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Ces notes sont le fil d'Ariane d'un cours de trois legons
plus trois heures de discussion. Il est indispensable d'avoir recours
aux articles publiés. Je vais les citer comme suit : pour les trois
premiers papiers 1)’2)’3) I, IT, III par exemple (I, Sect. 3.3), etc. ;
pour les autres |[Ref. 5), Eq. (28)], etc. Ceux qui ne suivent pas les
cours et lisent seulement ces notes peuvent s'en servir comme guide pour

les travaux publiés.

1.1. - PREMIERE LEGON

17.7.7. — Généralités sur le cadre du modéle

Lecture : "Remarks on the Thermodynamical Model of
Strong Interactions" Eﬁef. 4), Sections 1 et é].

La thermodynamique statistique décrit des systémes & un
grand nombre de degrés de liberté en cherchant dans 1'immense réservoir
des états possibles ceux qui sont les plus probables et en les considé-
rant comme représentants de la réalité. On s'attend donc a la plus
grande uniformité et en particulier & une distribution isotrope du type
Maxwell - Boltzmann - Planck (vitesses, moments linéaires, énergies ciné-
tiques, énergies totales) des "molécules" élémentaires du systéme. Les
distributions angulaires des particules créées dans les collisions hadron-
hadron & haute énergie semblent contredire l'isotropie et donc éliminer
toute explication thermodynamique. Cependant il faut seulement s'imaginer
la collision de deux nuages de gaz dans le vide, telle que la vitesse
relative des deux nuages dépasse de loin la vitesse moyenne thermique
d'une molécule dans un nuage, pour voir que la distribution angulaire des
vitesses des molécules aprés la collision sera trés anisotrope dans
1'ensemble, tandis qu'elle peut étre isotrope et du type thermodynamigue
dans le voisinage d'un observateur local en co-mouvement. Pour lui, la
vitesse moyenne <v! > = 0 dans son voisinage. Vus du centre de gra-
vité de la collision, différents observateurs en co-mouvement ont diffé-
rentes vitesses ; ces vitesses représentent la vitesse collective du
voisinage de l'observateur local, la vitesse collective d'un élément de

volume.



Faisant 1l'hypothése que l'observateur en co-mouvement
trouve dans son voisinage un équilibre thermodynamique local, il nous

suffit de connaftre :

~ la distribution des parametres de 1'équilibre thermodynamique
local (température, densité, composition) ;
- la distribution des vitesses collectives,
pour décrire l'aspect global d'aprés la collision vue par un seul
observateur dans n'importe quel systéme de coordonnées. Pour les
interactions fortes & hautes énergies, nous faisons de méme. Nous

utilisons les unités # = ¢ = k (constante de Boltzmann) = 1. A

un moment, la collision de deux protons se présente ainsi :

\ - A=

A=Q

- \

~— \ A= -1

Nous mesurons la vitesse locale par

A= + -4 (1)
¥ 1

Y= NEETP XQ):,/E1—V§;, v =vitesse des particules incidentes
vue du systeme de centre de masse avant la collision. L'énergie
sera conservée localement [Eef. 4), Sections 3 et {I & une bonne

approximation ¢ pour la densité d'énergie, il vient :

EX = E.¥o0 (2)
€, = ’mf,/‘V;

V, %‘ m?
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Donc & est fonction de B, et de A . Soit fm(p',E) le spectre
isotrope des moments linéaires des particules de masse m créées loca~

lement, on a donc dans le:systéme R de coordonnées :

[
(R) (R) , 3,
Wt = [F0) LOne) {8, (p) 20,8080 b oo
=1

Ici, L(R)(7\, Xo) est l'opérateur de Lorentz qui transforme le spectre
isotrope du systéme au repos de A  (systéme N\ ) dans un systéme de
coordonnées R arbitraires. F(?\) est la distribution de vitesses
collectives (dans la direction de 1l'axe de collision) moyennée sur toute
l'histoire de la collision, sur toute son extension dans l'espace et sur
tous les paramétres d'impact, c'est-a-dire sur un grand ensemble de col-
lisions "identiques". Nous revenons aux fonctions E‘(?\ ) Ici je re-

marque Seulement que :

- il y a une fonction F(?‘) pour les particules nouvellement créées ;

une autre, FO(?\) pour les particules "en passant" (les protons) ;

~ les deux fonctions sont normalisées

/
fF(?\)d?\ = 2 (4)
-

- en les déterminant & partir d'expériences, on trouve entre 10 et
70 GeV que les deux fonctions semblent €tre universelles et indé-
LIP=Y ] ° .
pendantes de 1l'énergie (6/0) ;

- on peut calculer des fonctions semblables aux fonctions F(\)

5)

empiriques (& partir du modéle multi-Regge et de facteurs de

forme ° )

- 1l'hypothése que F(?\) est indépendante de l'énergie primaire

est équivalente & "l'hypothése de fragmentation limitée" 7)

Nous en discutons dans la suite.
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En revenant a (3), nous constatons l'analogie avec notre
image de deux nuages en collision : l'observateur en co-mouvement est
au repos dans le systéme 7\ 5 pour chaque Nl Yy a un autre
observateur ayant la "vitesse N " et F(\) est le nombre caracté-
risant l'importance de la vitesse )\ dans la description de 1'ensemble.
F(N) et L(, '5‘0) n'ont rien & voir avec la thermodynamique et dans
le cadre du modéle, F(A) est une fonction empirique. C'est fm(p',E:)
qui est la partie thermodynamique et qui sera déterminée complétement
par une analyse des interactions fortes, que nous allons entreprendre

maintenant.

E[Jecture supplémentaire sur F(A) : II, Sectiomns 1.2, 2.3.]

1.17.2. = La partie thermodynamique pure

Lecture : Ref. 4), Section 3.

La probabilité pour un état final & n particules s'écrit
, /(. L - J‘g o> T 3
P(n) = f/<le/5 |i>] " O(E-T& )0 (ZF, ),-”_d?ﬁ; (5)
LE=i

Nous allons éliminer une partie de 1l'élément de matrice et 1l'inclure
dans l'espace de phase : prenons deux particules, 1 et 2 ; l'interaction

cause un déphasage. Les ondes déphasées ont un comportement asymptotique

Y00 ~ L g (p - 2L« dp ) (6)

La condition que l'onde s'annule sur la surface d'un volume sphérique

de normalisation et de rayon R est

pR-LZ+ f};(‘F') =M (1)



_5_

ou n, est un nombre entier, p' le moment linéaire relatif des
particules 1 et 2. ILe nombre d'ondes entre p' et p' + dp' devient

alnsi

, dm 2 4dd, ,
dp! °=¢ = “+%zf;f)¢f’

6tf)’ T (8)

Sans 1l'interaction ce serait ®AZ )dp' ; donc le déphasage Cg(p')
a ajouté & la densité d'états finaux le terme ((1/m?dcrﬂ/dp')dp'.

Puisque l'ensemble de tous les déphasages (& deux, trois,
quatre,...,corps) est équivalent & la totalité de la matrice S, on
peut espérer éliminer 1'élément de matrice en le remplagant par l'effet
de l'ensemble complet de déphasages, c'est-a-dire par la correction

totale qu'elle produit sur la densité des états finaux.

Mais si l'ensemble des déphasages €équivaut & la matrice
S - inconnue ! - comment connaltre tous les déphasages ? Nous y
arriverons par un argument un peu philosophique du type "bootstrap"
6& la seule'hypothése qu'une description thermodynamique est possible
suffit & la déterminer presque complétement. Puisqu'il s'agit d'un
raisonnement en cercle fermé, nous pouvons partir d'ou nous voulons
en prenant un fait expérimental. Je prends le fait gue, dans

l'interaction forte, il existe beaucoup de résonances.

Supposons une résonance entre particules 1 et 2 dans le
voisinage de p' =~ p* ; alors, dans cette région, C{;(p') crolt
rapidement de fL . En idéalisant pour le moment, on peut donc dire
que (1/35)d¢;£/dp' Rfé‘(p'—p*) : cela entralne que si 1l'on reporte

1'équation (8) dans 1'intégrale (5), on obtient :

Pen) = [IBIS"3 51 dR,, (€, 3,1, .., )

+ [Icts s> dR (& w g my ) O
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ou m, et o, sont en résonance m*. La premiére intégrale vient
du premier membre de (8). Nous écrivons S" pour indiquer que la
partie de S qui est responsable de la résonance m* est éliminée
de S et se retrouve explicitement dans l'espace de phase (pour

lequel nous utilisons la notation abrégée Rn, Rn etc.).

-1?
Nous voulons calculer le spectre d'impulsion d'un type
de particule m, notre fm(;’E)' C'est le nombre de particules m
entre p et p+dp moyenné sur tous les états finaux sclest-a-dire
sans considérer ce qui se passe par ailleurs. En écrivant dR/dE
pour indiquer la suppression de l'intégration sur ; dans R, on

voit que dans le cas (9) on a, pour le spectre dans la voie n,
[m)“} 0y, ?_de
 (FE) = [Keishost” 2o (6w, . )

+ f/<f/s"/~:>/"$'"-t(e,wﬁ..) "

Supposons que nous connaissions toutes, toutes les résonances dans

toutes les voies, nous aurions
(FE)dD = C*a5 > AR (£ masser
)Qfm p.E)rp = P ag ) (11)

ol ‘zz s'étend sur toutes les configurations (nombre de particules

et de résonances) possibles. Puisque l'ensemble de toutes les réso-
nances est a4 peu prés équivalent & la matrice S ("saturation par
les résonances") nous avons remplacé 1'élément de matrice par une
constante. Il faut se rappeler que les mouvements collectifs (dus
aux interférences des phases et & la conservation du moment angulaire)

sont déja éliminés et mis & part dans F(A).

Le nombre de termes en (11) est immense : & 20 GeV d'énergie
primaire, ce sont déja des millions d'intégrales & calculer si l'on
prend seulement les résonances connues aujourd'hui - mais il faut les

prendre toutes.
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C'est icil que la thermodynamique entre en jeu : chaque terme
de (11) a la fofme de l'espace de phase microcanonique et 1l'ensemble de
tous les termes 1l'a toujours : c'est 1l'espace de phase microcanonique
d'un gaz & libre création et annihilation de toutes sortes de parti-
cules. La thermodynamigque nous apprend combien il est plus facile de
calculer dans l'ensemble canonique ol on prescrit une température T
au lieu de l'énergie E, pourvu que T soit choisi tel que <E(T)>J=E.
Si le nombre de degrés de liberté est infini, les deux descriptions
sont toutes équivalentes, sinon elles le sont approximativement. Nous
oublions toutes ces finesses et utilisons l'ensemble canonique pour
évaluer (11). Puisque fm(p,T) est le spectre de moment linéaire
des particules m dans un gaz & libre création (rayonnement du corps

noir) de température T, on sait tout de suite, sans calcul, que

/

_ -1
—~ $fe Vpl y? :
£M (F, T) 6(«3[3 = C\f egf) vpru + 7 Cﬁif) (12)

(distribution de Planck).

Cette équation semble résoudre tout notre probléme, mais

elle a encore une lacune :

Nous ne savons pas encore quelle est la fonction <E> = g(T)

qui nous permet de calculer T si E est donné.

Pour cela il faut savoir sur quelles masses nous avons
intégré dans (11) - et pour cela, il faut connaltre le spectre de masses,
donc toutes les résonances. Le jeu semble avoir échoué, mais c'est ici

que notre argument commence & devenir non trivial.

Pour compter toutes les résonances, étroites et larges,

y compris méme un fond non résonant, nous introduisons une
fonction S’(m) dm = nombre d'états entre m et m + dm
[ﬁous avons incorporé un facteur (2I+1)(2J+1) et encore

un facteur 2 si particule # antiparticulél.
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Doac, avec cette fonction g’(m) - encore inconnue ! - on a

T 7 i -

2 (_ao :] => fLao o] f[m‘)w (13>
Cenpigurations
Le membre de droite de (13) symbolise les fonctions thermodynamiques
calculées pour un ensemble canonique & température T avec libre
création et annihilation de toutes sortes de particules dont la zoologie

s'exprime globalement par fD(m). Ce qui est le plus important :

les particules de ce gaz sont formellement libres, puisque

toute interaction a été comprimée dans f’(m).

Ce sont donc formellement des fonctions thermodynamiques d'un gaz

parfait & un nombre de composantes entre m et m + dm égal & fb(m)dm,
mais en réalité c'est une trés bonne approximetion & la dynamique de
1l'interaction forte - pourvu que nous arrivions & trouver le §>(m)

complet qui devrait représenter l'interaction forte complete.

La thermodynamique statistique du gaz parfait - méme du
corps noir - est trés simple et, une fois g’(m) connu, nous pouvons
tout copier dans n'importe quel livre sur la mécanique statistique.

Ceci sera le théme de la deuxieme legon.

Pour le moment, nous poursuivons la philosophie générale

du modéle.

Le bootstrap

Nous sommes arrivés au formalisme thermodynamique du corps
noir comprenant des particules de toutes sortes classées dans f7(m)
et contenant toutes les résonances, y compris les résonances encore
inconnues. Le systéme thermodynamique - le corps noir de température

T - est de la matiére hadronique hautement excitée qui tient ensemble
=23
10

pendant sec par Sa propre interaction - comme une résonance -

puis se désintegre statistiquement. Nous appelons cela une boule de

feu ("fireball"). Et maintenant, notre raisonnement circulaire :



3)

4)

5)

7)
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supposons que la description thermodynamique des interactions fortes
4 hautes énergies est possible - c'est-a~-dire que les objets de

cette description, les boules de feu, existent ;

si les boules de feu existent, elles peuvent avoir n'importe quelle

masse avec un spectre CT—(m) continu ;

plus leur masse est petite, plus les regles de sélection sont impor-
tantes pour la désintégration, moins valable est la description
statistique. En arrivant dans la région de masse allant de quelques
centaines a quelques milliers de MeV, les boules de feu deviennent

des résonances ;

en faisant la somme sur toutes les résonances, la description ther-
modynamique des boules de feu tient compte des interactions fortes

qui se déroulent & l'intérieur ; pour ceci, on se sert de la fonction

?(m) ;

puisque les boules de feu sont des résonances trés lourdes (ou les
résonances sont de trés petites boules de feu), il faut compter

dans 9 (m) non seulement les résonances connues mais aussi toutes
les boules de feu ; donc g’(m) et O (m) doivent &tre (essentiel-

lement) la méme fonction ;

les boules de feu = résonances sont & la fois :

- objet de la description thermodynamique,

- composant élémentaire de cet objet,

- agent générateur de l'interaction forte, qui est responsable de
1l'existence de 1l'objet.

(cela clest du bootstrap) ;

puisque seule la connaissance de g’(m) est nécessaire pour calculer
les fonctions thermodynamiques d'une boule de feu (et non la fiche
personnelle de chaque résonance), la théorie est meinterant déja fixée
par la condition g’(m)fv O (m) (& préciser plus tard), et qui

peut étre remplie. Nous sommes donc arrivés & une description
thermodynamique des interactions fortes déterminée de fagon unique,

la supposition 1) est donc valable, le raisonnement circulaire est

donc cohérent.
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I1 nous faut seulement montrer que dans la nature quelque
chose correspondant & notre schéma existe ; pour cela nous pouvons
prendre n'importe quel fait, soit

le succés du modéle thermodynamique,

1l'existence des résonances,

1'existence d'une température limite (& montrer),

la forme exponentielle du spectre ?(m) (E‘i montrer).
Nous verrons toutes ces conséquences par la suite.

Pour terminer la premiére legon, nous formalisons notre

raisonnement circulaire en définissant :

une boule de feu est :

un équilibre thermodynamique
(corps noir hadronique) d'un nombre in- (14)
déterminé de toutes sortes de boules de

feu, chacune d'elles étant elle-méme D

et nous avons déja constaté que cela implique ? (m) ~ O—(m). Puisque
les résonances comptées par ? (m) ont des nombres quantiques bien
déterminés tandis que dans notre description canonique nos boules de
feu ne l'ont pas, on ne peut pas exiger ? (m) = O (m). En effet, par
application des régles de sélection, on trouve ¢ (m) <O (m) [par
exemple G (m) pourrait compter des résonances "exotiques" qui ne

sont peut-&tre pas contenues dans ? (mﬂ.

En thermodynamique statistique, 1nJ(E) représente
1l'entropie ; étant donné que §> (m) =0 (m) est impossible, nous

exigeons

du piwm) 1

o (m) M>0 (14a)

comme formulation mathématique de notre définition (14).
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Nous en verrons les conséquences dans les legons suivantes :

- (m) est nécessairement une fonction exponentielle croissante
~ exp(m/T ) ;

- TO est la température limite universelle ;

- pour E — ®, le spectre fm(p,T) - fm(p,To) et rien ne
change plus dans la distribution des moments linéaires, sauf
par l'effet de L()\,Xo) dans (3).

1.2. — PREMIERE DISCUSSION

1.2.1. - Fragmentation limitée

Lecture : Ref. 4), Section 2.1.

Supposons F(A) et FO(?\) indépendantes de 1l'énergie
primaire (donc de a/o)'

Fixons un nombre 7\ 0 < 1 positif et arbitrairement

petit. Alors, pour tous les A\ > %0 on a

‘l,\K & §oAo > 1

%3'—"_'1\'—»

_ (15)
&l % ldeue s Egy» M /2,

La partie du spectre total qui est due aux ')\ entre -1 et - /\O

est donc

-Ne

Wf")(lb") = fF(m)L(%,gc){fm (ﬁ’,T)} d» (16)

ou T=1(&(A, Xo))' En effet, selon (2)
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EQ Y)Y = €0
) = &, go ~ %0 (17)

selon (15) ; donc T(E£ ) est fonction de ‘A seulement et indépendant
de KO'

Donc, dans (16) seulement L(%,b’o) dépend de 0’0.
Nous avons choisi la partie du spectre qui, dans le centre de masse,
est émis vers l'arriére ce qui, par convention, implique qu'elle est
liée & la particule cible. Si ce spectre contient les débris de la
cible, il devrait &tre & peu prés "au repos" dans le systéme du labo-
ratoire. Prenons donc la transformation L comme celle (A)- lab.

Posons

il
I

Vo (Xcl (3080) quadrivitesse du CM vue du lab.

\ = (5/:/36/)

CH

\441&3 (KA / ﬁ?\ b/?\)

quadrivitesse de " A" ~vue du CM

quadrivitesse de "QAM™ vue du lab.

(18)

I

Vlab()‘) est donc la transformée de Lorentz de VCM()\) :

fa = %o (8- 0o By )= 5% (1-PB¢)
Baks = Ko (-0 +8:y )= ¥y (Bo=P)

(19)

ol nous avons déja tenu compte de A négatif.

Avec (32 =1 - 1/2{2 nous avons pour b/>>1 et

§ =AY
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1+ At
92(534“;&%})(“ E‘) ~ A= a;&‘l

I+2° i o A+DE
(390 N - 2;7, OZ / 1- ./3/30 ~ Q;'Ldno?—

et
1-At

Bop ~ 15k (155 ) - T

donc & cette approximation pour -1< A < - ‘>‘o

/ YA _'l.
2" /ﬂ) (20)

%(”Q’(zm TY

donc indépendant de 5'0. La transformation (QA) — lab se sert de
cette quadrivitesse ; si nous transformons la partie -1 < ?\ < Ao

au systéme lab, nous trouvons

I (las iy
W,m (F) = fF"(%) L [7)«) {fau‘f"/ TC")} A (21)

et cette expression ne dépend plus de b’o.

(0)

En d'autres termes, si l'on choisit Ej,’ >> 2mp/) o
on trouve gque la partie du spectre provenant de -1 < A< —)‘o et

observée dans le lab ne change plus quand l'énergie primaire E
continue & augmenter au deld de E(glc\)([) La méme chose est vraie

dans le systéme de repos du projectile si l'on considére la partie

CM

')0 < A < 1. La partie -)\O <A< )\o chanﬁe toujours ; cet

intervalle peut &tre réduit en choisissant E plus grand. Si

CM
F(A) n'a pas de singularité & A= 0, cette dernidre partie devient
négligeable pour E — ® et les multiplicités tendent vers une

constante.
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On a donc trois parties du spectre

- les débris de la cible =-1< A< '?‘o’ faible énergie dans le
lab, indépendant de Eprim’
- la pionisation - A 0 < A< ?‘o’ énergie dans le lab z*/Eprim’

- les débris du projectile A <N< 1, énergie dans le lab

w E . L]
prim

L'équation (21) peut &tre interprétée comme suit :

e WW)("E. ) = "”("”
Epruu_)"o m P’ prus J .ﬁm lo) (211)

existe pour chaque [BI fini

et sous cette forme, l'hypothése de "fragmentation limitée"™ a été

proposée par Benecke et al. 7)

1.2.2. = Discussion libre
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2.1. - DEUXIEME LEGON : LE CORPS NOIR HADRONIQUE

2.17.1. = La fonction de partition

Lecture : I, Sections 1, 2, 3.

Toutes les quantités thermodynamiques se calculent a

partir de la fonction de partition

Z(v,T)= 22 ep-7)

Puisque formellement nous avons affaire a des particules libres, ur—1
état L/J est le produit direct des fonctions d'onde des particules

libres présentes dans V.

Dans un volume V les fonctions d'ondes remplissant les
conditions aux limites constituent un ensemble discret. Choisissant
des ondes planes, on a donc des moments linéaires ;o‘ discrets ;

o = 142y...4® . Supposons pour le moment que l'ensemble de toutes
les particules et résonances est également discret, dénombré par

1l'indice 2‘ = 1425.+..5. On a donc :

énergie de l'état o d'une

L 2
\/Pd‘f (mx e £°(K = particule de masse m.Q, (23)

et

/ J /’ pour les fermions
\3 0, v 2 e OO pour les bosons
f

\&& désigne le nombre de particules d'espece Y
se trouvant dans 1'état oL

(\)c(5 = nombre d'occupation)

vdx
(24)
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L'état \P du systéme total est fixé par l'ensemble des nombres d&
(o Y= 051, ..,®) c'est-a-dire par la matrice (V) d'éléments
V. . Done Y = (V). L'énergie totale est

*Y

— Y
é:% = o%; von gp(g (25)

d'ol il vient

Z (VT )= exp (—%g%z“) (26)

(v) 2

Posons

Xag = xp (- Z5)  (bujmo <7) (0

alors

_ Vx —_ v
Z(V’) 2—7(_ K.——JA’(%ZX“XM) (28)

)ub/

Nous dlstlnguons les bosons ( O’;ﬁ) et les fermions

(X 5 ) et obtenons avec @ = 0y1452yc0ey@ qu’_.o .
VT ) = A
Z(vT) 7; i J (1+ Xup ) (29)

b 20T ) = - (-5 ) + Tl (105)
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Passons au continuum :

(31)

QEZIAP fd“‘ (?(M)&”{4rxf“) f( )&"(" fm )](32)

En développant les logarlthmes, on obtient

ﬁwZ(VT)- Z—‘ fd dm p f[m*n)xm

X;:M = Exp (":,:l/{"zﬂwz) (33)
Plw; )< Em)— (-1)"fe (™)

L'intégration sur p donne

Z(VT) = (34)
o [ LT 5 e fffww K, (47 ) e |

ou K2 est la fonction modifiée de Hankel bien connue.
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201.20 - I.le bOOtS‘traE

Maintenant nous préparons l'introduction de notre condi-

tion de "bootstrap" (14), (14a) en écrivant

| o N
Z(VJT) = JO"("",'V)Q‘-?M (35)

Cette formule résulte de la définition (22) de la fonction de partition
si on groupe d'abord l'ensemble de toutes les L// dont 1l'énergie
m< E<m+ dn et dont le nombre total est QO (m,V)dm.

Pour écrire la quasi-égalité de 57 et O, il faut
fixer V=1V = volume élémentaire 41{:/(311)3\,) et puis exiger
(34) = (35) : dans (35) la boule de feu de volume V, et de tempéra-
ture T est interprétée comme un seul objet de densité de niveaux
G'(m,VO) et dans (34) comme un corps noir hadronique composé de par-

ticules de spectre de masse f (mjn). La condition de bootstrap est :

ﬁu/ .
‘F(/MIM) — 1 (36)
ﬂu/ O"('m/'vo) M-8

On voit trés aisément ce qui se passe en approchant (36) par itération ;
nous partons de l'hypothése que le spectre hadronique est borné ; la plus
mauvaise approximation est de supposer qu'il n'y a que des mésons T .
Dans ce cas, et pour T suffisamment grand (T >> mE), on peut négli-
ger la masse my et on tombe sur les formules du rayonnement du corps
noir électromagnétique (4 un facteur de poids 5 pr¢s) pour lequel on

3/4)'

sait que @ (m,VO) ~ exp(m Pour obéir & la condition (36) il faut
donc abandonner 1'idée que ? (m;n) est borné et admettre que

(msn) ~ exp(m3/4). Avec un tel ? on trouve que O  crolt comme
expEl/ln nﬂ, donc doit le faire aussi, etc. Dans cette itération
G'i crolt toujours plus vite que ? 5 et puisque 1l'équation (36) exige

qu'on pose j’ 141 R O’i dans l'itération suivante, il découle que
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91+1 crolt plus vite que ?i' Or, ni 9 ni 0-‘ ne peuvent croltre
plus vite qu'exponentiellement. Si donc 1l'itération a une solution, ce
sera ? ~Q ~ exp(m/To) ou T, est une constante et ol S? et O
peuvent différer par un facteur f(m) non-exponentiel. Dans I,

Appendices 3 et 4, j'ai démontré que :
-~ 1l'équation (36) n'admet pas de solutions non-exponentielles 3

- la solution exponentielle existe.

Essayons de voir que ? ~ G ~ exp(m/TO) est une solution.
Avec ? ~ exp(m/To), ce sont les grandes masses qui contribuent dans

les intégrales de 1'équation (34). On peut donc écrire
" TT o
My ) =\ exp-n%)
kl( T . 2mm P T (37)
m=»1
T
et constater que, dans (34),

la premiére intégrale (n=1) diverge pour

T>T, la deuxieme pour T > 2T, etc.

Pour T — To, il suffit donc de considérer la premiere intégrale
divergente et de négliger tout le reste (nz 2) qui tend vers une

constante finie pour T - TO.

Avec

plm) = fim) e

/m/-r;

mf (38)
o(m) = g(m) e ar

On obtient pour T - To et un MO >> TO arbitraire
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Z(wT) g5 e [ulB) P Tooniadte
M, +C< o, c.)]
b (39)
(? fQ(WJQ—MrM

7, T
TTo

T

fQ

et ol C(MO,VO,TO) contient tout le reste.

Les deux intégrales ont la méme structure : elles
contiennent la méme fonction exp(-mT) et d'autres fonctions non-
exponentielles. Mais la premiére intégrale se trouve dans 1'argu-
ment de la fonction exponentielle et la deuxiéme non. On peut alors
choisir f(m) et g(m) tels que la premiére intégrale diverge loga-

rithmiquement pour compenser l'exponentielle :

Flm) = =
(m /2 (40)

4(m) = GmbPT

La premiére intégrale devient pour 2:'* 0

am ~HE _ dx - X
610;;:4" e Q, d( " => a é&{/(*1c> T—T ()

=a,bul2 ) + a,bu(T/Ho)

et la deuxiéme
et e - () [Tl re)] »

On obtient donc de (39), (41), (42) pour T - T,
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Z(\V,,T)" )( ) QKPC

Sl

avec

il

— 3
a V;(Q) /2 (44)

S

En choisissant /37 =o( et be I ( (’))

réalisé la solution. Il faut encore dire que C, = C(MOVOTO) +

+oag ln(To/Mo) - voir (41) - et que C, ne dépend plus de M

exp CO nous avons

pour M_>> T . La fonction o—(m,V ) ne nous intéresse pas ;
notons cependant que l'équation bTO. r ((}.) = exp Co implique
que O  dépend de Vo exponentiellement (comm,e il le faut pour assurer

1'additivité de 1'énergie libre).

2.1.%. = Discussion des résultats

Nous sommes partis de l'hypothése qu'une description thermo-
dynamique des interactions fortes est possible, c'est-a-dire que l'objet
d'une telle description - la boule de feu - existe. L'interaction
forte est représentée par les résonances traitées comme particules
libres. L'existence des boules de feu nous force a les considérer
comme des résonances lourdes, ce qui nous force & poser la condition de

bootstrap (14), (14a). Cette condition entraine

") Q. "1,
?( ’})4.,04 /m,’S'/Z e (45)

et, puisque toutes les fonctions thermodynamiques se calculent & partir
de la fonction de partition (43) qui diverge pour T — TO, nous avons

le résultat que toutes les fonctions thermodynamiques (énergie, nombre
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de particules, pression, entropie, etc.) divergent, donc

TO est la température maximum universelle (46)

L'explication physique de ce phénoméne est que, pour T — TO et avec

le spectre exponentiel, il devient plus facile de produire des particules
que d'augmenter 1'énergie cinétique de celles qui sont présentes.
:Eecture:‘Ref. 8), Section il. Cette température est universelle

parce qu'on ne peut pas empécher la production de particules, donc on

ne peut pas supprimer le mécanisme qui limite T < TO sauf peut-&tre
dans des collisions & si haute énergie que le temps de collision

At & A&td/d devient trés petit comparé & l'intervalle élémentaire

zlto ~ 1/m7t qui gouverne la production de particules (analogie :

liquide surchauffé).

La structure logique de notre raisonnement circulaire est

donc ¢

Q)

Hypothése qu'une description thermodynamique
des interactions fortes existe ("boules de feu")

Lboules de feu = résonances l

1nY¢ (m
1n m

- 1 pour m ~ ® (bootstrap)l

B O

m/T (solution du bootstrap)

?(m)"mw%e

TO = température maximum universelle

®

Avec la solution de la condition du bootstrap,
la description thermodynamique existe par cons-
truction ; elle est uniquement déterminée, aux
valeurs numériques de gquelques constantes a,s
TO prés.

®
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donc 1'hypothése (:) est vraie. Pourtant, cette chalne ne montre que

la cohérence logique de notre théorie. DPour la rendre vraie dans le

sens d'une théorie physique, il faut qu'elle corresponde & la réalité.

Pour cela, notons :

- le spectre hadronique experimental peut €tre bien approximé par
(voir Fig. 1)
™M/T,
?(’M ) = (’W" 5/4. € (46)

et les valeurs numériques sont

2,63 = [p* [Mev /2 ]
T = (6o MeV (M% xip'? K /\ (47)

0 .
m, = 500 MeV (pas de Jiguification [M:C;Ae)
La prédiction que le spectre hadronique crolt exponentiellement
était choquante en 1965 ; mais le méme comportement a €té retrouvé

dans d'autres modéles d'interactions fortes, notamment dans le

modéle de Veneziano.

la température limite To entraine par voie de la loi de Planck
[Eq. (1221 une limitation des moments linéaires ; ceci se traduit
en limitation des moments transverses pJ- dans les collisions

(ou la transformation de Lorentz dans la direction longitudinale

laisse Py invariant). On déduit [iI, Section 4.4.4;1

<p¢(,m T)> IL T KS}p(T) >\/“”M

KZ 0n>>T (40)

et pour les trés hautes énergies, T — To dans cette formule.

La figure 2 montre que c'est vrai.

Ces deux faits - le spectre hadronique exponentiel et

1'existence de TO entrainant les moments transverses limités - sont

les résultats les plus remarquables de cette théorie - théorie qui est

déja déterminde par la seule hypothése qu'elle existe. Puisque les
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résultats (on en verra beaucoup d'autres) sont en accord avec les
expériences, cecli signifie que le bootstrap est un principe profond,

constructif, hautement non-trivial et probablement vrai.

I-__Lecture : Section 6 de la Ref. 4)]

2.1.4. — Formules asymptotiques et moins asymptotiques

Pour la suite de cette legon, nous regardons la fonction
de partition de plus prés sans entrer dans les détails du calcul. Nous
connaissons maintenant le comportement asymptotique de §> (m) ; nous
connaissons également par l'expérience sa forme détaillée pour
m< 1.2 GeV. Donc ¢ (m) est suffisamment connue pour calculer numé-
riquement Zz(V,T) [Eq. (34)], méme pour des valeurs T non-asympto-
tiques. Les détails sont compliqués [:‘LI, App. I:[, mais supposons que
1n 7z(V,T) est calculé comme fonction numérique ; on peut alors appro-
ximer cette fonction par une expression analytique avec le résultat

[Ref. 9), Section 4]

bz = oo L [H(6) - (£-1)]
0.034225

/i (6) = 1.8479- 37435 -
H(e) = 1ae39- 33t - 2502

(49)
oL, = a, V, (To/2n) 72 = 5,38 (Saus diweasivn)

. , -6 -3 '
V= o)} )=18xlg Hev = ; €= T/T,

valable dans 0.5 < t < 1 (erreur maximale 0.4 %, erreur moyenne
0.1 %). Pour t < 0.5, la production de particules devient négligeable
puisque cette valeur correspond & une collision centrale de

po,lab X 2.5 GeV/c.

La densité d'énergie £ = B/V se calcule par

Tz?&oZ(V/T] _ T,o 1
<E(T)>=V AT T—n?, V, 1-% (50)

Ceci permet de calculer T = £(E) [II, App. II].
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Le spectre des moments linéaires [iormule de Planck,
Eq. (12I] peut €tre dérivé de 1n Z [}oir Discussion é] et le nombre
total moyen de particules créées (boules de feu dans la boule de feu

considérée) devient <N> ~ 1n z(V,T) [voir Discussion 2].

Enfin, on constate que la masse moyenne m des "boules
de feu dans la boule de feu" diverge pour T - TO. Sous cette condition
on peut négliger toutes les masses m.<//b ol j/c'>> TO et les formules
exactes pour le "gaz partiel des masses m >H" deviennent des formules

asymptotiques pour notre systéme [ﬁef. 9), Section 5.61

7 () 22 il ~={
o t1[%"r$T]

E(TY)a,V (T/20)7 f3TE [£- & |

: T
tThop[4-F] |
N(GT) 50 2(4T) »a,V(F )" E, [4 - F ] (53)

valewr Moglune d&o}*)
(51)

Mmasseo 0%]7)/0

(52)

d'ol vient la formule

E(T)=>N(T)- (3T+m ) (54

et, avec P(pression) = (T7/V) 1n %
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A premiére vue, c'est l'équation du gaz parfait de N
particules ; cependant ici N n'est pas un paramétre donné, mais une

fonction de T et V.

Dans la méme approximation, nous avons

{,m (P,T)ABP = }/fg" pr (-'.?' VP?MMZ )43@

(56)

Y T) = [P (pT)d% 5 Ve, (2 ””TS/ "o 60

Ceci est le nombre de particules de masse m discréte et de multiplicité
= (21+1)(23+1) présentes & la température T, si aucune régle de

sélection ne limite la production de la particule m.

Enfin, le nombre de particules entre m et m+dm

devient n(m,T)dm = }) (m,T)?(m)dm donec

3
(/mT)dAu#dV(T)/z exdo(@-l:l) (58)

T

(5.5
N(T) = f{ﬁ(w,‘r)dm, (59)

-5/2

ce qui entrafne par comparaison de (58) avec (39) ou f(m) = a, m

(40), que N(T_)TO) = 1n Z(V’T—)To>.

Comment est-il possible que la probabilité de trouver une
particule lourde soit exponentiellement petite (57) et que, en méme
temps, la masse moyenne m et le nombre total soient divergents ?
Parce que le grand nombre ? (m)dm de particules différentes compense
la décroissance du facteur de Boltzmann : on calcule toujours des

intégrales du type



[F(mT, .. ) pem) e ™7 g,
- famT . )ep (2 ET e

qui divergent pour T — TO. Par exemple, si vous observez la circulation
autour de 1'Arc de Triomphe & Paris, la probabilité de voir une certaine
voiture bien définie - disons 111 AA 75 - est minime, et cela est vrai

pour chaque voiture parisienne (sauf pour quelques unes) ; néanmoins, il

y en a assez, méme trop.

ELecture complémentaire : II, Introduction,
App. I et II, Ref. 9) et III Section 2]

2.2. - DEUXIEME DISCUSSION

2.2.1. = Comment dériver des distributions de probabilité a

partir de Z(V,T) ?

Supposons dés maintenant que 1n Z(V,T) est une fonction

donnée. Nous avons

Z(V/T) = Z -”— Xo('vo(g (61)

) oy 8

La probabilité de trouver actuellement un état (V') bien défini est

donnée par

—_ VAK

iy [/“_1 X,
W(\) ) - Z X (62)

—
évidemment 2, W(V ) = 1.

(v)
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Si S est un ensemble quelconque d'états, la probabilité de trouver

un état (V) quelconque appartenant & S est :

W(S)= Z(S)Exd;“x/z (63)

V)

Z(S) = somme sur tous (V)E s.

On obtient toutes les distributions de probabilité en

spécialisant S.

fm(;’T) est le nombre de particules de masse m ayant
un moment linéaire p dans d3p ; retraduit en langage d'états
discrets, c'est le nombre moyen de particules d'espéce k ayant un
moment linéaire Si’ c'est donc le nombre V) j Que nous devons
calculer. Nous commencons par calculer W(\?ik) c'est-a-dire la pro-
babilité de trouver Vik particules (espéce k, moment ;1) quel
que Soit ce qui se passe avec les autres. S est donc alors l'ensemhle

de tous les €tats dans lesquels V a une valeur fixe, tous les

ik
autres \)0(5 étant libres. Donc on doit sommer sur tous les \Juq

sauf sur oik

. 'K

Z(S) W-X V“X x‘:g.‘kn
oy ey ¥ T Z . « Vie (64)

NRL
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La valeur 'Q ik est obtenue par

. V]
(’—XLR )VZVXU& V= 4,245 00

. 4 v
R J X. Y= 4,0
’1+-X24 ;2:7 vR ‘

(66)

alors

g - Xie (-131mows . X = ox e\mﬁmj
R + femion, /) R do \_1—_"‘ (67)

Il est évident que cette méme formule peut aussi &tre dérivée de

- 9 1 <7, T ..V
=X, Gl = o 2 Ve [l xS (8)
iR~ Ty, Z “0{5 oy

Pour passer aux moments linéaires continus, il faut multiplier par le

nombre de moments Ei dans d3p, c'est-a-dire par Eoour z =~ Voir (70'2:]

2, Vd% Va2, |
ﬂf&g F = EZMFdW / (69)

On trouve

) 4 Va, Pdp
]24,,,,('0/7—)6t3 = 7_‘“‘ = (70)
n &P(V[:%m )_:'__7
(% e
+ ferui vuq
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1 si la charge et la polarisation sont observées ;
2J+1 si seulement la charge est observée ;
Zm T 2I+1 si seulement la polarisation est observée ; (70')

(21+1)(23+1) i ni la polarisation ni la charge ne
sont observées.

Cette formule s'applique seulement aux particules qui peuvent &tre
créées sans limitation par des regles de sélection. Tandis que cette
formule est la base de calcul pour tous les spectres, elle subit

encore des modifications dans les applications concreétes.

En revenant & 1l'équation (65) nous remarquons que
2 2 . . .
Xy << 1 pour ./p +m >>-TO, ce qui est garanti pour m >> TO

Dans ce cas

W(vie ) & X,:\f“ ~ [W(U.:ﬁ?)] A

—_ (71)
Vip & Xig ® w(‘)éﬁz=">

ce qui veut dire que, pour m >> TO, la probabilité de trouver une
particule m avec le moment linéaire ;i est << 1 et égale au
nombre moyen \_) ik de particules (i,k); la probabilité d'en
p . ieme . ' .
trouver n est égale a la n puissance d'en trouver une.
Cette remarque sera utile pour le cas ou une loi de
conservation exige la production d'une paire : la probabilité de
création d'une paire est le carré de la probabilité de création

d'une méme particule sans restrictions.

ELecture sur ce dernier point : III, Sect. 3
et App. I]
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2.2.1.2. = La distribution de Poisson ; multiplicité

Nous considérons la probabilité W(n) de trouver
exactement n particules (boules de feu dans la boule d= feu) de
n'importe quelle espéce et dans n'importe quel état o . L'ensemble

S s'écrit dans ce cas

S)= J): 2 = 7 }

(72)

et on a

W(M ) = Z/L, Z (S{M) 7T X Yo (73)

w) oL "5

La somme ;Z_(S(n)) est la somme sur l'ensemble de tous les termes
homogénes de degré n dans les variables Xty Pour les trouver
on se sert d'une variable auxiliaire z par laquelle on multiplie

toutes les ICdG. C'est-a-dire que 1l'on définit une nouvelle fonction

_— I
Z (v;rr: 2) = Z ” (2’<o(g) s (74)
V) xy

Pour gz = 1, on retrouve Z(V,T). On développe z(V,T,z) en série
par rapport a =z et le coefficient de zn est homogéne de degré n

dans les x Ay ? donc égal a Z(S(n))

Z(V;T%)=Z %M(Z(S( "Dy e (75)

) ug “K

et, avec (73)

7 (VT z) = Z(V) a W(m) -
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Pour évaluer Z(V,T,z) nous revenons & 1l'équation (33) qui prend

maintenant la forme
‘ , 2
2 = zZ J?(’“‘-n’“)x‘m Pd’POL‘“‘ (77)
(o}
d'ou vient pour (34) la nouvelle forme

| T D
ZuT2)=exp ) L 07 2 jewmw Kz(m.,_)dm} (79)

2
as, W

Il est difficile d'en tirer le coefficient de zn parce que la somme
se trouve encore dans l'argument de l'exponentielle. L'analyse numé-

rique (pour =z = 1) montre cependant que, étant donné que

n1E est la plus petite masse hadronique,
T<T0Nm‘t’ et

K2(n %) décrolt exponentiellement,

le premier terme (n = 1) contribue déja > 98 %

de toute la somme sur n.

La contribution est ~ 98 % pour des valeurs de T ~ 120 MeV ;

si T est plus petit, Kz(n %) décrolt encore plus rapidement et
le premier terme est le seul important ; si T - TO, le premier
terme diverge (les autres non) et devient de nouveau le seul impor-
tant. Dans ces circonstances, on peut négliger les termes n > 2

et on trouve

00

Z(vT2) ¥ Exp { 2 v J\?(m)m%z(f'—,-f)m (79)

PO

'sz

4 (au maximum) 2 % prés .
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Donc (toujours & la méme approximation)
Z(vT,2)- exp{a 2T ) e

Le développement en 2z donne

Z T, z2) = 0 (&,Z) (e0)

—-—

d'ou il vient, par comparaison avec (76)

. —\M
W(’h)z e_&'z, (_%‘/_’Z_)

ce qui est une distribution de Poisson avec

N = m-= ﬁa,Z(V,T) (82)

(81)

Ce dernier résultat N = 1ln Z est tres important. C'est pourquoi
nous le dérivons encore une fois d'une autre maniére. En partant de

1'équation (68), nous écrivons

- 7 Q
N = Z Ve = Z. X Z
g 1 ®X (83)
.1 X
Si 1n Z était homogeéne de premier ordre en :xoﬁf s le théoreme
d'Euler sur les fonctions homogénes donnerait immédiatement (82).
En effet, 1n Z ne l'est pas, et c'est seulement le fait que T,

est de l'ordre de m4 - la plus petite masse hadronique - qui

entralne que la relation (82) soit presque correcte (2 %).

Une troisiéme dérivation du méme résultat a déja été

donnée dans la considération du gaz partiel des masses m > >> TO

[Eqs. (58),(59])].
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Applications

Notre résultat (81), (82) n'est qu'une bonne approximation.
De plus, i1l ne s'applique pas immédiatement aux particules observées,
puisque W est la distribution de "boules de feu dans la boule de feu"
qui, elles-mémes, se désintégrent selon la méme distribution (avec un
autre N), etc., jusqu'd ce que, aprés toute une séquence de générations,
on arrive aux particules observées. Cependant, notre résultat peut étre
toujours une bonne approximation si l'on applique aux petits "éléments de
volume" VO . F(?\) d A qui n'ont, en général, pas une trés grande énergie
et, par conséquent, peu de générations de désintégration. En fait, la
distribution de Poisson des mésons TC - ou, mieux, de paires (7E+TC_)
a été beaucoup discutée ces dernieres annédes 10 et elle semble étre

vraie & une approximation satisfaisante.

Pour écrire une formule pratique, il faut encore exprimer
1n Z(V,T) comme fonction non de T mais dz la densité da'énergie & (T)

puisque & (T) est une fonction connue Eroir Eq. (SOH, c'est simple :

U 2.(VT) = & oxo (HE)- o (2-1)]

[voir Eg. (49)] ; de (50), on a

St = Lo¥o
>E;\/o

ceci, pour t — 1, conduit a

b 2 (V) = v"“’ [H(’/)+ N AL )

Lo To

donc pour £ large

N(Vs) = Vo [-1:37 ¢ b (E2 )

0

AT, = M,V (depinibion de , | = £60 HeV

(84)
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Si & est une densité d'énergie locale, E,VO est 1'énergie totale
d'un volume de nucléon de densité € constante. Si & désigne par
exemple la densité centrale Eﬁ( A= OH d'une collision,

E-Vo = ECM' I1 faut encore tenir‘compte du fait que trés souvent
certains nombres quantiques Q ={ q1,...,qr} du systéme en désin-
tégration ou du sous-systéme en considération l})ar exemple F(A)AA j
sont prescrits. Dans ce cas, le spectre hadronique & disposition est

limité et do devait &tre remplacé par K :

T VN2
°(o=aa [/ i’,‘—f)

- . a
Aemi.éo.ce/ por X = — X, (85)
QAo
ol a est la constante remplacant a, dans le spectre de masses
[?Q(m) = a m"S/2 exp(m,/TO):[ pour tenir compte de 1'élimination de
toutes les particules ayant des nombres quantiques # Q. [:Voir 11T,
Sect. 4.5.]

L'effet d'une telle élimination dépend de la masse totale
de la boule de feu avec des nombres quantiques Q ; plus elle est

lourde, plus elle est indifférente aux regles de sélection, donc

Q,(QE)/ 1 pour E —~ ® et n'importe quel Q
/

™S\ entre 0 et 1 pour E d'ordre de 1 GeV (86)
ao et dépendant de fagon critique de Q.

Nous ne changeons pas O(O en X sous le logarithme. Par contre,
nous obtenons une meilleure formule en négligeant la constante -1.37
pour la raison suivante : quand E£ - o s, =1.37 est négligeable. Donc
asymptotiquement, -1.37 n'a pas d'importance. Si 1l'on prend &

petit, disons &VO — 860 MeV, le logarithme devient nul et N devient
négatif. En négligeant -1.37, on trouve N — 0 pour & - /"?O EO{OTO,
ce qui est raisonnable. En négligeant =-1.37 nous obtenons donc une
formule qui n'est pas seulement "correcte" pour la région asymptotique

¢ - ® mais aussi pour g - ’7 o

| V.
N(E/V,@)g—.\\?f@_(gr_g__wo(p&u(gb") (87)
4 o

T
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O(O = 5.%8 (sans dimension)
Vofvo = 860 MeV ~ m (sous le logarithme)

a/a

o voir Eq. (86).

Exemple : pp au repos : V RV H a/aO <1 E;Vo

(0]

N(pp) ® 5.37 1n 2.18 = 4.2

Etant donné que N est le nombre total des particules,
résonances qui se désintégrent ensuite, ce résultat est

nable. Notez qu'il n'y a aucun paramétre libre.

Exemple : Collisions pp & trés haute énergie. Dans
faut appliquer (87) & chaque élément VOF(%)d) (voir

= 1870 MeV

y compris les

trés raison-

ce cas, il

premiére legon)

et ensuite faire la somme. La loi de composition de distributions de

Poisson donne, & cause de 1l'indépendance des émissions,

W) = U:‘:N!)mexp (- Jan )

(88)

J’dN est la somme sur toutes les ﬂ . Pour cela, nous remplagons

dans (87)

V par VOF('}\)d}\
€V (dans a) par E(N)AV = AE(N)

EVO dans le logarithme par 2(7\)VO -

(89)

ou la soustraction de mp tient compte de la conservation des baryons,

c'est-a-dire du fait que seul le surplus d'énergie peut Etre utilisé

pour la création de particules (c'est une manidére grossiére de faire

ce qui a été fait plus proprement dans II, App. I) Nous arrivons a

N = de oy fd) F(n) (&, AE(M)&‘/ (Z‘(A) P)

(6 Gul~) <0, & rwpocr jar zv )

(90)
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De notre premiére discussion (17), nous nous rappelons & (A) = £0/7\
ol E = m/V . Donc, sauf pour A trés petit, f_())V -mp =
(1ék —1) Le logarlthme s'annule donc pour mp(1/ -1)._- Voo
c est—a dire pour ?\ ~ g- Puisque F(?\) décrolt trés vite, ainsi
que le logarithme et a(Q,AlE(?\)), nous prenons la valeur
(a/ao)ln(...) 4 N\ =0 et estimons que 1'intégration revient &
multiplier cette valeur par un facteur 0.1 & 0.2 [én retrouve le
méme ordre de 0.1 & 0.2 pour le rapport AV/V ou AV est le

volume de recouvrement moyen et pour 9 = J AF(?\)d}\] On a alors

)0( CL(Q AE(O))

N(E, )~ (014 0.2 gu(_gi___p) (o1)
fr

Ici on peut, pour grandes énergies, supposer que a/ao R 1 et négliger

mp contre ECM' Dans ce cas,

ECH [He\/] (9 )
NF(EC (05 a,4 2}&\./ 60 ey 2

Cette formule s'accorde bien avec la formule empirique de 1la Ref. 11),

(8)

m = 0,89 eu(ECH) (93)

daged.

Pour ECM = 8.6 GeV (quelques 30 GeV d'énergie primaire) on trouve
1.2 < N < 2.8. Puisque la plupart de ces N particules sont des
résonances, la multiplicité chargée observée sera de deux & quatre
fois plus grande, ce qui tombe dans les limites expérimentales. Notons

que notre approximation grossiére ne contient aucun paramétre libre.
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2.2.1.3. - Lois de conservation

Eiecture : III, Section 3 et App. I;]

Nous ne discutons pas les détails du calcul. Il y a deux

situations & considérer :

- création libre limitée aux paires (pp ou KY, etc.),

- conservation des particules incidentes.

Pour la premiére situation, nous avons déja remarqué le
résultat plausible [Eq. (71II que la probabilité de création d'une
paire A, B est le produit des probabilités : W(aB) = w(a)w(B).

Une démonstration formelle se trouve dans (III, App. I). ©Nous ne la
répétons pas ici. Cependant, corrigeons une erreur d'écriture dans

cette démonstration

gans 1II, la formule au-dessus de 1l'équation (A—I.S)

devait étre
o >

‘ (\)), 1 Lerv-
: - (94)
V), 1 Zerv-

ensuite, remplacer 1l'équation (A—I.5) par

Z = Z./ [4 * (ZX,‘,, )(Zxoiz )] (95)

et le dénominateur de 1l'équation (A-1.7) par la méme

expression que (95).

Si 1'on veut alors calculer le spectre de l'anti-proton
par exemple, ou il faut créer un nucléon quelconque (m8me excité),

ce spectre devient, par multiplication de probabilités :
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;QF(F,T) = NB(T} ' ffm’ (/_’77")
Ng(T) = Z*fve,,,,* (FiT) 4%

on N (T) est le nombre total de tous les baryons qui seraient

(96)

preSentS sans loi de conservation (EE? somme sur toutes les résor
nances baryoniques, y compris le nucléon) ; étant donné que seule
la présence est exigée par la loi de conservation, et non un moment

linéaire ou une résonance spécifiée, le facteur NB(T) suffit.

La seconde situation est l'inverse de la premiere :
si une particule - disons un baryon - est conservée (sauf pour un
changement d'état d'excitation m — m*), et si cette particule se
trouve dans 1'état initial de la collision, elle doit aussi sortir.
d3

La somme sur p de son spectre doit étre égale & 1 si les états

excités sont aussi compris ; donc

I

,m*

¥ (8, user v )
2. f (3,T)4°p 1 (57)

d'ol vient
(B, couservé)

frm (F/T) "‘A'/_(‘_;_} ‘;Bfm F,T) (98)

avec le méme NB(T) que dans (96). Il est satisfaisant que cette
formule (98) puisse étre dérivée & partir de la fonction de partition
si 1l'on prescrit que seuls des états avec au moins un baryon doivent
8tre comptés. ILa démonstration, ainsi que la fonction NB(T) (et

autres pour K, etc.) se trouvent dans II, App.I.
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Les équations (96) et (98) permettent une interprétation

évidente ; nous appelons

NF(T) facteur de création libre d'une particule F

(99)

1

NFiTs

facteur d'absorption libre d'une particule F

ou "libre" veut dire : "sans restrictions par regles de sélection",

et o F désigne toute une famille (par exemple B = famille de tous
les baryons). Avec cette notation, 1'équation (96) décrit la création
(1ibre) de deux particules, l'une dans 1l'état (m,p), 1'autre dans un
état quelconque mais appartenant & une famille bien déterminée ; 1l'équa-
tion (98) déerit l'absorption libre (dans un état quelconque) de la

particule incidente et la recréation (libre) dans 1'état (m,p).

3+1. — TROISIEME LEGON

%.17.17. — Les spectres d'impulsion linéaire

Lecture : II, Section 2.8 et App. IV.

Pour vraiment suivre l'esprit du modéle, on devrait, par

exemple, calculer le spectre des mésons JC comme suit :

\el‘t‘ (ET) = 2*121:,@* (FT)
- ,Q,mm (pT) + fi;:,f(FTT) + ees

. JY* . .
ou Z, est la somme sur toutes les particules et résonances

(100)

(T, f ...4A...) qui en désintégration produisent au moins un méson To
avec un spectre f*, qui devrait se calculer & partir du spectre

*
thermodynamique de la particule m . C'est simple pour la désintégra-

) *
tion en deux corps, m — m, +m

] o9 ou l'on peut calculer analytiquement
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* — —
les spectres f, 2(p,T) des particules 1 et 2 & partir de fm*(p,T).
’
Ce qu'il faut faire, c'est trouver toutes les combinaisons des moments

*

*
linéaires de m et des angles de désintégration m - m, +m, afin

que m, (ou m2) ait un moment linéaire donné. Nous supprimons ici
cet exercice en cinématique relativiste [&oir 11, App. Iﬁl et notons

seulement que

*
fz';m*(p’T> = [11, Eq.(a IV.10)] = spectre des

moments linéaires de la particule mz pro-

: s . * (101)
duite dans la désintégration m —*mj-+m£

*
(o le spectre de m  est thermodynamique)

est une expression analytique connue.

N Ce n'est plus le cas pour le spectre de m‘c dans
m - mz + mj + m, et la situation devient rapidement plus compliguée
si le nombre de particules crolt. Méme si 1'on égale 1l'élément de
matrice de la désintégration & une constante, il est impossible de
calculer le spectre f* analytiquement. Cependant, on peut égaler
1'élément de matrice & une constante, si, selon notre philosophie
générale, on permet que, dans la désintégration de m*, apparaissent
de nouveau des résonances /db*, dont la désintégration s'ajoute encore
4 la somme dans 1'équation (100). Et ainsi ad infinitum. Or, plus
la situation devient complexe, plus nous nous réjouissons ; puisque, a
la fin, tout cela revient & dire que seuls les premiers termes (désin-
tégration & deux et trois corps) sont & calculer explicitement, tandis
gue tout le reste donne une contribution thermodynamique (précisément

Y

a cause de sa complexité) qui, en effet, peut €tre incorporée dans le

premier terme fm- (B,T) en le multipliant par un facteur de normali-

sation Q]E (T(E))’r

De notre analyse de la distribution des multiplicités
[é.2.1.2;I nous estimons que, pour toutes sortes de particules, on aura

des facteurs de 1l'ordre

Q) ~ O[&V(%M) ¥ ; p ~o O[i] (102)
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Eouey 2 — . .
EAnoter: Eﬂn(Tﬂ- et AJEGM/m, avec /5 et A Dbien choisis,
sont pratiquement - c'est-a-dire expérimentalement en mesurant des mul -
tiplicités - indiscernables dans des intervalles aussi grands que

20 GeV/c < P, < 800 GeV/c !]

Il reste la désintégration en deux et trois corps. Ici
l'expérience pratique nous a appris que la désintégration en trois corps
peut &tre négligée (parce que méme 1l'espace de phase dRB/dp ressemble
encore & un spectre thermodynamique) et que la désintégration en deux
corps a un effet remarquable seulement si la particule qui se désin-
tégre a elle-méme déja un spectre un peu particulier. Ceci est le cas
pour les particules "en passant", c'est-a-dire des particules incidentes
qui gardent la plus grande partie de leur mouvement longitudinal (par—
tageant le mouvement transverse thermique avec toutes les autres) et
qui sont excitées en résonance m*. Dans ce cas, le spectre des mésons

JU devient
Ch‘aﬁ > ¥ * -
w (BT)=@Q) qum(p,T)+%A(m ) ien:,wgp'T) (103)

* *
ou f est le spectre donné par (101) et ou A(m ) sont des facteurs
de poids ; la somme s'étend sur les quelques résonances ayant une dé-
sintégration dominante en deux corps. On peut interpréter le deuxiéme

terme - la somme - comme Une approximation
M*
f? () ﬁ*’ . (F,T)dw,* = D Ap*) )Q* (FT) (104)
J'z T, m¥ v I ¥ f

ou fzgﬂf) compte toutes les résonapces a4 désintégration en deux corps
et ou M est une masse (de l'ordre de 1 GeV pour les bosons et de

2 GeV pour les baryons) au dela de laquelle la désintégration en deux
corps devient rare. Puisque l'on suppose que f>2(m*) croft exponen-
tiellement & peu prés comme exp(m*/To), on s'attend & ce que les

*
A(m") en fassent autant. En les traitant comme des paramétres
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libres, on les voit s'arranger comme prévu [}oir I1, Fig. f].
Remarque : dans le calcul des rapports de branchement dans la désinté-

gration [iI, Section 2.8.2;1 se trouvent des erreurs qui ont &té

corrigées dans Ref. 12).

3.1.1.2. — Production associée

Lecture ¢ II, Section 2.7 et App. III.

Dans la premiére lecon nous avons appris que le spectre
thermodynamique s'applique seulement & la situation ol les mouvements
collectifs dans la direction de l'axe de collision n'existent plus,
clest-a4-dire dans les systémes de coordonnées locales (A ). La con-
tribution venant de "1'élément de volume VOF(?\)d}\ " au spectre dans

le systeme du centre de masse (CM) de la collision devient donc

[}oir (BII

M) (¢H) >
dw((%) = FA)da L (2x%) {fm (P/,T("))} (105)

Pour calculer le spectre d'une particule b qui, par une loi de con-
servation, est produite nécessairement en association avec une autre

particule a, nous nous rappelons le résultat (96) :

t, (FT) = NT) f%(ﬁT) (106)

ou, dans ce cas général, A signifie la famille de toutes les parti-
cules {.a, a'se.. } dont les nombres quantiques permettent la produc-
tion en association avec b Eaxemple : b= K+, A= {K— et ces

résonances, tous les hypérons, excités ou nog} j.

Maintenant, il faut faire attention : pour calculer le
spectre W(CM) de b, on doit a priori admettre qu'il est possible
que, si Db vient de (Q.), a pourrait venir d'un autre élément de

volume (O\'). La contribution totale différentielle sera alors
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9. (€M)

) = KO [N, (ro0) Fov)an |
-— (¢H) —, (107)
X FO)da L Cay) {f, (FLT0)] 07

ot K(N\,A') est une fonction de corrélation mesurant la "non-localité"
de la conservation (nombre baryonique, €trangeté, spin isotopique, etc.).
Dans cette formule, le premier facteur EIA(%')F() ')d}\'] est donc le
facteur de création libre d'une particule quelconque de la famille A
venant de (?\’) (pas de transformation de Lorentz puisqu'un nombre

est invariant) et le reste est le spectre de création libre d'une par-

ticule  (b,p) venant de (N).

Nous avons montré dans II, par une analyse des spectres expé-
rimentaux et de l'annihilation pﬁ‘* K+K + autres particules [il, App.IIiI,
que la loi de conservation d'étrangeté et celle des baryons agissent treés

localement, comme si

KOWN) & K d(A-2)
Ka 4

Les résultats que l'on obtient en analysant les distributions de multi-

(108)

plicités des mésons TJL en les comparant avec la distribution de Poisson
suggérent que cette distribution est valable pour le nombre des paires

('K:+ T ) plutdt que pour le nombre de mésons 7JC simplement Eroir Ref. 1OH.
On peut interpréter ce fait comme indiquant que la charge (1e spin isoto-
pique) est également conservée localement. Dans ces propositions,
"localement" veut dire "& des distances petites, méme comparées avec
l'extension spatiale m;; de la région d'interaction". Dans le langage

des modéles multi-Regge ou multi-périphériques, cela revient & dire que

les mémes nombres quantiques ne passent que rarement plus loin qu'au

prochain vertex.
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Avec (108) nous obtenons (K = 1)

(cH)

| |
W) =_f [ro] 4, (T) L {ﬁ%m /m)} “

l

La généralisation est évidente.

Lecture : II, Section 2.7.3.

I1 est utile d'introduire une représentation graphique (qui

n'a rien & voir avec les graphes de Feynman)

O représente une "boule de feu locale (A)"

O——?'I‘; = F(%)L(?\,Ko) {fi(;;’r(?‘)} indique le spectre

le plus simple (sans régle de sélection) [voir (105)].

O—-@ = NF(T(?\))F(')\) indique le facteur de création

d'une particule quelconque de la famille F I_—yoir (96),
(109)] venant de () ;

____e = 1/NF(T(7\)) indique le facteur d'absorption d'une

particule incidente de la famille F [voir (98)]
absorbée & () *)

S — —— T ————————— T ———— — T — ——— — — —— T — — —————— —— —————— —— T —— T~ — T~ — — ———

On aurait pu écrire E\TF(T(?\))F('}\)]—1 par analogie avec le
facteur de création, et cela aurait été méme plus logique. Mais,
dans II, nous l'avons défini comme ici et nous ne voulons pas
changer la définition. DPuisque la particule "en passant", qui

est d'abord absorbée par le facteur ‘l/l\IF et puis recréée, doit
étre décrite en tout cas par une fonction Fo()‘) différente de
F("\), on peut définir le facteur d'absorption avec ou sans F(A)
incorporée : c'est la fonction empirique Fo(7\) qui va &tre

modifiée.

(109)

(110)

(111)

(112)
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[
1
o
O== )
spectre de la particule i créde dans la désintégration
(1

m - itk [voir (100), (101),

Le spectre total d'une particule s'obtient maintenant en

combinant ces symboles selon les regles de sélection.

Il est évident qu'un spectre thermodynamique est toujours
défini comme valeur moyenne par rapport a toutes les variables autres
gque celles qui apparaissent dans la formule du spectre ; le spectre
décrit donc ce que fait une espéce de particules, quels que soient le
nombre et le comportement des autres particules. Dans la combinaison
des graphes, il ne faut alors dessiner explicitement que des lignes
nécessaires : celle du spectre qu'on veut représenter et toutes celles
qui sont exigées par les lois de conservation. Tout le reste est sup-
primé dans les symboles, mais sa présence physique est incluse, puisque
clest précisément "ce qui reste" qui a déterminé la structure thermo-
dynamique des spectres. Aprés ces remarques, il devrait €tre trivial

de voir que :

cette théorie ne s'applique jamais & un seul
canal de réaction (ol & un sous-ensemble de
canaux finaux) mais toujours et Seulement &

des quantités moyennées sur tous les canaux.
Si, en dépit de cela, on l'applique a un seul
canal |[comme je 1'ai fait dans Ref. 4), Section
4.{1 on ne doit s'attendre qu'a des résultats

qualitatifs.

(114)
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Nous combinons maintenant gquelques symhol~os pour obtenir

des spectres obéissant aux lois de conservation.

O—= T -s(A(xy) {5 60| (115)
v

méson I ; pas de loi de conservation.

K )
O/ =NK(‘))@(}\ HEL(),(YO) %me(E"T)j (116)

production d'un K ; conservation d'étrangeié.

Si, par exemple, on veut essayer l'hypotheése que les mésons TC chargés
.- . T — . .
sont créés en paires (ﬁ"m ) seulement, on peut 1l'écrire comme dans

le cas de K , naturellement avec m, remplacée par me. et X

par NTr.
Fo(N) -
EAGe LAY ,) { fmp(p',T)} (117)

proton "en passant"

A

proton venant de p(incident) = A - p +T

—-S—>p
- P P () M -
—eA:% =WL(>\,XO) gfp,m_(p',T)} (118)
e "
O=
®

= 7MY § o g (5',T>}

méson JC créé dans la désintégration d'un Y (119)

nouvellement créé€.

_~K Ny (T(X\)) | -
&7 - S PR RO L5 G ] (e

. + . .
production d'un K en association avec la trans-

formation du proton incident en hyperon.
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Y
‘_e/ NK(T(% )) . -,
® FECT T RN ) 2, ) |
transformation d'un proton incident en hypéron avec

création d'un K. |[Notez la différence entre (116),
(120),(121).]

@ (121)
(= d - BET%EOT 23, {fmd(;',T)}

N
N
production d'un antideutéron avec deux baryons. (122)

3.1.1.5. - Les_spectres complets ; résultats

Les spectres des particules observées sont encore des
combingisons de mécanismes différents. Dans ces combinaisons, il
faut tenir compte de tous les graphes qui donnent une contribution
non négligeable. En général, on obtient de bons résultats avec un
vrai minimum, mais on peut toujours ajouter d'autres graphes repré-
sentant des mécanismes de production non considérés auparavant.

I1 faut cependant dire que le spectre total d'une particule d'espece

i résulte d'une intégration sur A

W](_CM)(;) = Jd?\ Bous les graphes contribuant & "i'_':[

et que cette intégration est nécessairement numérique. Or, chaque

fois qu'on inclut un nouveau graphe, les fonctions empiriques F(')\)
et FO(')\) vont changer puisque maintenant quelque chose se trouve
explicitement dans un graphe qui devrait €tre simulé par F(?\) ou
FO('/\) auparavant. On ne peut donc pas simplement ajouter ¢a et 1a
un graphe ; il faut aussi redéterminer F(?\) et FO('/'\) a4 partir
des données expérimentales et, surtout, il ne faut pas ajouter dans
un spectre seulement ; il faut que tous les spectres soient calculés
4 peu pres & la méme précision. Une fois que l'on estime avoir un

ensemble raisonnable de graphes, on met tout dans 1l'ordinateur pour
déterminer les fonctions F(A), FO(9\) 4 partir des spectres W(p)

expérimentaux. Tous nos calculs jusqu'ici ont été faits avec un
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vrai minimum de graphes, négligeant par exemple tout mécanisme du type
? R +T s négligeant aussi le proton venant de la création d'une
paire et négligeant encore beaucoup d'autres choses. Cela peut et doit

&tre amélioré.

Les résultats et prédictions de la théorie sont présentés dans
dans "Particle Spectra" 12). Nous en reproduisons trois figures montrant
tous les graphes utilisés dans le programme (Fig. 3), et deux spectres

(Fig. 4 : protons ; Fig. 5 : mésonsTC ).

I1 se trouve que les fonctions empiriques F(A) et FO()\)
sont trés simples et permettent une représentation analytique avec un
seul paramétre pour F()\) et trois paramétres pour Fo(>‘)’ Ce sont
donc quatre constantes - les mémes pour toutes les énergies (au moins
dans 1l'intervalle 12 GeV/c S_po < 70 GeV/c) et pour toutes les par-
ticules - auxquelles est ainsi réduite une immense quantité de données
expérimentales. Pour &tre franc, il y a encore beaucoup d'autres para-
metres libres dans nos programmes d'ordinateur, mais, soit ils sont
éliminables par un calcul complet, soit ils sont déja fixés & quelques
pour—cents (parfois 50) prés par des arguments a priori. Puisqu'ici
nous voulons discuter la physique du modéle, je n'entre pas dans ces

détails qui sont tous expliqués dans les articles cités :

F(A), F (A) : II, Sections 2 (en particulier 2.4),
)
et 3.2.
les limites cinématiques des II, Section 2.5.

spectres :

la détermination des parametres II, Section 3.
du modeéle :

comparaison avec les expériences : II, Section 4 et Ref. 12).

prédictions jusqu'ad p_ = 800 GeV/c : Ref. 12.

Pour une récapitulation des résultats les plus importants :

Ref. 4), Section 5.
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3.17.2. - Relation entre les propositions de Feynman et notre

modéle

13)

Feynman propose d'abord de distinguer deux classes
d'expériences de collision :
- expériences exclusives ;

- expériences inclusives.

Dans la premiére classe se trouvent toutes les expériences
ol 1l'on regarde un seul canal & l'exclusion de tous les autres.

Exemples :

TT4p > T+ W
ptp — f{-&o+75++1t'

La deuxiéme classe est constitude de toutes les expériences ou l'inté-
ré&t se concentre sur une particule (ou méme sur un ensemble bien défini
de particules) en négligeant ce qui se passe par ailleurs. Aprés ce que
nous avons appris sur le modéle thermodynamique, il est clair que c'est

4 la classe des expériences inclusives qu'il s'applique.

Considérons donc le spectre d'une espéce i de particules

nouvellement créées :

(¢m) (c
w& (F) = fF(A)L (‘;\’,{o) {f”“; (F’,T)}d% (123)

{

Les moments linéaires l;'l dans le systéme () sont thermodynamiques
avec T < To, donc petits et de 1l'ordre de quelques 100 MeV seulement.

La transformation de Lorentz (A) = CM est
M

P = ¥ (py+pE")
b= p,

(124)
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E = \fpmewt =\[pie

avec /{,(,2 = PE+ %2 .

|| > A\, comme dans

5/ o -

Regardons magintenant des valeurs de

la premitre discussion. On a, pour ')\ o >> 1/ XO - disons

(125)

§-1 X 5
A= — o 2 s ')\>?\ = =
5o 0 5o

Dans ce cas, K =\ XO, /\)) 2 1 et la transformation devient
CM / /
Ph = Ko (Pin +E ) (126)

de Feynmann :

Introduisons la variable x
(P 6)CH
- A )
X=ln = 2 (127)

Ici, E' et p'!' sont limités par fm~exp(—E'/T) ; on a

s 5
~ m+ 3T, alors

E' ¥ m+ p'2/2m

Ip/l>~\WT ot Lp/>=

I1 y a donc a chaque x toute une distribution de contributions venant
mais cette distribu-

et avec différents pl' y E'

de différents A

[
tion est symétrique autour de pl" = 0 et elle a une largeur d'ordre
Jm‘T seulement.

On peut donc remplacer en approximation grossiere
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! / 3
‘ ~ 3T
PitE  par ~ M+ 3 (128)
et dire que
X o -. (au+—~7-)
(129)
Nous avons ainsi tenu compte de la décroissance exponentielle de
fm(p',T) ; ce que nous venons de faire est simplement de considérer
les particules créées comme presque au repos dans ()~). La particule
moyenne, venant de (A), aura donc un moment pCM = XECM de 1l'ordre

[/}
donné par (129) et le nombre de ces particules sera proportionel &

F())d?\ avec un poids exp(—,/pﬁ+m2/’l‘) pour les moments transverses.
En somme, 1l'équation (123) devient dans cette approximation tout a fait

qualitative :

(cM)

W Goup )dp, o exp (B2 F (k. )ap,,dm-
da dyds | Qmp i

—_— = ~ . e
dP" dx dp" 4(t+ GT ECI"]

donne encore

Wé;:)l’u dx & exp (- v LHU')F )Zﬂg;_ dx  (130)

GLHaT

I1 faut noter que ceci est une fonction de et de x seulement

Py

et non de E Feynman propose une forme semblable avec F(2mpx/m) R o1/x

oM’
ol cette dépendance de 1/x est la conséquence du modéle de "partons"
(V. Weisskopf a remarqué que ce n'est pas une invitation & partir mais

un mot anglais inventé par Feynman) : l'émission des partons est du type
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"Bremsstrahlung" et donc ~1/x. C'est vrai seulement pour des x
pas trop petits, parce que l'intégrale sur W(;) ne peut pas diverger
puisque c'est le nombre total des particules. Feynman introduit
un X, trés petit et appelle les x < X, "wee"" - c'est-a-dire minus-

cule. DPuisque =x est proportionnel a a s on peut définir

. ! 5m M
X &% A — = 27 _ —
R T AT 2B

(le nombre 5 dans cette définition est un peu arbitraire).

Notre x de 1'équation (129) ne peut dépasser (m+%’l‘)/2mp
ce quli vient de nos approximations, tandis que le x de Feynman (127)
peut atteindre presque 1. Le nombre total de particules de l'espece

i devient donc
-2 4dx
. - 3
(]

Le nombre total de particules est la somme sur toutes les especes i,

‘%@w(‘fﬂ"
Swm

mais la plus grande partie est représentée par des mésons jJL ; donc

[\/(E) A OX‘ZM/(ECMLHQV]

oo Mev

ce qui est du méme ordre que notre estimation (93). A ceci s'ajoute
encore une contribution venant de X, <X <X, et de la production
d'autres particules. Mais le résultat est qualitativement le méme que
le n8tre. Remarquons que notre représentation ici est un mélange Aentre
~le modele th'ermodynamique qui conduit & la formule qualitativev (130) et
du ﬁodéle de Feynman d'ol nous avons pris le dx/x. Cependant notre
fonction F(A) = F(x 2m /(m+2T)) décrolt & peu prés comme 1/A -
en accord avec le resultat de Feynman (Fig. 6). Chez nous, le F(A)
est une fonction empirique, chez lui le 1/x est une conséquence du

modéle du type "Bremmstrahlung". Toute cette considération est
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grossiérement qualitative, elle devait seulement donner une idée de la
relation entre les deux modéles. Ce paralléle dépend d'ailleurs de
1'hypothése que F(?\) ne dépend pas de l'énergie primaire. Puisque
nous avons vu que cette hypothése entratne aussi la validité du prin-

cipe de la "fragmentation limitée", nous avons le résultat suivant :

les trois propositions
- woMTY 430 2 dx
W (p) a’p ~ w(p, ,x)3
- F(M) indépendant de Ko sont équivalentes (131)

- "fragmentation limitée" valable

[Dans la premidre équation, il est supposé que w(pi_, x) ne dépend

que faiblement de x tel que 1/x domine:I

3.1.2.2. - Expériences exclusives

J'ai averti le lecteur de ne jamais appliquer le modeéle
thermodynamique & des canaux sélectionnés. Je vais le faire quand méme.
En effet, le modéle nous permet de faire quelques remarques qualitatives
sur la classe des expériences exclusives. C'est parce gqu'au moins une
formule, celle pour la distribution de Poisson des multiplicités, fait

des prédictions concernant certains canaux & l'exclusion d'autres :

W(m)-y- « N={dN(») [voir (88), (90]]

J

W(n) est la probabilité de trouver n particules (plus précisément
de la premiére génération) dans 1'état final & 1'exclusion de tout autre
nombre de particules. Puisque N est approximativement proportionnel

au logarithme de l'énergie dans le centre de masse, il vient

W(’M) ~ o LA&(/(ECH)]M- (Eﬂ")‘A (132)

Mt M p
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La section efficace pour la production de n particules est donc

c(m) = o, - Wn)

(133)
et puisque ngel semble &tre constant pour E - ®, nous voyons que
les sections efficaces pour des réactions
exclusives décroissent comme (ECM)_A ol
A est une constante de l'ordre 0 a 1. (134)

E&oir (91), (92i1

Ceci est valable pour les réactions non élastiques. Il est clair que
Feynman doit arriver & la méme conclusion, étant donné que son spectre
~ dx/x conduit & une multiplicité ~ 4n EcM et que son mécanisme de
production (type Bremsstrahlung) implique également une distribution

de Poisson.

Cependant, notre modele nous permet de dire plus : nous
connaissons 1'origine de la constante A dans (132). Elle vient de

(91) ou

a(Q, 4€)
Q, (135)

A = (0.'( a 0.2)»0(;

Sans entrer dans des détails qui sont expliqués dans Ref. 4), Section 4.1,
on voit que A est petit ou méme nul, si les nombres quantiques Q sont
tels. qu'il n'existe pas de résonances ayant ces nombres gquantiques pour

des énergies d'ordre AE. Si 1l'on prend pour Q les nombres quantiques

du canal s dans la réaction a+b — a'+b',

a
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\

on voit que A est de l'ordre de 0.5 a 1 si tout un spectre de
résonances ayant Q existe E&oir (861], tandis que A peut &tre
nul si un tel spectre n'existe pas - au moins & des ECM pas trop
élevés. Ceci est le cas dans quelques réactions (pi—p, K++-p...)

ol les nombres Q sont ce qu'on appelle exotiques.

Résultat

La décroissance d'une section efficace
exclusive est faible si le nombre quan- (136)

tique Qs est "exotique".

Selon notre analyse suivant (85), on s'attend & voir que a/a, ~ 1
pour AE ~— ®, indépendamment de Q. Ceci revient & faire 1'hypo-
thése que, dans la région de hautes masses, on trouvera des résonances
exotiques. Dans ce cas, toutes les sections efficaces exclusives
devraient, pour E —» ®, décroltre de la méme maniére ~ Eaﬁ avec
A~0.5 & 1, et la différence exprimée en (136) disparaltra. On

ne sait pas encore si cela est vrai.

Nous pouvons encore dire quelque chose sur les moments
transverses dans les expériences exclusives. Si W(n) définit un
canal & n particules, ces n particules sont néanmoins passées par
un état intermédiaire dans lequel le nombre de particules €tait indé-
fini (radiation du corps noir hadrohique) ; en effet, W(n) est la
probabilité pour que, de tous les €tats possibles, celui avec =n
particules soit réalisé a la fin. Mais, en traversant 1'état inter-
médiaire, les particules ont senti l'agissement thermique des autres
et en conservent un souvenir : leur moment transverse»[ie moment
longitudinal est caché sous la transformation de Lorentz L( A, b’oﬂ.

Elles sortent donc de la réaction avec une distribution w(p_L) :

Wipy) & exp (—‘[’?“7) (137)
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et ce facteur devrait encore multiplier W(n). Il est intéressant de

voir que [:avec t = (pa. -Pa>2j

(138)

On obtient donc un comportement du type diffractif dans la direction
en avant et du type exponentiel pour les angles autour de 900. Les

détails sont discutés dans Ref. 4), Section 4.1.

A premiére vue, il est surprenant qu'un facteur du type
Boltzmann puisse engendrer un maximum diffractif. Mais, comme je viens
de le dire, ce facteur tient compte du passage des particules observées
par l'enfer des états intermédiaires ; c'est semblable & 1l'effet de la
relation d'unitarité ol le maximum diffractif est le résultat de la somme
sur tous les états intermédiaires. Dans notre cas comme dans la relation
d'unitarité, c'est la totalité de tous les canaux inélastiques qui déter-

mine presque complétement les réactions & deux corps.
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3.2. — DISCUSSION LIBRE

4. - LECTURES SUPPLEMENTAIRES

Dans ce cours, seules les choses essentielles ont €té
traitées. Pour les études complémentaires, je propose l'ordre

suivante.

1 - "Remarks on the Thermodynamical Model of Strong Interactions"

Ref. 4), & lire complétement.

2 - "Hadronic Matter near the Boiling Point" Ref. 8), & lire
complétement.
3 = "Thermodynamics of Strong Interactions at High Energies"

II - Sections 1, 2, 5 et Appendices I & V.
III - complétement.

I - Section 5.

4 - "Thermodynamics of Strong Interactions and its Consequences

for Astrophysics" Ref. 9), & lire complétement.

5 = "Particle Spectra" Ref. 12), contient des prédictions pour
collisions pp entre 12.5 et 800 GeV/c.
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Figure_1 Le spectre de masse hadronique expérimental et la fonction
8 (m) = a(mi+m2)_5/4 exp(m/To) ayant le comportement

asymptotique exigé par la théorie.
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Figure 2 Moment transverse moyen comme fonction de la masse, pour
différentes températures. Les antiprotons viennent du
centre de la collision (haute température) tandis que les
protons passent souvent par les régions périphériques,
donc froides. Les mésons JU créés dans des collisions

& trés haute énergie ont des moments transverses corres—
pondant &4 T <R T, = 160 MeV.
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Figure 3 Tableau des spectres "complets" en notation graphique.
La plupart des spectres consiste en plusieurs contributions
ayant des formes trés différentes. Avec ces formules, tous
les spectres de Ref. 12) ont été calculés en utilisant
toujours les mémes fonctions F(N) et FO(A). Comme

exemple, voir Figs. 4 et 5.
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(figure tirée de la Référence 12). A comparer avec la

Figure 5.
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Les fonctions de poids pour les mouvements collectifs ;
F(A) pour les particules nouvellement créées ; Fo(‘))
pour les particules "en passant". F(%) est centrée
autour des petites vitesses (partie centrale de la col-
lision), FO(7\) autour des grandes vitesses (partie pé-
riphérique de la collision). Pour déterminer ces fonctions
a partir des spectres expérimentaux, nous les avons laissées
assez libres, permettant méme une dépendance de 1l'énergie
ECM et de 1l'espece de la particule. Il se trouve que ni
F(N) ni Fo(’%) ne semblent dépendre de 1'énergie et

que ces deux fonctions sont suffisantes pour décrire

toutes les particules.



