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Abstract. A nearest-neighbor analysis of baryon mass spectra reveals a striking autoclus-
tering of resonances to swarms of increasing sizes. Each cluster contains K binomials of
opposite parities whose spins range from 1=2 to K - 1=2 and a mono-parity state of the
highest spin K + 1=2 in the swarm. The clusters with K = 1, 3, and 5 are observed in both
the nucleon and the ´ excitations (up to the two nucleon states F17, H1;11 with respective
masses around 1700 MeV and 2200 MeV, and the three ´ states P31, P33, and D33 with
masses around 2500 MeV). Clusters with K even and non-zero are unoccupied so far. We
trace back above regularity pattern to internal nucleon and ´ structures dominated by a
quark–di-quark configuration and its respective rotational-vibrational excitations. Clus-
ters of the above type are appealing because upon boosting they transform (up to form
factors) as a Lorentz tensor of rank- K with Dirac components, i.e. as  —1:::—K

, and thus
allow for a covariant description of resonances in flight.

1 Order in excited light-quark baryons

The structure of the nucleon spectrum is far from being settled despite its long
history. This situation relates to the fact that the first facility that measured nu-
cleon levels, the Los Alamos Meson Physics Facility (LAMPF) failed to find all
the states that were possible as excitations of three quarks. Later on, the Thomas
Jefferson National Accelerator Facility (TJNAF) was designed to search (among
others) for those “missing resonances”. At present, all data have been collected
and are awaiting evaluation [1].

In a series of papers [2] I performed a near st neighbour analysis of data on
mass distribution of nucleon resonances reported in Ref. [3] and drew attention
to the not overlookable (by the unbiased eye) increase of state densities in a few
narrow mass bands and its exact replica in the ´(1232) spectrum (see Fig. 1).

The first group of nearly degenerate resonances consists of two equal spin-
1
2

of opposite parities (one parity binomial) and a mono-parity spin– 3
2

-
state.

The second group starts with three parity binomials with spins ranging from 1
2

�
to 5

2

�
, and terminates with a mono-parity spin- 7

2

+
resonance. Finally, the third

group begins with five parity binomials with spins ranging from 1
2

�
to 9

2

�
, and

terminates by a mono-parity spin 11
2

+
resonance (see Ref. [6] for the complete N

and ´(1232) spectra). A comparison between the N and ´(1232) spectra shows
that they are identical up to two unoccupied resonances on the nucleon side
(these are the counterparts of the F37 and H3;11 states of the ´ excitations) and
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up to three unoccupied states on the ´ side (these are the counterparts of the
nucleon P11, P13, and D13 states from the third group). The ´(1600) resonance
which is most probably and independent hybrid state, is the only state that at
present seems to drop out of our systematics.
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Fig. 1. Summary of the data on the nucleon and the´ resonances. The breaking of the mass
degeneracy for each of the clusters at about 5% may in fact be an artifact of the data anal-
ysis, as has been suggested by Höhler [4]. The filled circles represent known resonances,
while the sole empty circle corresponds to a prediction. Figure taken from [5].

The existence of identical nucleon- and´ crops of resonances raises the ques-
tion as to what extent are we facing here a new type of symmetry which was not
anticipated by any model or theory before. The next section devotes itself to an-
swering this question.
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2 Spectroscopy of autoclustering

2.1 Relevance of the quark–di-quark configuration

To the extent QCD prescribes baryons to be constituted of three quarks in a color
singlet state, one may feel encouraged to exploit for the description of baryonic
systems algebraic models developed for the purposes of triatomic molecules, a
path pursued by Refs. [7].

In the dynamical limitU(7) � ! U(3) � U(4) of the three quark system, two of
the quarks act as an independent entity, a di-quark (Dq), while the third quark (q)
acts as a spectator. The di-quark approximation [8] turned out to be rather con-
venient in particular in describing various properties of the ground state baryons
[9], [10].
The necessity for having a quark–di-quark configuration within the nucleon is
independently supported by arguments related to spin in QCD. In Refs. [11], and
[12] the notion of spin in QCD was re-visited in connection with the proton spin
puzzle. As it is well known, the spins of the valence quarks are by themselves
not sufficient to explain the spin- 1

2
of the nucleon. Rather, one needs to account

for the orbital angular momentum of the quarks (here denoted by LQCD) and the
angular momentum carried by the gluons (so called field angular momentum,
GQCD):

1

2
=
1

2
´˚+ LQCD +GQCD

=

Z
d3x

�
1

2
 ̄‚‚5 +  � (x � (-D)) + x � (Ea � Ba) � :

In so doing one encounters the problem that neither LQCD, nor GQCD satisfy the
spin su(2) algebra. If at least (LQCD +GQCD) is to do so,�

� LiQCD +GiQCD
� ;

�
L
j
QCD +G

j
QCD � � = i›ijk � LkQCD +GkQCD

� ; (1)

then Ei;a has to be restricted to a chromo-electric charge, while Bi;a has to be a
chromo-magnetic dipole according to,

Ei;a =
gx

�
i

r
�
3
Ta ; Bia = (

3xixlml

r5
-
mi

r3
)Ta ; (2)

where x
�
i = xi - Ri. The above color fields are the perturbative one-gluon ap-

proximation typical for a di-quark-quark structure. The di-quark and the quark
are in turn the sources of the color Coulomb field, and the color magnetic dipole
field. In terms of color and flavor degrees of freedom, the nucleon wave function
indeed has the required quark–di-quark form jp"

� =
›ijk�
18

[u+
i#d

+
j" -u+

i"d
+
j#]u+

k" j0 � :
A similar situation appears when looking for covariant QCD solutions in form of
a membrane with the three open ends being associated with the valence quarks.
When such a membrane stretches to a string, so that a linear action (so called
gonihedric string) can be used, one again encounters that very K-cluster degen-
eracies in the excitations spectra of the baryons, this time as a part of an infinite
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tower of states. The result was reported by Savvidy in Ref. [13]. Thus the covari-
ant spin-description provides an independent argument in favor of a dominant
quark-di-quark configuration in the structure of the nucleon, while search for co-
variant resonant QCD solutions leads once again to infinite K-cluster towers.
Within the context of the quark–di-quark (q-Dq) model, the ideas of the rovi-
bron model, known from the spectroscopy of diatomic molecules [14] acquires
importance as a tool for the description of the rotational-vibrational (rovibron)
excitations of the q–Dq system.

2.2 The quark rovibron

In the rovibron model (RVM) the relative q–Dq motion is described by means of
four types of boson creation operators s+; p+

1 ; p
+
0 , and p+

-1. The operators s+ and
p+
m in turn transform as rank-0, and rank-1 spherical tensors, i.e. the magnetic

quantum number m takes in turn the values m = 1, 0, and -1. In order to con-
struct boson-annihilation operators that also transform as spherical tensors, one
introduces the four operators �s = s, and �pm = (-1)m p-m. Constructing rank-k
tensor product of any rank-k1 and rank-k2 tensors, say,Ak1

m1
andAk2

m2
, is standard

and given by

[Ak1
�
Ak2 ]km =

X

m1;m2

(k1m1k2m2jkm)Ak1
m1
Ak2
m2
: (3)

Here, (k1m1k2m2jkm) are the standardO(3) Clebsch-Gordan coefficients.
Now, the lowest states of the two-body system are identified with N boson

states and are characterized by the ket-vectors jns np lm
� (or, a linear combina-

tion of them) within a properly defined Fock space. The constant N = ns + np
stands for the total number of s- and p bosons and plays the róle of a parameter of
the theory. In molecular physics, the parameter N is usually associated with the
number of molecular bound states. The group symmetry of the rovibron model
is well known to be U(4). The fifteen generators of the associated su(4) algebra
are determined as the following set of bilinears

A00 = s+ �s ; A0m = s+ �pm ;

Am0 = p+
m �s ; Amm � = p+

m �pm � : (4)

The u(4) algebra is then recovered by the following commutation relations

[A¸˛; A‚‹]- = ‹˛‚A¸‹ - ‹¸‹A‚˛ : (5)

The operators associated with physical observables can then be expressed as com-
binations of the u(4) generators. To be specific, the three-dimensional angular
momentum takes the form

Lm = � 2 [p+ �
�p]1m : (6)

Further operators are (Dm)– and (D
�

m) defined as

Dm = [p+ �
�s + s+ �

�p]1m ; (7)

D
�

m = i[p+ �
�s - s+ �

�p]1m ; (8)
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respectively. Here, D plays the róle of the electric dipole operator.
Finally, a quadrupole operatorQm can be constructed as

Qm = [p+ �
�p]2m ; with m = -2; :::;+2 : (9)

The u(4) algebra has the two algebras su(3), and so(4), as respective sub-algebras.
The so(4) sub-algebra of interest here, is constituted by the three components of
the angular momentum operator Lm, on the one side, and the three components
of the operatorD

�

m , on the other side. The chain of reducing U(4) down to O(3)

U(4) � O(4) � O(3) ; (10)

corresponds to an exactly soluble RVM limit. The Hamiltonian of the RVM in this
case is constructed as a properly chosen function of the Casimir operators of the
algebras of the subgroups entering the chain. For example, in case one approaches
O(3) via O(4), the Hamiltonian of a dynamical SO(4) symmetry can be cast into
the form [15]:

HRVM = H0 - f1 (4 � 2 (so(4)) + 1)
-1

+ f2 � 2(so(4)) : (11)

The Casimir operator � 2 (so(4)) is defined accordingly as

� 2 (so(4)) =
1

4
� L 2 + D

�
2 � (12)

and has an eigenvalue of K
2

� K
2

+ 1 � . Here, the parameter set has been chosen as

H0 = MN=´ + f1 ; f1 = 600 MeV ; fN2 = 70 MeV ; f´2 = 40 MeV : (13)

Thus, the SO(4) dynamical symmetry limit of the RVM picture of baryon struc-
ture motivates existence of quasi-degenerate resonances gathering to crops in
both the nucleon- and ´ baryon spectra. The Hamiltonian that will fit masses
of the reported cluster states is exactly the one in Eq. (11).

In order to demonstrate how the RVM applies to baryon spectroscopy, let
us consider the case of q-Dq states associated with N = 5 and for the case of a
SO(4) dynamical symmetry. It is of common knowledge that the totally symmet-
ric irreps of the u(4) algebra with the Young scheme [N] contain the SO(4) irreps

� K
2
; K
2

� (here K plays the role of the four-dimensional angular momentum) with

K = N;N- 2; :::; 1 or 0 : (14)

Each one of the K- irreps contains SO(3) multiplets with three dimensional angu-
lar momentum

l = K;K- 1; K - 2; :::; 1; 0 : (15)

In applying the branching rules in Eqs. (14), (15) to the caseN = 5, one encounters
the series of levels

K = 1 : l = 0; 1;

K = 3 : l = 0; 1; 2; 3;

K = 5 : l = 0; 1; 2; 3; 4; 5 : (16)
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The parity carried by these levels is ”(-1)l where ” is the parity of the relevant
vacuum. In coupling now the angular momentum in Eq. (16) to the spin- 1

2
of the

three quarks in the nucleon, the following sequence of states is obtained:

K = 1 : ”Jı =
1

2

+

;
1

2

-

;
3

2

-

;

K = 3 : ”Jı =
1

2

+

;
1

2

-

;
3

2

-

;
3

2

+

;
5

2

+

;
5

2

-

;
7

2

-

;

K = 5 : ”Jı =
1

2

+

;
1

2

-

;
3

2

-

;
3

2

+

;
5

2

+

;
5

2

-

;
7

2

-

;
7

2

+

;
9

2

-

;
11

2

-

: (17)

Therefore, rovibron states of half-integer spin transform according to � K
2
; K
2

� �

� � 1
2
; 0 ��� � 0; 1

2
� � representations of SO(4). The isospin structure is accounted for

pragmatically through attaching to the K–clusters an isospin spinor fflI with I
taking the values I = 1

2
and I = 3

2
for the nucleon, and the ´ states, respectively.

As illustrated by Fig. 1, the above quantum numbers cover both the nucleon and
the ´ excitations.

The states in Eq. (17) are degenerate and the dynamical symmetry is O(4).
The above considerations apply to the rest frame. In order to describe clusters
in flight one needs to subject the O(4) degenerate resonance states to a Lorentz
boost.

The most efficient way to achieve this task is not to boost the spin by spin
but rather the K multiplet as a whole, which takes one (up to form factors) to the
K Lorentz tensors with Dirac spinor components,  —1:::—K

.

2.3 Observed and unoccupied clusters within the rovibron model

The comparison of the states in Eq. (17) with the reported ones in Fig. 1 shows
that the predicted sets are in agreement with the characteristics of the non-strange
baryon excitations with masses below ‰ 2500 MeV, provided, the parity ” of the
vacuum changes from scalar (” = 1) for the K = 1, to pseudoscalar (” = -1)
for the K = 3; 5 clusters. A pseudoscalar “vacuum” can be modeled in terms of
an excited composite di-quark carrying an internal angular momentum L = 1-

and maximal spin S = 1. In one of the possibilities the total spin of such a sys-
tem can be jL - Sj = 0-. To explain the properties of the ground state, one has
to consider separately even N values, such as, say, N

�
= 4. In that case another

branch of excitations, with K = 4, 2, and 0 will emerge. The K = 0 value char-
acterizes the ground state, K = 2 corresponds to (1; 1)

�
[ � 1
2
; 0 � � � 0; 1

2
� ], while

K = 4 corresponds to (2; 2)
�

[ � 1
2
; 0 � � � 0; 1

2
� ]. These are the multiplets that we

will associate with the “missing” resonances predicted by the rovibron model. In
this manner, reported and “missing” resonances fall apart and populate distinct
U(4)- and SO(4) representations. In making observed and “missing” resonances
distinguishable, reasons for their absence or, presence in the spectra are easier to
be searched for. In accordance with Ref. [16] we here will treat theN = 4 states to
be all of natural parities and identify them with the nucleon (K = 0), the natural
parity K = 2, and the natural parity K = 4–clusters. We shall refer to the lat-
ter as ‘missing” rovibron clusters. In Table I we list the masses of the K–clusters
concluded from Eqs. (11), and (13).
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Table 1. Predicted mass distribution of observed (obs), and missing (miss) rovibron clus-
ters (in MeV) according to Eqs. (9,11). The sign of ” in Eq. (15) determines natural-
(” = +1), or, unnatural ( ” = -1) parity states. The experimental mass averages of the
resonances from a given K–cluster have been labeled by “exp”.

K sign ” Nobs Nexp ´obs ´exp Nmiss ´miss

0 + 939 939 1232 1232
1 + 1441 1498 1712 1690
2 + 1612 1846
3 - 1764 1689 1944 1922
4 + 1935 2048
5 - 2135 2102 2165 2276

In Ref. [15] we presented the four dimensional Racah algebra that allows
to calculate transition probabilities for electromagnetic de-excitations of the rovi-
bron levels. The interested reader is invited to consult the quoted article for de-
tails. Here I restrict myself to reporting the following two results: (i) All reso-
nances from a K- mode have same widths. (ii) As compared to the natural parity
K = 1 states, the electromagnetic de-excitations of the unnatural parity K = 3 and
K = 5 rovibron states appear strongly suppressed. To illustrate our predictions I
compiled in Table 2 below data on experimentally observed total widths of res-
onances belonging to K = 3, and K = 5. The suppression of the electromagnetic

Table 2. Reported widths of resonance clusters

K Resonance width [in GeV]

3 N
“

1
2

-
; 1650

”
0.15

3 N
“

1
2

+
; 1710

”
0.10

3 N
“

3
2

+
; 1720

”
0.15

3 N
“

3
2

-
; 1700

”
0.15

3 N
“

5
2

-
; 1675

”
0.15

3 N
`

5
2

;+ 1680
´

0.13

5 N
“

3
2

+
; 1900

”
0.50

5 N
“

5
2

+
; 2000

”
0.49

de–excitation modes of unnatural parity states to the nucleon (of natural parity)
is shown in Table 3. It is due to the vanishing overlap between the scalar di-quark
in the latter case, and the pseudo-scalar one, in the former. Non-vanishing widths
can signal small admixtures from natural parity states of same spins belonging to
even K number states from the “missing” resonances. For example, the significant
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Table 3. Reported helicity amplitudes of resonances.

K parity of the spin-0 di-quark Resonance A
p
1
2

A2
3
2

[10-3GeV- 1
2 ]

3 - N
“

1
2

+
; 1710

”
9 � 22

3 - N
“

3
2

+
; 1720

”
18 � 30 -19 � 20

3 - N
“

3
2

-
; 1700

”
-18 � 30 -2 � 24

3 - N
“

5
2

-
; 1675

”
19 � 8 15 � 9

3 - N
`

5
2

;+ 1680
´

-15 � 6 133 � 12

1 + N
“

3
2

-
; 1520

”
-24 � 9 166 � 5

value of Ap3
2

for N
�
5
2

+
; 1680 � from K = 3 may appear as an effect of mixing with

the N
�
5
2

+
; 1612 � state from the natural parity “missing” cluster with K = 2. This

gives one the idea to use helicity amplitudes to extract “missing” states.

1/2 3/2 5/2

+

J

pa
rit

y

K=2

"barbed" states

(espinons)

Fig. 2. K-excitation mode of a quark-diquark string: barbed states (espinons).

The above considerations show that a K-mode of an excited quark-di-quark
string (be the diquark scalar, or, pseudoscalar) represents an independent entity
(particle?) in its own rights which deserves its own name. To me the different spin
facets of the K–cluster pointing into different “parity directions” as displayed in
Fig. 2 look like barbs. That’s why I suggest to refer to the K-clusters as barbed
states to emphasize the aspect of alternating parity. Barbs could also be associated
with thorns (Spanish, espino), and espinons could be another sound name for K-
clusters.
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3 Conclusions

Beyond pointing onto the phenomenon of an evident autoclustering in the spec-
tra of the light quark baryons, it was argued that the swarms of resonances can
be (i) explained as a consequence of rotational-vibrational modes of an excited
quark-di-quark configuration, be the di-quark scalar, or, pseudoscalar, when at
rest, and (ii) described covariantly in terms of  —1:::—K

, when in flight.

Acknowledgments

The quark-di-quark dynamics behind the resonance clusters was revealed by the
help of Marcos Moshinsky and Yuri Smirnov.
Thanks to Mitja Rosina, Bojan Golli, and Simon Širca for having managed such an
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