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Abstract

A Search for Heavy Resonances Decaying to HH → bb̄bb̄ with the ATLAS Detector

Alexander Zack Emerman

A search for Higgs boson pairs produced in the decay of high mass exotic resonances is

presented. The search uses the bb̄bb̄ final state, analyzing 139 fb−1 of proton–proton collision

data at
√

s = 13 TeV collected with the ATLAS detector. Spin-0 and spin-2 benchmark signal

models are considered and no significant deviation from the Standard Model prediction is

observed. The search is combined with a complementary analysis for lower mass resonances to

set upper limits on the production cross-section times HH branching ratio of new resonances in

the mass range of 251 GeV to 5 TeV.

In addition, the methodology for the in-situ calibration of a novel double-b-tagging

algorithm (Xbb2020) using gluon to bb̄ decays is presented. Preliminary scale factors for

Monte-Carlo simulation are computed using 139 fb−1 of
√

s = 13 TeV pp collision data collected

with the ATLAS detector. The completed calibration will allow the Xbb2020 algorithm to be used

in future ATLAS searches for H → bb̄ decays.
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Glossary

b-tagging The process of identifying jets con-

taining b-hadrons.

electron-volt Unit of energy equal to the kinetic

energy gained by a single electron ac-

celerating from rest through an electric

potential difference of one volt.

hard-scatter process Parton-parton interaction

producing final state particles with large

transverse momentum.

jet A collimated spray of hadrons resulting from

the parton shower and hadronization

of a high-energy color-charged particle.

Jet also refers to the product of a jet re-

construction algorithm.

luminosity Number of particle interactions per

unit area and time.

Monte Carlo simulation A class of meth-

ods for numerically modelling complex

processes using random variables.

parton Quark or gluon bound within a hadron.

Used here to refer to the initial particle

content of colliding protons.

pile-up (〈µ〉) Collisions producing low-energy

radiation in the same bunch-crossing as

a hard-scattering process.

pseudo-rapidity (η) Coordinate describing an-

gle of particle relative to beam-line.

Equivalent to rapidity for mass-less par-

ticles.

transverse momentum (pT ) Momentum of a

particle in the plane perpendicular to the

beam-line.
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Chapter 1: Introduction

1.1 Introduction

The Standard Model (SM) of particle physics is one of the best-tested theories in physics and

accurately describes phenomena down to the smallest scales measured. The model describes a

universe of fundamental particles and forces whose interactions determine the properties of the

macroscopic world we see around us. With the experimental discovery of the Higgs boson (H) in

2012 [1, 2], last piece of the model was confirmed. It is however, known to be incomplete. Most

notably, the SM includes only three of the four known fundamental forces, omitting gravity, and

astrophysical observations tell us that the SM particles account for only 5% of the contents of the

universe. Another 23% of the universe is dark matter, seen in the movement of galaxies, and 72%

is dark energy, responsible for the accelerating expansion of the universe. Many extensions of the

SM have been proposed, collectively called Beyond the Standard Model (BSM) theories, which

for example, add new particles matching observed dark matter properties. However, despite the

gaps in the model, observations contradicting the SM that could point to more complete theories

are few and far between.

The Large Hadron Collider (LHC) is the largest particle accelerator ever built, designed to col-

lide particles at energies that few natural processes can match. The unique environment created by

the LHC allows for tests of the SM that cannot be performed anywhere else. The ATLAS detec-

tor, built and run by the ATLAS collaboration at CERN, is a general-purpose detector designed to

study all types of SM particles, as well as many theorized new particles. In this thesis, a search

is presented for two types of massive particles, a scalar (X) and tensor (G∗KK), decaying to a pair

of boosted Higgs bosons (HH). The Higgs bosons are further required to decay to pairs of b-

quarks. The search is performed using 139 fb−1 of data collected from
√

s = 13 TeV proton-proton
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collisions using the ATLAS detector between 2015 and 2018.

This thesis is structured as follows:

Chapter 1 contains a brief introduction to high-energy physics, to particle detection technolo-

gies and to the ATLAS experiment. In Chapter 2, I present the search for heavy resonances decay-

ing to HH → 4b, detailing the analysis strategy and results. In Chapter 3, I describe the ongoing

calibration of a new machine learning algorithm trained to identify particle decays to pairs of b-

quarks. Finally, in Chapter 4, I discuss the results of this research as well as opportunities for future

study.

1.2 High Energy Physics

Figure 1.1: Diagram of the particle content of the Standard Model. Particles are arranged in groups
with similar properties, and blue lines indicate which groups interact.

The Standard Model of particle physics describes the universe in terms of a set of elementary

particles and the interactions between them. These particles have certain intrinsic properties, in-

cluding mass, spin and charge, and manifest as indivisible excitations of quantum fields. In the SM,

particles are classified by these intrinsic properties as shown in Figure 1.1. Matter is made up of

spin-1/2 fermions, grouped into the quarks and leptons. Interactions between the matter particles
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are mediated by spin-1 gauge bosons, each of which corresponds to one of the fundamental forces

of nature. The electromagnetic force, for example, affects all particles with an electric charge (Q)

and is mediated by the photon. The strong force is mediated by gluons and acts on particles with

a color charge (r, g, b), and the weak force is mediated by the W and Z bosons and acts on weak

isospin (T3). In addition, each particle in the SM has a corresponding antiparticle that has the same

mass and spin but opposite charge and parity.

The six quarks interact with all three of the electromagnetic, weak and strong forces. The

quarks are grouped into three pairs consisting of an up-type quark (with Q = +2/3 and T3 = +1/2)

and a down-type quark (with Q = -1/3 and T3 = -1/2). Due to the strong force, quarks are never

found in isolation. They are always confined to composite particles, called hadrons, which exist

only in states of net zero color charge or symmetric combinations of r , g, and b. The lightest

quarks are the up (u) and down (d) and form the most commonly found hadrons, including protons,

neutrons and pions. The up and down quarks have masses of 2.16+0.49
−0.26 MeV 1 and 4.67+0.48

−0.17 MeV

respectively [3]. The second-generation quarks, the charm (c) and strange (s), have masses of

1.27 ± 0.02 GeV and 96+11
−5 MeV respectively [3]. The heaviest quarks are the bottom (b) and top

(t), which have masses of 4.18+0.03
−0.02 GeV and 172.76 ± 0.30 GeV respectively [3]. Both are of

particular importance to this thesis and will be discussed further in later sections.

The set of leptons are similarly organized into three pairs, with the electron (e), muon (µ), and

tau (τ) having Q = -1 and T3 = -1/2, and the three corresponding neutrinos (νe, νµ, ντ) having Q

= 0, T3 = +1/2. The electron, muon and tau have masses of 511 keV, 105.7 MeV and 1.78 GeV

respectively while the neutrinos are all almost mass-less [3]. Unlike quarks, leptons carry no color

charge and can be found in isolation.

Finally, the Higgs boson has no spin, no electric or color charge and a mass of 125.1 ± 0.14

GeV [3]. Unlike, the other bosons, it does not mediate a force but is instead a remnant of elec-

troweak symmetry breaking, as explained in Section 1.2.2.

1In the units commonly used in high-energy physics, and throughout this thesis, the speed of light, c, and the re-
duced Planck constant, ~, are treated as dimensionless quantities with value one. As a consequence, the units of energy,
electron-volts (eV), are used for momentum and mass, which properly have units of eV/c and eV/c2 respectively.
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1.2.1 Gauge Theory

The organization of the SM particles can be understood by considering the underlying sym-

metries of nature. As a relativistic theory, the SM Lagrangian (LSM) is invariant under global

transformations of the Poincaré group: translations, rotations, and boosts. These are continu-

ous symmetries of a homogenuous 3+1 dimensional spacetime. By Noether’s Theorem, for each

continuous global symmetry of the theory there must be an associated conservation law and con-

served charge. For the Poincaré group, these are conservation of energy and momentum, angular

momentum and of center of mass. Particles transform under rotations and boosts (collectively

called Lorentz transformations) according to their spin, and can only appear in the Lagrangian in

Lorentz-invariant combinations. The form in which a particle appears in the Lagrangian is used

to determine its equations of motion through the principle of least action. Spin-0 scalars obey the

Klein-Gorden equation (Eq. 1.1a), spin-1/2 spinors obey the Dirac equation (Eq. 1.1b) and spin-1

vectors obey the Proca equation (Eq. 1.1c).

(∂µ∂µ − m2
φ)φ = 0 (1.1a)

(iγµ∂µ − mψ)ψ = 0 (1.1b)

∂µ(∂
µBν − ∂νBµ) + m2

BBν = 0 (1.1c)

The Lagrangian for scalar, spinor and vector fields, with no interactions between them, would

look like:

L = −
1
4

Fa
µνFµν

a + iψ̄γµ∂µψ +
1
2
∂µφ

†∂µφ + m2
BBνBν − mψψ̄ψ − m2

φφ
†φ, (1.2)

where Fµν ≡ ∂µBν−∂νBµ and the sign of the terms is set by convention. LSM is more complicated,

however, and particles interact according to sets of internal (gauge) symmetries.

In addition to the symmetries of spacetime, the SM Lagrangian is also invariant under several

sets of internal symmetries corresponding to the fundamental forces. For example, the electromag-
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netic force is represented mathematically by a U(1) symmetry. Mathematically this corresponds

to invariance under a local transformation by a complex phase, ψ → eiαψ and ψ† → e−iαψ†.

The spinor mass term, mψψ̄ψ, is naturally invariant under this transformation but the kinetic term,

iψ̄γµ∂µψ, is not. The gauge invariance of the kinetic term is restored by replacing ∂µ with the

covariant derivateDµ ≡ ∂µ+ iqBµ, where Bµ is a new vector field and q is the coupling constant of

this field to the particle ψ. In this case, the new field corresponds to the photon and q to the electric

charge. The U(1) symmetry of the electromagnetic force generates only a single vector field, but

the method can be extended to more complex symmetry groups as well. Similar covariant deriva-

tives are used to generate fields for the SU(3) gauge symmetry of the strong force and the SU(2)L

symmetry of the weak force2. The full SM gauge group is SU(3) × SU(2)L ×U(1) and generates

three sets of vector fields: eight gluons, three weak bosons and one photon, respectively.

The full SM Lagrangian is then:

LSM = −
1
4

Fa
µνFµν

a + iψ̄γµDµψ − mψψ̄ψ + LHiggs, (1.3)

where Fµν
a ≡ ∂µBν

a − ∂
νBµ

a + g f abcBµ
b Bν

c is the field strength term for a gauge field with self-

interactions. To keep the equation compact, all fields of the same type, i.e. spinor or vector, are

represented by a single term, though the charge, g, the structure constant, f abc, and the form of

the covariant derivative, Dµ, are different for different fields. The mass term of the vector fields,

previously written as m2
BBνBν, has been folded into the Higgs sector of the Lagrangian because it

is not otherwise gauge invariant. The Higgs boson was first proposed as a mechanism to allow the

observed W and Z boson masses to fit into the Lagrangian in a gauge-invariant way.

1.2.2 Higgs Mechanism

The Higgs Mechanism was proposed as an explanation for the large masses of the W and Z

bosons. At high energies, the theory goes, the electromagnetic and weak forces are the same,

governed by an SU(2)×U(1)Y symmetry and four massless gauge bosons. Importantly, since the

2The L subscript in SU(2)L indicates that the weak force acts only on left-handed chiral particles.
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Figure 1.2: The ‘Mexican-hat’ potential of the Higgs field, V(φ) [4]. The symmetry of the potential
is broken as the system falls into a stable ground state.

gauge bosons are massless, the Lagrangian is invariant under this electroweak symmetry. The

electroweak theory also includes a complex scalar doublet, called the Higgs field, with hypercharge

Y = 1/2. This field has an oddly shaped potential, shown in Figure 1.2 and often referred to as the

‘Mexican-hat’ potential. Importantly, the lowest energy state of this potential has a non-zero field

strength, whose value is called the vacuum expectation value or vev. Furthermore, the field has

not just one lowest energy state but a continuous set of them characterized by a complex phase.

These states are functionally identical but a cold universe can only exist in one of them, thus

spontaneously breaking the symmetry.

Typically, the Higgs potential is written in the simplest form that provides a non-zero vev:

V(φ) =
1
2
∂µφ∂

µφ − m2
φφ

2 + λφ4. (1.4)

More generally though, any Higgs potential with a non-zero vev would produce spontaneous sym-

metry breaking and studying the shape of the Higgs potential is a major goal of high-energy

physics. After symmetry breaking, the Higgs potential can be rearranged to leave a single massive

particle, h:

φ(x) =

√
1
2

(
0

v + h(x)

)
. (1.5)

In the so-called Higgs gauge, the electroweak gauge bosons are reorganized into the more familiar
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photon, W± and Z. Additional mass terms for the Higgs field and the weak bosons appear in the

Lagrangian in gauge-invariant combinations, and in this sense the Higgs ‘generates’ the mass of

the W and Z bosons. The original Higgs mechanism has since been extended to give all elementary

particles mass. Yukawa interactions between fermions and the Higgs field are a gauge-invariant

way to add mass-like terms as seen for the bosons. The observed particle mass is then interpreted as

a measure of the interaction strength between that particle and the Higgs boson. The Higgs boson

was first discovered by the ATLAS and CMS collaborations in 2012, and thus far measurements

of its properties match closely with SM predictions. However, the Higgs boson presents several

unique challenges to the SM and many hope that its study will shine light on BSM physics.

1.3 Beyond the Standard Model

The Standard Model of particle physics is known to be incomplete, but there are many dif-

ferent ways in which it can be expanded. Gravity, if it were to be included in the theory, would

be mediated by a mass-less spin-2 boson called the graviton. The force of gravity is, however,

extraordinarily weak relative to the other forces of the SM and the effects of gravity on particle

interactions are unclear. The fact that gravity is a factor of O(1016) smaller than the other forces

precludes it from being added to the SM, and is called the “hierarchy problem”. The observed

mass of the Higgs boson also introduces the so-called “naturalness problem”. Due to its scalar na-

ture, the observed mass of the Higgs boson is affected by radiative corrections from e.g. the loop

diagrams in Figure 1.3. In theory, these corrections should push the observed mass up based on the

highest mass particles it interacts with. Since the Higgs boson interacts with all massive particles,

this observed mass should be at the highest energy scale in physics, that of gravity. In the SM

this can be explained away by saying that the ‘bare’ mass of the Higgs boson, before corrections,

cancels the corrective term out to 16 digits. Many argue that a coincidental cancellation of that

magnitude would be unnatural and must be explained by some addition to the theory. There are

many models of BSM physics that can solve these theoretical difficulties, two of which are briefly

introduced below. The Randall-Sundrum (RS) model [5, 6, 7, 8] and the two-Higgs doublet model
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(2HDM) [9, 10, 11] are used as “benchmark” models in the HH → 4b search presented in this

thesis. Both introduce some additional physics to the Higgs sector of the Lagrangian, and both

predict striking testable predictions for heavy resonant di-Higgs production at the LHC.

H H

t

t̄

+ H H

W Z

+ H H

W Z

+ . . .

Figure 1.3: Example loop diagrams contributing NLO corrections to the Higgs boson mass. No
mechanism exists in the SM to cancel these large radiative corrections.

1.3.1 Randall-Sundrum Model

The Randall-Sundrum warped extra dimension model, first proposed by Lisa Randall and Ra-

man Sundrum in 1999, is characterised by the existence of an additional finite spatial dimension.

The metric of this spacetime contains a “warp” factor applied to the traditional four-dimensional

metric that varies exponentially along the additional dimension:

ds2 = e−2krcφdxµdxµ + r2
c dφ2, (1.6)

where xµ are coordinates of the familiar spacetime dimensions, φ ∈ [0, π] is the coordinate of an

extra dimension, while k and rc are free parameters of the model. The exponential warping of

4-dimensional spacetime along the additional dimension can create large hierarchies in scale with

modest values of the dimensionless combinations krc and k/MPl, where MPl = 2.4 × 1018 GeV is

the effective four-dimensional Planck scale.

The RS model predicts a distinctive set of new particles. The existence of a finite extra dimen-

sion necessitates a set of resonant modes, called Kaluza-Klein modes, visible to a four-dimensional

observer. The four-dimensional observer does not see the momentum of a particle along the extra

dimension, instead interpreting this additional energy as rest mass. Since the extra dimension is

finite, it must have a discrete set of momentum states (consider e.g. the harmonics of a string) that
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the four-dimensional observer will see as massive resonances. Furthermore, the masses of these

resonances depend on the size and shape of the additional dimension. A tower of Kaluza-Klein res-

onances would therefore be both strong evidence for the RS model and allow for measurements of

the model parameters. In the HH → 4b analysis, only the decay of the lowest-mass Kaluza-Klein

graviton state into a pair of SM Higgs bosons is considered, as shown in Figure 1.4a.

1.3.2 Two-Higgs Doublet Model

The 2HDM is the simplest extension of the Higgs sector of the SM [9]. While it is not a UV-

complete model by itself, constructions like the 2HDM are components of many BSM theories,

such as the Minimal Supersymmetric Standard Model (MSSM) [10, 11]. In essence, the Higgs

field φ described in Section 1.2.2 is replaced by a pair of fields, φ1 and φ2, related by a U(2)

symmetry. With two scalar doublets, the Higgs sector in the 2HDM has eight degrees of freedom

rather than four and, after electroweak symmetry breaking, predicts five massive bosons instead of

one. In the 2HDM, the observed Higgs boson is associated with the lighter of two neutral, CP-even

bosons, H and X . The model also predicts a pair of electrically-charged Higgs bosons (H±) and a

neutral axial boson (A). The HH → 4b analysis considers decays of the neutral heavy state X into

a pair of the lighter Higgs states H, as shown in Figure 1.4b.

g

g

H

H

G∗KK

(a)

g

g

H

H

X

(b)

Figure 1.4: Feynman diagrams for the (a) RS graviton and (b) 2HDM scalar signal models used in
the HH → 4b analysis.
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1.4 The Large Hadron Collider

The LHC [12] is the largest and highest energy particle accelerator in the world. The LHC

is a circular accelerator with a 27 km circumference, built 100 m under the French-Swiss border

near Geneva, Switzerland. During operation, the LHC circulates two beams of protons in opposite

directions around the ring, and crosses the beams at designated collision points. Detectors are built

around each of the collision points to measure particles produced in these high-energy collisions.

A diagram of the main LHC ring, along with the detectors and pre-accelator ring, is shown in

Figure 1.8.

Figure 1.5: Diagram of the LHC tunnel and the detectors built around collision points [13].

The LHC uses magnetic fields created by superconducting magnets to control the beams. These

beams are not continuous, but instead consist of discrete bunches of up to 1011 protons. Each bunch

is accelerated through a series of pre-accelerators to an energy of 450 GeV before being injected

into the main LHC ring. The protons are then accelerated up to a final energy before crossing the

beams at the interaction points. Proton bunches are spaced around the ring so that collisions, or

bunch crossings, occur at 25 ns intervals. LHC operation between 2015 and 2018 is collectively

called Run 2. During this time up to 2556 bunches of protons were injected into the LHC ring at a

time and accelerated up to 6.5 TeV. The LHC reached a record peak luminosity of 2×1034cm−2s−1
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in 2018 and delivered a total integrated luminosity of 160 fb−1 in Run 2.

1.5 Collider Physics

Luminosity is a measure of the rate of collisions produced by the experiment, defined as the

number of particle interactions per unit area and time. To be precise, luminosity is defined as:

L =
nN1N2 f
4πσxσy

, (1.7)

where n is the number of particle bunches in the beams, N1 and N2 are the number of particles per

bunch in each beam, f is the bunch crossing frequency, and σx and σy describe the width of the

bunches in the plane transverse to the motion. Knowing the luminosity and the cross-section for

a specific process allows one to predict how many times that process should occur within a given

timeframe. For a process pp→ X with cross-section σ(pp→ X), the expected number of times it

occurs is

N(pp→ X) =
∫

Lσ(pp→ X)dt . (1.8)

The center-of-mass energy of LHC collisions,
√

s, is the combined energy of the proton beams,

13 TeV [14]. However protons are composite particles made of quarks, anti-quarks and gluons,

collectively called partons. When the LHC collides bunches of protons, interactions occur between

pairs of the partons they contain, each of which contains only a fraction of the proton’s energy. The

energy fraction carried by each type of parton is described by a set of parton distribution functions

(PDFs) calculated primarly from Deep Inelastic Scattering experiments.

The goal of the LHC is to study hard scatter processes, i.e. parton-parton interactions involving

large momentum transfers. Figure 1.6 shows a schematic diagram of a proton-proton collision.

The initial hard-scatter process can be represented by Feynmann diagrams which are often exactly

calculable to leading-order (LO) or next-to-leading-order (NLO). The propagation of any quantum

chromodynamics (QCD) remnants, i.e. any non-color-singlet particles in the final state, is modelled

by the DGLAP [16, 17] evolution equations up to the point at which they form color-singlet bound
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Figure 1.6: Schematic diagram showing the stages of a simulated hadron collision [15]. Initial
energies of the incoming partons are set by parton distribution functions. The hard scatter process
commonly produces ‘bare’ quarks which shower, creating a complex set of quarks and gluons,
before combining into color-singlet states in a process called hadronization. Finally, the hadrons
decay into stable states.

states in a process called hadronization. The parton shower is brief, completing as color-charged

particles travel past the femtometer-scale distance at which QCD is weakly interacting. In the

brief period before hadronization, high-energy particles radiate large numbers of gluons and light

quarks, resulting in collimated sprays of hadrons, called jets, from a single source. Finally, these

hadrons decay into stable states which propagate outward from the collision point to be measured

in the particle detectors. There are many sources of low energy radiation that occur simulateously

with the hard scatter process, including the radiation of quarks and gluons from the initial state

partons (ISR) or from the final state (FSR), collisions of other partons in the same protons or of

other protons in the bunch. These other collisions are collectively called pile-up and represent an

important source of background radiation in the detector. The average number of collisions per

bunch crossing was 〈µ〉 = 13.4 in 2015, increasing up to 〈µ〉 = 36.1 in 2018. Higher luminosities

produce more data but also create more pile-up interactions in the detector.
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1.6 Common Detector Technologies

There are many different technologies used to measure the energies, momenta and trajectories

of particles. This section provides a general overview of several common classes of detectors used

in ATLAS. Broadly speaking, detectors consist of an active component that reacts with passing

particles, a read-out system to record those interactions, and often a passive structural component.

There are many ways particles can interact with detector materials and the details are critical to

detector design and construction. Here though, I will only discuss generalities. Ignoring the details

of specific processes, electromagnetic interactions can come in the form of an electron radiating

photons (e.g. ‘bremsstrahlung’), a photon splitting into an electron-positron pair, or a transfer

of energy to the valence electrons of an atom (often stripping them from that atom). Hadronic

interactions with atomic nuclei are much rarer but involve larger transfers of energy. Detectors

built to measure nuclear interactions tend to be larger and denser than electromagnetic detectors.

Some particles, such as neutrinos, interact so rarely that they can escape the ATLAS detector

entirely. Experiments designed to detect these interactions can require tons of active material

and/or be hundreds of meters across. Electromagnetic and hadronic interactions with the detector

material transfer energy and can be measured in several different ways, depending on the material

and the type of interaction. This section will focus on two types of detectors, ionization chambers

and scintillators, as well as a brief introduction to calorimeters, detectors that measure particle

energies.

1.6.1 Ionization Detectors

Ionization detectors are built to generate electrical signals from free electrons in the detector

material. An ionization detector can be quite simple, consisting of a gas held in a uniform electric

field between two metal plates. Atoms in the gas are normally electrically neutral, but charged

particles passing through the gas leave trails of ions and free electrons. These electrons and ions are

pulled to opposite ends of the detector by the electric field and induce a current on the plates as they
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move. The size and shape of the induced current pulse depends on the shape of the detector and the

strength of the electric field applied, as well as the intrinsic speed of the electron and ion in the gas.

By tuning the electric field, one can control the acceleration of the ionized particles and the size of

the detector response. Figure 1.7 shows how the current induced by an incident particle changes

with applied electric field. In the ionization chamber region, ions are created only by the passage of

incident particles through the gas. At high field strengths, however, the electrons accelerate enough

to ionize other atoms in the gas. These are called secondary ionizations and create cascades near

the anode of the detector. In the proportional counter region, secondary ionizations amplify the

signal but the total current is still proportional to the number of primary ionizations. Finally, some

detectors operate in the Geiger-Müller region, where each incident particle saturates the gas with

cascading ionizations until the detector is reset.

Figure 1.7: Simplified diagram of ionization detector response as a function of applied voltage.

An important consideration when designing any detector is the recovery time, that is, the time

it takes for the detector to return to a neutral state. Ideally, the full signal induced by one particle

should be collected before another passes through. The ATLAS collaboration uses solid silicon

sensors for ionization detectors with very short recovery time. These silicon sensors operate on a
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similar principle to the gas drift chamber described above, but have a higher number of primary

ionizations per unit length, higher drift velocity, higher radiation tolerance and higher cost. Each

silicon sensor has a layer of p-type silicon (enriched in positive charges) deposited on an n-type

silicon substrate (enriched in negative charges). At the boundary, charges from one layer combine

with the other, forming a charge-depleted zone in the center that functions as the detector. Most

electrons in the silicon are initially in a set of low energy bound states, called the valence band.

Charged particles passing through the depletion zone excite electrons into the higher energy con-

duction band states. Exciting an electron to the conduction band allows it to travel freely through

the material, and creates a hole in the valence band that can travel like a positively-charged elec-

tron. An applied electric field causes the conduction electron and the hole to drift apart, inducing

current on the anode and cathode of the detector in a similar manner to the electron-ion pairs in

a gas detector. The higher density of a solid detector means that it will have more interactions

per unit length, and can remain sensitive while being much smaller. These sensors are used when

recovery time is critical, e.g. in the detector components nearest the LHC beamline, which must

fully reset in the 25 ns between bunch crossings.

1.6.2 Scintillation Detectors

Scintillation detectors generate signals from light rather than from free electrons. When a

particle passes through a material it can excite electrons into higher-energy bound states. These

excited states are unstable and the electron will eventually radiate that energy as a photon and drop

back to the ground state. In most materials, a photon produced this way would be reabsorbed

to excite a nearby atom, but for a scintillator to be effective the light needs to be able to travel

uninterrupted to the edges of the detector. This means that the passage of an energetic particle must

put the atom into an energy level that the bulk of the material cannot readily access. In organic

scintillators, generally, the decay of the excited state goes through an intermediate metastable state,

while inorganic crystals are typically doped with low concentrations of impurities to create energy

levels that the pure material cannot access. In either case, the scintillation light travels to the edges
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of the detector where it is converted to an electrical signal by e.g. a photomultiplier tube. Unlike

an ionization detector, where recovery time depends largely on the drift of ions to the anode and

cathode, scintillator recovery time depends on the decay rate of the excited states. Recovery time,

as well as the wavelength and yield of photons, vary significantly from one material to the next.

Scintillators are also often used in calorimetery, where denser materials and larger components

with more stopping power may be required.

1.6.3 Tracking and Calorimetry

The ATLAS subsystems can be divided into two categories: tracking detectors and calorime-

ters. These distinctions are separate from the type of material interaction used, and instead depend

on the purpose of the detector. The tracking detectors are built to optimize positional resolution

and measure the direction of a particle trajectory. The calorimeters are optimized to measure

particle energies, generally absorbing the incoming particles in the process. A key consideration

when designing either is the radiation length of a material, X0, which is approximately the thick-

ness of material necessary to reduce a particles’ energy by a factor of e. Interactions in which a

high-energy particle loses a significant amount of energy generate showers of particles, each with

enough energy to create further detector signals. These showers are typical of calorimeters, which

are built many radiation lengths deep. Often calorimeters are built as sampling detectors, where

an active material is layered with dense passive absorbers. These absorbers are often structural

elements, but also initiate particle showers through bremmstrahlung or nuclear interactions. A

downside of the sampling technique is that particles can be trapped in the absorbing layers without

contributing to the energy measured by the calorimeter. Precisely characterizing the fraction of en-

ergy deposited in the absorbers is a critical part of constructing a sampling calorimeter. Tracking

detectors, by contrast, are typically built to minimize passive material and allow particles to pass

through without losing much energy. Tracking detectors and calorimeters provide complimentary

information and ATLAS combines both, built with a variety of active and passive components to

optimize detection efficiency.
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1.7 The ATLAS Detector

Figure 1.8: Schematic diagram of the ATLAS detector and its components. The detector and the
people in the diagram are shown to scale. [18]

The ATLAS detector (A Toroidal LHC ApparatuS) [19] is a general-purpose particle detector

located at one of the four interaction points of the LHC. The largest of the LHC detectors, it is 46

meters long, 25 meters tall and weighs 7,000 tons, almost as much as the Eiffel Tower. ATLAS

is built in cylindrical layers, with sub-detectors positioned concentrically around the beamline, as

shown in Fig. 1.8. The innermost layers, called the inner detector (ID), are tracking detectors in-

tended to measure the track of charged particles without affecting their trajectory. Surrounding the

ID are two layers of calorimeters, which can catch most particle species and measure the energy

that they release. Finally, an outer layer of detectors, called the muon system (MS), provides pre-

cision tracking for muons, which are able to pass through the calorimeters without being absorbed.

Most layers are further segmented into ‘barrel’ components in the center and ‘endcaps’ on the

ends. The ATLAS subsystems each provide different and complementary information that can be

combined to uniquely identify most particles passing through them.

Integral to the detector measurements are two sets of strong magnetic fields. A solenoid placed

between the ID and the calorimeters creates a 2 T field parallel to the beam in the ID. The toroidal
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magnet for which ATLAS is named creates a field in the MS of approximately 0.5 T in the central

region and 1 T in the endcaps. These fields bend the trajectory of charged particles in predictable

ways, allowing the tracking detectors to distinguish between positive and negative charges and

improving the resolution of momentum measurments.

1.7.1 Detector Geometry and Coordinate System

The ATLAS collaboration uses a right-handed coordinate system defined by the LHC beamline,

which travels lengthwise through the detector and is designated as the z-axis. The x-axis points

inwards, towards the center of the LHC ring, and the y-axis points upwards. Vector quantities are

generally described in a modified cylindrical coordinate system, by the magnitude transverse to

the beamline, the angle in the transverse plane, φ, and the pseudo-rapidity, η. Pseudo-rapidity is

a function of the azimuthal angle, η = − ln(tan θ), that is equivalent to rapidity for massless, or

highly relativistic, particles. (Pseudo-)rapidity is useful in high-energy physics as a measure of

velocity that transforms additively under boosts, as opposed to velocity itself which transforms in

a more complicated way. The transverse momentum, pT, is particularly useful for collider physics

as momentum conservation dictates that the pT of all particles from one collision must be zero.

This can be used to indirectly measure radiation that the detector cannot otherwise see, such as

neutrinos.

The geometry of the detector is optimized to measure particles travelling outward from the

collision point in the center. Most ATLAS subsystems are divided into three segments, a barrel

and two endcaps. The barrel covers the central region of the detector and these components are

generally mounted in concentric cylinders parallel to the beamline. The barrel is intended for

high-precision physics and measures particles with large deflections from the beam, i.e. high pT.

The endcaps measure as much as possible of the particles that escape the barrel and are mounted

perpendicular to the beamline. While the coverage of the barrel varies between subsystems, the

overall detector is designed to optimize performance in the ‘central’ region of |η | < 2.5.
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1.7.2 Inner Detector

Figure 1.9: Diagram of the ATLAS inner detector systems [20]. The inner detector provides high-
resolution tracking of charged particles coming from LHC collisions.

The ATLAS inner detector is composed of three subsystems: the pixel layers, including the

insertable b-layer (IBL), the semiconductor tracker (SCT) and the transition radiation tracker

(TRT) [20, 21]. In the barrel these subsystems are arround in concentric layers as shown in Fig-

ure 1.9. The pixel detectors are made of 50 µm×300 µm silicon pixels oriented so that particles

bending in the magnetic field will traverse the long edge of the pixel. There are four layers of

pixel detectors in the barrel with the innermost, the IBL, sitting 3 cm from the beamline. The pixel

detectors have the best spatial resolution of any of the ATLAS subsystems as well as high radiation

tolerance. The high precision of these innermost layers is critically important for the b-tagging

algorithms used in this thesis. The two innermost layers provide coverage out to |η | < 2.5, while

the other two cover out to |η | < 1.7. Four endcap disks of the same technology provide additional

coverage in the |η | = 1.7-2.5 region.

Moving outward from the pixels, four layers of silicon strip detectors form the SCT. The silicon
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strip detectors are 6.36×6.4 cm2, much larger than pixels, and are grouped into modules of four

detectors each. The detectors are glued together at a small angle to obtain better precision in the z

direction. The barrel layers provide coverage out to |η | < 1.4 with an additional nine encap wheels

covering the |η | = 1.4-2.5 region.

The TRT consists of gas-filled straw tubes, 4 mm in diameter, interspered with layers of thin

polypropelene foil. The straw tubes operate as drift chambers. In addition, particles entering

or exiting the foil emit transition radiation photons, typically O(10 keV), which are detected by

the straws, amplifying particle signals. The TRT covers the radial range of 56-107 cm from the

beamline, and is arranged into barrel and endcap portions so that any particle will pass through

approximately 36 tubes.

Each of the subsystems of inner detector produce “hits” when charged particles pass through

them. The set of hits for each bunch crossing is reconstructed into a set of “tracks”, representing

the paths of particles moving through the detector.

1.7.3 Calorimeters

ATLAS has two calorimeter systems, the liquid argon (LAr) calorimeter [22] and the tile

calorimeter (TileCal) [23]. The LAr calorimeter is a sampling calorimeter with the liquid ar-

gon interspersed with accordion-shaped lead-stainless-steel electrodes. The accordion plates are

self-supporting and ensure material density is uniform as a function of azimuthal angle. Fig-

ure 1.10a shows the cross-section from a segment of the LAr barrel, with the accordion plates

running through four layers of LAr cells. The LAr barrel covers a radial range of 1.5-1.97 m and

|η | < 1.4, with endcaps providing coverage out to |η | < 2.5. Both barrel and endcaps are de-

signed for electromagnetic calorimetry, that is, to measure electrons and photons as well as the

light mesons that decay electromagnetically. The total radiation thickness to electrons and photons

varies with η, but is at least 24X0 everywhere.
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(a)

(b)

Figure 1.10: Diagrams showing the internal structure of the ATLAS (a) LAr and (b) Tile calorime-
ter systems [22, 23]. Liquid Argon cells in the LAr calorimeter are arranged into concentric layers
and supported by accordian-shaped lead-stainless-steel structures. The plastic scintillating tiles
used in the Tile calorimeter are supported by a steel structure, which also holds the photomultiplier
tubes used to convert scintillation light to an electric signal.

The energy resolution of a calorimeter is parametrized with three terms,

σE

E
=

a
√

E
⊕

b
E
⊕ c, (1.9)

where a is the sampling term, b is the noise term and c is a constant term. The LAr calorimeter

resolution for electrons was measured to be,

σE

E
=

10%
√

E
⊕

170MeV
E

⊕ 0.7%. (1.10)

Heavy hadrons lose little energy to electromagnetic interactions and, to these particles, the elec-

tromagnetic calorimeter is only a few X0 thick. Separate detectors are therefore used for hadronic

calorimetery, although these are still LAr calorimeters outside the barrel. The hadronic endcap
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calorimeters (HEC) are built from LAr and copper plates, and cover a range of approximately |η | =

1.4-3.2, and additional forward calorimeters (FCAL) provide coverage out to |η | < 4.9. The FCAL

is designed to be particularly dense due to the high level of radiation in the forward region. It is

built in two sections, each comprised of a metal matrix with regularly spaced tubes housing metal

rods and LAr filling the small gaps between rod and tube. The first section is built from copper

while the other is tungsten.

For hadronic calorimetry in the central region, ATLAS uses a sampling calorimeter built from

steel and plastic scintillating tiles. The scintillating tiles are read out through wavelength-shifting

fibers attached on the ends, which carry the scintillation light to photo-multiplier tubes. The tiles

are arranged in layers, as shown in Figure 1.10b, with fibers running along the outside. TileCal

is designed to ensure a total thickness of at least 11X0 to hadrons, which lose energy primarily to

nuclear interactions. The material in front of the TileCal is around 3-4X0 thick, mostly coming from

the LAr calorimeter. The energy lost before a jet reaches the detector is called noncompensation

and, for TileCal, causes a significant reduction of the precision of the energy measurement. The

TileCal resolution for pions was measured to be,

σE

E
=

50%
√

E
⊕ 6%, (1.11)

with a negligible contribution from electronic noise. The constant term is dominated by noncom-

pensation.

1.7.4 Muon Spectrometer

The muon spectrometer [24] is the outermost set of ATLAS subsystems. These detectors are

designed to cover the 5500 m2 surface area of the detector at a fraction of the cost of silicon

pixels. The muon systems are gaseous ionization detectors used for additional measurements of

muons from LHC collisions, and to detect cosmic rays entering the detector from above. The muon

spectrometer is composed of three layers in both the barrel (out to |η | < 1.0) and endcaps (|η | = 1.0-
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Figure 1.11: Schematic diagram of the ATLAS muon system [24].

2.7). It is surrounded by superconducting toroidal magnets the bend muon trajectories for better

momentum resolution. The muon spectrometer is composed primarily of aluminum monitored

drift tubes (MDTs), arranged in the bending direction of the magnetic fields. The tubes are 3 mm

in diameter, filled with nonflammable gas, and have a W-Re wire running through the middle. The

wire is held at 3.3 kV to generate an electric field, and the tubes operate in the same manner as the

parallel-plate detector described in Section 1.6.1. In the innermost ring of the endcaps, cathode

strip chambers (CSCs) are used instead. These are multi-wire chambers with a field generated by

a series of wires spaced 2.54 mm apart, placed 2.54 mm from the readout cathodes. Measuring the

current induced on multiple wires improves the position resolution of each chamber and reduces

drift time. Additional information is provided by three layers of resistive plate chambers (RPCs)

in the barrel and thin gap chambers (TGCs) in the endcaps. The RPCs are simple parallel-plate

chambers while the TGCs are multi-wire chambers, both are operated at higher voltages than the
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MDTs and CSCs for increased sensitivity and time resolution at the cost of momentum resolution.

The RPCs and TGCs are used to identify the bunch crossing a muon came from as well as to

provide coarse tracking and momentum measurements for the ATLAS trigger system.

1.7.5 Trigger

The high luminosity provided by the LHC represents a significant challenge for the ATLAS

detector. While the collider is running, bunch crossings occur at a rate of 40 MHz with each bunch

crossing generating approximately 1.6 MB of data. This is far more data than ATLAS can afford

to store, and furthermore, the vast majority is of little interest. The total cross-section for inelastic

proton-proton scatter is O(100 mb) [3] while the cross-section for e.g. Higgs boson production is

much smaller, O(50 pb) [25]. Therefore, an automated procedure, the trigger, is used to quickly

determine whether the data from any given bunch crossing should be recorded or simply discarded.

The trigger consists of two steps called the Level-1 (L1) trigger and High-level trigger (HLT),

which together reduce the event rate from the initial 40 MHz to only 100 Hz [26].

The L1 trigger is implemented entirely in hardware and makes a decision based on simplified

trigger objects reconstructed from calorimeters and muon detectors. The trigger decision takes

about 2.5 µs to calculate and keeps events with e.g. high pT objects or large pT imbalances across

the detectors. The trigger thresholds are adjusted depending on luminosity to maintain an overall

rate of 100 kHz sent to the HLT. If the L1 trigger is fired, then the event is retrieved from hardware

storage buffers and transfered to the HLT CPU farm. The L1 trigger also identifies a set of regions

of interest (RoIs), areas of the detector which recorded potentially interesting objects. The HLT is

a pair of software-based triggers, performing a more detailed analysis of the event and further re-

ducing the event rate to 100 Hz. While the reconstruction used at L1 is simplistic, generally simply

counting the total energy recorded in an area of the detector, HLT uses the same techniques and

object definitions to those described in Section 1.9. As a first step HLT reconstructs objects only

within the identified RoIs, this step typically uses only ∼ 2% of the full detector information, takes

O(10 ms), and reduces the event rate to 1 kHz. Events passing this step are fully reconstructed,
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which takes O(1 s) per event, for the final trigger decision. The criteria HLT uses for keeping an

event are often similar to those of L1, but the multi-stage trigger design allows for more detailed

requirements, including e.g. b-tagging similar to that discussed in Section 3.2. The triggers used in

this thesis merely require events to contain a large, high pT jet in the central region of the detector.

1.8 Particle Identification

Event reconstruction is the process of transforming the myriad detector signals generated by a

signal bunch crossing into a useful picture of the hard scatter process. The basic building-blocks

of event reconstruction are tracks, vertices and ‘topo-clusters’. Both tracks and vertices are recon-

structed primarily using the ID. Since charged particles radiate outward from the collision along

predictable spiral trajectories one can, in essence, connect the dots to turn a series of pixel hits into

a track. Of course, this becomes much more complex in a dense environment with many parti-

cles [27]. Track reconstruction is the most computational expensive part of ATLAS event recon-

struction and is expected to become more difficult with planned machine upgrades. Collision ver-

tices are identified from points on the beamline where large numbers of tracks intersect. For most

purposes, including the analyses presented in this thesis, the primary vertex is identified as the one

with largest HT , defined as the scalar sum of the pT of all tracks from that vertex [28]. Calorime-

ter signals are grouped into sets of topologically-connected cells called ‘topo-clusters’ [29]. A

topo-cluster does not necessarily represent the full shower caused by a single particle, but could

correspond to a shower fragment or a cluster due to several overlapping showers. Topo-clusters are

built around seeds, cells with measured energy four times greater than a background noise thresh-

old, by adding neighboring cells based on their signal to noise ratios. A procedure is then applied

to merge overlapping topo-clusters, and to split those clusters with distinct local maxima. Finally,

the resulting set of topo-clusters are calibrated to correct for differences between electromagnetic

and hadronic responses, signal losses due to the clustering algorithm, and energy lost in the pas-

sive materials. Fig. 1.12 shows an example event reconstruction, with tracks radiating from the

collision vertices drawn as colored lines through the ID and topo-clusters shown as boxes radiating
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Figure 1.12: ATLAS event display of a pair of Higgs boson candidates decaying to two b-quarks
and two photons [30]. Charged particle tracks are shown in green and energy deposits in calorime-
ter cells in yellow. The two candidate b-quark jets are shown as red cones and the two candidate
photons as cyan towers.

outward from the calorimeter surfaces.

Different particles create different sets of signals in the detector. For example an electron

leaves a track as well as creating an electromagnetic shower. Photons, which also shower in the

electromagnetic calorimeter, can be distinguished by the lack of a matching track. As shown in

Figure 1.13, many types of particles can be identified by combining information from each of the

subdetectors.
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Figure 1.13: Diagram showing the characteristic signature of various SM particles in the ATLAS
detector [31].

1.9 Object Definitions

From the tracks and topo-clusters, many physics objects can be defined. Each object represents

the full detector response to a single particle or shower of particles. The following list contains

only the set of objects used in Chapters 2 and 3 of this thesis. Each object was itself calibrated to

ensure optimal detector and simulation performance.

Muons Muon candidates were reconstructed primarily from tracks in the ID matched to tracks in

the MS [32]. Muons are required to pass certain quality criteria based on the number of hits in the

detector, the number of ‘holes’ (i.e. active sensors the track passes through without leaving a hit)

and the χ2 of the track. Several sets of quality criteria are defined for different purposes, with more

stringent criteria used to lower rates of false positive identifications, at the cost of larger chances of

rejecting real muons. The g → bb calibration uses the ‘Loose’ criteria defined in Ref. [32], while

muons for the HH → 4b analysis are required to pass the ‘Medium’ criteria.
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Jets As previously mentioned, particle decays involving quarks and gluons result in collimated

sprays of hadrons called jets. These jets appear in the detector as nearby or overlapping hadronic

showers which can be combined through jet clustering algorithms to reconstruct the kinematic

properties of the original source of the jet. The clustering algorithms used by ATLAS belong to

the kT family of sequential recombination algorithms [33, 34]. Motivated by a desire to work

backwards through a tree of 1 → 2 particle decays, these algorithms combine pairs of particles

sequentially. At each step of the algorithm, a distance metric, di j , is calculated between each pair

of particles and merges the two nearest into a ‘pseudo-jet’. A cut-off distance in η − φ space,

R, is given as an input parameter to the algorithm and determines the maximum separation at

which particles and/or ‘pseudo-jets’ can be merged. The algorithm runs until no further merges are

possible, and the final set of ‘pseudo-jets’ is returned as the set of jets in the event. The jets used

in this thesis are clustered using the ‘anti-kT ’ algorithm [35], which has a distance metric,

di j = min(p−2
Ti , p−2

T j )
(ηi − η j)

2 + (φi − φ j)
2

R2 . (1.12)

The algorithm preferentially merges objects with high pT and the resulting jets are compact and

generally circular. The kT algorithm, by constrast, merges low pT objects first with a distance

metric of

di j = min(p2
Ti, p2

T j)
(ηi − η j)

2 + (φi − φ j)
2

R2 . (1.13)

Three sets of jets were used. “Small-R” jets were constructed from topo-clusters with R = 0.4

and used in the trigger for the g → bb calibration as described in Sec. 3.3. The jets used were

required to have pT > 60 GeV, |η | < 2.5, and pass a jet vertex tagging selection [36] designed to

remove jets from pileup vertices. “Large-R” or “fat” jets were also constructed from topo-clusters

and were used for objects with 2-pronged decays such as Higgs or vector bosons. Large-R jets used

R = 1.0, and cover a significant portion of the detector, so they pick up more energy from pileup

and the underlying event than small-R jets. An extra trimming step [37] was used to mitigate this:

the final jet constituents were reclustered into R = 0.2 subjets using the kT algorithm, and subjets
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whose pT was less than 5% of that of the large-R jet were removed [38]. Trimmed large-R jets

were required to have pT > 250 GeV and |η | < 2.0 to be fully contained in the central region of

the detector.

Finally, a set of variable-radius ‘track-jets’ were used for the b-tagging, as described in Sec-

tion 1.10. These jets were clustered from tracks with the anti-kT algorithm and a pT-dependent R

parameter [39],

R ≡
ρ

pT
. (1.14)

The size of these jets decreases with higher pT, as more energetic decays are expected to be more

collimated. The value of ρ used, ρ = 30 GeV, was optimized to maintain truth-level3 double-b

identification efficiency across the full range of Higgs boson jet pT [40]. The same optimization

was performed to determine the minimum and maximum values of the R parameter, Rmin =

0.02 and Rmax = 0.4.

Track-jets were required to have pT > 7 GeV and |η | < 2.5. Track-jets were matched to large-R

jets through ghost association [41], which simulates whether an object would be clustered into a

jet by adding large numbers of zero-momentum ‘ghost’ particles to the anti-kT algorithm. As the

‘ghosts’ have no effect on objects they merge with, they can be added in arbitrarily large numbers

and the area of a jet can be defined as the area containing all ghosts merged into the jet.

1.10 Flavor Tagging

The identification of jets containing bottom quarks, referred to as b-jets, is a topic of special

interest for the ATLAS physics program. Many analyses, such as the HH → 4b analysis presented

in this thesis, want to separate b-jets from much more common light jets, e.g. jets containing only

light quarks. A set of specialized algorithms used to identify b-jets in the ATLAS detector, referred

to as b-tagging algorithms or b-taggers, have been under continuous development since ATLAS

was built. These algorithms rely on some unique properties of the decays of b-hadrons that ID was

3Truth-level refers to particle information provided by the Monte Carlo simulations described in Sec. 1.11 before
the detector simulation is applied.
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designed to exploit.

1.10.1 Properties of b-jets

The b quark is especially interesting both for the study of the b-mesons and because it is pref-

erentially produced in the decays of top quarks and of Higgs bosons. With a mass of 4.18 GeV [3],

the b quark is the second-heaviest fermion in the Standard Model. Bottom quarks decay through

the weak force, almost exclusively to charm quarks. Due to the rare nature of these processes, the

b-hadrons have relatively long lifetimes, τ ≈ 1.5 ps, and large decay lengths, 〈cτ〉 ≈ 450 µm [3].

The mean flight length of b-hadrons produced in LHC collisions is significant, with b-hadrons

often travelling through the first pixel layer of the ATLAS inner detector before decaying. This

lifetime is used to identify b-hadron decays in several ways, as shown in Figure 1.14.

Figure 1.14: Schematic diagram of a jet from the decay of a b-hadron, compared to a jet contain-
ing only light hadrons. The secondary vertex is characteristic of b-jets due to the relatively long
lifetime of the b-hadron. Tracks coming from such secondary vertices typically have large impact
parameters, defined as the distance of closest approach to the primary collision vertex.

The most direct method is to search for signs of a secondary decay vertex, i.e. two or more

tracks coming from a single point away from the primary collision vertex. Secondary vertex re-

construction provides a distinctive signature of long-lived particles, but requires accurate recon-
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struction of all tracks involved. A simpler method is to look for individual tracks passing close to,

but not coming from, the collision vertex. The distance of closest approach between a track and

the primary vertex is called the ‘impact parameter’ (IP), and separate measurements are used for

the longitudinal (z0) and transverse (d0) components. Tracks with large impact parameters can be

‘faked’ by tracks coming from pile-up collisions or by mis-reconstructed tracks. Finally, approxi-

mately 10% of b decays are semileptonic [3], i.e. b→ c`ν`, producing a lepton in the jet. Muons

are produced at higher rates from these decays than in light jet processes, making the presence of a

muon a useful identification method independent of lifetime measurements. Checking for muons

is, however, less powerful than the lifetime-based methods.

The properties of c-jets, jets containing c hadrons, are between those of b-jets and those of jets

containing only u, d, and s quarks (collectively called light-jets). With lifetimes around τ ≈ 0.5 ps

(〈cτ〉 ≈ 150 µm) [3], most c-hadrons decay before reaching the ATLAS detector. c-hadrons pro-

duced from b decays can travel far enough that their tertiary decay vertex can be distinguished

from the secondary vertex of the b decay. c-hadrons produced in the primary collision, however,

generally decay before the first pixel layer and reconstructing secondary vertices is often impossi-

ble. c decays can still mimic b decays and measuring the c mis-tag rate is an important part of the

study of any b-tagging algorithm.

1.10.2 b-tagging algorithms

Many different b-tagging algorithms have been developed within the ATLAS collaboration,

optimizing for different kinematic regimes and different jet reconstruction methods. For high-pT

b-jets, many of these algorithms follow a similar prescription. Small-radius jets are used to re-

solve individual b-hadron decays, and the algorithm runs on a set of tracks associated with the

jet. Algorithms are split into two classes. ‘Low-level’ algorithms focus on a single aspect of

the b-hadron decay, e.g. reconstructing secondary vertices, while ‘high-level’ algorithms combine

multiple low-level algorithms for improved overall performance. For example, the high-level DL1r

algorithm [42] is a deep neural network (DNN) using as input the low-level RNNIP [43], SV1 [44],
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and JetFitter [45] algorithms, along with basic kinematic information about the jet [46]. The low-

level algorithms each target different signatures. RNNIP uses a recurrent neural network (RNN)

to identify b-jets based on track impact parameters. Impact parameter-based taggers using a log-

likelihood ratio discriminant, called IP2D and IP3D [47], have also been used in the past. SV1

instead uses the subset of tracks with large impact parameters to form secondary vertices. The out-

put score is based on the likelihood that a true secondary vertex is found, and the compatibility of

the vertex with a b-hadron decay. Lastly, the JetFitter algorithm attempts to reconstruct the full b-

hadron decay path, including tertiary vertices from c-hadron decays. A neural network uses several

of the variables associated with this reconstuction to provide an output score. Each of these low-

level algorithms was developed and trained separately, and provide comparable light jet rejection

for any given b-tagging efficiency, as shown in Figure 1.15a. The high-level combinations, DL1r

and MV2, both provide improved performance over any of the individual low-level algorithms,

also shown in Figure 1.15a [46]. The MV2 algorithm in Figure 1.15 differs from DL1 in that it

combines the low-level algorithms using a boosted decision tree rather than a neural network. Both

low-level and high-level algorithms are under active development, and significant improvements

were made in 2019 by training on and tagging variable-radius track-jets (as opposed to R=0.2

anti-kT track-jets) and including RNNIP instead of the older IP2D and IP3D algorithms [48]. The

improvement of the optimized DL1r 2019 algorithm (the ‘r’ stands for RNNIP) over the 2018

algorithms is illustrated in Figure 1.15b.

The DL1r network produces three classification scores for each input jet, indicating whether it

is b-jet-like, c-jet-like, or light-jet-like (i.e. contains no b or c-hadrons). The final b-tagging score

is defined by ratios of the individual classifiers:

DDL1r = ln
(

pb

fcpc + (1 − fc)pl

)
, (1.15)

where pb, pc, and pl represent the b-jet, c-jet and light jet scores respectively, and fc is the c-jet

fraction in the sample. By removing events with low b-tagging scores, analyses can reject large
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Figure 1.15: Light-jet rejection as a function of b-tagging efficiency in tt̄ events. Comparisons are
shown for (a) performance of 2018 versions of the low-level IP3D, SV1 and JetFitter algorithms
along with the high-level MV2 and DL1 algorithms [46], and (b) the 2018 versions of MV2 and
DL1 compared to the 2019 version of DL1r [48].

numbers of light jets while keeping most b-jets for study. Typically, the cut values used are defined

by the fraction of b-jets kept in some representative set of simulated events. A cut value with an

expected b-tagging efficiency of 70%, for example, would be referred to as the 70% working point

(WP). In any analysis, the b-tagging algorithm is applied to both real and simulated data, and a

dedicated calibration is needed to ensure the results of these two datasets are compatible. The

calibration measures a scale factor (SF) defined as SF = εdata/εMC. The scale factor is used to

adjust the b-tagging efficiency of the simulation to match that observed in data. The method used

to derive scale factors for the DL1r algorithm is described in Ref. [46], while similar calibrations

for the mis-tag scale factors for c-jets and light jets, are described in Refs. [49, 50] respectively.

1.11 Datasets Used

All results in this thesis use the full ATLAS Run 2 dataset, consisting of 139 fb−1 of
√

s = 13 TeV

proton-proton collision data taken in 2015, 2016, 2017, and 2018. Monte Carlo (MC) simulations
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were used to augment collision data and test for signals of BSM theories. Simulation was done in

a three-step process consisting of event generation, parton showering and hadronization, and de-

tector reconstruction, with separate programs used for each. In all cases, three sets of simulations

were produced to replicate the data-taking conditions of 2015+2016, 2017, and 2018 separately.

Feynman diagrams for the HH → 4b signal models were evaluated at leading-order (LO) in αS

using MADGRAPH [51]. The scalar model was implemented as a two-Higgs-doublet model where

the new neutral scalar was produced through gluon-gluon fusion and forced to decay to a pair of

Higgs bosons. The scalar width is assigned to be much smaller than the detector resolution, and no

other BSM processes were considered in the production. The spin-2 resonance was implemented

in the Randall-Sundrum model with the parameter k/MPl = 1. In both cases, additional particles

predicted by the model do not affect the calculations. Parton showering and hadronization for the

spin-0 samples were done using HERWIG 7 [52] with EVTGEN [53] for modelling heavy flavor

decays. The MMHT2014 at LO [54] parton distribution funtions (PDFs) was used for the parton

shower, and the underlying event was modelled using the default HERWIG 7.1 parameters. The

spin-2 samples used PYTHIA 8 [55] with EVTGEN for parton showering and hadronization. The

A14 [56] set of ATLAS tuned parameters were used for the underlying event, and the NNPDF2.3

at LO [57] PDF set. Full simulation of the interactions of particles with the ATLAS detector was

done with GEANT 4 [58]. Events were generated for resonant masses ranging from 900 GeV to

5 TeV for both signal models. The full list of resonance masses used, as well as the number of

events generated for each, is given in Table 1.1.

In addition to the signal hypotheses, three sets of SM processes were simulated. PYTHIA 8

was used to simulate 2 → 2 QCD interactions at LO in αS to model multijet processes. While

only 2 → 2 matrix elements were evaluated, the parton shower model used by PYTHIA 8, with

EVTGEN, includes gluon radiation and splitting that can result in additional jets. The g → bb

calibration uses two sets of multijet MC: one inclusive sample and one sample where the events

were required to contain a muon. These samples were generated independently. In addition, tt̄

processes were simulated to model their contribution to the HH → 4b background. tt̄ event
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generation is done at next-to-leading-order (NLO) in αS using POWHEG-BOX 2 [59, 60, 61, 62],

with PYTHIA 8 and EVTGEN for parton showering and hadronization. The POWHEG damping

parameter hdamp, which affects the modelling of radiation, is set to the value observed to best

model the data, 1.5 times the top quark mass [63].

35



Events generated Events generated

Signal mass [GeV] G∗KK X Signal mass [GeV] G∗KK X

900 225k 190k 2000 345k 70k
1000 255k 158k 2250 255k -
1100 253k 70k 2500 161k 70k
1200 255k 70k 2750 165k -
1300 75k 70k 3000 305k 69k
1400 254k 70k 3500 119k -
1500 253k 70k 4000 120k 70k
1600 255k 68k 4500 119k -
1800 65k 70k 5000 120k 70k

Background sample Approximate events generated

tt̄ 530M
Multijet (inclusive) 200M
Multijet (filtered) 51M

Table 1.1: Number of events generated for each simulated sample. Far more simulation is required
to accurately model the background processes than for the resonant signals.
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Chapter 2: HH → 4b Analysis

2.1 Search Overview

g

g

H

H

(a)

g

g H

H

H

(b)

Figure 2.1: Feynman diagrams for Higgs boson pair production via gluon–gluon fusion in the
Standard Model. The (a) box and (b) triangle diagrams interfere destructively resulting a SM
cross-section of σHH = 31.05+6%

−23% fb at the LHC [64, 65].

The HH → 4b analysis searches for the BSM production of pairs of Higgs bosons, through

the bb̄bb̄ decay channel. Pairs of Higgs bosons can be produced through gluon–gluon fusion

via the processes shown in Figure 2.1, referred to colloquially as the box and triangle diagrams.

However, these diagrams interfere destructively, suppressing the SM cross-section to just σHH =

31.05+6%
−23% fb at the LHC center-of-mass energy of 13 TeV [64, 65] 1. Many BSM scenarios predict

changes to the Higgs sector and specifically heavy resonances that can be seen by the ATLAS

detector. Among these are the two benchmark models used for this analysis, the 2HDM and RS

models described in Section 1.3. Both predict new heavy resonances with large branching ratios to

pairs of Higgs bosons, greatly increasing σHH around the resonance mass. Both signal hypotheses

can also be reinterpreted to calculate discovery potential or limits on similar signals in other BSM

models. This analysis aims to discover either a spin-0 scalar or spin-2 graviton or, failing that, to

set improved limits on the cross-section of such resonances.

1The cross-section presented here is calculated using the NLO-improved NNLO approximation. The cross-section
has been calculated to NNLO using the Higgs Effective Field Theory approximation, mtop → ∞, and the full NLO
result is corrected by the ratio between HEFT NNLO and NLO predictions.
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The ATLAS and CMS [66] experiments at CERN have searched for Higgs boson pair pro-

duction in a variety of decay channels. The ATLAS collaboration has set limits on resonant HH

production in the boosted bb̄τ+τ− final state [67] using the full 139 fb−1 Run 2 dataset, as well in

the bb̄bb̄ [68, 69], bb̄τ+τ− [70], bb̄γγ [71], bb̄W+W− [72], W+W−γγ [73], and W+W−W+W− [74]

final states using the first 36.1 fb−1 of Run 2 data. A combination of the partial Run 2 results was

also performed [75]. The CMS collaboration has similarly set limits on the bb̄bb̄ [76], bb̄γγ [77],

bb̄τ+τ− [78], bb̄`ν`ν [79], and bb̄Z Z [80] final states, and a combination of these [81] using

35.9 fb−1 of Run 2 data. No significant deviations from the SM have been observed by either

collaboration.

The various HH decay channels have different advantages and disadvantages in the size of

the expected signal and the size and complexity of the backgrounds. The motivation for the bb̄bb̄

channel comes from its large branching fraction. The Higgs boson decays to bb̄ pairs with a

branching fraction of around 58%, resulting in a 34% branching fraction of HH → 4b. The relative

branching fractions of the largest final states are shown in Figure 2.2, with the highlighted states

showing which are used in ATLAS analyses. The disadvantage of the bb̄bb̄ channel is the large

multijet background, which must be modelled using data-driven techniques due to the difficulty of

the simulating pure QCD processes. b-tagging algorithms are used to reduce the contribution of

light jets, though the remainder still forms the bulk of the background along with the irreducible

g → bb processes. Hadronic decays of pair-produced top quarks also contribute significantly.

The search presented in this thesis uses recent improvements in b-tagging and updated background

modelling techniques, as well as the full 139 fb−1 Run 2 dataset, to improve on previous results.
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Figure 2.2: HH branching ratios to the final states searched for by the ATLAS and CMS collabo-
rations. The bb̄bb̄ channel has the largest branching ratio at 34%.

The HH → 4b analysis is split into two kinematic regimes, characterized by the mass of the

signal resonance. The methods used for the two regimes are similar but fully independent, with

the ‘resolved’ method used for signal masses of 251-1500 GeV and the ‘boosted’ method used for

mass of 900-5000 GeV. In the overlap region, 900-1500 GeV, both methods are used and the results

are combined to increase discovery and limit-setting potential. The focus of this thesis is on the

boosted regime. An overview of the analysis strategy, including brief descriptions of the methods

used in both regimes, is presented in Section 2.2. The methods used for the boosted regime are then

described in further detail, with the event selection in Section 2.3 and the background modelling in

Section 2.4. Treatment of systematics uncertainties are then discussed in Section 2.5. The final fits

used to calculate significance and set limits are described in Section 2.6, and the results are shown

in Section 2.7. The statistical combination of the resolved and boosted regimes, and the combined

results are discussed in Section 2.8.
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2.2 Analysis Strategy

The kinematics of HH → 4b decays depends on the invariant mass of the Higgs boson pair.

In the rest frame of each Higgs boson, it decays into a pair of back-to-back b quarks, which form

jets in the manner outlined in Section 1.5. When the rest frame of the Higgs has a small boost

relative to the detector frame, these jets are well separated and are reconstructed as such. However,

at large boosts they become collimated and are reconstructed as a single jet. The momentum of a

Higgs boson produced in resonant decay is about half the difference between the rest mass of the

resonance and the rest mass of the Higgs boson pair, 250 GeV. As a rule of thumb, the ∆R distance

between the products of two-body decay is ∆R ∼ 2m/pT, where both pT and m refer to the parent

particle. For the decay products of a Higgs bosons to be contained within a R = 1.0 anti-kt jet,

therefore, it must have pT & 250 GeV.

(a) (b)

Figure 2.3: Topology of (a) resolved and (b) boosted HH → 4b decays. Resolved decays are
reconstructed as four R = 0.4 jets while boosted decays are reconstructed as two R = 1.0 jets with
associated variable-R track-jets.

In principle, the ‘boosted’ regime is useful only for finding resonances with mass greater than

750 GeV. In practice, the threshold is above 1000 GeV due to trigger thresholds and reconstruction
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inefficiencies. On the other hand, the low boost ‘resolved’ regime can search for resonances with

mass just above 250 GeV, but the R = 0.4 jets used in this regime lose reconstruction efficiency for

bosons with pT & 1000 GeV. Again, the thresholds in practice do not match these naive estimates

exactly, and the limits of the resolved analysis are competitive with those of the boosted analy-

sis up to 1400 GeV. The resolved analysis is used to search for resonant masses from 251 GeV

to 1500 GeV, while the boosted analysis is used to search for resonant masses from 900 GeV to

5000 GeV. In the overlap region, 900-1500 GeV, both analyses capture some events the other

would miss and combining the two gives improved sensitivity.

There are many parallels between the analysis strategies used for the resolved and boosted

regimes. The high H → bb branching ratio that motivates this search channel comes at the cost of

a large QCD background. In both kinematic regimes the primary challenges of the analysis are to

reduce the complex QCD background, and to accurately model the remainder. Background mod-

elling in both cases is done using data-driven techniques, i.e. using data with similar kinematics

to the signal region, but with differing b-tagging requirements. Many of the details, however, are

different.

The resolved analysis reconstructs Higgs candidates from pairs of R = 0.4 jets, using a Boosted

Decision Tree (BDT) to determine the optimal pairing for each event. Events are categorized

based on the number of b-jets, and the mass of the Higgs candidates. A Neural Network (NN),

trained in a dedicated control region, defines the background model by using events with two b-

jets to estimate the distributions of those with four b-jets. The primary limitation in the analysis

comes from uncertainties on the NN background estimate. Improvements compared to previous

ATLAS HH → 4b analyses come from the BDT pairing algorithm and NN background model,

as well as the new ‘particle-flow’ jet construction technique [82], updated b-tagging algorithms

and use of the full Run 2 dataset. The methods used for the boosted search will be presented

in further detail in this thesis. Briefly though, the boosted analysis reconstructs Higgs candidates

from individual R = 1.0 jets and applies b-tagging to matched variable-radius track-jets. Events are

categorized based on the number of b-tags, and the mass of the Higgs candidates. Three separate
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signal regions are defined based on the number of b-tags, each with a QCD background model

derived from a similar region with fewer b-tags. Dedicated control regions are used to improve

the background model by measuring the size of the background as well as correcting for biases

introduced by differing b-tag requirements. The sub-dominant tt̄ background is estimated from

MC simulation. The primary limitation of the analysis comes from lack of data at high masses,

though uncertainties on the background model are important as well. Improved limits over previous

iterations come from updates to the background modelling techniques as well as the increase in

data, use of variable-radius track-jets and improved b-tagging algorithms.

2.3 HH → 4b Event Selection and Categorization

2.3.1 Object Definitions

To reconstruct H → bb decays, anti-kT R = 1.0 jets are built from locally-calibrated topo-

clusters and trimmed to remove pile-up contributions. These jets are matched to variable-radius

track-jets using ghost-assocation. In addition, there are a two corrections made to improve the

jet mass resolution. The first correction accounts for energy lost when muons are produced in

b-hadron decays. The production of a muon and muon neutrino reduces the energy deposited in

the calorimeter, as the muon deposits relatively little energy and the neutrino is not detected at all.

b-jets containing muons, therefore, typically have lower reconstructed momentum than b-jets not

containing muons. To correct for this, the energy of the muon track is added to the matched large-R

jet. The muons used for the muon-in-jet correction are required to pass the ‘medium’ identification

criteria defined in Ref. [32] and have pT > 4 GeV. The correction is applied if a muon is within

∆R = min
(
0.4, 0.04 + 10 GeV/pmuon

T
)

of one of the b-tagged track-jets associated to the large-R

jet. If there are multiple muons within a single track-jet, only the one with the highest pT is used

for the correction.

The second correction uses matched tracks to improve the jet mass calculation. The jet mass is

calculated using the combined mass method [83], which makes use of both the calorimeter-based
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mass calculation, mcalo, and the track-assisted mass, mTA, defined as:

mcalo =

√√√(∑
i∈Jet

Ei

)2

−

(∑
i∈Jet

®pi

)2

mTA =
pcalo

T

ptrack
T

· mtrack

(2.1)

where Ei and ®pi are the energy and momentum of the ith topo-cluster constituent of the jet,

and mtrack, ptrack
T , and pcalo

T are the jet mass and pT calculated from the four-vector sum of all tracks

associated to the large-R jet. The muon-in-jet correction is accounted for in the value of mcalo used.

The combined mass is finally calculated as mcomb = w ·mcalo + (1−w) ·mTA, where w is a weight

calculated for each large-R jet from the resolution of the calibrated track and calorimeter mass

terms. As the track and calorimeter mass terms are only weakly correlated, no correlation terms

are required in the linear combination [83]. After calculating the combined mass, the combined jet

momentum is recalculated using the calorimeter-based energy measurement, p2
comb = E2

calo−m2
comb.

These corrections reduce the width of the observed Higgs boson mass peak and shift it closer to

the known Higgs boson mass of 125 GeV, as shown in Figure 2.4.
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Figure 2.4: Large-R jet mass distributions for the 2000 GeV spin-0 signal. Three mass definitions
are shown: the calorimeter mass, the combined mass, and the combined mass with a muon-in-jet
correction applied. The mean and width of each mass peak is listed in the table.
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Year Online Jet pT Online Jet Mass

2015 360 GeV -
2016 420 GeV -
2017 420 GeV 40 GeV
2018 420 GeV 35 GeV

Table 2.1: Online large-R jet pT and mass thresholds by data-taking year. A trimming algorithm
was applied to online jets in 2017 and 2018 but not in 2015 or 2016.

2.3.2 Trigger

As described in Section 1.7.5, ATLAS collision data is only recorded when an event passes

one of the trigger selections. The triggers used in this analysis are the lowest unprescaled large-R

jet triggers for each year of data-taking. That is, data used for the analysis is collected when an

event has an ‘online jet’ satisfying the HLT requirements. The online jet algorithm used by the

HLT corresponds approximately to the R = 1.0 anti-kT jets used for later event reconstruction,

while the jets used by the L1 trigger are much simpler and only require a certain total energy

within a calorimeter region. Each HLT trigger is evaluated on events passing a L1 trigger with a

lower threshold, for example the trigger requiring an HLT jet with pT > 420 GeV is fed by a trigger

requiring an L1 jet with pT > 100 GeV. The difference in trigger levels means that all events which

could pass the HLT trigger would also pass the L1 trigger, i.e. applying both selections is equivalent

to applying only the HLT selection. The difference in jet definitions therefore has no impact on

the final selection. Similarly, jet pT thresholds in the analysis are chosen to minimize the impact

of differences between the HLT jets and the final ‘offline’ jets. This is accomplished by requiring

that each event contain an offline jet with pT > 450 GeV and mass > 50 GeV. For simplicity, the

same cuts are applied to all data and simulated samples, despite year-to-year differences in the

triggers used. Table. 2.1 summarizes the online jet requirements for the each of the triggers used,

and Figure 2.5 shows the trigger efficiency as a function of offline jet pT for each year.
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Figure 2.5: Efficiency of the lowest unprescaled Large-R jet trigger as a function of (a) jet mass and
(b) jet pT. Efficiency in each variable is measured in a sample with a fully-efficient cut applied to
the other variable. The cuts applied in the analysis, mass > 50 GeV and pT > 450 GeV, respectively,
are indicated by vertical lines.

2.3.3 Kinematic cuts

Each event is required to have at least two large-R jets, and these large-R jets themselves are

considered to be the “Higgs candidates”. The two jets with the highest and second-highest pT

are referred to as the ‘leading’ and ‘sub-leading’ Higgs candidates, respectively, while any further

large-R jets are ignored for the purposes of this analysis. Both Higgs candidates are required to

have pT > 250 GeV, and as previously mentioned, the leading jet is required to have pT > 450 GeV

to ensure that the triggers are fully efficient. Both Higgs candidates are required to have mass >

50 GeV and be in the central region of the detector, |η | < 2.0. The mass distributions in Figure 2.6

show the signals, tt̄ background and data with only the trigger cuts applied. Signal jets have

reconstructed masses around the 125 GeV Higgs boson mass, while tt̄ jets have masses around 80

or 170 GeV, depending on whether the jet contains all the decay products of the top quark or only

those of the W boson. Before cuts are applied, the data distribution is swamped by jets from light

QCD processes and the mass spectrum shows the tail of a smoothly falling distribution. Figure 2.6
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Figure 2.6: Higgs candidate kinematic distributions with only trigger selection cuts applied. The
leading Higgs candidate (a) mass and (b) pT, as well as the sub-leading Higgs candidates (c)
mass and (d) pT for data, tt̄, and a range of spin-0 signal masses are shown. The data distribution is
dominated by multijet processes, which form the dominant background for the HH → 4b analysis.

also shows the pT distributions at the same stage of the analysis. The pT distribution of each signal

peaks at around half the resonance mass, although the high mass signal distributions have long

low-pT tails.

Finally, a cut on |∆η | ≡ |η(H1) − η(H2)| < 1.3 further ensures the jets are travelling through

the center of the detector. Figure 2.7 shows the |∆η | distributions of the signals, tt̄ background

and data with only trigger cuts applied. The resonant signals are produced through s-channel

processes, whereas the multijet and tt̄ components have t- and u-channel components with more

forward distributions. While the difference in spin between the two signals leads to a difference

in angular distribution, both are more central than the background. The |∆η | cut is optimized
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primarily for the scalar signal, but improves the limit for both. After these selections, further event

categorization is done based on the mass of the Higgs candidates and the number of b-tagged

ghost-associated track-jets.
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Figure 2.7: Distributions of the difference in η between the two Higgs candidates for (a) spin-0
and (b) spin-2 signals, with only trigger selection cuts applied. The data distribution is dominated
by multijet processes, which form the dominant background along with tt̄ production. The spin-2
signals are more central than spin-0 signals of the same mass.

2.3.4 Mass Plane Regions

Three regions are defined in the 2-D plane of the Higgs candidate masses, called the signal,

validation and control regions. Most simulated signal events are contained in the signal region

(SR), and this region is used for the limit-setting procedure. The control region (CR) is used to

estimate the number of background events in the signal region, through a procedure described in

Section 2.4. The validation region (VR), in between the two, is used to calculate an uncertainty

on the background estimation method. The following equations are used to define contours in the

mH1– mH2 plane:

XHH ≡

√(
m(H1) − 124 GeV

0.1m(H1)

)2
+

(
m(H2) − 115 GeV

0.1m(H2)

)2
(2.2a)

47



0

1000

2000

3000

4000

5000

6000

7000

8000

9000

2
 E

ve
nt

s 
/ 2

5 
G

eV

60 80 100 120 140 160 180 200 220

) [GeV]
1

m(H

60

80

100

120

140

160

180

200

220

) 
[G

eV
]

2
m

(H

Thesis
-1 = 13 TeV, 139 fbs

Data, 1b-1 Category

SR

VR

CR

Figure 2.8: Definition of control, validation, and signal regions in the plane of leading and sub-
leading Higgs candidate mass (x- and y-axes respectively). The central signal region is surrounded
by the validation region, which in turn is surrounded by the control region. The region boundaries
are defined by Eq. 2.2. The data shown here comes from the ‘1b-1’ b-tagging channel, as defined
in Section 2.3.5.

RV R
HH ≡

√
(m(H1) − 124 GeV)2 + (m(H2) − 115 GeV)2 (2.2b)

RCR
HH ≡

√
(m(H1) − 134 GeV)2 + (m(H2) − 125 GeV)2. (2.2c)

The quantity XHH measures the distance of an event from the Higgs boson mass peak in the

mH1– mH2 plane, and the signal region is defined as the region with XHH < 1.6. In addition, a

validation region is defined with an outer edge given by RV R
HH < 33 GeV, and a control region is

defined by the outer edge RCR
HH < 58 GeV. The inner edge of each region is formed by the region

it contains, so the control region ends at the boundary of the validation region and the validation

region ends at the signal region. The boundaries of the control, validation, and signal regions are

shown in Figure 2.8 in the mH1– mH2 plane, and summarized in Table 2.2. The control region is

shifted to slightly higher masses relative to the validation and signal regions in order to avoid the

48



low mass peak of the QCD distribution. The control region is used for background estimation, as

described in Sec. 2.4.2, while the validation region is used to define a systematic uncertainty and

to test the limit-setting method. The final search is performed in the signal region.

signal region validation region control region

XHH < 1.6 XHH > 1.6,
RV R

HH < 33 GeV
RV R

HH > 33 GeV,
RCR

HH < 58 GeV

Table 2.2: Summary of signal, validation and control regions (SR, VR, and CR respectively). The
values of XHH , RV R

HH and RCR
HH are defined in Eq. 2.2.

2.3.5 Tagging Channels

The primary method of separating signal from backgrounds in this analysis is the use of

b-tagging. The DL1r b-tagging algorithm is applied to the two highest pT variable-radius track-jets

ghost-associated to each Higgs candidate. The algorithm combines several different methods used

to identify long-lived decays of b-hadrons, as decribed in Section 1.10. The algorithm is applied at

the 77% efficiency working point, i.e. the selection applied to the b-tagging score has a 77% ‘true

positive’ rate on simulated b-jets.

Figure 2.9: Diagram of the three high-tag topologies (4b, 3b and 2b-split) with the corresponding
channel used to estimate QCD background (2b-2, 2b-1 and 1b-1) shown directly below. Tagged
track-jets are indicated by the small yellow cones within the blue large-R jet cones, while required
untagged track-jets are indicated by small white cones.

Events are separated into six independent channels based on the number of b-tags they contain.

Events in the ‘4b’ channel are required to have four b-tags, two in each Higgs candidate. As HH →

4b events contain four b-jets, this channel is the most natural to define and provides the strongest

49



background rejection. Unfortunately, a couple of factors contribute to make the probability of

an HH → 4b event passing the 4b criteria quite small. The first factor is combinatorial: if the

probability of a b-jet passing the tagging selection is 77%, then the probability of four b-jets

passing is (0.77)4 ∼ 35%. The second is that the efficiency of the algorithm drops for high-pT

Higgs boson jets both because the b-jets become collimated and because the efficiency of the track

reconstruction algorithm is reduced. Two additional channels are defined to use events with fewer

b-tags: the ‘3b’ and ‘2b-split’ channels. Events in the 3b channel are required to have two b-tags

in one Higgs candidate and one b-tag in the other. The 2b-split channel, meanwhile, is defined

by requiring exactly one b-tag in each Higgs candidate. A simultaneous fit is performed in each

b-tagging channel on the di-Higgs invariant mass, mHH , and the results are combined to produce

limits on both signal models.

For each of these ‘high-tag’ channels, an additional ‘low-tag’ channel is defined by reversing

the b-tag requirement on one Higgs candidate. The Higgs candidate with no b-tags is required

to have a number of track-jets at least equal to the number of b-tags in the corresponding high-

tag channel, as illustrated graphically in Figure 2.9. The low-tag partner of the 2b-split channel,

for instance, is labelled ‘1b-1’ and requires that one Higgs candidate contain exactly one b-tag

while the other contains no b-tags and at least one track-jet. The ‘2b-1’ and ‘2b-2’ channels, that

correspond to 3b and 4b respectively, each require one Higgs candidate to contain two b-tags and

the other to contain none. The difference between 2b-1 and 2b-2 is only in the number of track-jets

in the untagged Higgs candidate. The 2b-1 channel requires at least one track-jet in the untagged

Higgs candidate while the 2b-2 channel requires at least two track-jets. The requirements for all

channels are summarized in Table 2.3. All events that pass the 2b-2 criteria necessarily also pass

the 2b-1 criteria. In order to keep these channels statistically independent, events are assigned at

random such that 80% are used for the 2b-1 channel and the remaining 20% are used for the 2b-2

channel. The increased statistical uncertainties caused by distributing events this way, as opposed

to using all events in both channels, has a negligible effect on the final result.
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High-tag 4b 3b 2b-split

2 b-tags 2 b-tags 1 b-tag
2 b-tags 1 b-tag 1 b-tag

Low-tag 2b-2 2b-1 1b-1

2 b-tags 2 b-tags 1 b-tag
> 1 track-jets > 0 track-jets > 0 track-jets

Table 2.3: Summary of b-tagging channels. Each channel is defined by two requirements, one on
each Higgs candidate. The low-tag channels are listed in the same column as the corresponding
high-tag channels.

2.3.6 Resolved Analysis Veto

Separate selections are used for the boosted and resolved HH → 4b resonant searches. In order

to ensure that no events are counted in both, events that pass the resolved signal region selection

are removed from consideration for the boosted analysis. Events which pass both selections are

events where the Higgs candidates can be reconstructed using pairs of anti-kT R = 0.4 jets and

also reconstructed using R = 1.0 jets. The resolved veto removes approximately 10% of boosted

signal events for resonant masses in the range mHH = 900-1300 GeV. However, the impact quickly

falls off at higher masses and becomes negligible for mHH > 1400 GeV. Events removed by this

veto are not lost, in the sense that they still contribute to the combined limit through the resolved

analysis. The resolved analysis does not apply any vetoes based on the boosted event selection.

2.3.7 Collinear Track-jet Veto

In rare cases, anti-kT variable radius jets can be constructed such that a high pT jet is fully

contained inside a low pT jet, shown schematically in Figure 2.10. While the sets of tracks used

to construct the jets are well-defined, these cases present problems when training b-tagging algo-

rithms both when determining the set of tracks to use as input to the algorithm, and when applying

truth labels for supervised learning. Such events are not used when training the algorithms and,

as a precaution, are vetoed from the HH → 4b search. The veto is only applied if the collinear

track-jets in question are both matched to one of the Higgs candidates. While the veto is necessary
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to ensure a well-defined b-tagging algorithm, it does remove 10% of events for the 1 TeV scalar

signal and the effect increases to 20% for the 3 TeV scalars.

Figure 2.10: Depiction of a large-R jet in which the central axis of a wide, low-pT track-jet falls
within the catchement area of a narrow, high pT track-jet. Such a configuration causes problems
for the b-tagging track-to-jet association algorithm, which assigns tracks to the nearest track-jet in
η − φ space.

2.3.8 Cutflow

Table 2.4 shows the effect of each sequential selection cut on the number of expected events for

spin-0 and spin-2 signals with a resonance mass of 2 TeV. The production cross-sections are set to

1 fb in both cases. The acceptance × efficiency, defined as the percentage of total generated events

passing the cut, is shown in Figure 2.11. Only around 5-20% of signal events are kept after all

cuts are applied, depending on resonance mass. The efficiency of the kinematic cuts, particularly

the requirement that the leading Higgs candidate have pT > 450 GeV, have lower efficiency for

resonances below 1.2 TeV or so. The efficiency of these cuts plateaus as higher mass resonances

produce more boosted jets. At high resonant masses, the efficiency of the b-tagging algorithm is

reduced due to merging of the b-jets. As the b-tagging efficiency drops, the number of events in

the 2b-split channel increases relative to 3b and 4b, as shown in Fig. 2.12.
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Figure 2.11: Acceptance times efficiency as a function of signal resonance mass for (a) spin-0 and
(b) spin-2 signals. The values are found by dividing the event yield after each cut by the intial
number of events of the respective sample.
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Figure 2.12: Acceptance times efficiency as a function of signal resonance mass for (a) spin-0 and
(b) spin-2 signals. The values are found by dividing the event yield after the signal region and
b-tagging criteria are applied by the initial number of events of the respective sample.
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Selection cut m(X) = 2 TeV m(G∗KK) = 2 TeV

Raw MC events 70000 345000
All events (weighted) 47.1 47.1

Trigger 40.3 43.4
≥ 2 large-R jets 34.7 38.9

Large-R jet mass 34.2 38.4
Leading large-R jet pT 33.8 38.3
|∆η(HH)| < 1.3 22.7 33.4

Resolved channel veto 22.7 33.3
Collinear track jet veto 18.8 27.6

4b
Signal region 1.4 2.3

Validation region 0.60 1.5
Control region 0.23 0.83

3b
Signal region 2.9 4.4

Validation region 1.5 2.4
Control region 0.68 1.1

2b-split
Signal region 1.5 2.0

Validation region 0.90 0.97
Control region 0.50 0.36

Table 2.4: Efficiency of selection cuts on spin-0 and spin-2 signals with a resonance mass of 2 TeV.
Both signals are normalized to a production cross-section of 1 fb.
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2.4 Background Estimation

In each b-tagging channel, the primary backgrounds to the HH → 4b search are QCD multijet

and tt̄ events. The relative proportion of these backgrounds depends on the number of b-tags

required: in the 4b channel, the background is ∼ 90% QCD and ∼ 10% tt̄, but tt̄ events make

up a larger portion of the 3b and 2b-split backgrounds (∼ 15% and ∼ 30% respectively). Other

background sources, such as Z+jets and Z Z →bb̄bb̄, account for <1% of the total and are not

considered in the analysis.

A data-driven method is used to estimate the size and shape of the QCD background in each

of the 4b, 3b and 2b-split signal regions. For each b-tagging channel, the shape of the tt̄ distri-

butions are taken from Monte Carlo simulation, while the QCD distributions are estimated from

data in the corresponding low-tag channels. While the low-tag channels are similar to the high-

tag channels, the difference in b-tagging requirements creates some kinematic differences. The

iterative reweighting procedure described in Section 2.4.1 is used to correct for these differences

in the 1b-1 and 2b-1 channels. While a similar kinematic difference is also expected between 4b

and the corresponding 2b-2 channel, it is smaller than the statistical uncertainty on the data and

therefore ignored. The normalizations of the resulting low-tag distributions are set using maximum

likelihood fits in the control region of each b-tagging channel, as described in Section 2.4.2. The

di-Higgs invariant mass distributions are then fit to a functional form, as described in Sec. 2.4.3, to

produce the final background hypothesis used in the search.

2.4.1 Kinematic Reweighting

To correct for kinematic differences caused by b-tagging the Higgs candidate jets, a reweighting

function is applied in the 1b-1 and 2b-1 regions. The reweighting procedure uses an iterative spline

method, similar to that used in the previous version of this analysis [69]. The method is defined by

comparing the kinematics of untagged Higgs candidates in a combined 1b-1 and 2b-1 region to the

kinematics of tagged Higgs candidates in that same region. The difference between the 1b-1 and
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2b-1 regions and their high-tag counterparts, 2b-split and 3b respectively, is only a single tag, i.e.

one Higgs candidate has 0 b-tags in the low-tag region whereas one Higgs candidate has exactly

1 b-tag in the corresponding high-tag region. The reweighting procedure, therefore, only needs to

act on untagged jets such that they match single-tag jets. With this in mind, only single-tag Higgs

candidates are used for the reweighting target distributions. Similarly, only one of the track-jets,

chosen at random, is reweighted per untagged Higgs candidate. In single-tag Higgs candidates, the

b-jet has approximately equal chance of being the first or second track-jet. Reweighting a random

track-jet in each untagged Higgs candidate approximates the same tagging distribution. A set of

target distributions are defined based on the kinematics of single-tagged Higgs candidates:

1. pT of the tagged Higgs candidate,

2. pT of the b-tagged track jet,

3. η of the b-tagged track jet,

4. ∆R between the leading and subleading track jets (where applicable).

Separate distributions are constructed for the pT of leading and subleading Higgs candidates, as

well as for the pT of leading and subleading track jets. Equivalent distributions are then defined for

the untagged Higgs candidates. If the untagged Higgs candidate has more than one track jet, one

of the leading two is randomly chosen as input to the reweighting.

At each iteration of the reweighting, the ratios of tagged to untagged distributions are fit to

cubic splines. The weights are then updated according to

Wi = Wi−1 × [(Π j fi j(x j) − 1) × Li + 1], (2.3)

where the functions fi j are the splines evaluated on the kinematic variables x j at iteration i, and

the "learning rate", Li, controls how much the weight can change with each iteration. With a

learning rate of Li = 1 − 0.5i the splines converge quickly, within three to four iterations. To

ensure good agreement between tagged and untagged distributions a total of ten iterations, shown
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in Figure 2.13, are used. The learning rate is low for the early iterations to reduce numerical

instabilities associated with updating based on multiple highly correlated variables simultaneously.

After ten iterations, the final weight for each event is

W f = W0 × Π
10
i=1[(Π j fi j(x j) − 1) × Li + 1], (2.4)

where W0 denotes the initial event weight (which is 1 for data). The reweighting function is derived

using only the data sample, but is applied to the tt̄ MC as well. This ensures that the low-tag tt̄

matches the tt̄ component of the low-tag data. Note that since the reweighting applies only in the

1b-1 and 2b-1 regions, the high-tag tt̄ background is unaffected. Figure 2.14 shows comparisons

of the HH invariant mass distributions before and after reweighting in the 2b-split and 3b control

regions. While a similar mis-modelling may be expected between the 4b and 2b-2 regions, it is

smaller than the statistical uncertainty in the distribution so no reweighting is applied.
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Figure 2.13: Convergence of the spline functions used to reweight the 1b-1 and 2b-1 regions to cor-
rect for differences from the corresponding high-tag channels caused by the b-tagging algorithm.
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Figure 2.14: HH invariant mass in the (a) 4b, (b) 3b and (c) 2b-split control regions. For the 3b
and 2b-split channels, the top plot shows un-reweighted distribution while the bottom plot shows
the reweighted distribution. Multijet and tt̄ backgrounds are normalized using the µQCD and αtt̄
values defined in Sec. 2.4.2. The gray band shows only statistical uncertainties.
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2.4.2 Derivation of Background Normalization

The control regions are used to define the normalization of the background components. In

the low-tag channels a model of the QCD background is constructed by subtracting the tt̄ MC

from the data. This QCD model, along with the high-tag tt̄ MC, is then fit to the high-tag data in

the control region to determine the normalization factors, µQCD and αtt̄ . A two-parameter binned

maximum-likelihood fit is used to calculate the scale factors. The high-tag data is fit to the sum of

the QCD model and tt̄,

ydata,nb = µQCDy
QCD,nb + αtt̄ y

tt̄,nb, (2.5)

where nb indicates the high-tag channel while nb − 1 indicates the corresponding low-tag model

and yQCD,nb ≡ ydata,nb−1− ytt̄,nb−1. Assuming uncorrelated Poisson distributions for the data in each

histogram bin, and summing over the bins one can derive the likelihood function:

L(µQCD, αtt̄) =

N∏
i=1

e−(µQCD y
QCD,nb
i +αt t̄ y

t t̄,nb
i )
(µQCDy

QCD,nb
i + αtt̄ y

tt̄,nb
i )y

data,nb
i

y
data,nb
i !

, (2.6)

where the index i runs over bins of the leading Higgs candidate mass, yi indicating the number of

events in bin i for a particular histogram. The fit is performed separately in each b-tagging channel.

The final µQCD is an estimate of the ratio of the number of QCD events in the high-tag channel to

the number in the low-tag channel, while the tt̄ normalization parameter αtt̄ , applied after the tt̄ is

scaled to the total integrated luminosity, is a correction to the MC prediction in this phase space.

The distributions used to calculate the µQCD and αtt̄ normalization factors are shown in Fig-

ure 2.15. These distributions are reweighted as described in Section 2.4.1 and the background

model is able to match the data even though the m(H1) distribution is heavily sculpted by the con-

trol region contours. In the 4b region, αtt̄ was found to be essentially unconstrained, due to lack of

data, and so it was fixed to one. The fitted values of µQCD and αtt̄ are given in Table 2.5. While

the uncertainties on the individual parameters are shown, they can be misleading due to the large

correlation between parameters. The correlation between parameters is taken into account in the
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Figure 2.15: Leading Higgs candidate mass distributions in the (a) 4b, (b) 3b and (c) 2b-split
control regions. The control region data is used to determine the normalization of the multijet and
tt̄ backgrounds. The statistical uncertainty in the fit is shown in the gray bands.

region 2b-split 3b 4b

µQCD 0.05428 ± 0.00057 0.1201 ± 0.0024 0.0269 ± 0.0015
αtt̄ 0.827 ± 0.011 0.771 ± 0.041 1

correlation -0.74 -0.74 -

Table 2.5: Fitted values for µQCD and αtt̄ , with statistical uncertainties on the parameters and
normalization uncertainties on the backgrounds. µQCD and αtt̄ are used to set the normalization of
the background components. In the 4b region, αtt̄ is fixed to one.

statistical uncertainty of the background model.

An underlying assumption of this method is that these scale factors are roughly constant over

the mH1– mH2 plane, which is verified by using an independent estimate the number of events in the

signal region of each b-tagging channel. An extrapolation uncertainty is defined from this estimate,

as described in Section 2.5. The fit makes the additional assumption that the tt̄ yield given by MC

in the low-tag region is correct. The fit is, however, insensitive to small variations in the low-tag tt̄

yield so this assumption has no impact on the result.
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2.4.3 mHH smoothing fit

In order to reduce the effect of statistical fluctuations at high mHH in the analysis, the multijet

and tt̄ distributions are fit to the following function:

f (x) =
e−p0

x2 (1 − x)p1−p2 ln x, (2.7)

where x ≡ mHH/
√

s and pi are dimensionless free parameters. This functional form was chosen

from among the so-called “dijet” functions , that have been used to fit falling dijet spectra in similar

analyses including the previous round of this analysis [69]. The chosen function was found to be

the median in most signal regions among the eight functions tested. A couple of changes were

made to improve convergence of the fit: first, the exponential of the p0 parameter is used rather

than p0 itself, ensuring that the parameters have similar magnitudes. The second changes was to

normalize the input distribution to 1 across the fit range during the fitting procedure. After running

the fit, the resulting function and associated errors are scaled to the expected number of events.

The fit is performed only in the bins above 1200 GeV to avoid biases from inefficiencies of the

boosted selection at lower masses. While the fit range also has an upper limit, set to avoid issues

with empty bins, the fitted function is used to smooth over the entire range above 1200 GeV. Due

to low statistics in the 4b region, the shape of the tt̄ distribution in this region is taken from the 3b

region and scaled to the 4b yield. The fit ranges in each of the signal regions are as follows:

• 2b-split QCD model: 1200-4300 GeV, tt̄: 1200-3900 GeV

• 3b QCD model: 1200-2800 GeV, tt̄: 1200-2200 GeV

• 4b QCD model: 1200-2500 GeV

Figure 2.16 shows the fits to the QCD model in each of signal regions while Figure 2.17 shows the

fits to the 2b-split and 3b tt̄ MC.

61



m(HH) [GeV]

3−10

2−10

1−10

1

10

210

310

E
ve

nt
s 

/ 1
00

 G
eV

Multijet

Best-fit

Eigenvariation 1

Eigenvariation 2

Eigenvariation 3

Thesis
-1 = 13 TeV, 139 fbs

Boosted channel
4b signal region

1000 1500 2000 2500 3000
m(HH) [GeV]

0.5−

0

0.5

F
it

M
ul

tij
et

-F
it

(a)

m(HH) [GeV]

3−10

2−10

1−10

1

10

210

310

410

510

E
ve

nt
s 

/ 1
00

 G
eV

Multijet

Best-fit

Eigenvariation 1

Eigenvariation 2

Eigenvariation 3

Thesis
-1 = 13 TeV, 139 fbs

Boosted channel
3b signal region

1000 1500 2000 2500 3000 3500 4000 4500 5000
m(HH) [GeV]

0.5−

0

0.5

F
it

M
ul

tij
et

-F
it

(b)

m(HH) [GeV]

1−10

1

10

210

310

410

510

E
ve

nt
s 

/ 1
00

 G
eV

Multijet

Best-fit

Eigenvariation 1

Eigenvariation 2

Eigenvariation 3

Thesis
-1 = 13 TeV, 139 fbs

Boosted channel
2b signal region

1000 1500 2000 2500 3000 3500 4000 4500 5000
m(HH) [GeV]

0.5−

0

0.5

F
it

M
ul

tij
et

-F
it

(c)

Figure 2.16: Smoothing fit applied to the mHH spectrum of the multijet background model in the (a)
4b, (b) 3b and (c) 2b-split signal regions. The red curve shows the nominal background estimate,
while the blue bands show ‘eigenvariations’ used to assess the impact of limited statistics on the
fit. The eigenvariation method is explained in Section 2.5.
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Figure 2.17: Smoothing fit applied to the mHH spectrum of the tt̄ background in the (a) 3b and
(b) 2b-split signal regions. The red curve shows the nominal background estimate, while the
blue bands show ‘eigenvariations’ used to assess the impact of limited statistics on the fit. The
eigenvariation method is explained in Section 2.5.
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2.4.4 Background predictions

While defining the background model, data in the signal region was blinded. In order to gain

confidence in the model, comparisons between data and prediction in control and validation regions

were made using a number of different kinematic variables. The control region plots for two of

these variables, the pT of both Higgs candidates are shown Figure 2.18. These plots include the full

background estimation procedure and associated uncertainties. After the kinematic reweighting is

applied, good agreement with data is observed for most distributions in all regions.

) [GeV]
1

(H
T

p

2−10

1−10

1

10

210

310

410

E
ve

nt
s 

/ 5
0 

G
eV Data

Multijet
tt

Stat. uncertainty

Thesis
-1 = 13 TeV, 139 fbs

Boosted channel
4b control region

500 1000 1500 2000 2500
) [GeV]

1
(H

T
p

0.5−

0

0.5

P
re

d.
D

at
a-

P
re

d. ) [GeV]
1

(H
T

p

2−10

1−10

1

10

210

310

410

510

610

E
ve

nt
s 

/ 5
0 

G
eV Data

Multijet
tt

Stat. uncertainty

Thesis
-1 = 13 TeV, 139 fbs

Boosted channel
3b control region

500 1000 1500 2000 2500
) [GeV]

1
(H

T
p

0.5−

0

0.5

P
re

d.
D

at
a-

P
re

d. ) [GeV]
1

(H
T

p

2−10

1−10

1

10

210

310

410

510

610

710

E
ve

nt
s 

/ 5
0 

G
eV Data

Multijet
tt

Stat. uncertainty

Thesis
-1 = 13 TeV, 139 fbs

Boosted channel
2b control region

500 1000 1500 2000 2500
) [GeV]

1
(H

T
p

0.5−

0

0.5

P
re

d.
D

at
a-

P
re

d.

(a)

) [GeV]
2

(H
T

p

5−10

4−10

3−10

2−10

1−10

1

10

210

310

410

510

E
ve

nt
s 

/ 5
0 

G
eV Data

Multijet
tt

Stat. uncertainty

Thesis
-1 = 13 TeV, 139 fbs

Boosted channel
4b control region

500 1000 1500 2000 2500
) [GeV]

2
(H

T
p

0.5−

0

0.5

P
re

d.
D

at
a-

P
re

d. ) [GeV]
2

(H
T

p

2−10

1−10

1

10

210

310

410

510

E
ve

nt
s 

/ 5
0 

G
eV Data

Multijet
tt

Stat. uncertainty

Thesis
-1 = 13 TeV, 139 fbs

Boosted channel
3b control region

500 1000 1500 2000 2500
) [GeV]

2
(H

T
p

0.5−

0

0.5

P
re

d.
D

at
a-

P
re

d. ) [GeV]
2

(H
T

p

2−10

1−10

1

10

210

310

410

510

610

710

E
ve

nt
s 

/ 5
0 

G
eV Data

Multijet
tt

Stat. uncertainty

Thesis
-1 = 13 TeV, 139 fbs

Boosted channel
2b control region

500 1000 1500 2000 2500
) [GeV]

2
(H

T
p

0.5−

0

0.5

P
re

d.
D

at
a-

P
re

d.

(b)

Figure 2.18: The pT distributions of (a) the leading Higgs candidate and (b) the subleading Higgs
candidate in the (left) 4b, (middle) 3b, and (right) 2b-split control regions. The gray band shows
the sum of the background modelling uncertainties.
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2.5 Systematic Uncertainties

There are a number of sources of systematic uncertainty affecting the boosted HH → 4b

analysis, the most important of which are uncertainties on the background estimate. Separate

systematic variations are derived for uncertainties arising from the methods used to derive the

background normalizations and shapes. In addition, two ‘non-closure’ uncertainties are defined by

the discrepancies observed when applying the complete method on an alternate dataset, once using

the high-tag validation regions and once using the signal regions in simulated multijet data. These

uncertainties are intended to cover any potential biases not explicitly accounted for elsewhere.

2.5.1 Uncertainties on the Background Normalization

Three source of uncertainty are considered for the background normalization: the statistical

uncertainty of the fit procedure, the uncertainty associated with the extrapolations from low-tag to

high-tag and from control to signal region, and potential for biases due to the definitions of the

control regions.

Statistical Uncertainty

The covariance of the fit parameters is found by taking the inverse of the Hessian matrix, H.

The Hessian matrix is defined as the matrix of second-derivatives of the likelihood function, i.e.

its elements are given by

Hi j =
∂2L

∂xi∂x j

Hii =
∂2L

∂x2
i

,

(2.8)

where L(®x) is the likelihood function and the indices i, j run over the parameters ®x. Assuming

L(®x) is approximately Gaussian in the region around the maximum, the inverse Hessian provides

a good approximation of the full covariance of the parameter estimates.
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The background normalization fit has two free parameters, µQCD and αtt̄ , and a 2×2 covariance

matrix. The eigenvectors of the covariance matrix define an orthogonal basis of the parameter

space, while the eigenvalues define the variance, σ2, along each axis. Two ‘eigenvariations’ are

created by adjusting the parameters by one standard deviation, σ, along each eigenvector. These

eigenvariations change the mHH spectrum of the background hypothesis, by altering the relative

proportions of QCD and tt̄. The alternate spectra are propogated through the rest of the analysis

to provide uncertainty bands on the background estimate. In the 4b channel, the fit has only one

free parameter and the covariance matrix becomes trivial. Only one eigenvariation is used in this

channel.

Extrapolation uncertainty

The normalizations of the QCD and tt̄ backgrounds are derived in a control region, and then

applied in the signal region. This method relies on the assumptions that the QCD model from the

low-tag channels has the same shape as the true QCD in the high-tag channels, and that the scale

factors are the same between the control and signal regions. The extrapolation uncertainty provides

an estimate of the uncertainties in the background normalization arising from these assumptions.

To assess the extrapolation uncertainty, a Gaussian Process technique is used to interpolate the

data in the signal region. The interpolation procedure is done in two steps. First, a fit is performed

on the blinded distribution to determine the parameters for a Gaussian two-point correlation func-

tion, or kernel. This kernel is then used to predict the values of all the points in the mH1– mH2

plane, including points in the blinded signal region.

The fit is performed on a data distribution with the tt̄ contribution removed, which is expected

to have no small-scale structure. The fitted kernel functions are found to have correlation lengths

on the order of 100-200 GeV, much larger than the size of the signal region. In addition, the

predicted values closely match the actual values outside the signal region. Therefore, the hole in

the distribution does not seem to bias the fit, but is properly smoothed over as shown in Figure 2.19.

The sparsity of data in the mH1– mH2 plane in the 4b channel requires wider bins to be used in the

65



fit. Still, the extrapolation uncertainty is largest in this channel in part due to low statistics. Note

that the QCD distribution used for this procedure can be defined separately for the high and low-tag

channels, unlike the QCD model defined by the nominal background estimation technique, which

uses low-tag data to define the distribution in the high-tag channels.

A quantitative measure of the extrapolation uncertainty is obtained by calculating the following

double ratio:

Rextr ≡
Nnb

SR/N
nb−1
SR

Nnb
CR/N

nb−1
CR

(2.9)

where Nnb is the number of events in the high-tag channel and Nnb−1 is the number of events in

the corresponding low-tag channel. The uncertainty, |Rextr - 1|, is 1.72%, 6.02%, 10.94% in the

2b-split, 3b, and 4b channels respectively.

0

5

10

15

20

2
 E

ve
nt

s 
/ 2

5 
G

eV

50 100 150 200 250 300
) [GeV]

1
m(H

50

100

150

200

250

300

) 
[G

eV
]

2
m

(H

Thesis
-1 = 13 TeV, 139 fbs

4b channel
QCD model

2

4

6

8

10

12

14

16

18

20

22

2
 E

ve
nt

s 
/ 2

5 
G

eV

60 80 100 120 140 160 180 200 220 240 260 280
) [GeV]

1
m(H

60

80

100

120

140

160

180

200

220

240

260

280

) 
[G

eV
]

2
m

(H

Thesis
-1 = 13 TeV, 139 fbs

4b channel
Gaussian Process fit result

(a)

66



0

20

40

60

80

100

2
 E

ve
nt

s 
/ 2

5 
G

eV

50 100 150 200 250 300
) [GeV]

1
m(H

50

100

150

200

250

300

) 
[G

eV
]

2
m

(H

Thesis
-1 = 13 TeV, 139 fbs

3b channel
QCD model

20

40

60

80

100

2
 E

ve
nt

s 
/ 2

5 
G

eV

60 80 100 120 140 160 180 200 220 240 260 280
) [GeV]

1
m(H

60

80

100

120

140

160

180

200

220

240

260

280

) 
[G

eV
]

2
m

(H

Thesis
-1 = 13 TeV, 139 fbs

3b channel
Gaussian Process fit result

(b)

0

100

200

300

400

500

2
 E

ve
nt

s 
/ 2

5 
G

eV

50 100 150 200 250 300
) [GeV]

1
m(H

50

100

150

200

250

300

) 
[G

eV
]

2
m

(H

Thesis
-1 = 13 TeV, 139 fbs

2b channel
QCD model

100

200

300

400

500

2
 E

ve
nt

s 
/ 2

5 
G

eV
60 80 100 120 140 160 180 200 220 240 260 280

) [GeV]
1

m(H

60

80

100

120

140

160

180

200

220

240

260

280

) 
[G

eV
]

2
m

(H

Thesis
-1 = 13 TeV, 139 fbs

2b channel
Gaussian Process fit result

(c)

Figure 2.19: The result of the Gaussian Process interpolation in the (a) 4b, (b) 3b and (c) 2b-
split channels. The multijet model used, data - αtt̄ tt̄, is shown on the left, while the result of the
interpolation is shown on the right. The Gaussian Process is used to assess the uncertainty from the
extrapolations from control to signal regions and low-tag to high-tag channels in the background
estimate.
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Mass-Region Definition Uncertainty

The position and size of the control region used to estimate the background affect the final

result, so an uncertainty is added to cover the impact of these choices. The uncertainty is assessed

by creating a set of alternate control regions, each defined by some variation of the RV R
HH and RCR

HH

contours of the equations defined in Eq. 2.2. While new validation regions could be defined using

the RV R
HH variations, only the control region variations are used for the mass-region uncertainty.

The background fit is redone for each variation and the background yield is calculated in the signal

region. The largest difference in yield between the variations and nominal background estimate is

applied as a systematic uncertainty.

Six variations are made, four from moving the centers of the ellipses and two from changing

the cut values. The variations are the following:

• Up-up control region 3 GeV is subtracted from both the leading and subleading Higgs

candidate masses2. This moves the center of both the RV R
HH and RCR

HH circles are moved up

and to the right by 3 GeV in the mH1– mH2 plane.

• Up-down control region 3 GeV is subtracted from the leading Higgs candidate mass and

added to the subleading Higgs candidate mass. This moves the center of both the RV R
HH and

RCR
HH circles are moved up and to the left in the mH1– mH2 plane.

• Down-up control region 3 GeV is added to the leading Higgs candidate mass and subtracted

from the subleading Higgs candidate mass. This moves the center of both the RV R
HH and RCR

HH

circles are moved down and to the right in the mH1– mH2 plane.

• Down-down control region 3 GeV is added both the leading and subleading Higgs candi-

date masses. This moves the center of both the RV R
HH and RCR

HH circles are moved down and

to the left in the mH1– mH2 plane.

2The value of 3 GeV was chosen to be large enough to change the top fraction of the background but not move
the control region into the low mass QCD peak, nevertheless it is somewhat arbitrary. The same value was used in
previous iterations of the analysis.

68



• Large control region The RV R
HH cut is decreased by 3 GeV and the RCR

HH cut is increased by

3 GeV. This shrinks the inner boundary while expanding the outer boundary, resulting in a

larger control region.

• Small control region The RV R
HH cut is increased by 3 GeV and the RCR

HH cut is decreased by

3 GeV. This expands the inner boundary while shrinking the outer boundary, resulting in a

smaller control region.

These variations are done separately for each of the 2b-split, 3b, and 4b regions and the final

region-definition uncertainties are 0.88%, 1.25%, 6.05% respectively.

2.5.2 Uncertainties on the Background Shape

Three uncertainties on the shape of the mHH distribution are defined based on the smoothing

method defined in Section 2.4.3. In addition to the uncertainty due to limited statistics, biases can

be introduced from the choices of functional form and the range used for the smoothing procedure,

so two sets of variations are defined.

Statistial Uncertainty

The statistical uncertainty in the fit itself is accounted for using the same ‘eigenvariation’

method as is used for the normalization fit. As the smoothing function has three parameters, three

variations are created for each fit totaling six for each of the b-tagging channels. The smoothing is

done independently on the QCD and tt̄ distributions so each variation is uncorrelated to any others.

Choice of Function and Fit Range

In addition to the statistical uncertainty, two sources of systematic uncertainty are identified

related to choices made in the fit: one for the choice of functional form and the other for the choice

of fit range. The impact of these choices is assessed by making a set of different choices and

assuming this set characterizes the space of possible results. The set of alternate functional forms
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is given in Table 2.6 and were chosen based on similar sets used in previous publications, e.g.

Refs. [69, 84]. Each functional form is fit to the background model, and the two that differ most

from the nominal ‘MJ8’ fit are selected to define by an uncertainty band. To be considered for the

uncertainty calculation, a fit must converge and produce a monotonically decreasing curve across

the full mHH spectrum. Similarly, a set of alternate choices of fit range are created by moving

the upper and lower fit bounds independently by 100 GeV (one bin). Of the four variations, the

two that differ the most from the nominal predication are used to define the uncertainty band. The

results of these alternate fits are shown in Figure 2.20 for the QCD model, and Figure 2.21 for tt̄.

Name Functional Form

MJ1 f1(x) = e−p0(1 − x)p1 xp2

MJ2 f2(x) = e−p0(1 − x)p1 ep2 x2

MJ3 f3(x) = e−p0(1 − x)p1 xp2 x

MJ4 f4(x) = e−p0(1 − x)p1 ep2 ln x

MJ5 f5(x) = e−p0(1 − x)p1(1 + x)p2 x

MJ6 f6(x) = e−p0(1 − x)p1(1 + x)p2 ln x

MJ7 f7(x) = e−p0
x (1 − x)p1−p2 ln x

MJ8 f8(x) = e−p0
x2 (1 − x)p1−p2 ln x

Table 2.6: The dijet functions used to fit the background mhh distribution. The functional form
MJ8 was chosen to provide the nominal background estimate.
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Figure 2.20: Result of the smoothing fits on the QCD model in the (a) 4b, (b) 3b and (c) 2b-split
signal regions. The left column shows all dijet functions while the right shows the various choices
of fit range. The gray bands show statistical error on the nominal fit.
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Figure 2.21: Result of the smoothing fits on simulated tt̄ in the (a) 3b and (b) 2b-split signal
regions. The left column shows all dijet functions while the right shows the various choices of fit
range. The gray bands show statistical error on the nominal fit. The shape of the 4b tt̄ model is
taken from the 3b region.
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2.5.3 Non-closure Uncertainties

Two additional background uncertainties are defined to address any potential biases not covered

elsewhere. In particular, they cover differences in shape between the QCD distributions of the

signal regions and the corresponding low-tag channels where the QCD models are derived. These

differences are estimated in two ways: firstly, using multijet MC and secondly, using validation

region data.

For the first method, the background estimation procedure is replicated using only MC simula-

tion. A new reweighting function is derived from the sum of the multijet and tt̄ MC samples, using

the method described in Section 2.4.1. The reweighted MC is then normalized using the fit method

described in Section 2.4.2. In order to define a shape uncertainty, the reweighted low-tag MC pre-

diction is compared to the high-tag MC. An expanded mH1– mH2 plane region corresponding to the

combined signal and validation regions is used to improve statistical precision. Small differences

are observed in each region and each such non-closure is fit to a line as shown in Figure 2.22. The

observed non-closure is reflected about the nominal background to provide an uncertainty band on

the background prediction in the final fit. This method of non-closure estimation assumes that the

residual differences between low-tag and high-tag regions, that the reweighting procedure is unable

to correct, are similar in the MC simulation and in data. The fact that the observed non-closure is

small also serves as a useful validation of the background estimation procedure.

The second method of estimating non-closure uncertainty is done using validation region data.

As the validation data is expected to be similar to a background-only signal region, this also serves

as a check of the background model. The shape of the QCD model, derived from the low-tag signal

region, is compared to that of the high-tag tt̄-subtracted validation region data. A non-closure

uncertainty is then defined from differences observed in those bins with significant numbers of

events. A downside of this method is that statistical fluctuations in the validation region can be

quite large and, within uncertainties, the 3b and 4b shapes were found to agree with the background

prediction. The deviations in all three b-tagging channels are shown in Figure 2.23. A difference

in the shape of the turn-on curve at low mass is observed in the 2b-split region and applied as a
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Figure 2.22: Background models constructed from multijet simulation compared to the MC pre-
diction in the (a) 4b, (b) 3b and (c) 2b-split regions. The comparison is done in a combined signal
and validation region, and the bins of the plots are widened, to better show trends in the ratio. The
observed non-closure is fit to a line to define a shape uncertainty on the data-driven background.

shape uncertainty in the final fit.

While some bin-by-bin differences can be seen in the 3b and 4b regions, these appear to be

statistical fluctuations so, in practice, a non-closure uncertainty is only applied in the 2b-split

region. Following similar reasoning, the fluctuations in the tail of the 2b-split distribution are

also ignored for the purposes of this systematic. As the uncertainties obtained from the two non-

closure estimates have significantly different shapes, they appear to be measuring different ways

the background can be mis-modelled. Therefore, both uncertainties are applied in the final fit.
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Figure 2.23: Comparisons in the (a) 4b, (b) 3b and (c) 2b-split validation regions of the shape of the
tt̄-subtracted data to the multijet background models derived in the corresponding signal regions.
The gray band shows the sum of the background modelling uncertainties.
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2.5.4 Other Uncertainties

In addition to the uncertainties of the background estimation method, there are a number of

other sources of uncertainty considered. These include experimental uncertainties, e.g. those re-

lated to the reconstruction of the various physics objects by the detector, and theoretical uncertain-

ties related, e.g. to the model used to simulate the parton shower. Experimental uncertainties are

evaluated by dedicated teams within the ATLAS collaboration and incorporated as Bayesian pri-

ors in the statistical analysis, as described in Section 2.6.1. The priors associated with theoretical

uncertainties, meanwhile, are assessed by varying the assumptions used in event simulation or by

parameter changes in the model. All of these uncertainties are generally applied only to simulated

samples. While the multijet background is estimated in a data-driven way, it is still sensitive to

these uncertainties, through the low-tag tt̄ sample used, and the effect of each is considered. A list

of all the uncertainties considered, along with brief descriptions, can be found in Table 2.7. Plots

of those systematic variations with large impact or the required additional study can be found in

Appendix B.

tt̄ Simulation

Additional tt̄ variations are considered to account for uncertainties in the computational models

used for tt̄ MC generation. These cover the matrix element calculation, parton shower modelling,

renormalization and factorization scales, and the hdamp parameter, which tunes the amount of addi-

tional hard radiation in the sample and is typically set to hdamp = 1.5 mtop. In addition, uncertainties

on the parton distribution functions were investigated and found to be smaller than the statistical

uncertainty in the sample.

The matrix element uncertainty is evaluated by comparing aMC@NLO +PYTHIA 8 samples

to the nominal POWHEG +PYTHIA 8. Parton shower uncertainties use a comparison POWHEG

+HERWIG 7 samples to POWHEG +PYTHIA 8. The differences between samples are then sym-

metrized to provide an uncertainty band in each of the 4b, 3b and 2b-split signal regions, as shown

in Figure 2.24 for the parton shower uncertainty. Other uncertainties are derived using alternate
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event weights calculated by PYTHIA 8 when the samples are generated. This is true, for example,

for the renormalization and factorization scale uncertainties. For the uncertainty on final state ra-

diation (FSR), the down variation provided (µR = 0.5) contains large weights which affect the final

distributions. Instead of using this variation, an uncertainty band is constructed by symmetrizing

the up variation (µR = 2.0). Ultimately this uncertainty has little impact on the fit. For the hdamp un-

certainty, the variations come from altering parameters in the model of the underlying event. The

variation which increases the amount of hard radiation in the event comes from an independent

sample generated with hdamp = 3 mtop. The alternate sample available for this variation has lower

statistical precision for non-all-hadronic decays than the nominal sample, so instead the prediction

from the down variation is symmetrized. Again, this uncertainty has little impact on the fit.
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Figure 2.24: Parton shower uncertainty in the (a) 4b, (b) 3b and (c) 2b-split channels, derived from
a comparison of PYTHIA 8 and HERWIG 7 samples. The difference between the two samples is
mirrored to create symmetric uncertainty bands. The variations are correlated across channels and
controlled by a single nuisance parameter in the likelihood function.

2.5.5 Signal Simulation

The largest source of systematic uncertainty on the generation of the signal samples comes

from the modeling of the parton shower. As with the tt̄ sample, this uncertainty is evaluated by

comparing the PYTHIA 8 and HERWIG 7 generators. The shape of the mHH distribution, and of

other kinematic variables, were found to be the same for both generators, so the uncertainty is

applied only to the signal normalization. A flat 10% normalization uncertainty is applied in all
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b-tagging channels to all signal hypotheses, chosen to be at least as large as the uncertainty seen at

any individual mass point.

2.5.6 Summary of Systematics

There are many sources of uncertainty considered in the HH → 4b analysis, and each can

affect the result in different ways. Table 2.7 contains a full list of uncertainties, along with brief

descriptions. Those uncertainties specifically measured for the analysis have already been de-

scribed in more depth. Table 2.8 summarizes how each group of systematics is implemented in the

fit, and the b-tagging channels for which it is used.

Systematic Uncertainty Brief Description

Background uncertainties are calculated and applied separately in each b-tagging channel. Exper-
imental and theoretical uncertainties are fully correlated between channels.

Experimental Uncertainties

Luminosity Uncertainty on the full Run 2 integrated luminosity, as
measured by the LUCID-2 detector [85, 86].

Pileup Reweighting Uncertainties on pile-up conditions are applied when
reweighting simulations to match data.

Jet Energy Scale (JES) Uncertainty on the reconstruction of large-R jet energies
from detector inputs [87, 88]. Applied as 30 independent
NPs.

Jet Energy Resolution (JER) Uncertainty on the precision of jet energy reconstruc-
tion [87, 88].

Jet Mass Scale (JMS) Uncertainty on jet mass reconstruction [87, 88]. Calculated
separately from JES and applied as 6 independent NPs.

Jet Mass Resolution (JMR) Uncertainty on the precision of jet mass reconstruction [87,
88]. Separate NPs used for Higgs boson jets and top quark
jets.

DL1r Efficiency Uncertainty on DL1r tagging efficiencies [46, 50, 49]. 3
NPs are used for b-tagging rates, 4 for c-tagging and 4 for
l-tagging.

DL1r SF Extrapolation Uncertainty due to extrapolation of SFs to track-jets with
pT > 400 GeV [46].

Table 2.7: continued on next page
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Systematic Uncertainty Brief Description

Theoretical Uncertainties

tt̄ Matrix Element Uncertainty in the matrix elements are measured by com-
paring POWHEG and aMC@NLO predictions.

tt̄ Parton Shower Uncertainty in the parton shower model is measured by
comparing PYTHIA 8 and HERWIG 7.

tt̄ Hard Radiation Uncertainty in tt̄-associated radiation is assessed by vary-
ing the hdamp parameter in the model.

tt̄ µR, µF , FSR Uncertainties in renormalization and factorization scales,
and in final state radiation (FSR) are assessed by sample
weight variations in PYTHIA 8.

tt̄ PDF Uncertainties on the PDFs are assessed using an ensemble
of weight variations in PYTHIA 8.

Signal Parton Shower Uncertainty in the parton shower model is measured by
comparing PYTHIA 8 and HERWIG 7.

Background Estimation Uncertainties

Normalization Fit Uncertainty in µQCD and αtt̄ from the fit.
CR Variations Uncertainty due to choice of CR used for the fit.
Extrapolation Uncertainty due to extrapolation of µQCD and αtt̄ from CR

to SR.
Shape Fit Uncertainty in the three parameters of the MJ8 function.
Fit Function Uncertainty due to function used for the fit.
Fit Range Uncertainty due to range used for the fit.
Non-Closure Two uncertainties used to assess unknown biases, one de-

fined using multijet MC and the other using VR data.

Table 2.7: Experimental uncertainties considered in the boosted HH → 4b analysis.

systematic type region(s) corr. signal tt̄ QCD Model

Luminosity Norm all X X X X
Jet systematics Shape & Norm all X X X X

b-tagging systematics Shape & Norm all X X X X
tt̄ simulation Shape & Norm all X X X

Signal simulation Shape & Norm all X X
Background extrapolation Norm all X

CR Variation Norm all X X
Smoothing systematics Shape & Norm all X X

Non-closure Shape & Norm 2b-split X X

Table 2.8: Summary of systematics including the type of systematic applied and the samples it
applies to. The ’corr.’ column indicates whether these NPs are correlated between the different
regions. Note that the QCD model is affected by all theory systematics affecting the nb − 1 tt̄ MC.
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2.6 Statistical Analysis

The statistical analysis in this search is similar to techniques used in previous rounds of this

analysis: a profile-likelihood fit is performed simultaneously in the 4b, 3b and 2b-split channels

using the mHH variable as the final discriminant [69]. The relative contributions of each b-tagging

channel change for each mass hypothesis and each channel is only included for the range of masses

where it contributes significantly. The 4b channel, therefore, is only used for mHH ≤ 3 TeV while

the 2b-split channel is used for mHH ≥ 2 TeV. The 3b channel is included for all mass points.

2.6.1 Hypothesis Testing

The statistical test used for hypothesis testing is defined by taking ratios of profiled likelihood

functions. The likelihood function for a specific hypothesis can be constructed as follows: given

a histogram with entries n = (n1,...,nN ), the expectation value of the number of events in each bin

can be written as

E[ni] = µsi + bi, (2.10)

where si and bi are the signal and background predictions in bin i, and µ is the signal strength.

A value of µ = 0 corresponds to the background-only hypothesis, while µ = 1 is the nominal

signal hypothesis. The values si and bi in general depend on a some sets of nuisance param-

eters, θs and θb, that characterize the underlying probability density functions fs(mHH; θs) and

fb(mHH; θb). These nuisance parameters (NPs) correspond to the systematic uncertainties de-

scribed in Section 2.5 and their values are constrained by auxiliary measurements incorporated

into the likelihood function. The likelihood function takes the following form:

L(µ, θ) =
N∏

i=1
e−(µsi+bi) (µsi + bi)

ni

ni!

∏
k

SN(θk), (2.11)

where θ contains NPs for both signal and background distributions, each assumed to itself follow

a two-sided Gaussian (split-normal) distribution, SN . The likelihood function itself describes a
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high-dimensional surface in parameter-space whose peak corresponds to the model parameters

most likely to produce the observed data. The value of the likelihood at this peak is used as a

goodness-of-fit metric for the model. Furthermore, the likelihood function is profiled to obtain the

NP values, θ(µ), that maximize it for a given signal strength, µ. The values of θ that maximize

the likelihood for a given signal normalization are labelled ˆ̂θ(µ), while the global maximum of the

likelihood function is given by L(µ̂, θ̂(µ)).

Hypothesis testing is performed using the one-sided profile likelihood ratio test statistic q̃µ:

q̃µ =



−2 ln L(µ,
ˆ̂θ(µ))

L(0, ˆ̂θ(0))
µ̂ < 0

−2 ln L(µ,
ˆ̂θ(µ))

L(µ̂,θ̂(µ̂))
0 ≤ µ̂ < µ

0 µ < µ̂

(2.12)

q̃µ tests the compatibility of the data with two competing statistical models: the model found by

maximizing the likelihood, and model in which the signal strength is constrained to a particular

value µ. A small value of q̃µ indicates the data is equally consistent with both models, i.e. that

the constraint applied is supported by observation. The chosen test statistic both ensures that an

upwards fluctuation of the signal does not serve as evidence against the signal, (µ < µ̂ case) and

that a downward fluctuation of the background is not evidence against the background (µ̂ < 0

case).

In order to quantify compatibility of the observed test statistic with a particular hypothesis, one

needs to measure the distribution of the test statistic under that hypothesis. While these distribu-

tions are difficult to measure in general, for large datasets and assuming a Gaussian distribution of

µ̂, the profile likelihood ratio approaches a non-central χ2 distribution. In this asymptotic limit, the

distribution is fully characterized by the mean and standard deviation of µ̂, which can be measured

from a single dataset using the method described in Ref. [89]. The Asimov dataset used in this

method is defined such that the likelihood is maximized when all parameters take on their nominal

values. In practice, the asymptotic method works moderately well even in cases with few events

per bin. For the high mass signals, where the limit depends on bins with no observed events, an

80



ensemble Monte Carlo method is used to test the asymptotic limit. The so-called toy method in-

volves randomly generating large numbers pseudo-experiments or toys. For each toy a pseudo-data

distribution is generated from the probability distribution function of either the background-only

or signal+background hypothesis, the test statistic is then measured, and the distributions of the

test statistic from all toys is used to set limits. Due to the computation time required to generate

and evaluate large numbers of toys, this method was only used for the high mass signals, and only

a small grid of signal strengths were tested for each mass hypothesis. Limits computed with the

toy method were found to agree well with those from the asymptotic method for the spin-2 signal,

but not for the narrower spin-0 resonances. In the final result the asymptotic method is used for

signal masses up to 3 TeV and the toy method is used for higher masses. More details on the toy

method can be found in Appendix C.

With the test statistic distributions calculated, it is possible to quantify the level of incompati-

bility between the data and the background-only hypothesis. This quantity, the p-value of the null

hypothesis, is defined as

p0 =

∫ ∞

qobs

f (q |H0)dq, (2.13)

i.e. the probability of observing a q value greater than or equal to qobs under the null hypothesis.

The p-value is often expressed as a significance, Z , defined as

Z = Φ−1(1 − p), (2.14)

where Φ is the cumulative distribution of the unit Gaussian. In high-energy physics, a significance

of 5σ is required to claim discovery, corresponding to a p0 value of 2.87 × 10−7.

Due to the nature of the likelihood-ratio test, the value of p0 depends explicitly on a specific

signal hypothesis that enters through the global maximum of the likelihood function. One can

think of this ratio as restricting the statistical test to a subset of the mass range corresponding to the

signal hypothesis being tested. Each signal hypothesis therefore requires a separate calculation of

the discovery significance looking for the evidence for discovery of a new particle at that specific
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mass. The significance of the test for a single signal mass is refered to as local significance. In

the boosted HH → 4b analysis alone more than a dozen signal hypotheses are tested for each

signal model, with a similar number of tests in the resolved analysis. A global significance must

therefore be calculated to account for the increased probability of finding large local significances

when making many measurements. Global significances are calculated using an ensemble method

in which toys are randomly generated following the background-only hypothesis. The maximum

local significance, among all signal masses, of each toy is calculated to obtain a distribution of

Zlocal values. pglobal is then defined as

pglobal =

∫ ∞

Zref

f (Zlocal |H0)dZ, (2.15)

where Zref is a particular reference Zlocal used. Due to the computation time required to calculate

the global significance, this was only done for the combined results in Section 2.8.

2.6.2 Limit-setting Procedure

When calculating limits, the hypothesis test is inverted so that the signal+background hypoth-

esis takes the role of H0. The value of the signal strength, µ, is varied until a value is found that

results in CLs = 0.05. The CLs for the test statistic q is defined as:

CLs =
p0

1 − p1
=

Ps+b(q ≥ qobs)

Pb(q ≥ qobs)
(2.16)

where Ps+b(q ≥ qobs) is the probability of the signal+background model to produce equal or better

agreement to the data than observed, and Pb(q ≥ qobs) is the probability of the background only

model to produce equal or better agreement to the data than observed. Signal strengths greater that

which gives CLs = 0.05 are considered incompatible with the data and excluded at 95% confidence

level. This signal strength can then be converted to a limit on the cross section σ(X → hh →

bb̄bb̄).
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2.6.3 Signal Injection Tests

Signal injection tests were performed to test the ability of the fit to correctly measure signal

strength. These tests were performed on Asimov datasets composed of the nominal background

and a known number of signal events. The fit was able to reproduce the expected signal strengths

for positive signals for all signal masses. Histograms are required to have non-negative counts in

each bin, limiting the size of negative signal strengths. This behaviour can be seen in Figure 2.25,

which shows the result of the test on the 2 TeV spin-0 signal hypothesis.
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Figure 2.25: Result of signal injection tests with 2 TeV spin-0 signal. The fitted signal matches
expectation for positive signal strengths.

2.6.4 Signal Morphing

Additional scalar signal masses are generated by interpolating between those generated by the

full ATLAS simulation. The interpolated masses are m(X) = 2250, 2750, 3500, 4500 GeV, cor-

responding to the additional masses generated for the spin-2 model but not the spin-0 model. A

linear moment morphing procedure is used to interpolate between the simulated masses immedi-

ately above and below the target mass. The normalization of the all the simulated scalar masses

are fit to a cubic spline, which is then used to set the normalization for the morphed histograms. To

validate the method, the 2500 GeV point is generated by interpolation and compared to the actual

simulated sample distribution, as shown in Figure 2.26. The morphing provides an approximation
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of the interpolated signal sufficient to fill in additional detail in the 95% CLs limits. The same

procedure is used to generate systematic variations for the interpolated mass points.
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Figure 2.26: Result of using moment morphing to interpolate the 2500 GeV spin-0 signal mass
in the (a) 4b, (b) 3b, and (c) 2b-split channels. The 2000 GeV and 3000 GeV mass histograms
are used to parametrize the signal. The 2500 GeV spin-0 signal generated from MC is shown for
comparison.

2.6.5 Impact of Systematic Uncertainties

The relative importance of the various sources of systematic uncertainty are measured indi-

vidually and in groups. The maximized likelihood function, L(µ̂, θ̂(µ̂)), is used to measure the

individual impact of each nuisance parameter. First, the correlation matrix and the Bayesian pos-

terior distributions of the NPs are extracted from the maximum likelihood fit. Then, for each NP,

the likelihood is maximized with the value of that NP fixed to the ±1σ values of the posterior

distribution.The result is a measurement of the impact of each individual NP on µ̂. The posterior

distribution and impact are shown together in Figure 2.27 for the 2 TeV signal masses. The points,

and error bars, show the mean and width of the posterior probability relative to the prior on the

bottom axis, while the color bars show the impact on µ̂ on the top axis. The difference between

prior and posterior uncertainties is referred to as the constraint on the NP from the fit, and is gen-

erally expected to be small.In addition, the difference between the best-fit value of the NP and the

prior value of zero is expected to be generally less than 1σ. Indeed, this is observed in almost all

cases. This method of measuring the impact of individual NPs does not take correlations between

NPs into account. Moderate correlation between parameters is observed, however, as shown in
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Figure 2.27c.

The impact of each source of uncertainty is also assessed on the 95% CLs limit directly. To

do this, NPs are grouped by source and all NPs in a group are fixed to the maximum-likelihood

value, θ̂(µ̂). The limit is then recalculated and the relative difference between conditional and

unconditional limits is measured. The impact of the main sources of uncertainty given in Tables 2.9

and 2.10 for spin-0 and spin-2 models respectively. The relative importance of different sources

of uncertainty varies with signal mass and with the relative importance of the different b-tagging

channels.

Uncertainty category
Relative impact (%)

1000 GeV 1600 GeV 2000 GeV 3000 GeV 5000 GeV

Background mHH shape 21 1.3 0.6 1.2 1.0
Jet momentum/mass scale 0.1 1.5 0.8 4.7 0.5
Jet momentum/mass resolution 4.4 7.4 16 9.5 6.5
b-tagging calibration 0.6 1.8 3.0 0.8 6.3
Theory (signal) 1.8 1.6 1.2 1.7 1.1
Theory (tt̄ background) 5.6 0.7 0.5 0.8 0.2

All systematic uncertainties 35 13 21 15 15

Table 2.9: Impacts of the main sources of systematic uncertainty on the expected spin-0 95% CLs
limits. These are defined as the relative decrease in the limit when each set of nuisance parameters
is held fixed to its best-fit value instead of being assigned an uncertainty.

Uncertainty category
Relative impact (%)

1000 GeV 1600 GeV 2000 GeV 3000 GeV 5000 GeV

Background mHH shape 32 1.9 1.3 2.1 2.0
Jet momentum/mass scale 0.0 2.4 1.6 6.0 0.9
Jet momentum/mass resolution 5.8 8.8 15 9.0 6.7
b-tagging calibration 0.8 1.7 2.8 1.2 5.7
Theory (signal) 1.8 1.5 1.5 2.0 1.1
Theory (tt̄ background) 5.3 0.9 1.1 1.3 0.6

All systematic uncertainties 47 16 22 16 15

Table 2.10: Impacts of the main sources of systematic uncertainty on the expected spin-2 95% CLs
limits. These are defined as the relative decrease in the limit when each set of nuisance parameters
is held fixed to its best-fit value instead of being assigned an uncertainty.
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Figure 2.27: Pulls (points, bottom axis) and impacts (bars, top axis) of NPs in the fit to the (a)
2 TeV spin-0 and (b) 2 TeV spin-2 signal hypotheses, as well as the correlation matrix (c) from the
fit to the 2 TeV spin-0 signal. Pulls are only shown for the 15 NPs with the highest impact on µ̂ and
correlations are only shown for NPs with at least 20% (anti-)correlation to another parameter.

86



2.7 Results

The primary results of the statistical analysis are the p0 values and the derived 95% CLs limits

on the signal mass hypotheses. Both are presented in this section, along with the results of the

likelihood maximization, namely the best-fit mHH spectrum and values of the nuisance parameters.

The best-fit results are used to assess the ability of the model to accurately fit the data. Several

checks of the validity of the results are also presented.

2.7.1 Post-fit Distributions

Figure 2.28 shows the best-fit mHH distributions under the background-only hypothesis. That

is to say, the distribution with all NPs set to the values θ̂(0) that maximize the likelihood under the

condition µ = 0. In general, the global minima of the likelihood function has a non-zero µ value

and depends on the signal hypothesis being tested. Several spin-0 signal hypotheses are overlaid

on the plot, normalized to the expected limits, to give an indication of what a detected signal may

look like. Figure 2.29 shows the same mHH distribution with spin-2 signals overlaid, illustrating

the difference between the two signal models.
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Figure 2.28: Post-fit mHH distributions in the (a) 4b, (b) 3b and (c) 2b-split channels under the
background-only hypothesis. The gray band shows the total post-fit uncertainty on the background
model. Representative spin-0 signals are shown normalized to the observed 95% CLs limits.
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Figure 2.29: Post-fit mHH distributions in the (a) 4b, (b) 3b and (c) 2b-split channels under the
background-only hypothesis. The gray band shows the total post-fit uncertainty on the background
model. Representative spin-0 signals are shown normalized to the observed 95% CLs limits.

2.7.2 Discovery Signficance

Figure 2.30 shows the observed p0 values at each mass point under the RS and 2HDM models,

calculated using the full Run 2 dataset. Each p0 value measures whether a background-only model,

µ = 0, can fit the data as well as the signal+background model that maximizes the likelihood

function, µ = µ̂, for that particular signal hypothesis. The largest local significance is at 4 TeV

with Zlocal = 1.85 (1.41) for the spin-0 (spin-2) model. The large significance here comes from the

observation of three events in the 2b-split channel, visible in Figure 2.28 and Figure 2.29, where

the background predicts fewer than one event per bin. These few points provide much greater

evidence for the spin-0 model, which predicts a narrow peak, than for the spin-2 model, which

predicts a peaked but quite broad enhancement to the HH cross-section. Even so, neither local

significance value rises to the level of discovery. The true significance is lower still because the

look-elsewhere effect has not been taken into account in these plots. Since no discovery is made,

limits are set on the allowed cross-sections of the spin-0 and spin-2 signal models.
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Figure 2.30: Local p-value comparing the consistenty of the µ = 0 and µ = µ̂ hypotheses with the
data. P-values are calculated separately for each of the (a) spin-0 and (b) spin-2 signal masses. A
p-value of 2.87 × 10−7, corresponding to a local significance of 5σ is required to claim discovery.

2.7.3 Expected and Observed Asymptotic Limits

Figure 2.31 shows the expected and observed limits on the RS and 2HDM models using the

full Run 2 dataset. The theoretical prediction for the RS model is taken from Ref. [8]. The ob-

served limit, drawn as a solid black line, corresponds to the minimum value of µ, for each signal

hypothesis, that is incompatible with the data. The phase-space above this line is considered to

be excluded to the 95% confidence level. As with the discovery significance, small excesses in

the data above the background-only hypothesis push the limits to higher values at specific masses.

Here though, small deficits in the data can also serve as evidence against a signal and push the

limits to lower values. The expected limit, and the 1σ and 2σ uncertainty bands, are derived from

Asimov datasets and show essentially how the limits would have appeared if the data had matched

the background prediction exactly, or a 1σ or 2σ variation of the background. The cumulative

effect of small excesses, particularly in the 3b channel, push the observed limits above the ex-

pected limits over much of the mass range, although the difference between the two is within the

1σ band. Differences between the limits for the spin-0 and spin-2 models arise primarily because

of the difference between the widths of the resonances.
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Figure 2.31: Expected and observed limits from the boosted HH → 4b analysis on (a) spin-0 and
(b) spin-2 signal models derived using the full Run 2 ATLAS dataset of 139 fb−1 of

√
s = 13 TeV

proton–proton collision data. The contributions of the individual 4b, 3b and 2b-split channels are
shown in green, pink, and blue respectively.

2.7.4 Expected and Observed Toy Limits

Toy limits are calculated for the signal mass above 3 TeV, where few background events are

predicted. The toy method is described in detail in Appendix C and is used to relax certain assump-

tions made in the asymptotic method. Figure 2.32 shows a comparison between the expected and

observed toy limits and the asymptotic limits, for both the RS and 2HDM signal models. The toy

limits are generally consistent with the asymptotic limits, in particular for the spin-2 model. The

limits for the spin-0 model diverge slightly as the signal mass increases, as expected, resulting in

a 20% difference at 5 TeV. Large differences are also observed in the -2σ error band. This comes

from the data being limited to at least zero events per bin, an effect not taken into account in the

asymptotic calucation. The toy limit, being more correct, is used in the final result.
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Figure 2.32: Comparison of the toy and asymptotic limits from the boosted HH → 4b analysis on
(a) spin-0 and (b) spin-2 signal models derived using the full Run 2 ATLAS dataset of 139 fb−1

of
√

s = 13 TeV proton–proton collision data. The results are mostly consistent but the toy lim-
its diverge from the asymptotic values by up to 20% at high masses due to a breakdown of the
assumptions used in the asymptotic calculation. The error bands shown here are also calculated
using the toy method.

2.8 Statistical Combination

The final results of the HH → 4b analysis combine the resolved and boosted channels to

compute limits across the full mass range of 251-5000 GeV. The datasets used by the resolved

and boosted channels are entirely orthogonal, which allows for a simple statistical combination by

taking the product of the individual likelihoods. As the two channels use different jet definitions,

b-tagging algorithms and background estimation methods, almost all systematics are uncorrelated

between them. The only exceptions are the uncertainty on the ATLAS luminosity measurement

and the uncertainties in the signal MC generation, which are fully correlated between the channels.

An excess above 2σ in local significance is observed in the combined limits for the 1100 GeV

mass point, and excesses above 1.5σ are observed at 1400, 1500 and 4000 GeV. The observed

local significances for the 1100 GeV mass point are 2.5σ for both spin-0 and spin-2 signal hy-

potheses. The global significances are 0.9 and 1.4 for spin-0 and spin-2 models respectively. For

the 1400 GeV mass point, the combined significances are 1.6 and 1.7σ for the spin-0 and spin-2

signal hypotheses. We therefore conclude that no evidence for either spin-0 or spin-2 signal model
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Figure 2.33: Expected and observed 95% CL upper limits on the cross section times branching
ratio of resonant X → HH production in the spin-0 and a spin-2 signal models. The toy method is
used to derived limits for signal masses above 3 TeV. The theoretical prediction for the RS model
is also shown.

is present in the ATLAS Run 2 dataset. Instead, we set limits on the cross-section of Higgs boson

pair production assuming the SM branching ratio to bb̄bb̄ of 58%, as shown in Figure 2.33. For

signal masses up to and including 3 TeV, the asymptotic method is used to derive limits, but at

higher masses the toy method is used instead. The theoretical prediction for the RS model with

k/MPl = 1 is taken from Ref. [8]. While we expected to exclude this model in the mass range from

304 GeV to 1730 GeV, in the final result the model is excluded for masses between 298 GeV and

1440 GeV.
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Chapter 3: g → bb Calibration

3.1 Calibration Overview

The g → bb calibration presented here aims to calibrate a novel double-b-tagger for use in

ATLAS analyses. b-tagging algorithms, as described in Section 1.10, are widely used in ATLAS

particularly for analyses focused on Higgs boson and top quark decays. These algorithms, includ-

ing the DL1r algorithm [42] used in the HH → 4b analysis, classify jets based on the heaviest

flavor hadron they are likely to contain, b, c, and light. Recently, the Xbb2020 algorithm has been

developed specifically to identify double-b decays fully contained within large-R jets [90]. This

algorithm classifies a large-R jet as a coming from Higgs boson, top quark or multijet process,

based on the b-tagging scores of the associated variable-radius track-jets. The Xbb2020 algorithm

shows large improvements in classification performance by taking into account correlations be-

tween the two b-hadrons in Higgs boson decays. Just as with DL1r, a set of working points is

defined based on tagging efficiency on simulated H → bb decays. These working points must be

calibrated before the algorithm can be used in analyses and the calibration method used for DL1r,

which uses isolated b-jets from top quark decays, cannot be used. Several new calibration methods

are currently under development within ATLAS, two using Z → bb decays and one using g → bb

decays, presented here.

A calibration, in this context, quantifies the difference in some observable(s) between the mea-

surement in real and simulated data with the goal of defining a procedure to correct inaccuracies in

the simulation. After that procedure is applied to the simulation, the targetted observable(s) should

match the data exactly. While it may seem natural to correct the distribution of Xbb2020 classi-

fication scores, or the final discriminant, this has proven prohibitively difficult in other ML-based

algorithms, as the scores have a complex dependence on many input variables. Instead one can
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correct the efficiency of a small set of cut values on the final discriminant, i.e. the working points.

These working points are chosen to be broadly applicable to a wide range of analyses, though they

are not fully optimized for any. The calibration aims to provide a set of scale factors (SFs) that can

be used to adjust the efficiency seen in simulation to match that of data, as well as to quantify the

uncertainties associated with each SF. For b-tagging algorithms, separate calibrations are used to

correct the b-tagging efficiency and the mis-tag rates of charm and light jets. The g → bb calibra-

tion presented here aims only to correct the tagging efficiency on Higgs bosons decaying to two

b-hadrons.

Scale factors are defined by the following equation,

SF =
εdata
εMC
=

N tagged
data /Ndata

N tagged
MC /NMC

, (3.1)

where Ndata is the number of true bb̄ decays in data and NMC is the number in Monte Carlo. The

measurement of the true bb̄ fraction of the data sample forms the crux of the measurement.

This calibration exploits the topological similarities between g → bb and H → bb decays to

perform a calibration on a dataset of multijet events, independent of the H → bb signal samples

that may be used by analyses. The Xbb2020 algorithm is described in Sec. 3.2, as well as the

differences between g → bb and H → bb jets. The event selection used in the g → bb calibration

is described in Sec. 3.3, while Sec. 3.4 describes the profile likelihood fit used to extract the scale

factors. Sec. 3.5 describes the treatment of systematic uncertainties in the measurements. The

results are presented in Sec. 3.6.

3.2 Double-b-tagging

The long lifetime of b-hadrons is exploited in several different ways to create the b-tagging

algorithms described in Section 1.10 and used in the HH → 4b analysis. These taggers are limited,

however, by only considering a single b-hadron decay at a time. Taggers that consider only a single

track-jet cannot take correlations between the two b-quarks of a Higgs boson decay into account.
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The Xbb2020 algorithm calibrated here is optimized specifically for identifying high-pT H → bb

decays. A large-R jet is used to capture the entire Higgs decay, while smaller variable-radius track-

jets are used to resolve the individual b-jets. Xbb2020 uses a DNN to process the DL1r scores of up

to three subjets along with the basic kinematics of the large-R jet. It produces three classification

scores for each large-R jet to differentiate between Higgs, top, and multijet processes [90]. As with

DL1r, a final discriminant is given by the ratio of the individual scores:

DXbb = ln
(

pHiggs

ftopptop + (1 − ftop)pmultijet

)
, (3.2)

where pHiggs, ptop, and pmultijet represent the Higgs bosons, top quark and multijet scores respec-

tively, and ftop is the fraction of the sample coming from top quark decays. For comparison, one

can also identify H → bb decays by requiring two subjets tagged by DL1r or MV2. Fig. 3.1 shows

the score distributions of the Xbb2020 and double-DL1r methods on simulated Higgs boson, top

quark and multijet samples. The DXbb distribution shows clear separation between the three cases,

unlike the DL1r method. Fig. 3.2 shows the multijet and top quark rejection rates as a function of

the Higgs jet efficiency. For any given efficiency, the Xbb2020 algorithm is better able to reject

the top quark and multijet backgrounds, indicating that correlations between the subjets provide

useful information for the tagging algorithm.
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Figure 3.1: The double-b-tagging discriminant distributions defined as (a) the minimum DL1r dis-
criminant of the two leading track-jets, and (b) DXbb with a top quark fraction of ftop = 0.25 [90].
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Figure 3.2: Multijet (a) and top quark (b) rejection, defined as the inverse of cut efficiency, are
compared as a function of H → bb tagging efficiency. Tagging is done by either the Xbb2020
algorithm, or by requiring two single-b tags from the DL1r or MV2 algorithms. Separate versions
of the MV2 algorithm trained either on variable-radius (VR) track-jets or on R = 0.2 track-jets are
considered [90].
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3.3 Event Selection

Object Cuts Extra selection cuts are applied to some physics objects beyond those described in

Sec. 1.9. In particular, the calibration procedure uses a set of tracks that is similar to, but does

not exactly match the set directly clustered into the variable-radius track-jets. The tracks used to

train b-tagging algorithms are those that fall within a ∆R cone whose size decreases with jet pT.

This b-tagging association cone has a width of 0.45 for jet pT = 20 GeV and narrows to 0.26 for

jet pT = 150 GeV. In case a track is matched to multiple jets, it is associated with the nearest

jet [91]. The same track matching procedure is used to determine the inputs for the g → bb

calibration. Matched tracks are then required to pass the ‘loose’ criteria defined in Ref. [92] and

have pT > 0.5 GeV. To reject tracks from pileup vertices, additional requirements on the transverse

and longitudinal impact parameters, of |d0 | < 5 mm and |z0 sin θ | < 3 mm respectively, are applied.

These requirements are much looser than the selection generally applied in ATLAS analyses in

order to keep as many of the high impact parameter tracks from b-decays as possible. Each track-

jet is required to be matched to at least three tracks in order to be used for the calibration.

The muons used for the calibration are required to statisfy the ‘loose’ identification criteria

described in Sec. 1.9, i.e. pT > 10 GeV and |η | < 2.4. To ensure the muon comes from the primary

vertex (or a nearby b-hadron decay), muons are required to have |d0 | < 2 mm and |z0 sin θ | <

2 mm. Muons are matched to the closest track-jet in the η − φ plane, if they fall within the radius

of that jet.

Trigger The g → bb calibration uses a logical OR of a set of small-R jet triggers to select events.

The efficiency of the trigger is measured as a function of offline small-R jet pT and each trigger is

only used if the event contains a small-R jet for which that trigger would have > 99% chance of

firing. The jet pT thresholds change every year as LHC run conditions change in order to maintain

the same data-recording rate. Table 3.1 lists the HLT and offline pT thresholds for each trigger

used. Data from 2015 uses the same pT thresholds as 2016, except without the 380 GeV trigger.

Each trigger below the highest pT trigger in a given year is prescaled. Prescaled triggers do not
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Online Jet pT
Offline Jet pT 2015 2016 2017 2018

420 GeV - - 463.5 GeV 454.5 GeV
380 GeV - 436 GeV - -
360 GeV 416.5 GeV 416.5 GeV 395.5 GeV 388.5 GeV
260 GeV 297.5 GeV 297.5 GeV 282.5 GeV 282.5 GeV
175 GeV 205.5 GeV 205.5 GeV 193.5 GeV 193.5 GeV

Table 3.1: Online and offline pT thresholds by data-taking year for each trigger used.

always fire when the trigger conditions are passed. Instead, they fire on every P-th event passing

the condition, where P, the prescale, is set to keep the trigger rate at a manageable level. Each

event passing a prescaled trigger therefore represents P total events that could have passed. When

used in the calibration, each data event is weighted by the combined prescale of all triggers for

which it passes the online jet pT threshold.

Kinematic Cuts Events are selected if they contain a valid g → bb candidate jet. Large-R jets

are used to fully contain the g → bb decay, and track-jets are used to reconstruct the individual

b-hadrons. A valid g → bb candidate is defined as a large-R jet containing at least two variable-

radius track-jets. In order to select semi-leptonic b-hadron decays, at least one of the track-jets

in the g → bb candidate is required to contain a muon. In the simulated multijet sample, this

requirement increases the fraction of heavy-flavor events approximately threefold. The highest pT

track-jet containing a muon is referred to as the ‘muon-jet’ while the other track-jets associated

to the g → bb candidate are referred to as ‘non-muon-jets’. If multiple g → bb candidates are

present in an event then only the highest pT one is used.

As described above, a set of cuts are applied to avoid the trigger biasing results. The event is

required to have a small-R jet matched to the online jet that fired the trigger (within R = 0.4), and

the g → bb candidate is required to be on the opposite side of the event (R > 1.5).

Events are binned in the pT of the large-R jet and separate scale factors are derived for each

bin. The bins are [250, 350, 400, 450, 500, 550, 600, 750, 1000] GeV. Wider bins are used at low

pT, where large trigger prescales reduce the effective statistical precision of the sample, and at high
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Label Category definition

BB At least two track-jets contain b-hadrons
BL Exactly one track-jet contains b-hadrons
CC No b-hadrons and at least two track-jets contain c-hadrons
CL No b-hadrons and exactly one track-jets contains c-hadrons
LL No track-jets contain b- or c-hadrons

Table 3.2: Flavor category labels and definitions used in the g → bb calibration.

pT where less data is available.

3.3.1 Collinear Track-jet Veto

As mentioned in Section 2.3.7, in some cases a variable-radius track-jet can be fully contained

inside another. These events are not used when training b-tagging algorithms and are vetoed from

the g → bb calibration to avoid potential biases. The veto is only applied if overlapping track-jets

are both matched to a valid g → bb candidate passing all other selection criteria.

3.3.2 Flavor Categorization

Events in the simulation are assigned flavor categories based on the quarks contained in the g →

bb candidate. Each track-jet is labelled according to the heaviest simulated quark it contains: b, c,

or light. g → bb candidates are then categorized according to the two heaviest flavor labels among

up to three of the associated track-jets. The muon-jet is always considered in this categorization,

and then the highest pT track-jets among the rest. The final set of categories are summarized in

Table 3.2.

The DXbb distribution with a top fraction of ftop = 0.25 is shown in Figure 3.3 for each flavor

category and for data. As expected, jets in the BB category have scores similar to those of true

H → bb decays. Jets in the BL category behave similar to those from hadronic top decays (which

generally contain a single b-jet). c-jets can contain displaced vertices but often do not, resulting in

a broad DXbb distribution for CC and CL categories between the BL and LL peaks. While only

two labels are used to categorize each g → bb candidate, the Xbb2020 tagger performance de-
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pends on up to three. Fig. 3.4 shows the variation in DXbb distributions within each category (with

missing jets labelled with an ‘x’). While the statistical uncertainty of some of the rarer processes

is quite large, the differences within each category are generally smaller than the differences be-

tween categories. These five category labels provide sets of events which each have distinct DXbb

distributions, comprise a significant fraction of the total simulated data, and are distinguishable in

the fit procedure described below.
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Figure 3.3: The DXbb distribution, with a top quark fraction of ftop = 0.25, summed over all pT
bins. Vertical lines show the cuts corresponding to 50%, 60% and 70% efficiency working points.
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Figure 3.4: The DXbb distribution of the various sub-categories within each of the (a) BB, (b) BL,
(c) CC, (d) CL and (e) LL flavor categories. These sub-categories include the full information on
the flavors of the three track-jets in the g → bb candidate.
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3.4 Flavor Fraction Fit

3.4.1 Template Definition

A template fit method is used to measure the fraction of g → bb decays in data. First, a set of

templates are constructed using a flavor-sensitive variable. As the template shape differs for each

of the flavor categories previously described, fitting the set of templates to the data can extract the

relative contributions of each. The variable used in this calibration is the mean of the signed d0

significance, 〈sd0〉. The sd0 of a track is defined as:

sd0 =
d0

σ(d0)
s j, (3.3)

where σ(d0) is the uncertainty on the d0 measurement and s j is the sign of d0 with respect to

the jet axis, i.e. whether the track crosses the jet axis in front of or behind the primary vertex.

For jets containing no b-hadron decays, track sd0 values are expected to be randomly distributed

about zero with a width based on the track angluar resolution. Tracks from secondary vertices

have large positive sd0 values, and the overall distribution of tracks in b-jets has a large positive

tail. For a given jet, the 〈sd0〉 is defined as the mean of the sd0 values of the three highest pT

tracks associated with the jet. This helps reduce the influence of outliers in light-flavor jets from

e.g. mis-modelled tracks or Ks decays. Fig. 3.5 shows the 〈sd0〉 distributions for the muon-jet

and leading non-muon-jet within each flavor category. These distributions are binned so that the

relative statistical uncertainty is less than 75% in each bin for all templates.

Impact parameter resolution is difficult to accurately model as it depends critically on the reso-

lution of individual hits in the inner detector. This resolution is determined empirically in data and

measured in bins of pT and η using an iterative Gaussian fit procedure described in Ref. [49]. The

simulation is then corrected to match the measured impact parameter resolution using a Gaussian

smearing function. An additional correction is applied to the simulation to account for a warping

of the innermost layer of pixel sensors. The true shape of the IBL was measured using track-to-hit
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Figure 3.5: The inclusive 〈sd0〉 distributions for (a) the muon-jet and (b) the non-muon-jet. These
distributions include both tagged and anti-tagged events from all pT bins. Before the fit procedure
is applied, some mismodelling is observed in the tails of the distributions.

residuals from a sample of ∼ 2 × 109 tracks recorded in late 2017 [93]. The correction is only

applied to simulations of the 2017 data-taking corrections, as the IBL was inserted during the 2016

end-of-year shutdown. The measured IBL shape was used for simulations of 2018 data-taking

conditions, so these simulations require no further correction.

3.4.2 Fit Method

Four sets of templates are used to extract the scale factors: the muon-jet and non-muon-jet

〈sd0〉 distributions in both the tagged and anti-tagged regions. The fit is done using a binned profile

likelihood method. The expectation value in each histogram bin is given by the sum over the flavor

templates:

E[ni] =
∏
xx

fxxyxx,i = f · yi, (3.4)

where yxx,i is the nominal number of entries in bin i from template xx, and fxx is a correction

factor to template xx. As in the HH → 4b analysis, the template distributions depend on nuisance

parameters with prior probability distributions determined from auxiliary measurements. The like-
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lihood function for a histogram can then be constructed as the product of Poisson distributions for

each bin and split-normal distributions (denoted by SN ) for the NPs:

L( f , θ) =
N∏

i=1
e−( f ·yi)

( f · yi)
ni

ni!

∏
k

SN(θk). (3.5)

Maximizing this likelihood function allows one to extract the best-fit values of f or, in other words,

measure the fraction of each flavor in the data. The histograms in the tagged and anti-tagged

regions are fit simultaneously to extract the scale factor. For statistically independent regions, the

combined likelihood is the product of the individual likelihoods:

L(µ, f (µ), θ(µ)) =
N∏

i=1
e−(E[ni])

(E[ni])
ni

ni!

M∏
j=1

e−(E[mj ])
(E[m j])

mj

m j!

∏
k

N(θk) (3.6)

where the index i runs over the bins of the tagged region histogram and j runs over the anti-tagged

region. The scale factor, µ = εdata/εMC, multiplies the BB template in the tagged region while

a corresponding anti-tag scale factor appears in the anti-tagged region. The anti-tag scale factor

represents the difference in tagging rejection rates, and is correlated to the scale factor as follows:

µanti−tag =
1 − εdata
1 − εMC

=
1 − εMCµ

1 − εMC
. (3.7)

The correlated form of the anti-tag scale factor is used in the likelihood, as shown in Eq. 3.8.

E[ni] = µ fBByBB,i + fnon−BB · ynon−BB,i

E[m j] =
1 − εMCµ

1 − εMC
fBByBB, j + fnon−BB · ynon−BB, j

(3.8)

In order to allow the fit to distinguish between single-b and double-b decays, the muon-jet and

non-muon-jet distributions are fit simultaneuosly. As the shape of the 〈sd0〉 templates depends only

on the flavor of that particular jet, these distributions are uncorrelated and the combined likelihood

is simply the product of the individual likelihoods. Nuisance parameters are correlated between

the jet distributions and between tagging regions. Each pT bin, however, is fit independently from
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the rest and the scale factor and flavor corrections are allowed to float freely.

3.5 Systematic Uncertainties

There are many sources of uncertainty considered on the scale factor measurement. These

can be grouped into a few categories: experimental uncertainties on the physics objects used,

theoretical uncertainties on simulation modelling, uncertainties on the method used to derive the

scale factors. Experimental uncertainties are defined by dedicated measurements comparing data

to MC simulation and implemented as variations of simulation. The jets, muons and tracks used

in the g → bb calibration each have a set of associated uncertainties. The largest uncertainty on

jet reconstruction comes from the jet energy scale (JES), which quantifies the average difference

between the ‘true’ energy of a jet and the calibrated measurement of the calorimeter. For tracks, on

the other hand, the largest uncertainty comes from differences between the efficiency of the track

reconstruction algorithm in data and in MC. Each uncertainty adds one or more NPs to the profile-

likelihood fit, as described in the previous section. Theoretical uncertainties on the modelling come

from the approximations used in the MC simulation. Many of these uncertainties are evaluated

using an ad-hoc method in which two datasets, with different approximations, are assumed to fully

characterize the space of possible theories. The ‘two-point’ uncertainties are used where fully

sampling the theory space is either computationally or theoretically infeasible. The uncertainties

on the parton showering, for example, are evaluated by comparing the results of the PYTHIA 8 and

HERWIG 7 generators. Other uncertainties, for example on the renormalization scale of the theory,

are evaluated by varying input parameters within a single generator. The theoretical uncertainties

are well-defined but are not included in the results presented in this thesis. The definitions of the

theoretical uncertainties and the experimental uncertainties on the physics objects are the same for

most ATLAS analyses.

In order to separate effects of the systematics from effects of limited statistical precision, a

smoothing function is applied to the systematic impact. Smoothing is applied to the ratio of the

nominal and systematic histograms by first merging bins with large statistical uncertainty and then
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Figure 3.6: Template variations due to uncertainty in track reconstruction effiency in the (a) failed
tag and (b) pass regions in the [500, 550) GeV pT bin for the 50% efficiency Xbb2020 work-
ing points, with ftop = 0.25. The solid lines show the variations after smoothing, while dashed
points shows the pre-smoothing uncertainties. The statistical uncertainty on the nominal template
is shown by the hatched region.

averaging each bin with the average of its neighbors. This type of smoothing fails on the steeply

falling template distributions, but it works well on ratios between templates. In particular, this

type of smoothing mitigates the effect of individual events with large weights in the systematics-

varied templates. The effect of the smoothing is illustrated in Figure 3.6, which shows template

variations due to uncertainty in the track reconstruction efficiency. In addition to smoothing, the

total number of simulated events predicted by each systematic is set to be the same as that of the

nominal prediction. The effects of the systematic on the relative differences between flavors are

therefore decoupled from the overall normalization differences between simulation and data.

There are also uncertainties specific to the g → bb calibration, primarily related to the template

fit method. These include uncertainties on the rates of other processes that produce large sd0 tracks,

collectively called ‘sd0’ uncertainties, as well as uncertainties on the relative production rates of

b-hadrons with different lifetimes. The events used to calculate scale factors differ from events on

which they will be applied. Firstly, these events contain g → bb decays where searches for new

physics will mostly apply the X → bb tagging algorithm to H → bb decays. Secondly, these

events are required to contain muons, a requirement that increases the b-fraction of the sample but

also biases the sd0 distribution. Extrapolation uncertainties for both are currently being developed,
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but are not included in the results presented in this thesis.

3.5.1 sd0 Uncertainties

Tracks with large impact parameters can come from a number of sources other than b-hadron

decays. These included long-lived species of light hadrons, such as Ks and Λ, photons that convert

to e+e− pairs in the tracking detector, and particles that change direction after interacting with the

detector material. Each of these can potentially create a large sd0 track in a light-flavored jet, but the

rates of these processes are difficult to measure. In order to estimate the impact of these processes

on the calibration, the rates of each are artificially varied up/down by 10% in the simulation. The

difference between BB templates with these variations and the nominal templates are smaller than

the statistical uncertainties on the templates themselves, as shown in Figure 3.7.
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Figure 3.7: Template variations due to increased rates of (a) long-lived light hadrons and (b) hard
material interactions in the [500, 550) GeV pT bin for the 50% efficiency Xbb2020 working points,
with ftop = 0.25. The variations, given by red and blue lines, are smaller than the hatched region
showing the statistical uncertainty on the nominal template.

3.5.2 Fake Muons

Muons are produced at higher rates through semi-leptonic b-hadron decays in true g → bb

events than in the decays of light jets. All events used in the calibration are required to contain a

reconstructed muon. Events in the light jet templates mostly contain fakes, however, which can
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be constructed from the ID track of another object connected to unrelated signals in the muon

systems. In the simulation, fake muons are easily identified by the lack of a corresponding muon

in the truth record, but the rate of fakes in data is harder to measure. Fully 95% of events in the

light jet template do not contain a real muon, while each of the heavy flavor templates contains at

most 5% fake muons. As the fake rate has only a small impact on the final result, a conservative

uncertainty is estimated by varying the fake rate up/down by 30% in the simulation.

3.5.3 b-hadron Branching Fractions

Differences in lifetimes between different b-hadrons can affect the 〈sd0〉 template used in the fit.

The b-hadron branching fraction uncertainty is intended to account for effects due to mis-modelling

of the relative proportions of the b-hadrons in the simulated sample. The Heavy Flavor Averaging

Group (HFLAV) publishes calculations of the b-hadronization fractions based on measurements

in Z decays from e+e− colliders, as well as measurements from pp collisions [94]. Both ATLAS

and LHCb have measured the B0
s /B

0 ratio [95, 96] in
√

s = 7 TeV pp collisions, and found values

that agree with the combined Z decay calculation. The full table of fractions from Z decays is

therefore used to define this uncertainty, and Table 3.3 shows a comparison to the fractions found

in the g → bb sample. An uncertainty is defined by reweighting the b-hadron fractions to match

the HFLAV values to create a +1σ variation. The difference between the simulated hadronization

fractions and the HFLAV values are small, as are the differences in lifetime between the b-hadrons.

This uncertainty is therefore expected to be small. It is not, however, included in the results in this

thesis.

b-hadron in Z decays in g → bb sample

B± (40.8 ± 0.7) % 42.2 %
B0 (40.8 ± 0.7) % 45.4 %
B0

s (10.0 ± 0.8) % 8.8 %
b-baryon ( 8.4 ± 1.1) % 3.7 %

Table 3.3: Production fractions of b-hadrons as calculated from Z decays by HFLAV [94] and in
the simulated g → bb decay sample used for the calibration.
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3.5.4 Extrapolation Uncertainties

In addition to the uncertainties on the fit itself, uncertainties will also be applied to the scale

factor to account for differences between how it was calculated and how it will be used. The

Xbb2020 scale factors are intended to be used in analyses searching for resonances decaying to

pairs of b quarks. These resonances could be either SM or BSM particles, but will not be the

g → bb process directly. There are some differences between the g → bb and H → bb processes,

notably in the opening angle between the b-jets and additional gluon radiation in g → bb decays,

and likely similar differences will appear between g → bb and arbitrary X → bb signals. The

modelling of g → bb decays in simulation therefore differs from the modelling of H → bb and

the scale factors that account for data-MC differences may not exactly translate from one process

to the other. With that said, much of the data-MC difference is expected to come from sources

independent of the underlying process and scale factors derived in g → bb should be applicable to

H → bb decays. Comparisons of the template shapes in simulated H → bb events will be used to

derive an extrapolation uncertainty, although the exact method is not yet defined. This uncertainty

is not included in the results in this thesis.

An extrapolation uncertainty is also needed due to the muon requirement imposed in the g →

bb calibration. Most analyses that wish to use the Xbb2020 tagger will not have an identical

requirement, and the presence of a muon can bias the 〈sd0〉 template. Simulated multijet events

that fail the muon requirement are used to estimate this uncertainty by comparing the difference in

template shapes between events containing a muon and events that do not. This uncertainty is not

yet finalized and is not included in the results in this thesis.

3.5.5 Summary of Systematics

There are many sources of uncertainty which are, or will be, considered in the g → bb calibra-

tion, and each can affect the result in different ways. Table 3.4 contains a full list of uncertainties,

along with brief descriptions. Those uncertainties specifically measured for the analysis have al-

ready been described in more depth.
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Systematic Uncertainty Brief Description

Template Uncertainties

‘Fake’ secondary vertices Uncertainty in the rate of processes which create large sd0
tracks in light-flavor jets.

‘Fake’ muons Uncertainty in the rate of false-positive muon identification
in b-jets.

b-hadron fractions Uncertainty in the relative production rate of b-hadron
species. Not included here.

Muon Requirement Uncertainty in the inclusive phase-space from the muon re-
quirement used to derive scale factors. Not included here.

g → bb to X → bb Uncertainty in extrapolating from g → bb decays to the
general X → bb case.

Experimental Uncertainties

Pileup Reweighting Uncertainties in pile-up conditions are applied when
reweighting simulations to match data.

Jet Reconstruction Uncertainty in the scale and resolution of reconstructed
large-R jet energy and mass from detector inputs [87, 88].
Applied as 30 independent NPs on the energy scale, 6 NPs
on mass scale and one on Higgs mass resolution.

Muon Reconstruction Efficiency Uncertainties in the muon reconstruction efficiency and
track-to-vertex association [97].

Muon Momentum Scale Uncertainty in muon momentum reconstruction [97]. In-
cludes separate uncertainties on the resolution of ID and
MS tracks.

Sagitta Bias Correction Uncertainties due to charge-dependent effects of detector
mis-alignment [97].

Track reconstruction efficiency Uncertainties in passive material in the ID and on the
GEANT 4 model used in simulation.

Track fake rate Uncertainty in the rate of combinatorial fake tracks from
large numbers of hits in the ID.

Track impact parameter resolution Uncertainties based on the difference in d0 and z0 resolu-
tion between data and MC.

Theoretical Uncertainties

Parton Shower Uncertainty in the parton shower model is measured by
comparing PYTHIA 8 and HERWIG 7. Not included here.

Renormalization Scale Uncertainties in renormalization and factorization scales,
and in final state radiation (FSR) are assessed by sample
weight variations in PYTHIA 8. Not included here.

Table 3.4: Uncertainties applied in the derivation of b-tagging scale factors, though some are not
yet included in the result.
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3.6 Results

The primary result of the g → bb calibration is a set of scale factors, and associated uncer-

tainties, that can be applied to adjust the MC simulation to match real data. Preliminary versions

of these scale factors are presented below, as a function of large-R jet pT, for several X → bb

tagger working points. Figure 3.8 shows the scale factors for the 50%, 60% and 70% efficiency

working points, respectively. For each, the X → bb tagger discriminant is calculated with ftop

= 0.25. A general trend is observed for the 50% and 60% working points where the simulation

underestimates the tagging efficiency of the algorithm at low pT and overestimates the efficiency

at high pT. At the 70% efficiency working point, the derived scale factors are all compatible with

one. There are currently a few bins for each working point where the maximum-likelihood fit does

not converge, always in the bins with pT < 500 GeV.
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Figure 3.8: Derived scale factors for the (a) 50%, (b) 60%, and (c) 70% efficiency Xbb2020
working points, with ftop = 0.25. Results are preliminary and not all uncertainties are currently
accounted for. Bins where the maximum-likelihood fit does not converge are left empty in the plot.

The stability and validity of the fit is assessed in multiple ways. The first such check is that

after the fit the simulation and data should agree within uncertainties. Figure 3.12 shows the

post-fit 〈sd0〉 templates in the [500, 550) GeV pT bin for the 50% Xbb2020 WP. After the fit, good

agreement is indeed observed between data and the normalized flavor templates. Some discrepancy

remains, however, in events that pass the tagging, where the BB template contains more high-〈sd0〉

events than are seen in data. Preliminary studies on samples simulated with HERWIG 7 indicate
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that this mis-modelling may come from the parton shower model. These studies are still in an early

stage and are not presented in this thesis.

Another check of the fit consistents of looking at the pulls and impacts of the NPs 1. As in

the HH → 4b analysis, pulls are generally expected to be less than 1σ from the nominal value of

zero, with the exception of the template normalizations, f (µ). Figure 3.9 shows the flavor template

normalizations for each working point. Flavor normalizations as large as 100% are observed in

some pT bins, indicating significant mismodeling of the flavor fractions in the multijet simulation.

Large (anti-)correlations between the flavor corrections and the scale factors are expected, and

observed. Figure 3.10 shows these correlations for the [500, 550) GeV pT bin of the 50% WP.
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Figure 3.9: Derived flavor correction factors for the (a) 50%, (b) 60%, and (c) 70% efficiency
Xbb2020 working points, with ftop = 0.25.

Figure 3.11 compares the prior and posterior distributions for the NPs in each fit, in the [500,

550) GeV pT bin. The best-fit value for most NPs is within 1σ of the initial value in most cases

but some NPs deviate significantly from zero. Most notably the track reconstruction efficiency, as

well as the rate of long-lived light hadrons, show significant pulls. these NPs have the effect of

decreasing the number of high-〈sd0〉 events in the BL and BB templates respectively. The observed

pulls may change as the final uncertainties are added to the fit.

1Recall that the pull is the difference in mean between the prior and posterior NP distributions, and the impact is
the effect a 1σ variation of the NP has on the measured scale factor.
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Figure 3.10: Correlations between the flavor corrections and the scale factor in the [500, 550) GeV
pT bin for the 50% Xbb2020 WP, with ftop = 0.25.

(a) (b) (c)

Figure 3.11: Pulls (points, bottom axis) and impacts (bars, top axis) of nuisance parameters in-
cluded in the fits in the [500, 550) GeV pT bins for the (a) 50%, (b) 60%, and (c) 70% efficiency
Xbb2020 working points, with ftop = 0.25. The flavor corrections are distributed about one, while
other NPs are distributed about zero.
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(a) (b)

(c) (d)

Figure 3.12: Post-fit 〈sd0〉 template distributions in the [500, 550) GeV pT bin for the 50%
Xbb2020 WP, with ftop = 0.25. Events that fail the b-tagging cut are shown in (a) and (c) while
those that pass are shown in (b) and (d). Muon-jet distributions are shown in (a) and (b), and
non-muon-jet distributions are shown in (c) and (d).
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3.7 Next Steps

The g → bb calibration is not yet ready for use in ATLAS analyses, but preliminary results

are promising. A few open questions remain about the stability of the template fit, and the extrap-

olation from the phase space of the calibration to the case of an arbitrary analysis. In addition, a

few sources of systematic uncertainty are not yet accounted for in the fit. These concerns are being

addressed by other students, and we hope to have a complete result ready soon. The final results of

the calibration will be sets of scale factors similar to those presented in Figure 3.8. In parallel, cal-

ibrations of the Xbb2020 tagger efficiency using Z → bb̄ decays are being studied in both Z+jets

and Z+γ final states, and a calibration of the hadronic top quark mis-tag rate is being studied in

semileptonic top quark decays. Ultimately these separate efforts may be combined to provide more

accurate scale factors than any of the calibrations individually. Once the calibrations are ready, the

Xbb2020 algorithm will be ready to use in searches for new physics, bringing improvements to a

number of analyses including, potentially, future searches for resonant HH → 4b decays.

3.7.1 Using Xbb2020 in HH → 4b

While the Xbb2020 algorithm was not used in the latest HH → 4b analysis, it, or an improved

version of it, may be used in the next. Simple modifications of the current analysis strategy could be

made to update the tagging strategy to use double-b-taggers. I present here an example for compar-

ison purposes. The current strategy of separating events into three b-tagging channels outperforms

any individual Xbb2020 cut, as the limits are defined primarily by the best channel for each mass

point. In order to estimate the potential improvement from using Xbb2020, I therefore define three

exclusive Xbb2020 channels. The Xbb2020 cuts are chosen to have similar background rejection

to the cuts used to define 4b, 3b, and 2b-split channels in order to compare the signal efficiency

of the algorithms directly. The set of cuts used are listed in Table 3.5, with background rejection

measured using simulated multijet and tt̄ events. The signal efficiency, as a function of mass, is

shown in Figure 3.13.
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DL1r channel Xbb2020 cut ( ftop = 0.25) Background rejection

4b DXbb > 3.15 14800
3b 0.93 < DXbb < 3.15 670

2b-split −0.38 < DXbb < 0.93 110

Table 3.5: A set of exclusive Xbb2020 cuts, with ftop = 0.25, that reject similar proportions of
simulated multijet and tt̄ backgrounds to the 4b, 3b, and 2b-split channels defined using DL1r.
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Figure 3.13: Efficiency of Xbb2020 cuts applied to the (a) spin-0 and (b) spin-2 HH → 4b signal
models. The set of Xbb2020 cuts where chosen to have background rejection comparable to the
4b, 3b, and 2b-split channels presented in Section 2.3.

The Xbb2020 algorithm provides improved signal efficiency for high mass signals with the

same background rejection, outperforming the current strategy that uses the DL1r algorithm. While

simulated events were used as for a simplified background estimate in this study, one could imag-

ine a data-driven background model for the Xbb2020 channels defined using ‘low-tag’ regions in

which one of the Higgs candidate jets fails the b-tagging. Of the current steps in the background

modelling process, the kinematic reweighting would likely change the most when changing to a

new b-tagging paradigm. The cuts chosen here were simply for comparison and further improve-

ment may be gained by a dedicated optimization of Xbb2020 regions. Even this simple modifi-

cations shows the potential gains in signal efficiency at high mass made possible by the Xbb2020

algorithm.
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Chapter 4: Conclusion

Two results have been presented in this thesis: the search for heavy resonances decaying to

HH → 4b in 139 fb−1 of ATLAS data, and the g → bb calibration of the X → bb double-

b-tagging algorithm. The HH → 4b analysis tested two signal models, searching for evidence

of a spin-0 or spin-2 resonance with a mass of 251-5000 GeV. No significant excesses above the

Standard Model prediction were observed, therefore upper limits were set on the production cross-

section of spin-0 and spin-2 resonances. In addition the RS model was excluded for gravitons

with mass between 298 GeV and 1440 GeV. Searches for resonant HH production in other final

states using the full Run 2 dataset are being conducted, with the boosted bb̄τ+τ− analysis already

published. A combination of these results is planned and is expected to significantly improve the

limits in the resolved regime. HH → 4b remains a promising channel to search for new physics,

as many BSM theories alter the properties of the Higgs boson. The LHC, as well as the ATLAS

detector, shut down for upgrades at the end 2018, marking the end of Run 2. The start of Run 3

has been delayed by the COVID-19 pandemic, and Run 3 is now planned to last from May 2022 to

October 2024, doubling the ATLAS proton–proton collision dataset. In total, ATLAS is expected

to collected around 3 ab−1 over the lifetime of the LHC. Searches for high mass resonances, and

searches with large multijet backgrounds, are generally limited primarily by a lack of data, and

this is certainly the case for the HH → 4b analysis. The HH → 4b analysis will likely be redone

periodically as new data is collected, to search for new evidence or improve the limits set here.

While the calibration of the Xbb2020 algorithm was not ready in time for this HH → 4b search,

future versions of the analysis will likely use dedicated double-b-taggers.

For the moment, no conclusive evidence of BSM physics has been discovered by the LHC

experiments. The search presented in this thesis found no such evidence but set new limits on phase

space of these theories. New techniques and a larger dataset allowed this search to significantly
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improve the limits set by previous analyses. Calibration development for double-b-tagging paves

the way for future refinement of these techniques, and further improvement can be expected as

ATLAS collects more data. Limits set by the ATLAS collaboration, including those presented

here, continue to constrain and guide the search for physics beyond the Standard Model.
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Appendix : Appendices

A HH → 4b Cut Optimization

The event selection cuts used in the HH → 4b analysis were optimized using several different

methods, depending on the cut. The cuts that were optimized were: the |∆η | cut, the signal region

XHH cut, and the b-tagging cut. While the event selection also includes cuts on large-R jet pT, mass

and η, these cuts are set to based on the trigger and detector geometry rather than rejected back-

ground events. Two optimization methods were attempted, which differ in ease of computation

and expected validity of the results.

The first optimization method was based on the significance estimate Z =
√

2((s + b) ln(1 + s/b) − s),

where s is the number of signal events and b is the number of background events. This estimate

approximates the median significance of the nominal (µ = 1) signal hypothesis from a counting

experiment. The result is expected to differ from the statistical procedure described in Section 2.6

because the shape of the signal and background distributions are lost, as are the nuisance param-

eters corresponding to systematic uncertainties. In an attempt to correct for the loss of shape

information, the total signal and background events were calculated separately for each signal, in-

tegrating over a window of mHH ∈ (0.75 mX, 1.15 mX), where mX is the true signal mass. This

window removes the low-mHH background events that would otherwise overwhelm the signifi-

cance estimate. A simplified background estimate was used for this optimization, consisting of

simulated tt̄ and multijet events, in order to look at the signal regions while keeping data blinded.

The first method was used to optimize the |∆η | and XHH cuts. For the |∆η | optimization, a

grid of cut values was tested for a set of signal masses and the optimal cuts as a function of mass

are shown in Figure 1. Similar results are observed for the spin-0 and spin-2 signal hypotheses.

The result of a similar grid scan of XHH cuts is shown in Figure 3a. In addition, a set of al-

ternate signal region shapes and cuts were tested. The XHH function used, Eq. 2.2, is designed
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Figure 1: Optimal |∆η | cut values as a function of signal mass for both spin-0 scalar and spin-2
graviton signals.

to be centered around the Higgs mass peak while expanding towards the high mass tail, where

background is lower. The alternate shapes tested a few different ideas for potential improvement

based on Gaussian fits to the signal m(H1) and m(H2) distributions. Figure 2 shows the mean and

width of these Gaussian fits as a function of signal mass. It should be noted that the Gaussian

approximation is not a particularly good one, especially for the high mass signals. Nevertheless,

several alterations were designed based on these fits: moving the center of the XHH distribution

to (m(H1) = 122,m(H2) = 112), making the signal region an ellipse wider in m(H2) than m(H1),

making the denominator of the XHH function depend on Higgs candidate pT in addition to mass,

etc. Of all the functions tested, none did more than a few percent better than the nominal XHH

function, as shown in Figure 3b, and so the decision was made to keep the function as-is.

A second method was also tried from the optimization of the |∆η | cut. This method was to de-

rive expected limits, without systematic uncertainties, changing the cut value of |∆η | while keeping

the rest of the analysis intact. An early form of the final background estimate was used for this op-

timization, using the older MV2 [47] b-tag algorithm at the 70% WP and without the reweighting

or smoothing techniques applied. Only minor differences in the limits were observed with different

cuts, an example of which is shown in Figure 4. While a tight cut value of |∆η | < 0.9 was observed
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(a) (b)

(c) (d)

Figure 2: Mean (a, c) and width (b, d) of Gaussian distributions fit to the leading (a, b) and
subleading (c, d) Higgs candidate mass distributions as a function of graviton signal mass. The
Gaussian approximation breaks down at large scalar masses.

to be optimal for graviton signals, this value worsened the expected limit for high mass scalar sig-

nals. The final |∆η | cut of 1.3 was chosen as a comprise, producing moderate improvement for

both scalar and graviton signals. Due to the difficulty of computation, this second method was not

attempted for XHH optimization.

The choice of b-tagging cut was also optimized from among the DL1r 70%, 77%, and 85%

working points. This optimization again done by comparing the expected limits without system-

atic uncertainties while keeping the rest of the analysis constant. Figure 5 shows the difference

in expected limits with different b-tagging cuts. Both 77% and 85% WPs were observed to out-

perform the DL1r 70% WP, and all three improve the limits by approximately 10% over the MV2

70% WP used in the previous HH → 4b analysis.
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Figure 3: Optimal cut values for a set of different XHH definitions as a function of scalar signal
mass (a), and ratio of the expected significance of the optimal cut to the nominal XHH < 1.6 (b).
‘Optimized Xhh’ refers to the nominal equation, Eq. 2.2, with optimal cut value used for each
signal mass.

(a) (b)

Figure 4: Comparison of expected limit with |∆η | cut of 1.3 and previous value of 1.7 for (a) spin-0
and (b) spin-2 signals.

Figure 5: Comparison of expected limit for spin-0 signals with the 70%, 77%, and 85% DL1r WPs.
Not shown is the approximately 10% improvement in the limits from using DL1r over MV2.
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B HH → 4b Systematics

Most systematic uncertainties in the HH → 4b analysis are accounted for using variations of

the simulation. The uncertainties on the background estimation strategy of the analysis itself are

described in Section 2.5, while this appendix provides more detail on uncertainties common to

many searches in ATLAS. These common variations, or the methods to derive them, are calculated

from dedicated calibrations and used as Bayesian priors in the likelihood function. These priors are

assumed to follow two-sided Gaussian distributions, characterized by the ±1σ variations plotted

here. Only those uncertainties that required additional study, beyond the default calibration, or that

have an impact in the fit are discussed.

B.1 tt̄ systematics

As mentioned in Section 2.5.4, uncertainties on many aspects of the tt̄ simulation are consid-

ered. These include the matrix element calculation, parton shower modelling, renormalization and

factorization scales, and the amount of additional hard radiation in the events.

Hard radiation The amount of hard radiation in tt̄ decays can be adjusted through an hdamp

parameter in the MC generator. The typical value used for ATLAS samples is hdamp = 1.5 mtop,

however samples were also generated with hdamp = 3 mtop. Unfortunately, these additional samples

contain fewer events than the nominal samples resulting in reduced precision, particularly at high

masses. The alternate sample was intended to be used as the +1σ variation, while a set of alternate

showering parameters, implemented as a reweighting of the nominal sample, was intended as the

−1σ variation. The reduced precision of the +1σ sample caused difficulty when smoothing the

m(HH) distribution. Instead, the −1σ variation was reflected about the nominal prediction to

define the uncertainty.

Final state radiation For the uncertainty in the final state radiation (FSR) αs scale, eight sets

of alternate event weights are calculated by PYTHIA 8, corresponding to µR parameter variations
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Figure 6: Parton shower uncertainty in the (a) 4b, (b) 3b and (c) 2b-split channels, derived from
a comparison of PYTHIA 8 and HERWIG 7 samples. The difference between the two samples is
mirrored to create symmetric uncertainty bands. The variations are correlated across channels and
controlled by a single nuisance parameter in the likelihood function.

ranging between 0.5 and 2, where a value of 1 is the default. The effect of these variations on the

unsmoothed distributions are shown in Figure 7 while the effect on the smoothed distributions are

shown in Figure 8. While the typical uncertainty used in other ATLAS analyses has been to use

the µR = 0.5 and 2.0 variations as ±1σ, two issues arise in the HH → 4b case. First, the µR =

0.5 variation shows large statistical flucations due to high weight events associated with particular

phase-space of this variation. Second, all variations predict fewer events at high mass than the

nominal prediction. In order to remove the potential impact of high weight events and ensure fit

convergence, an uncertainty band is created by symmetrizing the µR = 2.0 variation. This results

in a smaller band than would be created by symmetrizing the µR = 0.5 variation, for instance, but

Figure 9 shows that the difference in expected limits between most conservative and the chosen

option is neglible. The only mass point where a greater than 1% difference is observed is 1200 GeV,

and this seems to be due to a statistical fluctuation in the µR = 0.5 band in the 3b region which is

then carried over to the 4b region as well.
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Figure 7: Uncertainty in the FSR renormalization scale before smoothing is applied in the 4b, 3b
and 2b-split signal regions for a large set of variations. The µR = 2.0 variation is symmetrized to
provide an envelope for the fit.

Figure 8: Uncertainty in the FSR renormalization scale after smoothing is applied in the 4b, 3b
and 2b-split signal regions for a large set of variations. The µR = 2.0 variation is symmetrized to
provide an envelope for the fit.

Figure 9: The difference in expected limits for the scalar signal model obtained when symmetrizing
the most conservative (µR = 0.5) variation and the chosen µR = 2.0 variation. The difference is
negligible except around 1200 GeV where a fluctuation in the µR = 0.5 variation greatly increases
the uncertainty in the 3b and 4b regions.
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Parton distribution functions The PDF uncertainty is provided as a set of 100 variations on the

nominal PDF (NNPDF 2.3 LO with the A14 tune) used to generate the samples. These variations

are implement as additional sets of event weights in PYTHIA 8. When evaluating the uncertainty on

each plot, the full ensemble is considered and the ±1σ variation in each bin corresponds to the 14th

and 86th percentiles among the predictions in that bin. As shown in Figure 10, these variations are

smaller than or equal to the statistical uncertainty in each bin, indicating that the uncertainty from

the PDF itself is negligible. The PDF uncertainty is therefore not applied as a nuisance parameter

in the final analysis.

Figure 10: PDF uncertainties evaluated on the mHH distribution in the 2b-split, 3b and 4b signal
regions after all cuts are applied. The up, down and median variations correspond to the 86th, 14th
and 50th percentiles among the variations considered.

B.2 Jet reconstruction

The largest jet uncertainties in the HH → 4b analysis come from the mass resolution of the

detector, followed by uncertainties on the modelling of the combined mass procedure. The +1σ

variation of the mass resolution is derived by smearing the Higgs and top mass peaks in MC by

20%, to match the most conservative estimate of the resolution in data. This smearing pushes a

significant fraction of the signal sample out of the signal region and the effect on the total number

of signal events, as function of signal mass, is shown in Figure 11. The smearing of the top mass

peak pushes W jets from tt̄ events into the signal region while pushing top jets out, resulting in the

softer mHH spectrum shown in Figure 12. For the resolution uncertainties, only a +1σ variation
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is well-defined and the −1σ variation is created by reflecting it about the nominal prediction. The

second-largest source of jet uncertainty is the modelling of the combined mass. The calibration

procedure results in the bands shown in Figure 13. Many other variations of the jet modelling

parameters are implemented in the HH → 4b likelihood function but have negligible impact on

the result.

Figure 11: Normalization uncertainty, as a percentage of the spin-0 signal acceptance, due to the
uncertainty on the resolution of the Higgs mass peak. A worse Higgs mass resolution worsens
signal acceptance by pushing jets out of the signal region.
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Figure 12: Effect of smearing the hadronic top mass peak on the tt̄ background. The variations
shown are correlated between channels and controlled by a single NP in the fit.
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Figure 13: Large-R jet combined mass modelling uncertainty on the tt̄ background. The variations
shown are correlated between channels and controlled by a single NP in the fit.

B.3 b-tagging efficiency

The HH → 4b analysis makes extensive use of the DL1r b-tagging algorithm described in

Section 1.10, the calibration of which is described in Ref. [46]. The calibration uses isolated b-jets

from low-pT top decays to measure the b-tagging efficiency in data and calculate scale factors.

The largest uncertainty in the boosted regime comes from the high-pT extrapolation uncertainty, a

conservative 30% uncertainty on the scale factors assigned to jets above the highest pT bin used in

the calibration. The effect of that uncertainty on the tt̄ background prediction is shown Figure 14.
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Figure 14: The effect of the high-pT extrapolation uncertainty on the tt̄ background prediction.
This is the largest uncertainty on the DL1r b-tagging scale factors for jets above the pT range
at which the calibration was derived. The variations shown are correlated between channels and
controlled by a single NP in the fit.
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C Toy Limits for the Boosted Analysis

The toy method is used to test the validity of the Wald approximation used to model the test

statistic distributions in the asymptotic method. This test is particularly important at high masses

where the 1/
√

N error term in the approximation is large. In the toy method, rather than assuming

the test statistic will follow the non-central χ2 distribution of the large N limit, the full distribu-

tion was calculated numerically using pseudo-experiments. Toys were generated under both the

background-only and the signal+background hypotheses, with NPs set to their best-fit values, θ̂(µ),

from a fit to data. In order to improve fit convergence, and to remove unphysical effects caused by

the small negative µ phase-space, the value of the signal strength was restricted to µ ∈ [0, 10]. The

test statistic was then measured for each toy, and the resulting distributions are used to set limits.
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Figure 15: Test statistic distribution under both µ = 0 and µ = 0.45 hypotheses of the 5000 GeV
spin-0 signal. The test statistic is evaluated on a set of toys randomly generated under each hy-
pothesis.

Due to the computation time required to generate and evaluate large numbers of toys, a small

initial grid of signal strengths was tested, and then additional points were added as needed to refine

the estimated limits. Only masses above 1600 GeV were tested and, for the final and most precise

results, only masses 3000 GeV and above were measured. The initial µ values tested were those

near the asymptotic limits, and an initial set of 2000 toys were generated for each µ value. More
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toys were needed for some points and up to 8000 toys were generated for some high µ values

of the 5000 GeV signals. The resulting test statistic distributions were then filtered to remove

negative values indicating failed fits before calculating p-values. An example of the test statistic

distribution for toys generated with the 5000 GeV spin-0 signal, with a strength of µ = 0.45, is

shown in Figure 15.

From the test statistic distributions, p-values and CLs are calculated as described in Section 2.6

and the 95% confidence level limit is defined by the µ value at which CLs = 0.05. The graph of CLs

(µ) for the 5000 GeV spin-0 signal is shown in Figure 16, with uncertainties on the observed CLs

due to the limited number of toys generated. To calculate the expected limit, the CLs value for each

toy is calculated as if that toy were the observed data. The median-expected limit is then defined as

the µ value at which the median of the toy CLs distribution is 0.05. Similarly ±1σ expected limits

can be defined from the 16th and 84th quartiles of the toy CLs distributions. Separate curves for

each quantile of the expected CLs distribution are shown in Figure 16.
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Figure 16: CLs distributions of the 5000 GeV spin-0 signal. (a) The CLs values of the observed
test statistic are used to calculated the observed limit, based on where the curve crosses the value
0.05. (b) Quantiles of the CLs distributions calculated from the µ = 0 toys are used to calculate the
expected limit, and the error bands on that limit.

138



Comparisons of the asymptotic and toy limits are shown in Figure 17, with the uncertainty

band coming from the toy results. Both expected and observed limits agree with 20% between

then asymptotic and toy methods, although the size of the discrepancy increases with signal mass.

This discrepancy is expected due to the breakdown of the Wald approximation when the number

of events per bin is small. The toy limits were used in the final results for masses above 3 TeV.
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Figure 17: Comparison between asymptotic and toy limits for the (a) spin-0 and (b) spin-2 signal
models. Toy limits were only calculated for masses above 1600 GeV in both models. Due to
limited statistical precisions of the toys, the asymptotic limits are used in the final results.

139


	Title Page
	Table of Contents
	List of Tables
	List of Figures
	Glossary
	Acronyms
	Acknowledgments
	Introduction
	Introduction
	High Energy Physics
	Gauge Theory
	Higgs Mechanism

	Beyond the Standard Model
	Randall-Sundrum Model
	Two-Higgs Doublet Model

	The Large Hadron Collider
	Collider Physics
	Common Detector Technologies
	Ionization Detectors
	Scintillation Detectors
	Tracking and Calorimetry

	The ATLAS Detector
	Detector Geometry and Coordinate System
	Inner Detector
	Calorimeters
	Muon Spectrometer
	Trigger

	Particle Identification
	Object Definitions
	Flavor Tagging
	Properties of b-jets
	b-tagging algorithms

	Datasets Used

	HH 4b Analysis
	Search Overview
	Analysis Strategy
	HH 4b Event Selection and Categorization
	Object Definitions
	Trigger
	Kinematic cuts
	Mass Plane Regions
	Tagging Channels
	Resolved Analysis Veto
	Collinear Track-jet Veto
	Cutflow

	Background Estimation
	Kinematic Reweighting
	Derivation of Background Normalization
	mHH smoothing fit
	Background predictions

	Systematic Uncertainties
	Uncertainties on the Background Normalization
	Uncertainties on the Background Shape
	Non-closure Uncertainties
	Other Uncertainties
	Signal Simulation
	Summary of Systematics

	Statistical Analysis
	Hypothesis Testing
	Limit-setting Procedure
	Signal Injection Tests
	Signal Morphing
	Impact of Systematic Uncertainties

	Results
	Post-fit Distributions
	Discovery Signficance
	Expected and Observed Asymptotic Limits
	Expected and Observed Toy Limits

	Statistical Combination

	g bb Calibration
	Calibration Overview
	Double-b-tagging
	Event Selection
	Collinear Track-jet Veto
	Flavor Categorization

	Flavor Fraction Fit
	Template Definition
	Fit Method

	Systematic Uncertainties
	sd0 Uncertainties
	Fake Muons
	b-hadron Branching Fractions
	Extrapolation Uncertainties
	Summary of Systematics

	Results
	Next Steps
	Using Xbb2020 in HH 4b 


	Conclusion
	References
	Appendices
	HH 4b Cut Optimization
	HH 4b Systematics
	tbart systematics
	Jet reconstruction
	b-tagging efficiency

	Toy Limits for the Boosted Analysis


