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Abstract

In the lack of a full-fledged theory of quantum gravity, I consider free, scalar, quantum fields
on curved spacetimes to gain insight into the interaction between quantum and gravitational
phenomena. I employ the Unruh-DeWitt detector approach to probe thermal, quantum ef-
fects on static, non-globally hyperbolic spacetimes. In this context, all physical observables
depend on the choice of a boundary condition that cannot be singled-out, in general, without
resorting to an experiment. Notwithstanding, the framework applied admits a large family
of (Robin) boundary conditions and grants us physically-sensible dynamics and two-point
functions of local Hadamard form. I discover that the anti-Unruh/Hawking effects are not
manifest for thermal states on the BTZ black hole, nor on massless topological black holes of
four dimensions. Whilst the physical significance of these statistical effects remains puzzling,
my work corroborates their non-trivial relation with the KMS condition and reveals the piv-
otal influence of the spacetime dimension in their manifestation. On global monopoles, I find
that for massless minimally coupled fields the transition rate, the thermal fluctuations and
the energy density remain finite at the singularity only for Dirichlet boundary condition. For
conformally coupled fields, although the energy density diverges for all boundary conditions,
the transition rate and the thermal fluctuations vanish at the monopole; indicating that even
if there is infinite energy, no spontaneous emission occur if the quantum field is not fluctu-
ating. Moreover, I explicitly construct two-point functions for ground and thermal states on
Lifshitz topological black holes, setting the ground for future explorations in this Lorentz
breaking context. I expect my work to bring awareness on the intricate role played by choos-
ing different boundary conditions, to stimulate the debate on thermal effects on black holes

and naked singularities, and to promote the power and usefulness of semi-classical analyses.
Key-words: Unruh-DeWitt detectors, anti-Unruh effect, anti-Hawking effect, Robin

boundary conditions, BTZ black hole, massless topological black holes, global monopoles,

Lifshitz topological black holes.
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Introduction

—If we squeezed ourselves into grains of sand, and then crushed the entire Milky Way to fit in a
family-size pizza box, then each one of us would become a black hole that would dissipate in about
ten picoseconds. That’s way longer than inflation, but still smaller than the difference of age

between your feet and your head due to Earth’s gravity.

Taking into account quantum field theory and general relativity, I adopt the viewpoint
that nature is fundamentally described by quantum fields and curved spacetimes. Quantum
fields are the building blocks of the standard model of particles and of their weak, strong
and electromagnetic interactions; the geometry of curved spacetimes encodes gravitation
and models the large scale structure of the universe. Both theories possess crucial open
problems [1,2] and outstanding experimental evidences [3—6]; both theories are still being
developed and questioned [7]. A solid theory of everything consistently unifying all four
fundamental interactions and revealing the underlying quantum gravitational laws of nature
is yet to be singled-out and vouched for by reality; in [8] one can find a list of sixteen different
approaches to quantum gravity, including string theory, twistor theory and loop quantum
gravity. Notwithstanding, we can theoretically probe aspects of such a unified theory at
their semi-classical interface. To this aim, I consider physical phenomena within quantum
field theory on curved spacetimes, invoking the algebraic approach for the construction of
physically-sensible states, and with focus on the Unruh-DeWitt detector’s perspective on
quantum, thermal effects on static spacetimes.

Quantum field theory on curved spacetimes has brought to light the fact that black holes
emit Hawking radiation [9]. Its algebraic approach has clarified the relation between the
latter and the existence of Killing horizons [10, 11]. It has allowed for generalizations of
the singularity theorems of general relativity taking into account quantum effects [12]. It
has introduced the PCT, spin statistics, Haag and Reeh-Schlieder theorems [13]. It has
made clear that quantum field theory does not predict a value, neither right nor wrong,
for the cosmological constant [14]. Markedly, it possesses manifold applications within the
Unruh-DeWitt particle detector approach [15]. We can see quantum field theory on curved
spacetimes as an effective theory useful in situations where spacetime curvature is significant,
and valid if we stay sufficiently away from the Planck scale. The drawback of considering
the underlying background to be generic instead of the standard flat spacetime is the loss
of symmetries [16]. The four-dimensional Minkowski spacetime has ten global Killing vector

fields, being invariant under four translations, three rotations and three Lorentz boosts. Al-



Introduction

together, Minkowski isometries form the Poincaré group. In turn, in a Hilbert space carrying
a unitary representation of the Poincaré group, states are unit rays amongst which there
is one, and only one, Poincaré-invariant state: Minkowski vacuum |13, Pg.28 Pg.55]. Such
state is also the unique ground state, containing only positive-frequency modes, with respect
to the corresponding (Hamiltonian induced by the) time-translation symmetry. Withal, the
symmetries of Minkowski spacetime select a unique vacuum state that plays a central role
in the formalization of quantum field theory—Minkowski vacuum is the reference state with
respect to which expectation values are computed, disambiguating normal-ordering [17]. On
a generic spacetime there is no isometry group that selects a preferred reference state. In
this scenario, one can resort to the algebraic approach to quantum field theory.

The works of Haag and Kastler of over fifty years ago set the ground for a mathematically
rigorous approach to quantum field theory in which the principle of locality is incorporated
through the notion of algebras of observables, see [13] and the references therein. The main
advantages of the algebraic approach is that it allows us to bypass the lack of a preferred vac-
uum state and the ambiguity of choosing a Hilbert space representation [18,19]. Therefore, it
is particularly well-suited when considering generic, curved spacetimes. In this context there
is a preferred class of states, not necessarily containing a unique distinguished representative,
called Hadamard and with respect to which expectation values can be defined such that the
underlying quantum fluctuations remain finite [20-22]. On Minkowski, de Sitter, the exterior
Schwarzschild, Friedman-Lemaitre-Robertson-Walker and on any globally hyperbolic space-
time, the algebraic approach provides a straightforward quantization scheme: Hadamard
states exist [21], the Klein-Gordon equation (and Dirac and Proca equations) yields a well-
posed Cauchy problem [19,23], we can regularize the stress-energy tensor uniquely up to
locally covariant geometrical terms [20] and we can construct the algebra of Wick polynomi-
als [24]. On a Kerr black hole, a Godel universe, asymptotically anti-de Sitter spacetimes,
Minkowski with plates, or any non-globally hyperbolic spacetime, such scheme is no longer
valid and the existence and uniqueness of fundamental solutions of the wave equation is not
guaranteed.

I focus on free, massive, real, scalar, quantum fields arbitrarily coupled to the scalar
curvature of the underlying background and whose dynamics is ruled by the Klein-Gordon
equation. The spacetimes of interest in this thesis are curved and non-globally hyperbolic,
but they are also static and stably-causal. On one hand, their staticness means we can avail
of a given global, timelike, irrotational Killing vector field to select a unique ground state,
and to identify thermal states. On the other hand, their non-global hyperbolicity entails
that establishing of a quantum field theoretical framework—existence of an explicit causal

propagator and physically-sensible two-point functions from which expectation values can be
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obtained—must be performed case-by-case. As it happens, in the scenarios here the Klein-
Gordon equation yields a well-posed Cauchy-boundary value problem. The construction of
the causal propagator is reduced to the problem of finding self-adjoint extensions of the
spatial part of the wave operator [25], which in turn requires choosing boundary conditions
for the wave functions.

Boundary conditions are ubiquitous in physics. Some amongst them translate into phys-
ical principles, some are so natural they go unnoticed [26], and others are in one-to-one
correspondence with a physical observable [27]. In the context of solving the Klein-Gordon
equation as a Cauchy-boundary value problem, each boundary condition specifies a differ-
ent fundamental solution, hence a distinct causal propagator, an inequivalent dynamics, a
specific two-point function, a particular reference state [25,28]. Consequently, expectation
values depend on the chosen boundary condition and only an experiment could single one
out. In the last years, increasing attention has been given to the significance of choosing
different boundary conditions within quantum field theory on non-globally hyperbolic space-
times. Klein-Gordon and Maxwell fields admitting Robin boundary conditions have been
taken into account on n-dimensional AdS spacetimes and its patches [29-34], on BTZ black
holes [35,36], on massless topological black holes [37,38], on global monopoles [39], and for
the study of phenomena such as quasinormal modes [10-43|, superradiance [14,45], and the
Casimir effect [16,47].

I consider Klein-Gordon fields on static BTZ black holes, Rindler-AdS; spacetime, mass-
less hyperbolic black holes, flat, hyperbolic and spherical Lifshitz topological black holes
and on global monopoles. I follow the prescription of Ishibashi and Wald [25] that grants
us well-defined dynamics, and I invoke the results of Sahlmann and Verch [48] that guar-
antee the constructed states are of (local) Hadamard form. Markedly, the framework used
gives us physically-sensible two-point functions that admit the large class of Robin boundary
conditions. Subsequently, to study thermal, quantum effects, I invoke the Unruh-DeWitt
detector approach. Unruh-DeWitt particle detectors [17,49] have been applied in several
different contexts [15], as the following list of examples corroborates: the Unruh and Hawk-
ing effects [50-54], the firewall proposal [55,56], the Casimir-Polder effect [57], cosmological
quantum entanglement [58|, measure theory [59, 60|, quantum information [61], quantum
optics [62,63], naked singularities [64-66], and quantum gravity [67,68]. Here, I model the
Unruh-DeWitt detector with a pointlike two-level system, interacting for an infinite proper
time with the underlying quantum field, and following a static trajectory. In this setting, the
transition rate can be straightforwardly computed from the two-point functions. Then, by
studying its behavior with respect to its different parameters, we can infer properties of the

underlying quantum field and spacetime.
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Limitations of the framework

I

The underlying backgrounds are all static. This means we assume we have a well-
defined notion of time and energy, positive frequencies, ground and thermal states.
However, both cosmologically and astrophysically, non-static scenarios are of interest:
the universe is expanding and black holes spin. We may assume this is an approximation
to a very-slowly rotating system, or we may view this is as a preliminary theoretical
exploration to set the path towards generalizing the framework to rotating scenarios.
The latter is a standard interpretation and it is regularly justified. For example, on
BTZ black holes, the construction of two-point functions has been generalized to the

rotating case [36,69], and also the study on the anti-Hawking effect [70].

I consider scalar, bosonic quantum field theory. Fermionic, Dirac, Maxwell fields can
also be considered and it is expected that Unruh-DeWitt detectors are able to distin-
guish them [71,72]. Here, Klein-Gordon fields, which do represent particles such as 7,
n', and Higgs bosons [5, 73|, are viewed as (the simplest) toy-models to employ when

formulating quantum field theory on curved spacetimes.

The Unruh-DeWitt detector model used admits many generalizations: a pointlike
system that follows a static trajectory, has infinite time to interact with the
quantum field itself and is formalized within first-order perturbation theory can be
generalized to a spatially extended system that follows (circular, infalling,
geodesic) other trajectories, has finite time to interact with the quantum field’s deriva-

tive and is formalized to higher-orders in perturbation theory.

Each of the generalizations highlighted above would make our analysis more realistic, but

more complex. Each lies along different research avenues to follow and constitutes an in-

teresting step to pursue in future work. Aware of its limitations, let us briefly outline the

strengths of the framework employed (when compared with other approaches that have the

same limitations).

Strengths of the framework

<

<

<

<

It admits general, Robin boundary conditions.

It allows for massive arbitrarily coupled fields.

From the ground state one directly construct thermal states.

Knowing the two-point functions amounts to knowing the transition rates.

The expressions for the transition rates are suitable for numerical computations.
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Within this approximative, simplified, but effective and fruitful framework, this thesis
accomplishes two goals: the explicit construction of physically-sensible two-point functions
on non-globally hyperbolic spacetimes, and the study of thermal effects by employing Unruh-
DeWitt particle detectors. Categorically, we can divide the applications performed in the
following three main focuses, but note that the ambiguity of choosing boundary conditions
is at the heart of all of them.

The three main focuses

1. Anti-Unruh and anti-Hawking effects

A static, uniformly-accelerated detector coupled to the ground state on the three-
dimensional Minkowski spacetime manifests the (weak) anti-Unruh effect. On a static
BTZ black hole, depending on the mass of the black hole and on the boundary condition
chosen, it manifests the (weak) anti-Hawking effect. Both these effects regard the
fact that the closer the detector is to the horizon, the higher is the local Hawking
temperature measured—and yet the transition rate decreases [74,75]. By analysing
the behavior of the transition rate with respect to the local Hawking temperature for
different boundary conditions, for different quantum states and for different black hole
masses, | study the anti-Unruh and anti-Hawking effects on static BTZ black holes,
on Rindler-AdS; spacetime, and on massless hyperbolic black holes. These effects are
defined in Section 2.4.2, and the results obtained are summarized in Sections 3.1 and
3.2.

2. Lorentz violation

The existence of a fundamental length scale within quantum gravity leads to the ques-
tion of whether local Lorentz invariance is a fundamental physical principle verified by
all observers at all energy scales [76-79|. Motivated by this question, I consider Lifshitz
topological black holes [80], whose line elements manifest a scaling behaviour charac-
teristic of Hofava-Lifshitz gravity. Their geometry is outlined in Section 1.5.8, while in
Section 3.3, on these Lorentz violating backgrounds, I detail the construction of ground
and thermal states of local Hadamard form admitting Robin boundary conditions at
Lifshitz infinity. It is interesting to note that the spherical Lifshitz topological black

hole has a naked singularity, and yet no boundary condition is required at such locus.
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3. Naked singularities

On black holes, the existence of a bifurcate Killing horizon defines a global Hawking
temperature that, in turn, allows us to identify a specific thermal state with the property
of being analytic across the horizon—the Hartle-Hawking state. On naked singularities,
there is seemingly no special temperature a priori. Therefore, the fact that physically-
sensible thermal states can be constructed on spacetimes containing a naked singularity
(as implicitly mentioned in the item above) encourages an exploration on thermal effects
on these scenarios. Here, I choose to work on global monopole spacetimes, whose
significance arise from the context of grand unified theories [81,82]. I generalize the
existing quantum field theoretical framework on global monopoles by constructing, for
massive and arbitrarily coupled free, scalar fields, the two-point functions of thermal
states. In contrast with the spherical Lifshitz topological black hole, where a boundary
condition must be chosen at Lifshitz infinity, we find that on global monopoles it is
the naked singularity that requires one. In Section 3.4, I study how the boundary
conditions at the singularity affect three quantities of interest: the transition rate of a
static Unruh-DeWitt detector coupled to a thermal state, the thermal contributions to
the ground state fluctuations, and the thermal contributions to the energy density of

the ground state.

Thesis structure

First, in Chapter 1, I review geometrical concepts such as Killing vector fields, static space-
times, and non-global hyperbolicity. I define Schwarzschild-like coordinates and I highlight
the main geometrical features of the spacetimes that are considered in Chapter 3. In Chapter
2 I outline the establishment of a free, scalar, quantum field theory on static spacetimes. I
review the algebraic approach, define Hadamard, ground and thermal states, I distill the
steps for the construction of physically-sensible two-point functions in Schwarzschild-like co-
ordinates, and I delineate the Unruh-DeWitt detector approach. In Chapter 3, I display the
results I have obtained and that were published in [66,83-85]. In the Conclusions section, I
summarize these results and I ponder on their significance and on the follow-up work they

incite.



1. Static Spacetimes

1.1  The definition of static spacetimes . . . . . . . ... . ... ... ..... 8
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1.5 Examples . . . . . . .. 20

General relativity is written in the language of Differential Geometry. It unites the notions
of space and time in the structure of a Lorentzian manifold: essentially, a spacetime is a set
equipped with a topology, a differential structure and causality notions. The spacetimes
pertinent to the second part of this thesis, on which I establish a quantum field theoretical
framework, possess extra features. They are all static spacetimes with sections of constant
sectional curvature that admit Schwarzschild-like coordinates. In this chapter, I recapitulate
a few concepts of general relativity necessary to understand their geometries. The first
three sections regard Killing vector fields and their consequences. In Section 1.1, I give the
definition of static spacetimes, which relies on the existence of a particular Killing vector field.
In Section 1.2, T discuss the relation between a spacetime admitting the maximal number
of Killing vector fields and the notion of a spacetime of constant sectional curvature. Since
a Killing vector field may generate a non-degenerate bifurcate Killing horizon, it may be
associated with a geometric temperature, as shown in Section 1.3. In Section 1.4, I use a
few causality notions to relate the concept of global hyperbolicity to that of well-posedness
of Cauchy problems of partial differential equations. Throughout this chapter I consider
Minkowski spacetime to exemplify the notions introduced, but in Section 1.5 I sketch other

examples of static spacetimes and I highlight their main geometric features.

7



% Static Spacetimes

1.1 The definition of static spacetimes

An n-dimensional spacetime is a Hausdorff, second-countable, connected, orientable, time-
orientable, n-dimensional smooth manifold equipped with a Lorentzian metric tensor g and
a Levi-Civita connection V. This definition provides a minimal set of mathematical tools. It
allow us to, for example, completely characterize the motion of free falling test particles for
a given metric 86, Pg. 70, Pg. 148]. However, a general spacetime lacks many features one
can make use of on Minkowski spacetime. Markedly, the enjoyment of geometric symmetries,
such as translations, rotations or Lorentz boosts, is not guaranteed. On this account, the
class of static spacetimes—which bears one distinct translation symmetry—is of particular
relevance.

The precise definition of a static spacetime relies on the notion of a Killing vector field.
Hence, let us first elucidate the latter. Suppose M is a spacetime endowed with a Lorentzian
metric tensor g with signature (—,+,...,4). Let L¢ be the Lie derivative with respect to a
vector field & on M, then & is a Killing vector field if and only if

Leg =V, + V.6, =0. (1.1.1)

As detailed in [87, App.C], if Equation (1.1.1) holds for all p € M, then g is invariant along
all integral curves of ¢ and the associated flux yields a one-parameter group of isometries.
That is, global Killing vector fields identify continuous symmetries of a spacetime.

A spacetime is stationary if it admits a timelike Killing vector £&. The corresponding
one-parameter group of isometries entails invariance of the metric under translation along
the coordinate subordinated to the affine parameter of the underlying integral curves of £. If,
in addition, it holds that £, V,{y = 0, then § is called urrotational and the spacetime is said
to be static. This property, equivalent to ¢ being hypersufarce-orthogonal and sometimes
referred to as “integrability condition”, brings about time-reflection symmetry. For details,
see e.g. [87, Pg. 119].

Definition 1.1 (Static spacetime). A spacetime is static if it admits a global, non-vanishing,

timelike, irrotational Killing vector field. .

Example 1.2 (Killing vectors and static spacetime). Let us solve the Killing equation (1.1.1)
on the four-dimensional Minkowski spacetime with metric tensor g and Cartesian coordinates
(t,z,y, z) such that

ds? = —dt* + dz? + dy* + d2°.

For a generic vector

f“ = (gt(t7 x’ y’ Z)’ é—m(t? x’ y7 Z)’ fy(t7 x? y? 2)7 gZ(t7 x? y’ Z))’ (112)

8



1.1 The definition of static spacetimes 9

Equation (1.1.1) yields

Ok(t,z,y,2z) =0, for k € {t,x,y, 2}, (1.1.3a)
0;&(t, x,y,2) + 0 (t, x,y,2) = 0, for j € {z,y, 2}, (1.1.3b)
0:&;(t,x,y,2) + 0;&i(t,x,y,2) =0, for i # j and i,j € {z,y, z}. (1.1.3¢)

Assuming that each component is a linear function of each coordinate, for i € {0, 1,2, 3,4},
k€ {t,x,y, 2z} and constants c,, it holds

E(t, Y, 2) = Chy + Cyt + Crp® + Chy + Cp,y 2.

Substituting this ansatz in Equation (1.1.3) restricts the possible values of the 20 constants
¢k,- We find that the Killing vector (1.1.2) with components (1.1.3) depends on 10 arbitrary

constants and it is of the form

§ =(cty + i@ + cyy + c,2)0;
+(Cuy — Ciot + Coygy + 2, 2) 04
H(eyy = Ctyt — Coy® + €y, 2)0y
+(Czp = Ctst — 24T — €,Y)0:

Hence, there are 10 linearly independent Killing vectors:

Translations: (1,0,0,0), (0,1,0,0), (0,0,1,0), (0,0,0,1);
Rotations: (0, —y,,0), (0,—z,0,z), (0,0, —z,y);
Boosts: (z,—t,0,0), (y,0,—t,0), (2,0,0,—t).

Each Killing vector is associated with an isometry of the Poincaré group, as indicated above.
In particular, the Killing vector §, = (1,0,0,0), identified with J;, yields a timelike, irrota-

tional Killing vector field, i.e. the four-dimensional Minkowski spacetime is static. )

Counter-example 1.3 (Non-static spacetime). A four-dimensional Kerr black hole with
mass M > 0 and angular momentum Ma is characterized, in Boyer-Lindquist coordinates

(t,r,0,¢), by the line element
2Mr
p(r,0)

where p(r,6) := r? + a?cos(d)” and A(r) := r2 — 2Mr + a®. Since the metric coefficients
g, are independent of ¢, it is easy to see that J; is a Killing vector. Noting that that the

dr

ds® = —dt® + (asin(f)’dp — dt)? + p(r, ) <A( ) + d92) + (r? + a®)dy?,

line element above is invariant under a time-reflection transformation ¢t — —t if and only if
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a = 0, we conclude that J; is not irrotational. With extra effort, one can show that in fact
there is no irrotational Killing vector field on this spacetime if a # 0. Therefore, it is not
static |87, Pg. 297|. For details on this spacetime, see [88] and [89, Sec.5.6]. o

Apart from not necessarily having Killing vector fields or symmetries, a general spacetime
might not admit a global coordinate chart or foliations. However, if a spacetime admits a
global, non-vanishing, timelike, irrotational Killing vector field, these features are guaranteed,
see e.g. |90] and the references therein. Explicitly, a static spacetime with a timelike Killing
vector field £ admits a foliation M = {t},cr x X of spacelike hypersurfaces with normal
direction £. Accordingly, it admits a coordinate system (¢,x), where ¢t € R and x € X, such

that its line element can be written as
ds® = — f(x)dt* + hij(x)dx"dx’, (1.1.4)

where f and h;; are smooth functions independent of ¢, f is positive and h;; identifies a
Riemannian metric A on ¥. In these coordinates, we have £ = 0, and t is called Killing

parameter.

Figure 1.1: A foliation of a static spacetime. Each {t} x ¥ is a constant time slice.

A physical consequence of the presence of Killing vector fields, since they yield continuous
symmetries of the spacetime, is the existence of conserved quantities. Directly from the
Killing Equation (1.1.1) follows that along a geodesic with tangent vector u* the quantity
§uut is constant. This is a useful property that allows us to consider the gravitational
redshift effect on stationary spacetimes and to define a local Hawking temperature, as shown
in Section 1.3. Furthermore, in the case of a static spacetime, the presence of a timelike,
irrotational Killing vector field allows us to employ Fourier analysis in the time direction. In

the coordinates of Equation (1.1.4), since the volume element \/|g|dx is independent of ¢, we

10



1.2 A relation between symmetries and curvature 11

can define the Fourier transform Ewith respect to t of a function { : M — C analogously to
the standard definition on R:

((w,x) = QL/ReMC(t,g)dt.

(e

It follows that a quantum field theoretical framework on a static spacetime benefits from
well-defined notions of time translation invariance, Hamiltonian, energy, positive-frequencies,
ground state, and momentum representation—see [16] for a discussion on the difficulties
that emerge when formulating quantum field theory on general curved spacetimes. On this
account, and given that general spacetimes lack such structure, one can see static spacetimes

as the simplest generalization of Minkowski spacetime.

1.2 A relation between symmetries and curvature

In the last section, it was shown that a static spacetime possesses one Killing vector field
that yields a time-translation symmetry. With Minkowski spacetime in mind, as in Example

1.1.3, we know that a general spacetime could be invariant under n translations, and under

n(n2 1)

spacetime have. Yet, as it turns out, translations and rotations account for all possible contin-
n(n—1) _ n(n+1)

2 2

independent Killing vector fields [86, Pg. 378|. In this case, the spacetime is said to be maz-

rotations. One may wonder what other continuous symmetries could an n-dimensional

uous symmetries—an n-dimensional spacetime can have at most n + linearly
imally symmetric and it necessarily has constant sectional curvature. Since some spacetimes
considered in this thesis fall in this class, and all of them have sections of constant sectional
curvature, here I discuss maximally symmetric spacetimes, constant sectional curvature and
the connection between these concepts.

Let us start by defining sectional curvature. On a spacetime M, let R,,.s and g,
represent, respectively, the components of the Riemann and of the metric tensors in a given
coordinate system. At each p € M, the sectional curvature s, : T,M x T,M — R takes two
tangent vectors d, and 0, at p and returns the Gaussian curvature of the two-dimensional
surface in M that has the plane o, C T),M generated by 9, and 9, as its tangent plane at p

and that is obtained as the image of o, under the exponential map at p. Equivalently,

R'U/U”U’U,

8p<au, (9v) = m

(1.2.1)

Definition 1.4 (Constant sectional curvature). If the sectional curvature s,(0,, 0,) is inde-

pendent of d,, 0, and p, then we say M has constant sectional curvature. °
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As shown in [86, P.13, Ch.2], on a maximally symmetric spacetime, the Riemann tensor,

the Ricci tensor, and the Ricci scalar can be written, for a constant s, respectively as

R;wozﬁ =S (g,uagﬂl/ - guﬁgcw)? (1228’)
R, =s(n—1)gu, (1.2.2b)
R=sn(n—-1). (1.2.2¢)

It is easy to see that, if the Riemann tensor is given by expression (1.2.2a), then the sectional
curvature (1.2.1) equals the constant s. On the other hand, as shown in [91, Eq.(34.199)],
the sectional curvature completely determines the Riemann tensor. As a consequence, if
$p(0y, 0y) = s for all p € M, then the Riemann tensor, the Ricci tensor, and the Ricci scalar
take the form of Equations (1.2.2). In summary, if a spacetime is maximally symmetric,
then it has constant sectional curvature and expressions (1.2.2) hold. Note, however, that
the converse does not hold, i.e. a constant sectional curvature spacetime is not necessarily

maximally symmetric.

Example 1.5 (Maximally symmetric spacetime). In Example 1.2, it was shown that the
four-dimensional Minkowski spacetime possesses ten Killing vector fields with components
that are linear functions of the Cartesian coordinates. Since a four-dimensional spacetime
admits at most @ = 10 Killing vector fields, we have not “lost” any continuous symmetry
by assuming linearity and we conclude that the four-dimensional Minkowski spacetime is
maximally symmetric. In addition, since the curvature tensors of (1.2.2) vanish, its constant

sectional curvature vanishes. o

Counter-example 1.6 (Non-maximally symmetric spacetime). Consider Schwarzschild black
hole: the static case (a = 0) of Counter-Example 1.3. Computing its curvature tensors, we
find that both the Ricci tensor and the Ricci scalar vanish, while the Riemann tensor does
not. That is, Equation (1.2.2) is not satisfied, this spacetime is not of constant sectional

curvature and hence, it is not maximally symmetric. o

A straightforward consequence of an n-dimensional spacetime having constant sectional
curvature s is that it solves Einstein field equations in vacuum with a cosmological constant
A determined by s and by n. To verify such claim, consider a spacetime that satisfies the

Einstein equations:

R
R, + (A — 5) g = 0. (1.2.3)

It is easy to see that Equation (1.2.3) together with Equations (1.2.2) hold true if and only

if the cosmological constant is given by

n—2)(n—1)
5 :

A=

(1.2.4)

12



1.3 On the geometric Hawking temperature 13

In other words, a spacetime of constant sectional curvature s solves Einstein field equations
in vacuum with a cosmological constant (under the sign conventions chosen above) of the

same sign of s and given by (1.2.4).

Remark 1.7. The definitions of Killing vector field, maximally symmetric spacetime and of
sectional curvature also apply if we consider the metric tensor to be Riemannian instead of
Lorentzian. Within Riemannian geometry, the classification of maximally symmetric mani-
folds is given by the Killing-Hopf theorem [92,93]. It states that the universal covering S of a
complete Riemannian manifold of constant sectional curvature (a space form) ¥ is isometric
either to a sphere, an Euclidean space, or a hyperbolic space. In turn, if I' is a discrete group
of isometries of & acting properly discontinuously, then ¥ is isometric to the quotient > JT.
This result is useful even within Lorentzian geometry since there are (Lorentzian) spacetimes
with maximally symmetric Riemannian subspaces, as exemplified in Section 1.5. With this
in mind, I include Example 1.8. In addition, it is worth mentioning that Lorentzian geometry
admits an analogous classification: maximally symmetric spacetimes are isometric to either
Minkowski, de Sitter, anti-de Sitter spacetimes or quotients/covers of them [94, Ch.11]. More
details and references regarding the spacetimes mentioned in the examples above are given

in the last section of this chapter, where I consider each of them separately. *

Example 1.8 (Riemannian case). Consider the 2-sphere endowed with a Riemannian metric
such that
ds® = df” + sin® 0dp®.

In this case we can easily solve the Killing equation (1.1.1) for a general vector of the form
& = (&(0,¢),6,(0,¢)), as shown in the notebook [95]. It follows that the 2-sphere is

maximally symmetric since there are 3 Killing vector fields:

(sin ¢, +sin 6 cos 6 cos p),
(cos g, —sin 0 cos O sin p),
(0,sin?0). o

1.3 On the geometric Hawking temperature

General relativity goes without the notion of temperature. Nevertheless, in the presence of
a non-degenerate bifurcate Killing horizon we can always define a “Hawking temperature”.
The interpretation of the Hawking temperature hinges on the scenario considered, but its
character as a temperature cannot be merely a geometrical, classical, consequence. On one

hand, the no-hair theorem entails that black hole solutions of Einstein—-Maxwell equations are
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completely determined by their mass, their charge and their spin [96, Pg.876]. On the other
hand, thermal effects on black holes have been well-established within quantum field theory
on curved spacetimes. Expressly, Hawking radiation corroborates black hole thermodynamics
and the Hawking temperature, though geometrically defined, admits its full meaning at the
interface between general relativity and quantum field theory [10,11,97,98|. Throughout
Chapter 3 of this thesis, I invoke such geometrical definition and its relation with thermal
states on curved spacetimes, which are detailed in Sections 2.3.2 and 2.4.2 of Chapter 2.
With this in mind, in this section I define a bifurcate Killing horizon and I show how it yields
a Hawking temperature.

Let ¢ be a Killing vector field with Killing parameter ¢ and generating a one-parameter
group of isometries G = {U, };cr of a static spacetime. A Killing horizon generated by & is
a G-invariant null hypersurface where £2 = 0. The union of at least two intersecting Killing
horizons generated by & is a bifurcate Killing horizon generated by &. The intersection, called
a bifurcation surface, is a spacelike (n — 2)-dimensional hypersurface where £ = 0, i.e. points
in the intersection are fixed under the action of G. Not all Killing fields generate horizons,
and not all Killing horizons can be deformed into a bifurcate Killing horizon. For details on
these Killing properties, I refer to [87,99, 100].

Example 1.9 (Bifurcate Killing horizon). Consider the Killing vector fields of the four-
dimensional Minkowski spacetime computed in Example 1.2. The Killing vector field 9, is
timelike everywhere, but the Killing vector field of a Lorentz boost, say £ = xd, —t0,, satisfies
&2 = 1?2 — 2%, Hence, £ is timelike for 22 > 2, null at © = £¢, and spacelike otherwise. The
surface where £2 = 0 is in fact a bifurcate Killing horizon given by the union of the horizons

at x =t and z = —t, as illustrated in Figure 1.1.
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Figure 1.1: The bifurcate Killing horizon generated by & = 9y — t9, and its orbits on Minkowski.
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1.3 On the geometric Hawking temperature 15

On a Killing horizon generated by &, consider a generator that is a null geodesic with
affine parametrization A\ and tangent vector y. Since ¢ is null, we can write £ = ay with

o= ‘?)—;\ such that A = e with kK = agf and

o 0 0
H_— - — R
g = 5 = R (1.3.1)

The quantity s is called surface gravity. In general, it is constant along each null orbit,
but not constant on the horizon. If x does not vanish on any orbit, we say the horizon is

non-degenerate. In addition, for practical computations, a useful form of expressing « is

K= ,/—%wgvv#gy. (1.3.2)

Comments on the interpretation of the surface gravity are in due order. By Equation (1.3.1),
we can see the surface gravity as a measure of the difference between a Killing and an affine
parametrization of the orbits of ¢ at the horizon. Note that if k # 0, then it depends on
the normalization of £&. On a static asymptotically flat spacetime, k can also be written as
the acceleration that an observer at asymptotic infinity would need to apply on an object
at the horizon to keep it static. In this case, there is a preferred normalization: the one in
which the Killing vector has unit norm at asymptotic infinity. However, this interpretation
does not generalize to non-static or non-asymptotically flat scenarios and, in general, there is
no preferred normalization. Notwithstanding, on a non-degenerate bifurcate Killing horizon,
one can prove that the surface gravity is constant, not only along the orbits, but on the whole
horizon. In analogy with thermodynamics, we associate surface gravity with the notion of
temperature and we refer to this statement as “the zero-th law”. In the following, I clarify

such an association. For a discussion on the comments above, see e.g. [100, Sec.6.3.3].

Definition 1.10 (Global Hawking temperature). On a spacetime that has a non-degenerate
bifurcate Killing horizon with surface gravity x, the global Hawking temperature is

Khp

T.g=—.
gH 21

(1.3.3)

In the seminal work of Hawking in the 70’s [9], he showed that black holes emit thermal
radiation at T,r. More precisely, the global Hawking temperature is the temperature of the
radiation detected by an observer far away from a black hole, i.e. at future null infinity.
However, a photon emitted by a black hole gets redshifted when traveling away from the
horizon. To grasp the effect of the gravitational redshift, let us consider, as discussed in [87,

Sec.6.3], a photon propagating from spatial position ps to p; on a stationary black hole
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spacetime with timelike Killing vector field £ = 0, and such that |gy||,, = 1, as illustrated in
Figure 1.2.
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Figure 1.2: A photon outgoing from the horizon of a stationary black hole.

Suppose there are two observers following timelike curves at spatial positions p; and py with

unit tangent vectors u" = —= and uy = L‘ , respectively. If k* is the tangent vector
g 1 \/‘97 - 2 \/@ . p y g

along the null geodesic followed by the photon, then the frequency measured by each observer
is wj = —kyufl,,, for j € {1,2} [87, Sec.4.2]. Since the quantity k,£* is conserved along the
geodesic followed by the photon, as mentioned in the end of Section 1.1, it follows that

1 1 V19t [p:
wp = — (k) py = ———— e (), = I,
. " A% |gtt||p2 V |gtt||p2 : " vV |gttHP2

Imagine the observer at p; measures exact black body radiation at temperature 77 and

kufuﬂpz =

frequency w;. The thermal spectrum, characterized by a Planckian distribution, depends on

the temperature and the frequency by a factor %, which corresponds to

ﬂ _ V |gtt||p2 ﬂ — V |gtt||p2 Wy = ﬂ fOI“ T2 = T1
T VNgitlls T A V19t |,

=7 1.3.4
= (13.4)
That is, the observer at p, measures a temperature T that equals T corrected by a redshift
factor. The connection between the frequency of the photon, the redshift effect and the
temperature of the radiation exemplified above calls for a position-dependent temperature.
This can be taken into account consistently on stationary spacetimes, where Equation (1.3.4)

makes sense, and justifies defining a local temperature, as follows.

16



1.3 On the geometric Hawking temperature 17

Definition 1.11 ((Local) Hawking temperature). On a stationary spacetime with metric
tensor ¢, time Killing parameter ¢ and associated bifurcate Killing horizon with surface
gravity kp, the (local) Hawking temperature is defined as the global Hawking temperature

corrected by a redshift factor:
Kn

Ty = ——. (1.3.5)
210/ | gu|
The local Hawking temperature is also known as Tolman temperature [101]. °

Since the surface gravity depends on the normalization of the timelike Killing vector field,
so does the Hawking temperature. On asymptotically flat spacetimes, the preferred choice of
normalization of imposing that x; > 0 and £ — —1 at spatial infinity yields a finite Hawking
temperature at asymptotic infinity. On an asymptotically AdS/Lifshitz spacetime, however,
we have that the Hawking temperature vanishes at asymptotic infinity [102]. In this case,
the global Hawking temperature is measured, not at infinity, but where the redshift factor is

1. The following example illustrates the difference between these two scenarios.

Example 1.12 (Asymptotically flat versus AdS). Consider a spacetime with line element

d32:—(1—%+kr2)dt2+(l—ﬂ—i—k‘rﬂ)
r r

for M >0,r >r, > 0,0 € [0,7) and ¢ € [0,27). The timelike Killing vector field £ = 0,

yields a bifurcate Killing horizon at » = r;,. For k = 0, this is Schwarzschild spacetime and

1
dr® 4+ r*df* + r?sin® 0dp?,  (1.3.6)

we have r, = 2M, while if £ > 0, it coincides with Schwarzschild-AdS spacetime and r}, is
the unique real root of f(r). Using Equations (1.3.2) and (1.3.3) (see Equation (1.5.2)),
T,
and Ty = gH

M
lih:(—2+k‘r) .
" r=rh ,/1—¥+k‘7‘2

T T

7

M c Tw e

Figure 1.3: On the left, on Schwarzschild spacetime; on the right, on Schwarzschild-AdS spacetime.
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1.4 A consequence of (non-)global hyperbolicity

Many problems in physics rely on solving differential equations. Suppose we want to solve
a partial differential equation on a static spacetime M = R x X compatible with initial
conditions on a time-slice {#o} x ¥. Under certain conditions we can guarantee a solution
exists and is unique. In this section, I approach this problem by invoking the concept of
global hyperbolicity and a well-known result regarding normally hyperbolic operators. This
is particularly relevant for the discussion of the next chapter, where I consider the Klein-
Gordon equation on static spacetimes.

Let us start by defining a globally hyperbolic spacetime. To that end, the following def-
initions are necessary. On a time-oriented spacetime M, the future Cauchy development
DT (S) of a subset S C M is the set of points p € M for which every past-directed inex-
tendible causal curve through p intersects S. The past Cauchy development D~ (S) is defined
analogously, and the Cauchy development is given by the union D(S) := D*(S) U D~ (S).
Suppose & C M is a closed subset for which no pair of points p,¢q € S can be joined by a
timelike curve (i.e. S is achronal). If D(S) = M, then S is called a Cauchy surface.

Definition 1.13 (Globally Hyperbolic Spacetime). A spacetime is globally hyperbolic if it

contains a Cauchy surface. °

An important feature of a globally hyperbolic spacetime is that it admits a foliation given
by a one-parameter family of smooth Cauchy surfaces R x ¥ [20, Thm.4.1.1]. In turn, there

exists a coordinate system (¢, x) such that its line element reads [103, Thm.1.1]
ds* = —f(t,x)dt* + hi]—(t,g)dﬁd)_{j.

Note that there are two essential differences between this foliation and the one that static
spacetimes admit, as per Equation (1.1.4) and Figure 1.1. First, the spacelike hypersurfaces
of the foliation of a static spacetime are not necessarily Cauchy surfaces. Second, there might
not be a timelike, irrotational Killing vector field backing the foliation of a globally hyperbolic
spacetime. In brief, there are static spacetimes that are not globally hyperbolic, and there

are globally hyperbolic spacetimes that are not static.

Example 1.14 (Static and globally hyperbolic). Equal-time slices of the four-dimensional
Minkowski spacetime, as in Example 1.2, are Cauchy surfaces. The Cauchy development of
the surface {t = 0} is highlighted in Figure 1.1. In other words, Minkowski is a globally

hyperbolic spacetime. o

18



1.4 A consequence of (non-)global hyperbolicity 19

Example 1.15 (Non-static and globally hyperbolic). Consider a Kerr black hole, as in
Example 1.3. If r is the largest real root of A(r), the exterior region r > r, is a non-static,

stationary, globally hyperbolic spacetime. o

Counter-example 1.16 (Static and not globally hyperbolic). Minkowski spacetime in spher-
ical coordinates (Minkowski without the spatial origin r = 0), whose line element in four

dimensions is given by Equation (1.3.6) with k = M = 0, is not globally hyperbolic. o

Counter-example 1.17 (Static and not globally hyperbolic). If M is a static spacetime
with a timelike conformal boundary, then a time slice {tq} x X is not a Cauchy surface, as
illustrated in Figure 1.1. In addition, it does not admit any Cauchy surface [89, Pg.133].
Hence, a spacetime that is asymptotically AdS/Lifshitz is not globally hyperbolic. o

DT 3)
b ///////////
D)

Figure 1.1: Domain of dependence of a constant time slice ¥. On the left, D(X) is the whole
Minkowski spacetime. On the right, null geodesics in AdS spacetime from A to B and from C to D
do not intersect ¥ and the points p and ¢ do not lie in D(X).

Key results concerning equivalent characterizations of global hyperbolicity can be found
in [104,105], detailed discussions can be found in [20,23], and explicit considerations relating

the properties of being static and of being globally hyperbolic, in [106, Ch.6].
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The notion of global hyperbolicity is connected with the well-posedness of Cauchy prob-
lems. A Cauchy problem consists of a partial differential equation on a smooth manifold
together with Cauchy data given on a smooth submanifold. If a solution exists, is unique
and has a continuous dependence on the Cauchy data, then we say the Cauchy problem
is well-posed. The problem set at the beginning of this section is in fact a concern on the
well-posedness of a Cauchy problem, where the submanifold are time-slices and the Cauchy
data constitute the set of initial conditions.

The result connecting global hyperbolicity and Cauchy problems, relevant in the context
of free quantum field theory on curved spacetimes, is the following. Let P be a normally
hyperbolic scalar operator on a spacetime M that admits a foliation R x 3. Let f € C§°(M),
and let (ty, Wo, ¥g) be the Cauchy data, i.e. Wy, Uy € C°({to} x ¥). The corresponding
Cauchy problem,

PU=f TUlgyxs=P and Ve¥|gxs = Vo, (1.4.1)

is well-posed if M is a globally hyperbolic spacetime [20,23,89)].

In the next chapter, I consider the Klein-Gordon equation on static spacetimes that may or
may not be globally hyperbolic. On the globally hyperbolic ones, well-posedness is guaranteed
by the above result. On non-global hyperbolic spacetimes, on the other hand, well-posedness
is not generally guaranteed. However, on static, non-globally hyperbolic spacetimes that
are stably-causal—i.e. possessing a global time function, and consequently without closed
timelike curves—we can still guarantee well-posedness of Equation (1.4.1) by providing a
boundary condition. In other words, the associated Cauchy-boundary value problem is well-

posed; see Section 2.2, where a summary of [25] is given, or [28, Thm.30].

1.5 Examples

As mentioned in the introduction of this chapter, all spacetimes considered in this thesis are
static and have sections of constant sectional curvature. Beyond that, their shared degree of
symmetry allows us to characterize each one of them using Schwarzschild-like coordinates.
In this section, I define such coordinates, I illustrate some of their properties and I gather

examples of some relevant static spacetimes invoking the concepts discussed in this chapter.

Definition 1.18 (Schwarzschild-like coordinates). Let M be a static spacetime of the form
M= RxIx 25“2, where I C R and Z?’Q are Cauchy-complete, connected, (n — 2)-
dimensional Riemannian hypersurfaces of constant sectional curvature j. Schwarzschild-like

coordinates (t,7,0, 1, ..., ,_3) is a coordinate system with respect to which the line element

20
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on M reads
ds® = —f(r)dt?* + h(r)dr? + r?dsi 2. (1.5.1a)

The Killing parameter t € R is called the time coordinate, r € I C R is called the radial
coordinate and 0 = (0, @1, ..., pn_3) € E;‘_2 are called angular coordinates. If n = 4, we shall
denote ¢1 = . The functions f(r) and h(r) are continuous, strictly positive functions for
r € [. The line element dE}l’z depends on j:

d=?_,, the unit metric on the hyperbolic space, for j < 0;

Ay = S dI?_,, the flat metric, for j = 0; (1.5.1b)
dQ?_,, the unit metric on the sphere, for 7 > 0.
[ ]

In the following, let us discuss properties of a spacetime M that admits, globally, Schwarz-
schild-like coordinates having in mind the concepts introduced in this chapter. First, M is a
static spacetime, as characterized in Section 1.1. Second, the sections 2?’2 of constant time

and radius are maximally symmetric, as described in Section 1.2, yet M itself might not be.

(n—2)(n—1)
2

Killing vector fields. Also, regarding the notion of global hyperbolicity, as seen in Section 1.4

In particular, the two properties just mentioned imply that M has at least 1 +

a static spacetime may or may not satisfy it.

Definition 1.18 constitutes a generalization of the Schwarzschild solution, as in Example
1.12, with two distinctions. First, f(r) is not necessarily equal to h(r)~' and both are
arbitrary (continuous, strictly positive) functions. Second, constant time and radius slices
are not necessarily spheres. The spacetimes whose associated line element is of the form of
Equation (1.5.1) consist instead of “nested space forms” 2?72. Note that, Remark 1.7 implies
that there are different topological choices for E?_z. This fact has an interesting consequence
in Black Hole Physics as it implies that we can choose different topologies for black hole
horizons, see e.g. [107, Pg.5| or Section 1.5.7.

As shown in Section 1.3, when a Killing vector field generates a non-degenerate bifurcate
Killing horizon, the surface gravity is constant and the Hawking temperature is well-defined.
Suppose that, in Schwarzschild-like coordinates, 0; generates such a horizon at r = ry.
The timelike Killing vector is £&* = (1,0,0,0), thus , = (—f(r),0,0,0), and the only non-

vanishing components of V¢ and V&, are

)
2f(r)h(r)

=-—V"¢  and Vi, = +m = —V,&.

ter
Vi = 5
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In view of Equations (1.3.2) and (1.3.5), it follows that

f(r)]

Kh
Rp = —F——— and Ty =

20/ f(r)h(r)| _ 2my/f(r)

r=r}

(1.5.2)

Moreover, in the case h(r) = f(r)~!, the surface gravity simplifies to kj = L)l

5 :
r=rp
In the following sections I highlight the main features of some static spacetimes that

admit Schwarzschild-like coordinates (1.5.1). Most examples considered here solve Einstein
equations in vacuum (but not all!). Therefore, before getting to them, let us check what
restrictions Equation (1.2.3), impose on the functions f(r) and h(r) as in Equation (1.5.1).
For simplicity, let us consider only the cases n = 4 and n = 3, in this order. Defining the
auxiliary function

sinh(0), j=—1,

sin(f), j=+1,
the line element (1.5.1) for n = 4 can be written as

ds* = —f(r)dt* + h(r)dr? + r*d6* + r*J(0)*dp>.

Then, Einstein field equations (1.2.3) reduce to

rh'(r) — h(r) + (j — Ar®) h(r)* =0,
rf'(r) + f(r) = (5 — Ar®) h(r) f(r) = 0.

These are satisfied if and only if

flr) = (j +o- érz) , (1.5.3a)
h(r) = f(r)™, (1.5.3b)

where c is an arbitrary integration constant. Note that r = 0 is a curvature singularity if

and only if ¢ # 0, since the corresponding Kretschmann scalar is given by

12¢>  8A?
Kap = "5+ 5~

In addition, if we consider A = 0 and spherical sections ¥, 2, we recover the Schwarzschild

(1.5.4)

solution. As it happens, Birkhoff’s theorem states that any spherically symmetric asympto-
tically-flat solution of Einstein field equations in vacuum with A = 0 must be static, i.e. it

must be a Schwarzschild solution (with some real-valued mass) [108].

22
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Performing the same computation as described above in the three-dimensional case,
ds* = — f(r)dt* + h(r)dr* + r?d6?,

yields
f(r) = (c—Ar?), (1.5.5a)

h(r) = f(r)~". (1.5.5b)
What is interesting to note in this case is that the Kretschmann scalar is always a constant,
Ksp = 12A2, (1.5.6)

which means that there are no curvature singularities on three-dimensional spacetimes cov-
ered by Schwarzschild-like chart coordinates within general relativity with vanishing stress-
energy tensor. As a matter of fact, this simple example alludes to peculiar features of
three-dimensional gravity. Namely, one can show that the Riemman tensor is completely
determined by the local content of “matter plus A”, and that the Weyl tensor vanishes iden-
tically. To read about the significance of these features, see e.g. [109, 110].

Next in order, we consider n-dimensional spacetimes endowed with Schwarzschild-like
coordinates. For the ones that solve Einstein’s equations, we have that Equations (1.5.3) and
(1.5.4) hold for n = 4, while Equations (1.5.5) and (1.5.6) hold for n = 3. One should keep
in mind, however, that Schwarzschild-like coordinates do not necessarily cover the maximal
analytic extension of the examples given. Also, taking into account the discussions above,
the following sections regarding particular spacetimes consist rather of a compactified set
of results. Elaborate discussions on exact solutions of Einstein equations, with proofs and
beautiful illustrations, can be found in [87,89, 100, 111]. In addition, I have summarized
the curvature data, such as the Riemann tensor, the Ricci tensor, the Ricci scalar, the
Kretschmann scalar and the Christoffel symbols of these examples in a Mathematica notebook

available at [95].

1.5.1 Minkowski

The n-dimensional Minkowski spacetime is a static spacetime that solves Einstein field equa-
tions in vacuum with vanishing cosmological constant. Its line element can be written in
Cartesian coordinates as

ds® = —dt* + do? + ...+ da? |,

with (¢,21, ..., 2,—1) € R™. It is maximally symmetric, admitting w Killing vector fields.

Amongst these, 0; is the global, non-vanishing, timelike, irrotational Killing vector field
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that yields the property of being static. Note that 0; does not generate horizons, but Lorentz
boosts generate degenerate bifurcate Killing horizons, as shown in Figure 1.1. Although there
is not a preferred normalization for the surface gravity associated to boosts, by choosing
a particular uniformly accelerated worldline, Equation (1.3.3) corresponds to the Unruh
temperature. Moreover, Minkowski is a globally hyperbolic spacetime and Cauchy surfaces
are highlighted in its conformal diagram in Figure 1.1.

One interesting fact is that Minkowski spacetime does not admit global Schwarzschild-like
coordinates. In Schwarzschild-like coordinates, which are simply spherical coordinates, its
line element reads

ds® = —dt* + dr* + r?d%? ,,_,, (1.5.7)

where t € R, r > 0, 0 € [0,27), ©1, ..., pn_3 € [0,7). In fact, it covers Minkowski spacetime
minus the origin » = 0. The spacetime covered by Equation (1.5.7) is not globally hyperbolic.
Yet, depending on the analysis performed, we can use spherical coordinates to characterize
Minkowski spacetime if we can fix, by hand, the ambiguity at » = 0, as shown in Section
2.5.2. The hypersurfaces ¥, o are (n — 2)-dimensional spheres with positive, constant
sectional curvature. The Christoffel symbols are non-vanishing, but its curvature tensors and

its sectional curvature vanish.

Figure 1.1: Conformal diagram of Minkowski spacetime. The blue lines connecting i~ to i* are
timelike, and the red lines connecting r = 0 with spatial infinity are Cauchy surfaces. Lightlike
radial curves are straight lines with a slope of 45° degrees with respect to the r = 0 line.

1.5.2 de Sitter

De Sitter (dS) spacetime is a maximally symmetric solution of Einstein field equations in

vacuum with positive cosmological constant A = %

a length scale and is called de Sitter radius. In Schwarzschild-like coordinates, its line element

. The quantity L > 0 determines

24
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reads

r2 r2 -1
ds? = — (1 - ﬁ) dt* + <1 - ﬁ) dr? + Y%, (1.5.8)
where t € R, r € [0,L), 6 € [0,27), and ¢y, ...,, 3 € [0,7). Note that » = 0 is not a
curvature singularity, since Kyg o< A is constant. These coordinates cover only a part of the

maximal analytic extension shown in Figure 1.2. Also, the timelike Killing vector d; generates

1
L
turn yields a well-defined Hawking temperature, and a geometric Hawking temperature of

a bifurcate Killing horizon at r = L. Using Equation (1.5.2), we obtain x; = which in

Tyn = 57, see e.g. [17, Sec.5.4].

Figure 1.2: Maximal analytical extension of de Sitter spacetime. The region r € [0, L) is covered by
Equation (1.5.8).

This spacetime is known as a cosmological solution of Einstein equations and the hy-
persurface r = L is called cosmological horizon. This nomenclature makes reference to the
observable universe and its limit of tangibility. For a discussion on the connection between
the de Sitter solution and our universe, the reader can check [89, Pg.124] or [112]. In addi-
tion, an elaborate exposition on charts and geodesics on de Sitter spacetime, as well as on
the compactification procedure to obtain its Penrose diagram and on how to define it as a

hyperboloid in a higher-dimensional Minkowski spacetime can be found in [113].

1.5.3 Anti-de Sitter

The anti-de Sitter (AdS) spacetime is a static, maximally symmetric solution of Einstein field
(n—2)(n—1)
217
de Sitter, the quantity L > 0 determines a length scale and is called anti-de Sitter radius. In

equations in vacuum with negative cosmological constant A = — . Analogously to

Schwarzschild-like coordinates, its line element reads

-1
ds* = — 1+ ” dt* + (1 + ” dr® + r?dx?
- 12 12 +1,n—2>
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where t € R, r > 0, 0 € [0,27), and ¢, ..., pn—3 € [0,7). In contrast with the de Sitter
case, 0, does not generate a bifurcate Killing horizon. Be that as it may, similarly to the
horizon generated by boosts in Minkowski spacetime, uniformly accelerated observers in the
Rindler-AdS wedge see a horizon at » = L. In Section 3.1, we consider the latter and we see
that indeed supercritically accelerated observers in AdS measure a temperature 114, 115].
Moreover, AdS is a non-globally hyperbolic spacetime and its causal structure is illustrated
in Figure 1.3. For more details, check [89, Pg.131] or [116, 117].

Figure 1.3: AdS spacetime. The red trajectory represents a supercritically accelerated observer.

1.5.4 Schwarzschild

Schwarzschild spacetime is a static, globally hyperbolic solution of Einstein field equations
in vacuum with vanishing cosmological constant. Its line element in Schwarzschild(-like)

coordinates reads
oM oM\ !
d32 = — (1 — m) dt2 + (1 — rn?’) dTQ ‘I— T2d23_17n_2,

where t € R, r > (2M)~=3) 0 € [0,27), ¢1,..., on_3 € [0,7). The sections of constant
time and radius are (n — 2)-dimensional spheres, which are maximally symmetric. Hence,
% Killing vector fields associated with

rotations. If n > 3, then the global, non-vanishing, timelike, irrotational Killing vector field 0;

beyond time-translational symmetry, it admits

26



1.5.5 BTZ 27

generates a non-degenerate bifurcate Killing horizon at r = (2M )~(=3) | with surface gravity

K, = (n — 3)(2M)"=3)(=2)

and corresponding local Hawking temperature of Ty = - \E/};W In addition, it is interesting
to note that its Kretschmann scalar diverges at r = 0 but that its Ricci scalar vanishes
everywhere. In the four-dimensional case, Equation (1.5.4) holds.

The Kruskal-Szekeres coordinates provide its maximal analytical extension [39, Pg.149],
whose conformal diagram is given in Figure 1.4. Note that Schwarzschild-like coordinates

cover only the exterior region given by r > ry,.

Figure 1.4: Conformal diagram of the maximal analytic extension of Schwarzschild spacetime. The
non-hashed part corresponds to the black hole region (upper triangle) and to the exterior region
(diamond). The blue lines connecting i~ to i are timelike, and the red lines connecting r = 0 with
spatial infinity are Cauchy surfaces. Lightlike radial curves are straight lines with a slope of 45°
degrees with respect to the » = 0 line.

1.5.5 BTZ

Gravity in three dimensions is manifestly odd. The absence of curvature singularities as
indicated by Equation (1.5.6) suggests that there are no “black holes” in three dimensions.
However, another suitable way to characterize black holes involves, instead of the presence
of singularities, the presence of causally disconnected regions in the spacetime [87, Pg.300].
In this sense, as shown in [118,119], black holes do exist in three dimensions. The Banados-
Teitelboim-Zanelli (BTZ) spacetime is characterized by the line element

ds® = — (T—Q — M) dt* — Jdtdf + <ﬁ - M + J—Q) h dr® + r2df? (1.5.9)

L? L? 4r? ’ o

where t € R, r > 0, # € [0,27). M and J are called, respectively, mass and angular

momentum. This spacetime solves Einstein field equations in vacuum with a cosmological
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constant of A = —%. It has constant sectional curvature s = A, as per Equation (1.2.4), but
it is not maximally symmetric.
When J = 0, Equation (1.5.9) describes the static BTZ black hole with

2 2 -1
ds? = — (= —m)ar+ (5= — M) ar® +r2de?, 1.5.10
I? I?

wheret e R, M >0, r > L\V/M, 0 € [0, 27), and such that § = 0+27. We could also consider
M < 0; in this case, r = 0 is in fact a naked singularity for M # —1. In this thesis, however,
we only work on the static BTZ spacetime with positive mass, see Section 3.1. In this case,
r, = Lv/M is a non-degenerate bifurcate Killing horizon with surface gravity x, = ‘/TM and
Hawking temperature T, = 5. Since this solution is asymptotically AdS, it is not globally
hyperbolic. Its conformal diagram is given in Figure 1.5. For the construction of a (rotating)
BTZ spacetime and other details, beyond the already mentioned references, one can resort

to [120,121].

.-

I

Figure 1.5: Conformal diagram of the maximal analytic extension of a static BTZ black hole space-
time. The blue lines connecting i~ to i are timelike, and the red lines connecting r = 0 with spatial
infinity are Cauchy surfaces. Lightlike radial curves are straight lines with a slope of 45° degrees
with respect to the r = 0 line.

1.5.6 Schwarzschild-AdS

Schwarzschild-AdS spacetime is an asymptotically AdS generalization of the Schwarzschild
solution. It is a static solution of Einstein field equations in vacuum with negative cosmolog-

ical constant, such that its line element in Schwarzschild-like coordinates reads

oM r? oM 2\ 7!
ds* = — (1 — T ﬁ) dt* + (1 b= ﬁ) dr® + r?dX3, (1.5.11)

28
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where t € R, r > 14, 0 € [0,27), @1, ..., 0n—3 € [0,7). As in the Schwarzschild case, the
sections ¥4 ,_o are spheres, its sectional curvature is not constant since Equation (1.2.2a)
does not hold, and there is a curvature singularity at » = 0.

Schwarzschild-AdS possesses a bifurcate Killing horizon generated by 0, and a timelike
conformal boundary. Hence, as AdS spacetime, it is not globally hyperbolic. In addition,
from Equation (1.5.2), we obtain

—-3)M T,
" e 1_,33\7/[3"‘2_22

1
z-

is similar to the one Figure 1.5, with the only difference that, for n > 4, the wiggly lines

which generalizes, to n dimensions, Example 1.12 with k = Its conformal diagram
representing r = 0 bulge inwards, see [122]. For more details on this spacetime, see e.g. [123]
or [124, Sec.9.2.].

There is a counterpart to Schwarzschild-AdS with positive curvature, called Schwarzschild-
dS spacetime. It is a static solution of Einstein field equations in vacuum, but with positive
cosmological constant. Its line element is given by Equation (1.5.11) with the mapping
L? — —L?. This subtle difference reverberates in drastic changes on the geometrical and
causal structure of the spacetime. Such spacetime possesses both a black hole horizon, like
Schwarzschild spacetime, and a cosmological horizon, like de Sitter spacetime; these horizons

delineate a globally hyperbolic region, see Figure 3 in [125].

1.5.7 Topological black holes

Topological black holes are static, non-globally hyperbolic solutions of Einstein field equations
in vacuum with negative cosmological constant. Their line element in Schwarzschild-like
coordinates, with mass M > 0, AdS radius L > 0, and j € {—1,0,+1}, reads

oM 12 oM r2\ "
ds? = — <j — st %) dt? + (j = %) dr? + r?dx] 2, (1.5.12)

where t € R, r > r, >0, 0 € [0,27), ¢1,..., 003 € [0,7). For j = +1, the line element
(1.5.12) reduces to Schwarzschild-AdS (1.5.11). For j € {—1,0}, there are different possible
choices for the topologies of the sections of constant time and radius—hence, these solutions
are called “topological” black holes. We shall refer to the cases j = —1, 7 =0, and j = +1
respectively as hyperbolic, flat, and spherical topological black holes.

The functions f(r) and h(r) in Equation (1.5.1) assume the forms as per Equations
(1.5.3) and (1.5.5) for n = 4 and n = 3, respectively. In addition, for M = 0, j = —1

and n = 3, Equation (1.5.12) is similar to a unit-mass, static BTZ black hole, see Equation
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(1.5.10). Equality holds if we take ¥_; ; to be a circle. With this in mind, we can see massless
hyperbolic topological black holes as n-dimensional generalizations of a unit-mass static BTZ
black hole. In these spacetimes, there is a non-degenerate bifurcate Killing horizon at r, = L
with surface gravity x;, = %

For the mathematical construction of these solutions, see [126]. For details regarding the
different compactifications one can perform, the reader can check [107, Sec.II.B|. For black
hole thermodynamics on topological black holes, see e.g. [127-129]. Moreover, the three and
four-dimensional massless hyperbolic solutions are considered in Section 3.2 of Chapter 3 of

this thesis, within the context of quantum field theory.

1.5.8 Lifshitz topological black holes

The line element of a four-dimensional Lifshitz topological black hole M can be written in
the form of Equation (1.5.1) by

ds* = —f(r)dt* + h(r)dr® + r*d6® + r*J,(0)*de?, (1.5.13a)
with
r? (1 K
flr) = 7 (ﬁ 4+ 5) 7 (1.5.13b)
L2
h(r) == = (r)~1. (1.5.13¢)

The parameter k assumes values only in the set {—1,0,+1}, and J, is defined by

sinh(0), k= -1,
Jo(0) == 40, k=0, (1.5.13d)

sin(d), k=+1.
Note that M cannot be a solution of Einstein gravity given the fact that a four-dimensional
spacetime that admits Schwarzschild-like coordinates is a solution of Einstein field equations

in vacuum if and only if Equation (1.5.3) holds, which is not the case since h(r) # f(r)~!.

Yet, as shown in [80], M is a metric solution of the action

1 1 C
S = / d*zv/]g] (R =20 = L F P — = Hy H — —E“V‘XBBMVF(Xﬁ),

12 \/m

where the only non-vanishing field strengths components are given by
F.t =2Lr and H,p, = 2L%rJ,..
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% — =% the Ricci scalar, L a length scale,

A = —%, g8 the Levi-Civita tensor density, F,, = 0,4, and H,,, = 0,5, Abelian

2
L

For all k, M is a static, asymptotically Lifshitz, non-globally hyperbolic spacetime. How-

In the above, g is the metric tensor on M, R = —

gauge fields, and C' = # a constant coupling parameter.

ever, the behaviour of Equation (1.5.13) for small r changes drastically with . Specifically,
for k = £1, r = 0 is a curvature singularity that is naked for k = +1, while hidden by a
horizon at r = % for k = —1. For k = 0, r = 0 is a coordinate singularity, where neither the
Ricci or Kretschmann scalars diverge. Although only the case kK = —1 possesses a horizon, in
analogy with the topological black holes described in the previous section, for kK =0, kK = —1
and k = +1, we call these spacetimes, respectively, flat, hyperbolic and spherical Lifshitz topo-
logical black holes. Withal, note that a flat Lifshitz black hole is in fact a Lifshitz spacetime
with critical exponent z = 2 and with sectional line element written in polar coordinates.
This means that the k = 0 solution also solves other generalized gravity theories; specifically,

Einstein-Maxwell-Dilaton and Einstein-Proca gravity theories, as detailed in [130, Pg. 27].

1.5.9 Global monopoles

Global monopoles are examples of topological defects (as are cosmic strings), arising from
global symmetry breaking within grand unification theories, possibly produced during phase
transitions in the early universe. An interested reader may check [81,82]. Here, a global
monopole is another example of a static, non-globally hyperbolic spacetime that is not a
solution of Einstein field equations in vacuum. For t € R, r € (0,00), 8 € [0,7), ¢ € [0, 27)

and a € (0,1), its line element reads
1 .
ds* = —a’dt* + Edﬁ + 72(d6* + sin? Odp?). (1.5.14)

Equation (1.5.14) does solve Einstein field equations with vanishing cosmological constant
with a classical energy-momentum tensor whose only non-vanishing components are
a’R 2(1 — a?)

Ty = —a'*T,, = 5 where the Ricci scalar is R = 2

There are three noteworthy features of Equation (1.5.14). First, for &« — 1 we recover
Minkowski spacetime in spherical coordinates. Second, although a two-dimensional conformal-
diagram would look like Figure 1.1, a global monopole is not asymptotically flat since each
point in the diagram would be conformal to, but not coinciding with, a two-dimensional
sphere. Another way of understanding this fact is by computing the Newtonian potential
that does not vanish as r — oo, as shown in [81]. Last, » = 0 is a (naked) curvature

singularity since the Kretschmann scalar, K = R?, diverges there.
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On static spacetimes we can avail of a global, timelike, irrotational Killing vector field
to select a unique ground state, and to identify thermal states for a free, scalar, quantum
field theory. In this chapter, I employ the algebraic approach to construct these states and
guarantee they are well-defined and physically-sensible. First, in Section 2.1, I highlight the
main ingredients of quantum field theory on general spacetimes. Second, in Section 2.2, I de-
fine physically-sensible dynamics on static, stably-causal, not necessarily globally hyperbolic
spacetimes. Then, in Section 2.3 I specialize to spacetimes that admit Schwarzschild-like
coordinates and I give explicit expressions for the two-point functions of physically-sensible
states. In Section 2.4, I describe, succinctly, how we can probe these quantum states using
an Unruh-DeWitt particle detector. The framework described here sets the ground for all
applications shown in the next chapter. To illustrate how all the building blocks connect
to each other, in Section 2.5, I apply it on Minkowski spacetime endowed with spherical
coordinates.
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2.1 A glimpse on the algebraic approach

With the goal of constructing physically-sensible states in Section 2.3, let us review a few key
notions of the algebraic description of a free, scalar, quantum field theory. On a spacetime
M equipped with a Lorentzian metric tensor g whose scalar curvature is R € R, as defined
at Page 8 of Chapter 1, consider a free, scalar field ¥ : M — R with mass mg > 0. Its

dynamics is ruled by the Klein-Gordon equation
PV := (O -mi - £R)VY =0, (2.1.1)

where 0 = ﬁ@u <\/ |g|g‘“’8,,> is the d’Alembertian, while £ € R is a coupling parameter.
9

If M is a vacuum solution of Einstein’s equations with a cosmological constant, hence with

constant scalar curvature such that the field-curvature coupling yields a simple shift of mass,

we define an effective mass by
m2g == mg + ER. (2.1.2)

A particularly relevant bisolution of the Klein-Gordon equation is the causal propagator,
also known as Pauli-Jordan distribution, or commutator function. It is one of the main
ingredients in the implementation of the canonical quantization, which here goes directly in
the definition of the (quantum) algebra of observables. Let us properly define both these
objects, and clarify how they relate to each other. First, assume M is a globally hyperbolic
spacetime. As mentioned in Section 1.4 of Chapter 1, the Cauchy problem associated with
the Klein-Gordon equation on such a spacetime is well-defined, and, as proven in detail
in [23, Ch.3|, the following theorem holds.

Theorem 2.1 (Advanced and retarded fundamental solutions). On a globally hyperbolic
spacetime M, there exist unique advanced E and retarded E_ fundamental solutions for the
Klein-Gordon operator P, i.e. Ey : C°(M,R) — C*(M,R) such that

PoFEy=FioP =idcemp)- (2.1.3)

Moreover, their supports are contained, respectively, in the causal future and past:
supp(E+f) C J*(suppf), Vf € C°(M,R). (2.1.4)
L)

From Theorem 2.1 follows that the difference between the advanced and retarded funda-

mental solutions E = E, — E_, satisfies the following properties. Equation (2.1.3) entails
PoE=EoP= 0,
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while Equation (2.1.4) yields

supp(E f) C J*(suppf) U J~ (suppf).

Let dvolyw be the volume form induced by g on M¥, for N € N*. By linearity and the
Schwartz kernel theorem [131, Pg.12§], E identifies a bidistribution E € D’ (M?),

B(f.h) = /M dvolye Bz, a!) f(x)h(x') for f,h € O°(M,R),

which is skew-symmetric and vanishes if the supports of f and h are causally separated, i.e.
in the level of distribution kernel, we have that E(x,z') = —E(2’, z) and that F(z,z") = 0 if
x and 2’ are spacelike separated. Accordingly, F is called the causal propagator.

The causal propagator identifies a symplectic form in the space of solutions to the Cauchy
problem associated with Equation (2.1.1), explicitly given in Equation (1.4.1), thus gener-
ating the classical phase-space of the underlying field theory. Quantization may then be
implemented by a canonical procedure, as prescribed in [14,23,24,132,133]. Here, I choose
to omit all details regarding this implementation and I directly define the (quantum) algebra

of observables.

Definition 2.2 (algebra of observables). The algebra of observables A(M), also known as
the CCR algebra, is the quotient of the unital x-algebra generated by the smeared fields
{U(f) : f € C(M)}, with the *-ideal generated by the following relations: for f,h €
CP(M) and c € R,

Linearity 0= WY(cf +h) — c¥(f) — V(h), (2.1.5a)
Hermiticity 0=U(f)"—v(f), (2.1.5b)
Klein-Gordon 0= ¥ ((d - m2 — €R)f), (2.1.5¢)
CCR  0=[¥(f),¥(h)] —iE(f,h)L. (2.1.5d)

The quantization procedure of imposing the canonical commutation relations on the fields,
codified by Equation (2.1.5d), can be carried out once the causal propagator is built. This,
in turn, requires solving a suitable initial value problem, which is identified in the following

proposition.

Proposition 2.3. On globally hyperbolic spacetimes, M ~ R x ¥ with Cauchy surface 3,
the initial conditions satisfied by the causal propagator, i.e. for x = (t,z), t € R and z € %,

E(l'7$,)|t/:t = 0, (216&)
atE(fL', $/>|t:t’ = —(9th(x, $/)|t’=t = (52(.73, LU/), (216b)

yield the canonical commutation relations after the implementation of Equation (2.1.5d). A



o Quantum Field Theory on Static Spacetimes

Proof. Let P be the Klein-Gordon operator, as in Equation (2.1.1), let (o, ¥y, \PO) be the
corresponding Cauchy data with ¥o, ¥y € C°({to} x X), f € C°(X), and n the future-
directed, unit vector field normal to ¥. On one hand, consider the initial value problem given
by Equation (1.4.1), i.e.

PYU=f Tgyxs=Y and Va¥|xxe = Vo
It implies, by [134, Corl.2| and for f € C§°(X), that
Efls =0and V,Ef|s = f.
At the level of integral kernel, it holds
E(x,2')|sxs = 0 and V,E(z,2)|sxs = 0x(z, 2").

On the other hand, the equal-time canonical commutation relations are obtained via pull-

back of its covariant counterpart [V (z), ¥(z')] = iE(z,2’) to a generic Cauchy surface:

[W(2)]s, ¥(2')|s] = iE(z,2")[sxs = 0,
(VaU(2)|s, ¥(2)|s] = iVaE(x,2')|sxs = ids(x, 2'). a)

Remark 2.4. On non-globally hyperbolic spacetimes, the Cauchy problem (1.4.1) is gen-
erally ill-defined. However, on the static spacetimes considered in the next chapter it is
straightforward to make it well-defined as a Cauchy-boundary value problem such that The-
orem 2.1 and Proposition 2.3 still hold. Specifically, assigning a boundary condition at
the timelike boundary that engenders the non-global hyperbolicity disambiguates the initial
value problem. An elaborate discussion regarding quantum field theory on globally hyperbolic

spacetimes with a timelike boundary can be found in [28]. *

To obtain a minimally meaningful physical theory, on the algebra of observables we need

a notion of expectation values, and for that we need the notion of states.

Definition 2.5 (State and related notions). A state ¢ on the algebra of observables A(M),

see Definition 2.2, is a linear functional
p: AM) —C
that is normalized, ¢(1) = 1, and positive, ¥(a*a) > 0, Va € A(M). Moreover,

i) a state v is called mized if it is a convex combination of states: ©» = \ip; + (1 — A)ao,
with ¢; # ¢, 1 € {1,2}, and A < 1;
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ii) a state is called pure if it is not mixed;
iii) ®(a) is called the expectation value of the observable a € A(M) on the state 1;

iv) for U(f;) € AM), f; € C*(M), i€ {1,...,n}, and n € N*, the map

(15 fu) = a1 s f) = (U (f1)- W (fn))
is called the n-point function of the state 1. °

If we equip A(M) with a suitable topology, as per [135, Def. 1I1.1.1.1|, we can show that
the maps v, of item iv) of Definition 2.5, are well-defined distributions in D’(M") such that,

by the Schwartz kernel theorem, we can write

wn(fla sery fn) = / dVOlM"wn(mla 7xn>f<xl)f(xn)

Mn

For technical details regarding the topological structure, I refer the reader to [19,135]. Here,
I simply assume that the maps 1, are continuous in the usual test function topology on
C°(M™). The relevance of introducing these maps comes from the fact that the expectation
values ¥(a), for a € A(M), are completely specified by the n-point functions of the state
1, see [24, Sec.2.2|. As an example, the Minkowski Poincaré invariant vacuum state is fully
specified by its two-point function [106, Pg.91]. This fact, in turn, inspires the notion of

Gaussian states.

Definition 2.6 (Gaussian states). A state ¢ on A(M) is Gaussian if Vf; € CP(M), i €
{1,...,n}, n € N*/ its n-point functions ¢, (f1, ..., f) satisfy

Un(fi, ...y fn) = 0, for odd n, (2.1.7a)
¢n(f1a afn) = Z ¢2(fi17fiz)"'¢2<fin_17fin)> for even n, (217b)

partitions

where “partitions” indicates all permutations of the indexes i;, j € {1,...,n}; i.e. over all

decompositions of the set {1,...,n} into disjoint subsets of two elements. °

For a fixed state b on A(M), there is a concrete realization of the algebra A(M) on a
Hilbert space H,, given by the Gelfand, Naimark, Segal (GNS) theorem. The GNS theorem
grants us the quadruple (Hy, Dy, 7y, Qy), where 7y, : A(M) — L(Dy) is a x-representation
of A(M) as linear operators with dense domain D,, C H,, such that m,(A(M))$2, = Dy and
Y(U(f)) = (Qy|my(U(f))|2y). Particularly for a Gaussian state ¢, which is completely de-

termined by its two-point function as per Definition 2.6, the GNS representation corresponds
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to a Fock representation and Equation (2.1.7) codify the standard Wick procedure |19, 136].
In [24], one can find a complete discussion of topics at the heart of the above comments,
such as the precise definition of a #-representation [24, Def.7|, a detailed proof of the GNS
theorem [24, Thm.1]| and a characterization of Gaussian states [24, Thm.2|.

The algebra of observables as per Definition 2.2 is the simplest algebra one can consider.
First and foremost, it does not contain all physical observables. Let us see two examples to
illustrate that.

Example 2.7 (Vacuum fluctuations). Let M be a four-dimensional Minkowski spacetime
endowed with Cartesian coordinates, as in Example 1.2. The two-point function for the
vacuum state of a massless, free, scalar field reads

Vo f, f) = w(R(NU(f)) = lim [ d'wd'a"ds(2,2) f(2) [ (') (2.1.8a)

e—0t
M2

for f, f' € C§°(M), and

ol 2) = ﬁﬁ (2.1.8b)
with o.(z,2') = (v — 2/)* +ie(t — t') + €. When z and 2’ are lightlike separated, (z —
2')? = 0. This singular behavior is resolved by the e-regularization already introduced in
Equation (2.1.8): as a tempered distribution on C§°(M) x C5°(M), ¥a(f, f') is well-defined
and U(f)W(f") is an element of the algebra of observables. Next, with ¢s(x,2’) as given
above, suppose we want to compute the expectation value of the vacuum fluctuations, denoted

Y(P2(f)). A first attempt is to simply define it by

P(V3(f)) = El_i)r(r)1+ d*xd*a"y(z, o) f(2)6(z — o). (2.1.9)
M2

However, the right-hand side of Equation (2.1.9) is ill-defined since ws(z, 2') f(x)d(z — )
does not satisfy the Hormander criterion for multiplication of distributions [131]. Two con-
sequences follow: first, to obtain a well-defined (¥?(f)) we must implement another regu-

larization procedure; second, W?(f) is not an element of A(M). o

Example 2.8 (Energy-momentum tensor). With the previous example in mind, it follows

that the energy momentum tensor T}, (f), formally given by
Tull) = (1= 26V, W ()Y (S) 260V, V() — EC¥(/)
o 2607) + (26 - 5 ) PUNT ) - gdv(n)] 2110
is also ill-defined and it is not an element of the CCR algebra A(M). o
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To extend the algebra of observables and obtain finite quantum fluctuations of all physical
observables, we must implement a regularization procedure. Within the Fock space formal-
ism on Minkowski spacetime this is accomplished by normal-ordering, which is tantamount
to “subtracting the vacuum energy” [17, 106, 137]. In the past decades, a long debate re-
garding how to implement normal-ordering on curved spacetimes engendered the notion of
Hadamard states. They play the role of Minkowski vacuum state, but on general spacetimes,
having a specific singularity structure that coincides with that of Minkowski vacuum. The
idea is that, even though a general spacetime lacks a preferred, reference, no-particle state to
disambiguate normal-ordering, in the distinguished class of Hadamard states, we can perform
covariant “divergence-subtractions” and obtain well-defined quantum fluctuations of all phys-
ical observables [22]|. In addition, though we shall not enter into the details here, it is worth
mentioning that the introduction of the concept of Hadamard states allows for a completely
covariant (perturbative) construction of the algebra of Wick polynomials of an interacting
quantum field theory, see e.g. [19,138|. For a proper definition of Hadamard states and an
example of a regularized observable, we need some preliminary notions, as follows.

Let M be a spacetime that admits a well-defined Cauchy time function ¢, such as a
static spacetime or a globally hyperbolic one [104, Prop.4]. On any geodesically convex
neighbourhood O C M, we define the regularized half squared geodesic distance as

o.(z,2") == o(x,2') + 2ie(t(x) — t(2')) + &%,

where z, 2" € M, e > 0, while o(x, 2’) is the standard half squared geodesic distance (or Synge
world function). In addition, for z,2" € O we define the modified, regularized Hadamard

parametrix by

N u(zx, ') , oe(z, x')
he(z,2') == o )i + Bpv(z,2') In <T) : (2.1.11)

where £, := 0o, mod(n,2), and A > 0 is a reference length scale (see [135, Pg.123] for considera-
tions on the dependence on \). The functions u and v are called Hadamard coefficients; they
are smooth and uniquely determined by imposing that h.(x,z’) satisfies the Klein-Gordon
equation both at x and z’, see [139-141]. Under the assumptions just given, the following

definition makes sense.

Definition 2.9 (Hadamard states). A state ¢ on A(M) is called Hadamard if its two-point
function v, € D'(M?) satisfies the local Hadamard condition, i.e. if for all z € M and for all

2’ lying in any geodesically convex neighbourhood O of x,

Yoz, 2') = hot (2, 2") + w(z, '), (2.1.12)



o Quantum Field Theory on Static Spacetimes

where w(z,2’) is a smooth function on O x O. Equivalently, when ), satisfies the local
Hadamard condition, we say it is of local Hadamard form. Accordingly, w(z,z’) is the state

dependent component of a two-point function of local Hadamard form. °

Example 2.10 (Regularized vacuum fluctuations). Consider the assumptions and defini-
tions of Example 2.7. Since the difference of two-point functions of local Hadamard form
is a smooth function, then for a Gaussian, Hadamard state {bv it makes sense to define the
regularized fluctuations, dubbed ¥(: W2(f) 1), as

VG VA(f) ) = lim d*z i (: U (z) ) f (), (2.1.13)
M
where B B
G W3 () 1) = lim {%@, ') — n(a, x’)} . (2.1.14)

As mentioned before, the “divergence-subtraction” form of implementing a regularization as
in Equation (2.1.14) is tantamount to the usual normal-ordering procedure performed on

Minkowski spacetime, as explicitly specified in [137, Pg.6]. o

Example 2.11 (Regularized energy-momentum tensor). As mentioned in Example 2.8, the
energy-momentum tensor given in Equation (2.1.10) is ill-defined. However, for a Gaussian,
Hadamard state with two-point function s, analogously to Example 2.10, the standard
regularized energy-momentum tensor

(: Ty () o) := lim {D,,(z,2) [Yo(x, 2") — ho+(z,2")]}, (2.1.15)

' —x

with differential operator D, (z, z’) given by
Dy(x,2') = (1 = 26)g," (2,2 )V, V., — 26V, V, + G+
1 / 1
+ 9w {255 -+ (2§ - 5) g," (x,2")\V*’V, — §m§ , (2.1.16)
is well-defined and finite, see e.g. [139, 142]. o

The technique of using a Hadamard parametrix, as per Equation (2.1.11), when dealing
with linear partial differential equations was first introduced by Hadamard [143], widely stud-
ied by Riesz [144], and eventually brought to the context of quantum field theory, see [140].
In Definition 2.9, we introduced the local version of the Hadamard condition. However, this
notion is more intricate than the brief discussion above suggests. Precisely, as the nomen-
clature indicates, there is also a global Hadamard condition, introduced in [140]. Roughly

speaking, to be of global Hadamard form a two-point function must not possess further
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singularities, other then the lightlike ones of the local Hadamard form, even for arbitrarily
spacelike separated points. Almost thirty years ago, Radzikowski [145] introduced another
associated notion called microlocal spectrum condition, which is a local energy positivity con-
dition stated in the context of microlocal analysis and that restricts the wavefront set of
the two-point function to coincide with that of Minkowski vacuum state. In addition, he
showed that on globally hyperbolic spacetimes the microlocal spectrum condition is equiv-
alent to both the local and global Hadamard conditions. The upshot of his work is that it
allowed for the employment of techniques from microlocal analysis in the formalism of quan-
tum field theory, for example, in the construction of explicit examples of Hadamard states
on Schwarzschild and on cosmological spacetimes [146, 147].

It has been shown that the Hadamard condition “propagates” from one Cauchy surface
to another, guaranteeing the existence of global, Gaussian, Hadamard states on any globally
hyperbolic spacetime [19-21,48, 145]. However, on non-globally hyperbolic spacetimes the
results above-mentioned do not hold in general: the local and global Hadamard conditions
and the microlocal spectrum condition are not equivalent. In addition, there is not a unique
recipe for the construction of Hadamard states on general spacetimes, see e.g. [148-152]. Be
that as it may, even though we consider non-globally hyperbolic spacetimes in this thesis, they
are all static. In this case, there is a standard prescription for the construction of physically-
sensible states [28,31-33, 36] such that the local Hadamard condition specifies Hadamard
states in every globally hyperbolic subregion of the spacetime, as shown in [48].

In Section 2.3, I show how to obtain ground and thermal states that are both Gaussian
and Hadamard on static spacetimes that admit Schwarzschild-like coordinates. Before that,
in the next section, I define and describe how to choose a physically-sensible dynamics on

static, stably-causal, not necessarily globally hyperbolic spacetimes.

2.2 Physically-sensible dynamics on static spacetimes

In this section, I give a succinct account of the results obtained by Ishibashi and Wald
in [25,153], where they showed that, even though the dynamics is not unique, on static, stably-
causal, non-globally hyperbolic spacetimes, there is a prescription to obtain a physically-
sensible dynamics. Specifically, if we impose boundary conditions that yield self-adjoint
extensions of the spatial part of the Klein-Gordon operator, then one can associate to the
Klein-Gordon equation a well-posed Cauchy-boundary value problem, advanced and retarded
fundamental solutions exist, and there is a naturally well-defined, positive and conserved,
energy functional for a Klein-Gordon field. First, in Section 2.2.1, I collect their results in a
single theorem. Then, in Section 2.2.2, I show how to obtain such self-adjoint extensions on

backgrounds that admit Schwarzschild-like coordinates.
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2.2.1 A positive and conserved energy

Let M be a static, stably-causal, not necessarily globally hyperbolic spacetime with metric
tensor g associated with the line element given in Equation (1.1.4), global timelike Killing
field 0y, foliation {t} x ¥ such that each point in M is labelled (¢,x) and with n being the
future-directed, unit vector field normal to ¥. Let ¥ be a free, scalar field with mass mg and
coupled, through the parameter £, to the scalar curvature R, as per Equation (2.1.1). The

Klein-Gordon equation reads

62
(@ + A) v =0, (2.2.1)

with
1 .
A= f(x)| —0; h' (x)0; mg ,
f(_)<\/m (Vglh” (x)0;) + +§R>

where the functions f(x) and h¥(x) are that of Equation (1.1.4). Let dX be the natural
volume on ¥ induced by the metric tensor g. The operator A is positive and symmetric on
H = L*(3, f~1(x)dY) if we take its domain to be C5°(X), see [153]. In this case, A has at
least one positive, self-adjoint extension, namely the Friedrichs extension [154, Pg.193]. Tt
is worth mentioning that if M is furthermore globally hyperbolic, then the operator A is

essentially self-adjoint on C§°(X) [155,156], i.e. it has a unique self-adjoint extension.

Theorem 2.12 (Physically-sensible dynamics). In the above setting, let Ag be any posi-
tive, self-adjoint extension of A, with domain Dom(Ag) C H. Fort € R and (¥y, ¥,) €
(C(M) x C(M)), define

W, := cos (A}E/Qt) W, + A;Jlﬂ sin (A;;mt) U, € H. (2.2.2)

Let Ky := supp(¥y) U supp(\ifo) and define the time translation T, and time reflection R,
operators acting on smooth functions F': M — M by

T,F(s,z) = F(s — t, ), (2.2.3)

~

R, F(t,z) = F(—t,x). (2.2.4)
Then, there ezists a unique solution W € C*°(M) such that the following properties hold:
i. (Klein-Gordon equation) P¥ = 0 on M;
ii. (Agreement within D(X)) V|gyxx = ¥ and VaVU|gxs = 0y Vy;

iii. (Causality) supp(¥) C J*(Ky) U J~(Kp);
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iv. (Time-translation invariance) if ¥ is the solution associated with the initial data
(to, Wy, ¥g), then T .U is the one associated with (t + to, Uy, U,);

v. (Time-reflection invariance) if W is the solution associated with the initial data
(to, Vo, \110), then ﬁt\IJ is the one associated with (—tg, Uy, —\PO).

Moreover, for solutions U, ® € C§°(M) with Cauchy data given by, respectively, (ty, ¥y, \ilo)
and (to, Do, CiDO), define the energy functional

g[‘l’, (P] = <¢[0, (i)0>L2 + <\I/[), AE(I)0>L2 . (225)

Let W be the space of solutions ¥, given by the prescription above, with wnitial data in
CP(X) x C°(X). Then, &, as per Equation (2.2.5) defines an inner product

E:VxV =R (2.2.6)

on the vector space V of solutions to the Klein-Gordon equation that can be written as finite
linear combinations of ﬁCI) for ® € W. It follows that Equation (2.2.2) prescribes the unique
dynamics for which it holds that, V¥, ® € V, and Vt € R

vi. (Positivity) E[¥, U] > 0;
vii. (Time-translation invariance) E[T,¥, T,®] = E[V, D;
viii. (Time-reflection invariance) E[R, W, R,®] = E[V, B];

ix. (Agreement with the globally hyperbolic case) if M is globally hyperbolic, then
W = V and (C:[‘Ij, @] = <\i10, (i)0>L2 + <\Ifo, A(I)0>L2‘

x. (Compatibility of convergence with respect to the norm induced by &) if {¥,} in
Y is a Cauchy sequence (with respect to the Hilbert space norm specified by the inner
product of Equation (2.2.6)) such that its initial data ((¥,)o, (¥,,)e) converge uniformly
on compact subsets of ¥ to the initial data of ¥, and analogously to all their spatial

derivatives, then it converges in norm to ¥: lim [V, — ¥, ¥, — V] = 0.
n—oo

[ )

We say that a dynamics determined by Equation (2.2.2) with an energy functional defined
by Equation (2.2.5), such that properties i) to x) hold, is physically-sensible. Accordingly,
Theorem 2.12 grants us a prescription for finding physically-sensible dynamics by finding the

self-adjoint extensions of the spatial part of the Klein-Gordon operator. When there is more
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than one positive self-adjoint extension, then there are different, inequivalent, physically-
sensible dynamics to be considered. This ambiguity cannot be resolved, in general, without
an experiment or further assumptions regarding the physical scenario in consideration. An
extra ambiguity emerge when a positive, self-adjoint extension have a discrete zero eigenvalue,
i.e. when “zero-modes” are present [157, Ch.8|. Since the latter does not occur in the cases
treated in Chapter 3, it is not taken into account here. In addition, non-positive, self-
adjoint extensions may also exist, but they are ruled out by an instability argument: generic
solutions exhibit exponential growth in time. One can refer to [25,29,153] for a discussion on
the comments above and for proofs concerning the theorem itself. Also, as mentioned in the
previous section, a discussion on this topic is given in [28] for a globally hyperbolic spacetime
with timelike boundary.

2.2.2 Obtaining the self-adjoint extensions

Turning to singular Sturm-Liouville theory, in this section we obtain self-adjoint extensions
for the spatial part of the Klein-Gordon operator. In the remainder of this chapter, the
underlying background M is taken to be an n-dimensional, static, not necessarily globally
hyperbolic spacetime that admits Schwarzschild-like coordinates, as defined in Chapter 1.

We start by writing the Klein-Gordon equation in Schwarzschild-like coordinates (¢, r, ),
as in Definition 1.18. Let A; be the (n—2)-dimensional Laplacian on the hypersurfaces E?’Q,
then the Klein-Gordon equation (2.1.1) reads

1
F(r)h(r)r=2

{—f(r)_lat2 + O.(\/f(r)h(r)r"2h~(r)0,) + %Aj —m2— (R U =0.

(2.2.7)
Let Y; (@) be the eigenfunctions of A; with eigenvalue \; [158]. Note that the specific value of
J, and hence the cardinality of the set of eigenvalues A;, does not play a role as far as Equation
(2.2.7) is concerned. In addition, since 9, is a Killing vector field, we can attempt to find
solutions of Equation (2.2.7) by taking the Fourier transform with respect to ¢; equivalently,

let us assume its solutions have a harmonic time dependence:
U(t,r,0) = e ™ R(r)Y;(0). (2.2.8)

Substituting Equation (2.2.8) into Equation (2.2.7) yields the radial equation:

w3556 2 o (- -
(2.2.9)
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where the coordinate r is defined in the interval (a,b) =: I € R, for —co < a < b < 400, in

accordance with Definition 1.18. For a fixed A;, Equation (2.2.9) specifies a radial operator:

N G I EN (R N e

Next, we recast the radial equation as a Sturm-Liouville problem. Let

P’ =1 w?—mZ, if f(r) =1 and R is constant, (2.2.11)

w? —mg, otherwise.
Equation (2.2.9) in Sturm-Liouville form corresponds to the eigenvalue problem
L2R(r) = p*R(r), (2.2.12a)

with associated Sturm-Liouville operator given by

Ly = % (—dii (P(r)d%) + Q@)) | (2.2.12h)

Since L, = Ay, + p?, we take its domain to coincide with that of Ay;. Particularly for

p? = w?, the auxiliary functions are

P(r) == "2 {18 = 7;97(:) , (2.2.12¢)
Q(r) := 7"”’4()\]- —r*m2e)\/ f(r)h(r). (2.2.12d)

The functions @ and S for the other possibilities of p* as given in Equation (2.2.11) can be
directly obtained from Equation (2.2.12).

Accordingly, we view A, as an operator acting on the Hilbert space of square-integrable
functions with respect to the measure induced by the function S, i.e. L*(I,S(r)dr) with

scalar product and L?-norm given, respectively, by

(6, ) = / SR Srdr  and |l = (,0),  Vibé € LA(1, S(r)dr).

If we take C3°(I) to be the domain of Ay, then it is a symmetric operator. However, in
general, A, is neither positive, bounded nor self-adjoint. The latter is due to the fact that, if
Aj, is the adjoint of A, then its domain D(A}) C L3(I,S(r)dr) is, in general, much larger
then that of A, .
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In the following, we shall assume A, is positive and symmetric. To obtain its self-
adjoint extensions, we invoke the works of Weyl [159] and Von Neumann [160], as extensively
discussed in the literature [154,161]. The idea is that self-adjoint extensions of Ay, relate
to square-integrability conditions of its associated solutions at the endpoints a and b, which
are in correspondence with the admissible boundary conditions at these endpoints. In turn,
the boundary conditions can be explicitly stated in terms of the principal and secondary
solutions of the Sturm-Liouville problem. To understand these relations, let us introduce
Weyl’s endpoint classification and the concepts of principal and secondary solutions.

Let L(J,C) be the set of Lebesgue integrable complex valued functions defined almost
everywhere on a Lebesgue measurable subset J of R. Weyl’s endpoint classification provides

the following nomenclature [154, Ch.7].

Definition 2.13 (Weyl’s endpoint classification). Consider the Sturm-Liouville problem as
per Equation (2.2.12) with r € (a,b). The left endpoint a is

i) regular if 1/P,Q,S € L((a,rq),C) for some (and hence any) ¢ € I;

ii) singular if it is not regular;
iii) limit circle if all solutions of Equation (2.2.12) are in L*((a,ry), S(r)dr), Vro € I;
iv) limit point if it is not limit circle.

An analogous definition holds for the right endpoint b, considering instead (L((r¢,b),C)) in

items i) and iii). o

Definition 2.14 (Principal and secondary solutions). Let u and v be solutions of the Sturm-

Liouville problem as per Equation (2.2.12) that are non-vanishing for r € (a,r9) C I. Then

1. u is called a principal solution at a if, for any solution y that is linearly-independent

from u,
r—a

u(r) — o(y(r)). (2.2.13)
2. v is called a secondary (or non-principal) solution at a if it is not a principal solution.
Again, an analogous definition holds for a right endpoint b. °

In all scenarios considered in the next chapter, the radial equation has singular endpoints
such that one is limit point and the other is limit circle. This shall be verified case-by-case by
computing, asymptotically at each endpoint, the L?-norms of the radial solutions, according
to Definition 2.13. The next theorem summarizes the necessary results from singular Sturm-

Liouville theory that allow us to identify the desired self-adjoint extensions in the case of
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interest to this thesis, i.e. when one endpoint is limit point and the other is limit circle. For

an extensive discussion in this direction, check [154, Ch.10].

Theorem 2.15 (Self-adjoint extensions). Consider the Sturm-Liouville problem as per Equa-
tion (2.2.12), I = (a,b) and H := L*(I,S(r)dr). Suppose a and b are singular endpoints
such that a is limit point and b is limit circle. Let |.,.] be the Lagrange sesquilinear form, i.e.
fory,zeH, roel:

[y, 21(r0) == Tim {P(r) [y(r)Z0) — o/ (=] } (2:2.14)

T—T0
Let u and v be, respectively, the principal and secondary solutions normalized to [u,v](r) = 1.
In addition, for y € H, consider boundary conditions of the form

By, u](b) + B[y, v](b) = 0, (2.2.15)

where By and By are real-valued constants such that (Bi, B2) # (0,0). The boundary con-
ditions as per Equation (2.2.15) yields all self-adjoint extensions of the radial operator, as
follows. For Ay, as in Equation (2.2.10), let A} be its adjoint with domain D(Aj})) C H.
Then, the operator

Ay ey =A\Y, y€ DA\ r) ={y€H: y salisfies Equation (2.2.15)}
is a self-adjoint extension of Ay, . 'Y

Definition 2.16 ((Generalized) Robin boundary conditions). Let y, u and v be as in the
theorem above. If y satisfies Equation (2.2.15), then we say y satisfies a (generalized) Robin
boundary condition parametrized by B; and Bs. Moreover, we can equivalently rewrite it in

terms of a real-valued parameter v as

cos() [y, u](b) + sin(y)[y, v](b) =0 (2.2.16)

and say y satisfies a (generalized) Robin boundary condition parametrized by ~. .

The nomenclature “generalized” is justified by the fact that if the endpoint b is regular,
then Equation (2.2.16) reduces to the standard form of Robin boundary conditions, as per
Equation (7.1.6) in [162, Pg.410]:

cos(y)u(b) 4 sin(y)v(b)
cos()u (8) + sin(7)0'(0)

y(b) + By'(b) = 0, where = — eR. (2.2.17)
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If 5 =0 in Equation (2.2.17), then y(b) = 0 and we say y satisfies the Dirichlet boundary
condition at b. If 5 — oo, then 3/(b) = 0 and we say y satisfies Neumann boundary condition

at b. In addition, if we take v and v such that

where ¢ is a constant, then Equation (2.2.17) yields 5 = tan(y). That is, the boundary

condition is independent of any other parameters of the problem.

Remark 2.17. A solution of the form y = cos(y)u + sin(y)v satisfies Equation (2.2.16).
Thus, the parameters v = 0 and v = 7 select, respectively, the principal and the secondary

solutions. Taking into account the Definition 2.14 and the nomenclature associated to the

s
bR
Neumann boundary conditions. However, in the singular case there is no preferred secondary

regular case, we shall refer to v = 0 and v = Z, respectively, as (generalized) Dirichlet and
solution. For example, if v is a secondary solution, then v+u is also a secondary solution. This
means that what is called Neumann boundary condition in the singular case is ambiguous.

Nevertheless, the nomenclature is useful. *

When the endpoints of the radial equation consists of one limit point and one limit circle,
there is a one-parameter family of (generalized) Robin boundary conditions at the limit
circle endpoint, which specify self-adjoint extensions of A,,. Each one of these (acting on
L*(I,S(r)dr)), specifies a self-adjoint extension of the spatial part A of the Klein-Gordon
operator (acting on L?(X, f~(x)dY)), as in Equation (2.2.1). This family of extensions, in
turn, corresponds to a one-parameter family of inequivalent physically-sensible dynamics, by
Theorem 2.12.

It is crucial to note that the class of boundary conditions associated with the self-adjoint
extensions of the spatial part of the Klein-Gordon operator, although encompassing infinitely
more possibilities than simply choosing Dirichlet boundary condition and the Friedrichs ex-
tension, still does not correspond to all possible physically-sensible dynamics one can obtain
on a static, stably-causal, not necessarily globally hyperbolic spacetime. It excludes, for ex-
ample, time dependent boundary conditions such as those of Wentzell type [163,164]. This
is not just a technical detail, since the class of Wentzell boundary conditions also describes
physical systems, such as acoustic wave equations [165]. They are also of interest within
quantum field theory and work in the direction of generalizing the approach described here

have been investigated in the last years [28,32, 166].
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2.3 Physically-sensible states in Schwarzschild-like

coordinates

Let us construct the two-point functions of two physically-sensible states for a real, massive,
free, scalar quantum field theory: a ground state and a KMS state; both Gaussian, as per
Definition 2.6 and of locally Hadamard form, as per Definition 2.9. We start by constructing
the causal propagator. Then, in Sections 2.3.1 and 2.3.2 we define and study each state
separately. Again, assume the background spacetime M is static and admits Schwarzschild-
like coordinates.

Analogously to the ansatz of Equation (2.2.8) for the solutions of the Klein-Gordon equa-
tion, and recalling that Schwarzschild-like coordinates are as in Definition 1.18, time trans-
lation invariance and the homogeneity of Z?‘Q allow us to write the following ansatz for the
integral kernel of the causal propagator

B —hm/ / St = =) g, vy (0)7,@), (2.3.1)

e—0t+

where Y; are the elgenfunctlons of the Laplacian A;, as before, while dn; is a suitable measure
compatible with its spectrum o(A;). In the particular case of j = +1, the underlying
spacetime M is spherically-symmetric, Y, are the spherical harmonics and the integral over
o(A41) boils down to a discrete sum. In the next chapter, explicit examples involving the
different possible values of j are considered in detail. Here, focusing on the radial component
E’(r, '), the analysis is valid for all j. First, bearing in mind Proposition 2.18, let us impose

the initial conditions satisfied by the causal propagator and restrict £ (r,r').

Proposition 2.18. A causal propagator with integral kernel given by FEquation (2.3.1) sat-
isfies Equation (2.1.6) if and only if

~ S(r—r")
dwBE(r,r") = ——-—2. 2.3.2
[ @bl = e (232
A
Proof. Equation (2.1.6a) holds true by direct inspection. Equation (2.1.6b) gives
B, Bz, ") mr —/ /dwcos (WO E(r, ') Y;(0)Y;(8) = 5(7“_’:;(5()@_@. (2.3.3)
r

In view of the completeness relation of the eigenfunctions of the Laplacian on space forms
[167-169),

/ dn,Y;(0)Y,(@) = 6(6— 9),
(Aj)

Equation (2.3.3) formally implies Equation (2.3.2). O
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By constructing a Green function of the radial equation and employing spectral tech-
niques, we obtain the radial part E (r,7") explicitly, as clarified in the following. Consider the
radial equation in Sturm-Liouville form, as per Equation (2.2.12), and let G,(r,7’) be such

that
d(r—1")

S(r)

Assume the radial coordinate lies in the interval I = (a,b), where a is limit point and b is

(Lpz = ") @ 1)Gy(r, 1) = (1@ (Ly2 = p*))Gp(r,7") = (2.34)

limit circle. Let R, and R, denote the most general square-integrable solutions respectively

at the left and right endpoints. Define the normalization
N, := P(r)W, [Ra(r), Ry(r)] . (2.3.5)

Then, G,(r,7’) can be written as [162, 170]

1

Gp(r, ') = N
P

{0(r" = r)Ra(r)Ryp(r") + O(r — 7" )Ro(r')Ry(r) } . (2.3.6)
Let C* be an asymptotically infinite contour on the p?-complex plane encompassing all the
eigenvalues of the Sturm-Liouville problem at hand, i.e. containing all the poles of G,(r,7").

The spectral resolution of the radial Green function reads, see [162, Ch.7],

1 S(r—r")
— d(p? Ne=——r—r 2 2.3.7
By a direct comparison of Equation (2.3.2) with Equation (2.3.7), we obtain
~ 1
/dwE(r, r)=—— d(p*)G,(r, 7). (2.3.8)

Remark 2.19 (Bound states). Since G,(r,7’) can have poles and branches in the p*-complex
plane, the spectrum of the operator L,. can consist partially of a point spectrum and partially
of a continuous spectrum. When this is the case, the contour integral of Equations (2.3.7) and
(2.3.8) reduces to an integral over the real line plus a sum of residues at the poles of G, (r, ).
Each of these poles, say w,, correspond to an exponentially divergent “bound state” mode
solution of the Klein-Gordon equation, with time component e*!™»)lt Tt has been shown
that amongst the bound states, some modes are related to a superradiance phenomenon [45].
However, their physical meaning is not well-understood and lies outside the scope of this
thesis. When they are present, we cannot construct the two-point function of the ground
state directly from Equation (2.3.8). Notwithstanding, when such modes are absent there

exists a tempered distribution Q\p(r, ') such that the following proposition holds. *
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Proposition 2.20. Let G,(r,7’) be the radial Green function given in Equation (2.5.6) and
satisfying Equation (2.3.4), where Ly is the associated Sturm-Liouville operator with eigen-
value p?, as per Equation (2.2.12). Assume L2 has only a continuous spectrum, i.e. assume
Gy(r,1') has a branch but no poles on the p*-complex plane. Then, there exists a tempered
distribution Q\p(r, ') such that

§ 1650 = [ auyirr)

R

and the radial part of the causal propagator, using Equation (2.3.8), is given by

A

With the causal propagator in hand, we identify an algebra of observables A(M) as
outlined in Section 2.1. In addition, since we focus on static spacetimes, A(M) may be
naturally equipped with a notion of dynamics. Precisely, the global timelike Killing vector
field on M generates a continuous, one-parameter group of isometries {¢; },er:

o M—=>M
(t,x) = or(t,x) = (t+7,x).
The latter identifies a continuous one-parameter group of *-automorphisms of A(M), say
{a; }rer, such that
a, : AM) = AM)
U(f) = ar(U(f)) =U(f o). (2.3.9)

In addition, it follows that {«;},er individuates the class of a,-invariant states on A(M).

To wit, a state ¢ on A(M) is said to be a,-invariant if
Y(ar(a)) =Y(a), VYae AM). (2.3.10)

With the ingredients above, the causal propagator, an algebra of observables, and a notion
of dynamics singled out by {a, }.cr, we can define and construct ground and thermal states,

as shown in the following two sections.

2.3.1 Ground states

Consider an algebra of observables A(M) on a static spacetime M and a continuous, one-

parameter group of k-automorphisms {«;, },cg, as defined in Equation (2.3.9).
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Definition 2.21 (Ground state). A state ¢ on A(M) is a ground state if, for a,b € A(M),
its two-point function 1), satisfies

i) ¥a(a, (b)) is a bounded function of 7;
fR T)9(a, a-(b))dr =0, Vf € C3°((—00,0)), where f is the Fourier transform of f.
[ J

From now on, assume M admits Schwarzschild-like coordinates such that each of its points
is labelled = = (t,7,0). Let P be the Klein-Gordon operator on M, and let ¢, € D'(M?) be

a positive bisolution:

(P@D)ys = (I® P)y =0,
Uo(f, f) 20, Vf e Cg°(M).

By imposing compatibility of 1 with the isometries of the spacetime, and introducing an

e-regularization to guarantee it is distributionally well-defined, we make the following ansatz:

oz = hm/ /dw@ e it —ie wg(r rY;(0)Y;(8). (2.3.11)

e—0t

Since the antisymmetric part of the two-point function is the causal propagator,
iE(z, ") = oz, 2") — (2, z) for x, 2" € M,
it follows that ws(r, ') = 1s(r’, r) and

Uo(r, 1) = —iﬁ(r, ), (2.3.12)

see Proposition 2.18. When the radial Green function has no poles, E(r, ') is obtained

explicitly by Proposition 2.20, and thence so is Jg(r, ') by Equation (2.3.12):

Ua(r, 1) = =——Gy(r,7"). (2.3.13)

By direct inspection, it follows that a state 1) on A(M) determined by the two-point function
(2.3.11) is, by construction, a ground state as in Definition 2.21. Condition i) is trivially
satisfied due to the harmonic time-dependence of 5. In turn, the latter together with
the fact that the action of a, corresponds to a time-translation of 7, with the convolution
theorem and noting that ¢ has support only on positive Fourier frequencies w, Condition ii)
in Definition 2.21 holds true. Therefore, as shown in [48], the state 1 satisfies the Hadamard
condition in each globally hyperbolic subregion of M. Accordingly, we say that the two-point
function v, is of local Hadamard form. All in all, we can state the following theorem.
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Theorem 2.22 (Physically-sensible ground state). Let

i) M be a static spacetime that admits Schwarzschild-like coordinates, with points in M
labelled x = (t,r,0), as per Definitions 1.1 and 1.18;

ii) A(M) be the algebra of observables, as in Definition 2.2;
iii) o(A;), dn; and Y; be as defined for the causal propagator in Equation (2.3.1).

Then, a Gaussian state b on A(M) with a two-point function s(f, f') whose integral kernel

reads

Yoz, 2') = lim/ dnj/dw@(w)e‘i“(t_t/_iE)QZQ(r, rY;(0)Y; (), (2.3.14)
e—0t o(A;) R

18 a physically-sensible ground state: it is the unique ground state, as per Definition 2.21,

it satisfies the canonical commutation relations, as in Proposition 2.18, and it is of local

Hadamard form, as in Definition 2.9. '

In the next section, I give the definition of KMS states and an explicit expression for their

two-point functions.

2.3.2 Thermal states

Within quantum field theory on general spacetimes, states in thermal equilibrium are char-
acterized by the Kubo, Martin and Schwinger (KMS) condition, first introduced in the
50’s [171,172]. Since then, the KMS condition has been stated in many different forms,
some equivalent and some more general than others. Here, I do not give a historical account,
but rather a brief argument illustrating that a property satisfied by Gibbs states inspires, and
is generalized by, the KMS condition. Subsequently, I write down an explicit expression for
the two-point function of KMS states on the spacetimes of interest. Mathematically rigorous
treatment of KMS states, with elaborate discussions regarding their physical meaning, can
be found in [135,173-176].

Statistical Mechanics gives us three canonical descriptions to study thermodynamical
systems of non-interacting particles: the microcanonical, the canonical and the Gibbs (grand)
canonical ensembles. The Gibbs canonical ensemble is best suited to describe an open system
in a thermal bath, i.e. at fixed temperature, with neither particle number nor total energy
fixed. Since the notion of particle, hence of particle number, is not uniquely defined within
quantum field theory, we rely on the Gibbs canonical ensemble to introduce the notion of

thermality.



o Quantum Field Theory on Static Spacetimes

Consider a quantum system in a bounded region 2 of a static spacetime M whose dynam-
ics is ruled by a Hamiltonian H, whose states are elements of a Hilbert space H, and whose
observables are elements of an algebra 2( consisting of bounded operators on H. Let {ex}

be an orthonormal basis of H, and let Tr denote the trace over H, i.e. Tr(a) = " (aex|ex)
k

for a € A. Assuming €™ is bounded and linear, it follows that it is also of trace class,
see [18, Pg. 200], and that the quantum mechanical time-evolution may be implemented by
e™ae~ ™ =: o (a). Within the Gibbs canonical ensemble, the expectation value of the
observable a € 2l on a Gibbs state 1o € H at fixed inverse-temperature 5 > 0 is of the form

_ Tr(eFHa)

Yala) = To(e ) - (2.3.15)

Assuming o, has a suitable analytic extension to complex times, the cyclic property of the
trace implies Tr(e ", (a)b) = Tr(e " ba,1i5(a)). The latter property together with the
definition of Gibbs states as per Equation (2.3.15) yields, for a,b € 2

Ya(a-(a)b) = Ya(baiis(a)). (2.3.16)

Amongst the plethora of complications that emerge when considering infinite degrees of
freedom, one is that neither H nor e ?# nor observables in general, are necessarily of trace
class—Equation (2.3.15) is generally ill-defined. Notwithstanding, in 1967, Haag, Hugenholtz,
and Winnink [176] showed that, under reasonable conditions, the thermodynamic limit

Jim 4o(a) = 4(a)
exists, and that, when it does, 1(a) satisfies the property of Gibbs states given in Equation
(2.3.16). Accordingly, for unbounded systems, the characterization of thermal states is given

by a generalization of the property in Equation (2.3.16). The precise definition follows.

Definition 2.23 (KMS state). Let A(M) be the algebra of observables, as in Definition
2.2, on a static spacetime M, with a continuous, one-parameter group of x-automorphisms

{a;}rer, as defined in Equation (2.3.9). Consider an «,-invariant state ¢ on A(M), as in
Equation (2.3.10). With a,b € A(M), define the functions

Fu(7) :==Y(bar(a)) and  Gu(T) := ¢(ar(a)b).
1 is called a KMS state with respect to o, at inverse-temperature § > 0 if it satisfies the KMS

condition, i.e. if F, and Gy, extend to analytic functions on the strips {z € C : Im(z) €
(—=B,0) U (0,5)}, which are continuous at the boundaries {z € C : Im(z) € {—4,0,5}, and
that satisfy

Fop(T +1i8) = Gup(7).
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Physically, temperature relates to energy, energy relates to time; hence, it is not unrea-
sonable that the notion of thermality introduced by the KMS condition is linked to a notion
of time. Specifically, by Definition 2.23, a temperature can be assigned to a quantum state
on a general spacetime when there is a time-evolution that yields an automorphism on the
algebra of observables. This is always the case when the underlying spacetime is static, as
described on Page 51. In this case, it is straightforward to construct KMS states, as given
by the following theorem and proved, in details, in [135, Pg. 138-142].

Theorem 2.24 (Physically-sensible KMS state). With the assumptions and notation of The-
orem 2.22, a two-point function o(f, f') with integral kernel

) . e—iw(t—t/—is) 6+iw(t—t’+ia) . , -
ot )= tim [ an, [ o6t | T+ S| @V

(2.3.17)

identifies a unique physically-sensible thermal state 1 at inverse-temperature 3 with respect
to the dynamics induced by time translations: it is invariant under all symmetries of the
underlying spacetime, it satisfies the canonical commutation relations, is of local Hadamard
form, and satisfies the KMS condition. 'y

2.4 Probing quantum states with particle detectors

An Unruh-DeWitt detector is a spatially localized quantum system existing on a spacetime
and interacting with a quantum field. It has been introduced by Unruh [177] and DeWitt [178]
within quantum field theory on curved spacetimes, and it has been since then applied in
several contexts, theoretically [68, 179, 180] and experimentally [50, 181-183] motivated. In
the next chapter, I apply the particle detector approach described in this section in the study
of two physical phenomena. One consists of anti-correlation effects on a suitable class of
asymptotically AdS spacetimes, and the other concerns thermal effects on a naked singularity
spacetime. Here, I describe the theoretical model chosen, as considered in [17], and I obtain
an explicit expression for the transition rate in Schwarzschild-like coordinates by using the
two-point functions constructed in the previous section.

Take the detector to be the simplest quantum model of an “atom™ a pointlike two-level
system with energy gap €2 > 0, characterized by a Hilbert space Hp, and by a Hamiltonian
Hp. Let {|0p),|2p) } be an orthonormal basis such that Hp [0p) = 0 and Hp |Qp) = Q|Qp).
Suppose the detector is following a smooth timelike trajectory x parametrized by its proper
time 7, on a static spacetime M. Let ¥ : M — R be a Klein-Gordon field initially in a



o Quantum Field Theory on Static Spacetimes

Gaussian, Hadamard state 1); acting on an algebra of observables A(M) as in Definition 2.2.
Recall that 1); identifies a Hilbert space H,, by the GNS theorem, as described on Page 37.

Assume the detector couples to the quantum field through the interaction Hamiltonian
Hip(7) = ex(r)W(a(7)) @ u(r), (2.4.1)
where ¢ € R is a small coupling constant, x € C5°(R) is a switching function and
(1) := Q) (Op] €7 +[0p) (2p| ™ (2.4.2)

is an operator acting on Hp. The interaction Hamiltonian given in Equation (2.4.1) is said to
be of monopole-type and p is called a monopole-moment operator. This terminology descends
from recognizing this model as a “zero-th order” simplification of a light-matter interaction,
such as that of an electron bound in an atom, and taking into account that it is customary
to implement multipole expansions in “moments” when dealing with localized charges, see
e.g. [184, Sec.II|. The total Hilbert space is Hy, ® Hp and the total Hamiltonian reads

H = Hy, @ Iy, + 1y, ® Hp + Hine.

The probability of a system, whose initial state at time 7; is |¢;) = |1;,0p), to be found in
the final state 1) = [¢f, Qp) at time 7, for ¢y € H,,, can be computed as follows. In the
interaction picture, we have that |¢y) = U(7y, 7;) [1:), where U is given by the Dyson series.
Up to first order in perturbation theory,

T
Uty 1) =1— l/ AT Hipy (T),

i

and the amplitude of a transition |¢;) — [¢)f) is

= —i / " dr (] Hoa (1) [03) (2.4.3)

A

Equation (2.4.3) together with Equations (2.4.1) and (2.4.2) yields
M = —ic(Qp| u(0) |0D>/ dre (1) (| U ((7)) [¢)
Therefore, the probability of a transition |¢;) — [¢y) is

A = | @0l w(0) 00) | [ drex(r) (s W) )| (24.)

Note that if we take €2 < 0 instead, then Equation (2.4.4) corresponds to the probability
of a transition |¢;,Q2p) — [y, 0p), i.e. the probability of the detector undergoing a de-
excitation. The first term of Equation (2.4.4), ¢?| (Qp|u1(0)|0p) |?, depends on the internal
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details of the detector. The second term is called response function, and we shall denote it

F. Let us rewrite it in a more convenient form. First, by expanding the expression, we find
Tr LTS A , .
F [ drdre TN ) (] 8 @) ) ] Bl () 03

Recalling that we are considering real-valued fields, and summing over all possible final states

1y, completeness entails

F = /T:f /T:f deT’e*iQ(T*T')X(T)X(T') (wl| \I’(:C(T))\Il(x(r’)) Wz) .

The term (¢;| U(z(7))W(x(7")) [1;) is the pullback of the two-point function ¥y (z, z), of the
state 1;, to the detector’s trajectory. For convenience, we shall denote it simply by s (7, 7').
To explicitly compute the response function, and to obtain the probability of the detector
undergoing an excitation, we are left with the problem of choosing a switching function. To
bypass transient effects and the subtleties that emerge in this regard [185—187|, we assume
that the detector has always been, and will always be, switched on. In infinite interaction

time limit the response function reads

]::/ / drdr' e M=y (7, 7). (2.4.5)

The final simplification we make is that of considering the detector to follow a static
trajectory. As exemplified in the next chapter, this simplified model is still useful to study
physical phenomena. On one hand, due to the time-translation invariance and the infinite
interaction time, the response function given by Equation (2.4.5) is divergent. On the other
hand, taking into account that along stationary trajectories 1o(7,7") depends on 7 and 7/
solely through their difference 7 — 7/ =: s and writting 19 (7,7") =: 12(s), we can drop one of

the two integrals in Equation (2.4.5) to define a finite quantity: the transition rate,

F = /RdSB_iQS’QZJQ(S). (2.4.6)

Note that the right-hand side of Equation (2.4.6) coincides with the Fourier transform with
respect to s of the pullback 5(s) of the two-point function, evaluated at 2.

2.4.1 The transition rate in Schwarzschild-like coordinates

Suppose an Unruh-DeWitt detector is following a static trajectory on a spacetime M that
admits Schwarzschild-like coordinates, as per Definition 1.18. Let us write down the transition

rate explicitly for the ground and thermal states constructed in the previous section. By
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Theorems 2.22 and 2.24, the two-point functions of the ground and thermal states are given
by Equations (2.3.14) and (2.3.17), respectively. Since the proper time 7 is related to the
coordinate time t by 7 = /f(r)t, we have t —t' = —7 —. _ 5 _ Thus, for a thermal state,

fr) T Af()

substituting Equation (2.3.17) into Equation (2.4.6) and using that

dse ™5 e Vi = 276 (Q ¥ i) : (2.4.7)
J 7

one obtains

, 5 (Q n %) 5 (Q _ %) ~
Fo=lim [y [ deb(wien 1) Lalr YO0 (248)
e—0Tt O'(Aj) R 1—e Pw 6&") —1

In the expression above, (r,0) gives the fixed spatial position of the detector. By integrating
Equation (2.4.8) in w, and doing an analogous computation for the ground state, the following

theorem holds.

Theorem 2.25 (Transition rate for the physically-sensible states). With the assumptions
and notation of Theorem 2.22, the transition rate, as per Equation (2.4.8) of a static Unruh-
DeWitt detector with energy gap Q2 at fized spatial position (r,0), interacting for an infinite
proper time with the ground state defined in Theorem 2.22, is given by

Fu=20(0) [ @R (249)

A

For a thermal state at inverse-temperature 8 defined in Theorem 2.2/, we have

: sign(§2) 27
Fp = QWW /U(A‘) dn;|Y;(0) "o (r, T)\w:\/mm‘- (2.4.10)

)

The transition rate of excitations (2 > 0) for the ground state, given by Equation (2.4.9),
vanishes identically, while for the thermal state, it does not. Moreover, it is easy to see that
the transition rate seen as a function of the energy gap, F3(f2), given by Equation (2.4.10),
is such that

FoQ) _ /T, (2.4.11)
Fs(—=9Q)

When Equation (2.4.11) holds true, we say the detector satisfies the detailed balance condition
at inverse-temperature T, ' = B/f(r). This condition specifies an equilibrium between the
process of excitation and its reverse (de-excitation).

o8



2.4.2 Unruh, Hawking, anti-Unruh, and anti-Hawking effects 59

2.4.2 Unruh, Hawking, anti-Unruh, and anti-Hawking effects

Suppose the underlying background also admits a non-degenerate, bifurcate Killing horizon
with surface gravity x,. As explained in Section 1.3, there is a naturally defined global
Hawking temperature, as per Definition 1.10, given by T, = 5. In this context, borrowing
the therminology common within black hole physics [100, 188|, we interpret the ground state
given by Theorem 2.22 as a Boulware-like state, and the thermal states given by Theorem 2.24
as Hartle-Hawking-like states. In particular, the Hartle-Hawking state is the thermal state at
temperature T,g. Consider a detector coupled to the Hartle-Hawking state such that both
Equations (2.4.10) and (2.4.11) hold with g = TgLH Then, the temperature measured by the

gH

detector, Tp = \;m in accordance with Equation (2.4.11), coincides with the local Hawking

temperature Ty, as in Definition 1.11. In this scenario, we say the detector has thermalized

at Ty—and duly noted the Hawking effect. Withal, three paramount remarks follow.

i) The Boulware-like and Hartle-Hawking-like states are not, in general, Hadamard at
the horizon and the transition rate, accordingly, diverges therein. However, if the
temperature of the field coincides with T,y —if it is the Hartle-Hawking state—then it

is regular at the horizon and the transition rate is well-defined even there |11, 140].

ii) If we consider a finite interaction time, the results above do not hold in general: the
temperature measured by the detector does not match exactly the redshifted tempera-
ture of the field. This fact gives rise to relevant physical phenomena, such as the strong

anti-Unruh/Hawking effects described in the remainder of this section.

iii) As shown in [189], a detector can “thermalize” with a non-thermal state. Hence, to
properly say that a detector that satisfies the detailed balance condition at the local
Hawking temperature has detected Hawking radiation, we should take note of the state

to which the detector is coupled.

This scenario of when we can also study the transition rate as a function of temperature
is of relevant to the applications shown in the next chapter. Consider a detector that, at
each fixed spatial position x, thermalizes at a temperature Tp(x), i.e. Equation (2.4.11) holds
true. Since F depends on the trajectory of the detector, we can see it as a function of x,
hence we can also see it as a function of Tp by looking at the inverse relation x = x(7p). In

this scenario it makes sense to define the anti-correlation effects, as follows.
Definition 2.26 (Anti-correlation effects). If

OF (Tp)

— <0
JTp ’
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then we say the transition rate manifests an anti-correlation effect. If the bifurcate Killing
horizon of the underlying background is an observer-dependent acceleration horizon, such as
the Rindler horizon on Minkowski or AdS spacetimes, then we also refer to it as the anti-
Unruh effect. If the underlying spacetime is a black hole, accordingly, we call it anti- Hawking
effect. °

Both the anti-Unruh and anti-Hawking phenomena are negative differential effects that
were recently discovered |74,75] and possess a weak and a strong formulation. Both formula-
tions concern the behaviour of the transition rate with respect to the observed temperature.
Definition 2.26 above gives their weak versions. The strong anti-correlation effects concern
the fact that a detector may approximately thermalize, i.e. for finite but long interaction

times

FQ) | om
at a temperature (Tp) that decreases as the (redshifted) temperature of the field ((8+/f(r))~")
increases. Since here we only consider infinite interaction times, Tp = (8 \/m)_l and only
the weak form is of relevance. Thus, we omit the adjective “weak” when referring to the
anti-Unruh and anti-Hawking effects.

To understand the need of introducing Definition 2.26, let us consider two standard sce-
narios. First, the following example from statistical physics, and subsequently the Unruh

effect on Minkowski spacetime.

Example 2.27 (Bosons and Fermions). Let kg be the Boltzmann constant. The average
number of particles with energy F of an ideal gas of bosons and fermions are ruled, respec-

tively, by the Bose-Einstein and Fermi-Dirac distributions:

1 1

@E/kBT _ 17 (2412&) NF—D X m (2412b)

NB-E X

Computing the derivatives with respect to the temperature 7" of Equations (2.4.12), we find
that in both cases ¢ € {B-E, F-D}, it holds true

sign (%) = sign(F) > 0.

Since only positive £ makes sense in this context, we conclude that for ideal gases of bosons

and fermions the number of particles in a given state increases with temperature. o
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Now let us return to quantum field theory and consider the Unruh effect: “a uniformly
accelerated observer sees Minkowski vacuum as a thermal bath”. On one hand, it can be
formalized within standard quantum field theory in terms of creation and annihilation op-
erators. In this context, one computes the expectation value of the number operator in
Minkowski vacuum as seen by a Rindler observer, and obtains a certain distribution that, in
four dimensions, is given by a certain polynomial (the local density of states) multiplied by
a Planckian distribution that selects the Unruh temperature [177,190]. On the other hand,
analogously to the Hawking effect, the Unruh effect can also be stated in the framework of an
Unruh-DeWitt detector: on Minkowski spacetime, a detector following a Rindler trajectory
with proper acceleration a, and interacting with Minkowski vacuum for an infinite proper
time, will observe the Unruh effect by thermalizing at the Unruh temperature Ty = 3-. In
this scenario, as shown in [190, 191], the explicit form of the transition rate, which depends

on the number of dimensions, is given by

1

1 1 Q
2 e2m/a + 1’

(2.4.13a) FMink, = I e2ra _ 1’

Fitinks = (2.4.13b)

) 1 402 + a2 :
FMink; = 327 e27/a 4 1’ (2'4'13@ F My =

1 Q2+ a?)
1272 e2r%a — 1

(2.4.13d)

For all spacetime dimensions, the closer the detector is to the horizon, the higher its
proper acceleration, and the higher the temperature measured. However, with respect to
Ty the transition rate is not always a monotonically increasing function. The expressions
in Equation (2.4.13) are plotted in Figure 2.1, which makes it clear that for n > 4 we have
that temperature, acceleration and transition rate are all directly proportional, while for
n = 3 together with Q < 0 (de-excitation) we have that fMink3 decreases with a—that is, the
anti-Unruh effect is manifest.

Guiding our intuition by what happens in standard scenarios such as the one in Example
2.27, we would expect that the higher the temperature, the higher the energy available, the
higher the number of collisions, the higher the number of particles, the higher the transition
probabilities for an Unruh-DeWitt detector. That is indeed the case for a detector expe-
riencing the Unruh effect on the four-dimensional Minkowski spacetime (and on five- and
six-dimensional Minkowski spacetimes). Therefore, the contrasting behaviour observed in
three dimensions gains the name of anti-Unruh effect. This spacetime dimension dependence
for the manifestation of these anti-correlation effects has been verified on topological black
holes in [83,84], works that I summarize in Sections 3.1 and 3.2 of the next chapter, and on

other spacetimes such as the Bertotti-Robinson solution [192].
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Figure 2.1: The transition rate on Minkowski spacetime as a function of the proper acceleration of
the detector. On the left, for 2 = 0.1; on the right, for for Q = —0.1.
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For completeness and for future reference, I include Figure 2.2 that illustrates the be-
haviour of the transition rates given in Equation (2.4.13) as a function of the energy gap.
Note that seen as a function of €2, the transition rate also shows a rather different behavior

for 2 < 0 in the three-dimensional case.
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Figure 2.2: The transition rate on Minkowski spacetime as a function of the energy gap € for a fixed
proper acceleration a = 1 and for spacetime dimensions three to six.

2.5 Examples

To illustrate how to apply the framework described in this chapter, in Section 2.5.1 I con-
struct the ground and KMS states on a four-dimensional Minkowski spacetime endowed with
spherical coordinates. This is a nice example to consider since not only it constitutes a sce-
nario where abstract expressions can be written in closed form in terms of special functions,
but it also admits a one-parameter family of physically-sensible boundary conditions. For
completeness, in Section 2.5.2, I show that choosing Dirichlet boundary condition at the
coordinate singularity at r = 0 yields the standard results on a four-dimensional Minkowski

spacetime.



o Quantum Field Theory on Static Spacetimes

2.5.1 On Minkowski spacetime with a wire

Consider a scalar field ¥ : M — R with mass mg on a four-dimensional Minkowski spacetime
M endowed with Schwarzschild-like coordinates (¢,r,0,¢). For t € R, r € (0,00), 6 € [0, 7),
¢ € [0,27), its line element is given by Equation (1.5.7) with n = 4:

ds? = —dt* + dr® + r*d6* + r* sin(0)*dy”. (2.5.1)

As mentioned in Section 1.5.1, spherical coordinates do not cover the whole Minkowski space-
time. However, the coordinate singularity at » = 0 can be interpreted as a physical boundary
(not a mathematical boundary): the hypersurface » = 0 is the set of points (¢,0,0,¢) € M,
forming a “line”, a “wire”, in M. If we impose Dirichlet boundary condition at » = 0, in the
sense of Definition 2.16 with v = 0 and as done in the next section, we recover the results
for the transition rate on Minkowski spacetime (without a wire).

By invoking Theorems 2.22 and 2.24, there is only one step to undertake to obtain the
ground and thermal states. More precisely, we need to obtain the spectral resolution of
the Green function of the radial equation. With this goal in mind, I first obtain the radial
equation and its solutions. Subsequently, I study the admissible boundary conditions and
I construct the Green function of the radial equation, obtaining also its spectral resolution.
With the two-point functions in hand, I consider, respectively, the thermal contributions to
the ground state fluctuations and to the energy density and I compute the transition rate of
an Unruh-deWitt particle detector.

The radial equation

Let Y;"(0,¢) be the spherical harmonics on the 2-sphere with eigenvalues \}* := —¢(¢ + 1).

The ansatz
U(t,r,0,0) =e “Rr)Y;™0,p)

solves the Klein-Gordon equation (2.1.1) if and only if the function R(r) solves the radial

2

equation (2.2.9). In the coordinates of Equation (2.5.1), for p? := w?—m?, the radial equation

reduces to one of Bessel type:

R"(r) + %R/(r) + <p2 + %) R(r) =0. (2.5.2)

The radial solutions

The Sturm-Liouville operator L,2 associated with the radial equation, as in Equation (2.5.2),

1(d [ ,d .
Lp2::—ﬁ($(r %)+)\€>
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Accordingly, let us check the square-integrability of the solutions at each endpoint with
respect to the measure r?dr. Bases of solutions of Equation (2.5.2) can be written in terms

of the spherical Bessel functions j,(pr) and y,(pr) with index

SR RVA R YA
5 > 0.

V=
At r — 0, a suitable basis is

Ry (pr) = ju(pr), Ry (pr) = pyu(pr).

The L?-norms of the solutions above behave asymptotically as

r—=0 p r—0 9, 3

R1(0)(pr) Y = HRl(o)(pT)HLz RO o0 = v > 5
r—0 —y— r—0 —9oy 1
Rao)(pr) "~ 7771 = || Rooy (pr)l| 12 '~ 77 <00 = v < 5

thus 7 = 0 is limit circle for £ = 0 (i.e. ¥ =0), and limit point for ¢ > 0. Defining

yel0,m), ifl=0
Ye = ’
0, ifl>0

the most general solution that is square-integrable at the singularity can be written as

Ry, (pr) = cos(ve) Rao) (pr) — sin(ye) Rago) (pr).- (2.5.3)

Markedly, for £ = 0, the solution (2.5.3) satisfies the (generalized) Robin boundary conditions
parametrized by 7, see Equation (2.2.16). For ¢ > 0, it reduces to the principal solution
Ri(0)(pr), consistent with imposing Dirichlet boundary condition.

At infinity, a suitable basis is given by the Hankel functions

Ri(oe) (pr) = K (pr) = G (pr) + iy, (pr) = Rioy(pr) + ]—)Rz(o) (pr), (2.5.4a)

Roooy (pr) = WP (pr) = j, (pr) — iy (pr) = Rigo)(pr) — ERQ(O) (pr). (2.5.4b)

It follows that r» = oo is limit point, since
700 _TIm(p)r

Ri(oo)(pr) "7 €7t = || Rygooy (pr) 22 < <00 <= Im(p) >0,

Ro(oo) (pr) "X €77t = || Roooy ()| |12 27 TP < 00 <= Tm(p) < 0.
Therefore, the most general square-integrable solution at infinity can be written as
Roo(pr) = Ri(eo) (pr)©(Im(p)) + Raoo) (pr)O(— Im(p))

= (31(0) (pT) + %RQ(O) (PT’)) @(Im(p)) + (R1(0) (pr) - ]Z_.?RQ(O) (297’)) @(_ Im(p))
i sign(Im p)

» R (pr).

= Rao)(pr) +
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Note that the Sturm-Liuville operator and the radial solutions defined above satisfy the

following useful properties with respect to complex-conjugation

L= L, (2.5.5a)
Raoo) (pr) = Ri(o0) (D7), (2.5.5b)
Rj)(pr) = Rj(o)(pr), j € {1,2}. (2.5.5¢)

The radial Green function

With R,, and R, as in the previous section, the Green function of the radial equation, as

per Equation (2.3.6), reads
Gylr,1") = - (O07 = 1R, (1) Rucl) + O(r — )R (1) Rclr)) . (2.5.6)

Using that P(r) = r? and that the Wronskian between the spherical Bessel functions is
W.[j.(2), y»(2)] = %, for the normalization defined in Equation (2.3.5) we find

N, = {cos(w)sign(lmp);—? + sin(fyg)} . (2.5.7)
In addition, given Equations (2.5.5), it holds
Ny=N, and G,=g, (2.5.8)

Note that 1

—m — Y€ (gﬂr).

hence for v € [O, %] the radial Green function has no poles.

N,=0 <= (=0 and tan(y) =

Spectral resolution of the radial Green function
The spectral resolution of the radial Green function G,(r,7’) as in Equation (2.5.6) is given
by Equation (2.3.7). For v € [0, g], it simplifies to

3 . d0AIG, () =~

Recalling that G,(r,7’) is defined whenever Im(p) # 0, C*° can be taken as the infinite radius
limit of either a “pac-man” contour, say C, in the p?-complex plane or of two semi-disks, say

C,, in the p-complex plane, since it holds

¢ A6, = § oG (1)

C1 CQ
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Both contours are illustrated in Figure 2.1.

2
G pieip C

Im(pz) /\m(]))

“Pac-Man”

)

~_ 7
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Re(p)

S</
5 —> 28] -
&K

Figure 2.1: Each semi-circle on the right-hand side is mapped to a “pac-man” contour.

Let us choose the “pac-man” contour and compute the integral

im d(pz)gp(r, r') = lim lim d(pz)gp(r, ).

e—=0 p—oo
C1

In view of Equation (2.5.8), we have

Go(r,7") [y <0 = Gp(r, ) [im(z)>0- (2.5.9)

Taking into account Jordan’s lemma and Equation (2.5.9), we get

f{ d(p*)G,(r, ") = lim Ood(pQ){ngg(r, r')—gpﬂ.a(r,rf)}. (2.5.10)
.

e—0 0

Consider the right and left propagating terms of G,(r,r’) for Im(p) > 0, respectively:

g;(r, r') = Ai/.@(r’ —7)R.,, (r)Ri(oo) (1), Q;(r, ') = G,(r,r") — Qp>(7’, ). (2.5.11)
p

The fundamental relation that connects the solution Ry (r) with those at » = 0 reads
Rl(oo)<7’> = ARl(()) (7”) + BRQ(O) (T), (2512)
with coefficients A = 1 and B = ]i), as in Equation (2.5.4a). The normalization (2.5.7) in

terms of A and B, reads

N, = {Bcos(v) + Asin(v,)}, for ITm(p) > 0. (2.5.13)
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By direct substitution of Equations (2.5.11), (2.5.12) and (2.5.13) into Equation (2.5.10), for
the right propagating term we find

]g _dp*)G; (rr') =60 =) /0 ") { B Cosfy g;jgﬂ L } R, (r)Ro, ().

For the left propagating term we find an analogous expression. It follows that

A@?) Gy(r,1") = [ dp?)O(w —mo) { = L R(p)Ry ()}
1. / \ |

7 cos(v,)” + p?sin(7,)
(2.5.14)

Two-point functions

The two-point functions for the ground and thermal states of a free, scalar, massive Klein-
Gordon theory is given by Theorems 2.22 and 2.24. On the spacetime M with line element
(2.5.1), let us write their integral kernels as explicitly as possible. Consider first the ground

state, whose two-point function has integral kernel

P9.00(z,2") = lim Z Z / dwe™ === (1, Y0, )Y, (0", ¢). (2.5.15)

e—0t
£=0 m=—¢

where Y™ (6, ) are the spherical harmonics on the 2-sphere with eigenvalues A" = —¢({+1).
On account of Equations (2.3.13) and (2.5.14), the radial part JQ(T, r’) is given by

~ p
¢2(T7 T,) = — 3
7 cos(y,)” + p? sin(y)’

O(w — mo) Ry, (pr) Ry (pr'), (2.5.16)

2

where p is taken as the positive solution to p* = w? — mZ. We can sum with respect to the

index m by using the addition formula of the spherical harmonics [158, Pg. 105]

— 241
Z YVZ 7 Ym 9/790) An Pf(q))’

m=—/

where P, is the Legendre function and ® = cos(f) cos(0”) + sin(6) sin(0’) cos(p — ¢’). Note
that ® is symmetric under the mappings 6 <> 6’ and ¢ <> ¢'. Then, Equation (2.5.15) reads

2€+1

V9.00(,2') —hmZ/ dw e =)0 (r) 1)

e—0t

——P(®). (2.5.17)

For KMS states at inverse-temperature § with respect to the Killing field 0;, we obtain

fzwt t'—ig) e+iw(t7t’+is) " 20+ 1
Wy p(z,2') = lim Z/ dw{ + Ualr )= —Pi(®). (25.18)

es0+ 1—e" efw — 1
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The transition rate

To compute the transition rate of a static Unruh-DeWitt detector as given by Theorem 2.25,
one needs to take into account Equation (2.4.7), together with the identities P;(1) = 1 and,
as given in [193, (10.60.12)],

Z (204 1)je(pr)? = 1.

=0

For the ground state, with two-point function as in Equation (2.5.15), we obtain

(- —m sin(y)?
( _ 0) or? o+ 2 (7) '
27r cos(y)” + p?sin

Foo = o7 [p cos(2pr) + cot(y) sin(QpT)} } (2.5.19)

For the thermal state, with two-point function as in Equation (2.5.18), Equation (2.4.10)
together with Equation (2.5.19) yields

: Slgn(Q)

Fs = a5 Foo(=192)-
2.5.2 On Minkowski spacetime (without a wire)

With the assumptions and definitions of the previous section, let us set Dirichlet boundary
condition at the singularity » = 0 and show that it yields the standard, closed form expressions

on Minkowski spacetime [17].

Two-point functions

Define the auxiliary parameter z := +/r2+ 12 — 2rr’® and consider the identities [193,
(10.60.2)| together with [193, (10.23.6)]):

sin(pz)
pz

Z (20 + 1) jo(pr)je(pr') Po(®) =
=0

Substituting Equation (2.5.16) in Equation (2.5.18) with v = 0, for a KMS state we have

bl ) — lim Oodw o iw(t—t'—ie) . pHiw(t—t'+ie) ] ] sin(s/w2 - m%z) 2.5.20)
2N ot o 1—e B e —1 | 4m? z ' o
For the ground state, instead, we have
o0 i) 1 sin( wQ—mgz>
n o 1: —iw(t—t'—ic
Vo0o(z,2") = Ell>%1+ dwe o . : (2.5.21)

mo
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Let us focus on the ground state and write the above expression in a closed form. Let

o.:= 2% — (t —t' — ie)?. For my = 0, the integral in Equation (2.5.21) yields

(2.5.22)

i 2.5.23
e—0+ 472 \/Of‘S ’ ( )
where K7 is the modified Bessel function of second kind. Note that taking the limit mqg — 0
of Equation (2.5.23) we obtain Equation (2.5.22).

Thermal fluctuations

To obtain the regularized thermal fluctuations ¢5(¥?(f)) for a Gaussian, Hadamard, thermal
state ¢z with kernel (2.5.20), one could apply the regularization prescribed in Example 2.10.
However, for simplicity, and since the difference between the two-point functions of two
Hadamard states yields a smooth function, per Definition 2.9, let us regularize the thermal
state using the ground state instead of using the Hadamard parametrix. That is, let us

compute the thermal contribution to the ground state fluctuations. We call
Atpap(x,2) : = Pop(w,2") — thooo(w,2)

:/mdw%os(w(t_t/)) ! Sin( wQ_m%Z) (2.5.24)

efw — 1 472 z

mo

For the massless case, we can perform the integration in Equation (2.5.24) analytically. Its

coincidence point limit yields the thermal contribution to the ground state fluctuations:

. 1
Athy g = :}}an Athg g(z,2") = oF

Regularized energy-momentum tensor

Let us compute the thermal contributions to the energy density of the ground state. With
Example 2.11 in mind, consider the energy-momentum tensor of the regularized thermal state
determined by Equation (2.5.24):

( Tuw 1) g = lim {Dyy, (2, 2") [Atpg p(, 2]},

' —x
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where the differential operator is the same as that of Equation (2.1.16). The thermal contri-
bution to the energy density is simply p := (: Top 1) 4, With

1 1 1
DO()(I, .T/) = 5 {5}&/ + 87«87«/ + Wagagl + W CSC(Q) Csc(@')a¢8¢/} .

Numerically, it is straightforward to verify that
2

P = 30pT

Transition rate

For the transition rate, setting v = 0 in Section 2.5.1 yields the following standard results on

Minkowski spacetime: for the vacuum state

5 \/ mo@ —Q —my)

b

and for a thermal state at inverse-temperature (5

7 sign(Q) /22 — mZO(|Q] —
/8 p—t

695—1 o







3. Applications

3.1 On a static BTZ and Rindler-AdS3 . . . . . ... ... ... ... ..... 74
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In this chapter I employ the quantum field theoretical framework outlined in Chap-
ter 2 on static spacetimes described in Chapter 1. Let M be an n-dimensional, static,
stably-causal, non-globally hyperbolic spacetime equipped with a Lorentzian metric tensor
g, with scalar curvature R € R, and endowed with Schwarzschild-like coordinates (t,r,6),
0=(0,¢1,...,0n_3), as per Definition 1.18. On M, consider a free, scalar Klein-Gordon field
U : M — R with mass my > 0 (or effective mass m?%;, as per Equation (2.1.2)), coupled to
curvature through the parameter £ € R and subjected to Equation (2.1.1). Throughout this
chapter we take M to be either a static BTZ black hole, Rindler-AdS3, a massless flat, hy-
perbolic or spherical topological black hole, a flat, hyperbolic or spherical Lifshitz topological
black hole, or a global monopole. In each scenario, the procedure followed for the construc-
tion of physically-sensible states is the same as the one exemplified for Minkowski spacetime
in Section 2.5. Notwithstanding, different thermal phenomena are studied on different space-
times, and they are discussed accordingly within each section. The results obtained and

summarized in this chapter have been published in [66,83-85].

73



® Applications

3.1 On a static BTZ and Rindler-AdS;

In this section I consider Klein-Gordon fields on a static BTZ black hole and on Rindler-
AdS;. First, I outline the construction of physically-sensible states, following the same steps
as those on Minkowski spacetime taken in Section 2.5. I remark that such analysis has been
performed for the more general and intricate scenario of rotating BTZ black holes in [36,69].
Here, in this regard, I merely summarize their results imposing vanishing angular momentum.
Then, with the ground and thermal states in hand, in Section 3.1.2, I employ the Unruh-
DeWitt detector approach to study quantum effects: the recently disclosed and still-puzzling
anti-Unruh and anti-Hawking effects, as described in Section 2.4.2. These anti-correlation
effects were discovered and studied on BTZ black holes for the ground state with Dirichlet,
transparent and Neumann boundary conditions in [75]. Notwithstanding, the results exposed
here have been published in [84] and generalize this previous work by admitting more general
boundary conditions, by also taking into account thermal states and by including Rindler-

AdSj3 in the analysis.

Geometric features of BTZ black holes are outlined in Section 1.5.5. For f(r) := TQL_;’%,
the line element for the static scenario in Schwarzschild-like coordinates reads
ds* = —f(r)dt* + f(r) " 'dr® + r?d6?, (3.1.1)

where t € R, 7 > 1, > 0, 0 € [0,27), and M = ri/L? is the black hole mass. The Killing
vector field 0, generates a bifurcate Killing horizon at r = r;, with associated local Hawking

temperature
(3.1.2)

Tn
Tyi= s Noprt
The unwrapping of the angular coordinate yields the universal covering of BTZ: on Rindler-
AdS3, we have § € R. Since both spacetimes are described by Equation (3.1.1), we take
both into account concomitantly, bearing in mind the different behaviour with respect to the

angular coordinate.

3.1.1 Ground and thermal states

The radial equation
By mode-decomposition, as per Equation (2.2.8), we assume
U(t,r,0) =e ™ R(rY,0),

where Y;(0) = €™ are the eigenfunctions of the one-dimensional Laplacian A;. Note that on
BTZ we have ¢ € Z, while on Rindler-AdSs, ¢ € R. Taking into account the line element
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given in Equation (3.1.1), the Klein-Gordon Equation (2.2.7) yields the radial Equation
(2.2.9). Applying the coordinate change

r? —r?
ez =

€ (0,1), (3.1.3)

r2

and using the Frobenius method, we find that the radial solutions behave asymptotically as

R(2) 2 asz =0 (r—rp), (3.1.4)
z) ~ 1.
(1—2)%, asz—1 (r— o0);
with exponents
iLPw 1
o and f[i = 3

vi= /14 L?>mZ,.

Consequently, we obtain that the ansatz

and auxiliary parameter

R(z) = 2 (1 = 2)™((2)

solves the radial equation if and only if {(z) solves the hypergeometric equation

{z(l—z)%jL(c—(a%—b—l)z))d;i—ab} ((2) =0, (3.1.5)

such that, for ¥, := i%, the parameters are given by

a::oz++5++Tg,
b::O‘Jr_'—BJr_Tb
c:=142a;.

The radial solutions

The integrality conditions of the hypergeometric parameters a, b and ¢ given in the previous
section, as well as the square-integrability analyses regarding the radial solutions, and the
selection of suitable bases of solutions at the endpoints are carefully described in [36,69]. In
addition, in Section 3.2.1 I go into detail of the analysis for the n-dimensional generalizations
of BTZ spacetimes that involves the same hypergeometric functions and also holds for n = 3.
For those two reasons, in this section I simply state which are the radial solutions to be taken

into account.



® Applications

First, let ['(z) be the Euler Gamma function, and let

F(a,b,c; 2) ZFc—i—s

be the hypergeometric function with a branch cut in the sector |ph(1—2z)| < 7 of the complex

plane. Denote the standard hypergeometric solutions by

G)(2) = Fla,b;¢; 2), (3.1.6a)
G (2) =2""Fla—c+1,b—c+ 1,2 — ¢ 2), (3.1.6b)
Guy(z) =Fla,bia+b+1—¢1—2), (3.1.6¢)
Guy(z) =1 —2) """ Flc—a,c—bjc—a—b+1;1—2z). (3.1.6d)

We find that the endpoint z = 0 is limit point and that the most general square-integrable

solution is given by

Ro(z) = 2 (1 = 2)*{C1(0)(2)O(— Im(w)) + a0 (2)O(Im(w)) }.

The endpoint z = 1, however, is limit circle if v € (0, 1), and limit point otherwise. In the
former case, the solution R.(z) that satisfies the generalized Robin boundary condition at

z = 1 parametrized by v € [0, 7) is given by

Ry (z) = 22+ (1 = 2)" { cos(7) Gy (2) + sin(7) Gy (2) }-

Spectral resolution of the radial Green function

The spectral analysis of the radial Green function described in Section 2.3, performed for
the BTZ black hole in [306,69], selects the boundary conditions for which the radial Green
function has no poles and yields the radial part of the two-point functions of interest, see
Remark 2.19. Specifically, it gives a threshold,

I'(v) TA =6 +7T) (1 -4 — TL;))
I(—v) TG+ TBr—To /)’

for the existence of bound state modes in the two-point function. That is, for v € [0,+%), the

7! = arctan ( (3.1.7)

radial part (seeing z as a function of r)

1 (AB — AB)

a1 = 2imv |Asin(y) — B cos(7)]

R ()R (), (3.1.8)

with coefficients

T Ca— _
(e)T(c—a b)7 and B — F(e)l(a+0b c)’

I(c—a)l'(c—0) ['(a)T(b)

is well-defined. To impose the same boundary condition for all /~-modes, then one should take

v € [0,7.], where v, := v = §

A:

(3.1.9a)
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Two-point functions

With Equation (3.1.8) and Theorems 2.22 and 2.24, we obtain the two-point functions for
physically-sensible states. The results reported in [36,69] for a BTZ spacetime are straight-
forwardly generalized to include Rindler-AdS; spacetime simply by changing the behaviour
of the angular component of the two-point function accordingly. The two-point function for
a ground state reads

V200, ') = lim dm/dw e~ =)0 (1, )00, (3.1.10)

e—0t

while for a KMS state at inverse-temperature (3 it is given by

7zw(t7t’7is) 6+iW(t*t'+i€) ~ ,
o p(x, ") —hm/ dm/dw@ [ + o (r, 1 )e 00
(A1)

ems0+ 1 — e bw efw — 1
(3.1.11)

On BTZ spacetime, the integral with respect to the measure dr, associated with the spectrum
o(Ay) of the Laplacian reduces to a sum over ¢ € Z, while on Rindler-AdS; it corresponds to
an integral over £ € R with respect to the standard Lebesgue measure. Moreover, note that
the Hartle-Hawking state is given by Equation (3.1.11) with 8 = 27 /ry,.

3.1.2 The transition rate of an Unruh-DeWitt detector

Let us now probe the quantum states given in the previous section. Consider an Unruh-
DeWitt detector modelled by a two-level system with energy gap 2 as outlined in Section
2.4. For simplicity, assume the detector is following a static trajectory, hence at fixed spatial

position (r,#), of constant (supercritical) proper acceleration

T 1

0= —F——>
Ly\/r?> =712 L’

given by a complete integral line of the Killing field d;,. It is worth mentioning that the
temperature observed via the GEMS method [114, 115] coincides with the local Hawking

temperature:

1 1
T =—\/a*— = =T,
GEMS = 5 7z =1
Note that the temperature is only well-defined for supercritically accelerated observers, that
is Tegms > 0 if and only a > % In this scenario, the transition rate for when the detector

is coupled to physically-sensible states is given by Theorem 2.25. Substituting Equations
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(3.1.10) and (3.1.11) in Equations (2.4.9) and (2.4.10), respectively, we obtain the following

expressions. When coupled to the ground state the transition rate is

: 2 Im(AB)
= 0(-Q dne = R.(r)? 3.1.12
Fam Ol [ v s et e 192
while for a KMS state at inverse-temperature [, it reads
sign(€)) / 2 Im(AB) 5
= dny — ) 1.1
e PVIOL 1 Joay "y |Asin(y) — B cos(7)|? () ‘w:\/f(r)lﬂ\ (3.1.13)

For a massless conformally coupled Klein-Gordon field, the behaviour of the ¢ = 0 con-
tribution to the transition rates given by Equations (3.1.12) and (3.1.13) and with respect
to the local Hawking temperature T} is illustrated in Figure 3.1. Figure 3.2 illustrates their
behavior with respect to the truncation order /,,,,. Note that this variable temperature is
not the temperature of the Boulware-like ground state, but rather it is the one that would
be detected for the KMS state at the corresponding locus. In addition, for aesthetics, they

are normalized with respect to the maximum value of the quantity plotted.

1.0} 1.0F

0.8+ ] 0.8}
. 0.6F 1 0.6}
]:() ]:TH
0.4} 1 0.4+
0.2+ f\ 0.2
e ————
ool ! . . N 0.0l
0 1 2 3 4 5

Ty

Figure 3.1: ¢ = 0 contribution to the transition rate as a function of the Hawking temperature
for rp, = 1, 2 = —0.1 and different boundary conditions; from top to bottom, respectively, v =
(0.50,0.47,0.40,0.25,0)7. On the left, for the ground state; on the right, for the Hartle-Hawking
state.

Recall the anti-correlation effects defined in Section 2.4.2. We see that the ¢ = 0 term
of the transition rate for the ground state does decrease as we approach the horizon, which
corresponds to Ty — oo, for all boundary conditions. That is, the anti-Hawking effect is
manifest. However, performing the sum over ¢ may drastically change said behavior. The
numerical analyses performed, which are available at [195] in a Mathematica notebook and in
a Jupyter notebook, confirmed that to be the case, depending on the value of r;,. Specifically,

we verify that for r, = 1 the anti-Hawking effect seems to be cancelled out by the £ > 0
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3.2 On massless hyperbolic black holes 79

contributions for Dirichlet boundary condition, while it remains clearly visible for Neumann
boundary condition. At the same time, for the thermal state, we find that the transition rate
is a monotonically increasing function of Ty in all scenarios, i.e. for all boundary conditions,
for small or large values of r, and also after summing in ¢. The counterpart of this analysis
on Rindler-AdS; simply requires that we integrate in ¢ instead of performing a discrete sum.

In this case, we obtain analogous results for the occurrence of the anti-Unruh effect.

1.0F / /, : ‘ ] 1.0F

0.8} ] ().8»(

0.6} ] 0.6}

Fo 08 Fo

0.4 / 0.4}

0.2| 0./ 0.2|
0 10

0.0L . : : : g 0.0k . . . . . A

0 200 400 600 800 1000 0 100 200 300 400 500 600

Zmllflf e‘mal’

Figure 3.2: Transition rate summed over all natural numbers up to £,,., at several temperatures
for r, = 1, Q@ = —0.1 and Dirichlet boundary condition, from top to bottom in the zoom plot
Ty = (1,5,10,20,50,100). On the left, for the ground state: it does look like the transition rate
converges to a monotonically increasing function of temperature. On the right, for the KMS state:
the curves are manifestly separated, and curves of smaller temperatures remain higher than curves
of higher temperatures.

3.2 On massless hyperbolic black holes

In this section I apply the quantum field theoretical framework of Chapter 2 to the study
of the anti-correlation effects on massless hyperbolic black holes. I construct both ground
and thermal states for arbitrary effective masses, general Robin boundary conditions at AdS
conformal infinity and for spacetimes of any dimension n > 3, generalizing previous works
with specific parameters [38,196]. First, in Section 3.2.1, I construct these physically-sensible
states. Then, in Section 3.2.2, I give explicit expressions for the transition rate of a static
Unruh-DeWitt detector. For the case of massless conformally coupled scalar fields, I summa-
rize the numerical analysis performed to study the anti-Hawking effect. The results I present
generalize those in the three dimensional case [75,84] described in the previous section and
that were published in [83].

Topological black holes are described in Section 1.5.7. The case of M = 0 and negative,
constant sectional curvature corresponds to massless hyperbolic black holes. Let L be the

AdS radius, n > 3 the number of spacetime dimensions, and d=2 , be the unit metric on
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the (n — 2)-dimensional hyperbolic space. In Schwarzschild-like coordinates, we take t € R,
r>r, >0 0¢€ R o €102n), forn > 4 and ¢,...,0,_3 € [0,7), forn > 4. For

f(r):= T2L;;’21, their line element reads
ds® = —f(r)dt* + f(r)"'dr® + r?d=;_,.

The Killing horizon at r = r}, yields the Hawking temperature as per Equation (3.1.2).

3.2.1 Ground and thermal states

The radial equation

Given the symmetries of the underlying spacetime, let Y;(#) be the eigenfunctions of the
Laplacian on the (n — 2)-hyperbolic space with eigenvalues \y = — <€2 + (”7_3)2) and let us

assume that a solution of the Klein-Gordon equation can be written as
U(t,r,0) = e " R(r)Yy(0).

Applying the coordinate transformation given by Equation (3.1.3), the radial equation,

as per Equation (2.2.9) here written in the new coordinate z, reads

0? 0 L2 L*w? m?
42(1 — 2)— + 4+ (2n—1 -+ = — —eff = 0. 2.1
{ 2( 2)8z2 + (44 (2n —10)2) 5 T 2 Ao + P z}R(Z) 0 (3.2.1)

Analogously to the previous section, the radial solutions behave asymptotically as per Equa-

tion (3.1.4), though with exponents given by

iLPw 1/(n—-1)
S d fe== ("), 3.2.2
e L ) (3:2:2)

Thus, considering the ansatz
R(z) = 2°(1 = 2)*((2),

we find that ((z) satisfies the Gauss hypergeometric equation (3.1.5), but with parameters

generalized to n dimensions

-3
a:=aoay+ P+ T, — 1 1 (3.2.3a)
-3
bi=oy + By — To— 2 — (3.2.3b)
ci=1+2a,. (3.2.3¢)

with auxiliary parameters

—1)2 _ 2 g2
vi= \/—(n 1 ) +L2m?% >0 and Y,:= \/(n 3) + 5\ (3.2.3d)
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The restriction v > 0 corresponds to the Breitenlohner-Freedman bound [197] on the effective
(n—1)%
4
L = rp,, the auxiliary parameter Y, does not depend on the spacetime dimension n and it

mass given by L*m?Z; > — . Moreover, it is interesting to note that in the special case

reads simply i¢/2. In fact, in this case, none of the parameters a, b and ¢ depend on n.

The radial solutions

Casting the radial equation (3.2.1) as a Sturm-Liouville problem, as defined in Equation

(2.2.12) with eigenvalue w? and Sturm-Liouville operator

1 d sn d (1—2)72" (LN, m%
Lp:i=——— [ L (a-n2) = e
W LA(1—z) 2" (dz (Z( 2 dz) 4 ( r? + 1—2/)]’

2
dry z

we obtain that the suitable space of solutions is that of square-integrable functions with
(1-2)"2"
z

respect to the measure . In a neighbourhood of each singular endpoint zy € {0, 1},
there are different convenient choices of bases that, in addition, depend on the integrality
of the parameters a, b and c of the hypergeometric equation. Let {(i(s), (a(z)} denote a
convenient basis for the solutions of the hypergeometric equation close to zy. Accordingly,
let us denote {Ri(.,), Raz)} @ basis for the radial solutions close to zy, which is written in
terms of the hypergeometric functions as Rj(.,)(2) = 2% (1 — 2)% iz (2), for i € {1,2}.

If neither ¢ nor ¢ —a — b are integers, convenient bases are given by the standard hyperge-
ometric functions in Equation (3.1.6). If either a, b, ¢ — a, or ¢ — b is an integer, then we say
this is a degenerate case of the hypergeometric differential equation, and one of the hyperge-
ometric series of the standard solutions includes only a finite number of terms, as explained
in [198, Pg69]. Let us start analysing the square-integrability of the standard solutions at

z = 0. Asymptotically, we have

Gy (2) = Fla,bye;2) 201,
Goy(2) =2 Fla—c+1,b—c+1;2—¢;2) R 217,
l1—n
1—2)72 ,.01
s(z) = (A-2)7 =501
z z

In(z), if Re(ay) =0,
Z2Re(@s) - if Re(ay) # 0.

——Lzéf;(w). Therefore, Ry(p)(2) is square-integrable

in a neighbourhood of z = 0 if and only if Im(w) < 0. For the other solution, an analogous

Assuming w € C, we have that Re(ay) =
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computation yields that Ry (2) is square-integrable in a neighbourhood of z = 0 if and only
if Im(w) > 0. That is, we find that if ¢ ¢ Z, then z = 0 is a limit point according to Weyl’s

endpoint classification (see Definition 2.13) and the only square-integrable solution is
Ro(2) = O(—Im(w)) Ry(0)(2) + O(Im(w)) Ra0)(2)- (3.2.4)
Let N € {1,2,,3,...}, and suppose a,b # 0,1, ..., N — 1. On one hand, if c =1+ N, then
we must replace the standard (y0)(2) by [1 99, Pg.564|

@) (0)n

Cooy(2) =F(a,b; 1 + N 2 lnz+z p [w(a—l—n)—w(a)+w(b+n)—w(b)

W
—(N+14+n)+(N+1)—n+1)+ (1 } i 1”__637): Nb);‘nz—”.
- (3.2.5)
If c=1— N, then we must replace the standard (y()(z) by
Guoy(2) = 2N F(a+ N, b+ N;1 +N;z)lnz+§: (&—21]\2 ]E[I))+N> [¢(a+N+n)
— nfl

—¢la+ N)+Yb+N+n)—Yb+N)—9(N+1+n)+ (N +1)—(n+1)

N

(n — DI(=N)y n
CIEDS (—a—N(l—b-N),"

n=1
On the other hand, using Equations (3.2.2) and (3.2.3c) we obtain
c=1+N < w—:FzL—iVGZNJF

Therefore, for the values of w for which we have ¢ = 1+ N, which have a negative imaginary
part, we take the standard (j(o)(2) but replace the standard (y0)(2) with the solution given
in Equation (3.2.5). Since neither the standard Ry (z) nor the replaced one are square-
integrable for Im(w) < 0, the replacement does not affect the classification of the endpoint
z = 0 as limit point. An analogous argument holds when ¢ = 1 — N. Furthermore, if, when ¢
is an integer, also a or b is an integer, then we have another degenerate case [198, Pgs71-73].
In any case, the secondary solution with the logarithmic term is never square-integrable.

Now let us check the square-integrability of the standard solutions at z = 1. Asymptoti-

cally, we have
Gy =Fla,ba+b+1—c1—2) 2311
Goqr) = (1—Z)CabF(c—bc C—a—b+1;1_z)zzl(1_z)c—a—b7

S(Z) _ (1 _Z) ; z%l

. (1—-2) =
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Hence, assuming a + b — ¢ = v ¢ 7Z, we have

/IR 2z~ (1—2), ifj=1,
(1—2)', ifj=2

For v € (0,1), both solutions are square-integrable and z = 1 is limit circle. For v > 1, which
correspond to mZ; > 0, only Ry(1y(2) is square-integrable and z = 1 is limit point.
The hypergeometric solutions (3.1.6¢) and (3.1.6d) are given as the analytic continuation

of (3.1.6a). They are related by the fundamental formula

F(a,b;c;2) = AgF(a,b,a+b+1—c¢;1— 2)
+ Bo(1 —2) " F(c—a,c—b;c—a—b+1;1—2), (3.2.6)

where Ay and B, are constants depending on the parameters a, b and ¢. However, these
coefficients Ay and By have poles at ¢ = a + b £ N, for integer N. That is, Equation (3.2.6)
is not well-defined when ¢ — a — b is an integer. Thus, we need different expressions to study
the singularity z = 1, and these can be found in [198, Pg74|. For c =a+b— N, N € N*, the

standard solution F'(a, b, c; z) can be written as

F(a,b;a+b— N;z2)

Nl
— N)
—-N n n
(1 —=2) E_O n'l_) (1—2)"+

n

+ B 2% %(1 — 2)"[In(1 — 2) + Ky, (3.2.7)

where k, = —¢(n+1) —¢(n+ N + 1) + ¢¥(a+n) + (b + n), while ¥(z) is the digamma
function. Using Equation (3.2.7), we can identify a basis that is numerically satisfactory
close to the singularity at z = 1, dubbed {(11)(2), (3(1)(2)}, by taking

Guy(z) =1 —2z)7" Z N)"(l —2)", (3.2.8)

n'l— In

; - (an . N ~ 2 [n(1 — 2) + k- (3.2.9)
Equation (3.2.8) is nothing but the principal solution at z = 1, F(a,b,a +b+ 1 — ¢; z), as
given in Equation (3.1.6). However, (51)(2) should be replaced by Equation (3.2.9).

In the case ¢ —a—b = —v is an integer N, which is tantamount to taking effective masses
such that L2m2, = N2 — (=1- 1) for N € Z, the secondary solution is given by Equation
(3.2.9) and it is not square—mtegrable due to the logarithmic term. It follows that for each
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N € Z there is a value of meg for which z = 1 is limit point. However, take into account
the Breitenlohner-Freedman bound and the fact that n > 3. Also, recall that for non-integer
v > 1 the endpoint z = 1 is also limit point. Then, we have that for any v > 1, integer or
not, only the principal solution is square-integrable, z = 1 is limit point, and only Dirichlet
boundary condition can be imposed.

For convenience, from now on I focus on the case of v € (0,1), which corresponds to
L*m2; € —@
conditions. In this case, the most general square-integrable solution at z = 1 satisfies a Robin

,0) and is more interesting to us since it admits a large class of boundary

boundary condition parametrized by v € [0, 7) and is given by

R, (2) = cos(y)Ri1)(2) + sin(7y) Ro1)(2)- (3.2.10)

The radial Green function

With the radial solutions given by Equations (3.2.4) and (3.2.10) for v € (0, 1), the Green

function for the radial equation reads
1
G(z.') = 37 10 — ) Rul2) Bo(2!) + O(z — ) Fol) iy ()
with normalization constant, defined in Equation (2.3.5), given by
Ny = —2(1 = 2) T W.[Ro(2), Ry (2)). (3.2.11)

To obtain an explicit expression for the normalization it is useful to take into account the
well-known connection formulas of the hypergeometric functions. As given by expressions
(15.10.17) and (15.10.18) in [200] (or implemented in a Mathematica notebook in my GitHub
page [201]), the functions (;1y(2), @ € {1,2}, can be written with respect to the basis

{CI(O) (2), Ci(0) (2)}:

G(2) = AGio)(2) + Bl (2), (3.2.12a)
Co1)(2) = CCi0)(2) + Dy0)(2), (3.2.12b)

with coefficients A, B, C' and D given by

L(e)'(c—a—10) ot ['2—-c)l'(c—a—Db)

I'(c—a)l'(c—Db) rl—a)l’(1-=0) °

L(e)l(a+b—c) wowr D— F'e—col(a+b—rc)
L(a)T(b) T Ta—c+DI(b—c+1)

A= (3.2.13a)

B =

(3.2.13D)

One can check that these coefficients, seen as functions of the frequency, satisfy

Alw) =A(w") =C(w) =C(w*) and B(w)= B(w")= D(w)= D(w*). (3.2.14)
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Given the Wronskian
WGy, Gyl = (a+b—c)z7(1 — 2) "7
and using Equations (3.2.12) with (3.2.11), we find, for Im(w) < 0
N, = —v(Asin(y) — Beos(y)) =: N-. (3.2.15)

From Equation (3.2.15) and the properties of the coefficients given in Equation (3.2.14), we

directly obtain the normalization for Im(w) > 0:

Ny = N_|oosws = —v(C'sin(y) — D cos(7)) =: N-.

Spectral resolution of the radial Green function

To construct physically-sensible states by invoking Theorems 2.22 and 2.24 we need to know
where the poles of the radial Green function are. For convenience, let us focus on the case
Im(w) < 0, so that the solution that is square-integrable at z = 0 is simply Ry(p)(2). In this
section, let NV be a non-positive integer. For Dirichlet and Neumann boundary conditions,

we have, respectively,

7y=0=>N.=0 <= B=0 <= (aorbis anon-positive integer)
< wp=+i(—2N +1+v+£27),

and

vy=7/2=>N.=0 <= A=0 <= (c—aor c—bisanon-positive integer)
< wy = +i(—2N +1—-v+27).

For L # ry, T assumes real values and a detailed analysis regarding the poles should be
taken into account. Assuming v € (0,1), Im(w) < 0, and L = 7, (so Y is purely imaginary),
the frequencies wp and wy have non-negative imaginary part and thus are not poles of the
radial Green function.

Now consider v € (0,7/2) and define Z(w) = Z. That is

=(w) = I'(v) T'(c—a)l'(c—b)
T T(=v) D(a)T(d)

The poles of the radial Green function, in this case, are the frequencies that, for each ~, solve

the equation
=(w) = tan(v). (3.2.16)
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That is, whenever Z(w) is real, there exist a boundary condition v = arctan(=(w)) € R for
which the radial Green function has a pole. Details on how to approach the transcendental
Equation (3.2.16) can be found in [36,83]. All in all, we find that there are no bound states for
v € 10,7/2]. In this case, we can use Jordan’s lemma to compute the contour integral of the
spectral resolution of the radial Green function given in Equation (2.3.7). This computation
is analogous to that on Minkowski spacetime performed in Section 2.5.1 and given in details
in [83]. Hence, here, I simply state the result: the spatial part of the two-point function of
physically-sensible states, as defined in Section 2.3, is given by

1 Im(AB)

Vel #) = o TAsin(y) — Beos(7)P

R, (z)R, (%), (3.2.17)
with A and B given in Equation (3.2.13) and R,(z) as per Equation (3.2.10).

Two-point functions

- r2—r2 . .
For 9,(r,7') given by Equation (3.2.17) with z = z(r) = —3*, the two-point functions for the
ground and thermal states at inverse-temperature [ are given, respectively due to Theorems
2.22 and 2.24, by

V9.00(z,2") = lim dﬁ/ dwO(w)e =€y (r )Y, (0) Yy (8), (3.2.18)

e—0t

—zw(t t'—ig) e-l—zw(t t' +ig)
o g(z,2") = lim dﬁ/dw@ { + Ua(r, ) Y,(0)Ye(8). (3.2.19)

e—0+ 1—e B efv —1

3.2.2 The transition rate of an Unruh-DeWitt detector

Consider an Unruh-DeWitt detector with energy gap €2 following a static trajectory of fixed
spatial coordinates (z = z(r),0), as in Section 3.1.2. Theorem 2.25 together with Equations

(3.2.18) and (3.2.19) yields the transition rate for, respectively, the ground and thermal states

PO [ e e O] o 0220
and
_se®) [, n(B)
i f<r>9_1/R‘w S TAsinG) = Beosp O B0 o i 3:220)

For massless conformally coupled scalar fields on three- and four-dimensional massless

hyperbolic black holes, we performed a numerical analysis of the transition rate when the
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detector is coupled with the ground state, or with thermal states. As a function of the energy
gap, we verify that its behaviour, given in Figure 3.1, is analogous to that on Minkowski
spacetime, illustrated in Figure 2.2. They are similar in the sense that in three dimensions
the transition rate plateaus for decreasing energy gaps, and in four dimensions it increases
without bound. Their contrast lies in the oscillatory behavior observed in the black hole
scenarios. Furthermore, considering the anti-correlation effects, the results we obtain in the
three dimensional case are compatible with those on a BTZ black hole shown in the previous
section: the anti-Unruh effect is manifest for the ground state, but it does not occur for
thermal states. In the four-dimensional case, no anti-correlation effect is observed for either
state. This spacetime dimension dependence agrees with the one observed on Minkowski

spacetime, as per Figure 2.1.
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Figure 3.1: Transition rate as a function of the energy gap for the KMS state at zp, = 1/2, 0, = 7~

and for different boundary conditions: from top to bottom, v = (0.50,0.47,0.40,0.25,0)7. On the
left, for n = 3 and with the integration performed up to £ = 100; on the right, for n =4, at o1 =0
and with the summation performed up to m; = 20 and integration, up to £ = 20.
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Figure 3.2: Transition rate, integrated up to £ = 100, as a function of the local Hawking temperature
on the three-dimensional hyperbolic black hole for Q = —0.1, # = 7! and for different boundary
conditions. From top to bottom v = (0.50,0.47,0.40,0.25,0)7. On the left, for the ground state; on
the right, for the KMS state.
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-n=4 ~n=4
Fo Fr

1

Figure 3.3: Transition rate as a function of the local Hawking temperature, summed up to
m; = 100 and integrated up to ¢ = 100, on the four-dimensional hyperbolic black hole for
Q= -01,at 0, = 7!, ¢1, = 0 and for different boundary conditions: from top to bottom
~v = (0.50,0.47,0.40,0.25,0)7. On the left, for the ground state; on the right, for the KMS state.

3.3 On Lifshitz topological black holes

In this section, let us consider a free, scalar, quantum field on four-dimensional Lifshitz
topological black holes. In Section 3.3.1, I summarize the construction of the ground and
thermal states, analogously to the previous sections. This work has been published in [85].
In addition, it expands previous analysis [202], by considering massive fields, by allowing for
more general boundary conditions, and by also setting three types of spacetime interiors.
As given in Section 1.5.8, in Schwarzschild-like coordinates, the line element of Lifshitz

topological black holes reads
L2
ds? = —f(?”)dt2 + = f(r)fldTZ + rsziyg, (331)

where dZi’Q is given in Definition 1.18 with 7 = x and

2 /.2
f(r) ::% (%—i—g)

For k =0, k = —1 and k = +1, Equation (3.3.1) characterizes, respectively, flat, hyperbolic
and spherical Lifshitz topological black holes. In addition, the corresponding Ricci scalar is

given by R = —22 — &
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3.3.1 Ground and thermal states

The radial equation

Let Y,(0, ¢) be the eigenfunctions [83, 158, 168|, with eigenvalues

—(2+m?), {,meR, for k=0,

Ae= (3 +6), LER, for K = —1,
—{(l+1), £ € Ny, for k = +1,
of the Laplacian
9%38_%022—1_%%—’_59727 for kK = 0;
B = maa_; @y oo (5inh(0)55) ,  for k= —1;
ﬁaa_; T sinl(e)% (Sm(@)%) ; for k = +1.

The ansatz
U(t,r,0,0) = e “R(r)Y,(6, )

is a solution of the Klein-Gordon Equation (2.1.1) if R(r) solves the radial equation:

4r 3 4L° 2L2 2L2
R’ ——+~| R e A N — 2| R() =0
)t LLQ T2 T} )+ [(ﬁ[ﬂr + 2r3)2w R T T R s L (r) =0,
(3.3.2a)

where
A=\ + KE. (3.3.2b)

For each value of k we apply a coordinate transformation to write the radial equation in a

well-known form:

u = ZL:;“’ € (0,i00),  for k =0,
T {5 = % €(0,1), for k= -1, (3.3.3)
3:%6(1,00), for kK = +1.

For k = 0, Equation (3.3.2) with Equation (3.3.3) and the ansatz
U >;(2+V)
iL3w

yield a confluent hypergeometric equation [203]

R(u) = e™/? ( C(u). (3.3.4)

ug”(u) + (b — u)¢’(u) = aoC(u) = 0,



® Applications

with

1+u+ A
2 4Lw

For k = £1, Equation (3.3.2) with Equation (3.3.3) and the ansatz

ag = and by=1+r.

R(s) = s [r(s — D]2*H((s),
yield a hypergeometric equation [200]
s(1=s)¢"(s) + (c = (a+ b+ 1)s)C"(s) — ab((s) =0,

with parameters

1
a= —|2_V+iI€Lw—T,
1
b:%ijijLT,

c=142irLw,

where

V1 — 2K\ — 4L2w?
K .
2

T:

(3.3.5)

The radial solutions
In Sturm-Liouville form, Equation (3.3.2) reads

Laflr) = = (4 (s0)50) 4000 ) Bl) = R0,

with coefficient functions

_ ALSr

- kL2 4212’

p(r) = kL*r® + 21

o(r) =2L%r (—pr® + \) .

q(r)

After we verify the square-integrability of the radial solutions with respect to the measure
q(r) for each case k € {0,—1,+1}, we obtain the following results. First, at radial infinity

the behaviour is the same in all cases:

R(r) ~ 1% asr — oo,
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where

In addition, r = oo is limit circle if v € (0,1) U (1,2) and the most general square-integrable

solution satisfies Robin boundary conditions parametrized by v € [0, 7):
Ry (1) = cos(7) Ri(oc) (1) + sin(7) Ra(ec) ()

The other endpoint is always limit point, but the most general square-integrable solution is

case dependent, as follows. For k = 0, close to r = 0 we take:
Ro(r) = ©(=Im(w)) R0 (r) + O(Im(w)) Ryo) (7),

where the radial solutions are, consistently with Equation (3.3.4), given by
u

_ %(2+I/) )
Rl(uO)(U) =€ <m> Cl(u0)<u)7 for ¢ - {17 2},
which are written in terms of the confluent hypergeometric functions M and U [203]:
Ci(o)(w) = M(ao, bo; u),
Coo) (1) = (z’L?’w)Vul_boM(ao —by+ 1,2 — bo;u),
Cl(oo (u) = U(ao, bo; u),
ooy (1) = €"U(by — ao, bo; —u).

For k = 41, we have
Ri(so)(5) = 8" [1i(s = D)2 (5),  fori € {1,2}.
For k = —1, then close to s = L/\/§ we take
Ro(r) = O(+ Im(w)) Rao) (r) + O(= Im(w)) Ra() (),

Cioy(s) = Fla,b;c;5),

G (s) =8 Fla—c+1,b—c+1;2—c¢s),

Gy (s) = Fla,bya+b+1—¢1—5s)

Cos) = (1~ 1 Fle—ae —bre—a b+ 111~

For k = 41, then close to s = 0 we take:

Ro(r) := O(Re(T)) Rogo) (1). (3.3.6)

w(s) =F(a,bja+b+1—-c¢;1—5),

)=(s— 1) Flc—a,c—bjc—a—b+1;1—5),
s) s 'F(a,a—c+1;a—b+1;1/s),
o) (8) = s PF(bb—c+ 1;b—a+1;1/s).
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The radial Green function

For v € (0,1) U (1,2), the radial Green function reads

Gl ') = Ai/ (O — 1) Ro(r) R (") + ©(r — 1") Rolr") By (1) .

Using the fundamental relation connecting the solutions, for ¢, = 1 + d, 41,
Ri, (0)(r) = AxRi(o) (1) + BrRa(oo) (),

we obtain the normalization N, that is defined in Equation (2.3.5). For Im(w) < 0 and

Cp 1= 490 [40r+1 it is given by
N, = c.{B.cos(y) — A, sin(v)},

with coefficients given by [200, (15.10.22)]

T —b)
Ao = T(ap— by + 1)’

L F(bo—l)l 3&) —v
BO._—F(CLO) (1L°w)™",

_I'2—-ol(c—a—1b)
A= F1—al(1-0) °
B .. I'2—cl'(a+b—c)
T Tla—c+ Db —c+1)
A Tb—a+1)I'(c—a—0)
T T1—-a)l(c—a)
B I(b—a+1)'(a+b—c)

Spectral resolution of the radial Green function

The analysis regarding the existence of bound states is rather intricate and fully distilled
in [85]. On one hand, for k = 0, we obtain results analogous to those on massless hyperbolic

black holes as in Section 3.2.1: for each A-mode, there is a critical boundary condition,

2 = arctan <(_ZL2) E PF((_%) ’

such that for Robin boundary conditions parametrized by

ve 0] with A€
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the radial Green function has no poles. In addition, note that for all A-modes, if v € (0, 1),
then there are no bound states for v € [0,7/2], as it happened in Sections 3.1.1 and 3.2.1.
On the other hand, for k = +1, the existence of bound states for v € (0,1) U (1,2) and
v € [0, 7) depends more specifically on the values of the mass of the field and of the coupling
parameter.

v(2—v)
—=5—, and

1
&= 159 (9 + 5L*mj £ /81 — 10L2mg) :

For v = 0, there are no bound states, as expected. For v = 7/2, the values of L, pp and &

Let us consider the case k = —1 and define A\, :=

for which the radial Green function has no poles must satisfy

(i) L*m§ <8.1,§€ (£,64) and A < A
v e (0.1)4 (i) Im2 <81 and € ¢ (€.6,)

(iii) L*m? > 8.1;

(iv) L*m3 < 8.1, £ € (£.,&;) and X\ > \;;

ve(l?2)
(v) Lm2=8.1,(=¢ =&, and A = —¢.

Note that conditions (ii) and (iii) hold true for all A-modes, but the others are mode-
dependent. For v € (0,7) \ {w/2} and A\ # A., we find that the radial Green function

has no poles if

(2, 7) A< A, forve(0,1)
B_l 95T, 1 .
v€(0,7)) with ~:=arctan <1im 1 ) e ? A> A, forve(l,2)

w—0 A_,

(O, g) ,  otherwise.

VTN

Now consider x = +1 and define w, := *——. First, for simplicity, we impose the

restriction £ < % In this case, for T given by Equation (3.3.5), we have that Re(T) > 0

and the radial solution defined in Equation (3.3.6) is well-defined for all w € C such that if
w = Re(w) then |w| < w.. For v € (0,1) U (1,2), we find that can impose mode-dependent

boundary conditions with

B_,
v € 10,72), with 42 := arctan ( lim — > € [0, ).

wowe A,

To impose the same boundary condition on all modes, for v U (1,2) only v = 0 is admissible.

However, for v € (0, 1), there are no bound states for v € [0, 7/2].
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When the radial Green function has no poles we can perform the contour integration on
the complex-plane and obtain the radial component of the two-point functions, as described
in general terms in Section 2.3 and written down in details and with figures in [85]. All in
all, we find that the radial part of the two-point function of a physically-sensible state reads

1 Im (4, B,)
ey | By cos(y) — A, sin(7y)]?

ho(r,1') = Ry (r) Ry (r"). (3.3.7)

Two-point functions

Using Equation (3.3.7) in Theorems 2.22 and 2.24, we find the two-point functions of the

ground state

va(z,2) = lim / / dwO(w)e Dy (1, 1) Ve (0) V(0. (3:3.8)
e—0+
and of KMS states at 1nverse—temperature I}
e w(t—t'—ie)  tiw(t—t'+ie) :
valm, o) = i, / / dO(w [1_eﬁw + | B VO,
(3.3.9)

In the expressions above, the integral over the spectrum of the Laplacian with respect to the

measure dn,, with some abuse of notation, is given by

(fdffdm, for Kk =0,
R

R
/ dpe=d[dey . form=—1,
o(Ag) m=
V4
>

, for Kk = +1.

3.3.2 The transition rate of an Unruh-DeWitt detector

Using Equations (3.3.8) and (3.3.9) in Theorem 2.25, we obtain that the transition rate for a
static Unruh-DeWitt detector on Lifshitz topological black holes for the ground and thermal

states is given by, respectively,

: 1 Im (A,)B, ) )
=0O(— Y. 3.1
Fuo = 6 Q)/U(Am)dnﬁ e e E PR @810)
and
) sign(Q2) / 1 Im (A,)B ) )
e BVIOL 1 Joa )dm ey | By cos(y) — A, sin(fy)\2| <Oy (r) |w=\/f(T)IQI

(3.3.11)
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3.4 On a global monopole

Within the framework described in Chapter 2, in Section 3.4.1, I construct physically-sensible
states for a real, massive, arbitrarily coupled Klein-Gordon field on global monopoles, which
are described in Section 1.5.9. Free, scalar fields have been studied on global monopoles
before. Ground and thermal states for Dirichlet boundary condition are well-known [204,205],
and recently ground states for Robin boundary conditions have been constructed [39,206].
For Dirichlet boundary condition, thermal effects have also been taken into account [205].
Here, I generalize these previous works by constructing thermal states compatible with Robin
boundary conditions. Then, in Section 3.4.2, by employing the Unruh-DeWitt detector
approach, I study thermal effects and their relation with these different boundary conditions
admissible at the naked singularity. To better understand the behaviour of the detector, I
also compute the thermal contributions to the expectation value of the field squared and the
energy density of the thermal states renormalized by the ground state, analogously to the
computation in Section 2.5.1 on Minkowski spacetime. The analysis I report here has been
published in [66].

In Schwarzschild-like coordinates, the line element of a global monopole is given in Equa-
tion (1.5.14). However, for consistency with the notation used in [66], I apply the coordinate

transformations ¢ — ¢/« and r — ar. That is, here, I consider the line element
ds® = —dt* + dr* + o*r*d6? 4+ o*r? sin? 0dp?.

In these coordinates, the hypersurface § = 7 is a cone with a deficit angle of 27(1 — ), where
a € (0,1). The hypersurface r — 0 is a timelike, naked singularity of curvature type since

both the Ricci and the Kretschmann scalars diverge. The latter are given by, respectively

2(1 —a?)
0272

R = and K =R?”

3.4.1 Ground and thermal states

Let Y;"(8, ¢) be the spherical harmonics with eigenvalues —¢(¢ + 1). If
\I/%g(t, r.0,¢) = e—ith(,r,)l/em<97 ©),

satisfies the Klein-Gordon equation, then the function R(r) solves the Bessel equation

2 Nota
R"(r) + ;R/(’f’) + (p2 + —ig ) R(r) =0,
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with
(0+1)+26(1 — a?)

a2

pPi=w—m, and A, = —

Let j, and ¥, be the spherical Bessel functions of first and second kind [193] and define

Ri(pr) =j,(pr), and  Re(pr) =py.(pr),

where, assuming & > 0,

1+ /1 —=4Nga >0
9 =

V=

The most general solution that is square-integrable at the naked singularity with respect to

the measure r?dr satisfies a Robin boundary condition parametrized by 7 and is given by

Ry, (pr) := cos(vw) Ra(pr) — sin(y,) Ry (pr),

where the auxiliary quantity -, is defined as

yelo,m), ifv<i,

0, if v > %
Note that v < % only for £ = 0 and only if £ € [0, 210‘2 > Moreover, it holds that for v €
[0, g] the radial Green function, defined as per Equation (2.3.6), has no poles. These results
can be verified by performing the same analysis of Section 2.5.1 on Minkowski spacetime and
by simply adding the a-terms in the right places. In the end, the radial part of the two-point

functions is given by

p R'YV (pT)R’YV (pr/)
o cos(y,)” + p?sin(y,)?

Ua(r, 1) = O(w — o)~ (3.4.1)

Analogously to Equations (2.5.17) and (2.5.18), with 122(7", ') given by Equation (3.4.1), we

find that the two-point functions read, for the ground and thermal states on global monopoles

respectively,
/ 20 + 1
oo =1 duw e =19, P, 3.4.2
el ) Eggz/ e AT ) T R),  (342)
and
—zwt t'—ig) e+iw(t—t’+ia) " ) 20 + 1
o gz, 2’) = EEI&Z/ dw [ = e Pa(r, ") ppm Py(®), (34.3)

where Py(®) is the Legendre function and ® = cos(6) cos(0’) + sin(0) sin(0’) cos(¢ — ¢').

96



3.4.2 Transition rate of an Unruh-DeWitt detector 97

3.4.2 Transition rate of an Unruh-DeWitt detector

As per Theorem 2.25, we can directly compute the transition rate of a static Unruh-DeWitt
detector of energy gap €2 using Equations (3.4.2) and (3.4.3). For a Klein-Gordon field of

mass mg > 0, we find for the ground state

: _@(—Q—mo — mZ 2€+1 /s 5 2
Fooalr) = 27ra2 Z cos(7,)” in(v,)” [R% < W mar

= — mg) sin(yy,
(3.4.4)
and for a thermal state at inverse-temperature (8
: sign(Q) 1
Foo(r) = 2 [Pl i) (3.4.5)
In the particular case of my = 0, Equation (3.4.5) simplifies to
. 1 Q & 2+HD[R, (1)
Fpr(r) = 1 : 3.4.6
pa(r) 2ra? ef — 1 ; cos(’yl,)2 + 02 sin(’yu)2 ( )

In the limit o — 1, the expressions above match the expected results on Minkowski spacetime,
as computed in Section 2.5.1.

Note that since there is no horizon, even though we can construct thermal states neither
Equation (1.3.3) nor Equation (1.3.5) makes sense on global monopoles, i.e. there is no
preferred temperature a priori, no Hawking temperature. Accordingly, the focus in this
section is not on anti-correlation effects, but rather on the consequences of imposing different
boundary conditions at the naked singularity on the detector transition rates. Thence, to
auxiliate in the interpretation of the behaviour of the detector with respect to its distance
from the naked singularity for different boundary conditions, we also compute the thermal
fluctuations and the energy density, as exemplified on Minkowski spacetime in Section 2.5.1.

The thermal contribution to the expectation value of the field squared in the ground state,

which we call thermal fluctuations, is given by

AGpy(x,2) == hap(x,2") — Yo0e(, 7), (3.4.7)

with the two-point functions defined in Equations (3.4.2) and (3.4.3). Considering the regu-
larized thermal state defined by Equation (3.4.7), we define the energy density as

Eg(r) == (: Too(r) ).,

where the energy-momentum tensor, together with Equation (2.1.16), is defined as

( Tu(r) 2) g, = lim {Dyy (2, 27) [AGg , (2, 2)]} .

Y ' =z
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For the three quantities of interest here—transition rate, thermal fluctuations and energy
density—seen as a function of «, let us define their counterpart on Minkowski spacetime for
the sake of comparison:

quantity™™* := lim quantity(a).
a—1

In the following, I summarize the numerical analysis performed for the massless, minimally
and conformally coupled field. This analysis is available at [207] and detailed in [66]. All
plots follow the color code defined in Figure 3.1.

« /T
1.0 =— 0

~] ==~ 0
0.9 =— 0.10
0.8 — 0.15
0.7 = 0.20
0.6 =— 0.49

Figure 3.1: Legends for the following plots.

For both ¢ = 0 and & = %, we find that the transition rate behaves similarly when the
detector is far away from the singularity, i.e. in the limit » — oo, it approximates, but

oscillating around, its value on Minkowski spacetime:

lim Fp. (1) ~ fév[,lynk(r)

r—00

However, the behavior of the three quantities as we approach the global monopole is dramat-
ically different in each case, as shown next.
Minimal coupling

For myg = 0 and & = 0, we find that as we approach the global monopole the angular deficit
affects the ¢ = 0 terms of the transition rate, of the thermal fluctuations and of the energy

density by amplifying them by the same factor, i.e. the three quantities are such that

1 .
quantity(«) — —2quantitmek, as r — 0. (3.4.8)
a

This behavior is visible in Figure 3.2. Equation (3.4.8) also holds for the transition rate

and the thermal fluctuations if we sum over /. As a matter of fact, directly from Equation
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(3.4.6), it follows that as r — 0 only ¢ = 0 contributes to the transition rate. With respect
to the boundary condition chosen, we verify that for v > 0, the three quantities diverge at

the naked singularity and remain finite there if and only if v = 0.

0.10F j j ' T 7] 0.10F

0.08 F 4 0.08 F

. 0.06 F ] 9 0.06
o?Fio a*AG

0.04 g 0.04 1

0.02 - g 0.02

0.00 L A L L . . 0.00 &+

Figure 3.2: For the thermal state with mg =0, (=0, 8 =1, 2 =1, v = 0, and, from top to
bottom with respect to the apex, a € {0.6,0.7,0.8,0.9,0.99999,1.0}. On the left: the transition
rate multiplied by a? with f.x = 10. On the right: thermal fluctuations multiplied by o? with
limax = 50.

'
1.0Fe
'

'
'
0.8+
'

]:1,7 El,O

'
04}

0.2}

0.0
(

Figure 3.3: For the thermal state with mg=0,&£=0,8=1, Q =1, a = 0.99999 and several values
of v. On the left: the transition rate with . = 10. On the right: energy density with £i.x = 50.

Conformal coupling

For mg =0, £ = %, a € (0,1), and v > 0, the transition rate given by Eq. (3.4.6) vanishes
as r — 0, as shown in Figure 3.4. This is in sharp contrast with the minimal coupling case
of Figure 3.2, but it is consistent with the behaviour of the thermal fluctuations illustrated
on the left in Figure 3.5. However, it is noteworthy that the transition rate of excitations
and the thermal fluctuations vanish at the naked singularity even though the energy density
diverges there, as shown on the left in Figure 3.5. In addition, this divergence occurs for all

boundary conditions, even for the Dirichlet one.
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f1,0|e:0

0.00 £

Figure 3.4: The transition rate for the thermal state with mg =0, £ = %, 6=1,Q=1~v=0and
several values of o. On the left: £y, = 0. On the right: £, = 10.

0.08

0.06

AGrole=0 o0}

0.02

0.00

El,’y|l:0

r

Figure 3.5: For mg =0, £ = %, 6=1~v=0, and £pax = 0. On the left: thermal fluctuations for
several a’s. On the right: energy density for several +’s.
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With the overarching aim of probing the interaction between quantum physics and general
relativity, I considered physical phenomena within quantum field theory on curved space-
times. First, in Chapter 1, I gave key definitions from general relativity to clarify the geo-
metric features of the underlying backgrounds. Second, in Chapter 2, I outlined the steps
for establishing a quantum field theoretical framework for free Klein-Gordon fields on static
spacetimes. In particular, I delineated a procedure to follow to obtain physically-sensible
ground and thermal states and the respective transition rate for static Unruh-DeWitt de-
tectors on spacetimes that admits Schwarzschild-like coordinates. Then, in Chapter 3, I
employed the above framework on some spacetimes of interest. Next, I give a summary of
the results obtained per spacetime considered. Subsequently, I contemplate associated follow

up works and open questions.

Summary of the results obtained per spacetime considered

* On a static BTZ black hole and its universal covering Rindler-AdSs:

In Section 3.1 we reviewed the construction of physically-sensible states on static BTZ
black holes and we computed the transition rate of a static Unruh-DeWitt detector
coupled either to ground or thermal states. In particular, by analysing the behavior
of the transition rate with respect to the Hawking temperature, we studied the occur-
rence of the anti-Hawking effect and its relation with the mass of the black hole, the
boundary condition chosen at AdS infinity and the state of the quantum field. The re-
sults obtained considering the ground state comport and generalize the ones from [75].
That is, we obtained that for sufficiently small masses the ¢ = 0 contribution dictates
the behaviour of the transition rate such that the anti-Hawking effect is manifest for
all Robin boundary conditions parametrized by v € [0,7/2]. For larger masses, the
numerical analysis does indicate that the effect observed for the ¢ = 0 term may be
cancelled for Dirichlet boundary condition by performing the ¢ sum, but would still
occur for Neumann boundary condition. In addition, we found that the anti-Hawking
effect is absent for a KMS state on a static BTZ spacetime—and so is the anti-Unruh
effect on its universal covering Rindler-AdS;. These no-show results call upon further
investigation on the relation between the effects, the KMS condition and the choice of

boundary condition. The results reported here have been published in [84].
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* On massless hyperbolic black holes:

In Section 3.2, we generalized the results from the previous item by constructing
physically-sensible states on massless hyperbolic black holes, which can be seen as
higher-dimensional generalizations of static BTZ black holes. We gave explicitly ex-
pressions for the two-point functions of the ground and thermal states and for the
transition rate of a static Unruh-DeWitt detector. For the particular case of massless,
conformally coupled fields on three- and four-dimensional spacetimes, we numerically
analysed the transition rate and studied the manifestation of the anti-Hawking effect.
The main result we found is that no anti-correlation is observed when the underlying
spacetime is four-dimensional. On one hand, this is consistent with what we noticed
to be the case on Minkowski spacetime concerning the anti-Unruh effect. On the other
hand, the confirmation of this spacetime dimension dependence brings into question
the statistical significance of these anti-correlation effects. The results reported here
have been published in [83].

* On Lifshitz topological black holes:

In Section 3.3, we established a free, quantum field theoretical framework on flat,
hyperbolic and spherical topological black holes within Lifshitz gravity. Particularly
interesting is the fact that this side-by-side construction on these three spacetimes
allowed us to compare the effects of the three different types of singularities: coordinate,
curvature but hidden and curvature but naked. We found that in all three scenarios
ground and thermal states for Klein-Gordon fields are well-defined for a large set of
effective masses and Robin boundary conditions. Specifically, for meg € (—%, —%),
] are admissible at Lifshitz

)
infinity. In addition, we noticed that we can also impose mode-dependent boundary

all Robin boundary conditions parametrized by v € [0

conditions for meg € ( 4 3 ) U (—%, ) The results reported here were published

—15 12
in [85].

* On global monopoles:

In Section 3.4, we constructed ground and thermal states for a Klein-Gordon theory on
global monopoles with Robin boundary conditions. We studied the transition rate of a
static Unruh-DeWitt detector, its dependence on the boundary condition chosen at the
naked singularity, and its interplay with the thermal contributions to the ground state
fluctuations and energy density. We found that for a massless, minimally coupled Klein-
Gordon field, the spontaneous emission rate of a detector interacting with a thermal

state, as well as the thermal fluctuations and the thermal contribution to the energy
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density are finite everywhere, including at » — 0, if and only if we impose Dirichlet
boundary condition at the global monopole. Moreover, in this case we find that the
three quantities compare with their counterparts on Minkowski spacetime in the same
manner, and consistently with considering an angular deficit due to a cosmic string, i.e.

.7;_/3,7(0+) . Agﬁ,v(oﬂ . EB,V(OJr) . 1

F0%) ~ A0 T BP0 | o

To the contrary, for massless, conformally coupled fields, we verified that for all bound-
ary conditions, including the Dirichlet one, the energy density for the renormalized
thermal state diverges. Markedly, regardless of this fact, since the thermal fluctuations
vanish at the singularity, so does the transition rate. The results reported here were
published in [66].

Follow up work and open questions

To ponder on follow up work and open questions regarding the results presented in this thesis
and summarized above, I bear in mind the limitations of the framework employed together
with the main focuses that were pointed out in the Introduction section respectively at pages
4 and 5.

1. Anti-Unruh and anti-Hawking effects

On a static BTZ black hole, the anti-Hawking effect was first shown to occur for Dirich-
let, Neumann and transparent boundary conditions in [75]. Here, we confirmed that it
also occurs for other Robin boundary conditions [84]. In addition, by generalizing this
analysis to higher dimensions, we found out that such effects are absent on all four-
dimensional massless hyperbolic black holes [83]. Recently, two noteworthy results have
been obtained. First, the effect is intensified if one considers rotating BTZ black holes
instead [70]. Second, the effect is absent on other four-dimensional spacetimes [192].
Having in mind that the latter is consistent with a detector measuring the Unruh effect
on a four-dimensional Minkowski spacetime, these results give rise to the following ques-
tion: do anti-correlation effects occur on any four- or higher-dimensional spacetime?
By studying such effects on particular four- or higher-dimensional spacetimes one after
another one might be able to answer that—if such a procedure eventually halts. A good
place to start in this regard would be to check if the anti-Hawking effect is manifest
on four-dimensional hyperbolic black holes with non vanishing mass, though a more
sophisticated numerical work would be needed in this case. Nevertheless, to pursue a

better understanding of the statistical significance of the anti-correlation effects, one
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could attempt to look at the underlying mathematical structure that gives rise to this
spacetime dependence. For example, the response of a detector on an n-dimensional
Minkowski spacetime is bosonic-like or fermionic-like depending on the parity of n [190].
In [208], a closer look at the origin of this dependence clarified that, for positive energy
gap, there is not a relevant qualitatively distintion between the response as a function
of the energy gap for different spacetime dimensions (as one can see in Figure 2.2, or
in 208, Fig.1]). However, as noted here and clear in Figure 2.2, for negative energy
gap the response behaves rather differently for n = 3. In [209] it was shown that the
response, besides depending on the “number of particles”, depends also on a quantity
that can be interpreted as a local density of states that relates with the underlying
geometry. Their focus was on the simplicity of the results for n = 4 in comparison with
n > 4, but an analogous analysis could be pursued to understand instead the contrast
between n < 4 with n > 4.

. Lorentz violation

Having constructed physically-sensible two-point functions on Lifshitz topological black
holes, the foundations for the employment of the Unruh-DeWitt detector approach is
set. In fact, the transition rates for a static detector coupled to massive, arbitrarily
coupled fields admitting certain Robin boundary conditions in the ground or thermal
states were explicitly obtained in Section 3.3. The next steps would be to study those
expressions, numerically, in several situations, which is motivated by the fact that
we know Unruh-DeWitt detectors are sensible to the topology of the underlying space-
time [210] and to Lorentz violating dispersion relations in field theory [211]. The effects
of choosing different boundary conditions and of changing the topology of the under-
lying spacetime have been studied for the vacuum polarization on topological black
holes of Einstein gravity [38]. An analogous study could be performed on Lifshitz topo-
logical black holes. Such analysis should focus both on understanding the difference
between the boundary conditions for each spacetime, and on the effects of changing
just the underlying topology for each boundary condition. In addition, by generalizing
the construction we performed on hyperbolic black holes to flat and spherical massless
topological black holes of Einstein gravity, it would be interesting to compare the be-
haviour of the detector in these scenarios with those on Lifshitz topological black holes,
to understand the consequences of introducing the Lorentz violation in the perspective
of the detector.
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3. Naked singularities

We studied thermal effects on global monopoles with Robin boundary conditions. We
verified that both the choice of boundary condition and the type of coupling change
drastically the behavior of the transition rate, the thermal fluctuations and the energy
density. We verified that these physical observables diverge at the naked singularity for
many sets of the parameters. In these situations, it would be interesting to investigate
whether backreaction effects arise and hide the naked singularity, as it happens on BTZ
black holes [212]. However, since we did not notice any particular behaviour for any
specific value of the temperature, the question of what is the role of temperature on
horizonless spacetimes remains most puzzling. Insights in this regard might emerge
in a situation when we can compare a naked singularity and a hidden singularity in a
shared context. Most stimulating would be to study a dynamical scenario that ends
in a naked singularity and approach it as Hawking originally looked into black hole

collapse [97].
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