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It has become apparent recently that, the asymptotic
behaviour of the S-matrix element A(s, t) for the trans-
formation of two particles into two particles at high
energies s and at a fixed momentum transfer ¢ is
determined by the singularities of the partial waves
amplitudes f,(¢) as functions of the angular momentum
in the channel where ¢ represents the energy '~ >.
If the singularity of f;(¢) with the largest value of Re /
is a Regge pole at / = [(¢) then the invariant amplitude
behaves as s'. In the case of elastic processes for
small values of ¢ such a pole is the vacuum pole which
for t = 0 has /(0) = 1. As one increases the momen-

tum transfer v/ —t, I(f) may become negative. This
gives the impression that for a sufficiently large negative
value of ¢ the amplitude can decrease as s increases
arbitrarily fast. We propose to show that in relativistic
theory the partial wave amplitudes f,(r) have for any
value of ¢ singularities when Re/ = —1 and accord-
ingly that the amplitude A(s, #) cannot decrease faster
than 1/s whatever the value of . This conclusion is
valid for the amplitude for any two particle process.
The existence of such singularities is due to the exis-
tence in relativistic amplitudes of 3 Mandelstam spec-
tral functions, which give rise to singularities in the
neighbourhood of negative integral values of /. These
singularities appear to be poles concentrated about
these points, i.e. the points themselves are essential
singularities. To prove this let us consider the expres-
sion for the partial wave amplitude:
0
2

Ji(t) = ;JQ,(z)A,(s, 1)dz (1)

20

where A4, is the absorptive part of A,

8u®

z=1+ .
t—4p?

and z, =1+

t—4u’

To simplify matters we consider the case of identical
particles of mass u. If Re/ > I,, where [/, is deter-
mined by the maximum number of subtractions needed
in dispersion formulas for A(s, #), then as shown in ©
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as a function of ¢ satisfies a dispersion relation of the
form
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The first integral in (3) is taken along a line such as
AC or A'C' (see Fig. 1); the second integral, which
exists only in relativistic theory, is taken along a line
such as abced or a'd’, in the region where the Mandel-
stam spectral function p(s, u) is different from zero.
In the dispersion relation (2) it is understood that the
necessary number of subtractions have been made.
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Fig. 1 The Mandelstam s-t-u plane.

All the above mentioned statements are based on
the fact that the Legendre function Q,(z) has poles
for all negative integral values of /. Although there
are poles in Q,(z) it does not follow from formula (1)
that the partial wave amplitude f;(f) has poles at these
points. This is due to the fact that the representation
of f(t) in the form (1) is valid only when Re/ > m
where A(s, 1) < s for large s. If m > —1, the
integral has no meaning for negative integral values
of / and the question does not arise. If m < —1,
the residue at the pole is zero, for instance for / = —1
it is equal to 4/n [ Ay(s, 1)dz which must be equal
to 0 in accordance with Cauchy’s theorem for A(s, 7).
This agrees with the fact that there are usually no
singularities in non-relativistic theory for negative
integral values of /.

In relativistic theory the situation is different since,
according to (3) Q,(z) also comes into the expression
for the discontinuity in ¢,(f) on the left hand cut.

As already mentioned in ® expression (3) for A¢,(1)
has a meaning for any complex value of /, since it
is determined by integrals over a finite region of
analytic functions. This is why 4¢, in a relativistic
theory has poles for negative integral values of /.

Let us consider the question whether the residues at
these poles cannot become 0. As the residue of Q,(z)
at the pole at / = —n—1 is equal to nP,(z), the residue
of A¢(t) at this pole is [1Z0 P,(2)p(s, u)dz, and |z,|
is less than 1. Because of the completeness of the
Legendre polynomials, these residues are all zero only
if p is identically zero. Furthermore, we sece that
the residue of the pole at /= —1 cannot become
zero at least for the range of ¢ where the line abcd
is in a region where the Mandelstam spectral function
is positive (such a region always exists in the neigh-
bourhood of the boundary of existence of p). It
should be noted that in the case of the scattering of
identical particles there is no singularity for even
values of / since p(s, u) is an even function of z. If
one considers the dispersion relation (2) and the
unitarity condition to be an equation determining
¢(t), then the discontinuity on the left hand cut
A¢, plays the role of the inhomogeneous term
of the problem (i.e. it is equivalent to a potential).
Then it follows from previous considerations that the
amplitude ¢,(r) has singularities for integral negative
values of /, at least for a range of values . In order
to know exactly what happens to ¢,(?) for these values
of [ let us refer to dispersion relation (2). Let us
continue this equation into the region / < /, along
the real axis. There may now be additional singulari-
ties of ¢(t) beside the cuts in Eq. (2), and the equation
must be revised to include these singularities. Let
us suppose to start with that these singularities are
moving poles, i.e. poles whose angular momentum
[ changes as f changes. For / > [, such poles if they
exist are on unphysical sheets of the t-plane. As /
decreases they may cross the right-hand branch cut
and enter the physical sheet, for example by going
through the branch point at t = 4u®. If they cross
this cut for ¢ > 4u?, the residue at the pole must go
through zero as the pole crosses the cut, due to uni-
tarity. These poles cannot come on to the physical
sheet across the left-hand branch cut because A¢,(7)
is analytic (see the discussion in ©). The dispersion
Eq. (2) now has the form:
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where k is the number of poles on the physical sheet
t.ay the location and r,, the residues of these poles.
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Now let / approach —1. In this limit, 4¢,(f)—co,
and if the number k of pole terms in Eq. (4) remains
bounded, ¢,(¢) will also go to co for any value of 1.
But for ¢ > 4u® ¢() is bounded, due to unitarity.
This gives a contradiction; hence we must expect k
to approach oo as [/ approaches —1. Furthermore
the locations of the poles must become everywhere
dense on the left hand cut ¢ < t,, (see Fig. 1) for
If this is not the case the contributions of
the pole terms and the left hand cut will have different
analytic properties in ¢ and will not compensate each
other. Thus we expect that for a fixed t < ¢, , there
will be an infinite number of poles in any neighbour-
hood of / = —1, e.g. ¢,(¢) has an essential singularity
in / at / = —1. This essential singularity occurs for
all values of ¢ since it occurs for all values of 7 on the
cut r < fy.

[>—1.

Let us see whether the situation changes if there
are singularities other than moving poles (Regge poles)
for —1 <I<l,. If such a singularity is formed
by a branch point whose position does not depend
on energy ¢ then the limitation on the asymptotic
behaviour of A(s, ), will be even stronger. The ana-
lytic properties of ¢,(f) as a function of ¢ do not
change in this case. Only the unitarity condition

changes when / is to the left of the branch point.
The unitarity condition written in the form:
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(if 4u* <t < 164%) is valid for any value of / but
left of the branch point does not mean that |¢,(7)]
is bounded because ¢, is not equal to ¢,, due to
the existence of a cut in the / plane. However it
follows from the unitarity relation (5) that ¢, cannot
be unbounded on both sides of the cut. If ¢—~oc0
on one side then on the other side it must be equal to

1 o . .
—_Fi—_(t—4p2)_’_'ftf. If we consider / on the side of
l

the cut where ¢, is finite then all the above consider-
ations remain unchanged and so does the conclusion
regarding the existence of an essential singularity
at [ = —1.

If in the interval mentioned we meet a branch point
whose position depends on #, then in any case for
t < t, the limitation on the asymptotic behaviour of
A will be even more pronounced. We do not consider
this question in detail since we do not understand
how moving cuts can occur in the / plane.
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DISCUSSION

CHeEw: I was not clear about the degree of certainty with
which you established that the only / dependent singularities
reached through multiparticle cuts will be poles.

GriBov: First the conclusion concerned only the three
particle threshold. Secondly to prove this I suppose that the
partial wave amplitude is an analytical function of / if the real
part of /is sufficiently large. I suppose some kind of Mandelstam

representation for the inelastic amplitude but of course with
complex contour. What can be proved rigorously is that if 1
consider integral / and three particles inelastic unitarity, there
are no singularities depending on / on the second sheet, except
poles. Thatisif/is integral and the unitarity condition is simple.
Our proof is based on the unitarity condition, but the
unitarity condition cannot be proved for complex / nor for
non integral /.




