugins, simulator backends, application packages for multiple domains such
as machine learning, physics, chemistry and finance and other related projects avail-
able. In Qiskit there are also several transpiler plugins available for users to optimize
and interact with the transpiling process'?. Qiskit Aer'# is Qiskit library with high-
performance QC simulators and noise models. Some simulators included in Aer have
support for leveraging Nvidia CPUs with Cuda version 11.2 or newer. Qiskit, Qiskit
Aer and Cuda relations in the development and execution environment are presented
in Fig. 3.

Nvidia CUDA® is a computing platform developed for GPUs, for computationally
demanding tasks suitable for parallel computing with up to thousands of threads.
cuQuantum'® is an SDK based on CUDA, offering libraries for Quantum computing,
with two libraries, cuState Vec for state vector computation and cuTensorNet for tensor
network computation. cuStateVec is used by gate-based general quantum computer
simulators, providing measurement, gate application, expectation value, sampler and
state vector movement. CuStateVec library is available for Cuda versions 11 and
12. Nvidia cuQuantum is used by several different QDK’s GPU-powered quantum
simulator backends.

Developing across all target execution environments exposes the quantum software
developer to a wide range of technologies that force them to balance their primary
development activities with deep dives into operational aspects like configuring and
maintaining their development environments or getting access to compatible hard-
ware accelerators for running the relevant simulators. For example, Fig. 3 provides
an overview of the software stack that application or algorithm developers using the
Qiskit tools must be aware of. The situation is similar for other mainstream toolk-
its like PennyLane or Cirq'”. Experimental programming toolkits, like Eclipse Qrips

13 https://qiskit.github.io/ecosystem/.

14 https://qiskit.github.io/qiskit-aer/index.html.
15 https://developer.nvidia.com/cuda-zone.

16 https://docs.nvidia.com/cuda/cuquantum/.

17 https://quantumai.google/qsim/cirq_interface.
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Fig. 3 A layered view at the Qiskit software stack, where from top to bottom may be seen how User,
Frameworks, Simulator back-ends, hardware drivers and the processor units build the execution stack for
quantum algorithms or applications

[31], leverage the existing Cirq or Qiskit assets to be able to execute circuits on GPU-
accelerated simulators.

4.2 Notebooks

JupyterLab!® offers a versatile and user-friendly interactive computing platform suit-
able for data science, scientific computing, machine learning, and quantum computing.
With its flexible architecture and extensive plugin ecosystem, it allows its users to
develop customized workflows tailored to their specific needs, such as data explo-
ration, prototyping algorithms or creating interactive presentations.

The key enabler of Jupyter is the notebook, an interactive and collaborative doc-
ument formed by a collection of cells that can contain code, Markdown'® formatted
text, equations or interactive widgets. A kernel is a computational engine that executes
the code contained within the notebook. Jupyter supports multiple programming lan-
guages through different kernels, such as Python, R, Julia, and others. Users can select
the desired kernel depending on their preferred programming language for a specific
notebook. These combined capabilities allow scientists and algorithm developers to
perform their work using a combination of code, explanatory text, and visualizations,
making it easier to experiment, iterate, and document the development process.

18 https://jupyter.org.
19 https://spec.commonmark.org/current/.
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Kubernetes cluster
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.| JupyterHub create |
<service> User's JupyterLab
<pod>
User
Container pull CPU GPU
Registry " ]
Workers

Fig.4 JupyterHub on Kubernetes architectural structure used in the mentioned solutions The Littlest Jupyter-
Hub and Zero to JupyterHub for Kubernetes

JupyterHub?® expands the functionality of JupyterLab to groups of users, giv-
ing them access to computational environments and resources without the burden
of installation and maintenance tasks. The project provides two distributions: The Lit-
tlest JupyterHub — suitable for small group of users, typically less than 100, can be
installed on a single virtual machine, and Zero to JupyterHub for Kubernetes®' — suit-
able for large number of user, makes extensive use of container technologies, cloud
resources and infrastructure. Overview of arcitechtural structure described in Fig. 4.
The container that runs JupyterLab can be customised following the Jupyter Docker
Stacks?? convention, allowing the user to run quantum algorithms in GPU accelerated
simulators like Qiskit Aer or PennyLane Lightning. However, as the pod life cycle is
linked to the user session, the GPU is locked by the user’s pod regardless if the Python
kernel executes code or not, a utilization pattern that is not optimal.

4.3 Kubernetes for quantum

Qubernetes [32] (or Kubernetes for quantum) models the quantum computation
tasks and the hardware capabilities required to execute them following established
cloud-native principles, allowing seamless integration into the Kubernetes ecosystem.
Following these conventions, a developer can submit quantum computation tasks pack-
aged as jobs to Kubernetes clusters, which are executed on quantum capable nodes in
simulators using classical computational resources (e.g. CPUs or GPUs), or on actual
quantum hardware.

4.4 Functionality

The goal of developing the solution drives from the need for practical tools, for quantum
software developers allowing to follow earlier presented SDLC’s workflows. Follow-
ing the model emphasizes the need for practical tools, enabling iterative workflow for

20 https://jupyter.org/hub.
21 https://z2jh.jupyter.org/en/latest/index.html.
22 https://jupyter-docker-stacks.readthedocs.io/en/latest/index.html.
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Fig. 5 System architecture for the solution build to support developer in quantum software development.
In the model introduced developer runs Jupyter lab locally outside of the Kubernetes cluster

quantum software development, with the possibility to transform execution from one
platform to another when advancing in the process. Practically all modern software
development methods advise towards iterative development and frequent code execu-
tions, to enable this to be done with quantum code, the execution needs to be as efficient
as possible. Moving the execution from local to remote platform needs to provide a
noticeable difference in execution efficiency to be beneficial for the developer.

4.5 System architecture and components

The solution enables a quantum software developer to run quantum routines or pro-
grams using GPU-accelerated simulators (e.g. Qiskit Aer or Pennylane Lightning) on
a remote Kubernetes cluster with possibility to access more efficient computational
resources, when comparing to local laptop execution. The solution involves a custom
Jupyter kernel (e.g., g8s_kernel), and a compatible cluster that has at least one
node that allows the execution of GPU-accelerated containers via the Nvidia Con-
tainer Toolkit>>. The performance of the solution is related to the GPU’s included in
the cluster, and it is up scalable by applying more, or higher performing processing
units to the cluster. To utilize the solution, the developer must install the kernel and
specify the location of the configuration file of the cluster (e.g., kubeconfig?*) as
an environment variable. The notebook is launched from the command line in Unix-
based systems with simple command KUBECONFIG=/path/to/kubeconfig
jupyter lab,wherethe "/path/to/kubeconfig" isreplaced with the actual
path to the cluster’s configuration file, making the startup of the kernel and accessing
the GPU in the cluster as simple as possible for the developer. Through the user inter-
face of the Jupyter Notebook/Lab, the user can switch between the local development
kernel (e.g. IPython) and the remote Kubernetes cluster. The system architecture
and components are detailed in Fig. 5. As the Jupyter notebook leveraging the solu-
tion is run self-hosted, the developer is able to access any compatible notebook they
have stored locally, and use their personalized settings or extensions in the Jupyter,
as they would when working in a local development environment. The Kubernetes

2 https://docs.nvidia.com/datacenter/cloud-native/container-toolkit/latest/index.html.

24 https://kubernetes.io/docs/concepts/configuration/organize-cluster-access-kubeconfig/.
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Listing 1 Quantum job specification

apiVersion: batch/vl
kind: Job
metadata:
name: "quantum-job"
spec:
template:
metadata:
name: "quantum-pod"
spec:
containers:
- name: "quantum-task"
image: registry.com/user/job-dependencies:vl

command: ["python", "/app/main.py"]
resources:
limits:
nvidia.com/gpu: 'l' # requires GPU usage
volumeMounts:

- name: source-code-volume
mountPath: /app

volumes:
- name: source-code-volume
configMap:
name: task-files #{"main.py": "code"}

restartPolicy: Never

cluster uses a container base image including the necessary quantum libraries, and
other dependencies related to quantum execution using GPUs.

4.6 Task execution model

The execution flow is triggered by the user pressing the run button in the notebook.
When the kernel receives the do_execute command, it detects the dependencies
in the cell code and prepares the container specification (e.g., Dockerfile and
requirements. txt), using as base image a pre-build image that includes all
dependencies for the CUDA version supported in the cluster. The kernel builds the
image and pushes it to the container registry. Then it creates a Kubernetes Job speci-
fication that corresponds to the execution task (see Listing 1), and a ConfigMap that
contains the actual code that will be mounted as a volume in the Pod. Once the cluster
API server receives the request, it schedules the job when the requested GPU resources
are available. The Pod pulls the image from the Registry and executes the tasks. The
kernel polls the API server for the Job’s status waiting for completion, then collects
the logs and cleans up by deleting the Job and the ConfigMap. Depending on the
container’s exit code (e.g. success for 0, or failure otherwise), the kernel returns the
result to the notebook on the stdout or stderr respectively. The kernel rebuilds
the image and the pod pulls the image only when dependencies change. The task
execution sequence is depicted in Fig. 6.
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Fig.6 Execution flow of a notebook cell on Kubernetes cluster using the q8s_kernel

5 Evaluation
5.1 Benchmark scenarios

We have evaluated the solution in the following scenarios that we consider represen-
tative of how the solution will be used. The baseline consists of the user running the
development environment (e.g. the Jupyter Notebook/Lab) and executing the quantum
routine experiments on his own laptop. The following test scenarios employ CUDA
capable GPUs accessed remotely in Kubernetes clusters:

Cluster with mobile workstation - Users with better hardware share their compu-
tational resources (e.g. a mobile workstation) with the rest of the team in a Kubernetes
cluster. Users run the development environment similar to the baseline scenario, but
the quantum routines are executed on the mobile workstation. The cluster is not used
by other users while the benchmark routines are executed.

Cluster with cloud GPUs - The user runs the development environment on his
own laptop and executes the quantum routine experiments on a Kubernetes cluster
operated by a commercial entity. In our case, we have selected Puzl®, a provider
that offers access to Nvidia A100 40GB GPUs. The cost of using the GPU resources
is approximately 1.6 EUR/h, in line with other cloud infrastructure providers. The

25 https://puzl.cloud/.
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Listing 2 Template for the benchmark script.

import timeit
from testbook import testbook

QUBIT_START = 3
QUBIT_END = 29
ITERATIONS = 10

def benckmark (notebook, kernel name, device, target):
for qubits in range (QUBIT_START, QUBIT_END + 1):
for iteration in range(l, ITERATIONS + 1):
@testbook (
notebook,
execute=True,
kernel_name=kernel_name
)
def test(tb):
start = timeit.default_timer ()
func = tb.get("test_function")

simulator = func(

qubits,

device=device,

target=target
)
end = timeit.default_timer ()
overhead = end - start - simulator
# log test results

test ()

charging model is based on effective utilization of the GPU resource, e.g., the effective
time the Job runs to completion. The cluster is shared with the other Puzl users that
execute their own workloads while our benchmark routines are executed.

The detailed hardware configurations of the devices used in the evaluation scenarios
are described in Table 1.

5.2 Benchmark tooling

We developed a benchmarking tool based on testbook?%, a unit testing frame-
work for testing code in Jupyter Notebooks. The tool implements the following
workflow (see Listing 2): loads the notebook containing the test function, configures
the notebook with a specific kernel — Python for local execution and g8s_kernel
for remote execution on Kubernetes cluster, and invokes the test function (see Listing
3), with number of qubits and target device — CPU for local test or GPU for Kubernetes.
Each test run measures the simulator time — the amount of time spent executing the
test function in the simulator, and the overhead time — the amount of time required for
interacting with the kernel (e.g. local tests), or the time required to setup and teardown
the job that executes the computation task in the Kubernetes cluster. The test procedure
is repeated 10 times and the resulting values are averaged.

26 https://pypi.org/project/testbook/.
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Listing 3 Template for the quantum benchmark routines

import timeit

from qgiskit import transpile

from giskit.circuit.library import QFT as Test

from giskit.circuit.library import QuantumVolume as Test
from giskit.circuit.library import QAOAAnsatz as Test
from giskit_aer import AerSimulator

from giskit.transpiler import CouplingMap

from giskit_aer.noise import NoiseModel

from giskit_ibm runtime.fake_ provider import FakeAuckland

def test_function(n, method="statevector", device='GPU')
cm = CouplingMap () .from_full (n)
model = FakeAuckland()
noise_model = NoiseModel.from_backend (model)
backend = AerSimulator (
noise_model=noise_model,
method=method,
device=device,
coupling map=cm

)

# One of QFT, QuantumVolume, QAOAAnsatz
circuit = Test (num_gubits=n)
circuit.save_state()
circuit = transpile(

circuit,

backend=backend,

coupling_map=cm

)

start = timeit.default_timer ()
backend.run(circuit) .result ()
end = timeit.default_timer ()

# simulator value in benchmark script
return end - start

5.3 Quantum benchmark routines

For each benchmark scenario, we tested three quantum routines: the Quantum Fourier
Transform (QFT) circuit, the Quantum Volume (QV) metric [33] and the Quantum
Approximate Optimization Algorithm (QAOA) for the Max-Cut problem [34]. Similar
selection of quantum routines have been used in benchmarking focusing on software,
[35, 36]. The selection of algorithms might differ from a selection of benchmarking
used for QPU hardware and/or its components benchmarking, some of which focus
on phenomena like error rates, that are not present when running simulators.

QFT is a key element of many fault-tolerant quantum algorithms like Shor’s
algorithm [37] and the Harrow-Hassidim-Lloyd (HHL) algorithm [38], which show
a theoretical exponential advantage over their classical counterparts. Fault-tolerant
quantum computing is not likely to be achievable in the short term, but as better
quantum error correction (QEC) techniques and better hardware become available, a
reliable and quick way to simulate circuits like the QFT is important for future bench-
marks. Therefore, it is natural to choose this routine as the fault-tolerant benchmark
scenario.
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Fig. 7 Quantum test routines execution speedups: QFT (a), QV (b) and QAOA (c). The baseline for the
speedup is local execution, with laptop and CPU, The dotted line represents the maximum speedup that can
be achieved with the raw processing power of the GPU, whereas solid lines correspond to the actual speedup
that considers also the network overhead needed to set up and tear down the remote routine execution

QV is a single-number metric that quantifies the largest random circuit of equal
depth and width that a given quantum computer can implement successfully, up to
an effective error rate. The QV is calculated from a circuit of d layers of two-qubit
unitary gates sampled from the Haar measure on SU(4) applied to random partitions
of pairs of qubits. The QV can also be understood as the complexity of simulating this
random circuit on classical computers, so it functions as a good benchmark example
for our tests.

QAOA. As current quantum hardware has a limited number of qubits and suf-
fers from noisy gates and poor coherence times, variational quantum algorithms [39]
emerge as a promising alternative to achieve quantum advantage, combining the power
of QPU and classical optimization algorithms. Therefore, studying the performance
of classical simulators for these kinds of algorithms is important to further understand
the limitations of hybrid classical-quantum approaches. One of the most popular vari-
ational algorithms in the NISQ era is the QAOA, a hybrid quantum-classical algorithm
for solving optimization problems. In QAOA, a parameterized quantum state is pre-
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pared, that maximises the cost function of the corresponding optimization problem,
using p layers of parameterized unitaries.

The main objective of these benchmark tests is to compare the execution time
between the different scenarios, as the number of qubits and gates within circuits
grows larger. We performed several circuit simulations for each quantum routine using
Qiskit for circuits with varying numbers of qubits up to 29 qubits. We simulated the
exact QFT circuit, and simulated QV circuits with d = 20 layers of random gates. For
the QAOA algorithm, we consider the Hamiltonian of the Max-Cut problem of a 2-
regular graph on n nodes, where n corresponds to the number of qubits. We simulated
the QAOA circuit using p = 5 layers of cost and mixer Hamiltonians and random
initial parameters. As we are only interested in the execution time of the simulator,
we ignore the classical optimization loop and focus only on simulating the quantum
circuit. Using a fully connected coupling map, the number of gates of each routine
scales as O(n(n/2+ 1)) for QFT, O(dn/2) for QV and O(pn(n + 1) + n) for QAOA.

Until now, we have only considered ideal circuits, but practical benchmarks
also require including realistic noise models and coupling maps to obtain results
closer to experimental results. For that reason, we also performed the same QAOA
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Fig.9 QAOA with noise test routine in baseline scenario (a), mobile workstation scenario (b), cloud GPU

scenario (¢), and speedup comparison (d)

benchmark including a noise model, coupling map and basis gates set taken from
FakeAuckland, a 27 qubit backend available in giskit-ibm-runtime?”’.

5.4 Execution speedup

We successfully executed selected QFT, QV, and QAOA test routines in circuits con-
taining up to 29 qubits in the baseline and two test scenarios. Despite previous reports
suggesting that circuits with 31 qubits require 17GB of GPU RAM [9], our attempts
to run 30 qubit circuits failed in both test scenarios. Although the jobs were scheduled
and the pods started on the proper cluster node, they were terminated due to running
out of memory. Qiskit Aer raised an error for circuits with 31 qubits, indicating before
starting the simulation that the minimum GPU RAM requirements were not met.
The results, illustrated in Fig. 7, indicate that speedups begin to emerge for all quan-
tum routines when circuits exceed 24 qubits. Both QFT and QV routines exhibit similar
speedup patterns, despite the cloud GPU scenario having a more capable GPU than
the one in the mobile workstation. However, the overhead of securing the necessary

27 https://pypi.org/project/qiskit-ibm-runtime/.
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computational resources when competing with other users in the cluster outweighs
the speed-up gains of the more powerful GPU. In contrast, the QAOA routine demon-
strates significant speedups in both test scenarios, but a substantial advantage in the
cloud GPU scenario when considering only the simulator execution time. This speedup
can be attributed to the differences in the number of gates between QAOA and the
other methods. For 29 qubits, the number of gates for QFT, QV and QAOA are 450,
280 and 4379, respectively.

The execution time details for the QAOA test routine are depicted in Fig. 8. We
can see that for circuits larger than 24 qubits in the baseline scenario, the execution
time exceeds the expected limits of a fast iteration read-eval-print loop (REPL [40])
environment like Jupyter Notebook, shifting to batch execution mode. In both mobile
workstation and cloud GPU testing environments, the execution time follows the same
exponential growth pattern, but with smaller values, resulting in a 10x speedup for
29-qubit circuits. The overhead in the mobile workstation scenario remains relatively
constant due to available computational resources. In contrast, the cloud GPU scenario
shows increasing overhead starting from 27 qubits, due to increased RAM require-
ments that the cluster scheduler needs to secure before allowing the execution. As a
result, we can expect that although the overhead will increase in clusters with more
capable GPUs, it will be at a slower rate than simulation time growth, thus not nega-
tively impacting speedup gains.

The QAOA routine was executed on the backend with FakeAuckland noise
model up to circuits with a maximum of 12 qubits, see Fig. 9. This was the highest
circuit width that could be run on both our mobile workstation and cloud GPU testing
environments, as larger circuits exceeded the available GPU’s RAM capacity. Despite
the relatively small number of qubits in our experiments, we observed speedup benefits
starting at around 10 qubits. Although our findings are not definitive, we predict that
GPUs with more memory would be able to execute circuits on noisy backends with
significant speedup.

The quantum benchmark routines used in the evaluation were selected considering
the increased computational capabilities required to execute circuits with a larger
number of qubits and an increasing number of gates, which ultimately convert into
longer execution times. The results in both test scenarios demonstrate that significant
speedups for circuits larger than 25 qubits, allow quantum software developers to
perform experiments by iterating faster, which ultimately improves their productivity.
Thus, the objective O2 is achieved.

5.5 Improving iterative development with tooling

Our take on the workflow for quantum software development, presented in Fig. 10,
follows the earlier presented guidelines by SDLC and ICSM and focuses on clarifying
changes in the environment during the process. The process starts from the require-
ments for the quantum components, then followed by the algorithm and circuit design
on selected quantum SDK. Moving forward to implementation of the circuit on scale
for the current execution target, then to execution on the selected hardware, locally
in the earlier stages and incrementally moving to remote GPU and later to QPU. The
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Fig. 10 Workflow for quantum software and quantum circuit development with iterative model. The sug-
gested flow starts from requirements and follows an incremental and iterative flow, moving from local
environment to more efficient and remote platforms on each iteration

events that necessitate a change in environment generally fall into two categories: (1)
inefficient execution time with a simulator, and (2) memory limitations of the exe-
cution platform. Among these, we considered it to be almost as important to have
a possibility to iterate back temporarily from QPU to GPU, e.g. when fine tuning
algorithms and data, as repeating execution will noticeably increase the running cost.
Following the execution phase, in all cycles the results should be evaluated, and in the
later iterations introduced and evaluated with the noise on the results. Depending on
the quality of the results, the input data and the circuit size should be adjusted when
moving to the next iterations.

The tooling to support the model is perceived by the user as a standard Jupyter
kernel, see Fig. 11. To function properly, the implementation relies on Docker and
Kubernetes, widely used tools supported on a multitude of operating systems. The
selection of the cluster where the quantum task execution is performed is achieved
by providing the kubeconfig configuration file as an environment variable. The
solution does not require a deep understanding of Kubernetes cluster management
beyond the configuration file. As such the user is not exposed to the complexities of
enabling access to the GPUs or configuring the computational layer of the CUDA or
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Fig. 11 Jupyter lab environment configured for executing quantum computations on a remote cluster via the
"Python Q8s kernel" (q8s_kernel). Target execution environment can be switched using the kernel selection
capability (1), while the execution can be started on the selected environment using the build in start/stop
toolbar (2)

cuQauntum. Leveraging the Jupyter kernel abstraction, the developers can switch the
target execution to reflect the development stage they are focused on.

From the development workflow the perspective, the kernel works as enabler for
the user in up-scaling the execution environment between the iterations in the devel-
opment process. With the current implementation offering a easy access to local CPU
and remote GPU from the same Notebook interface, all from developer’s local envi-
ronment. Enabling to perform fast iterations as the more computationally intensive
quantum tasks are executed in less time using the remote computational resources of
the Qubernetes cluster. The objective O1 and O3 is achieved.

5.6 Limitations

The current implementation state of the tooling is limited by the lack of support for
QPU and multi-GPU, which limits the applicability to a subset of the SDLC workflow,
or executing routines that are bound by limits of one GPU instance. Both represent
future research directions and we address the further in Sect. 6. Nevertheless, the
extendability ability of the tooling, consisting of the Jupyter kernel and the Quber-
netes cluster has been considered from the beginning of the design process. With the
proposed solution, the circuit execution is initiated by the kernel, which packages the
quantum routine into a job that is annotated to match the target selected by the user. The
Kubernetes scheduler component inside the cluster initiates execution on the available
computational resource that matches the user request. With suitable QPU hardware
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Table 2 Kubernetes job description examples with GPU target and QPU target

Target platform Kubernetes job description

containers:
— name: "quantum-—task"
image: registry.com/user/job—dependencies:vl
Remote GPU command: ["python", "/app/main.py"]
resources:
limits:
nvidia.com/gpu: 'l' # requires GPU usage

containers:
— name: "quantum-—task"
image: registry.com/user/job—dependencies:vl
Remote QPU command: ["python", "/app/main.py"]
resources:
limits:
vendor .example.com/qpu: '1'

integration inside the cluster visible as a node advertising computational capacity of
vendor.example.com/gpu: ’1’,switching the execution target is equivalent
with changing resources.limits property in the Kubernetes job description.
The precise changes between a GPU target and QPU target is presented in Table 2.

5.7 Threats to validity

The threats to the validity of our study are discussed following to the categorization
provided by Wholin et al. [41], dividing the evaluation of validity to four areas, internal
validity, external validity, construct validity and conclusion validity.

A threat to internal validity may arise from the selection of the quantum routines
used for benchmarking, might not be representative of all development situations. To
mitigate this threat, we have utilized a set of algorithms and routines found in other
benchmarking experiments performed by academia [9, 42] and industry [43]. Another
threat to internal validity could arise from developing the benchmark experiments
using only the Qiskit toolkit and executing the routines in the Qiskit Aer simulator.
The mitigation, in this case, is that the speedups are determined to a large extent by
CUDA and cuQauntum toolkits, which are used by other popular simulators, e.g.,
lightning.gpu?® for PennyLane or gs imcirg® for Cirq.

A threat to our study’s external validity arises from the performance objectives
employed by operators of different Kubernetes clusters, which may reflect in lack
of significant speedups on executing quantum routines due to the availability of the
required computational resources (e.g. memory or GPUs). To mitigate this threat, we
have used two Kubernetes clusters, one operated by us, and one that is a live sys-
tem operated by a commercial entity focused on providing Nvidia A100 computing
resources. Together, they allowed us to observe that even when relying on the Kuber-

28 https://docs.pennylane.ai/projects/lightning/en/stable/index.html.
2 https://docs.nvidia.com/cuda/cuquantum/latest/appliance/cirq.html.
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netes built-in scheduling infrastructure, we are still able to observe significant speedups
when executing quantum computations with circuits having more than 25 qubits. As
we enroll actual quantum algorithm developers in our university’s test environment,
we will gain additional insights into how the cluster resources can be better utilized
in order to reduce the overhead of executing quantum tasks in a cluster.

A threat to construct validity arises from the selection of Jupyter Notebook as
the programming modality, which leaves out the developers that use text editors or
integrated development (IDE) to write the quantum routines directly as Python files.
The decision to focus on notebooks is that developers who prefer this programming
metaphor are less likely to be knowledgeable about setting up and maintaining com-
plex development environments. An approach to mitigate this threat is to split the
functionality of the q8s_kernel into the Jupyter and the Kubernetes specific compo-
nents and extract the latter into a command line interface (CLI) tool that can be used
independently.

As a threat to conclusion validity, we recognize that for some quantum software
developers there are other options, such as having direct access to local development
environment with high powered infrastructure, or high availability on resources to
run executions on QPUs. Furthermore, with a certain level of expertise in software
engineering, the developers have a possibility to set up their own infrastructure, built
with different components, to reach similar results.

6 Conclusions and future work

In the related work focusing on quantum software development practices, SDLC for
quantum[14] and ICSM for quantum[12], the authors propose models with a spe-
cific focus on the development process. In this work we propose a software tooling
centered around a Jupyter kernel and Qubernetes that enables practitioners to imple-
ment and follow the suggested development models in practice. As the result, we
present workflow model with apractice for scaling up the execution platform from
local environment to efficient remote platform, and finally to quantum hardware, and
the tooling required to support the proposed practice. The results emphasize that the
quantum circuit simulation is an important part of quantum programming in the near
future, although ultimately the finalized program and algorithms should be executed
on an actual QPU. We have built the solution on versatile platforms, the Kubernetes
cluster used in the solution, to schedule and deliver the workloads is suitable to handle
quantum workloads with simulators as well as quantum hardware, and the Jupyter ker-
nel packaging the code for execution does not make any difference on which platform
the code is finally executed.

The natural next topic to research following this contribution will be the effort of
integrating a suitable QPU into the cluster, and into the kernel for the Jupyter notebook.
This would further benefit the developer by enabling the iterative approach to cover
all stages of the development process, using the familiar notebook environment. QPU
integration in the presented system would open up the possibility also for further
research and usage of the solution on quantum-classical hybrid algorithms execution,
by offering access to both efficient classical and quantum computing resources.
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