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Abstract
The eliminative view of gauge degrees of freedom—the view that they arise solely 
from descriptive redundancy and are therefore eliminable from the theory—is a 
lively topic of debate in the philosophy of physics. Recent work attempts to leverage 
properties of the QCD �

YM
-term to provide a novel argument against the eliminative 

view. The argument is based on the claim that the QCD �
YM

-term changes under 
“large” gauge transformations. Here we review geometrical propositions about fiber 
bundles that unequivocally falsify these claims: the �

YM
-term encodes topological 

features of the fiber bundle used to represent gauge degrees of freedom, but it is fully 
gauge-invariant. Nonetheless, within the essentially classical viewpoint pursued 
here, the physical role of the �

YM
-term shows the physical importance of bundle 

topology (or superpositions thereof) and thus counts against (a naive) eliminativism.

1  Introduction

Modern philosophers take seriously the ontological status of fields. But what they 
usually have in mind are relatively concrete entities, such as the electric and mag-
netic fields, and not elusive gauge fields, such as the electromagnetic potential. How 
then, to classify “gauge” degrees of freedom? Do these have an ontological signifi-
cance similar to electric and magnetic fields, or are they only a notational conveni-
ence, born of a redundancy in our representations of the world? In the words of John 
Earman, are gauge degrees of freedom only “redundant descriptive fluff” [1]?

The eliminativist view of gauge degrees of freedom advocates not only that 
gauge degrees of freedom are redundant, but that they are also eliminable. The most 
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developed form of eliminativism proposes a different, non-local gauge-invariant 
basis to describe our physical quantities. Non-local, yes, but controllably so: this 
is called the holonomy-basis.1 Whether one can really write down a theory—an 
action functional or a Hamiltonian—in terms of holonomies (or Wilson loops) 
is challenging, to say the least, and so the status of holonomies as fundamental 
ontological buiding blocks is anything but secure. But we will not pursue this 
formidable challenge in this paper.

Likewise, the overall status of gauge degrees of freedom is too large a topic to be 
reviewed here. We plan only to analyze a recent argument against the eliminativist 
view, and show that it is founded on an incorrect mathematical treatment—and it is 
therefore not tenable in its current form. In the rest of this section, we introduce the 
argument and give a prospectus for the paper.

1.1 � The �
YM

‑Term

In a recent paper, [3] engages with the details of the eliminativist program in the 
context of QCD. Dougherty’s first aim is to convince the reader that a �

YM
-term in 

the QCD Lagrangian is mandatory.
In brief, the argument is as follows: the �

YM
-term is necessary to account for 

certain experimental facts. To be more specific: the smallness of the masses of the 
up and down quarks gives rise to a chiral symmetry, whose effects (a parity doubling 
of the hadron spectrum, cf. [4, Sec. 19.10]) are not observed in experiments. This 
means that this chiral symmetry must be broken somehow. But the spontaneous 
breaking of this symmetry would generate Goldstone bosons, which are also not 
observed. Therefore, one must be able to break chiral symmetry without creating 
Goldstone bosons.

A solution is to have the breaking be effected through an anomaly.2 Namely, under 
chiral transformations (also called a global U (1)A symmetry), it turns out that the 
path-integral measure for quark fields fails to be invariant: under that transformation 
the measure acquires a phase. Specifically, for a fermion field of flavor f, the chiral 
symmetry acts by a shift �f ↦ exp(i�5�f )�f  (with �5 the fifth Dirac gamma-matrix), 
whereas the fermion path-integral transforms as3

1  The most notorious proponent of eliminativism within the philosophy of physics community is Richard 
Healey, whose position is laid out in [2].
2  This solution, however, might not be appropriate in a non-perturbative treatment. See section B.
3  This is the standard argument first put forward by Fujikawa (cf. [5, Sec. 5.2] or [4, Sec. 22.2]). Now, the 
�YM-term is a functional of the curvature, F

��
 , so why does it appear in a change in the measure of purely 

fermionic degrees of freedom? In Fujikawa’s implementation of a gauge covariant measure, one writes 
the fermion field in terms of a basis of eigenfunctions of the Dirac operator, , which includes the gauge-
covariant derivative D

�
= �

�
+ A

�
 , inside it (i.e. , where �� are the Dirac gamma matrices). It then turns 

out that the determinant of the Jacobian under a chiral transformation in this orthonormal basis diverges 
and needs to be regularized. Fujikawa used a gauge-covariant Gaussian cut-off by insertion of the operator 

. Ultimately, the curvature appears through the decomposition: 
. One can choose instead a gauge-invariant measure, in which case the anomaly is shifted to renormalization 
counterterms (which then necessarily fail to satisfy the same invariances of the Lagrangian, [6, vol 2, ch.28]).
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where

Therefore, according to this argument, mathematical consistency and experimental 
evidence—the lack of both the relevant Goldstone bosons and of the parity 
doubling of the hadron spectrum—together would provide support for the physical 
significance of the �YM-term as arising from a chiral anomaly. It is here important to 
stress the role fermions play in making the �YM-term inescapable.

So far, so good. But agreed: this is not the end of the story: such a term would be 
CP-violating and thus gives rise to other questions of observability. However, the 
relation between CP-violation and the �YM-term is not directly relevant to the central 
points of this paper, which is why we will avoid discussing it.4

Having sketched the broader context for the discussion, we now very briefly 
embed within it Dougherty’s criticism of the holonomy formalism. Before we 
begin, it should be stated from the outset that our intention in this paper is only 
to set straight a specific misunderstanding of this criticism. The main target of our 
criticism is the mistaken belief that due to how �YM-term transforms under gauge 
transformations, it cannot be accounted for within an eliminativist interpretation, 
such as the holonomy formalism. In his words: “This eliminative interpretation 
of gauge is at odds with the our current best theory of high-energy physics.” Or, 
a bit later, in more detail: “In this paper I defend the physical significance of the 
distinction between large and small gauge transformations against the eliminative 
interpretation of gauge.” [3, p.1]. We contend that: (1) Dougherty’s ‘large gauge 
transformations’ are not gauge transformations in the first place (a fact that, as we 
will prove, goes beyond a terminological dispute), and, more importantly, (2) the 
objective properties Dougherty (mis)attributes to ‘large gauge transformations’ are 
in fact captured in an eleminativist formalism such as the holonomy one, which 

(1.1)D�D� ↦ exp

(
i2(�YM-term)

∑

f

�f

)
D�D� ,

(1.2)�YM-term =
1

8�2 ∫ tr(F ∧ F).

4  Briefly, the field redefinitions above—modifying the definitions of the quarks by a chiral transfor-
mation—shift the coupling constant in front of the �YM-term in the Yang-Mills Lagrangian: calling the 
coupling constant � , they undergo a shift � ↦ � +

∑
f �f  . But such field-redefinitions do more than that: 

they also change the mass terms in the Lagrangian density by mf ↦ exp(i2�f )mf  . Since physical quanti-
ties cannot be affected by a mere field-redefinition, this means that the only invariant quantity physical 
systems can depend on is the product e−i�

∏
f mf  (cf. [4, Sec. 23.6]). This product defines an invariant 

version of the �-coupling, called � . Thus, if one flavor of quarks had zero mass, the puzzle would be 
resolved, since the product would, contingently, vanish. That doesn’t seem to be the case. Nonetheless, � 
is observationally constrained to be close to zero: the current bound on � is |𝜃| < 2 × 10−10 according to 
the particle data group (see [7]). The question of theoretical necessity of the �-term hinges on important 
issues of naturalness and fine-tuning, and, since there is currently experimental reason to believe that it 
vanishes, one might feel compelled to explain its observational smallness. That is, what physicists refer 
to as the “Strong CP problem”—that Nature conspires to give the CP-violating �-term a value close to 
zero—is a real problem that still lacks an agreed explanation (axions provide a possible mechanism, cf. 
[4, Sec. 23.6] and references therein). But Dougherty does not base his argument on the issue of explana-
tion for the smallness of �.
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only eliminates the bona-fide gauge transformations. So, first, it is apt to get clear 
on the distinction between ‘large’ and ‘small’ gauge transformations, and on how, if 
at all, such distinction could be serviced against the holonomy-based, eliminativist 
interpretation.

1.2 � Dougherty’s Criticism

In his defense of eliminativism, [2] cites [8]’s use of the holonomy formalism in 
attempting to resolve the U(1)A puzzle without the introduction of a �YM-term (we 
will briefly describe this puzzle in Sect. 3.3).5 According to [3] (cf. p.1, 7, 8, 16) the 
�YM-term is only gauge-invariant under gauge transformations that have a particular 
behaviour at infinity (or at the relevant boundaries); the remaining transformations, 
called ‘large gauge transformations’, do not, according to Dougherty, leave the �YM
-term invariant. In his criticism of the eliminativist view, [3, p.1] writes passages 
such as (italic ours):

That is, a large gauge transformation relates representatives of different physi-
cal states. Mathematical differences between these representatives can reflect a 
physical difference, signaling the existence of some quantities and possibilities 
that cannot exist according to the received [eliminativist] philosophical posi-
tion.

Or, later on [3, p.1]:

The Yang-Mills [�-]vacuum term is not preserved by all gauge transformations. 
If the eliminative view of gauge transformations is right, this means that the 
Yang-Mills vacuum term is physically meaningless. If gauge transformations 
are redundancies then mathematical differences between gauge equivalent 
configurations can’t reflect physical differences. So the value of the Yang-Mills 
vacuum term can’t represent any physical fact.

Or, again [3, p.9]:

If we reject the size distinction [between small and large gauge 
transformations] and demand that gauge transformations on the boundary be 
treated just as gauge transformations elsewhere then this integral [that gives 
rise to the �-term] is ill-defined. The vacuum Yang-Mills term must therefore 
be excluded.

Dougherty’s claim then is that the non-eliminativist would be comfortable 
in separating the wheat from the chaff, for they could say: “some ‘gauge 
transformations’ relate distinct physical possibilities while others don’t. Thankfully, 
I, the non-eliminativist, haven’t eliminated any of them, so I can still tell the two 
kinds apart!” This strategy, it is claimed, is not available to Healey’s preferred 
holonomy formalism. The claim is that, since Healey’s eliminativism does not 
license a distinction between different types of gauge transformations, no restriction 

5  We do not want to assess [8]’s claim; we mention it only for context.
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to one type of gauge transformation is allowed. In particular, one cannot keep just 
those transformations that would guarantee invariance of the �YM-term. Therefore 
Healey would either have to equate what should be physically distinct states—
those which, according to Dougherty, correspond to differences due to ‘large gauge 
transformations’—or be obliged to set �YM to zero and thereby fall foul of the fact 
that at least allowing for a non-zero �

YM
-term is a theoretical requirement.

As we hope to make clear, we disagree with Dougherty’s argument and conclu-
sions. In particular, we disagree that “The Yang-Mills [�-]vacuum term is not pre-
served by all gauge transformations.” It is preserved by all gauge transformations; 
as long as one is attentive to the strict meaning of these transformations. Our criti-
cism could be chalked off to a terminological dispute, one of little substance to the 
debate about eliminativism. The reason the criticism matters is that, apart from triv-
ial issues of terminology, holonomies only eliminate the more strict kind of ‘gauge 
transformations’ and are perfectly well able to register the effects of what Dougherty 
calls “large gauge transformations”. In particular, the �

YM
-term contribution to the 

Yang-Mills action is gauge invariant and can be expressed in terms of holonomies. 
Indeed, lattice QCD, a formalism that employs holonomies (or rather, Wilson loops) 
as its basic variables, includes �-terms without any hangups (see e.g. [9] and refer-
ences therein).

1.3 � Our Criticism of Dougherty’s Criticism

Dougherty’s argument that the �YM-term is only gauge-invariant under gauge trans-
formations that have a particular behaviour at the boundaries is incorrect. For the 
�YM-term is manifestly gauge-invariant under the action of all gauge transformations.

Nonetheless, behind Dougherty’s argument, there is a subtle and tempting reason 
to erroneously assume that the �YM-term is gauge-variant. For, as Dougherty cor-
rectly states, the �YM-term can also be expressed as a pure boundary contribution 
to the action functional over a topologically trivial domain M (i.e. one diffeomor-
phic to a 4-disk). And it is well-known that this boundary contribution (over the 
3-sphere), which takes the form of a Chern-Simons boundary integral, can acquire 
different values even on configurations that have vanishing curvature, and are often 
thus called ‘pure-gauge’ (however, see the comment below Equation (3.1) for why 
this practice is misleading). The values of such boundary contributions can differ by 
an integer multiple of 2� . So, it would be natural to say that these values have some 
sort of gauge-dependence, i.e. that they change under “large gauge transformations”; 
this putative change is the one Dougherty wrongly appeals to in his argument.

The mistake, to be explicated below, is partly due to a terminological confusion: 
it lies in the construal of the term “large gauge transformation”, which is often mixed 
up with what are called “transition functions.” Although transition functions share 
some features with gauge transformations, they are fundamentally different objects 
which encode gauge invariant information. It is only under a particular type of 
change in the transition functions—changes which cannot be attributed to any gauge 
transformation—that the �YM-term fails to be invariant. Thus, in order to clarify the 
mistake, it is helpful to first clarify the terminology. But to be clear: independent 
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of the terminological dispute, the physical effects of transition functions can be 
captured by the holonomy formalism, and so are no obstacle to the eliminativist 
interpretation of gauge.

In practice, the term “large gauge transformation” has been used with two 
meanings:

(i) a smooth Lie-group-valued function on space or spacetime6 that is not 
connected to the group identity, i.e. not infinitesimally generated through 
exponentiation;

(ii) in the presence of asymptotic boundaries, it is a gauge transformation which 
does not asymptote to the identity.

In this article, we will exclusively use the term “large gauge transformation” in 
the sense attached to (i), i.e. not being connected to the identity.

To make his argument stick, Dougherty must use transformations that satisfy both 
(i) and (ii) i.e. transformations whose pullback to the boundary neither vanishes,7 nor 
is connected to the identity. This is because only such transformations would change 
the value of the boundary Chern-Simons integral which re-expresses the �

YM
-term.8 

However, the combination of (i) and (ii), required by Dougherty selects an empty set 
of functions. This is because there is no smooth9 Lie-group valued function over ℝ4 
that tends at infinity to a function over �ℝ4 ≅ S3 that is not connected to the identity. 
This fact is strictly necessary to ensure the mathematical consistency of the equality 
between the bulk-integral defining the �

YM
-term (which is manifestly gauge-invariant 

under all gauge transformations) and its expression in terms of Chern-Simons 
boundary integral (which is not invariant under large-gauge transformations over 
S3 ). The goal of the following sections is to explain these facts, dissolve the apparent 
tension between them, and explore their consequences in sufficient detail.

Here, we briefly sketch with equations an abstract argument showing that the 
necessary transformations cannot be smoothly extended into the bulk (all notation 
will be explained later). For now we consider the simplest possible case10: that of 
a gauge potential A that is pure gauge on a 4-disk D4 . Thus, A = g−1dg for some 
g ∶ D4

→ G , and its associated curvature vanishes, i.e. F(A) = F(g−1dg) = 0 , so that 
the �

YM
-term, defined as 1

8�2
∫
D4 tr(F ∧ F) , manifestly vanishes—in all gauges. Thus,

(1.3)
0 = 1

8�2 ∫D4
tr(F ∧ F) = 1

24�2 ∮�D4=S3
tr(g−1dg ∧ g−1dg ∧ g−1dg)

= :��S3(h−1dh),

6  The difference between space and spacetime is not crucial for this first introduction of the argument; 
we will assess how it is relevant for some purposes in Sects. 3.1 and 3.2.
7  See the previous quote from [3, p. 1] or, as well: “[a certain] gauge transformation is ‘large’ in the 
sense that it is nontrivial on the boundary of the region of integration. In particular, if we demand that 
the configuration be pure gauge at infinity then a large gauge transformation is one that is nontrivial at 
infinity, recovering the usual statement of the size distinction" [3, p. 9].
8  A proof of this mathematical fact is reviewed in Sect.  2.2, while a more concise argument is given 
below.
9  Twice-differentiable is sufficient for our purposes.
10  We will deal with the general case in the following sections.
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where the second equality will be shown in the next section; and ��S3 is by definition 
the Chern-Simons functional (on S3 ), with h ∶ S3 → G here set to h = g|S3.

The puzzle arises thus: it is a mathematical fact that certain h̃ ∶ S3 → G 
yield a non-vanishing ��S3(h̃−1dh̃) . So how could the above equation (1.3) 
avoid mathematical inconsistency? In brief: such h̃ ’s are not of the form h = g|S3 
for a smooth g ∶ D4

→ G . That is, the h̃ ’s that yield these different values are 
“homotopically” different: they cannot be smoothly deformed into each other, 
and are thus said to differ by a “large” transformation. At a bit more length, the 
answer to our question then is that, crucially, large transformations of this kind 
cannot be extended into the D4 bulk smoothly and therefore cannot define “gauge 
transformations" of the bulk configuration A = 0 ; there are no such transformations 
whose restriction to the boundary fits in (i) above. In other words, the large boundary 
transformations required to yield a non-zero value of the Chern-Simons functional 
are not of the form h = g|S3 for a smooth g ∶ D4

→ G ; and such transformations 
would not have the usual properties of gauge transformations. That is: such h̃ are 
not restrictions to the boundary of gauge transformations of any kind—which, as 
we know, leave the value of the �YM-term invariant. In this understanding, [3, p. 8 
and 9] is mistaken when he says that: “we find that the Yang-Mills vacuum term 
varies under some gauge transformations,” and hence concludes: “if we [...] demand 
that gauge transformations on the boundary be treated just as gauge transformations 
elsewhere then [the integral ∫ tr(F ∧ F) ] is ill-defined [and] the vacuum Yang-Mills 
term must therefore be excluded.”

Homotopically different h’s on the right hand side of (1.3) represent physically 
different configurations also in the bulk, and indeed must be accompanied by differ-
ent curvatures in the bulk. In due course, we will prove all of these statements, thus 
avoiding a mathematical contradiction: the gauge-invariance properties of the �YM
-term cannot depend on the way we decide to write it, viz. as a bulk or as a bound-
ary term.

1.4 � Prospectus

This paper will proceed as follows. In section 2, we will give a brief introduction 
to the main mathematical concepts at play. We briefly review Chern classes in 
Sect. 2.1. There, we will recall what these classes have to do with the �YM term in 
QCD, and discuss their gauge and topological invariance. In the following subsec-
tion  2.2, we finally bring in what Dougherty calls “large gauge transformations,” 
that underpin his argument and show in particular that they have nothing to do with 
gauge-transformations: they are quantities that encode the topological properties 
of the underlying bundle, and are not related to choices of gauge. Such topological 
properties are represented by the particular gluing, or relations, between topologi-
cally trivial charts; and the winding numbers encode this ‘gluing’ information.

These conclusions are valid for manifolds without boundary. In Sect.  3 we 
describe how these conclusions can be extended to the context of manifolds with 
boundaries. Here it is important to distinguish the Euclidean signature setting from 
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the Lorentzian one. In the former case, in section 3.1, we can complete asymptotic 
boundaries and fall back on the results for the boundary-less manifolds. For the 
latter case, in section 3.2, we get two disconnected boundaries, and thus (assuming 
the fields behave nicely at space-like infinity), the �YM topological invariant 
becomes a difference of two Chern-Simons terms, or of two winding numbers. 
Nonetheless, the conclusions about their invariance remains, but now it applies to 
the difference of winding numbers. In Sect. 4 we conclude: Sect. 4.1 summarizes 
the main points made in the paper. Finally, in Sect. 4.2, we briefly smoke a peace-
pipe with Dougherty, by giving a criticism of our own of the eliminativism he 
targets. This criticism does take into account the role of the �YM-term—but not its 
properties under gauge transformation, which, pace Dougherty, are compatible with 
eliminativism.

Since this article is an answer to [3], we follow him in accepting the same, intrin-
sically semiclassical, but standard, account of chiral symmetry breaking, cf. e.g. [4]. 
However, as we ackowledge in Appendix B, a fully non-perturbative account also 
exists [10, Ch. 3].

2 � Topological Invariants and Fiber Bundles

In this Section, we will introduce aspects of the topology of fiber bundles, and 
proceed to assess gauge-invariance of the �YM-term for closed manifolds in 
several different ways. In Sect.  2.1, we introduce the �YM-term—also known as 
the Chern-number. Seen as a bulk, i.e. spacetime, integral, we show both gauge 
and topological invariance of the term. In Sect. 2.2 we relate this invariant to the 
appearance of ‘large’ transformations: they appear as Wess-Zumino integrals related 
to transition functions between charts. We also show that gauge transformations on a 
4-dimensional disk-region cannot have non-trivial winding number at its boundary. 
This is entirely compatible with, and indeed required by, our considerations in this 
paper.

For completeness, in Appendix A we give a brief introduction to fibre bundles 
as the mathematical structure underpinning gauge theories. In this appendix 
we introduce the basic machinery: the connection-form (and its relational 
interpretation), and the relation between charts, gauge transformations and transition 
functions, crucial to our appraisal of the conclusions of [3].

Here is a summary of the concepts from Appendix A that we will require in what 
follows:

Summary of Appendix A. A gauge field configuration can be defined either: 

(1)	 “abstractly,” by providing a bundle � ∶ P → M and an Ehresmann connection 
� ∈ Ω1(P, �) ; or

(2)	 “in coordinates,” by providing an atlas of charts U
𝛼
⊂ M , a set of sections 

�
�
∶ U

�
∈ P , and compatible11 transition functions �

��
∶ U

��
→ G (these 

11  Compatibility is here understood in the sense of equations (A.5).
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three ingredients define P), together with a choice of compatible12 gauge fields 
A
�
∈ Ω1(U

�
, �) (this corresponds to the choice of �).

The coordinate description is redundant because it requires the introduction 
of auxiliary choices of sections, �

�
 ; different choices are related by “gauge 

transformations” of the A
�
 ’s and of the �

��
’s. Therefore, gauge invariance requires 

all physical observables to depend on the choice of P and � only.13

Crucially, transition functions and gauge transformations play entirely different 
roles. Gauge transformations act on the transition functions, but not vice-versa, and 
a gauge transformation’s domain of definition is the whole chart U

�
 , and not merely 

the overlaps U
��

 as is the case for the transition functions �
��

’s. These technical 
differences reflect the fact that the g

�
 ’s and �

��
 ’s play conceptually different roles. 

From the perspective of P, the gauge transformations g
�
 ’s encode the freedom 

of choosing a local section �
�
 (which is necessarily defined on the whole of U

�
 ). 

Conversely, the �
��

 encode—albeit somewhat redundantly—the way in which the 
charts are glued to one another, and thus the global structure of the bundle P.

2.1 � The Chern‑Number

For a closed 4-dimensional manifold M—that is, M compact and without bound-
ary—the quantity (the notation will be explained in a moment, for now it is enough 
to notice that the integrand depends on A and is gauge-invariant)

is a topological invariant—not of M—but of the fibre bundle P over M. A 
connection-form � is defined over P and a collection of local gauge potentials A

�
 is 

defined over an atlas of M, as above. Since ��A is gauge-invariant, the integral can 
then be obtained through an appropriate partition of unity associated to the atlas. As 
a topological invariant of P, ��[P] is not only completely gauge-invariant, but also 
independent of the choice of � over P. We call ��[P] the (second) Chern-number of 
P.14

If we write our physics in terms of gauge potentials, and allow them to live in 
different bundles, e.g. P and P′ , then the potentials A and A′ might lead to different 
values of ��[P] . The question then is: how does A “know about” topological 

��[P] ∶= ∫M

��A

12  Compatibility is here understood in the sense of equations (A.3).
13  Notice that it is possible to change � (resp A

�
 ) without changing P (resp �

�
 and �

��
).

14  Topological invariants written in terms of local fields are well-known in the spacetime case, i.e. for M. 
Indeed, the Chern-number also applies to metric fields, from which we can obtain topological properties 
of M. In that context, the Chern theorem states that the Euler-Poincaré characteristic of a closed even-
dimensional Riemannian manifold is equal to the integral of the Euler class. In practice, one replaces the 
gauge-curvature F in the definition of ��[P] by a metric curvature (associated to a spin-connection: i.e. 
given an orthonormal basis of the tangent bundle, ea , the spin connection �b

a
 is defined as dea = �

b
a
eb , 

and can again be identified with a ��(n)-valued one-form obeying the usual properties. Curvature is 
defined analogously).
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properties of P? And how can ��[P] depend only on the topology of P and not on 
the detailed choices e.g. of A that go into its computation? This is the content of the 
Chern-Weil theorem (e.g. [11, Ch. 11.1]), that we briefly review below.

From now onwards, we will restrict to G = SU(N).
First, the Chern-number is computed as follows:

where

Of course, ��(P) is nothing but the “ �
YM

-term,” (cf. (1.2)). Or, more specifically: the 
�YM-term in the QCD Lagrangian can be written using (2.1) as:

where � is just a real-valued coefficient. The integrand ��A defines the second Chern-
class of the bundle P. The second Chern-class is manifestly gauge-invariant, given 
the gauge transformation properties of F (A.8) and the cyclicity of the trace.15 This 
means that on the overlaps U

��
 , ��A

�

= ��A
�

 , which is why no chart index appears in 
the equations above, and why the integral can be performed with no further 
complications.

This also immediately tells us that ��[P] can at most depend on the choice of 
� , and not of gauge (i.e. of sections). We are now ready to review the Chern-Weil 
theorem, which shows that ��[P] is not only gauge-invariant but also independent 
of the choice of � on P—that is it depends only on the topological properties of P.

A first hint of the ‘topological’ nature of ��[P] comes from the observation that it 
does not change under a small arbitrary variation of A (i.e. the equations of motion 
of the action S[A] = ∫ ��A are identically satisfied). This follows immediately from 
�F = dA�A and the Bianchi identity dAF = 0 where dA ∶= d + [A, ⋅] is the exterior 
gauge-covariant derivative (for the adjoint representation). But invariance can be 
proven also for finite, rather than infinitesimal, changes in connection. Consider two 
connections A and A′ , and now define � ∶= A� − A ∈ Ω1(M) and a one-parameter 
family of connections As = A + s� , s ∈ (0, 1) , interpolating between A and A′ (the 
space of connections is an affine space). Then, denoting the curvature of As as Fs , 
one finds

(2.1)��[P] = ∫M

��A =
1

8�2 ∫M

tr(F ∧ F)

(2.2)��A ∶=
1

8�2
tr(F ∧ F).

(2.3)L
�
= � ��[P]

(2.4)
��A� − ��A ≡ 1

8�2 �
1

0

d

ds
tr(Fs ∧ Fs)ds

=
1

4�2 �
1

0

tr(dAs
� ∧ Fs)ds =

1

4�2
d
(
�

1

0

tr(� ∧ Fs)ds
)
.

15  The proof is simple: tr(g−1Fg ∧ g−1Fg) = tr(g−1F ∧ Fg) = tr(Fg ∧ g−1F) = tr(F ∧ F).
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Thus the difference ��A� − ��A is an exact differential form and thus vanishes when 
integrated over a closed manifold.16 Since A and A′ are arbitrary connections, 
it follows that ∫

M
��A over a closed manifold P does not depend on the choice of 

connection, i.e. that it is a topological invariant.
Summary The gauge invariance of ��A tells us that ��[P] depends at most on � , 

and the Chern-Weil theorem tells us that ��[P] does not depend on A (and therefore 
on � ) at all. Therefore, ��[P] can only reflect a (topological) property of the bundle 
P on which the connection is defined. A nontrivial, and extremely deep, fact is that 
the second Chern number of P is always an integer

We conclude this Section with a simple remark. The discussion above clearly shows 
that the Chern number (2.1) (and thus the �YM-term) is gauge-invariant under all 
possible gauge transformations. And, just to be clear, this even holds at the level of 
the integrands:

This fact follows simply from the transformation properties of F (A.8) and the 
(graded) cyclicity of the trace (for �, � as p and q-forms, respectively)

Therefore any non-gauge invariance of the �
YM

-term is vetoed by this simple 
demonstration.

2.2 � Transition Functions and Large Gauge Transformations

As we have just witnessed, the Chern-number and the so-called �YM-term, (2.1), 
is completely gauge-invariant. Thus the inevitable question: whence Dougherty’s 
claims?

Here we will focus on his claim that “The Yang-Mills [�-]vacuum term is not 
preserved by all gauge transformations.”, as discussed in Sect. 1.2 (where we include 
the full quote). We will now argue that one way Dougherty might have arrived at 
this conclusion, ignoring the previous simple argument for the gauge invariance of 
the �YM-term, is through an uncatious invocation of boundaries.

Before we get to boundaries of the entire Universe, in Sect. 3, let us revisit the 
computation of the Chern-number under a new guise, by breaking up the manifold 
into charts and therefore introducing internal boundaries. Over each chart we can 
identify the gauge potential with a �-valued differential 1-form A. However, this 
identification does not hold globally as emphasized in our discussion of transition 

(2.5)��[P] ∈ ℤ.

(2.6)��Ag = ��A for all g = g(x).

(2.7)tr(� ∧ �) = (−1)pqtr(� ∧ �).

16  For consistency, one should also check that the the 3-form ∫ 1

0
tr(� ∧ Fs)ds is well defined, i.e. gauge-

invariant. That this is the case follows from the fact that the difference � between two connections trans-
forms in the adjoint representation under gauge transformations, just like F, and therefore tr(� ∧ Fs) is 
point-wise gauge-invariant for all values of s. (cf footnote 15).
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functions (cf. equation (A.3)): one should be careful when drawing global conclu-
sions from the following local statements.

First, we recall that the Chern density (2.2), i.e. ��A ∶=
1

8�2
tr(F ∧ F) , is a top-

form on a 4-dimensional manifold and it is therefore closed.17 Hence, the Poincaré 
lemma implies that the restriction of ��A to a contractible space is exact, i.e. can 
be written as the differential of a 3-form. Indeed, on each chart U

�
—which is a 

contractible space where the connection A can be identified with a �-valued 1-form 
A
�
 (we will omit the chart-label �)—one has the following crucial identity18 

involving the Chern-Simons 3-form ��A19

There are two subtleties lurking behind this identity: one is the fact that it holds only 
chart-wise, and the second is that the Chern-Simons form is not gauge-invariant, 
since:

where the Wess-Zumino term ��g is just the Chern-Simons form evaluated on the 
flat connection g−1dg:

In particle physics lingo, equations (2.6), (2.8), and (2.9) together say that “while the 
topological charge [ ��A ] is gauge-invariant, the topological current [ ��A ] is not.” [12, 
p. 31].

However, as demanded by mathematical consistency between the invariance of �� 
and its relation to �� in the first equation of (2.8), both sides of (2.9) must be closed 
3-forms, and therefore ��g is necessarily a closed 3-form, i.e.20

(2.8)��A = d��A where ��A ∶=
1

8�2
tr(A ∧ dA +

2

3
A ∧ A ∧ A).

(2.9)��Ag − ��A = ��g +
1

16�2
d tr(dgg−1 ∧ A)

(2.10)��g ∶= ��g−1dg = −
1

24�2
tr(g−1dg ∧ g−1dg ∧ g−1dg).

18  This is easy to show:

where in going from the first to the second line we used (2.7) to infer that tr(A ∧ A ∧ A ∧ A) ≡ 0.

8�2d��A =dtr(A ∧ dA +
2

3
A ∧ A ∧ A) = tr(dA ∧ dA + 2A ∧ A ∧ dA)

=tr((dA + A ∧ A) ∧ (dA + A ∧ A)) = 8�2
��A,

19  The Chern-Simons functional understood as the action for a 3d boundary theory, defines a classical 
theory of connections that is invariant only under gauge transformations that are not: large in the sense 
of (i) in Sect. 1.3. However, quantum mechanically, the situation can be improved, and the Chern-Simons 
functional can define a theory which is invariant under all gauge transformations, provided the coupling 
constant, i.e. the Chern-Simons “level”, is chosen to be an integer. This is because under large gauge 
transformations, the Chern-Simons action changes at most by a multiple of 2�—hence allowing the Fey-
nman’s path integral to still be invariant. This peculiarity lies at the root of the fascinating phenomenol-
ogy of Chern-Simons theory and its quantum-deformed symmetry structure.
20  This is a corollary of the fact that tr(A ∧ A ∧ A ∧ A) ≡ 0 (see footnote 18), since 
d(g−1dg) = −g−1dg ∧ g−1dg.

17  In fact, the 4-form tr(F ∧ F) is closed in any dimensions as a consequence of the Bianchi identity, 
dAF = 0 , where dA is the gauge-covariant exterior derivative.
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Therefore, the gauge invariance of ��A is not affected, even if we write it in terms of 
the gauge-variant functional ��:

In particular, taking A = 0 and integrating this equation on a manifold with 
boundary, we see that the boundary integral of the Wess-Zumino term associated 
to a gauge transformation in the bulk necessarily vanishes. Equation (2.12) is a first 
important check, which we will now corroborate with a different calculation.

This different computation resolves possible confusion having to do with a 
particular way of expressing ��[P] . Namely, there is still one manner of computing 
��[P] chart by chart, using (2.8), which may confusingly appear gauge-variant. 
We will now set up the puzzle and then dissolve it. Instead of dealing with these 
issues on a very general basis, we will specialize our discussion to a more concrete 
example.

Consider the closed manifold M = S4 covered by two charts, isomorphic to 
4-dimensional disks, U1,U2 = D4 , that overlap on a “transition belt” around the 
equator, U12 = S3 × [−1, 1].

We know that at the interface, by (A.3), A1 = A�
2
 , � ≡ �21 . Denoting 

the subsets of the domain of the charts that lies above/below the equator, 
respectively, by Ũ1 = U1 ⧵ (S

3 × [−1, 0]) and Ũ2 = U2 ⧵ (S
3 × [0, 1]) (notice that 

𝜕Ũ1 = −𝜕Ũ2 = S3 × {0} ≃ S3 ⊂ U12 ), we have

where we used (2.9) and (2.10) (with � ∶ U12 → G replacing g in the latter 
equation).21

Thus we see that, setting 𝜕Ũ1 ≃ S3 and denoting ��S3 (g) = ∫
S3
��g,

This equation is of crucial importance for us. We have not used gauge 
transformations, and yet, something that “looks like” a gauge-transformation, 
namely, a transition function, as in (A.3), has appeared in the computation. Now we 
will verify that the Wess-Zumino invariant related to � cannot change by applying a 
gauge transformation.

(2.11)d��g ≡ 0.

(2.12)��Ag = d��Ag = d(��A + ��g + d
1

16�2
tr(dgg−1 ∧ A)) = d��A = ��A.

(2.13)

��[P] = ∫Ũ1

��A1
+ ∫Ũ2

��A2

= ∮
𝜕Ũ1

(��A1
− ��A2

) = ∮
𝜕Ũ1

(��A�
2
− ��A2

) = ∮
𝜕Ũ1

���

(2.14)ℤ ∋ ��[P] = ��S3 (�).

21  From equation (2.11) and the the Poincaré lemma, ��g is exact on a contractible manifold. However, 
since there are no compact manifolds without boundary—i.e.  closed manifolds—which are contractible 
(cf. Exercise 2.4.6 in [13]), one can never use this observation to conclude that the integral of ��g van-
ishes on the (closed) boundary of a four manifold—e.g. S3 = �D4.
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First of all, as discussed in Sect. A, � encodes a topological property of the bun-
dle. It is therefore not to be interpreted as a gauge transformation, but as part of the 
definition of P. But things are subtle, because—as we summarized in the last para-
graph of Sect. A—� participates in the definition of P in a way that depends on the 
choice of gauge, i.e. of sections �

�
 . As a consequence, under a change in the choice 

of sections, the transition functions transform according to (A.7):

Thus, the question arises: why does the following equality,

hold?
From a strictly three-dimensional, or boundary, perspective there is no reason 

why this should be the case. In particular, we could always choose g1 = e (the 
identity of G) and g2 such that (g2)|U12

= � , thus apparently trivializing the value of 
��S3 . However, once we take into account the whole domain of definition of the g

�

’s, which extends into the four-dimensional bulk of the two hemispheres, the above 
choice might simply be unavailable. That is, if � ∶ S3 → G is large in the sense (i) 
of Sect. 1.3—not connected to the identity—there is no smooth extension of it that 
goes from the belt overlap U12 = S3 to the chart domain U2 = D4 . An extension 
would necessarily have to “break” somewhere inside U2 . Only for � ’s connected to 
the identity will there be a smooth g2 such that (g2)|U12

= �.
We can easily perform a proof by contradiction (reductio). For suppose it 

was possible to smoothly extend such g
�
 ’s into the interior of their charts. Then, 

following a radial evolution in the disk U2 = D4 , we would find a g(x, r) such that 
g(x, r = 1) = �(x) and limr→0 g(r, x) = go for all x ∈ S3 , where go is some fixed 
element of G. But exploiting this radial parametrization we can define a 1-parameter 
family of gauge transformations {hr(x) ∶ S3 → G | hr(x) = g(r, x)}r∈[0,1] , defined at 
the intersection S3 , such that ��(hr=0 = go) = 0 and ��(hr=1 = �) ≠ 0 . But this 
cannot be right: ��(hr) ∈ ℤ , and since one cannot continuously jump between 
discrete values, �� has to be constant on path-connected components of its domain. 
Let us prove this explicitly (by adding a differentiability assumption): denoting 
hr(x) = g(r, x) and �r =

dhr

dr
h−1
r

 , we have, for an arbitrary r = ro,

where the second equality follows from (2.10).
The point is that any smooth map g

�
(x, r) from the 4-disk D4 into G—a gauge 

transformation according to (i)22—automatically provides through “radial 
evolution” a homotopy of maps hr(x) = g

�
(r, x) ∶ S3 → G between a constant 

function hr=0(x) = limr→0 g�(r, x) = go (at the central point) and its boundary 

(2.15)� ↦ g−1
2
�g1.

(2.16)��S3 (�) = ��S3 (g
−1
2
�g1),

(2.17)

d

dr
��S3 (hr)|r=ro = ∮S3

d

dr
��hr |r=ro =

1

24�2 ∮S3
d tr(d�ro ∧ h−1

ro
dhro) = 0

22  It is clear that transformation which are not smooth to some degree are not allowed. Here we only 
need them to be at least C2.
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value hr=1(x) = g
�
(r = 1, x) . Or, in other words, the boundary value of any gauge 

transformation g
�
(x, r = 1) on such charts must be connected to the identity.

And ��S3 (h) computes a “winding number” of the map h ∶ S3 → G ; this is a 
topological quantity that cannot be undone by a smooth deformation of h. It follows 
from the above that a gauge transformation cannot change the winding number at 
the boundary. That is, the boundary value of a bulk gauge transformation g

�
 must 

have trivial winding number as a map from �U
�
→ G , i.e. ��S3 (g� |�U

�

) ≡ 0 . This of 
course means that � and g−1

2
�g1 are in the same homotopy class as maps from S3 into 

G, and therefore have the same winding number, as per equation (2.16).
Therefore, we conclude that in the simple case analyzed here, the second Chern 

number of the bundle � ∶ P → S4 is fully encoded into the winding number of the 
“equatorial” transition function � ∶ S3 → G . This winding number is an intrinsic 
property of � that cannot be changed by any gauge transformation.

So far we have discussed bundles on manifolds without boundaries. But to satis-
factorily vanquish all doubts about gauge-invariance, we should also guarantee that 
it emerges when the �

YM
-term is expressed not at intersections, but at boundaries. 

This is only possible when the curvature vanishes at the boundary; e.g. asymptoti-
cally. We now turn to this.

3 � Manifolds with Boundaries

In the first Section, 3.1, we will examine Chern classes within a single bounded, 
Euclidean manifold and its relation to the Chern-Simons and Wess-Zumino func-
tionals. In Sect. 3.2 we briefly examine the Lorentzian case, with two boundaries, 
one asymptotic past Cauchy surface and one asymptotic future one. (Like most of 
the literature (e.g. [4, p.454-455]), we neglect spatial boundary terms at infinity (on 
which A is supposed to vanish).) The Chern class then gives a difference of past 
and future Chern-Simons terms, (naively) representing a transition between different 
vacua of the theory. In Sect. 3.3, we briefly discern the meaning of non-trivial bun-
dle topology viz. the meaning of individual winding numbers.

3.1 � In Euclidean Signature

Setting aside an exhaustive treatment of fibre bundles over manifolds with bounda-
ries, which goes beyond the scope of this article, we will content ourselves with 
discussing what happens first for M ≅ D4 with a boundary S3 , and then for M ≅ ℝ

4 
complemented with its asymptotic boundary B3

∞
≅ S3.

First, we recall that gauge transformations on D4 induces gauge transformations 
on �D4 = S3 that are necessarily connected to the identity (as 3d objects). Armed 
with this fact, we can already see why our conclusions of gauge-invariance will 
hold in the bounded case: even if different enough A’s give different Chern-numbers 
(since they may yield different Chern-Simons terms at the boundary, according 
to (2.8)), such A’s would not be related by a gauge transformation, as guaranteed 
by equation (2.12). This proof was easy, but it doesn’t yet get to the bottom of the 
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puzzle, which we can only articulate when expressing such integrals in terms of 
winding numbers, i.e. Wess-Zumino functionals. And for that, we need boundary 
conditions guaranteeing that the curvature vanishes,23 which we can treat jointly 
with the asymptotic case.

Topologically, the space M ≅ ℝ
4 is just24 a 4-disk, and we denote it ℝ4

∞
≅ D4 to 

emphasize the addition of a sphere at infinity, �ℝ4
∞
= B3

∞
≅ S3 . The simple remark 

that D4 constituted one of two hemispheres in the previous discussion will become 
useful later.

The gain is that, now, a single chart covers the whole space; the loss is that 
this raises a puzzle: without any need for a transition function, what is left of the 
previous arguments we applied for the �� term?

As standard, we start by requiring that the field strength vanishes sufficiently fast 
at infinity to render the Yang-Mills action, supplemented by the �YM term, finite. 
This implies in particular that the gauge potential must approach a curvature-free 
configuration at infinity:

Note that this h need not be seen as a gauge transformation—vanishing curvature 
guarantees (3.1)—and thus a characterization as “pure gauge” can be misleading. 
For such an h may still ‘wind around’ the boundary, in which case A cannot be of 
the form A = g−1dg throughout the region. That is, an A that has non-trivial winding 
number at the boundary must have curvature in the bulk.25

For such an A, from (2.8) and (2.10) one has:

(we avoid the Chern-number notation, �� , because we do not have a closed base 
manifold, this preferrence will be maintained in what follows). Again, we know that 
no gauge transformation—which by definition must be extendible into ℝ4

∞
—can be 

large at the boundary, nor can it change the local value of ��A , and therefore none 

(3.1)A
x→∞
�������������������→ h−1dh for some h ∶ B3

∞
≅ S3 → G.

(3.2)∫
ℝ4

∞

��A = ∫B3
∞

��B3
∞
(h).

24  Following Penrose (cf. [14, Ch. 5]), the physically meaningful way to complement ℝ4 with a bound-
ary depends on its metric (which so far has played no role whatsoever in our considerations). The choice 
followed here corresponds to the Euclidean 4-dimensional world, rather than a Minkowskian one (which 
requires the introduction of five different typologies of asymptotic boundaries: future and past time-like 
infinity, future and past null infinity, and spatial inifinity). However, ignoring this complication might be 
justified since the metric one picks on ℝ4 does not matter for the computation of the �YM-term. Indeed, 
the computation in [4, Sec. 23.6] also disregards these subtleties. However, we personally find this argu-
ment not completely satisfactory. For now, we leave this subtle point aside.
25  The proof follows the one showing a gauge transformation can only have a trivial winding number, in 
the previous Section.

23  Note that, for internal boundaries, i.e. for the intersection between charts, we can express the integrals 
in terms of Wess-Zumino integrals, as in (2.8), because it depends on the difference between two Chern-
Simons functionals, and smoothness guarantees that this difference can be expressed purely in terms of 
the transition functions; i.e. Lie-group valued functions.



1 3

Foundations of Physics           (2024) 54:24 	 Page 17 of 30     24 

can change the value of either of the integrals above. This quantity is therefore fully 
gauge-invariant, just as the left-hand side shows manifestly.

Intriguingly, even in this, single-boundary case, the Wess-Zumino invariant is still 
an integer! Of course, had we computed the quantity ∫ ��A with arbitrary boundary 
conditions, we can get any (gauge-invariant) quantity, depending on the boundary 
conditions. ��B3

∞
(h) is valued in the integers because of the asymptotic conditions 

required on the gauge potentials, which are necessary for the integral to converge. 
As before, this integer counts how many times the boundary map h ∶ S3 → G winds 
around the group.

A deeper reason why this integral still yields an integer is that, due to the 
boundary conditions, it can be recast as an integral over a closed manifold, as 
before. That is, in the Euclidean case being studied here, we can connect the above 
computations with the previous ones performed for the closed manifold case, at the 
end of Sect. 2.2. It turns out that given the asymptotic boundary conditions (3.1), 
there is a “minimal” way to extend the bundle over M = ℝ

4
∞
≅ D4 to a bundle P 

over a closed manifold M ≅ S4 (where we denote the closure by an overbar). Then, 
with this extension,

To understand P , it is enough to observe that the asymptotic boundary conditions 
(3.1) are just the minimal26 requirements to be able to compactify ℝ4 to S4 . If the 
field strength vanishes at infinity rapidly enough, we can compactify ℝ4 to S4 by 
simply adding one27 point at infinity—the North Pole in the stereographic projection 
of S4—and declaring that at this point F = 0—the only value it can assume by 
continuity. This compactification will take us back to our previously covered 
example.

3.2 � In Lorentzian Signature

But there is still one remaining piece of the puzzle. Much of what we have done 
is based on an Euclidean-signature intuition for the manifold ℝ4

∞
 : the �YM-term 

measures the topology of a canonically defined bundle on P → S4 and ��S3
∞
(h) 

measures the winding number of the asymptotic field configuration around the 
3-sphere at infinity. Thinking about the Lorentzian case opens new perspectives.

To think about the manifold with Lorentzian signature, we can imagine squishing 
the boundary at infinity B3

∞
∼ S3 from opposite sides, making it look more and more 

like a ‘thin lens’. This effectively separates the boundary into three components: a 
past and a future Cauchy surface, Σ± , and a “celestial sphere” S2

∞
 at spatial infinity.28 

Each Cauchy surface supports some (asymptotic) gauge-potential configuration 

(3.3)��[P] = ∫
ℝ4

∞

��A.

26  Here we are ignoring subtleties related to rapidity of the fall-offs at infinity and smoothness in the 
compactified manifold.
27  As opposed to a three-sphere.
28  See however footnote 24.
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that encodes a classical state of the theory. In our case, these states have half of 
their support on the northern (southern) hemisphere of S3

∞
 corresponding to the 

asymptotic past (future, respectively) Cauchy surfaces.
It is easy to find configurations that are curvature-free at asymptotic past and 

future infinities, Σ±∞ . For the same reason as in the previous case,29 asymptotic 
conditions guarantee that the Chern-Simons terms are integer numbers, n± . And due 
to the fixed orientation of these surfaces, the Chern class gives a difference between 
these numbers, i.e. ∫ ��A = n+ − n−.

Therefore, in a similar fashion to what we did throughout the paper, we can 
reconcile the fact that curvature-free boundary states h (3.1) can encode the physical, 
i.e. gauge-invariant, value of the �

YM
-term—which only depends on the curvature.

To summarize some of these results from different contexts: while it is true that 
only the curvatures figure in the argument of ∫ ��A , this term is only related to 
Chern-Simons terms on the boundaries of the manifold (cf. (2.8)), and these latter 
terms do not depend on the curvature. For closed unbounded manifolds, winding 
numbers appear as differences of Chern-Simons terms at transition patches; for 
Euclidean bounded manifolds, the boundary is connected and we obtain a single 
winding-number (that cannot be changed by gauge transformations that properly 
extend into the bulk); but here, since the configurations are “pure gauge” at 
disconnected boundaries, we extract winding numbers from each connected 
boundary Chern-Simons term. The �YM-term, ∫ ��A , will thus be related to a 
difference of winding numbers due to the inward/outward orientation of the two 
Cauchy slices with respect to the 4-dimensional bulk.

But, as emphasized after equation (3.1), curvature-free vacuum states with 
different nontrivial winding numbers,30 although perfectly admissible, must include 
curvature in the bulk. This means that, although the individual boundary winding 
numbers associated to each boundary are not distinguishable by curvature invariants, 
transitions between them are. And this is because, crucially, the transition between 
different curvature-free boundary states with non-trivial winding numbers can never 
proceed through curvature-free histories.31 Within the bulk of spacetime, one has to 
go through non-vanishing values of F that contribute to ��A , and values which are 
uncontroversially encoded in the holonomies.

3.3 � Non‑trivial Bundle Topology and the �‑Vacuum

The quantity ∫ ��A itself is computable even from an eliminativist perspective, since 
it is fully based on curvature observables encoded e.g. in infinitesimal holonomies. 
Therefore, even if the eliminativist view is incapable of describing the different, 
spatial and curvature-free A’s—the different winding numbers,—the integral ∫ ��A 
could still have physical significance.

30  Extra conditions at S∞
2

 may be needed to have well defined winding numbers on the past and future 
Cauchy surfaces independently. We will ignore this issue, since we can resolve the puzzle without it.
31  This follows from the same arguments exposed below equation (2.16).

29  Together with assumptions about the field behaviour at spatial infinity, see e.g. [4, Ch. 23.5 p. 454-
455].
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A simple comparison can be carried out with the observability of the energy 
levels of an atom. The energy of a given level—analogously: the winding number 
of a vacuum state associated to the past component of the boundary—is not a 
well defined concept, nor a physically meaningful one. Nonetheless the difference 
between the energies of two different levels are meaningful and physically 
measurable from the atomic spectra; and these differences are analogous non-
vanishing values of the �

YM
-term.

Maybe a more suggestive comparison is the phase of a quantum state in a 
Hilbert space. Although the phase of a single quantum state is not accessible by 
measurement (only the state’s ray in Hilbert space is), phase differences between 
states play a crucial role in quantum mechanics through interference phenomena. 
Perhaps the closest analogy here is to a Berry phase, where a system described by 
a certain ray is adiabatically altered and finally brought back to the initial ray. The 
interesting point is that the initial and final states of the system can have different 
phases even if they belong to the same ray. The phase difference in this system is 
encoded in the integral of a quantity over the evolution of the system. In the analogy, 
the initial flat configuration—corresponding to a ray on Hilbert space—is altered, 
with curvature being generated, and then it is brought back to the same ‘ray’ or flat 
configuration: the different winding numbers play the role of the different phases, 
which is encoded along the 4-manifold.

Indeed, [2, p. 179] makes a very similar analogy:

Models related by a “large” gauge transformation are characterized by differ-
ent Chern-Simons numbers, and one might take these to exhibit a difference 
in the intrinsic properties of the situations they represent. But it is question-
able whether the Chern-Simons number of a gauge-configuration represents an 
intrinsic property of that configuration, even if a difference in Chern-Simons 
numbers represents an intrinsic difference between gauge-configuration. Per-
haps Chern-Simons numbers are like velocities in models of special relativity.

These observations then underpin the second role of the �YM-term. That is, gauge 
theory allows the existence of distinct boundary states (e.g. initial and final states) 
that are all curvature-free but labelled by different winding numbers. These boundary 
states then represent different choices of initial and final vacua for the theory and 
the �YM-term can represent, in a semiclassical (“instanton”) approximation, a 
transition from one such curvature-free boundary state to a different one [15, 16]. 
That is, as we saw, for asymptotically flat configurations, the Chern number gives a 
difference between winding numbers, ∫ ��A = n+ − n− =∶ � . If one wants to include 
configurations with different winding numbers in the path integral, with weight 
factors f (�) for each sector, one can use the cluster decomposition of expectation 
values to argue that f (�) = exp(i��) , where � is a free-parameter (cf. [4, p. 456]).32 

32  Cluster decomposition is the assumption that far away processes do not influence expectations values 
of local observables. This holds only if the path integral appropriately factorizes over spacetime regions. 
The conclusion then follows from the additivity of the instanton number � over spacetime regions, since 
this yields the requirement f (�1 + �2) = f (�1) × f (�2) . Notice that the factorization of the instanton num-
ber requires some approximations (curvature-freeness at the interface between the regions). However, 
this heuristic argument is supported by more rigorous considerations of the path integral in the presence 
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Thus the inclusion of the �
YM

-term in the Lagrangian corresponds to allowing a 
superposition of all winding numbers, and the same parameter in the path integral 
will be included in the superposition of vacuum states.

Therefore, if the vacuum state can be computed through a path integral, and if 
this path integral is compatible with the cluster decomposition, one introduces the �
-vacuum state33:

which transforms by a phase under shifts of the winding number. Then, each �
-vacuum defines an independent sector of the quantum theory. The existence of the 
state (3.4) is compatible with both the impossibility of distinguishing vacuum states 
with different winding number ( �n⟩ ) from each other via local observables, as well as 
with the physical significance of the difference between winding numbers.34 ��(A).

One important point to observe from this argument, vis à vis eliminativism, is 
that it is at least a logical possibility to have a representation of L

�
 in the physics 

and yet have no way of discerning the individual winding numbers entering the �
-vacuum. That is, we can talk about transitions by appeal to the bulk properties of 
curvature, and not by appeal to the difference between boundary winding numbers. 
Indeed, this is what [2, p. 198] is referring to, when he writes: “there is no possibility 
of introducing a parameter � ”. This quote is the sole evidence that [3] provides for 
Healey’s belief that the holonomy formalism cannot produce a �-term, but, again, it 
is mistaken. It takes Healey to be referring to the �-term, and not to the �-vacuum. 
But Healey is indeed referring to the impossibility of introducing individual winding 
numbers explicitly,35 not to the impossibility of writing the �-term in the action in 
terms of holonomy variables. Furthermore, Healey’s quote goes on citing [8] to 
clarify that “from the [holonomy] perspective there is no need to introduce any [ � ] 
in the first place [even though in principle] one can introduce an arbitrary parameter 
� in the [holonomy] representation [...]". However, assessing whether the holonomy 
framework can offer a viable resolution of the U(1)A-puzzle requires the introduction 
of the matter field and is beyond the scope of our discussion. And, moreover, there 
are other possibilities. Accounting for certain non-perturbative properties of the 
quantization of a gauge system [10, Ch. 3], one can provide an explanation of chiral 
symmetry breaking without either introducing Goldstone bosons nor invoking the 
topology of P as encoded in the �YM-term. We discuss this in appendix B.

Here, we should again emphasize: in this paper, our intent was not to examine 
the full, non-perturbative quantum picture, nor [8]’s claims, nor their relation to 

(3.4)��⟩ =
�

n

ei�n�n⟩

33  For an algebraic, non-perturbative, argument supporting this conclusion see Appendix B.
34  Indeed, a global observable that is capable of this type of distinction is.
35  For an explicit example consider G-valued transformations over S3 , with G = SU(2) . Then there exists 
a h ∶ S3 → G with nontrivial winding number. Nonetheless, since S3 is simply connected all holonomies 
built out of the connection A = h−1dh are equal to the identity, regardless of whether h has a nontrivial 
winding number or not.

of chiral fermions—cf. footnotes 3 and 4 and references therein.
Footnote 32 (Continued)
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[2]’s, and thus we have refrained from assessing the significance of the �
YM

-term in 
these respective domains. Our intent was rather to correct a mistake in the treatment 
of gauge in the semiclassical picture—i.e. whether the �YM-contribution to the 
Yang-Mills action is gauge invariant and can be accounted for in an eliminativist 
framework36—irrespective of whether this picture, on its own, provides a completely 
satisfactory account of chiral symmetry breaking or not.

4 � Conclusions

4.1 � Summary of our discussion

About the eliminative view and the gauge-invariant properties of the �YM-term, [3, 
p. 16] concludes:

[I] showed that if the eliminative view were true then the vacuum Yang-Mills 
�YM-term [(2.1)] [...] would lead to inconsistency when integrated over any 
region [...] By Stokes’ theorem it is a matter of mathematical fact that this 
integral coincides with the integral of ��A . But this integral varies under large 
gauge transformations. So if I were to eliminate gauge from the theory then 
each configuration would be assigned contradictory values for the vacuum 
Yang-Mills term of the action: one for each class of representative gauge 
potentials that differ by a large gauge transformation.

Our discussion has explained, qualified, and rectified Dougherty’s statement.
The �YM-term is manifestly gauge-invariant under all gauge transformations, 

as shown in Sect. 2. This is just a consequence of the cyclic trace identity and the 
transformation properties of the curvature—and Stokes’ theorem cannot change this 
fact.

Nonetheless, we felt it was important to explain some sources of confusion 
surrounding the �YM-term. For instance, it may be expressed as Wess-Zumino 
integrals on gluing surfaces, and the arguments of these integrals look like gauge 
transformations. So doesn’t that indicate their gauge-variance, contrary to the brute 
fact mentioned above?

This puzzle is solved once we take into account that the arguments of 
these integrals on the gluing surfaces are transition functions, and not gauge 
transformations, and that in fact, non-trivial transition functions cannot be 
trivialized by gauge transformations. Gauge transformations are smooth, and they 
are associated to charts of the manifold. These two simple requirements mean gauge 
transformations cannot affect the value of the integral of ��A on the boundary of the 
manifold: in accordance with the invariance of the Chern number.

Every difference that is attributed, in this loose manner of speaking, to ‘large 
gauge transformations’, has a gauge-invariant explanation solely in terms of 
curvature; and holonomies are sensitive to curvature

36  Once again, we refer to the QCD literature for a concrete construction [9].
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The same conclusion holds for asymptotic boundaries, for configurations that 
are asymptotically curvature-free. The only way to obtain a non-trivial winding 
number at the asymptotic boundary requires a non-vanishing curvature for A in 
the bulk—A is not a “pure-gauge” configuration. That is how the winding number 
can be represented by the �YM-term—which depends only on the curvature. 
In Lorentzian signature (with appropriate boundary conditions at spacelike 
infinity) this means that transitions over time between winding numbers must be 
associated with curvature at some point in time.

[3] equivocates between the invariance of the �YM-term and the variance of 
the Chern-Simons ��A . We have shown that there is no equivocation, since the 
equality of the two requires ��A to be integrated over a boundary, and this quantity 
does not vary under bona-fide gauge transformations either.

Instead of this explanation for the discrepancy, Dougherty invokes a “size 
distinction”. The distinction in question is one between gauge transformations 
that may act solely on the boundary from those whose action on the boundary 
must be a smooth extension of those acting on the bulk. The relevance of this 
distinction assumes there is a choice to be made here, on whether to accept 
gauge transformations as acting solely on the boundary of the manifold or not. 
Moreover, [3] ties the eliminativist to the more permissive choice, where the 
action of any group-valued function supported on the boundary—whether a bona-
fide gauge transformation or not—is interpreted as a viable gauge transformation. 
We have shown that this view is mathematically inconsistent. To be as clear as 
possible: no such choice exists. A size-distinction would lead to two different 
and incompatible notions of gauge. A boundary transformation that changes the 
(total) winding number cannot be extended to a bulk transformation that sends 
one solution of the equations of motion to another—as a gauge transformation 
would—and therefore this transformation cannot be called ‘a symmetry’, and is 
thus not an option the eliminativist can embrace.

Now we are equipped to answer [3, p. 16]’s two following rhetorical questions 
in the conclusions of his paper: “[It is] not enough to simply make an exception for 
large gauge transformations. Do we make an exception for any gauge transformation 
that’s nontrivial on the boundary of any region? Only those on the sphere at infinity 
that also spoil the gauge invariance of the vacuum Yang-Mills term?” We can say, 
respectively: “No, allow gauge transformations that are non-trivial at the boundary; 
and yes, we can exclude those that spoil gauge-invariance, but we would do so 
without making an exception, since the latter are not gauge transformations, and 
the effect that you attribute to these transformations are perfectly well encoded in 
the bulk curvature—which is explicitly contained in the holonomies.” Had this not 
been so, the �-term could never figure in lattice QCD—a formalism that employs 
holonomies as its basic variables. But of course, these terms frequently appear in 
this formalism (see [9] and references therein).37

While it is true that on a manifold with asymptotic boundaries one can nonethe-
less use Stokes’ theorem to extract interesting and nontrivial features of the vacuum 

37  Of course, these lattice computations should be understood as a Riemann-sum approximation of the �
-term integral.
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structure of Yang-Mills theory, none of these features provide a smoking gun against 
the eliminative view of gauge.

In sum, the eliminativist view, and the holonomy interpretation [2], is perfectly 
capable of encoding a non-zero �YM-term in the action functional. Whether it needs 
to do this to resolve the U(1)A puzzle, or whether it has an alternative route as 
claimed by [8], is a different story, that goes beyond the scope of this paper.

4.2 � Against eliminativism nonetheless

Having arrived at the end of this paper, we can smoke a peace-pipe with Dougherty. 
As tobacco acceptable to both parties, we notice that the most developed 
understanding of the solution to the U (1)A-puzzle (i.e. the breaking of chiral 
symmetry without the introduction of Goldstone bosons), requires the physical 
significance of structures associated to the existence of the gauge symmetry: be it 
the role of the fibre bundle topology in the standard semi-classical account, or the 
role of different connected components of G3 in the non-perturbative one. In both 
cases, the arguments militate against any naive implementation of eliminativism.

More broadly, eliminativism about gauge fields is unwarranted for many 
reasons, some of which we now briefly summarize. Gauge degrees of freedom 
simplify mathematical treatments of physical theories by allowing us to write our 
theories in terms of Lorentz-invariant action functionals (and path integrals): there 
is no available local Hamiltonian or Lagrangian, even in the Abelian case (i.e. 
electromagnetism) that employs only electric and magnetic fields.

Moreover, as a guide to theory-building, gauge degrees of freedom are introduced 
to mandate the local Gauss law: action functionals that employ them automatically 
ensure both the local Gauss law and charge conservation. At a pedestrian level, 
they guarantee that the details of the dynamics of the forces that interact with the 
charges will preserve the conservation of charge [17]. In this sense, gauge degrees 
of freedom fill an explanatory gap: they guarantee conservation laws and provide a 
framework by which to build theories that automatically respect these laws.

Fibre bundles provide a yet deeper, geometrical explanation of these degrees of 
freedom. Fibre bundles—and the connection and its curvature—allow us to formal-
ize the notion that certain properties that are taken as, in a certain sense, “intrinsic”, 
such as “being a proton”, are in fact relational.

General relativity is relational in a similar way, and, similarly, has a good deal 
of structure that could be construed as eliminable. But, we would wager, most 
eliminativists are reluctant to limn that redundant structure (Healey certainly is, cf. 
[2, Ch. 4.2]). The parallel becomes blatant once we formulate general relativity in 
terms of connection forms (see footnote 14). As discussed at length by [18], applying 
the principal fiber bundle formalism to general relativity puts coordinate and gauge 
transformations on a par. Indeed, the Chern-number can also be calculated for a 
connection associated to parallel transport of tangent vectors on spacetime, where it 
bears many of the same properties as the more general Chern-number, associated to 
parallel transport of general vector bundles over spacetime.
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More broadly, viz à viz eliminativism we see no relevant disanalogy between 
gauge fields and metrics, due to the simple fact that in the spacetime case there is 
certainly redundancy of mathematical representation (in that case, of geometry 
through the metric). But there most would agree this redundancy does not warrant 
a complete elimination of spacetime metrics from our theories. We see no reason to 
distinguish, in this aspect, gauge and gravitational theories.

We believe empirical signatures of the �-term are certainly compatible with, if not 
explained by, the reality of certain non-trivial topological, relational properties of 
the bundle.38 Although this is not contrary to eliminativism—as already emphasized 
the �-term can be computed by means of holonomy variables—the holonomy 
formalism is certainly not the most perspicuous language in which to articulate these 
properties.

In sum, gauge degrees of freedom fill an explanatory gap, have a neat relation-
ist interpretation, and are thoroughly warranted if we value consilience with other 
important theoretical structures of physics, such as Hamiltonians, actions, Lor-
entz invariance, etc. Demands for their complete elimination from our theoretical 
description of nature seems to ignore the criteria by which we interpret theories. 
However, a less sanguine deflation of their ontological status, that ascribes to them 
only relational status and relies on Leibniz equivalence to count/discern physical 
possibilities, is warranted. And such a position sits well with a via media position in 
the debate between spacetime substantivalism and relationism.

Appendix 1: A brief introduction to fibre bundles

The modern mathematical formalism of gauge theories relies on the theory of 
principal (and associated) fibre bundles. We will not give a comprehensive account 
here (cf. [22]), but only introduce the necessary ideas and objects. With fiber 
bundles, we can formalize the notion that certain properties that are taken as, in a 
certain sense, “intrinsic,” such as “being a proton,” are in fact relational. But these 
relations can have topological, i.e. global features.

The main idea underlying the physical significance of the fibre in a fibre bundle is 
perhaps best summarized in the original paper by [23]:

The conservation of isotopic spin is identical with the requirement of invar-
iance of all interactions under isotopic spin rotation. This means that when 
electromagnetic interactions can be neglected, as we shall hereafter assume to 
be the case, the orientation of the isotopic spin is of no physical significance. 
The differentiation between a neutron and a proton is then a purely arbitrary 

38  Although it may be significantly harder to constrain topological features of spacetime, there exist pro-
posals to look for experimental signatures of non-trivial spacetime topologies. For instance, the ‘circles 
in the sky’ in the CMB would have constituted such a signature [19]. Another example of a global prop-
erty of spacetime which can be seen as relational is its dimensionality. On the gauge bundle side, we have 
e.g. the charge group of the gauge theory. These examples make it clear that employing holonomies as 
the fundamental variable need not be either eliminativist or substantivalist. For more on how relations 
between subsystems are related to redundant degrees of freedom, see [20, 21].
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process. As usually conceived, however, this arbitrariness is subject to the fol-
lowing limitation: once one chooses what to call a proton, what a neutron, at 
one space-time point, one is then not free to make any choices at other space-
time points.

That is, what is a proton and what is a neutron at a given point is essentially a 
relational property.39

The limitations on how to identify “a proton” at two different points of spacetime 
are imposed by a connection-form: another structure on the bundle. That is, a 
connection-form � allows us to define which points of neighbouring fibres can be 
taken as equivalent to an arbitrary starting-off point in an initial fibre. Curvature 
then acquires meaning as non-holonomicity, i.e. as a path-dependence intrinsic in 
this fibre-identification procedure. That is, the bundle carries relational properties 
which are captured by certain function(al)s of the connection, e.g. the curvature.

We are now going to formalize this intuitive description.

Principal fibre bundles

A principal fibre bundle is a smooth manifold P that admits a smooth action of a 
(path-connected, semisimple) Lie group, G, i.e. G × P → P with (g, p) ↦ g ⋅ p for 
some action ⋅ and such that for each p ∈ P , the isotropy group is the identity (i.e. 
Gp ∶= {g ∈ G | g ⋅ p = p} = {e} ). Naturally, we construct a projection � ∶ P → M , 
given p ∼ q ⇔ p = g ⋅ q for some g ∈ G . So the base space M is the orbit space of P, 
M = P∕G , with the quotient topology, i.e.: characterized by an open and continuous 
� . By definition, G acts transitively on each fibre.

Locally over M, it must be possible to choose a smooth embedding of the group 
identity into the fibres. That is, for U ⊂ M , there is a map � ∶ U → P such that P is 
locally of the form U × G , i.e. there is an isomorphism U × G → �

−1(U) given by 
(x, g) ↦ g ⋅ �(x).40 The maps � are called local sections of P.

On P, we consider an Ehresmann connection � , which is a 1-form on P valued 
in the Lie algebra � that satisfies appropriate compatibility properties with respect 
to the fibre structure and the group action of G on P.41 This connection allows us 
to locally define “horizontal complements” to the fibres in P (see footnote 41). 
Through such complements one can horizontally lift paths � in M to P. These 
horizontally lifted paths are commonly referred to as “parallel transports" in P along 

39  Of course this example, which originally motivated Yang and Mills, is meant in the context of the 
(approximate) isospin symmetry. Otherwise, the electric charge tells protons and neutron apart in an 
intrinsic manner.
40  Given p, the inverse map is a bit more complicated because we must find g′ such that g� ⋅ p = �(x) , for 
some x. It will depend on the form of �.
41  Given an element of the Lie-algebra � , we define the vertical space Vp at a point p ∈ P , as the linear 
span of vectors of the form v

�
(p) ∶=

d

dt |t=0(exp(t�) ⋅ p) for � ∈ � . And then the conditions on � are:

where g∗�p(v) = �g⋅p(g∗v) where g∗ is the push-forward of the tangent space for the map g ∶ P → P . 
A choice of connection is equivalent to a choice of covariant ‘horizontal’ complements to the vertical 
spaces, i.e. Hp ⊕ Vp = TpP , with H compatible with the group action.

�(v
�
) = � and g∗� = g−1�g,
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� with respect to (horizontality as defined by) � . As you go around a closed curve 
in M, parallel transport on P is called the holonomy of � along the closed path � . Its 
infinitesimal expression is the curvature of �,

where dP is here the exterior derivative on the smooth manifold P, and ∧P is the 
exterior product on Ω∙(P) (which is not to be confused with the notation for the 
curvature 2-form on P, used in (A.1)); it gives anti-symmetrized tensor products of 
differential forms.

Gauge transformations v. Transition functions

Given local sections �
�
 on each chart U

�
 , i.e. maps � ∶ U

�
→ P such that �◦�

�
= id , 

we define A as the pullback of the connection, A
�
∶= �

∗
�
� ∈ Ω1(U

�
, �) (here � is a 

chart index, not a spacetime one). Since the differential and the pullback operation 
“commute”, we also have:

where now d and ∧ are the familiar exterior derivative and products in Ω∙(M).
Notice that contrary to � and Ω , the A

�
 ’s and F

�
 are defined over charts of the 

spacetime M, rather than the bundle P. The price to pay is the introduction of: (a) 
an (arbitrary) choice of section, and (b)—since global sections might not exist in 
general—an atlas of charts over M and a corresponding set of A

�
’s.

In other words, although � is globally defined on P, the A
�
 ’s are only defined on 

the respective charts U
�
 of M through the choice of a local section �

�
 . At fixed � , 

and on a given chart U
�
 , different choices of section give A

�
 ’s related by a gauge 

transformation. The demand of gauge invariance reflects the arbitrary nature of the 
choice of section. We will come to this in a moment; first we need to worry about 
how to patch the charts together.

Given an atlas of charts U
𝛼
⊂ M , this patching requires us to consider transition 

functions which relate the A
�
 ’s to each other on the overlaps U

��
= U

�
∩ U

�
:

where

These transformation properties translate between choices of local sections across 
overlapping charts, and must satisfy the cocycle conditions (compatibility over 
threefold overlaps U

���
= U

�
∩ U

�
∩ U

�
):

Transition functions look similar to gauge transformations, and indeed act very 
similarly on the gauge potentials. These similarities reflect the fact that, on the 

(A.1)Ω = dP� + � ∧P �,

(A.2)F
�
∶= �

∗
�
Ω = dA

�
+ A

�
∧ A

�

(A.3)on U
��

∶ A
�
= �−1

��
A
�
�
��

+ �−1
��
d�

��
=∶ A

�
��

� ,

(A.4)�
��

≡ �−1
��

∶ U
�
∩ U

�
→ G.

(A.5)on U
���

∶ �
��
�
��

= �
��
.
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overlap U
��

 , both A
�
 and A

�
 descend from the same � through different choice of 

sections—and, as we will now discuss, the role of gauge transformations is precisely 
to translate between different choices of sections, �

�
 and �

�
.

Gauge transformations (i.e. changes of local sections) are encoded in maps42

that act on the respective A
�
 and �

��
 ’s as follows:

from which one derives using (A.2):

Notice that both the connection and the transition function transform under the 
action of a gauge transformation g

�
 . Thus, under a gauge transformation on U

�
 , 

equation (A.3) describing the relation between A
�
 and A

�
 , is left invariant. This 

is the basic reason why the transition functions collectively encode the global 
properties of the bundle P while the gauge transformations are simply redundancies.

Besides the fact that gauge transformations act on transition functions and not 
vice versa, another crucial distinction between gauge transformations and transition 
functions, that underlies their different roles, is that the domain of the gauge 
transformations g

�
 ’s is the whole of U

�
 , whereas that of �

��
 is a subset of U

�
 (viz. its 

overlap with U
�
).

We reiterate that the introduction of transition functions is generally necessary 
because, global sections do not exist unless the bundle is trivial, i.e. unless 
P = M × G globally not just locally. In the trivial case, and only in the trivial 
case, all transition functions can be trivialized to be the identity, i.e. �

��
= g

�
g−1
�

 
for some choices of g

�
 ’s (and which thus can be themselves trivialized by gauge 

transformations in each domain). Only then, equation (A.3) is trivialized and the 
collection of A

�
 ’s yields a global gauge potential 1-form A.

Appendix 2: Non‑perturbative approaches

A non-perturbative account of the chiral symmetry breaking mechanism which does 
not rely on topological features of the field configurations might be more satisfying 
(although perhaps not necessary). In this non-perturbative account, it is rather the 
topology of the gauge group that plays a crucial role.

Indeed, in the non-perturbative account of [10, Ch. 3], chiral symmetry is not 
“explicitly broken”, but rather gives rise to what one could roughly characterize as 
a “meta-symmetry” between non-communicating ( �-)sectors of the theory. These 

(A.6)g
�
∶ U

�
→ G

(A.7)

{
A
�

g
↦A

g
� = g−1

�
A
�
g
�
+ g−1

�
dg

�
on U

�
;

�
��

g
↦�

g

��
= g−1

�
�
��
g
�

on U
��
;

(A.8)F
�

g
↦Fg

�
= g−1

�
F
�
g
�

on U
�
.

42  The set of all g
�
 ’s on a given U

�
 defines G

�
∶= {g

�
(x)} , which inherits from G the structure of an 

(infinite-dimensional) Lie-group, by pointwise extension of the group multiplication of G over U
�
.
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sectors are labeled by their transformation properties under central elements of the 
algebra of observables which correspond to the equivalence classes T ∈ G3∕G

o
3
 of 

gauge transformations in G3 including those which are not connected to the identity 
modulo the ones that are connected to the identity, Go

3
⊂ G3 (here G3 we refer to the 

residual time-independent gauge symmetries not fixed by the choice of temporal 
gauge, e.g. in a globally hyperbolic universe with a spatial slice S3 , G3 = C∞(S3,G) ). 
The technical, but crucial, ingredient entering this account is the non-weakly-
continuous nature of the representation of the symmetries on the Hilbert space.

In more detail: the vacuum must be a representation of T = G3∕G
o
3
 since the 

associated topological invariants define elements in the center of the Lie algebra 
of operators (see quote below). The idea is that the algebra of observables has a 
center given by operators that shift the winding number Tm�n⟩ = �n + m⟩ , which 
forms an abelian group T  in the center of the algebra of observables. This means 
that the Hilbert space must provide an irreducible representation of T  . Formally, 
the vacuum state is then a superposition ��⟩ of the �n⟩ “vacua”, with � as the label of 
the irreducible representation. The � = 0 vacuum then defines a sector in which all 
transformations in G3—and not only the infinitesimally generated ones—act trivially.

Indeed, this entirely non-perturbative resolution of the U (1)A-puzzle avoids the 
topological properties of the bundle; rather, it resorts to topological properties of the 
group of (time-independent) gauge transformations G3 that survive the imposition of 
temporal gauge.

As [24, p.12] explains:

The topological invariants [of the group of local gauge transformations G3 ] 
define elements of the center of the local algebra of observables; for Yang-
Mills theories such elements [...] are labeled by the winding number [...] 
their spectrum labels the factorial representations of the local algebra of 
observables, the corresponding ground states being the �YM-vacua. They 
are unstable43 under the chiral transformations [...] and therefore chiral 
transformations are inevitably broken [within each factorial representation 
(sector) defined by a choice of �YM-vacuum ...] Thus, the topology [of G3 ] 
provides an explanation of chiral symmetry breaking in QCD, without recourse 
to the instanton semiclassical approximation.

Here we pursued neither a deeper analysis of philosophical underpinnings of the 
non-perturbative account44; nor its compatibility with eliminativism; nor a clarifica-
tion of its relationship with the (semi)classical approach: all of these are interesting 
topics but lie well beyond the scope of this article (see the comments in Sects. 3.3 
and 4.2).
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