
LIMITATION ON THE RATE OF DECREASE OF AMPLITUDES 
IN VARIOUS PROCESSES 

V. N. Gribov 

loffe Physico-Technical Institute, Academy of Sciences of the USSR, Leningrad 

I. Ya . Pomeranchuk 

Institute of Theoretical and Experimental Physics, Academy of Sciences of the USSR, Moscow 

(presented by V. N. Gribov) 

It has become apparent recently that, the asymptotic 
behaviour of the ^-matrix element A(s, t) for the trans­
formation of two particles into two particles at high 
energies s and at a fixed momentum transfer t is 
determined by the singularities of the partial waves 
amplitudes75(0 as functions of the angular momentum 
in the channel where t represents the energy 1 _ 5 ) . 
If the singularity of f^i) with the largest value of Re / 
is a Regge pole at / — then the invariant amplitude 
behaves as sl^\ In the case of elastic processes for 
small values of t such a pole is the vacuum pole which 
for / = 0 has 1(0) = 1. As one increases the momen­
tum transfer may become negative. This 
gives the impression that for a sufficiently large negative 
value of i the amplitude can decrease as s increases 
arbitrarily fast. We propose to show that in relativistic 
theory the partial wave amplitudes ft(t) have for any 
value of t singularities when Re / ^ ~-l and accord­
ingly that the amplitude A(s91) cannot decrease faster 
than 1/s whatever the value of t. This conclusion is 
valid for the amplitude for any two particle process. 
The existence of such singularities is due to the exis­
tence in relativistic amplitudes of 3 Mandelstam spec­
tral functions, which give rise to singularities in the 
neighbourhood of negative integral values of /. These 
singularities appear to be poles concentrated about 
these points, i.e. the points themselves are essential 
singularities. To prove this let us consider the expres­
sion for the partial wave amplitude: 

where At is the absorptive part of A, 

To simplify matters we consider the case of identical 
particles of mass ft. If Re / > / 0 , where / 0 is deter­
mined by the maximum number of subtractions needed 
in dispersion formulas for A(s9 /), then as shown in 6 ) 

ut)=fi(t)(t-4n2rl 

as a function of t satisfies a dispersion relation of the 
form 

The first integral in (3) is taken along a line such as 
AC or A'C (see Fig. 1); the second integral, which 
exists only in relativistic theory, is taken along a line 
such as abed or dd\ in the region where the Mandel­
stam spectral function p(s, u) is different from zero. 
In the dispersion relation (2) it is understood that the 
necessary number of subtractions have been made. 
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All the above mentioned statements are based on 
the fact that the Legendre function Qt(z) has poles 
for all negative integral values of /. Although there 
are poles in Qt(z) it does not follow from formula (1) 
that the partial wave amplitude ft(t) has poles at these 
points. This is due to the fact that the representation 
of in the form (1) is valid only when Re / > m 
where A(s91) < sm for large s. If m > — 1, the 
integral has no meaning for negative integral values 
of / and the question does not arise. If m < — 1, 
the residue at the pole is zero, for instance for / = —1 
it is equal to 4/n J Ax(s9 i)dz which must be equal 
to 0 in accordance with Cauchy's theorem for A(s, i). 
This agrees with the fact that there are usually no 
singularities in non-relativistic theory for negative 
integral values of /. 

In relativistic theory the situation is different since, 
according to (3) Qt(z) also comes into the expression 
for the discontinuity in ^(7) on the left hand cut. 

As already mentioned in 6 ) expression (3) for Afy^i) 
has a meaning for any complex value of /, since it 
is determined by integrals over a finite region of 
analytic functions. This is why A<pt in a relativistic 
theory has poles for negative integral values of /. 

Let us consider the question whether the residues at 
these poles cannot become 0. As the residue of Qt(z) 
at the pole at / = —n — \ is equal to nPn(z), the residue 
of A^t) at this pole is \tz

z°Q Pn(z)p(s, u)dz, and \z0\ 
is less than 1. Because of the completeness of the 
Legendre polynomials, these residues are all zero only 
if p is identically zero. Furthermore, we see that 
the residue of the pole at / = — 1 cannot become 
zero at least for the range of / where the line abed 
is in a region where the Mandelstam spectral function 
is positive (such a region always exists in the neigh­
bourhood of the boundary of existence of p). It 
should be noted that in the case of the scattering of 
identical particles there is no singularity for even 
values of / since p(s9 u) is an even function of z. If 
one considers the dispersion relation (2) and the 
unitarity condition to be an equation determining 
(j)i(t), then the discontinuity on the left hand cut 
A(f)l plays the role of the inhomogeneous term 
of the problem (i.e. it is equivalent to a potential). 
Then it follows from previous considerations that the 
amplitude <^(/) has singularities for integral negative 
values of /, at least for a range of values t. In order 
to know exactly what happens to </>,(/) for these values 
of / let us refer to dispersion relation (2). Let us 
continue this equation into the region / < / 0 along 
the real axis. There may now be additional singulari­
ties of 4>L(t) beside the cuts in Eq. (2), and the equation 
must be revised to include these singularities. Let 
us suppose to start with that these singularities are 
moving poles, i.e. poles whose angular momentum 
/ changes as t changes. For / > 1Q such poles if they 
exist are on unphysical sheets of the ^-plane. As / 
decreases they may cross the right-hand branch cut 
and enter the physical sheet, for example by going 
through the branch point at / = 4p2. If they cross 
this cut for t > 4 p 2 , the residue at the pole must go 
through zero as the pole crosses the cut, due to uni­
tarity. These poles cannot come on to the physical 
sheet across the left-hand branch cut because A^^t) 
is analytic (see the discussion in 6 ) ) . The dispersion 
Eq. (2) now has the form : 

where k is the number of poles on the physical sheet 
tn{l) the location and the residues of these poles. 

Fig. 1 The Mandelstam s-t-u plane. 
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Now let / approach — 1 . In this limit, Atfrfay+oo, 
and if the number k of pole terms in Eq. (4) remains 
bounded, ^(t) will also go to oo for any value of /. 
But for t > 4[i2, is bounded, due to unitarity. 
This gives a contradiction; hence we must expect k 
to approach oo as / approaches — 1 . Furthermore 
the locations of the poles must become everywhere 
dense on the left hand cut t < t0 , (see Fig. 1) for 
/-> — 1. If this is not the case the contributions of 
the pole terms and the left hand cut will have different 
analytic properties in t and will not compensate each 
other. Thus we expect that for a fixed t < t0 , there 
will be an infinite number of poles in any neighbour­
hood of / = — 1 , e.g. fait) has an essential singularity 
in / at / = — 1. This essential singularity occurs for 
all values of t since it occurs for all values of t on the 
cut t < t0 . 

Let us see whether the situation changes if there 
are singularities other than moving poles (Regge poles) 
for — 1 < / < l0 . If such a singularity is formed 
by a branch point whose position does not depend 
on energy / then the limitation on the asymptotic 
behaviour of A(s, t\ will be even stronger. The ana­
lytic properties of as a function of t do not 
change in this case. Only the unitarity condition 

(if Ajx2 < t < 16// 2) is valid for any value of / but 
left of the branch point does not mean that |</>,(0| 
is bounded because fa% is not equal to 4>t, due to 
the existence of a cut in the / plane. However it 
follows from the unitarity relation (5) that cannot 
be unbounded on both sides of the cut. If ^t—.>oo 
on one side then on the other side it must be equal to 

If we consider / on the side of 

the cut where (j)t is finite then all the above consider­
ations remain unchanged and so does the conclusion 
regarding the existence of an essential singularity 
at / = — 1 . 

If in the interval mentioned we meet a branch point 
whose position depends on t, then in any case for 
/ < t0 the limitation on the asymptotic behaviour of 
A will be even more pronounced. We do not consider 
this question in detail since we do not understand 
how moving cuts can occur in the / plane. 
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DISCUSSION 

CHEW: I was no t clear abou t the degree of certainty with 
which you established tha t the only / dependent singularities 
reached through multiparticle cuts will be poles. 

GRIBOV: First the conclusion concerned only the three 
particle threshold. Secondly to prove this I suppose that the 
part ia l wave ampl i tude is an analytical function of / if the real 
pa r t of / is sufficiently large. I suppose some kind of Mandels tam 

representat ion for the inelastic ampl i tude but of course with 
complex contour . W h a t can be proved rigorously is tha t if I 
consider integral / and three particles inelastic unitarity, there 
are no singularities depending on / on the second sheet, except 
poles. Tha t is if / is integral and the unitari ty condi t ion is simple. 
Our proof is based on the unitari ty condit ion, but the 
unitarity condi t ion cannot be proved for complex / nor for 
n o n integral /. 

changes when / is to the left of the branch point. 
The unitarity condition written in the form : 


