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Abstract
We derive slow-roll conditions for thawing quintessence. We solve the equation of
motion of φ for a Taylor expanded potential (up to the quadratic order) in the limit
where the equation of state w is close to −1 to derive the equation of state as a function
of the scale factor. We find that the evolution of φ and hence w are described by only
two parameters, w0 (the present-day value of w), and the K, which parametrizes the
curvature of the potential, and w(a) is model-independent. We derive observational
constraints on these two parameters. We also derive the slow-roll conditions for a non-
minimally coupled scalar field (extended quintessence) during the radiation/matter
dominated era extending our previous results for thawing quintessence. We find that
the ratio φ̈/3Hφ̇ becomes constant but negative, in sharp contrast to the ratio for
the minimally coupled scalar field. We also find that w(a) asymptotically approaches
that of the minimally coupled thawing quintessence.

1 Introduction

It is my great pleasure to give my talk at this special occasion celebrating Prof. Maeda and Prof.
Nakamura’s 60th birthday. I have several joint papers with both of them about black holes and cosmic
no hair conjecture, which I am very proud of. The topic I discuss is dark energy, about which I wrote
several papers (including X-matter paper [1]) with Takashi Nakamura more than ten years ago when I
was a postdoc at Yukawa Institute. More specifically, I consider slow-roll dark energy. Firstly I explain
the motivation of my study and then I derive the slow-roll conditions of a certain type of scalar field dark
energy models (called thawing model) and derive the equation of state of such a dark energy model. I
also fit the equation of state to observational data and put constraints on the parameters involved in the
equation of state. Next, I extend the dark energy model to include non-minimal coupling with gravity. I
derive the slow-roll conditions of such a non-minimally coupled quintessence and find such a dark energy
behaves very differently from a minimally coupled quintessence. I also find however that the equation of
state approaches to that of minimally coupled quintessence. Finally I summarize my talk.

2 Slow-roll Dark Energy

There is strong evidence that the Universe is dominated by dark energy, and the current cosmological
observations seem to be consistent with ΛCDM. The equations of state of dark energy, w, is close to −1
within 10% or less. However, how much is a dark energy model close to the cosmological constant? In
order to quantify such ”distance from the cosmological constant” in the dark energy theory space, we
need to introduce a parametrization of the equation of state, w(a), which parametrizes the deviation from
the cosmological constant, w = −1. Moreover, since w is close to −1 This implies that even if a scalar
field (dubbed ”quintessence” [2]) plays the role of dark energy, it should roll down its potential slowly
because its kinetic energy density should be much smaller than its potential. In this situation, as in the
case of inflation, it is useful to derive the slow-roll conditions for quintessence because the dynamics of
the scalar field can be discussed only by simple conditions without having to solve its equation of motion
directly. Quintessence models are classified according to their motion [3]: In ”thawing” models the scalar
fields hardly move in the past and begin to roll down the potential recently, while in ”freezing” models
the scalar fields move in the opposite ways and gradually slow down the motion. We will mostly consider
the slow-roll conditions for thawing models since the observational data already favor them and there
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are several particle physics models for them. Note however that our consideration will not be limited to
quintessence but will be applied to the case when the scalar fields which are subdominant components in
the universe move slowly. Axions, curvatons, and moduli before the oscillation can be such fields.

2.1 Slow-roll Conditions

We first derive the slow-roll conditions for thawing quintessence models [4]. Working in units of 8πG = 1,
the basic equations in a flat universe are

φ̈ + 3Hφ̇ + V ′ = 0, (1)

H2 =
(

ȧ

a

)2

=
1
3
(ρB + ρφ), (2)

Ḣ = −1
2

((ρB + pB) + (ρφ + pφ)) = −1
2

(
(1 + wB)ρB + φ̇2

)
, (3)

where V ′ = dV/dφ, H = ȧ/a is the Hubble parameter with a being the scale factor, ρB(pB) is the energy
density (pressure) of matter/radiation, ρφ = φ̇2/2 + V (φ)(pφ = φ̇2/2 − V (φ)) is the scalar field energy
density (pressure), and wB is the equation of state of matter/radiation.

By slow-roll quintessence we mean a model of quintessence whose kinetic energy density is much
smaller than its potential,

1
2
φ̇2 � V. (4)

Unlike the case of inflation, we do not require that φ̈ is smaller than the friction term 3Hφ̇ in Eq. (1)
since H is not determined by the potential alone, but by the matter/radiation along with the scalar field
energy density.

With fixed w0, slowly rolling thawing models correspond to the equation of state w = pφ/ρφ very
close to −1, so that the Hubble friction is not effective and hence φ̈ is not necessarily small compared
with 3Hφ̇ in Eq. (1). Slowly rolling freezing models correspond to models whose w is not so close to −1
compared with thawing models so that the Hubble friction is effective and φ̈ is smaller than 3Hφ̇ in Eq.
(1).

We derive the slow-roll conditions for thawing quintessence during the matter/radiation dominated
epoch. We first introduce the following function :

β =
φ̈

3Hφ̇
. (5)

As stated above, for thawing models, β is a quantity of O(1). We assume β is an approximately constant
in the sense |β̇| � H|β|, and the consistency of the assumption will be checked later. In terms of β, using
Eq. (1), φ̇ is written as

φ̇ = − V ′

3(1 + β)H
, (6)

and the slow-roll condition Eq. (4) becomes

ε :=
V ′2

6H2V
� 1, (7)

where we have omitted 1 + β since it is an O(1) quantity and introduced the factor of 1/6 so that
ε coincides with the inflationary slow-roll parameter, ε = 1

2 (V ′/V )2, if the scalar field dominates the
expansion: H2 ' V/3. Eq. (7) is a quintessence counterpart of the inflationary slow-roll condition
(V ′/V )2 � 1.

Similar to the case of inflation, the consistency of Eq. (5) and Eq. (1) should give the second slow-roll
condition. In fact, from the time derivative of Eq. (6)

φ̈ =
V ′′V ′

9(1 + β)2H2
− 1 + wB

2(1 + β)
V ′ +

β̇V ′

3(1 + β)2H
, (8)
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where we have used Ḣ/H2 ' −3(1 + wB)/2 from Eq. (2) and Eq. (3). On the other hand, from Eq. (5)
and Eq. (6), φ̈ = 3βHφ̇ = −βV ′/(1 + β), and so we obtain

β = − V ′′

9(1 + β)H2
+

(1 + wB)
2

− β̇

3(1 + β)H
' − V ′′

9(1 + β)H2
+

(1 + wB)
2

, (9)

where we have used β̇ � Hβ. While the left-hand-side of Eq. (9) is an almost time-independent quantity
by assumption, the first term in the right-hand-side is a time-dependent quantity in general. Therefore
the equality holds if the first term is negligible:

η :=
V ′′

3H2
; |η| � 1, (10)

so that β becomes

β =
1 + wB

2
, (11)

or the left-hand-side is negligible:

|β| � 1, (12)

so that

η =
3
2
(1 + wB). (13)

The former condition corresponds to the slow-roll thawing models, while the latter corresponds to the
slow-roll freezing models. β given by Eq. (11) is an approximately constant, which is consistent with
our assumption. Here the factor 1/3 is introduced in Eq. (10) so that η coincides with the inflationary
slow-roll parameter, η = V ′′/V , if H2 ' V/3. Eq. (10) is a quintessence counterpart of the inflationary
slow-roll condition |V ′′|/V � 1.

Eq. (7) and Eq. (10) constitute the slow-roll conditions for thawing quintessence during the mat-
ter/radiation epoch. Moreover once the universe becomes dominated by the scalar field, the two condi-
tions reduce to the usual inflationary slow-roll conditions from H2 ' V/3. Therefore, these conditions
(Eq. (7) and Eq. (10)) are the slow-roll conditions for thawing quintessence at all times, both during
the matter/radiation era and during the scalar field dominated era. Note that since H2 & V/3, the
inflationary slow-roll conditions are sufficient conditions for slow-roll thawing quintessence during the
matter/radiation era, not necessary conditions. In Fig. 1, the evolution of β is shown for a thawing
quintessence model (V = M4(1 − cos φ)). The evolution of β agrees nicely with Eq. (11).

2.2 Equation of State

Next we derive general solutions of φ in the limit of |1 + w| � 1 and derive w as a function of a. To do
so, we first note that the Hubble friction term in Eq. (1) can be eliminated by the following change of
variable

u = (φ − φi)a3/2, (14)

where φi is an arbitrary constant, which is introduced for later use, and then Eq. (1) becomes

ü +
3
4
(pB + pφ)u + a3/2V ′ = 0. (15)

We assume a universe consisting of matter and quintessence with w ' −1. Then the pressure is well
approximated by a constant: pB + pφ ' pφ ' −ρφ0, where ρφ0 is the nearly constant density contributed
by the quintessence in the limit w ' −1. Eq. (15) then becomes

ü − 3
4
ρφ0u + a3/2V ′ = 0. (16)
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Figure 1: β as a function of a for thawing quintessence model with the axion-like potential V =
M4(1 − cos φ). The dotted lines are β = 2/3, 1/2, respectively.
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Since we consider a slow-roll scalar field, the potential may be generally expanded around some value φi,
which we identify with the initial value, in the form (up to the quadratic order)

V (φ) = V (φi) + V ′(φi)(φ − φi) +
1
2
V ′′(φi)(φ − φi)2. (17)

Substituting the expansion Eq. (17) into Eq. (16) and taking ρφ0 = V (φi) gives

ü +
(

V ′′(φi) −
3
4
V (φi)

)
u = −V ′(φi)a3/2. (18)

Being consistent with |w + 1| � 1, we assume a(t) is well approximated by its value in the ΛCDM model
which is given by

a(t) =
(

1 − Ωφ0

Ωφ0

)1/3

sinh2/3(t/tΛ), (19)

where Ωφ0 is the present-day value of density parameter of quintessence, a = 1 at present, and tΛ is
defined as tΛ = 2/

√
3ρφ0 = 2/

√
3V (φi). Since Eq. (18) is a second order linear ordinary differential

equation, it can be solved analytically. The solution, which is valid if the initial time is much earlier than
the present time, is [4]

φ(t) = φi +
V ′(φi)
V ′′(φi)

(
sinh(kt)

ktΛ sinh(t/tΛ)
− 1
)

, (20)

where k =
√

(3/4)V (φi) − V ′′(φi). Then the equation of state becomes [4]

1 + w(a) = (1 + w0)a3(K−1)

(
(K − F (a))(F (a) + 1)K + (K + F (a))(F (a) − 1)K

(K − Ω−1/2
φ0 )(Ω−1/2

φ0 + 1)K + (K + Ω−1/2
φ0 )(Ω−1/2

φ0 − 1)K

)2

, (21)

where

K = ktΛ =

√
1 − 4

3
V ′′(φi)
V (φi)

, (22)

F (a) =
√

1 + (Ω−1
φ0 − 1)a−3. (23)

We also studied the slow-roll conditions for k-essence [5] and find that the equation of state obeys
the same functional form as Eq. (23) since the k-essence Lagrangian can be Taylor-expanded for small
kinetic energy, X = φ̇2/2, if it is analytical

p(X, φ) = p(0, φ) + (∂p/∂X)X + . . . , (24)

and it reduces to that of canonical scalar field by field redefinition [6].

2.3 Observational Constraints

The results of this paper indicate that Eq. (21) applies both to quintessence models and to a subset of
k-essence models with w ' −1. Hence Eq. (21) is a useful and physically well-motivated parametrization
for w(a) that can be compared with the observations. So, in this section, we present the observational
constraints on the equation of state parameters w0 and on K [6].

First, we note that the cosmological constant corresponds to a line in the (w0,K) plane: w0 = −1
irrespective of K. This can be understood for a canonical scalar field by noting that w0 = −1 corresponds
to the case where the scalar field sits at the minimum (K < 1) or the maximum (K > 1) of the potential.

As observational data we consider the recent compilation of 397 Type Ia supernovae (SNIa), called
the Constitution set with the light curve fitter SALT, by Hicken et al. [7] and the measurements of BAO
from the recent SDSS data [8].
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Figure 2: Contours at 68.3% (red, inner), 95.4% (blue, middle), 99.7% (green, outer) confidence level on
w0 and K. The Constitution SN set was combined with BAO constraint.

BAO measurements from the SDSS data provide a constraint on the distance parameter A defined by

A(z) = (ΩmH2
0 )1/2

(
1

H(z)z2

)1/3(∫ z

0

dz′

H(z′)

)2/3

(25)

to be A(z = 0.35) = 0.493 ± 0.017 [8].

The joint constraints from SNIa and BAO are shown in Fig. 2. We marginalize over Ωm to derive the
constraints. The allowed range of w0 is narrow: −1.14 . w0 . −0.92(1σ). We find that the cosmological
constant w0 = −1 is fully consistent with the current data. Note that K, which parametrizes the curvature
of V (φi), is not well-constrained by current SNIa and BAO data.

3 Slow-roll Extended Quintessence

In this section, we further study the slow-roll conditions for a scalar field non-minimally coupled to gravity
(called extended quintessence) and examine to what extent the results for minimally coupled quintessence
are universal [9].

We consider the cosmological dynamics described by the action

S =
∫

d4x
√
−g

[
1

2κ2
R − F (φ)R − 1

2
(∇φ)2 − V (φ)

]
+ Sm. (26)

Here κ2 ≡ 8πGbare is the bare gravitational constant, F (φ) is the non-minimal coupling and Sm denotes
the action of matter (radiation and nonrelativistic particle).
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The equations of motion in a flat FRW universe model are

φ̈+ 3Hφ̇ +V ′(φ) + 6F ′(φ)
(
Ḣ + 2H2

)
= 0, (27)

3H2 = κ2

(
ρB +

1
2
φ̇2 + U

)
=: κ2(ρB + ρφ) =: κ2ρtot, (28)

2Ḣ = −κ2
(
ρB + pB + ρφ + φ̇2/2 − V − 2F̈ − 4HḞ − 2F (2Ḣ + 3H2)

)
(29)

=: −κ2 ((1 + wB)ρB + ρφ + pφ) ,

U := V + 6H
(
Ḟ + HF

)
, (30)

where ′ = d/dφ, ρB and pB denote the background (radiation and matter) energy density and pressure,
respectively, and wB = pB/ρB is the equation of state of radiation and matter.

3.1 Slow-roll Conditions

We derive the slow-roll conditions for extended (thawing) quintessence during the matter/radiation dom-
inated epoch [9]. Eq. (27) then becomes

φ̈ + 3Hφ̇ + V ′
eff = 0, (31)

V ′
eff ≡ V ′ + 3F ′H2(1 − 3wB). (32)

By “slow-roll”, we mean that the movement of φ during one Hubble time is much smaller than φ. On
the other hand, the condition that the kinetic energy density of the scalar field is much smaller than the
potential U (Eq. (30)) in the energy density of the scalar field ρφ (Eq. (28))

1
2
φ̇2 � U, (33)

implies that

φ̇2H−2 � κ−2 . φ2, (34)

from U � ρtot ' κ−2H2 if κφ & 1. Hence we regard Eq. (33) as the slow-roll condition.
We derive the consistent set of the slow-roll conditions. We again consider the ratio,

β =
φ̈

3Hφ̇
. (35)

For slow-roll (thawing) models, we first assume that β is an O(1) approximately constant quantity not
equal to −1 in the sense |β̇| � H|β|, and the consistency of the assumption will be checked later. In
terms of β, using Eq. (31), φ̇ is rewritten as

φ̇ = − V ′
eff

3(1 + β)H
, (36)

and the condition Eq. (33) gives the first one of the slow-roll conditions

ε :=
V ′2

eff

6H2U
� 1, (37)

where we have omitted 1 + β since it is an O(1) quantity and introduced the factor of 1/6 in ε so that

ε coincides with the inflationary slow-roll parameter, ε = 1
2

(
V ′

κV

)2

, if the scalar field dominates the

expansion: H2 ' κ2V/3 and U ' Veff ' V .
Similar to the case of inflation, the consistency of Eq. (35) and Eq. (31) should give the second

slow-roll condition. In fact, from the time derivative of Eq. (36)

φ̈ = −Ḣ

H
φ̇ − V ′′

3(1 + β)H
φ̇ − F ′′H(1 − 3wB)

1 + β
φ̇ +

3F ′H2(1 − 3wB)
1 + β

− β̇

1 + β
φ̇, (38)
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where we have used (H2(1− 3wB)). ' −3H3(1− 3wB). On the other hand, from Eq. (35) and Eq. (36),
φ̈ = 3βHφ̇ = −βV ′

eff/(1 + β), and so we obtain

β =
φ̈

3Hφ̇
' − Ḣ

3H2
− V ′′

9(1 + β)H2
− F ′′(1 − 3wB)

3(1 + β)
− V ′

eff − V ′

V ′
eff

,

=
wB − 1

2
− V ′′

9(1 + β)H2
− F ′′(1 − 3wB)

3(1 + β)
+

V ′

V ′
eff

, (39)

where we have used 3F ′H2(1− 3wB) = V ′
eff −V ′ and |β̇| � H|β|. While the left-hand-side of Eq. (39) is

assumed to be an almost time-independent quantity, the terms other than the first in the right-hand-side
are time-dependent quantities in general. Therefore the assumption is consistent if they are negligible:1

η :=
V ′′

3H2
; |η| � 1 and |F ′′(1 − 3wB)| � 1 and

∣∣∣ V ′

V ′
eff

∣∣∣� 1, (40)

so that β becomes

β =
wB − 1

2
. (41)

β given by Eq. (41) is consistently an O(1) constant not equal to −1. Here the factor 1/3 is introduced
in η so that η coincides with the inflationary slow-roll parameter, η = V ′′/κ2V , if H2 ' κ2V/3. The
conditions in Eq. (40) are quintessence counterparts of the inflationary slow-roll condition |V ′′|/κ2V � 1.

Eq. (37) and Eq. (40) constitute the slow-roll conditions for extended quintessence during mat-
ter/radiation epoch. β (Eq. (41)) is negative and is quite different from that for a minimally coupled
scalar field (Eq. (11)) which is positive. Therefore, this can be a discriminating probe of the non-minimal
coupling of the scalar field. Although it may be difficult to determine the thawing dynamics from dis-
tance measurements, the ratio β may be determined by measuring the time variation of the fine structure
constant α if φ induces such a variation and α depends linearly on φ.

In Fig. 3, the evolution of β is shown for a massive scalar field (V = 1
2m2φ2) with a non-minimal

coupling F = 1
2ξφ2 with ξ = 10−2. The evolution of β agrees nicely with Eq. (41).

3.2 The Equation of State

Next we derive analytically the equation of state [9]. We consider the case that the non-minimal coupling
is given by F (φ) = 1

2ξφ2. In terms of u defined in Eq. (14), the equation of motion Eq. (27) becomes

ü +
[
−3

2

(
Ḣ +

3
2
H2

)
+ 6ξ

(
Ḣ + 2H2

)]
u +

[
V ′ + 6ξφi

(
Ḣ + 2H2

)]
a

3
2 = 0. (42)

Since we are interested in the slow-roll motion of the quintessence field φ, we may expand the potential
V (φ) around the initial value φi up to the quadratic order as in Eq. (17). Moreover we assume that
the scale factor a(t) is well approximated by that in the ΛCDM model Eq. (19). Then the approximate
solution, which is valid as far as t � tΛ and t � ti, is given by [9]

φ(t) = φi +
V ′(φi) + 4ξκ2φiV (φi)

V ′′(φi)

 sinh(kt) cosh
(

ti

tΛ

)
ktΛ sinh

(
t

tΛ

) − 1

 , (43)

with k ≡
√(

3
4 − 4ξ

)
κ2V (φi) − V ′′(φi). The equation of state w is then given by [9]

1 + w = (1 + w0)a3(K−1)

[
(K − F (a))(F (a) + 1)K + (K + F (a))(F (a) − 1)K

(K − Ω−1/2
φ0 )(Ω−1/2

φ0 + 1)K + (K + Ω−1/2
φ0 )(Ω−1/2

φ0 − 1)K

]2

, (44)

1 The exception is the case of F ′′ = const. In this case F ′′ needs not to be small. For example, if F = 1
2
ξφ2, then β

satisfies β = − 1
3

during the radiation era and β = − 1
2
− ξ

3(1+β)
so that β = −9+

√
9−48ξ

12
during the matter era.
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Figure 3: β as a function of a for a massive scalar field model with F = 1
2ξφ2 with ξ = 10−2. The dotted

lines are β = − 1
3 ,− 1

2 , respectively.
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Figure 4: wφ as a function of a. The solid line is the numerical solution, while the dotted line is the
asymptotic solution Eq. (44).

where K = ktΛ =
√

1 − 16ξ
3 − 4

3
V ′′(φi)
κ2V (φi)

. We have normalized the expression to wφ0 in Eq. (44). This
expression completely coincides with that in the minimal coupling Eq. (21). It is noted, however, that
this expression applies only for t & tΛ and that the definition of K is different but, when ξ approaches 0,
reduces to that of the minimally coupled scalar field.

In Fig. 4, wφ is shown as a function of a. We find that apart from the slight offset wφ approaches the
asymptotic solution given by Eq. (44). This, together with [6], makes the functional form of wφ(a), Eq.
(21), even more useful.

4 Summary: What is the Kepler’s law of Dark Energy?

We have derived slow-roll conditions for thawing quintessence models, Eq. (7) and Eq. (10). We have
also solved the equation of motion of the slow-roll thawing quintessence and obtained the equation of
state as a function of the scale factor w(a), Eq. (21), which involves only two parameters. We have found
that this w(a) is in general not fit by a linear evolution in a which is frequently used in the literature. We
have also found that this w(a) applies to quintessence models and to k-essence models with w ≈ −1 and
also to extended quintessence models. Applying this parametrization to SNIa data and BAO, we find
that the present-day value of w is constrained to lie near −1, while the curvature parameter K is poorly
constrained by the observations. Further, we see that the cosmological constant limit of these models
is consistent with the current data. As an extension, we have also derived the slow-roll conditions for
non-minimally coupled scalar field during the radiation/matter dominated epoch. We have also derived
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the slow-roll equation of motion of the scalar field and found that the ratio φ̈/3Hφ̇ becomes constant
but negative, in sharp contrast to the result for the minimally coupled scalar field. This ratio can be a
discriminating probe of the non-minimal coupling of the scalar field.

Finally, I would like to ask a provocative question. When I teach classical mechanics to freshman, I
am always impressed by the role which the Kepler’s laws of the planetary motion played in formulating
the Newtonian mechanics. As we know, every law is essential in establishing the universal attractive force
of gravity: the second law shows that the force depends only on the distance between the planet and
the Sun (central force); from the first law, the force is found to be proportional to inverse square of the
distance; the third law establishes the force depends only on the mass of each body with the universal
constant: the Newton’s constant. Being impressed by the success of Kepler’s law as a phenomenological
law, I cannot help asking ”What is the Kepler’s law of dark energy (or the Universe)?”.

Truly finally, I would like to say ”Happy birth day to Prof. Maeda and Prof. Nakamura!”
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