@2z Content from this work may be used under the terms of the CC BY 4.0 licence (© 2022). Any distribution of this work must maintain attribution to the author(s), title of the work, publisher, and DOI.

14th International Particle Accelerator Conference,Venice, Italy

ISBN: 978-3-95450-231-8

ISSN: 2673-5490

JACoW Publishing
doi: 10.18429/JACoW-IPAC2023-WEPA086

PYTAO: THE PYTHON INTERFACE TO TAO

C. E. Mayes, H. H. Slepicka, SLAC National Accelerator Laboratory, 94025 Menlo Park, CA, USA
D. C. Sagan, Cornell University, 14850 Ithaca, NY, USA

Abstract

PyTao is a Python interface to the Bmad based Tao pro-
gram for accelerator design and simulation. This enables
advanced design and optimization beyond the normal ca-
pabilities of Tao and simplifies the use of Tao as an online
model for an operating accelerator. Here we will describe
this interface and some of its applications, including on-
line models for the LCLS and LCLS-II at SLAC National
Accelerator Laboratory.

BMAD AND TAO

Tao [1] is an open-source general purpose program for
charged particle and X-ray simulations in accelerators and
storage rings. It is built on top of the Bmad [2] toolkit
(software library) which provides the computational routines
needed for accelerator physics calculations.

The basic Tao interface uses a command line for input.
Output is text printed on the command line window and/or
plots displayed on a separate plot window. Besides this plot
window, Tao provides limited scripting capabilities, such as
allowing text files with commands to be issued in sequence.

Tao implements a number of commands to do such things
as setting lattice parameters, manipulating plots, etc. For
displaying information, the main command is the “show”
command. The show command displays information in
a compact human-readable format. The show command
is complicated by the fact that there is a large amount of
information to be communicated — anything from lattice
parameter values, radiation integrals, Twiss parameters, op-
timization settings, transfer maps, plot settings, etc. The
show command has over 40 categories (sub-commands) of
information to show and most sub-commands have a num-
ber of options that can be used to modify how and what
information is displayed.

Using the output of the show command to interface with
a scripting language such as Python is problematic because,
in order to maximize human readability, there is no stan-
dard format for displaying information for the various show
sub-commands. This means that separate code must be de-
veloped on the Python side! for each sub-command and for
the different options that each sub-command implements.
This is a huge endeavor, and the problem is made worse
by the fact that as Tao evolves to meet changing simulation
needs, the show command output will evolve, requiring the
attendant maintenance workload for the interface code.

In order to simplify communication with Python, Tao
provides a special “python” command to return structured

I Henceforth, it is assumed that the scripting language is Python, but the
discussion is applicable to any scripting language.

WEPA086
2838

text that is suitable for parsing by another program. For
example, the command

Tao> python ele:head end
will give the output

universe;INT;F;1
17ix_branch; INUM;F;0
ix_ele;INT;I;869
key;ENUM;F;Marker

The information here is returned in a semicolon-delimited
list which is easily parsed. Each line gives information for
a single parameter: name, type (e.g., integer, real number),
settability (whether this parameter may be varied by the
user), and value. While this was developed for a Python
interface, any language could be used to parse this output.
Tao’s python command has over 100 sub-commands to dis-
play different types of information, and most sub-commands
return information using the four-field, semicolon-delimited
list as discussed above. Differences occur with vector in-
formation and for sub-commands that are used to set Tao
parameters. However, the number of different formats is
kept to a minimum to limit interface maintenance on the
Python side. Furthermore, the syntax of Tao’s python com-
mand is structured to minimize breakage of existing scripts
when things change. For example, if a change in Tao ne-
cessitates adding parameters to the output of the ele:head
sub-command as shown above, a script that accesses, say, the
value of the existing ix_ele parameter will not be affected
by the change.

Python can communicate with Tao by running the Tao exe-
cutable within Python and then using Python’s pexpect [3]
module to communicate through the virtual command line.
Alternatively, Tao can be compiled as a shared library object
that Python can link to at run time. Communication is then
through Python’s ctypes module [4]. To further speed up
communication when there is a large amount of data to be
transferred, for selected Tao python sub-commands, the
string output can be bypassed and array data stored in a
temporary array that can be accessed by Python using C
functions provided by Tao. For example,

Tao> python lat_list -array_out * ele.s

writes s-position data for all elements into this array.

PYTAO

PyTao is an open-source Python package that allow users
to control Tao from Python [5]. It does this using the func-
tionality previously described by loading the compiled Tao
library via Python’s ctypes module.

WEPA: Wednesday Poster Session: WEPA

MC5.D11: Code Developments and Simulation Techniques

14th International Particle Accelerator Conference,Venice, Italy

JACoW Publishing

ISBN: 978-3-95450-231-8

ISSN: 2673-5490

doi: 10.18429/JACoW-IPAC2023-WEPA086

2838

MC5.D11: Code Developments and Simulation Techniques

WEPA086

WEPA: Wednesday Poster Session: WEPA

Content from this work may be used under the terms of the CC BY 4.0 licence (© 2022). Any distribution of this work must maintain attribution to the author(s), title of the work, publisher, and DOI.

14th International Particle Accelerator Conference,Venice, Italy

ISBN: 978-3-95450-231-8

tao -init tao.init

Tao> set element QOOW k1 = -0.85
Tao> show element end

Element # 869
Element Name:
Key: Marker

END

(a) Tao

ISSN: 2673-5490

JACoW Publishing
doi: 10.18429/JACoW-IPAC2023-WEPA086

python

>>> from pytao import Tao

>>> tao = Tao("-init tao.init")
>>> tao.cmd("set element QOOW k1 = -0.85")
>>> tao.ele_head("end")

{"universe": 1, "17ix_branch": 0,

869,

"Marker",

"ix_ele":
llkeyll :

(b) PyTao

Figure 1: a) Example of accessing Tao through the basic command line. b) Example of accessing Tao via PyTao and the
Python command line. Any initialization options for the tao program can be used to initialize the Tao Python object. This
object also has special methods such as ele_head to extract information as Python data types. There are approximately

100 such methods.

PyTao’s primary capability is provided by the “Tao”
Python object which is instantiated using the same argu-
ments as used with the basic command line interface. Fig-
ure 1 shows basic examples of Tao and the equivalent PyTao
syntax for instantiating a session, issuing an arbitrary com-
mand, and returning data.

The Python “Tao” object hosts approximately 100 meth-
ods for exchanging data with Tao. Anything that a user
would normally type at a Tao> prompt can be sent as a
string through the Tao . cmd method, with a primary return
as a list of strings. Other methods return custom types. For
example,

>>>tao.matrix("beginning", "end")
{"mat6": array([[-9.85453321e-01,
o 1D,
"vecO": array([3.92874185e-04,
oD 3

returns the analyzed linear transfer matrix and vector compo-
nents from two elements in the lattice as a dict of NumPy
arrays [6].

JUPYTER INTEGRATION

An alternative way to interact with Tao is via a Jupyter
notebook [7] using the %tao magic command. This is auto-
matically registered to the existing Jupyter notebook session
when a Tao object is created. Multiple lines can be executed
in the same block. Figure 2 shows how this is used.

OPENPMD-BEAMPHYSICS
INTEGRATION

OpenPMD [8] is a standard that has been developed in
cooperation with a number of laboratories for facilitating
exchange of particle- and mesh-based data. Bmad imple-
ments openPMD to create files for the exchange of particle
beam data. On the Python side, the openPMD-beamphysics
Python package [9] can be used for bunch analysis, plotting,

WEPA: Wednesday Poster Session: WEPA

MC5.D11: Code Developments and Simulation Techniques

and data conversion. Although PyTao does not depend on
this package, it does provide a method for easily extracting
complete particle coordinates in a standard format. This is
illustrated in Fig. 3.

EXAMPLE USAGE

PyTao is used in a variety of situations, including

* advanced scripting,

* dataset generation for machine learning,

* graphical user interfaces,

* external optimization,

¢ online modeling.

Figure 4 shows an advanced scripting example from
the PyTao documentation for exploring asymmetrical
quadrupole strengths in a FODO lattice. Custom plots, such

as the one in the figure, are easily generated using standard
plotting tools such as Matplotlib [10]. Further tasks, such

from pytao import Tao
Tao('-init tao.init")

tao =

[3]:

%%tao
show element end

Tao> show element end
Element # 869

Element Name: END
Key: Marker
S_start, S:

768.426421, 768.426421

Figure 2: PyTao usage in a Jupyter notebook with the %tao
magic command. This allows the user to use the more ef-
ficient native Tao command syntax and human-readable
printing within a notebook environment.

WEPA086
2839

e=ga Content from this work may be used under the terms of the CC BY 4.0 licence (© 2022). Any distribution of this work must maintain attribution to the author(s), title of the work, publisher, and DOI.

14th International Particle Accelerator Conference,Venice, Italy

JACoW Publishing

ISBN: 978-3-95450-231-8

ISSN: 2673-5490

doi: 10.18429/JACoW-IPAC2023-WEPA086

MC5.D11: Code Developments and Simulation Techniques

2839

WEPA: Wednesday Poster Session: WEPA

WEPA086

Content from this work may be used under the terms of the CC BY 4.0 licence (© 2022). Any distribution of this work must maintain attribution to the author(s), title of the work, publisher, and DOI.

@2z Content from this work may be used under the terms of the CC BY 4.0 licence (© 2022). Any distribution of this work must maintain attribution to the author(s), title of the work, publisher, and DOI.

14th International Particle Accelerator Conference,Venice, Italy

ISBN: 978-3-95450-231-8

from pmd_beamphysics import ParticleGroup
P = ParticleGroup(data=tao.bunch_data('end"))

P.plot('delta_t', 'delta_energy')

104

E—(E) (keV)

0 25
pC/keV

t—(t) (ps)

Figure 3: openPMD-beamphysics integration [9].

as tracking particles, can be easily done in the same Python
process.

One motivation for PyTao development was to support a
GUI for Tao using standard Python tools. Although this is
not currently developed, many of the components needed
are available in the code and could be utilized in the future.

For machine learning, the PyTao machinery enabled
Edelen et al. [11] to make large datasets of longitudinal
phase space projections by tracking particles through a
Bmad model of the LCLS with various compression set-
tings. These datasets were used to train artificial neural
network surrogate models for use in online tuning.

Tao includes several native numerical optimizers. How-
ever, for slow-running calculations or more advanced opti-
mization, it is useful to use external optimization packages
such as Xopt [12]. Gulliford et al. [13] show an example of
PyTao being used to optimize the Electron Ion Collider (EIC)
electron cooler using one of Xopt’s CNSGA algorithms.

Another PyTao usage is with the LCLS-Live [14] envi-
ronment to model the LCLS and LCLS-II machines online.
PyTao is used extensively in this case. In the same Python
process, this is done by 1) instantiating design Bmad mod-
els; 2) acquiring live values for relevant process variables
using PyEPICS [15]; 3) translating them to simulation set-
tings and applying to the model; and 4) serving the data over
EPICS [16]. Figure 5 shows bunch tracking statistics of a
live model of LCLS-II during commissioning at the end of
2022.

CONCLUSION

PyTao is a Python interface to the Tao accelerator simu-
lation program. By integrating the capabilities of Python
with Tao, PyTao enables advanced design and optimization
beyond the normal capabilities of Tao and simplifies the use
of Tao as an online model for an operating accelerator.

WEPA086
2840

ISSN: 2673-5490

JACoW Publishing
doi: 10.18429/JACoW-IPAC2023-WEPA086

10
14
9
12 A [5
101 -7
£
— L —_
< 8 ® 3
=2
< 5
6_
4
4_
3
.
2

> 4 6 8 10 12 1
|K1lor (1/m?)
Figure 4: Example from the PyTao documentation to com-
pute the average horizontal beta function as a function of

quadrupole strengths k; for an asymmetric FODO lattice
with elements named QF and QD.

ece Xl PLplot

Figure 5: Screenshot of particle statistics from live particle
tracking of the LCLS-II sc_bsyd beampath using PyTao.
In a continuous loop, values from several thousand process
variables are acquired from the EPICS control system and
translated into simulation settings using LCLS-Live [14].
10,000 particles are tracked, and summary statistics are plot-
ted using Tao’s native plotting window. During commission-
ing this is updated at about 1 Hz.

ACKNOWLEDGEMENTS

This work was supported by the U.S. Department of En-
ergy, under DOE Contract No. DE-AC02-76SF00515 and
the Office of Science, Office of Basic Energy Sciences. In
addition, this work was supported by Department of En-
ergy grant DE-SC0018370 and National Science Foundation
award DMR-1829070.

REFERENCES

[1] D. Sagan and J. Smith, “The Tao Accelerator Simulation
Program,” PACO5 Particle Acc. Phys. Conf., Knoxville TN,
2005, vol. 0505161, p. 4159, 2005.

[2] D. Sagan, “Bmad: A relativistic charged particle simulation
library,” Nucl. Instrum. Methods Phys. Res., Sect. A, vol. 558,

WEPA: Wednesday Poster Session: WEPA

MC5.D11: Code Developments and Simulation Techniques

14th International Particle Accelerator Conference,Venice, Italy

JACoW Publishing

ISBN: 978-3-95450-231-8

ISSN: 2673-5490

doi: 10.18429/JACoW-IPAC2023-WEPA086

2840

MC5.D11: Code Developments and Simulation Techniques

WEPA086

WEPA: Wednesday Poster Session: WEPA

Content from this work may be used under the terms of the CC BY 4.0 licence (© 2022). Any distribution of this work must maintain attribution to the author(s), title of the work, publisher, and DOI.

14th International Particle Accelerator Conference,Venice, Italy JACoW Publishing
ISBN: 978-3-95450-231-8 ISSN: 2673-5490 doi: 10.18429/JACoW-IPAC2023-WEPA086

no. 1, pp. 356-359, 2006. por: 10.1016/j .nima . 2005.
11.001.

[3] N. Spurrier and the Pexpect development team, Pexpect: A

pure python expect-like module, 2023. https://github.

com/pexpect/pexpect

Python Software Foundation, Ctypes — a foreign function

library for python, 2021. https://docs.python.org/3/

library/ctypes.html

C. Mayes, D. Sagan, and H. Slepicka, PyTao, 2023. https:

//bmad-sim.github.io/pytao/

[6] C. R. Harris et al., “Array programming with NumPy,”
Nature, vol. 585, no. 7825, pp. 357-362, Sep. 2020. por:
10.1038/s41586-020-2649-2.

[7] Project Jupyter,2023. https://jupyter.org/

[8] A.Huebl et al., openPMD: A meta data standard for particle

and mesh based data, https://github.com/openPMD, 2015.

por: 10.5281/zenodo.591699. https://www.openPMD.

org

C. Mayes, C. Gulliford, W. Lou, F. Ji, and J. Duris,

ChristopherMayes/openPMD-beamphysics: openPMD-

beamphysics v0.7.5, version v0.7.5, Apr. 2023. por:

10 . 5281/ zenodo . 7823796. https: //github. com/

christophermayes/openPMD-beamphysics/

[10] J.D. Hunter, “Matplotlib: A 2d graphics environment,” Com-
puting in Science & Engineering, vol. 9, no. 3, pp. 90-95,
2007. por: 10.1109/MCSE. 2007 . 55.

[11] A. Edelen, N. Neveu, D. Ratner, C. Emma, and C. Mayes,
“Machine learning models for optimization and control
of x-ray free electron lasers,” in The Machine Learning
and the Physical Sciences 2019 Workshop at the 33rd An-
nual Conference on Neural Information Processing Sys-
tems (NeurIPS 2019), Vancouver, Canada, 2019. https :
//mldphysicalsciences . github.io/2019/files/
NeurIPS_ML4PS_2019_90.pdf

[12] C. Mayes et al., Christophermayes/xopt: Xopt v1.4.0, ver-
sion v1.4.0, May 2023. por: 10.5281/zenodo . 7894002.
https://github.com/christophermayes/xopt

[13] C. Gulliford et al., “Design and optimization of an erl for
cooling eic hadron beams,” in Proceedings of the 23rd Inter-
national Particle Accelerator Conference (IPAC23), Venice,
Italy, 2023, to appear in MOPAO16.

[14] C. Mayes, M. Gibbs, J. Garrahan, and N. Neveu, LCLS-Live,
2022. https://slaclab.github.io/lcls-1live/

[15] M. Newville et al., Pyepics/pyepics: version 3.5.1, Feb. 2022.
por: 10.5281/zenodo.5949248. https://doi.org/10.
5281/zenodo.5949248

[16] L. R. Dalesio et al., “The experimental physics and indus-
trial control system architecture: Past, present, and future,”
Nuclear Instruments and Methods in Physics Research Sec-
tion A: Accelerators, Spectrometers, Detectors and Associ-
ated Equipment, vol. 352, no. 1, pp. 179-184, 1994, 1ssn:
0168-9002. por: https://doi.org/10.1016/0168-
9002(94) 91493 - 1. https : / /wuw . sciencedirect .
com/science/article/pii/0168900294914931

[4

—_

(5

—

[9

—

WEPA: Wednesday Poster Session: WEPA WEPA086
MC5.D11: Code Developments and Simulation Techniques 2841

e=ga Content from this work may be used under the terms of the CC BY 4.0 licence (© 2022). Any distribution of this work must maintain attribution to the author(s), title of the work, publisher, and DOI.

14th International Particle Accelerator Conference,Venice, Italy

JACoW Publishing

ISBN: 978-3-95450-231-8

ISSN: 2673-5490

doi: 10.18429/JACoW-IPAC2023-WEPA086

MC5.D11: Code Developments and Simulation Techniques

2841

WEPA: Wednesday Poster Session: WEPA

WEPA086

Content from this work may be used under the terms of the CC BY 4.0 licence (© 2022). Any distribution of this work must maintain attribution to the author(s), title of the work, publisher, and DOI.

