®PLOS | one

Check for
updates

G OPEN ACCESS

Citation: Gheorghiu V (2018) Quantum++: A
modern C++ quantum computing library. PLoS
ONE 13(12): €0208073. https://doi.org/10.1371/
journal.pone.0208073

Editor: Lucas Lamata, University of the Basque
Country, SPAIN

Received: June 30, 2018
Accepted: November 12, 2018
Published: December 10, 2018

Copyright: © 2018 Vlad Gheorghiu. This is an open
access article distributed under the terms of the
Creative Commons Attribution License, which
permits unrestricted use, distribution, and
reproduction in any medium, provided the original
author and source are credited.

Data Availability Statement: Data are available
from GitHub: https://github.com/vsoftco/qpp.

Funding: | acknowledge financial support from
Industry Canada and from the Natural Sciences
and Engineering Research Council of Canada
(NSERC).

Competing interests: Dr. Vlad Gheorghiu is the
CEO, President and Go-Founder of softwareQ Inc.
There are no competing interests with softwareQ
Inc. This does not alter the author’s adherence to
PLOS ONE policies on sharing data and materials.

RESEARCH ARTICLE

Quantum++: A modern C++ quantum
computing library

Vlad Gheorghiu@'?*

1 softwareQ Inc., Kitchener ON, Canada, 2 Institute for Quantum Computing, University of Waterloo,
Waterloo ON, Canada

* vlad @softwareq.ca

Abstract

Quantum-++ is a modern general-purpose multi-threaded quantum computing library written
in C++11 and composed solely of header files. The library is not restricted to qubit systems or
specific quantum information processing tasks, being capable of simulating arbitrary quan-
tum processes. The main design factors taken in consideration were the ease of use, porta-
bility, and performance. The library’s simulation capabilities are only restricted by the amount
of available physical memory. On a typical machine (Intel i5 8Gb RAM) Quantum++ can suc-
cessfully simulate the evolution of 25 qubits in a pure state or of 12 qubits in a mixed state
reasonably fast. The library also includes support for classical reversible logic, being able to
simulate classical reversible operations on billions of bits. This latter feature may be useful in
testing quantum circuits composed solely of Toffoli gates, such as certain arithmetic circuits.

1 Introduction

Quantum computing is a disruptive technology that promises great benefits for a plethora of
applications, ranging from medicine and chemistry to machine learning and simulation of
physical systems. However, today’s most advanced quantum computers are not yet large
enough for performing universal quantum computation, hence their applicability is still lim-
ited. Being able to simulate small sized quantum computers is therefore of paramount impor-
tance, as it allows the scientist or engineer to understand better the results she or he would
expect from a quantum machine of similar size, as well as providing a better understanding of
quantum computing itself. Below we describe a quantum computing library that can be used
in research or exploratory work in quantum information and computation.

Quantum-++, available online at https://github.com/vsoftco/qpp, is a C++11 general pur-
pose quantum computing library, composed solely of header files. It uses the Eigen 3 linear
algebra library and, if available, the OpenMP multi-processing library. For additional Eigen 3
documentation see http://eigen.tuxfamily.org/dox/. For a simple Eigen 3 quick ASCII refer-
ence see http://eigen.tuxfamily.org/dox/AsciiQuickReference.txt.

The simulator defines a large collection of (template) quantum computing related functions
and a few useful classes. The main data types are complex vectors and complex matrices,
which we will describe below. Most functions operate on such vectors/matrices passed by
value and always return the result by value, without ever mutating their arguments. The design

PLOS ONE | https://doi.org/10.1371/journal.pone.0208073 December 10, 2018

1/27

http://orcid.org/0000-0002-4172-9186
https://github.com/vsoftco/qpp
https://github.com/vsoftco/qpp
http://eigen.tuxfamily.org/
http://openmp.org/
http://eigen.tuxfamily.org/
http://eigen.tuxfamily.org/dox/
http://eigen.tuxfamily.org/
http://eigen.tuxfamily.org/dox/AsciiQuickReference.txt
https://doi.org/10.1371/journal.pone.0208073
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0208073&domain=pdf&date_stamp=2018-12-10
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0208073&domain=pdf&date_stamp=2018-12-10
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0208073&domain=pdf&date_stamp=2018-12-10
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0208073&domain=pdf&date_stamp=2018-12-10
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0208073&domain=pdf&date_stamp=2018-12-10
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0208073&domain=pdf&date_stamp=2018-12-10
https://doi.org/10.1371/journal.pone.0208073
https://doi.org/10.1371/journal.pone.0208073
http://creativecommons.org/licenses/by/4.0/
https://github.com/vsoftco/qpp

®PLOS | one

Quantum++

is inspired from functional programming, where functions do not mutate their arguments and
do not have side effects. Those design choices make the library ideal to use or integrate in
multi-processing frameworks. Collection of objects are implemented via the standard library
container std: : vector<>, instantiated accordingly.

We decided to avoid using a complicated class hierarchy and focus on a functional style-
like approach, as we believe the latter is more suitable for a relatively small API and allows the
user to focus on the quantum algorithm design rather than on object-oriented design. In addi-
tion, there is absolutely no need for explicit memory allocations or usage of (raw) pointers. All
allocations, initializations and release of resources are performed by the library, hence the user
is not at risk of forgetting to de-allocate memory, use un-initialized objects, or overflowing
buffers, which are the most common, dangerous and hard to diagnose mistakes in the world of
C and C++ programming.

Although there are many available quantum computing libraries/simulators written in vari-
ous programming languages, see [1] for a comprehensive list, what makes Quantum++ differ-
ent is the ease of use, portability and high performance. The library is not restricted to specific
quantum information tasks, but it is intended to be multi-purpose and capable of simulating
arbitrary quantum processes. We have chosen the C++ programming language (standard C+
+11) in implementing the library as it is by now a mature standard, fully (or almost fully)
implemented by the most common compilers, and highly portable.

Other unique features of Quantum-++ include the ability of simulating classical reversible
networks up to billions of bits (this feature may be useful in testing quantum circuits com-
posed solely of Toffoli gates, such as certain arithmetic circuits in e.g. [2]), strong multi-thread-
ing abilities, as well as built-in support for higher dimensional systems (qudits) that allows
treating qubits and qudits on the same footing.

In the reminder of this manuscript we describe the main features of the library, “in a nut-
shell” fashion, via a series of simple examples. We assume that the reader is familiar with the
basic concepts of quantum mechanics/quantum information. For a comprehensive introduc-
tion to the latter see e.g. [3]. This document is not intended to be a comprehensive documenta-
tion, but only a brief introduction to the library and its main features. For a detailed reference
see the manual available asa . pdf filein . /doc/refman.pdf. For detailed installation
instructions as well as for additional information regarding the library see the Wiki page at
https://github.com/vsoftco/qpp/wiki. If you are interesting in contributing, or for any com-
ments or suggestions, please contact me.

Quantum-++ is free software: you can redistribute it and/or modify it under the terms of the
MIT License https://opensource.org/licenses/MIT.

2 Installation

To get started with Quantum-++, first install the Eigen 3 library from http://eigen.tuxfamily.
org into your home directory, as $SHOME/eigen. Here we implicitly assume that you use a
UNIX-like system, although everything should translate into Windows as well, with slight
modifications. You can change the name of the directory, but in the current document we will
use SHOME /eigen as the location of the Eigen 3 library. Next, download the Quantum-++
library from https://github.com/vsoftco/qpp/ and unzip it into the home directory as $HOME /
gpp. Finally, make sure that your compiler supports C++11 and preferably OpenMP. For a
compiler we recommend g++ version 5.0 or later or clang version 3.7 or later (previous ver-
sions of clang do not support OpenMP).

We next build a simple minimal example to test that the installation was successful. Create
a directory called $SHOME/testing, and inside it create the fileminimal . cpp, with the

PLOS ONE | https://doi.org/10.1371/journal.pone.0208073 December 10, 2018 2/27

https://github.com/vsoftco/qpp
https://github.com/vsoftco/qpp
https://github.com/vsoftco/qpp/wiki
https://github.com/vsoftco/qpp
https://opensource.org/licenses/MIT
https://github.com/vsoftco/qpp
http://eigen.tuxfamily.org/
http://eigen.tuxfamily.org
http://eigen.tuxfamily.org
http://eigen.tuxfamily.org/
https://github.com/vsoftco/qpp
https://github.com/vsoftco/qpp/
http://openmp.org/
https://gcc.gnu.org/
http://clang.llvm.org
http://clang.llvm.org
http://openmp.org/
https://doi.org/10.1371/journal.pone.0208073

O PLOS | one Quartums+

content listed in Listing 1. A verbatim copy of the above program is also available at SHOME /
gqpp/examples/minimal . cpp.

Listing 1. Minimal example
1 // Minimal example//
2 // Source: ./examples/minimal.cpp

3 #include <iostream>

5 #include “gpp.h”

7 int main() {

8 using namespace qpp;

9 std::cout << “Hello Quantum++!\nThis is the |0> state:\n”;
10 std::cout << disp(st.z0) << *\n’;

11 }

Next, compile the file using a C++11 compliant compiler. In the following, we assume that
you use g++, but the building instructions are similar for other compilers. From the directory

$HOME/testing type
g++ -std = c++11 -03 -Wall -Wextra -pedantic -isystem $HOME/
eigen

-I SHOME/gpp/include minimal.cpp -o minimal

Your compile command may differ from the above, depending on the C++ compiler and
operating system. If everything went fine, the above command should build an executable
minimal in $HOME/testing, which can be run by typing . /minimal. The output
should be similar to the following:

Listing 1 output

Hello Quantum++!

This is the |0> state:
1

0

In line 5 of Listing 1 we include the main header file of the library gpp . h This header file
includes all other necessary internal Quantum-++ header files. In line 10 we display the state
|0) represented by the singleton st . z0 in a nice format using the display manipulator
disp().

PLOS ONE | https://doi.org/10.1371/journal.pone.0208073 December 10, 2018 3/27

https://gcc.gnu.org/
https://github.com/vsoftco/qpp
https://doi.org/10.1371/journal.pone.0208073

®PLOS | one

Quantum++

Table 1. User-defined data types.

idx Index (non-negative integer), alias for std: :size t

bigint Big integer, alias for long long int

cplx Complex number, alias for std: : complex<double>

cmat Complex dynamic matrix, alias for Eigen: :MatrixXcd

dmat Double dynamic matrix, alias for Eigen: :MatrixXd

ket Complex dynamic column vector, alias for Eigen: : VectorXcd
bra Complex dynamic row vector, alias for Eigen: :RowVectorXcd

dyn_mat<Scalar>

Dynamic matrix template alias over the field Scalar, alias for Eigen: :Matrix<Scalar, Eigen::Dynamic, Eigen::
Dynamic>

dyn col vect<Scalar> | Dynamic column vector template alias over the field Scalar, alias for Eigen: :Matrix<Scalar, Eigen::Dynamic, 1>

dyn row vect<Scalar> | Dynamic row vector template alias over the field Scalar, alias for Eigen: :Matrix<Scalar, 1, Eigen::Dynamic>

https://doi.org/10.1371/journal.pone.0208073.t001

3 Data types, constants and global objects

All header files of Quantum++ are located inside the . /include directory. All functions,
classes and global objects defined by the library belong to the namespace gpp. To avoid
additional typing, we will omit the prefix gpp: : in the rest of this document. We recommend
the using of using namespace gpp; inyour main . cpp file.

3.1 Data types
The most important data types are defined in the header file types . h. We list them in Table 1.

3.2 Constants

The important constants are defined in the header file constants . h and are listed in Table 2.

3.3 Singleton classes and their global instances

Some useful classes are defined as singletons and their instances are globally available, being
initialized at runtime in the header file gpp . h, before main (). They are listed in Table 3.

4 Simple examples

All of the examples of this section are copied verbatim from the directory . /examples and
are fully compilable. For convenience, the location of the source file is displayed in the first
line of each example as a C++ comment. The examples are simple and demonstrate the main

Table 2. User-defined constants.

constexpr idx maxn = 64; Maximum number of allowed qu(d)its (subsystems)

constexpr double pi = 3.1415...; s
constexpr double ee = 2.7182...; e, base of natural logarithms

constexpr double eps = le-12; Used in comparing floating point values to zero
constexpr double chop = le-10; Used in display manipulators to set numbers to zero

constexpr double infty = ...; Used to denote infinity in double precision

wrr

constexpr cplx operator™” i
(unsigned long long int x)

User-defined literal for the imaginary number i := v/—1

N

constexpr cplx operator™” i User-defined literal for the imaginary number i := v/—1
(unsigned long double int x)

cplx omega (idx D) 2711/ D

https://doi.org/10.1371/journal.pone.0208073.t002

D-th root of unity e

PLOS ONE | https://doi.org/10.1371/journal.pone.0208073 December 10, 2018 4/27

https://github.com/vsoftco/qpp
https://doi.org/10.1371/journal.pone.0208073.t001
https://doi.org/10.1371/journal.pone.0208073.t002
https://doi.org/10.1371/journal.pone.0208073

®PLOS | one

Quantum++

Table 3. Global singleton classes and instances.

const Inité& init = Init::get instance();
const Codesé& codes = Codes::get instance();
const Gates& gt = Gates::get instance();
const States& st = States::get instance();

RandomDevicesé& rdevs =
RandomDevices::get thread local instance()

https://doi.org/10.1371/journal.pone.0208073.t003

Library initialization

Quantum error correcting codes
Quantum gates

Quantum states

Random devices/generators/engines

’

features of Quantum++. They cover only a small part of library functions, but enough to get

the interested user started. For an extensive reference of all library functions, including various
overloads, the user should consult the complete reference . /doc/refman.pdf. See also the
rest of the examples (not discussed in this document) in . /examples/. for more compre-

hensive code snippets.

4.1 Gates and states

Let us introduce the main objects used by Quantum++: gates, states and basic operations. Con-
sider the code in Listing 2.

Listing 2. Gates and states

1//
2 //

Gates and states

Source: ./examples/gates states.cpp

3 #include <iostream>

5 #include “gpp.h”

7 int main () {

8 u

sing namespace gpp;

9 ket psi = st.z0; // |0> state

10
11
12
13

14
15
16
17
18
19

cmat U gt.X;

ket result = U * psi;

std::cout << “>> The result of applying the bit-flip

gate X on |0> is:\n”;

std::cout << disp(result) << *\n’;

psi = 10 ket; // 110> state
U = gt.CNOT; // Controlled-NOT

result = U * psi;

PLOS ONE | https://doi.org/10.1371/journal.pone.0208073

December 10,2018

5/27

https://github.com/vsoftco/qpp
https://github.com/vsoftco/qpp
https://doi.org/10.1371/journal.pone.0208073.t003
https://doi.org/10.1371/journal.pone.0208073

O PLOS | one Quartums+

20 std::cout << “>> The result of applying the gate CNOT
on |10> is:\n”;

21 std::cout << disp(result) << *\n’;
22
23 U = randU() ;

24 std::cout << “>> Generating a random one-qubit gate U:
\n”;

25 std::cout << disp (U) << ‘\n’;
26
27 result = applyCTRL(psi, U, {0}, {1}); // Controlled-U

28 std::cout << “>> The result of applying the CTRL-U gate
on [|10> is:\n”;

29 std::cout << disp(result) << ‘\n’;

30 }

A possible output is:

Listing 2 output

>> The result of applying the bit-flip gate X on |0> is:
0

1

>> The result of applying the gate CNOT on |10> is:

>> Generating a random one-qubit gate U:

-0.251227 - 0.8498661 -0.0204441 - 0.4628111

-0.0716251 + 0.4576921 0.343895 - 0.8167771

>> The result of applying the CTRL-U gate on |[10> is:
0
0

-0.251227 - 0.8498661

-0.0716251 + 0.4576921

PLOS ONE | https://doi.org/10.1371/journal.pone.0208073 December 10, 2018 6/27

https://doi.org/10.1371/journal.pone.0208073

®PLOS | one

Quantum++

In line 5 of Listing 2 we bring the namespace gpp into the global namespace.

In line 9 we use the States singleton st to declare psi as the zero eigenvector |0) of the
Z Pauli operator. In line 10 we use the Gates singleton gt and assign to U the bit flip gate
gt .X.Inline 11 we compute the result of the operation X|0), and display the result |1) in lines
13 and 14. In line 14 we use the display manipulator disp (), which is especially useful when
displaying complex matrices, as it displays the entries of the latter in the form a + bi, in con-
trast to the form (g, b) used by the C++ standard library. The manipulator also accepts addi-
tional parameters that allows e.g. setting to zero numbers smaller than some given value
(useful to chop small values), and it is in addition overloaded for standard containers, iterators
and C-style arrays.

In line 16 we reassign to psi the state |10) via the user-defined literal ket operator™”
_ ket (). We could have also used the Eigen 3 insertion operator

ket psi(4); // specify the dimension before insertion of
elements via <<

psi << 0, 0, 1, 0O;
or the Quantum++ library function mket () . In line 17 we declare a gate U as the Controlled-
NOT with control as the first subsystem, and target as the last, using the global singleton gt.
In line 18 we declare the ket result as the result of applying the Controlled-NOT gate to the
state [10), i.e. |11). We then display the result of the computation in lines 20 and 21.

Next, in line 23 we generate a random unitary gate via the function randU (), then in line
27 apply the Controlled-U, with control as the first qubit and target as the second qubit, to the
state ps1i. Finally, we display the result in lines 28 and 29.

4.2 Measurements

Let us now complicate things a bit and introduce measurements. Consider the example in
Listing 3.

Listing 3. Measurements

1 // Measurements
2 // Source: ./examples/measurements.cpp
3 #include <iostream>

4 #include <tuple>

6 #include “gpp.h”

8 int main() {

9 using namespace gpp;

10 ket psi = 00 ket;

11 cmat U = gt.CNOT * kron(gt.H, gt.Id2);

12 ket result = U * psi; // we have the Bell state (|00> +
[11>) / sqgrt(2)

PLOS ONE | https://doi.org/10.1371/journal.pone.0208073 December 10, 2018 7/27

http://eigen.tuxfamily.org/
https://github.com/vsoftco/qpp
https://doi.org/10.1371/journal.pone.0208073

O PLOS | one Quartums+

13

14 std::cout << “>> We just produced the Bell state:\n”;
15 std::cout << disp(result) << ‘\n’;

16

17 // apply a bit flip on the second qubit

18 result = apply(result, gt.X, {1}); // we produced (|01>
+ |10>) / sqgrt(2)

19 std::cout << “>> We produced the Bell state:\n”;
20 std::cout << disp(result) << ‘\n’;

21

22 // measure the first qubit in the X basis

23 auto measured = measure (result, gt.H, {0});

24 std::cout << “>> Measurement result: “<< std::get<0>
(measured) << ‘\n’;

25 std::cout << “>> Probabilities: “;

26 std::cout << disp(std::get<l>(measured), “,”) << ‘\n’;
27 std::cout << “>> Resulting states: \n”;

28 for (auto&& it: std::get<2>(measured))

29 std::cout << disp(it) << “\n\n”;

30 }

A possible output is:

Listing 3 output
>> We just produced the Bell state:
0.707107
0
0
0.707107
>> We produced the Bell state:
0
0.707107
0.707107
0

>> Measurement result: 1

PLOS ONE | https://doi.org/10.1371/journal.pone.0208073 December 10, 2018 8/27

https://doi.org/10.1371/journal.pone.0208073

®PLOS | one

Quantum++

>> Probabilities: [0.5, 0.5]
>> Resulting states:
0.707107

0.707107

-0.707107

0.707107

Inline 11 of Listing 3 we use the function kron () to create the tensor product (Kro-
necker product) of the Hadamard gate on the first qubit and identity on the second qubit,
then we left-multiply it by the Controlled-NOT gate. In line 12 we compute the result of
the operation CNOT,,(H ® I)|00), which is the Bell state (|00) + |11))/+/2. We display it in
lines 14 and 15.

In line 18 we use the function apply () to apply the gate X on the second qubit of the pre-
viously produced Bell state. Note that Quantum++ uses the C/C++ numbering convention,
with indexes starting from zero. The function apply () takes as its third parameter a list of
subsystems, and in our case { 1} denotes the second subsystem, not the first. The function
apply (), as well as many other functions that we will encounter, have a variety of useful
overloads, see doc/refman . pdf for a detailed library reference. In lines 19 and 20 we dis-
play the newly created Bell state.

In line 23 we use the function measure () to perform a measurement of the first qubit
(subsystem {0}) in the X basis. You may be confused by the apparition of gt . H, however
this overload of the function measure () takes as its second parameter the measurement
basis, specified as the columns of a complex matrix. In our case, the eigenvectors of the X
operator are just the columns of the Hadamard matrix. As mentioned before, as all other
library functions, measure () returns by value, hence it does not modify its argument.
The return of measure is a tuple consisting of the measurement result, the outcome
probabilities, and the possible output states. Technically measure () returns a tuple of 3
elements

std::tuple<gpp::idx, std::vector<double>, std::vector<gpp::
cmat>>

The first element represents the measurement result, the second the possible output proba-
bilities and the third the output states. Instead of using this cumbersome type definition, we
use the new C++11 auto keyword to infer the type of the result measured returned by
measure (). In lines 24-29 we use the standard std: : get<> () function to retrieve each
element of the tuple, then display the measurement result, the probabilities and the resulting
output states.

4.3 Quantum operations

In Listing 4 we introduce quantum operations: quantum channels, as well as the partial trace
and partial transpose operations.

PLOS ONE | https://doi.org/10.1371/journal.pone.0208073 December 10, 2018 9/27

https://github.com/vsoftco/qpp
https://doi.org/10.1371/journal.pone.0208073

®PLOS | one

Quantum++

Listing 4. Quantum operations

1
2
3

10

11
12
13
14
15
16
17
18
19
20

21

22

23
24
25
26
27
28
29
30
31

// Quantum operations
// Source: ./examples/quantum operations.cpp
#include <iostream>

#include <vector>

#include “gpp.h”

int main () {
using namespace gpp;

cmat rho = st.pb00; // projector onto the Bell state (
00> + |11>) / sqgrt(2)

std::cout << “>> Initial state:\n”;

std::cout << disp(rho) << *\n’;

// partial transpose of first subsystem

cmat rhoTA = ptranspose (rho, {01});

std::cout << “>> Eigenvalues of the partial transpose”
<< “of Bell-0 state are:\n”;

std::cout << disp(transpose (hevals (rhoTA))) << *\n’;

std::cout << “>> Measurement channel with 2 Kraus
operators:\n”;

std::vector<cmat> Ks{st.pz0, st.pzl}; // 2 Kraus
operators

std::cout << disp(Ks[0]) << “\nand\n” << disp(Ks[1l]) <<
“\n’;

std::cout << “>> Superoperator matrix of the channel:\n”;

std::cout << disp (kraus2super (Ks)) << ‘\n’;

std: :cout << “>> Choi matrix of the channel:\n”;

std::cout << disp(kraus2choi (Ks)) << *\n’;

// apply the channel onto the first subsystem

cmat rhoOut = apply(rho, Ks, {0});

PLOS ONE | https://doi.org/10.1371/journal.pone.0208073 December 10, 2018 10/27

https://doi.org/10.1371/journal.pone.0208073

®PLOS | one

Quantum++

32

33
34
35
36
37
38

39
40
41
42
43
44 }

std::cout << “>> After applying the measurement
channel”

<< “on the first qubit:\n”;

std::cout << disp(rhoOut) << *\n’;

// take the partial trace over the second subsystem
cmat rhoA = ptrace (rhoOut, {1});

std::cout << “>> After partially tracing down the sec-
ond subsystem:\n”;

std::cout << disp (rhoA) << ‘\n’;

// compute the von-Neumann entropy
double ent = entropy (rhoa);

std::cout << “>> Entropy: “<< ent << ‘\n’;

The output of this program is:

Listing 4 output

>> Initial state:

0.5 0 0 0.5
0O 0 O 0
0O 0 O 0

0.5 0 0 0.5

>> Eigenvalues of the partial transpose of Bell-0 state are:

=0, 5

0.5 0.5 0.8

>> Measurement channel with 2 Kraus operators:

1 0
0 0
and
0 0
0 1

>> Superoperator matrix of the channel:

1 0
0 0

0 0
0 0

PLOS ONE | https://doi.org/10.1371/journal.pone.0208073 December 10, 2018 11/27

https://doi.org/10.1371/journal.pone.0208073

®PLOS | one

Quantum++

0 0 0 O
0O 0 0 1

>> Choi matrix of the channel:

1 0 0 0
0 0 0 O
0 0 0 O
0O 0 0 1

>> After applying the measurement channel on the first
qubit:

0.5 0 0 0

0 0 O 0
0 0 O 0
0 0 0 0.5

>> After partially tracing down the second subsystem:
0.5 0
0 0.5

>> Entropy: 1

The example should by now be self-explanatory. In line 10 of Listing 4 we define the input
state rho as the projector onto the Bell state (]00) 4 |11))/+/2, then display it in lines 11 and

12.
In lines 15-18 we partially transpose the first qubit, then display the eigenvalues of the

resulting matrix rhoTA.

In lines 20-22 we define a quantum channel Xs consisting of two Kraus operators: |0) (0|
and |1)(1|, then display the latter. Note that Quantum-++ uses the std: : vector<cmat>
container to store the Kraus operators and define a quantum channel.

In lines 24-28 we display the superoperator matrix as well as the Choi matrix of the channel
Ks.

Next, in lines 31-34 we apply the channel Ks to the first qubit of the input state rho, then
display the output state rhoOut.

In lines 37-39 we take the partial trace of the output state rhoOut, then display the result-
ing state rhoA.

Finally, in lines 42 and 43 we compute the von-Neumann entropy of the resulting state and

display it.

4.4 Timing

To facilitate simple timing tasks, Quantum++ provides a Timer<> class that uses internally a
std::steady clock. The program in Listing 5 demonstrate its usage.

PLOS ONE | https://doi.org/10.1371/journal.pone.0208073 December 10, 2018 12/27

https://github.com/vsoftco/qpp
https://github.com/vsoftco/qpp
https://doi.org/10.1371/journal.pone.0208073

®PLOS | one

Quantum++

Listing 5. Timing

1
2
3

10
11

12
13
14
15
16

17

18
19
20

21

22
23
24
25
26

27
28

// Timing

// Source: ./examples/timing.cpp
#include <iomanip>

#include <iostream>

#include <vector>

#include “gpp.h”

int main() {

using namespace gpp;

std::cout << std::setprecision(8); // increase the
default output precision

// get the first codeword from Shor’s [[9,1,3]] code

ket cO = codes.codeword (Codes: :Type::NINE QUBIT SHOR, O0);

Timer<> t; // declare and start a timer

std::vector<idx> perm = randperm(9); // declare a random
permutation

ket cOperm = syspermute (cO, perm); // permute the system
t.toc(); // stops the timer

std::cout << “>> Permuting subsystems according to “<<

n

disp (perm, %, %);

std::cout << “\n>> It took “<< t << “seconds to permute
the subsytems. \n”;

t.tic(); // restart the timer
std::cout << “>> Inverse permutation: ”;
std::cout << disp(invperm(perm), %, %) << ‘\n’;

ket cOinvperm = syspermute (cOperm, invperm (perm)); //
permute again

std::cout << “">> It took “<< t.toc();

std::cout << “seconds to un-permute the subsystems. \n”;

PLOS ONE | https://doi.org/10.1371/journal.pone.0208073 December 10, 2018 13/27

https://doi.org/10.1371/journal.pone.0208073

®PLOS | one

Quantum++

29

30 std::cout << “>> Norm difference: “<< norm(cOinvperm
- c0) << ‘\n';

31 }

A possible output of this program is:

Listing 5 output
>> Permuting subsystems according to [7, 5, 3, 4, 2, 6, O,
8, 1]

>> It took 0.000161381 seconds to permute the subsytems.
>> Inverse permutation: [6, 8, 4, 2, 3, 1, 5, 0, 7]

>> It took 0.000104443 seconds to un-permute the
subsystems.

>> Norm difference: O

In line 11 of Listing 5 we change the default output precision from 4 to 8 decimals after the
delimiter.

In line 14 we use the Codes singleton codes to retrieve in cO the first codeword of the
Shor’s [[9, 1, 3]] quantum error correcting code.

In line 16 we declare an instance t imer of the class Timer<>.In line 17 we declare a ran-
dom permutation perm via the function randperm (). In line 18 we permute the codeword
according to the permutation perm using the function syspermute () and store the result.
In line 19 we stop the timer. In line 20 we display the permutation, using an overloaded form
of the disp () manipulator for C++ standard library containers. The latter takes a std: :
string asits second parameter to specify the delimiter between the elements of the con-
tainer. In line 21 we display the elapsed time using the ostream operator<< () operator
overload for Timer<> instances.

Next, in line 23 we reset the timer, then display the inverse permutation of perm in lines 24
and 25. In line 26 we permute the already permuted state c Operm according to the inverse per-
mutation of perm, and store the result in cOinvperm. In lines 27 and 28 we display the elapsed
time. Note that in line 27 we used directly t . toc () in the stream insertion operator, since, for
convenience, the member function Timer<>: :toc () returnsa const Timer<>&.

Finally, in line 30, we verify that by permuting and permuting again using the inverse per-
mutation we recover the initial codeword, i.e. the norm difference has to be zero.

4.5 Input/Output

We now introduce the input/output functions of Quantum-++, as well as the input/output
interfacing with MATLAB. The program in Listing 6 saves a matrix in both Quantum-++ inter-
nal format as well as in MATLAB format, then loads it back and tests that the norm difference
between the saved/loaded matrix is zero.

PLOS ONE | https://doi.org/10.1371/journal.pone.0208073 December 10, 2018 14/27

https://github.com/vsoftco/qpp
http://www.mathworks.com/products/matlab/
https://github.com/vsoftco/qpp
http://www.mathworks.com/products/matlab/
https://doi.org/10.1371/journal.pone.0208073

O PLOS | one Quartums+

Listing 6. Input/output
1 // Input/output

2 // Source: ./examples/input output.cpp

3 #include <iostream>

5 #include “gpp.h”

6 #include “MATLAB/matlab.h” // must be explicitly included

8 int main () {
9 using namespace gpp;

10 // Quantum++ native input/output

11 cmat rho = randrho (256) ; // an 8 qubit density
operator
12 save(rho, “rho.dat”); // save it

13 cmat loaded rho = load<cmat>(“rho.dat”); // load it back
14 // display the difference in norm, should be 0

15 std::cout << “>> Norm difference load/save: “;

16 std::cout << norm(loaded rho - rho) << ‘\n’;

17

18 // interfacing with MATLAB

19 saveMATLAB (rho, “rho.mat”, “rho”, “w”);

20 loaded rho = loadMATLAB<cmat>(“rho.mat”, “rho”);

21 // display the difference in norm, should be 0

22 std::cout << “>> Norm difference MATLAB load/save:”;
23 std::cout << norm(loaded rho - rho) << ‘\n’;

24 }

The output of this program is:

Listing 6 output
>> Norm difference load/save: 0

>> Norm difference MATLAB load/save: 0

Note that in order to use the MATLAB input/output interface support, you need to explic-
itly include the header file MATLAB /matlab.h, and you also need to have MATLAB or

PLOS ONE | https://doi.org/10.1371/journal.pone.0208073 December 10, 2018 15/27

http://www.mathworks.com/products/matlab/
http://www.mathworks.com/products/matlab/
https://doi.org/10.1371/journal.pone.0208073

®PLOS | one

Quantum++

MATLAB compiler installed, otherwise the program fails to compile. See the Wiki for exten-
sive details about compiling with MATLAB support.

4.6 Qudit teleportation

As mentioned before, Quantum-++ treats qubits and qudits on the same footing. Below is a rel-

atively more advanced self- documented example that implements the teleportation protocol
for qudits.

Listing 7. Qudit teleporation

1 // Qudit teleporation

2 // Source: ./examples/teleport qudit.cpp

3 #include <cmath>

4 #include <iostream>

5 #include <tuple>

6 #include <vector>

7

8 #include “gpp.h”

9

10 int main () {

11 using namespace gpp;

12 idx D = 3; // size of the system

13 std::cout << “>> Qudit teleportation, D = “<< D << ‘\n'’;

14

15 ket mes AB = st.mes(D); // maximally entangled state
resource

16

17 // circuit that measures in the qudit Bell basis

18 cmat Bell aA =

19 adjoint (gt.CTRL (gt.Xd (D), {0}, {1}, 2, D) * kron(gt.

Fd (D), gt.Id(D)));

20

21 ket psi a = randket(D); // random qudit state

22 std::cout << “>> Initial state:\n”;

23 std::cout << disp(psi_a) << ‘\n’;

24

25 ket input aAB = kron(psi _a, mes AB); // joint input

state aAB

PLOS ONE | https://doi.org/10.1371/journal.pone.0208073 December 10, 2018

16/27

http://www.mathworks.com/products/matlab/
http://www.mathworks.com/products/matlab/
https://github.com/vsoftco/qpp
https://doi.org/10.1371/journal.pone.0208073

®PLOS | one

Quantum-++
26 // output before measurement
27 ket output aAB = apply (input aAB, Bell aA, {0, 1}, D);
28
29 // measure on aA
30 auto measured aA = measure (output aAB, gt.Id(D * D),
{0, 1}, D);
31 idx m = std::get<0>(measured aA); // measurement result
32
33 std::vector<idx> midx = n2multiidx(m, {D, D});
34 std::cout << “>> Alice measurement result: %;
35 std::cout << m << “-> “<< disp(midx, “”) << ‘\n’;
36 std::cout << “>> Alice measurement probabilities: “;
37 std::cout << disp(std::get<l>(measured aA), %, %) <<
*‘\n’;
38
39 // conditional result on B before correction
40 ket output m B = std::get<2>(measured aA) [m];
41
42 // perform the correction on B
43 cmat correction B =
44 powm (gt.Zd (D), midx[0]) * powm(adjoint (gt.Xd (D)),
midx[1]);
45 std::cout << “>> Bob must apply the correction operator
ZAN"<< midx[0]
46 << WXA7 << (D - midx[1]) & D << ‘\n’;
47 ket psi B = correction B * output m B;
48
49 // display the output
50 std::cout << “>> Bob final state (after correction): \n”;
51 std::cout << disp(psi B) << ‘\n’;
52
53 // verification
54 std::cout << “>> Norm difference: “<< norm(psi B
- psi a) << "\n’;
55 }
PLOS ONE | https://doi.org/10.1371/journal.pone.0208073 December 10, 2018 17/27

https://doi.org/10.1371/journal.pone.0208073

O PLOS | one Quartums+

The output of this program is:

Listing 7 output

>> Qudit teleportation, D = 3

>> Initial state:

0.305468 + 0.01325641

-0.274931 - 0.6904661

-0.537024 - 0.2564931

>> Alice measurement result: 2 -> [0 2]

>> Alice measurement probabilities: [0.111111, 0.111111,
0.111111, 0O0.111111,

0.111111, O0.211211, 0.111111, 0.111111, 0.111111]
>> Bob must apply the correction operator zZ70 X*1
>> Bob final state (after correction):

0.305468 + 0.01325641
-0.274931 - 0.6904661
-0.537024 - 0.2564931

>> Norm difference: 1.23512e-15

4.7 Exceptions

Most Quantum-++ functions throw exceptions in the case of unrecoverable errors, such as out-
of-range input parameters, input/output errors etc. The exceptions are handled via the class
Exception, derived from std: : exception. The exception types are hard-coded inside
the strongly-typed enumeration (enum class) Exception: : Type. If you want to add more
exceptions, augment the enumeration Exception: : Type and also modify accordingly the
member function Exception: :construct exception msg (), which constructs
the exception message displayed via the overridden virtual function Exception: :what ().
Listing 8 illustrates the basics of exception handling in Quantum++.

Listing 8. Exceptions
1 // Exceptions

2 // Source: ./examples/exceptions.cpp
3 #include <exception>

4 #include <iostream>

PLOS ONE | https://doi.org/10.1371/journal.pone.0208073 December 10, 2018 18/27

https://github.com/vsoftco/qpp
https://github.com/vsoftco/qpp
https://doi.org/10.1371/journal.pone.0208073

®PLOS | one

Quantum++

6 #include “gpp.h”

7

8 int main () {

9 using namespace gpp;

10 cmat rho = randrho(16); // 4 qubits (subsystems)

11 try {

12 // the line below throws gpp::exception::
SubsysMismatchDims

13 double mInfo = gmutualinfo (rho, {0}, {4});

14 std::cout << “>> Mutual information between first
and last subsystem: “;

15 std::cout << mInfo << ‘\n’;

16 } catch (const std::exceptioné& e) {

17 std::cout << “>> Exception caught: “<< e.what () <<

‘\n’;
18 }
19 }

The output of this program is:

Listing 8 output
>> Exception caught: IN gpp::gmutualinfo(): Subsystems mis-
match dimensions!

In line 10 of Listing 8 we define a random density matrix on four qubits (dimension 16).
In line 13, we compute the mutual information between the first and the 5-th subsystem
(which does not exist). Line 13 throws an exception of type qpp: : exception: :
SubsysMismatchDim exception, as there are only four systems. We next catch the
exception in line 16 via the std: :exception standard exception base class. We could
have also used the Quantum++ exception base class gpp: :exception: :Exception,
however using the std: : exception allows the catching of other exceptions, not just of
the type Exception. Finally, in line 17 we display the corresponding exception message.

4.8 Classical reversible logic

Quantum-++ provides support for classical reversible logic and circuits via two classes,
Dynamic bitsetandBit circuit. The firstis similar to the standard library std: :
bitset, with the exception that the length of the bitset can be specified at runtime, whereas

PLOS ONE | https://doi.org/10.1371/journal.pone.0208073 December 10, 2018 19/27

https://github.com/vsoftco/qpp
https://doi.org/10.1371/journal.pone.0208073

®PLOS | one

Quantum++

the latter is used to describe a classical reversible bit circuit and provides the required interface
for applying gates, retrieving bit values etc. The example in Listing 9 is self-explanatory.

Listing 9. Classical reversible logic

1
2
3

10
11

12
13

14

15
16
17

18
19
20
21

22
23

24
25

26

// Reversible classical circuits
// Source: ./examples/reversible.cpp
#include <iostream>

#include “gpp.h”

int main() {

using namespace gpp;
std::cout << “>> Classical reversible circuits. “;
std::cout << “Bits are labeled from right to left,\n “;

std::cout << “i.e. bit zero is the least significant
bit (rightmost) .\n”;

Dynamic bitset bits{4}; // 4 classical bits

std::cout << “>> Initial bitset:\n\t” << bits << ‘\n’;
// display them

bits.rand(); // randomize the bits

std::cout << “>> After randomization:\n\t” << bits <<
‘\n’; // display them

Bit circuit bit circuit{bits}; // bit circuit

std::cout << “>> Apply X 0, followed by CNOT 02,
CNOT_13 and TOF_013\n”;

bit circuit.X(0); // apply a NOT gate on first bit

bit circuit.CNOT ({0, 2}).CNOT ({1, 3}).TOF ({0, 1, 3});
// sequence operations

std::cout << “>> Final bit circuit:\n\t” << bit circuit
<< "\n’;

std::cout << “>> 3rd bit: “<< bit circuit.get(2) <<
‘\n’;

PLOS ONE | https://doi.org/10.1371/journal.pone.0208073 December 10, 2018 20/27

https://doi.org/10.1371/journal.pone.0208073

®PLOS | one

Quantum++

27 std::cout << “>> CNOT count: “<< bit circuit.gate
count.CNOT << ‘\n’;

28
29 Dbit circuit.reset(); // resets the circuit

30 std::cout << “>> Reseted circuit:\n\t” << bit circuit
<< “\n’;

31 std::cout << “>> CNOT count: “<< bit circuit.gate
count.CNOT << ‘\n’;

32}

The output of this program is:

Listing 9 output

>> Classical reversible circuits.

right to left,

i.e. bit zero is the least significant bit

>> Initial bitset:
0000
>> After randomization:

0110

>> Apply X 0, followed by CNOT 02, CNOT 13 and TOF 013

>> Final bit circuit:
0011

>> 3rd bit: 0

>> CNOT count: 2

>> Reseted circuit:
0000

>> CNOT count: O

5 Advanced topics
5.1 Aliasing

Bits are labeled from

(rightmost) .

Aliasing occurs whenever the same Eigen 3 matrix/vector appears on both sides of the assign-
ment operator, and happens because of Eigen 3’s lazy evaluation system. Examples that exhibit

aliasing:

PLOS ONE | https://doi.org/10.1371/journal.pone.0208073 December 10, 2018

21/27

http://eigen.tuxfamily.org/
http://eigen.tuxfamily.org/
https://doi.org/10.1371/journal.pone.0208073

®PLOS | one

Quantum++

mat = 2 * mat;
or

mat = mat.transpose();

Aliasing does not occur in statements like

mat = f£f (mat) ;
where £ () returns by value. Aliasing produces in general unexpected results, and should be
avoided at all costs.

Whereas the first line produces aliasing, it is not dangerous, since the assignment is done in
a one-to-one manner, i.e. each element (4, j) on the left hand side of the assignment operator is
solely a function of the the same (i, j) element on the right hand side, i.e. mat(i, j) = Amat(i, §)),
Vi, j. The problem appears whenever coefficients are being combined and overlap, such as in
the second example, where mat(i, j) = mat(j, i), Vi, j. To avoid aliasing, use the member func-
tion eval () to transform the right hand side object into a temporary, such as

mat = 2 * mat.eval();

In general, aliasing can not be detected at compile time, but can be detected at runtime
whenever the compile flag EIGEN NO_DEBUG is not set. Quantum++ does not set this flag in
debug mode. We highly recommend to first compile your program in debug mode to detect
aliasing run-time assertions, as well as other possible issues that may have escaped you, such as
assigning a matrix to another matrix of mismatching dimensions etc.

For more details about aliasing, see the official Eigen 3 documentation at http://eigen.
tuxfamily.org/dox/group__TopicAliasing.html.

5.2 Type deduction via auto

Avoid the usage of auto when working with Eigen 3 expressions, e.g. avoid writing code like
auto mat = A * B + C;
but write instead
cmat mat = A * B + C;
or
auto mat = (A * B + C).eval();
to force evaluation, as otherwise you may get unexpected results. The “problem” lies in the
Eigen 3 lazy evaluation system and reference binding, see e.g. http://stackoverflow.com/q/
26705446/3093378 for more details. In short, the reference to the internal data represented
by the expression A * B + Cisdangling at the end of the auto mat = A * B + C;
statement.

5.3 Optimizations

Whenever testing your application, we recommend compiling in debug mode, as Eigen 3
run-time assertions can provide extremely helpful feedback on potential issues. Whenever
the code is production-ready, you should always compile with optimization flags turned on,
such as -03 (for g++) and ~-DEIGEN NO_ DEBUG. You should also turn on the OpenMP (if
available) multi-processing flag (- fopenmp for g++), as it enables multi-core/multi-pro-
cessing with shared memory. Eigen 3 uses multi-processing when available, e.g. in matrix
multiplication. Quantum++ also uses multi-processing in computationally-intensive
functions.

Since most Quantum-++ functions return by value, in assignments of the form

mat = f (another mat);

PLOS ONE | https://doi.org/10.1371/journal.pone.0208073 December 10, 2018 22/27

https://github.com/vsoftco/qpp
http://eigen.tuxfamily.org/
http://eigen.tuxfamily.org/dox/group__TopicAliasing.html
http://eigen.tuxfamily.org/dox/group__TopicAliasing.html
http://eigen.tuxfamily.org/
http://eigen.tuxfamily.org/
http://stackoverflow.com/q/26705446/3093378
http://stackoverflow.com/q/26705446/3093378
http://eigen.tuxfamily.org/
https://gcc.gnu.org/
http://openmp.org/
https://gcc.gnu.org/
http://eigen.tuxfamily.org/
https://github.com/vsoftco/qpp
https://github.com/vsoftco/qpp
https://doi.org/10.1371/journal.pone.0208073

O PLOS | one Quartums+

there is an additional copy assignment operator when assigning the temporary returned by
£ () back to mat. As far as we are aware, this extra copy operation is not elided. Unfortu-
nately, Eigen 3 does not yet support move semantics, which would have got rid of this addi-
tional assignment via the corresponding move assignment operator. If in the future Eigen 3
will support move semantics, the additional assignment operator will be “free”, and you won’t
have to modify any existing code to enable the optimization; the Eigen 3 move assignment
operator should take care of it for you.

Note that in a line of the form

cmat mat = f (another mat);
most compilers perform return value optimization (RVO), i.e. the temporary on the right
hand side is constructed directly inside the object mat, the copy constructor being elided.

5.4 Extending Quantum++

Most Quantum-++ operate on Eigen 3 matrices/vectors, and return either a matrix or a scalar.
In principle, you may be tempted to write a new function such as

cmat f(const cmaté& A) {...}

The problem with the approach above is that Eigen 3 uses expression templates as the type
of each expression, i.e. different expressions have in general different types, see the official
Eigen 3 documentation at http://eigen.tuxfamily.org/dox/TopicFunctionTakingEigenTypes.

html for more details. The correct way to write a generic function that is guaranteed to work
with any matrix expression is to make the function template and declare the input parameter
asEigen::MatrixBase<Derived>, where Derived is the template parameter. For
example, the Quantum++ transpose () function is defined as

1 template<typename Derived>
2 dyn mat<typename Derived::Scalar>
3 transpose (const Eigen::MatrixBase<Derived>& A) {

4 const dyn mat<typename Derived::Scalar>& rA = A.derived

()

6 // check zero-size

7 if (!internal::check nonzero size (rA))

”

8 throw Exception (“qgpp::transpose ()
ZERO SIZE);

, Exception::Type::

10 return rA.transpose();

11 }

It takes an Eigen 3 matrix expression, line 3, and returns a dynamic matrix over the scalar
field of the expression, line 2. In line 4 we implicitly convert the input expression A to a
dynamic matrix rA over the same scalar field as the expression, via binding to a const

PLOS ONE | https://doi.org/10.1371/journal.pone.0208073 December 10, 2018 23/27

http://eigen.tuxfamily.org/
http://eigen.tuxfamily.org/
http://eigen.tuxfamily.org/
https://github.com/vsoftco/qpp
http://eigen.tuxfamily.org/
http://eigen.tuxfamily.org/
http://eigen.tuxfamily.org/
http://eigen.tuxfamily.org/dox/TopicFunctionTakingEigenTypes.html
http://eigen.tuxfamily.org/dox/TopicFunctionTakingEigenTypes.html
https://github.com/vsoftco/qpp
http://eigen.tuxfamily.org/
https://doi.org/10.1371/journal.pone.0208073

®PLOS | one

Quantum++

reference, therefore paying no copying cost. We then use rA instead of the original expression
A in the rest of the function. Note that most of the time it is adequate to use the original expres-
sion, however there are some cases where you may get a compile time error if the expression is
not explicitly cast to a matrix. For consistency, we use this reference binding trick in the code
of all Quantum-++ functions.

6 Benchmarks

In this section we compare the performance of Quantum-++ with two other widely used quan-
tum software platforms that allow quantum simulation, namely IBM’s Qiskit and the open
source QuTiP. More specifically, we benchmark the time required to perform two widely used
quantum operations, namely the partial trace and the quantum Fourier transform, respec-
tively, as a function of the number of input qubits and number of CPU cores. Note that both
vanilla versions of Qiskit and QuTiP do not seem to be using parallelization, so for a fair
comparison the reader should only compare with the single-threaded curve(s) generated for
Quantum-++. All benchmark plots use logarithmic (base 2) scales for the time scale (expressed
in seconds). We used an 8 core x86-64 Linux machine running Debian 9.5, with an Intel(R)
Core(TM) i7-7700K CPU running at 4.20GHz and 16Gb of RAM. Quantum++ was compiled
with g++ 6.3, whereas the Qiskit and QuTiP simulators were run using Python 3.5. All bench-
mark code from this section is available online at https://github.com/vsoftco/qpp/tree/master/
stress_tests.

6.1 Partial trace

In this subsection we benchmark how long it takes to perform a partial trace over the first
qubit of an n-qubit matrix. Note that Qiskit does not provide a native partial trace function, so
we only benchmark against QuTiP. The results are displayed in Fig 1.

6.2 Quantum Fourier transform

In this subsection we benchmark how long it takes to perform a quantum Fourier transform
over the first qubit of an n-qubit matrix. The results are displayed in Fig 2.

6.3 Discussion

The fundamental data types in Quantum++ are non-sparse vectors and matrices. Most com-
putationally-intensive activity performed by the library involves operations on such vectors
and matrices. Whenever possible, the task is delegated to the highly-optimized Eigen 3 linear
algebra library, e.g. when multiplying 2 matrices together. In addition, most loops in the code
are parallelized via the OpenMP multi-processing library, if the corresponding flag is present
at compile time. Those optimizations make Quantum-++ highly efficient on multiple cores, as
the benchmarks in Figs 1 and 2 show.

As one of our referees pointed out, QuTiP performs relatively poorly for small number of
qubits, most likely because of overhead introduced by the Python interpreter. What is surpris-
ing is that both QuTiP and Qiskit seem to be single-cored, even though, at least for QuTiP,
one would expect aggressive parallelization via the BLAS library, as mentioned by http://qutip.
org/docs/3.0.1/installation.html#optimized-blas-librariesl. Most likely the vanilla version of
QuTiP comes with a NumPy library which is not built against BLAS.

PLOS ONE | https://doi.org/10.1371/journal.pone.0208073 December 10, 2018 24/27

https://github.com/vsoftco/qpp
https://github.com/vsoftco/qpp
https://qiskit.org
http://qutip.org
https://qiskit.org
http://qutip.org
https://github.com/vsoftco/qpp
https://github.com/vsoftco/qpp
https://gcc.gnu.org/
https://qiskit.org
http://qutip.org
https://www.python.org
https://github.com/vsoftco/qpp/tree/master/stress_tests
https://github.com/vsoftco/qpp/tree/master/stress_tests
https://qiskit.org
http://qutip.org
https://github.com/vsoftco/qpp
http://eigen.tuxfamily.org/
http://openmp.org/
https://github.com/vsoftco/qpp
http://qutip.org
http://qutip.org
https://qiskit.org
http://qutip.org
http://www.netlib.org/blas/
http://qutip.org/docs/3.0.1/installation.html#optimized-blas-librariesl
http://qutip.org/docs/3.0.1/installation.html#optimized-blas-librariesl
http://qutip.org
http://www.numpy.org
http://www.netlib.org/blas/
https://doi.org/10.1371/journal.pone.0208073

®PLOS | one

Quantum++

Time (seconds)

05

0.25

0.125
0.0625
0.03125
0.015625
0.0078125
0.003%9063
0.0019531
0.0009766
0.0004883
0.0002441
0.0001221
6.104E-05
3.052E-05
1.526E-05
7.629E-06
3.815E-06

Partial trace benchmark

Number of qubits

—@— QuTiP —@— Quantum++ 1 core Quantum++ 2 cores

Quantum++ 4 cores —@— Quantum++ 8 cores

Fig 1. Partial trace on n qubits. Some minor irregularities (spikes) in the plot are most likely due to the fact that the machine we ran the
experiments on is not real-time, and the operating system may have performed job scheduling during that time. Note that the single core
version of Quantum++ over-performs QuTiP. Remark also that Quantum-++ scales well with the number of CPU cores.

https://doi.org/10.1371/journal.pone.0208073.9001

7 Long term maintenance

We plan to keep all future releases of Quantum-++ open source. We will continue to host the
project on GitHub or on an equivalent versioning control system. We will publish new stable
releases of the software whenever enough improvements or features have been accumulated
since the previous stable release. We plan to keep Quantum++ active and we welcome every-
one interested to collaborate.

8 Conclusions and future directions

As you may have already seen, Quantum++ consists mainly of a collection of functions and
few classes. There is no complicated class hierarchy, and you can regard the Quantum++ API
as a low/medium-level API. You may extend it to incorporate graphical input, e.g. use a graph-
ical library such as Qt, or build a more sophisticated library on top of it. We recommend to
read the source code and make yourself familiar with the library before deciding to extend it.
You should also check the complete reference manual . /doc/refman.pdf for an extensive
documentation of all functions and classes.

An interesting future direction is to allow GPU parallelization, however at the time of the
writing this was beyond the scope of this project.

PLOS ONE | https://doi.org/10.1371/journal.pone.0208073 December 10, 2018 25/27

https://github.com/vsoftco/qpp
https://github.com
https://github.com/vsoftco/qpp
https://github.com/vsoftco/qpp
https://github.com/vsoftco/qpp
http://qt-project.org/
https://github.com/vsoftco/qpp
http://qutip.org
https://github.com/vsoftco/qpp
https://doi.org/10.1371/journal.pone.0208073.g001
https://doi.org/10.1371/journal.pone.0208073

O PLOS | one Quartums+

Quantum Fourier transform benchmark

4096
2048
1024
512
256
128

0.5
0.25
0.125
0.0625
0.03125 ’
0.015625 /
0.0078125
0.0039063 i
0.0019531 S
0.0009766 , ¥ at
0.0004883 A
0.0002441
0.0001221 A
6.104E-05
3.052E-05

17 18 19 20 21 22 23 24

Time (seconds)

Number of qubits

—@— QuTiP —@— Qiskit —®— Quantum++ 1 core

Quantum++ 2 cores —@=— Quantum++ 4 cores —@— Quantum++ 8 cores

Fig 2. Quantum Fourier transform on n qubits. Some minor irregularities (spikes) in the plot are most likely due to the fact that the machine we ran
the experiments is not real-time, and the operating system may have performed job scheduling during that time. Note that the single core version of
Quantum-++ over-performs Qiskit by a large margin. QuTiP seems to be faster in this case than Quantum++. The most likely explanation is that the
former uses sparse matrices during computation, whereas the latter does not. However, QuTiP runs out of memory on our machine after 21 qubits,
whereas Quantum-++ can simulate up to 28 qubits without problems (of course trading the space for longer running time). Remark also that
Quantum-++ scales well with the number of CPU cores.

https://doi.org/10.1371/journal.pone.0208073.g002

Acknowledgments

I acknowledge financial support from Industry Canada and from the Natural Sciences and
Engineering Research Council of Canada (NSERC). I thank Sara Zafar Jafarzadeh and Kassem
Kalach for carefully reading this manuscript and providing very useful suggestions.

Author Contributions
Software: Vlad Gheorghiu.

References
1. List of QC simulators;. http://www.quantiki.org/wiki/List_of QC_simulators.

PLOS ONE | https://doi.org/10.1371/journal.pone.0208073 December 10, 2018 26/27

http://www.quantiki.org/wiki/List_of_QC_simulators
https://github.com/vsoftco/qpp
https://qiskit.org
http://qutip.org
https://github.com/vsoftco/qpp
http://qutip.org
https://github.com/vsoftco/qpp
https://github.com/vsoftco/qpp
https://doi.org/10.1371/journal.pone.0208073.g002
https://doi.org/10.1371/journal.pone.0208073

O PLOS | one Quantum+

2. Roetteler M, Naehrig M, Svore KM, Lauter K. Quantum resource estimates for computing elliptic curves
discrete logarithms; arXiv:1706.06752 [quant-ph], 2017.

3. Nielsen MA, Chuang IL. Quantum Computation and Quantum Information. 5th ed. Cambridge: Cam-
bridge University Press; 2000.

PLOS ONE | https://doi.org/10.1371/journal.pone.0208073 December 10, 2018 27/27

https://doi.org/10.1371/journal.pone.0208073

