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Theoretical & Phenomenological Explorations of the Dark
Sector

ABSTRACT

The particle nature of dark matter and its interactions are issues of central importance with the cur-
rent understanding of particle physics and clearly indicate the need to go beyond the Standard Model.
The lack of detection of a WIMP has spurred both experimental and theoretical innovation. A wide
array of direct and indirect detection techniques have vastly expanded the experimentally probed pa-
rameter space. This includes small tabletop experiments, large underground detectors, and ground-
and space-based telescopes searching for astrophysical and cosmological signals. In conjunction, the-
orists have gone beyond the standard dark matter scenario by adding new fields, interactions, and
portals connecting to the Standard Model. The rich phenomenology associated with these models
predict novel signatures and the experimental data provide exciting avenues to search for signs of new
physics.

In this dissertation, we present progress on exploring dark sector and BSM phenomenology from
various lenses. In the most dire scenarios, dark matter does not couple to the Standard Model and only
possesses self-interactions. Despite this, the underlying interactions produce cross sections which ex-
hibit significantly different behaviors as a function of velocity. We develop a formalism to compute

the cross section, that carefully matches the effective quantum mechanics and QFT descriptions, and
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takes into account Sommerfeld enhancement, a non-perturbative effect relevant in the nonrelativistic
regime. We find that pseudoscalar and axial-vector type interactions don’t exhibit this enhancement.
This formalism consistently deals with the pseudoscalar potential, which a priori seems singular. This
leads us to propose the Quantum Mechanics Swampland, where we begin to delineate the boundary
between quantum mechanical potentials which can be completed into a QFT and those which cannot.
Next, we consider the more optimistic scenario where that dark sector is connected to the Standard
Model via a portal. We propose an explanation to the Galactic Center Excess, a robust gamma-ray sig-
nal possibly originating from annihilating dark matter. We consider a CP-violating Higgs portal which
allows Majorana fermion dark matter to annihilate to Standard Model final states. Measurements of
the electron EDM place stringent constraints on viable parameter space. This builds on a separate
analysis of the ACME experiment’s constraint on the electron EDM and the implications this has for
generic models of BSM physics. Precision measurements are an interesting window into models of
new physics. In a similar spirit to the analysis of the EDM results, we also consider the anomalous
measurement of the 77" boson mass from the CDF experiment. We characterize this tension in terms
of the oblique parameters, and discuss various models of new physics which can generate the required
values to alleviate the tension between the measurement and Standard Model prediction. Finally, we
consider a separate portal where the dark sector is endowed with a U(1) and kinetically mixes with the
Standard Model U(1). With the expectation that the dark and visible sectors must ultimately embed
into a complete theory of quantum gravity, we use the Swampland conjectures to place constraints on

the size of the kinetic mixing parameter.
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List of Figures

A schematic of our matching procedure. In the deep UV, we expect the Born ap-
proximation to hold, which we use to set our boundary conditions at » = 4. Beyond
this is the IR of our theory where Sommerfeld enhancement might be important
and we need to solve the Schrédinger equation with the appropriate potential.

lustration of the validity of the matching procedure via numerical evaluation of
the Born cross section compared to the tree-level QFT cross section as a function
of velocity for the Yukawa (scalar) potential, pseudoscalar potential and axial vector
potential. For the scalar case, we choose 4 = 1071, my = 1072 GeV and my, =1
GeV. For the pseudoscalar case, we choose A = 1071, my = 1073 MeV and my, =1
MeV. For the axial vector case, we work in the decoupling limit. We choose the
vev v = 20 MeV, lq = 47,0 = 1073 and y = 1. We empbhasize that this plot
should 7ot be taken as an accurate illustration of the full cross section, as the Born
approximation receives large corrections in the Yukawacase. . . . . . ... .. ..
Cross section as a function of velocity for dark matter coupled via a scalar media-
tor. The numerical cross section (solid blue) is compared with the tree-level QFT
cross section (solid orange). The numerical cross sections shown here includes the
nonperturbative Sommerfeld enhancement and is summed over partial waves (trun-
cated at {yn,y such that gy, < 10 *0y). Parameters are 1 = 1, m, = 1 GeV and
my = 107! GeV. At low velocities, we observe a significant Sommerfeld enhance-
ment butatlarger velocities, the numerical cross section becomes well approximated
by the Born cross section asexpected. . . . . .. ... Lo L
Cross section as a function of velocity for dark matter coupled via a pseudoscalar
mediator. The numerical cross section (solid blue) computed with the procedure
outlined in Section 2.3 is compared with the tree-level QFT cross section (dashed
orange). Weset A = 107", m, = 1 GeV and m, = 107" GeV. At low velocities
we do not see any Sommerfeld enhancement. We begin to see deviations at larger
velocities, as expected since the tree-level QF T answer is a fully relativistic calculation
but the numerical cross section is determined from a nonrelativistic potential. . . .

19

24
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30



2.5

4.1

Velocity weighted viscosity cross section as a function of average velocity for dark
matter coupled via a scalar, pseudoscalar or an axial vector mediator. For the scalar
case, we choose 1 = 1071, my = 1072 GeV and m,, = 1 GeV. For the pseudoscalar
case, we choose 1 = 1071, my = 1073 MeV and m, = 1 MeV. For the axial vector
case, we work in the decoupling limit. We choose the vev (v) = 20 MeV, 1q = 4,
1 =10"3and y = 1. We assume the dark matter follows a Maxwell-Boltzmann dis-
tribution and use a hard cutoft at the escape velocity. The full numerical cross sec-
tion for the Yukawa potential includes the nonperturbative Sommerfeld enhance-
ment. On the other hand, as we discuss in the text, the axial vector interaction in
the decoupling limit and the pseudoscalar interaction don’t induce Sommerfeld en-
hancement and are therefore computed using tree-level relativistic QFT. . . . . . .

A schematic for the matching procedure adapted from*7. We use the Born approxi-
mation to set the boundary conditions since we expect it to approximate the scatter-
ing process well in the deep UV. » > 4 probes the IR of our theory where we expect
the quantum mechanical potential to be a good description of our system. Since we
have excised the origin, we no longer have to worry about the (potentially) singular
nature of the potential while solving the Schrédinger equation. The exact wavefunc-
tion, which is the solution to the Schrédinger equation, can deviate from the Born
wavefunction and these deformations are of physical significance, as evidenced by
the analysis of Sommerfeld enhancement. . . . . . ... L L Lo

The ratio between annihilation and spin-independent direct detection cross sections
on the m, — @ by plane for different values of |y, |. The region allowed by direct de-

tection is inside the solid XENON1T 447 constraint line, while the region allowed
by annihilation is between the solid 1 pb and 10 pb lines. We also show projected
limits from LZ3* as dashed lines. Note that the axis scales on the two plots are differ-
ent. We assume 72, = 125.2 GeV here and throughout this chapter. The left plot
shows the mass resonance with small y,,, for which the dark matter mass must be
tuned to within less than a GeV of the pole, but there is some flexibility in the phase.
The right plot shows the phase tuning: away from m;, = 2m, a large coupling is
required to achieve a sufficient annihilation cross section, but tuning the phase near
7/2 avoids direct detection limits despite the large coupling. In this case, the flexi-
bility of the allowed mass range changes to O(10) GeV. Both of these plots include
asmall non-zero Z coupling that is consistent with spin-dependent direct detection
constraints. The limits are similar for vanishing Z coupling. . . . . . .. ... ..
Spin-dependent direct detection limits as a function of dark matter mass and dark
matter-Z coupling. Constraints are close to horizontal because the spin-dependent
cross section depends on the reduced mass. For neutrons, XENON1T# is the
strongest model independent constraint. For protons, PICO #*#3 provides a slightly
stronger constraint. Additionally, we show projected limits from LZ3*. . . . . . .

xi

34

43

67



43

4.4
4.5

4.6

4.7
4.8
4.9

4.10

Plots show EFT coupling phase and dark matter mass as a function of 72; and m; for
different values of y, y, and dcp. Left: dcp is fixed to 1.5 while yy is varied. Right: yy
is fixed to —0.375 while dcp is varied. The shaded regions give a sense of the width
of the regions of interest: 60 GeV < my < 65GeV and 1.55 < Py < 1.60. We
can see that changing yy has a minimal effect on m, at large m; but strongly affects
which masses correspond to the central value of Py = 7/2. yy also affects the
smallest value of 72, that can lead to a mass resonance. Changing dcp has a larger
effect on which 7 is required to get the mass resonance, and also affects the width
of the ¢ by = 7/2 band in addition to the position of its central value. . . . . . . .
Diagram generating dark matter mass in the limit where m; islarge. . . . . . . ..
Plot of Py asa function of d¢p for different values of m,. We note that as m, in-
creases, the IR phase maps directly to the UV phase and ¢ by 0CP
Dark matter mass, EFT phase, and dark matter-Higgs Yukawa coupling as a func-
tion of the UV parameters yy and dcp for different values of 72,. In each plot we
see a similar mass structure: we see a massless state when yy and 21 have opposite
signs, and have a lightest fermion near 6o GeV for both larger and smaller yy than
this value. We can also see the scaling of both the EFT mass and Higgs coupling with
9y and m,. Note the different values on the yy axis in each of the plots. . . . . . .

72
74

74

75

Diagram that generates the dark matter-Higgs coupling in the limit where 2, is large. 76

Diagram that generates the dark matter-Z coupling in the limit where 7, is large. .
Plot of gz, as a function of yz — 5/2 for different values of ;. gz, increases with in-
creasing y2 —5/2 and decreases with increasing 72,, corroborating the scaling derived
from the diagramsin Figure 4.8. . . . . . ... ... ... o oL
Leading contribution to the non-zero Barr-Zee diagram in the large m2, limit. In
this limit, we can work perturbatively in the gauge basis. The relevant /% couplings
are the coefficients of ;(L %g W~ x,,and 5(;0 g wt Aooqe o om e
New particles that couple to the Standard Model gauge bosons contribute to the
vacuum polarization at 1-loop through this diagram. The X* represents an elec-
troweak gauge boson. We ignore the p#p” terms since they aren’t relevant for Equa-
TONS 4.3.13 - 4.3. 17« v v v v v e e e e e e e e e e e e e e e e e e e e e e
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4.12

413

4.14

4.15

Full constraints on the model parameter space in the yy — dcp plane, for different
values of 721 and m2,. In this and subsequent plots the shaded regions denote param-
eter space ruled out by experimental bounds#+37'4647_ For annihilation, we include
both an upper and lower bound. Other constraints are not relevant for these slices
of parameter space. Spin-dependent direct detection constraints in particular are
weak since yz — 5/2 is small. Dotted lines indicate proximity to mass resonance and
pure imaginary EFT coupling: the green dotted lines bound a region with dark mat-
ter mass 60 GeV < m, < 65GeV, the yellow with EFT phase 1.55 < Py < 1.6.
In Figures (a) and (b) we show that viable parameter space can be found at small cou-
plings, corresponding to a pure mass resonance with flexibility in Py In this case,
smaller values of 72 are allowed but 72; must be close to 72,/ 2. Figures (b) - (d) also
show allowed parameter space for larger couplings: (b) shows m; ~ m,,/2; (c) and
(d) show m; further away from /2 for two different values of 72,. In all of (b) -
(d), viable parameter space requires 72; ~ 60 — 70 GeV, dcp 2 1, and Ppy & /2.
Similar to Figure 4.12, in slices of the 721 — m, plane and for difterent values of yy and
dcp. We show constraints from 39970:48:42:43,298,40,184,41,303,60,372,37,104 i) 4 ddjtion to
the constraints shown in Figure 4.12. Dotted lines around the critical mass and
phase values give a guide towards the proximity of any viable space to mass resonance
and pure imaginary EFT coupling: the green dotted lines bound a region with dark
matter mass 60 GeV < m, < 65 GeV, the yellow with EFT phase 1.55 < Py <
1.6. The left shows the case of a mass resonance with small couplings, where 72,
down to ~ 500 GeV is allowed. The right shows the case of larger couplings, where
we need m, 2 O(1) TeV. We omit light charged fermion constraints since small 72,
isalreadyruledout. . . . . . ... o L oo
Additional class of Barr-Zee diagrams contributing to the electron EDM. y, is the
tuple of charged fermions in the mass basis. For the b diagram, 7 = j, whereas for
the Zh diagram, we also have contributionswherez # 7. . . . . . . ... ... ..
Example where the magnitude of couplings y and y are small, for different values
of my and mj3. The left plot shows the values of the EFT parameters: dark matter
mass, dark matter-Higgs coupling phase, dark matter-Higgs coupling magnitude,
and lightest charged fermion mass. Regions around the mass and phase points of
interest are shaded: 55 GeV < m, < 70 GeV and 1.3 < Piy < 1.85. The
right shows the annihilation signal and a subset of relevant constraints including
EDM #4, spin-independent direct detection*®+7, and charged fermion constraints
from LEP . The annihilation signal appears as a single brown line because a viable
annihilation signal is only achievable in a tuned region of parameter space.
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4.16

4.17

5.1
5.2

5-3

5.4

Here we show plots where the magnitude of couplings y and y are large and dcp
is also large, for different values of 7, and m3. The left plot shows the values of
EFT parameters: dark matter mass, dark matter-Higgs coupling phase, dark matter-
Higgs coupling magnitude, and lightest charged fermion mass. Regions around
the mass and phase points of interest are shaded: 55 GeV < m, < 70 GeV and
1.3 < Py < 1.85. The right shows the annihilation signal and a subset of relevant
constraints, and from here we can see that the combination of EDM constraints
and spin-independent constraints entirely rule out the parameter space generating
aviable annihilationsignal. . . . . ... .o oo oo o o oo
Two examples where the magnitude of couplings y and y are large and d¢p is small,
for difterent values of 75 and m3. The top plots show the case where y and  have
similar magnitudes; the bottom plots show the case where their magnitudes are very
different. As in the other doublet-triplet plots, the left plots show the values of var-
ious EFT parameters with shaded regions of interest and the right plots show the
annihilation signal and a subset of relevant constraints. The annihilation signal ap-
pears as two brown lines on each plot, since the region of allowed masses is so nar-
row. In both cases, spin-independent constraints rule out the signal. In the case
where the couplings are nearly equal, there is also a region where the lightest neutral
state decouples, and the dark matter-Higgs coupling is insufficient to generate the
annihilation signal despite the dark matter mass being close to m2;,/2. . . . . . . .

One-loop EDMs in supersymmetric theories. . . . . . ... ... ... .....
Two-loop EDMs in supersymmetric theories. The one-loop diagram in the dashed
box is a CP-violating analogue of familiar “electroweak precision” corrections. . . .
The ACMEII constraint on the selectron mass scale Msysy and the Bino mass A4;.
The left region of each contour is excluded. We plot four cases of the phase ¢ =
arglafM,] = 0.1,1072,1072,10%. We assume the left-handed and right-handed
selectron soft masses are the same, m;, = mz, = Msysy. - . - o« o o oo ...
The ACME II constraint on Msysy and tan 4. The electron EDM is generated by

the right diagram of Figure 5.1. The orange region is excluded from mz;, > 125 GeV.

The upper left and right panels correspond to the case of split SUSY, M, 3 <
mo = Msusy. We take |u|= Msusy and |¢|= 350 GeV in the left and right panels
respectively. The lower panel corresponds to the case of high-scale SUSY, M 5 3 ~
mo = Msysy. In all cases, we assume a gaugino mass ratio, M : My : Mz = 3 :

1 : 10. In each panel, we plot three cases of the phase ¢ = arg(M>px) = 1,0.1,0.01.
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Introduction

The Standard Model of particle physics is an extremely well-tested theory describing most of the phe-
nomena in the world around us. Itis an effective quantum field theory describing the non-gravitational
fundamental forces and matter. In particular, the Standard Model is a gauge theory, implying that
the Lagrangian is invariant under a set of local transformations which determine the Standard Model

gauge group Ggps. The elementary particle content is given by 3 generations of quarks and leptons,



5 gauge bosons, and 1 Higgs boson', which all transform under appropriate representations of the
Standard Model gauge group SU(3) x SU(2) x U(1)y. The generations are ordered by mass, so the
first generation contains the up and down quarks and the electron and electron neutrino, the second
generation contains the charm and strange quarks and the muon and muon neutrino, and the third
generation contains the top and bottom quarks and the tau and tau neutrino. The gauge fields are the
photon, the Z boson, the W= bosons, and the gluon (of which there are actually 8 varieties), which
mediate the electromagnetic, weak, and strong forces respectively. Invariance of the Standard Model
Lagrangian under Ggys determines the coupling of these fields to each other and precisely determines
the nature of their interactions. Since its development starting in the 1970s, the Standard Model has
made countless predictions which have been experimentally verified. This has brought the field of
particle physics to an interesting crossroads. On one hand, the Standard Model has been stunningly
successful and theoretical predictions have been experimentally corroborated to exquisite precision.
On the other hand, the Standard Model must break down at sufficiently high energy scales since it
fails to explain several phenomena including gravity, the nature of dark energy and a natural explana-
tion for the size of the cosmological constant, the baryon asymmetry of the Universe, the hierarchy
between the Planck and weak scales, and the particle nature and interactions of dark matter. Under-
standing any of these phenomena, will almost certainly lead to physics beyond the Standard Model,
and augment our effective theory with new particles, interactions, and possibly even new gauge groups.
In this dissertation, we begin to address these questions by exploring the structure of the dark sector

and considering the extent to which precision measurements can constrain models of new physics.

1“Whait, what is a boson?” — Matt Reece



Dark matter broadly characterizes the invisible, mysterious matter which is non-baryonic and con-
tributes approximately s times as much to the global energy budget of the Universe as baryonic Stan-
dard Model matter. The non-baryonic nature hints immediately to a non-Standard Model origin,
forcing us to consider extensions to the Standard Model. The existence of dark matter was origi-
nally proposed by Fritz Zwicky in the 1930s to explain the gravitational anomaly in the Coma cluster.
Zwicky estimated the mass of the Coma cluster by measuring the brightness and number of galax-
ies, and under the assumption that the system is virialized, he predicted the velocities of the galaxies,
only to observe that they were moving too fast. To account for this discrepancy, the Coma cluster
had to be heavier than expected, which led Zwicky to propose a “dark matter” which filled the Coma
cluster and contributed to the majority of its mass. The first definitive observational evidence came
from the groundbreaking study of galactic rotation curves by Vera Rubin in 1968 334, Rubin mea-
sured the rotational velocity of stars as a function of distance from the center of the galaxy for various
systems. The generic expectation was that inside the galaxy, stars further from the center would ro-
tate faster since they experience a larger gravitational acceleration due to the extra mass enclosed. The
light-emitting portion of the galaxy should contain all the mass, so if we measure the rotational veloc-
ity of an object outside the galaxy, its velocity should be decreasing since the enclosed mass is constant,
but the gravitational acceleration falls oft with distance. This behavior is called the Keplerian decline.
Instead of exhibiting the expected Keplerian decline at large distances, the rotation curves Rubin ob-
served flattened out, or in some cases even rose, pointing to the existence of a large halo of invisible
matter enveloping the visible galaxy. Since the time of her seminal work, more rotation curves have

been mapped out to larger and larger distances, and they all lead to the same conclusion as Rubin’s.



In addition to rotation curves, exquisite measurements of the anisotropies in the Cosmic Microwave
Background** as well as gravitational lensing measurements**” have further strengthened the case for
dark matter. These observational signatures come from systems at various different length scales cor-
responding to various different epochs in the history of the Universe, but all require dark matter to
consistently explain them. The current best explanation is the cold dark matter paradigm where we
introduce a new, massive, non-relativistic particle species that interacts very weakly with the Standard
Model through some interaction, in addition to gravitational interactions.

The original proposal for a dark matter candidate was a Weakly Interacting Massive Particle (WIMP)
with a mass in the O(100) GeV range. WIMPs were expected to have weak scale cross sections, which
helped generate the correct relic abundance, and were protected by a discrete Z, symmetry, which
helped maintain the stability of dark matter over cosmological time scales. Searches for WIMPs, and
dark matter more generally, have progressed through three main fronts, which are often colloquially
referred to as making it, shaking it, or breakingit. The firstis direct production, where Standard Model
initial states produce dark matter final states. Dark matter carries away momentum and energy which
is not detected by the experiment, leading to a missing energy signature. These searches are conducted
mostly at colliders, where two beams of particles collide with each other at fixed interaction points and
fixed target experiments, where one particle beam hits a slab of target material 276:57,197:113,192 - The
next class is direct detection experiments, where dark matter scatters off a Standard Model particle
depositing energy and momentum and leaving a detectable signature+74*3%3%154317 The kinemat-
ics of standard WIMP searches allow dark matter to scatter off Standard Model matter directly, but

in recent years, there has been a push towards considering lighter mass dark matter candidates, and



direct detection techniques have evolved to also consider dark matter scattering oft of collective excita-
tions, such as phonons, in materials. Finally, the last class is indirect detection searches which look for
signals of dark matter annihilating into Standard Model final states 28,387.342,12 I the early universe,
this process set the dark matter relic abundance for the WIMP through a process known as freezeout.
At present, annihilations can occur in dark matter rich environments, such as the centers of galax-
ies, which are the targets of indirect detection searches. In recent years, a fourth avenue searching for
dark matter self-interactions has also gained prominence, and attempts have been made to use current
astrophysical observations to constrain self-interaction cross sections®”+'5?. These self-interactions
can modify dark matter distributions in galaxies, so searching for these modifications provide an addi-
tional handle on the nature of dark matter. The extensive, complementary experimental program has
greatly constrained the WIMP paradigm. In conjunction, there also exist discrepancies between simu-
lations and observations at small scales. The first of these is the missing satellites problem ***3°° where
simulations tend to over-predict the amount of satellite galaxies around a Milky Way sized galaxy, as
compared to the amount observed. The second is the too-big-to-fail problem® where certain dark
matter halos predicted by simulations are so large that they definitely should have produced stars and
be observable, yet we have not seen them. The third is the core/cusp problem*'7*3" where simulations
predict a cuspy dark matter density profile in galaxies which grows as we approach the center of the
galaxy, but observations have shown a cored dark matter density profile which flattens out towards
the center. Finally, there is also the diversity problem *#"-3° where simulations predict a fairly unique
shape for rotation curves with little variance, but observations of galaxies have shown a diverse array of

rotation curve shapes. In principle, observation biases and baryonic physics may address these discrep-



103,306,102,362,167 'hye the confluence of both a non-detection

ancies and completely resolve them *+>
and the small scale problems has led to a proliferation of models extending the WIMP paradigm with
non-minimal field content and interactions, and are often referred to as dark sectors. These mod-
els predict a wide array of signatures which can be detected by the complementary search strategies
in place through the extensive experimental program. In this dissertation, we explore in more detail
some of these extensions and discuss the constraints placed on them by current and next-generation
experiments.

In addition to the purely phenomenological approach motivated by experimental results, there is
an orthogonal approach to constrain dark sector and beyond Standard Model physics which uses the
notion of theoretical consistency. In particular, in the string theory community, this is known as the
Swampland program. From a low-energy perspective, there are a large class of apparently consistent
effective quantum field theories which can be written down. At some higher energy scale, we expect
to have a theory of quantum gravity, such as string theory, but not all of these effective quantum
field theories can be consistently embedded into a theory of quantum gravity. So, the Swampland
program aims to delineate the boundary between the consistent theories, which live in the Landscape,
and inconsistent theories, which live in the Swampland, through a series of conjectures *°*3#4. As low-
energy phenomenologists, we can take these conjectures as theoretical input and focus on the subset
of theories consistent with quantum gravity. In this dissertation, we also present the implications of
the Swampland conjectures on a specific class of dark sector models containing a dark analogue of

electromagnetism.

This dissertation is structured as follows. In Chapter 2, we take an effective field theory approach



to the theory of self-interacting dark matter. We develop a new procedure to consistently match an
underlying QFT to the effective quantum mechanics description of the scattering process. Using this
procedure, we critically analyze the existence of Sommerfeld enhancement in various classes of inter-
actions. The consequences of this matching procedure are further examined in Chapter 3, where we
study a variety of tree-level quantum mechanical potentials and explore their singularity structures.
The lack of existence of singular potentials descending from a QFT leads us to propose the existence
of the Quantum Mechanics Swampland. In Chapter 4, we fit the gamma-ray signal excess from the
Galactic Center with a model of annihilating dark matter connected to the Standard Model through a
CP-violating Higgs portal. CP-violation generically contributes to the electron EDM, which we study
in Chapter 5. We illustrate the power of current null results by constraining various models of new
physics. In Chapter 6, we consider the new measurement of the /7 boson mass made by the CDF
experiment, which has a significantly larger value than the Standard Model prediction. We determine
the values of the oblique parameters favored by the new measurement, and consider various models
which generate these values at tree- and loop-level. In Chapter 7, we consider the implications of the
Swampland conjectures on dark sector U(1)s which can kinetically mix with the Standard Model U(1).
These conjectures are a set of criteria low-energy QFTs are expected to satisfy so that they can be con-
sistently UV completed into theories of quantum gravity. The goal of this dissertation is to present
progress in exploring the structure of the dark sector from purely theoretical as well as phenomeno-

logical lenses.



Systematizing the Effective Theory of

Self-Interacting Dark Matter

2.1 INTRODUCTION

The majority of mass in our universe is in the form of dark matter, but the underlying nature of dark

matter and its interactions remains elusive. Many attempts to understand the nature of dark matter



rely on searching for its interactions with ordinary matter, through direct or indirect detection experi-
ments or attempts to directly produce dark matter particles at colliders or fixed-target experiments. We
may also be able to learn about the particle nature of dark matter if it has significant self-interactions,
which can alter the astrophysical and cosmological signals of dark matter in ways that may be de-
tectable7#*59, In recent years, many aspects of the astrophysics and cosmology of self-interacting
dark matter have been extensively studied, so we will of necessity refer to only a small fraction of the
literature. An excellent recent review article with extensive references is3%3.

Dark matter self-interactions have been posited as a possible explanation for a number of discrep-
ancies on small scales between observation and the results of classic N-body dark matter simulations
of standard ACDM cosmology, such as the core/cusp problem*'7>33*, the missing satellites prob-
lem?3*3°°, the too-big-to-fail problem®®, and the diversity problem3+3°*. A weakness of such ar-
guments is that baryonic physics, such as supernovae or AGN activity, can alter the distribution of
dark matter in galaxies and clusters in ways that are unaccounted for in dark matter-only simulations.
Incorporating baryonic physics in simulations accurately is challenging, and may solve some or even
all of the potential problems with ACDM on small scales >3:103:366:102:362:167,

We do not take sides in this debate. We expect that in the future our understanding of dark matter
and baryonic effects could be refined to allow for an averaged dark matter scattering rate to be extracted
from data in systems on a variety of scales, from dwarf galaxies to clusters. Because the typical velocity
of a dark matter particle is much lower in a dwarf galaxy than in a galaxy cluster, such observations

could map out the velocity dependence of dark matter scattering, which encodes information about

the underlying particle physics*'®*°>3*°. An attempt to do this with current data has been made



in*" and argued to fit a Yukawa potential with a light mediator. Again, one can debate whether these
conclusions are robust to uncertainties in baryonic physics, but in any case an important message to
take away from " is that observations may eventually tell us the quantity (ov) /mppm as a function of
the rms velocity v.

With such measurements in hand, we would naturally want to answer the inverse problem: what
underlying model of dark matter self-interactions produces the observed velocity dependence of the
cross section? This question is nontrivial because dark matter is nonrelativistic, and in the nonrelativis-
tic limit low-velocity scattering can be nonperturbatively enhanced by the Sommerfeld effect®73. To
compute the cross section in the low-velocity regime, we must match the relativistic QFT of interest

123,

onto a nonrelativistic effective theory '***'# in which we can compute the cross section nonperturba-

tively by (numerically) solving the Schrédinger equation. In the dark matter context, the need for such
calculations was first appreciated in the annihilation of heavy WIMPs 26262 More recently, it has
been applied to scattering of dark matter through light mediators that generate an effective Yukawa

potential 53195322384 However, relativistic QFIs can match to a much wider range of nonrelativis-

tic effective interactions than a simple Yukawa potential. The classification of such interactions 176

202,215,387 (

has been used to study a variety of possible recoil spectra in direct detection experiments see

alsozs,lll)

. Most relevantly for our current work, it has also been used to classify dark matter self-
interactions in %, the “effective theory of self-interacting dark matter”, which is closely related to the

results in this chapter, although some of our conclusions differ.
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2.1.1 (GOALS OF THIS WORK AND RELATION TO THE PREVIOUS LITERATURE

Our goal in this chapter is to calculate the velocity dependence of dark matter self-interactions for the
case of spin-1/2 dark matter interacting via a light boson, which may be a scalar, pseudoscalar, vector,
or axial vector. In each case, we match to a nonrelativistic effective theory, then solve the Schrédinger
equation numerically to obtain the velocity dependence of the cross section.

Our work difters from, and extends, earlier work on nonrelativistic dark matter scattering in sev-
eral respects. The firstis our matching procedure: we match the Born approximation to short-distance
scattering in the quantum mechanical effective theory to the tree-level perturbative QFT approxima-
tion to short-distance scattering. This provides a boundary condition at small radius, from which we
can integrate outwards to solve the Schrédinger equation and capture long-distance effects of light
mediators. The specifics of our matching procedure are inspired by earlier work '*3**#, but the details
are novel: our procedure is streamlined and easy to apply. A particular difference from some previous
work on self-interacting dark matter is that we do not just consider the effective potential generated
by #-channel exchange, but include the contact interactions arising in other channels. In the case of
pseudoscalar mediators, this is crucial to obtain the correct cross sections at small velocities.

Our approach clarifies a number of issues related to pseudoscalar mediators. We sum over all angu-
lar momentum partial waves. While a simple Yukawa potential conserves orbital angular momentum,
the exchange of a pseudoscalar or axial vector leads to interactions that couple different £ modes (while
conserving the total angular momentum ;). Some earlier work has considered a toy model aimed at ap-

proximating pseudoscalar exchange without treating the coupled channels carefully. This toy model
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includes a singular 1/7 potential. We will show that this misses an important aspect of the physics,
namely that the Born approximation for the pseudoscalar potential is non-singular at short distances.
Furthermore, our matching procedure is robust to variations in the matching scale. Unlike some re-
sults in the literature, our cross section is entirely determined by the underlying QFT and does not
depend on ad hoc constants introduced in the nonrelativistic effective theory.

In the end, we find that the correct matching of a weakly-coupled effective field theory with a light
pseudoscalar or axial vector mediator leads to a nonrelativistic effective theory in which there is no
enhancement of the cross section at low velocities. For these theories, unlike the case of light scalar or
vector mediators, tree-level QFT is reliable. This simple result is in contrast with some earlier claims in
the literature, for instance, in studies of annihilating dark matter with a pseudoscalar mediator7%319,
A similar claim about the lack of Sommerfeld enhancement for the pseudoscalar potential was made
in*%. In this work, we provide more detailed arguments in support of this claim, incorporating both
analytical and numerical evidence.

We proceed as follows: in §2.2, we introduce the basic models of mediators in QFT. We review why
the axial vector mediator is special, in that its couplings to dark matter must vanish as the mediator
mass goes to zero. In §2.3, we describe our matching procedure, the way in which we set boundary
conditions, and the process of extracting the S-matrix from numerical solutions of the Schrédinger
equation. In §2.4, we explain the absence of a Sommerfeld enhancement for a pseudoscalar mediator,
arguing thata 1-loop calculation in the perturbative QF T also suggests that the effect should be absent.
We explain the differences between our results and certain claims in the literature. Then, we present

the numerical results of solving the Schrédinger equation and computing the cross section for the
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various models. We offer concluding remarks in §2.5.

2.2 SIDM AND OUR EXAMPLES

We consider a weakly coupled dark sector with spin-1/2 fermionic dark matter interacting via scalar
or vector mediators. If these mediators are light and generate an attractive potential, then it is possible
that Sommerfeld enhancement can significantly boost the scattering cross section. So, it is crucial to
analyze the potentials generated by various renormalizable interactions.

The details of the calculation depend on whether the dark matter carries an approximate conserved
charge. If dark matter is a Majorana fermion, then the yy — yy scattering process receives contribu-
tions from s-, #-, and #-channel diagrams. In the Majorana case, there is no vector interaction, i.e., the
coupling 4,y'7*y takes the form of an axial vector interaction when packaged into a 4-component
field. If dark matter carries an approximately conserved charge, we should consider a Dirac fermion,
and the dark matter abundance may be primarily of one charge (asymmetric dark matter>#>29%39%) or
it may contain particles of both charges (symmetric dark matter). Scattering in the asymmetric case,
xx — xy receives contributions from only # and #-channel diagrams. In the symmetric case, there
is additionally the process yy — yy, which receives s- and z-channel contributions but no #-channel
contribution.

Our goal in this work is to clarify conceptual issues in matching theories of self-interacting dark
matter to a nonrelativistic effective theory, and to understand in which cases a Sommerfeld enhance-

ment is present. These aspects of the physics are not sensitive to the Majorana or Dirac nature of the

13



fermion or to the symmetric or asymmetric nature of the dark matter population. Thus, for concrete-
ness, in the remainder of the chapter we will only discuss the case of Dirac dark matter and yy — yy
scattering. All of our results can be straightforwardly generalized to the other cases.

We denote the dark matter field as y. The consistency of a Dirac eftective theory requires a good

approximate global symmetry,

X_> el‘[xX (2..2..1)

In the absence of such a symmetry, we could write Majorana mass terms which split the Dirac fermion
into two Majorana mass eigenstates.
We now list various cases that we will individually consider in this chapter. The Lagrangian for

dark matter coupling with a real scalar ¢ is,

1 1
Localar = Z}?}/la‘u)( — myxy + Ea‘uQ&uQ - 57’/@@2 — 2@/}7/)( (2.2.2)

If instead we wish to couple to a pseudoscalar @, we obtain the following,

1 1
'Cpseudoscalar = l)?}"uay)( - ijp{ + Eaﬁ¢3/‘¢ — EWL@@Z — ll@)?}fs)( (2..2,.3)

Note that we have assumed a CP symmetry to a good approximation, so that @ has well-defined CP
quantum numbers.

We can also couple the dark matter to a U(1) gauge field P, If the charge assignments are vectorlike
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(i.e. we simply gauge the Dirac U(1) symmetry), then we end up with the vector interaction of the
gauge field with the dark matter. In order to generate a mass for the U(1) gauge field, we can couple it
to a charged scalar that gets a vev. Imposing a separate global U(1) Dirac symmetry under which the

scalar is a singlet forbids a coupling of this scalar to the dark matter.

— _ 1 S | -
Lyector = Z){]ﬂa‘zz){_ maxx — ZF‘MVF‘ + 57%;9“@‘& - 2@‘“}(}/}1}[ (2.2.4)

To obtain a purely axial vector interaction of Dirac fermion dark matter is a little intricate. For
clarity, we start with two left-handed Weyl fermions, y, and y,, with the same charge under the U(r)
gauge group. In this case, the Dirac mass term is not invariant under a U(1) gauge transformation, and
must arise from the U(1) breaking. This also implies that the coupling of an axial vector mediator to
a massive fermion must vanish in the limit that the vector boson mass goes to zero. This distinguishes
the axial vector case from the other cases, in which we are free to take the couplings to be order-one

numbers. Explicitly, we write an abelian Higgs model with a Higgs boson of charge 2:*

1 A
Eaxialvcctor = _ZFwaw + |(5,¢ - 2l2¢#)H’2+Eq(HTH— 112)2

+ 1'2(1[5#8#?(1 + 1'2(35*‘5/42(2 - lg’u?(;raﬂ?ﬁ - QWZZ‘?Mz - [7H251?(2 +he]. (2.2:5)

Again, an additional global U(1) Dirac symmetry needs to be imposed to ensure that terms like Hy; ¥,

are absent. After SSB, we can expand the Higgs around its expectation value: A = v + % (h+7p,).

"'One could consider other possibilities, e.g., a Higgs boson of charge 1 that couples quadratically to give the
fermion a mass through a higher-dimension operator. This would only make the problem of achieving a large
coupling for a light mediator more severe.
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Keeping the relevant terms, we find in unitary gauge,

1
Eaxial vector — _ZF/WFW + 4/121)2@[“@4C
1 2 2712
+ §|8ﬂb| *Aqv b

+ Oy — yury + lgp“;?;/[‘ysx — \%b)@( (2.2.6)

The masses and couplings of the massive vector, radial Higgs mode, and fermion are given in terms of

the fundamental parameters as,

m? = 81%v? mi = 22q02 m, = yv. (2.2.7)

In particular, this scenario predicts that the coupling of the axial vector mediator to the dark matter

behaves as

Yy "o

=2 "
24/2 my

(2.2.8)

so light axial-vector mediators are necessarily weakly coupled.

From an effective field theory point of view, all these interactions are equally well motivated to ana-
lyze. Furthermore, if we keep an eye towards UV completions, some of these scenarios arise more nat-
urally than others. Light scalars that are not pseudo-Nambu-Goldstone bosons are unnatural. Light
vectors are also unnatural, if their mass comes from Higgsing, because the Higgs boson mass must
also be protected. On the other hand, pseudoscalars are particularly well motivated because we know

examples of underlying dynamics which can generate pseudoscalar couplings with an associated light
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boson, such as pions in QCD. So it is much easier to embed a light pseudoscalar into a UV complete

theory.

2.3 GENERAL PROCEDURE

In this section, we outline the general procedure of obtaining the scattering cross sections, starting
from a weakly-coupled Lagrangian. For light mediators, there can be substantial effects from multiple
exchanges of the mediator in nonrelativistic scattering processes, so that the tree-level approximation
does not reflect the true answer. A convenient way to resum these contributions in this case is to map
the problem on to the equivalent quantum mechanical scattering problem. We can then solve the QM
problem nonperturbatively and extract the scattering matrix elements. These amplitudes include the
putative Sommerfeld enhancement effects.

Before we outline the procedure, it is worth highlighting the validity of the procedure carried out
below. At small enough values of the coupling, the scattering amplitude at some fixed velocity is well-
approximated by the tree-level amplitude in the QFT. If the relativistic corrections are small, the same
amplitude is also well described by the Born approximation in a quantum mechanical system. The
scattering potential is calculated by matching a QFT amplitude with the corresponding QM ampli-
tude in the Born approximation. However, a subtlety that we will encounter involves potentials where
the higher-order Born terms are “divergent”. This is the case for singular potentials that grow faster
than 1/7% as » — 0. In such a case, to calculate the higher-order Born terms we would need to regu-

late and renormalize the quantum mechanical problem, and consistently match with the QFT atloop
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level. Indeed, this is true for the potentials we consider, but these potentials do have a well-defined first
order Born limit as » — 0 which will be sufficient for us to avoid the issue of divergences.

Our problem neatly factorizes into two pieces. The short-distance » — 0 piece is the part where
the potential divergence shows up, but from the QFT point of view this corresponds to high energy
scattering, where Sommerfeld enhancement should not play a role and the amplitude should be well
approximated by the tree-level diagram, or equivalently the first Born approximation in the QM pic-
ture. The potential Sommerfeld enhancement from multiple exchanges of the mediator appears in
the larger 7 region, where the QM potential is well-behaved.

Thus, we use the following procedure, described in further detail below. We match the QFT tree-
level amplitude with the QM amplitude in the first Born approximation to calculate the matching
condition close to the origin at » = 4. The nonrelativistic effective theory should not be expected
to accurately describe momenta of order 7z, at which dark matter particles are semirelativistic. As
a result, the natural radius at which to match the relativistic theory to the nonrelativistic theory is
the Compton radius of the dark matter, 2 ~ 1/m,. With the boundary condition established by
matching, we solve the Schrédinger equation numerically, and thereby derive the scattering amplitude.
We illustrate this procedure schematically in Figure 2.1. We then proceed to extract the S-matrix from
the QM solution, highlighting the coupled channel case. We will then be in a position to critically

evaluate which interactions give rise to a Sommerfeld enhancement.
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Figure 2.1: A schematic of our matching procedure. In the deep UV, we expect the Born approximation to hold, which we
use to set our boundary conditions at » = 4. Beyond this is the IR of our theory where Sommerfeld enhancement might
be important and we need to solve the Schrédinger equation with the appropriate potential.

2.3.1  COMPUTING THE TREE LEVEL POTENTIAL

To compute the tree level potential, we first compute the tree-level perturbative QFT amplitude for
the process we are interested in. To illustrate our procedure, we consider yy — yy. At tree level, this
has contributions from an s- and a #-channel Feynman diagram. Next, we take the nonrelativistic limit
of this amplitude and keep the leading terms. The scattering amplitude in the Born approximation in

nonrelativistic quantum mechanics is given by

FeliT|p) = —iV(§) 2m)3(Ey, —Ep),  §=pr— B (2.3.1)
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Comparing this expression to the nonrelativistic limit of our QFT amplitude gives us

V(q) = _4EPfEPiM’ (2.3.2)

where the extra factors of 2F, come from the difference in the conventional normalizations of rela-
tivistic and nonrelativistic single particle states. Finally, to compute the real space potential V'(7), we
have to Fourier transform V() with respect to 4.

We obtain the following potentials

)'2 —mypr
V;calar(r) = _Tm‘e i (2-3-3)
2 4R /1 478°(7)
Vseu oscala = - 7<7_2S S) - S-S
p d I l‘(r) 4t (4771; _ mé 2 1 2 37}’17% 4 1 2
2 ~ ~ 2
—mor tm St NS ) — S-S m2
+ [i51-52+3(1 NSz 7) = 5 2<1+m¢r+i)}
my L 3r 7 3
(2.3.4)
287 3 2
" = —— =+ 25" — —— 3.
Viecto (7') 47’}’1;% _ mé <2 + 251 SZ) 47f}"€ (2 3 5)
28 (7 1y 22 my
Vaxialvector(r) = 42(}’)2 <2S1 . SZ - 5) - 7€—m¢r51 : SZ + 72)[ Vpseudoscalar (2'36)
m}( — m¢ wr mp

The terms in these potentials arising from #-channel contributions have been previously computed
(e.g.,33%20289158) o leading order in 47, our results also agree with those in>*°. The s-channel con-
tributions provide contact terms that we have written in the form of a nonrelativistic potential via

Fierz rearrangement (see, e.g.,**). As detailed in Appendix A.2, the spin matrices for antifermions
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come with an additional minus sign.
In the pseudoscalar potential, we observe two delta-function terms. The first term comes from the

s-channel, but the second term comes from the #-channel, which can be seen in the following manner:

) =¢ " EVZB}J- + 81-(7]} % +2 {A -_—fy(—mgpe*mﬂ)} + %@-[ — msz,?fje*m?”r}
43y - ‘;i’ﬁ(r)sﬁe—my»r.

(2.3.7)

2.3.2 THE SCHRODINGER EQUATION

We solve the Schrédinger equation in the partial wave expansion using the potential derived above.
The rotational invariance of the Hamiltonian implies that j is a conserved quantum number. For the
2 — 2 scattering process involving spin-1/2 particles that we consider, the total spin iss = 0, 1. Con-
sequently, it will be convenient to work in a basis of states |7, 7, ¢, ¢, s), where £ and s are the total
orbital and spin angular momenta respectively, and 7is the z-component of the total angular momen-
tum. Some of the terms in the potentials we consider mix terms with different £ values, so for a given
/> wegeta4 x 4 block diagonal Hamiltonian. The wavefunction ¢{(7) can be separated,

=3 4its7) o |jots) . (2.3.8)

: r
]70-’7£7’(
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The potential preserves 7, 7, so without loss of generality we can set ¢ = 0. The Schrédinger equation

for a fixed value of j becomes

1 N (Y,
i (—8}, —k* + 2 ”Z;(V) + ; VZ:,Z’J’(V)”E’J’ (7‘) =0 (2'3'9)

The matrix elements of the potential V() are given in Appendix A.1. The subscripts (¢, s) take on 4
possible values {(7,0), (f —1,1), (7, 1), (+1,1) }. We have suppressed the j and & quantum numbers
for notational clarity. Conveniently, the four (¢, s) states separate into two states that mix with each
other (|f & 1,1)) and two that evolve independently (|7, 0) and |7, 1)).

Assuming that 7/(r) — 0as» — 00, the asymptotic wavefunction should be a solution to the
free particle equation. The solutions of the radial free particle equation, denoted 54 and ¢, are given

in terms of the spherical Bessel functions.
se(kr) = krjo(kr), co(kr) = —kryo(kr) . (2.3.10)

The time-independent solution to the Schrédinger equation can also be interpreted as a solution to
a scattering problem. The asymptotic form of the solution is a combination of an incoming wave
and a scattered wave. Different choices of boundary conditions correspond to different possible in-
coming waves — there are as many independent boundary conditions as the number of equations. A

convenient choice of basis is to label them by (¥s) values themselves. The asymptotic solutions to the
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Schrédinger equation can be written in terms of the free particle solutions as,

s
ugj )(7‘) ~ 5@/;/7&55(16}”) + ](g/j@g“f Cg(/e}") . (2.3.1 I)
The K-matrix is the generalization of the more familiar partial wave phase-shift tan J;. By solving
the coupled differential equations numerically, we can extract the K-matrix, and then calculate the

scattering cross section. We describe these steps in detail next.

2.3.3 SETTING BoUNDARY CONDITIONS

The boundary conditions for the Schrédinger equation above are set using the Born approximation

in the region 7 < a = m, !as outlined in Section 2.3. This region of small radii probe the UV of
our effective quantum mechanical description and we expect this to match onto the corresponding
QFT. Therefore, we expect the first Born approximation to reproduce the tree level perturbative QFT

approximation. We show this matching in Figure 2.2. The K-matrix in the Born approximation is

simple to calculate,

2 a
s = —Z/O drse (kr)se(kr) Vg o0 (7) (2.3.12)
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Figure 2.2: lllustration of the validity of the matching procedure via numerical evaluation of the Born cross section com-
pared to the tree-level QFT cross section as a function of velocity for the Yukawa (scalar) potential, pseudoscalar potential
and axial vector potential. For the scalar case, we choose 1 = 1071, my = 1072 GeV and my, = 1 GeV. For the
pseudoscalar case, we choose 1= 10*1, my = 1073 MeV and my = 1 MeV. For the axial vector case, we work in the
decoupling limit. We choose the vev v = 20 MeV, 1, = 47, A = 1073 and y = 1. We emphasize that this plot should
not be taken as an accurate illustration of the full cross section, as the Born approximation receives large corrections in

the Yukawa case.

where we have restricted the integral to » < 4. This gives us our boundary conditions for the numerical
solutions

(@) ~ dpg gse(ka) + Ky g, colka) . (2.3.13)

which we can use to evaluate the wavefunction and its derivative at » = 2 = m, 1 In our numerical
calculations for the various potentials below, we have checked that varying the matching radius has
little effect on our results, provided that we choose 4 of order m, 1

In this whole discussion so far, we have not specified the structure of the potential. In particular,

potentials in quantum mechanics can diverge at the origin, and the Born limit may not be well-defined.
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A potential is considered non-singular if 2 V(r) — 0as» — 0. Since sg(kr) ~ 77 for small 7,
for such potentials clearly the integral above is convergent. The pseudoscalar potential does not fit
this criterion due to the »—3 piece and naively looks singular when ¢ = ¢/ = 0. However, as we
see from the results in Appendix A.1, these dangerous terms vanish under the action of the operator
Or= 3(§1 - 7) (52 7)) = S-S, appearing in the numerator.

Since we consider all potential terms that are generated from tree-level exchanges, it is interesting
to note that the QFT seems to produce highly non-generic potentials which may seem singular, but

possess operator structures that remove these divergent pieces at the leading Born approximation.

2.3.4 EXTRACTING THE S-MATRIX FROM NUMERICAL SOLUTIONS TO THE SCHRODINGER
EQuaTIiON
s

The K-matrix can be extracted from the set of asymptotic solutions #;, )(V) at some suitably large

value of 7 = 7. Define the matrix W in terms of the matrix of solutions u,

W= (u/(VmaX)) “ U(7max) (2.3.14)

with the” denoting ;. The K-matrix is

—1

K= (S(krmax) - W S/(krmax)) . (c/(/ermax) -W — c(/ermax))) (2.3.15)
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where we have defined the free-particle solution matrices as

s(kr) = diag [s;(kr), si—1(kr), si(kr), 5i11(k7)] ,

c(kr) = diag [c;(kr), i—1 (kr), c;(k7), ci1 (k7)] . (2.3.16)
The S-matrix follows,
S=(1+iK) (1 —iK)™". (2.3.17)

We outline the steps involved in obtaining the cross section from the S-matrix in this basis following

92

the notation in Ref.?%*. The differential cross section is given in terms of the scattering amplitude in

the familiar way,

do (/;, a1, 0 — ;@',a{,a&)
aQ

. . 2
= V(k,al,az — /e’,o{,o"z)‘ . (2.3.18)

We can write fin terms of the (jo/s) basis S-matrix using the Wigner-Eckart theorem,

. . i
f<k7‘71>72 —>k/70{70j2) = _% Z C%%(5>p;0'10'2)cls(fya';map)

Jal's'p lsp

x C (5,7117,?0{0',2)@’5’ (/."7; mlvpl)

11
22

PRI W) (S 1), Ca0)
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where the C’s are Clebsch-Gordan coefficients. We have specialized to the case of elastic 2 — 2 scat-

tering between spin-1/2 particles. The spin-averaged cross section in this basis is,

2

o= 4—:2 Z (27 +1) )(S/(E) — 1)6’:',& (2.3.20)

FAs Us

In SIDM phenomenology, there are other related quantities of interest, such as the momentum trans-
fer cross section or the viscosity cross section. Their utility arises from their well-behaved soft and for-
ward limits, and they have a direct bearing on the evolution of dark matter phase space in halos. They

are defined in terms of the differential cross section. The transfer cross section? is defined as 105384

or = j—é(l — cos§)dQ (2.3.21)
while the viscosity cross section is defined as
do
= —(1 — 2 . 3.
oy / dQ( cos” 0)dQ (2.3.22)

2.4 SOMMERFELD ENHANCEMENT

In this section we study the existence of Sommerfeld enhancement for various types of interactions.
We begin with a discussion of our results for the Yukawa potential, which has previously been stud-
ied extensively”’los’“‘)’384 . We then present novel results for the pseudoscalar and axial vector cases,

which do not show Sommerfeld enhancement. We discuss a diagrammatic argument that reinforces

2See >872¢ for further discussion.
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Figure 2.3: Cross section as a function of velocity for dark matter coupled via a scalar mediator. The numerical cross
section (solid blue) is compared with the tree-level QFT cross section (solid orange). The numerical cross sections shown
here includes the nonperturbative Sommerfeld enhancement and is summed over partial waves (truncated at £, such
that oy, < 10*40'0). Parameters are 1 = 1, m, = 1 GeV and my = 107! GeV. At low velocities, we observe a
significant Sommerfeld enhancement but at larger velocities, the numerical cross section becomes well approximated by
the Born cross section as expected.

this conclusion, and comment on disagreement with previous work that has found Sommerfeld en-

hancement in the pseudoscalar case.

2.4.1 YUKAWA POTENTIAL

In Figure 2.3, we present our results for the Yukawa potential generated via a scalar interaction. The
solid orange curve is the tree-level QFT cross section. Using the procedure outlined in Section 2.3.3,
we set the boundary conditions and solve the Schrédinger equation. The numerical cross section we
obtain is plotted as the solid blue curve. We introduce a dynamical cutoft to compute the numerical
cross section. In principle, the total cross section, o, is given by summing the partial wave cross sec-

< 1040y

max —

tions, gy, for all the partial waves. In practice, we truncate this sum at £p,,,x such that oy

2.8



It is worth noting here that the Yukawa potential is well-behaved at the origin and does not require
the matching procedure. We checked that the cross sections calculated with and without using our
matching procedure agree. For consistency with the rest of the results shown in this chapter, we re-
port numerical cross sections for the Yukawa potential computed using the matching procedure. The
results in Figure 2.3 show that there is a considerable enhancement in the cross section in the nonrela-
tivistic regime. At higher velocities, the QFT tree-level cross section becomes a better approximation
for the cross section. As has been discussed previously in the literature, we expect Sommerfeld en-
hancement to be a significant effect in the nonrelativistic limit for light mediators and our results are

in good agreement with this expectation.

2.4.2 PSEUDOSCALAR MEDIATOR

Previously, in Figure 2.2 we showed the agreement between the first Born approximation and the QFT
expectation for the cross section for a pseudoscalar mediator. Having set the boundary conditions, we
compute the numerical cross section, shown in blue, and compare it to the tree-level QF T cross section
in dashed orange in Figure 2.4. We implement the same dynamical cutoft on the sum over partial waves
for the pseudoscalar potential as we did for the Yukawa potential. At large velocities, the two curves
deviate by O(1%). This discrepancy is saturated by the nonrelativistic corrections which scale as
and we see that there is no additional enhancement. While we might have expected our intuition from
the Yukawa potential to apply here, we do not find any significant Sommerfeld enhancement for any
values of 72,.

The absence of enhancements in the small my regime can be understood intuitively. The pseu-
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Figure 2.4: Cross section as a function of velocity for dark matter coupled via a pseudoscalar mediator. The numerical
cross section (solid blue) computed with the procedure outlined in Section 2.3 is compared with the tree-level QFT cross
section (dashed orange). We set 1 = 1071, my = 1 GeV and my = 107! GeV. At low velocities we do not see any
Sommerfeld enhancement. We begin to see deviations at larger velocities, as expected since the tree-level QFT answer
is a fully relativistic calculation but the numerical cross section is determined from a nonrelativistic potential.

doscalar potential, in Equation 2.3.4, has two Yukawa like terms which in principle can generate an

w“s N

m
enhancement, but both of these terms are suppressed by

. Therefore, in the limit of small Mo, the

N

suppression of these terms shuts oft possible Sommerfeld enhancement. A similar intuitive argument
is provided in 283 Furthermore, the more divergent terms, such as the 73 term, behave effectively like
ashort range potential and hence don’t generate enhancements. In the large 72, limit, we don’t expect
Sommerfeld enhancement in either the Yukawa or pseudoscalar case as the exponential suppression

takes over and we have short range potentials.

30



2.4.2.1 DIAGRAMMATIC ARGUMENT

Feynman diagrammatic arguments lend further credence to this result. We discuss the general idea and
results of this argument for the scalar and pseudoscalar case here and relegate the details to Appendix
A.3. Sommerfeld enhancement occurs in a region of phase space where diagrams with two mediator
exchanges are comparable or parametrically larger than a tree level diagram with a single mediator
exchange. To understand the scaling behavior in this regime, we can analytically compute the resulting
box diagram for the cases of scalar and pseudoscalar mediators.

We study the ratio of Ml—loop t0 Mree. For the pseudoscalar case, the leading behavior goes like
1{7 log &, where we have defined £ = mfg / m; On the other hand, for the scalar case the leading be-
havior goes like {—W \/}' The dependence on the coupling ¢ is as expected. As always for a perturbative
calculation, if we make the coupling arbitrarily large, then loops will be important. What is relevant
for the existence of nonrelativistic enhancement is the scaling with & which is different for the scalar
and pseudoscalar cases. At large £ the ratio in the scalar case diverges, whereas in the pseudoscalar
case, it behaves like a log-enhanced loop factor. This indicates that when we make our mediator light,
the box diagram becomes important and dominates over the tree level diagram in the scalar, or more
generally the Yukawa case. This is Sommerfeld enhancement. It requires that we resum an infinite
family of diagrams, which is accomplished by solving the nonrelativistic Schrodinger equation. On
the other hand, in the pseudoscalar case, the box diagram is not enhanced by nonrelativistic effects
as the mediator becomes light, which corroborates the numerical results and heuristic arguments we

gave above.
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Our conclusions deviate from certain claims in the literature. Our analysis of the EFT and its op-
erators largely agrees with that of 8o, though they included only #channel contributions from light
mediators and neglected contact terms. Both®® and”® correctly explain how pseudoscalar exchange
can couple modes with / = j + 1. However, *® then argued that scattering should be dominated by
asingular 1/7° potential and proceeded to analyze a single-channel equation with such a potential as
an idealization of the pseudoscalar exchange potential. We do not believe that this toy single-channel
problem has similar physics to pseudoscalar exchange. In particular, our matching procedure works
well for the pseudoscalar exchange problem but is not even well-defined for the / = 0 mode in a
1/7 potential, because the integral computing the first Born approximation diverges at small 7. This
reflects the fact thata1/7” potential is singular whereas, as we have argued, a [3(S;7) (S 7) —$1-82] /7
potential is not (at least at leading order in the Born approximation). The authors of7* studied the
coupled-channel problem for ; = 1 modes and concluded that there can be significant Sommerfeld
enhancement. Their approach is similar to ours: they have introduced a short-distance square well reg-
ulator, and then solve the full coupled-channel problem at longer distances. However, they have not
carried out a detailed matching to perturbative QFT, and as a result they treat the depth of the square
well potential and the coupling strength as free parameters to vary. The Sommerfeld enhancement
that they observe arises in regions of nonperturbatively large short-distance scattering. We believe
that there is no conflict between their numerical results and our claim that Sommerfeld enhancement
does not arise within the parameter space one can obtain through perturbative matching to a weakly-

coupled quantum field theory.
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2.4.3 AXIAL VECTOR MEDIATOR

As discussed in Section 2.2, the axial vector interaction is non-trivial. It comes along with a radial
Higgs mode that also couples to the fermions. This is a scalar particle coupled to our fermionic dark
matter, which in turn will induce a Yukawa potential between them. As we saw already, Yukawa
potentials generate a Sommerfeld enhancement. On the other hand, if we want to study just the axial
vector type interaction, we need to decouple the Higgs mode by making it heavier. One consistent
way of achieving this is by making the square root of the Higgs quartic larger than the Higgs coupling
to the dark matter (m > y). Furthermore, to make the axial vector mediator lighter than the dark
matter, we need the gauge coupling to be smaller than the Higgs-dark matter coupling (y > v/82). By
doing so, we can decouple the Higgs and study a pure axial vector theory. Formally, by integrating out
the Higgs, we generate a four-Fermi interaction which manifests as a delta function in the potential
since it was generated by a contact interaction without any 4 dependence.

Having done so, we can now isolate the potential generated by a purely axial vector type interac-
tion. By inspecting Equation 2.3.6, we see a term proportional to V pseudoscalar- Again, this term does
not generate a Sommerfeld enhancement. In addition, there is a Yukawa term in the potential. This
term does not generate a Sommerfeld enhancement because in the light mediator regime, the coupling,
which is proportional to the mediator mass, is also small. On the other hand, if we want a large cou-
pling, then the mediator mass increases proportionally and Sommerfeld enhancement turns oft. The
structure of the underlying UV completion restricts the parameter choices we can make. We checked

that the results obtained from the QFT match the results obtained from the full quantum mechanical
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Figure 2.5: Velocity weighted viscosity cross section as a function of average velocity for dark matter coupled via a scalar,
pseudoscalar or an axial vector mediator. For the scalar case, we choose 1 = 1071, my = 10~2 GeV and my, = 1 GeV.
For the pseudoscalar case, we choose A = 107!, m, = 1073 MeV and my, = 1 MeV. For the axial vector case, we work
in the decoupling limit. We choose the vev (v) = 20 MeV, A, = 47,1 = 1072 and y = 1. We assume the dark matter
follows a Maxwell-Boltzmann distribution and use a hard cutoff at the escape velocity. The full numerical cross section
for the Yukawa potential includes the nonperturbative Sommerfeld enhancement. On the other hand, as we discuss in
the text, the axial vector interaction in the decoupling limit and the pseudoscalar interaction don’t induce Sommerfeld
enhancement and are therefore computed using tree-level relativistic QFT.

calculation for the axial vector potential when working in the decoupling limit, which supports the
heuristic argument we make above. Therefore, when working in this limit, we can also compute (opv)

using the relativistic, perturbative QFT.

2.4.4 RESULTS

In this section, we show the results from the procedure laid outin Section 2.3.3. The quantity of merit
is the viscosity cross section ¢p-. The angular weighting regulates both forward and backward scatter-
ing, which is important since singularities in the forward and backward scattering limit, although

physical, do not change the dark matter velocity distribution and hence have no observable effect.
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The physical quantity we can extract from measurements is (opv). The velocity averaging assumes
a Maxwell-Boltzmann distribution truncated at an escape velocity vee = V/20ms, as for a virialized
halo. The results are shown in Figure 2.5 for the various interactions we considered. The parame-
ters are chosen such that the cross sections are at approximately the correct order of magnitude over
the velocity range of interest. A more dedicated exploration of the viable parameter space fitting the
self-interaction cross section measurements from astrophysical data in*’* should be performed, but s
beyond the scope of this work.

As we discussed in detail above, our numerical results for the pseudoscalar mediator and the axial
vector mediator, with a decoupled Higgs, show no Sommerfeld enhancement. So, we can compute
(opv) directly from perturbative, relativistic QFT in both of these cases. For the pseudoscalar medi-
ator, we notice a kink occurring at v ~ O(myp/m,). The kink exhibits a characteristic factor of 3
increase in the cross section. The cross section plateaus before and after the kink. These are robust
predictions for the behavior of the pseudoscalar interaction. The features we highlighted above can
be seen more clearly in Figure 2.2, even though it contains only the tree-level QFT results, since these

are a good approximation to the answer in the case of pseudoscalar and axial vector interactions.

2.5 CONCLUSIONS

In this chapter, we have studied the velocity dependence of interactions between spin-1/2 dark mat-
ter particles mediated by a light boson. In particular, we studied the scenario where the boson is a

scalar, vector, pseudoscalar or axial vector. We derived the associated potentials including both s- and
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t-channel contributions to the scattering process. We outlined a new procedure for setting the bound-
ary conditions where we match a tree-level perturbative QFT estimate of short-distance scattering to
the Born approximation to short-distance scattering in the effective nonrelativistic quantum mechan-
ical theory. Numerically solving the Schrédinger equation then allows us to capture the effect of Som-
merfeld enhancement. While we have only considered simplified models in this work, our procedure
generalizes straightforwardly to more complicated models as well.

We presented numerical results for the scalar and pseudoscalar case. The scalar mediator gener-
ates significant enhancement for low velocities and light mediators, an effect that has been studied
extensively in the literature previously. Our numerical results for the pseudoscalar mediator show an
excellent match to the tree-level perturbative QFT approximation. This lack of Sommerfeld enhance-
ment is further supported by a Feynman diagrammatic argument. We also argued that Sommerfeld
enhancement is absent for an axial vector mediator. In this scenario, the mediator mass and the gauge
coupling are tied together such that as the mass is dialed down, the coupling gets correspondingly
weaker. Our results suggest that, if the shape of the cross section discussed in**" persists with more
data and a better understanding of baryonic effects, then pseudoscalar and axial mediators will not fit
the data as well as scalar and vector mediators. (These light-mediator models are not the only options,
however; see, e.g., 43 14114%),

The matching procedure that we have described can be applied beyond the four simple models we
have studied. For example, the axial vector model also in general has scattering mediated by the Higgs
boson that provides a mass to the axial vector field. One could match to a theory that includes both

the Higgs and axial-vector contributions. In general, our matching procedure will be useful in cases
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with both long-range Sommerfeld enhanced scattering and short-distance contributions to the ampli-
tude. Once the velocity-dependence of the cross section in a given model is known, it can be fed into
simulations or other studies of structure formation, for instance in the ETHOS framework "57-38917,

Our results also raise a more abstract question: to what extent are singular potentials in quantum
mechanics relevant when matching to an underlying perturbative QFT? There is a large literature
on singular quantum-mechanical potentials like 1/7*. We have observed that when matching to tree-
level QFT, such terms are accompanied by spin-dependent factors that eliminate the dangerous terms
in the leading-order Born approximation. It would be interesting to better understand the general
properties of quantum mechanical models arising from weakly coupled QFTs, which we turn to in

the next chapter.
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The Singularity Structure of Quantum

Mechanical Potentials

Quantum mechanical potentials are a low energy non-relativistic description of a scattering process.
The space of these potentials is infinite as it contains all possible radial and angular dependences, as well

as combinations of operators such as spin and angular momentum. From a bottom-up approach, we
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are free to analyze any of these apparently consistent potentials we want in the framework of quantum
mechanics. On the other hand, if the eventual goal is to obtain an underlying QFT description of the
dynamics we are trying to model, then the space of viable potentials shrinks. This top-down approach
relies on theoretical consistency, which serves as a powerful tool to limit the space of effective potentials.
Potentials in this subspace can be UV completed into a QFT and as such, have a chance of describing
the phenomena we see around us in the non-relativistic and the relativistic regime. In contrast, the
potentials which are not a part of this subspace can never be UV completed to a QFT, so regardless
of how good of an empirical fit they might be, the underlying microphysics will not be amenable to a
QFT description.

Exploring the relationship between quantum mechanical potentials and field theory operators is
certainly not new. It was originally studied in the context of Bethe-Salpeter equations in7®. The au-
thors concluded that super-renormalizable operators yielded regular potentials 7,(7), renormalizable
operators yielded transition potentials 7;(7), and non-renormalizable operators yielded singular po-
tentials V;(7) (see*'? for a review of singular potentials). These potentials satisfied the following con-

ditions at the origin. Here, C'is a finite constant.

lim 7,7} = 0
lim |2V, (r)|= C (3.0.1)
r—0

lim ()| = o0

Later, Lepage and Caswell developed a non-relativistic effective field theory approach to this prob-
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lem in'**3'4. Although they didn’t seck to address the relationship between field theory operators
and singular potentials, their work simplified the analysis of many non-relativistic phenomena such
as low energy scattering due to the new toolkit they introduced which leveraged the non-relativistic
nature of the problem. More recently, we developed a novel matching procedure in*7, where we rely
on a relativistic field theory description at short distances and a non-relativistic quantum mechani-
cal description at large distances. The matching is performed at the Compton radius of the scattered
particle, which is the natural scale where relativistic effects start becoming important. In light of this
new approach, it is worth readdressing the question of what classes of field theory operators lead to
singular potentials. As we will see, our conclusions about this classification difter from 76,

In?7, we showed that at short distances, there was a match between the tree-level relativistic field
theory description and the first Born approximation using the corresponding quantum mechanical
potential. This underlying correspondence between QFT and quantum mechanics naturally leads to

the following criteria for determining which potentials can be consistently UV completed into a QFT:

The space of consistent, nonsingular quantum mechanical po-
tentials consists of those arising from a well-defined QFT scat-
tering process. As a consequence of this definition, from the IR
perspective, a quantum mechanical potential is inconsistent if it

is singular, resulting in a divergent first Born approximation.

The analysis of low energy scattering is ubiquitous in various branches of physics. Non-relativistic
nucleon-nucleon scattering**5>'?* was a helpful tool in understanding the strong force. Non-relativistic

scattering is also of central importance in determining properties of dark matter. Scattering pro-
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cesses include dark matter direct detection *52°%22%215:87 and dark matter scattering and annihilation
in galaxies >00:201:262:55,105,320:384.80,291,94.27  Eyyrthermore, cross sections can be nonperturbatively en-
hanced via the Sommerfeld effect>”? in the non-relativistic regime. Analysis of the Sommerfeld effect,
which was carried out in*7 in the context of self-interacting dark matter models, even showed that the
potential generated by pseudoscalar exchange does not lead to any enhancement. This was a new re-
sult showing that the matching procedure was sufficient and there was no need to renormalize, as had
previously been suggested in the literature. In addition, we also showed that the operator accompa-
nying the potential was critical in reproducing the physics, and it was incorrect to approximate it as a
simple 1 / 7 central potential. With such a wide range of applications, isolating the space of consistent,
nonsingular potentials becomes crucial for ensuring that the empirical description of a low energy
phenomenon can be consistently completed into a QFT. This classification is also an important tool
for effective field theorists tasked with building a theoretical description underlying these low energy
processes, since it provides theoretical input on what classes of potentials are viable.

To begin exploring the space of viable potentials, in this chapter we will focus on perturbative QF Ts.
We will derive the potential experienced by fermions coupled in a variety of ways subject to a tree-level
matching between QFT and quantum mechanics. Our focus will be on fermion-fermion scattering
because each particle participating in the scattering has intrinsic spin which leads to a larger variety
of possible operator structures in the non-relativistic potential. We briefly comment on the scalar-
scalar and scalar-fermion scattering cases which work analogously, in Appendix B.1. We will begin

by reviewing how to set up the initial conditions for the scattering process of interest in Section 3.1.

Then we will start our investigation of potentials. Starting from an underlying QFT, we will study
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the potentials generated from tree-level approximations to the field theory scattering process. This
can be generated by renormalizable interactions coupling fermions and mediators, which we study in
Section 3.2.1, or non-renormalizable interactions, which we study in Section 3.2.2. We relegate some
detailed calculations to Appendix B.2. Having derived all of these potentials, we will be in a position to
critically address which potentials are truly singular or not. This will conclude our study of tree-level
potentials in 3 + 1-dimensions. In Section 3.3, we extend our tree-level results to higher dimensions.

We offer concluding remarks in Section 3.4.

3.1 SETTING UP THE SCATTERING CALCULATION

In this section we will begin by discussing the derivation of potentials and then review the procedure
we formulated in*7 for setting the boundary conditions. Given a set of interactions in a perturbative
QFT, we can write down the tree-level QFT amplitude for a particular scattering process. In non-

relativistic quantum mechanics, the Born approximation to the scattering amplitude is given by

@eliTIp) = V(@) (2m)3(Ey —Ep),  §=Fc—pr (3.1.1)

If the relativistic corrections are small, then we can match the non-relativistic limit of the QFT am-
plitude to the quantum mechanical amplitude. This gives us the following expression for the Fourier

transform of the quantum mechanical potential, 7(7), in terms of the QFT amplitude

1 1

V(G) = =M. (3.1.2)
2E, 2E,
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Figure 3.1: A schematic for the matching procedure adapted from?”. We use the Born approximation to set the boundary
conditions since we expect it to approximate the scattering process well in the deep UV. » > 4 probes the IR of our theory
where we expect the quantum mechanical potential to be a good description of our system. Since we have excised the
origin, we no longer have to worry about the (potentially) singular nature of the potential while solving the Schrodinger
equation. The exact wavefunction, which is the solution to the Schrédinger equation, can deviate from the Born wave-
function and these deformations are of physical significance, as evidenced by the analysis of Sommerfeld enhancement.

Relativistic and non-relativistic single particle states have a relative factor of 2E, in their normalizations
which is taken into account by the prefactor. The quantum mechanics calculation occurs in the center-
of-mass frame. This effectively reduces it to a single particle problem, and hence provides only a single
factor of 2, for the initial and final state. Once we have V(4), we can Fourier transform with respect
to 4 to compute the potential V'(7) in real space. We follow this procedure to arrive at the results in
Section 3.2.

The observable of interest for a low energy scattering process is typically a cross section. In the non-
relativistic regime, there can be significant deviations from a tree-level QFT approximation, for exam-
ple from non-perturbative Sommerfeld enhancement?7?. A convenient way of accounting for these

effects is to map the problem to an effective quantum mechanical problem, solving the Schrédinger
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equation and extracting the scattering matrix elements. To solve the Schrédinger equation, we need to
supply appropriate boundary conditions, in addition to the potential. The novel insight from*” was
that the physics occurring on short distance scales influences the wavefunction, which in turn affects
the boundary conditions. To achieve this separation of scales, we split the region and match at the
Compton radius of the scattered particle which is given by 2 ~ O(m; 1. The Compton radius is the
natural matching scale because for » < 4, the particles start becoming relativistic with momenta of
O(my). The quantum mechanical potential is a non-relativistic effective description of the scattering
process, so at these scales, we should not expect this description to hold and must resort to the under-
lying relativistic QFT description. In*7, it was shown numerically that the QFT tree-level amplitude
matched with the first Born approximation in quantum mechanics for » < 4. We showed this for
a variety of potentials, and also showed that this matching was robust to variations in the matching
scale as long as it was O( m;l) Establishing this correspondence allows us to compute the boundary
conditions at 7 = a, accounting for the effects of the short distance physics. For » > 4, we are in the
non-relativistic regime where quantum mechanics is an appropriate description of the physics. In this
region, we can solve the Schrodinger equation and extract scattering matrix elements which incorpo-
rate long distance non-perturbative effects. This procedure ensures a separation of scales and that the
appropriate description is used in the respective regimes. We show this schematically in Figure 3.1 and
proceed to discuss how to implement this procedure in more detail.

If we assume V() — 0 as » — 00, then asymptotically, the wavefunction is a solution of the free
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particle Schrodinger equation. sy and ¢y are solutions to the radial equation. They are given by

se(kr) = krjo(kr) co(kr) = —kryg(kr) (3.1.3)

where the jy(kr) and y¢(kr) are spherical Bessel functions and £ is the angular momentum of the
corresponding partial wave. These solutions form a basis that the asymptotic solution to the full

Schrodinger equation can be decomposed on. The decomposition is given by

s g9 (7) ~ Quspryso(kr) + Ko procg(kr) (3.1.4)

1y pr¢ is the reduced radial wavefunction. Ky, ¢ is a matrix which generalizes partial wave phase shifts
to account for interactions coupling various partial waves. As we will see shortly, this will be relevant
for potentials such as those induced by pseudoscalar exchange. In this case, the differential equations
are coupled, so that the potential V(7) is now a matrix Vi, g1 (7).

For a perturbative QFT, the tree-level QFT approximation of a particular matrix element will be

faithfully reproduced by the first Born approximation which is given by
—2u [°
Ky py = - drse (kr) Vi oy (7)s¢(kr) (3.1.5)
0
In an operator language, the integrand of Equation 3.1.5 can be understood as

Ry (k}") ng7g/5/(}")fg(k}"> X <€/| V&g/;/ |€> (3.1.6)
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where V', ¢ is now an operator and |¢) are states with angular momentum /. The boundary condi-

tions at 7 = « are then given by

ups s (4) ~ 5&,2’5’55(/64) + KZ;,E’&’(:@('%‘Z) (3-1 '7)

Using the method we described above, we now have a clear analytical diagnostic for evaluating

whether a potential is singular or not:

Diagnostic: If the integral in Equation 3.1.5 diverges for any
combination of incoming and outgoing states, then the poten-

tial is singular.

Since we are working in the non-relativistic regime, the argument k7 is always small over the interval
of integration. For small arguments, we expand the spherical Bessel function and find that s¢(kr) ~
(kr)HL. Setting ¢ = ¢/ = 0 in Equation 3.1.5 and using the small argument expansion of sy, we

2

recover the familiar fact that if a potential diverges faster than = as » — 0, the potential might be

singular. We now derive tree-level potentials for various interactions and analyze whether they are sin-

gular or not using the analytic diagnostic discussed above.

3.2 TREE-LEVEL POTENTIALS

In this section, we will compute the tree-level potentials experienced by fermions coupled via various

interactions. By tree-level potential here we mean that the amplitude in the QFT is the tree-level am-
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plitude. For concreteness, we will study the process ¥, ¥, — ¥, where ¢ are spin-1/2 fermions. We

will consider cases with and without a mediator.

3.2.1 RENORMALIZABLE INTERACTIONS

We begin by considering potentials generated by renormalizable operators in the QFT. For concrete-

ness we will consider the following operators

Lo=dpyy Ly = M@W?* Ly = l@u%//ﬂ” Lay = AW%//AVS?# (3.2.1)

Here the subscripts s, ps, v, and av denote scalar, pseudoscalar, vector and axial vector respectively.

To encompass all possible pairings of interactions, we consider two fermion species ¥, and ¥, each

of which is independently subject to one of the interactions in Equation 3.2.1. At tree-level, the pro-
. a o

cess ¥1¥, — ¥,¥, only has a t-channel Feynman diagram contributing to it." From the tree-level

amplitude, we obtain the following potentials

Aid
_ A2

Vs (V) - 477

(3.2.2)

W | me 4nd(H\a = Or mar*
"ev) = s p[(ar‘ 5 )5S (e =) 62

"Processes like Y3 — ¥y also have a contribution from an s-channel Feynman diagram. This gives rise to a
5*(7) contact interaction in the non-relativistic limit. It can explicitly be shown, by computing Equation 3.1.,
that 8% (7) gives a finite nonsingular result for all possible values of ¢ and ¢'.
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A 2 2 4
Vav,aV(V) = _if_mW’Sl : SZ + L;%Z Vps,ps (325)
wr Wl¢
Mdr L+mor
Vis() = oo e S (3.2.6)
Mg e ™" |1+ mopr o o b b / 1+ mpr,
VV,aV(V): 1f2e £ pfz*pfl Z<m1+MZ) ? SZ}A’
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The potentials we derive above agree with previous results 33:176:20%:215:80:158:2002 "The subscripts
for V indicate the type of interaction vertices present in the Feynman diagram. The first subscript
denotes the ¢, coupling and the second subscript denotes the ¢, coupling. Here, 72; denotes the mass

of fermion ¢, and S its spin. We also define the operator O as

OT = 3(§1 . }A”)(S:z . }A") — §1 . §2 (3.2.8)

We note that the only potential which has terms diverging faster than 2

near the origin is Vps ps (and
in turn Vayay). The O7 term is potentially problematic since it has a piece diverging as 7. In particu-
lar, the first Born approximation is well-behaved for every combination of states besides potentially the
¢ = {' = 0 case. While this scenario could be divergent, in*” we showed that (¢ = 0|O7|¢ = 0) = 0.

So, the operator structure in the potential prevents the divergence from arising and Vs ps is not sin-

gular. Therefore, all of the potentials we consider in this section are non-singular.

3.2.2 NON-RENORMALIZABLE INTERACTIONS

The case of potentials arising from non-renormalizable interactions factors into two scenarios: ones
with a mediator and ones without. Examples of the former include the fermions coupled to a field

strength tensor or derivatively coupled to a Goldstone while examples of the latter include four-fermion

*Vips(r) and Vo (7) differ by an overall sign relative to the results in**°. This discrepancy arises because
we choose ¢, to have a scalar (or vector) interaction and ¢, to have a pseudoscalar (or axial vector) interaction

while they consider the opposite scenario.
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operators.

We begin by analyzing the Goldstone and tensor couplings

1_ 1_
LGoldstone = KW};Waﬂ@ Liensor = ﬁ}k@w';ﬁ}:‘ v (3.2.9)

These couplings are examples of scenarios where we have a scalar or vector mediator but the coupling
is non-renormalizable. Here we define #* = £[#,y”] and F,,, = 0,0, — 0,0,

From the tree-level amplitude, we obtain the following potentials

_ 2 — 2
e~ | ym 472 (F)\= = O mar?
VGoldstone(7) = A2 (?f — 3( )>Sl -S + %(1 + mor + ;)] (3.2.10)
e """ | Or mar* 2m: 4xP (AN = = P = =
Vrtensor(r): m 7(14-7}’1?)}”—’- ; )—( 3V§D+ 3( )>S1S2 +1g)5152 (3.2,.11)

We can also consider tensor couplings of the form #yo*”y>yF,,. Together, these two tensor cou-
plings are the magnetic and electric dipole interactions, respectively. These two interactions are related
via 267 = 5/‘”7’0'/4,,;/5. The potential generated by this interaction has an additional ¢ tensor inserted
at each vertex, but this does not change the overall radial dependence of the potential. The difference
between these two interactions manifests when we consider monopole-dipole type couplings. Parti-
cles with an intrinsic electric dipole moment experience enhancements in the non-relativistic regime

when scattering off a charged particle, whereas particles with intrinsic magnetic dipole moments do
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not. Understanding the nature of this enhancement warrants solving the Schrodinger equation with
the appropriate potential. For the purpose of our study, we are only interested in the structure of the
potential and whether it gives rise to a finite first Born approximation. It can be shown that this is the
case for both tensor potentials and the Goldstone potential, so all these potentials are consistent and
nonsingular.

Next, we consider the scenario where we don’t have a mediator. Scenarios like this arise when a
heavy mediator has been integrated out leaving effective four fermion operators. The most general

four fermion operator we can write down has the form

A _
P%H%%FZ% (3.2.12)

In Table 3.1, we tabulate the leading non-relativistic potentials in position space for various four
fermion operators, which agree with the results in*°*.

The Goldstone and tensor potentials both have potentially problematic terms which are accompa-
nied by O7 preventing the singularity from arising. The potentials from four fermion operators are
all accompanied by 8°(7), as seen in Table 3.1. For a simple delta function, the integrand of Equa-
tion 3.1.5 scales as 3(7)# T which is finite for £ = ¢ = 0 and zero otherwise. Potentials with
derivatives might seem problematic at first, but we show in detail in Appendix B.2 that they also pro-
duce finite well-behaved first Born approximations. So we see that any tree-level potential arising from

a QFT is nonsingular. In the next section, we consider generalizations to arbitrary spatial dimensions.
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Table 3.1: Leading non-relativistic potentials generated for various effective four fermion operators.

Effective Operator Position Space Potential

—

b 220 ()
AR (5 V) - V)P
SO Y 25(5, - V)P ()
¥ har b 2587

%?1?%%372757//#2 —%S"l §256(7)

%3717#%372757{4%, % <2§2 ) (i_zz - %) - l‘%(‘i ’ 6) + m%(‘?Z X §1) : 6) 33(

3.3 EXTENSION TO ARBITRARY DIMENSIONS

We begin by considering the Schrédinger equation for a particle that is not subject to any potential, in

d spatial dimensions '9%'77:237:12°_This is given by

1 d—1 1
—ivﬁ\y(r) = EY(r) Vi =0+ 78, + ZQZ (3.3.1)

O, represents derivatives with respect to the radial coordinate, Q2 is the Laplacian on the (d —1)-sphere
and g is the reduced mass. We can decompose ¥ (7) into the product of a radial function R(r) and
Gegenbauer polynomials, which are eigenfunctions of Q2. The Gegenbauer polynomials are a gener-
alization of the spherical harmonics to higher dimensions. We notice that for d = 3, we recover the

familiar eigenvalue of £(¢ + 1) for the angular momentum term. Analogous to the 3 + 1-dimensional
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case, we obtain a radial equation for every harmonic.

d—1 Ll+d—2
O*R + . O,R — (—'_}"Z)R = —k*R (3.3.2)

To cancel the term with the first derivative of R(7), we can set #(r) = #4~V/2R (). This simplifies

the radial equation to

(j+1 d—3
O*u + [/ez J(]:;)]u =0 j=l+ — (3.3.3)

The radial free particle solutions are denoted 5 and G and are given in terms of spherical Bessel func-

tions as before, with the only difference being that the order is now dimension dependent.

sikr) = krjjkr) ¢ = —kry;(kr) (3:3.4)

Asatest case, we will consider the Coulomb potential which in d spatial dimensions s given by V() =
/"2, Ford > 4, this potential diverges faster than =2 and there is no accompanying operator
structure that can give vanishing matrix elements between potentially problematic states. Naively,

this potential appears to be problematic. To test whether this potential is singular, we compute the
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first Born approximation using Equation 3.1.5

-2 a
K jry = T‘u /0 drsy (kr) Vi g (r)s(kr)
~ _ZZ/‘/ dr T12= gt (3:3:5)
0

—2ap [* Al T
kJo

The most divergent case corresponds to £ = ¢ = 0, which we explicitly see is finite and nonsingular.
This is a clear indication that potentials diverging faster than 7~ should not be the sole diagnostic for
evaluating whether they are singular or not. Furthermore, the dependence on dimension drops out.
This indicates that Coulomb potentials, which have well-defined QFT descriptions in any number of
dimensions, are always nonsingular, and our proposed diagnostic for testing this works. By extending
our analysis to an arbitrary number of dimensions, we see that our earlier results were not just an
artifact of working in 3 + 1-dimensions. It also indicates that there exists a deeper connection between
QFT and quantum mechanics, where a tree-level perturbative QF T will always produce a nonsingular
potential. These results clearly support our refined definition of what a singular potential is as well as

our criteria for determining if a potential is singular or not.

3.4 CONCLUSIONS

In this chapter, we have studied the non-relativistic potentials generated for a variety of interactions
between spin-1/2 particles. These include interactions mediated by scalars or vectors as well as four

fermion operators. We reviewed the procedure laid out in*” for setting boundary conditions. In ad-
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dition to setting the boundary conditions for the Schrédinger equation, this procedure also provided
us with an analytic cross-check for determining whether a potential is singular or not. Using this
diagnostic, we showed that all of the potentials generated from tree-level QFT descriptions of scatter-
ing processes give rise to nonsingular well-behaved quantum mechanical potentials. In many cases,
this nonsingular behavior is preserved by nontrivial cancellations that arise due to the accompanying
operators. Furthermore, we extended this analysis to higher dimensions and showed that Coulomb
potentials in an arbitrary number of dimensions are also nonsingular. These results lend credence
to the notion of a subspace of consistent, effective quantum mechanical potentials and indicate that
subject to our matching procedure, singular potentials in quantum mechanics are irrelevant when
considering a matching to an underlying perturbative tree-level QFT.

We emphasize that all of the evidence presented so far is from tree-level examples. This motivates
various different avenues to follow up on our results. In particular, it would be interesting to un-
derstand how to extend the matching procedure beyond tree-level. This extension will be relevant
for computing loop-level corrections to these potentials as well as processes where the leading order
scattering occurs at 1-loop in QF T 12%212:208:274:209,270:214,245,211,89,213,100,376,305,152,229,369,15 1,96 | QF Ty
that spontaneously break Lorentz invariance also yield long-range potentials and it will be interesting
to explore the structure of these potentials in more detail >>. Nonperturbative QFT, such as coupling
to CFT sectors >, presents an additional class of nontrivial examples and at present, it is not clear
whether this can give rise to singular potentials from the quantum mechanics viewpoint. As such, it
is worth exploring the types of potentials which can arise in these theories. These various investiga-

tions will help further refine the boundary between quantum mechanical potentials which can be UV
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completed to a QFT and those which cannot.
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A Closer Look at CP-Violating Higgs Portal

Dark Matter as 2 Candidate for the GCE

4.1 INTRODUCTION

Over the years, there have been tantalizing hints in various experiments of potential dark matter signa-

tures; while many of these signals have vanished due to increased statistics or a better understanding
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of systematic uncertainties, some signals, such as the Galactic Center Excess (GCE), have persisted for
over a decade.

In astrophysical settings, the Galactic Center is expected to have some of the largest dark matter
densities, and is therefore one of the most promising targets for indirect searches. The GCE is a statis-
tically significant excess of gamma rays at energies of ~ 2 — 3 GeV observed in the Galactic Center by
the Fermi Gamma Ray Space Telescope*?. As pointed out b}7238’2(’7’2(’9’2‘“"3’1(”’I 4, the GCE could
be explained by a thermal WIMP annihilating to Standard Model particles. To truly confirm such a
hypothesis, it is crucial to observe a signal in other indirect channels. In fact, it is possible that AMS-o2

156,155,138,268

is observing an antiproton excess 8 at a concordant energy range , though the existence

258

of this excess is not as well established °7>*5°. While promising, it has also been suggested that the GCE

signal could be generated by millisecond pulsars *>**37. In recent years, the debate surrounding the ori-
gin of the GCE has intensified 3' 17331232225 174323,306,397,307,308,109,14,318:329.293 New measurements
in the coming decade and a better theoretical understanding of Galactic diffuse emission models will
help settle this debate, but until then, the origin of the GCE remains unknown and dark matter anni-
hilation remains a viable explanation.

As discussed in'®"'"#, the GCE can be well described by dark matter annihilations, particularly
to bb. This has fostered the development of many dark matter models with WIMP-like annihilation
mechanisms, which are too numerous to review here (see > for a review). Of these, models with pseu-
doscalar s-channel mediators are particularly well-motivated because they are neutral and can evade
direct detection constraints. In particular, if the dark matter lives close to resonance, the annihila-

tion cross section can be boosted enough to explain the GCE 271,95,128,250,116,84,227,182 YWhile much of
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the previous work relies on the introduction of a new pseudoscalar mediator, the authors of ''? pro-
posed an interesting alternative. In their setup, the dark sector is connected to the visible sector via a
CP-violating coupling to the Higgs, which allows annihilation and spin-independent scattering to be
governed by different parameters. In principle, the CP-violating coupling can generate a viable ther-
mal relic candidate even away from the resonance, by suppressing the scattering rather than enhancing
the annihilation. However, in'*?, the authors consider specific model realizations within the context
of supersymmetry where the benchmark best fit model still has the dark matter mass very close to half
the Higgs mass.

In this work, we extract the key ingredients of their model, namely a Majorana dark matter candi-
date with CP-violating coupling to the Higgs, and explore the extent of freedom away from the mass
resonance that can be achieved with larger CP-violating couplings. We see that for large enough cou-
pling in the dark matter EFT, there is O(10) GeV flexibility for the dark matter mass when the phase
is approximately 7/2.

We also consider and explore the phenomenology of two different minimal UV realizations of this
scenario: singlet-doublet dark matter325:170:192:149:129:17:113,:221.68, 111321 and doublet-triplet dark mat-

ter 164,17,221,321

. We study both how these models translate to EFT parameters, and constraints gov-
erning these UV realizations, including contributions to the electron electric dipole moment (EDM),
the Peskin-Takeuchi parameters, as well as possible collider signatures. We find that while the dark
matter mass and CP-violating phase are independent parameters in the EFT, their dependence in the

UV completion is quite nonlinear since the Yukawa coupling directly affects the dark matter mass.

Specifically, it is difficult to achieve the phase tuning scenario without also tuning the mass in the UV
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completion, because the large couplings that are required to generate the annihilation cross section
when away from resonance also change the dark matter mass. Additionally, we find that the amount
of CP-violation in the UV may not be reflective of that observed in the EFT. In the singlet-doublet
case, we find two different types of viable parameter space. When the UV couplings are small, both
the singlet mass in the UV and the dark matter mass must be very close to 2;,/2, but the phase is
flexible. When the UV couplings are larger, parameters must be chosen such that both the phase of
the dark matter-Higgs coupling and the dark matter mass must be somewhat tuned, but there is more
flexibility in the dark matter and singlet masses than in the small coupling case. In the doublet-triplet
model, we find that EDM, spin-independent direct detection, and charged fermion collider search
constraints are sufficient to rule out any WIMP-scale annihilation signal.

The rest of this chapter is organized as follows. In Section 4.2, we discuss the effective field theory
of Majorana dark matter interacting with the Standard Model through a CP-violating Higgs coupling.
The EFT parameters dictate the annihilation and scattering cross sections which are broadly applicable
independent of specific UV completions. In Section 4.3, we UV complete the EFT by introducing
a singlet Majorana fermion and a doublet Dirac fermion. In Section 4.4, we consider another UV
completion by introducing a doublet Dirac fermion and a triplet Majorana fermion. We discuss the
strong constraints placed on each of these models by a variety of complementary experimental probes
such as the electron EDM, precision electroweak parameters, and collider searches. Finally, we ofter

concluding remarks in Section 4.5.
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4.2 MODEL INDEPENDENT CONSTRAINTS IN THE EFFECTIVE THEORY

In this section we take an effective field theory approach and focus on the phenomenology of a single
species of Majorana dark matter which couples to the visible sector via a CP-violating Higgs portal.

After spontaneous symmetry breaking (SSB), the corresponding terms in the Lagrangian are given by

*

- Iy 82y, — s
byPry + 2 pyp A 7 2.
)(LXJFZ\/EZR){JF 5 XV X (4.2.1)

Vhy

L3
272

where the CP-violation manifests in the complex nature of dark matter-Higgs coupling yj,. Further-
more, we have also allowed for a coupling gz, to the Zboson.”

As in all WIMP-type solutions to the GCE, the burden of the model is to reconcile the O(1) pb
annihilation cross section necessary to achieve both the observed gamma-ray excess and the dark matter
relic density, with the O(107'°) pb bounds on spin-independent scattering with nucleons from direct
detection experiments. Traditionally, this is achieved for Higgs-portal dark matter by tuning the dark
matter mass to the s-channel resonance 2, ~ m;, but an additional avenue is available in the case of
our model.

In the non-relativistic limit, two Majorana fermions form a CP-odd state, so annihilation into the
CP-even Higgs through a CP-conserving coupling is p-wave suppressed. It then follows that if the
coupling is complex, the annihilation in this limit is dominantly set by the imaginary part of y;,,, which
is reflected in the result we obtain in Equation 4.2.4. Conversely, the dark matter scattering off of the

nucleon (or quark) does not require any CP-violation since the initial and final states have the same

'y does not have a vector current coupling because y)*y vanishes identically for Majorana fermions.
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CP properties, and thus we expect the spin-independent scattering cross section to be proportional to
the real part of yj,,. This is reflected in the result we obtain in Equation 4.2.13. Therefore, the phase
of the Higgs coupling can also contribute to a large hierarchy between the scattering and annihilation
cross sections. With this intuition, we describe the details and corresponding phenomenology of this

theory in the remainder of this section.

4.2.1  ANNIHILATION

Annihilation is mediated by both the Higgs and the Z boson through an s-channel diagram. The
dark sector couplings contributing to dark matter annihilation into SM fermions are given in Equa-

tion 4.2.1, and the visible sector couplings have the form

Iof = -
£33 ZLhf+ guZf (o — ap)f: (4.2:2)
7 V2
The couplings are given by their SM values

ﬁmf 4

_ _ _ i 02 _
)’hf_ —77 ng— m, Uf— ]3 — ZQSIH 5w, ﬂf— [3, (423)

where v is the Higgs vev, §,, is the Weinberg angle, and mp, I, and Q are the mass, weak isospin, and
electric charge of the fermion respectively. In the non-relativistic limit, the total spin-averaged ampli-

tude squared for annihilation can be written as
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M _ mJ% 2 2, 27 2 (m;? - m})
| ‘20(—%’_ 4m mfégéfgz;/lf + i m(y,] (3 — 4m 27 ¢ T2 | (4.2.4)

where I', denotes the width of the Higgs. The Higgs mediated piece depends only on the imaginary

part of the coupling as expected. The cross section is correspondingly given by

R e

2
- o (4.2.5)

mySmy
If the dark matter is a thermal relic, then the present-day dark matter abundance, thz = 0.11, sets
the annihilation cross section at the time of freeze-out, which is the well-known O(1) pb weak-scale
cross section 39%:131:310:272,394,380,368,85,375,244,236,381 R ecent work 'S has shown that for models with
a hierarchy between annihilation and scattering strengths, early kinetic decoupling before freeze-out
alters this number, requiring a larger cross section to achieve the observed abundance. At most ex-
treme, a ~ 20 pb annihilation cross section may be needed for a ~ 57 GeV dark matter with purely
imaginary couplings, though this is quite sensitive to the details of the QCD phase transition. How-
ever, this effect is significantly weaker for masses 2 2;,/2, so we do not take our annihilation cross
section to be this large.
At present, dark matter annihilation is expected to produce a distribution of gamma-rays whose

flux is given by
A*® 2(r)dt
? A Z — /-&[7 (42‘6)
AQdE, ~ T dE;/ ) ) 4mm?

where Br s fF denotes the branching ratio to the ff final state, and dN,, /dE, its corresponding injec-
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tion spectrum. Jox(r) denotes the dark matter halo profile and is integrated over the line-of-sight to the
Galactic Center. It has been shown that the Fermi GCE data is well-modeled by a Higgs portal dark
matter with a cross section (gv) ~ 3 pb, assuming a modified NFW profile**7. As the precise best fit
depends on many details, including the galactic profile and background modeling ', in conjunction
with the modeling uncertainties of the thermal relic argument, we will consider here a range of cross

sections (ov) from 1 to 10 pb to be in concordance with both the GCE and the relic abundance.

4.2.2 DIrRecT DETECTION

In contrast with annihilation, processes relevant for direct detection occur below the weak scale and
should be considered in terms of eftective interactions with target nuclei. Much of the subsequent
discussion follows*'7. At momentum transfers # < m2%, the interactions in Equations 4.2.1 — 4.2.2

are rewritten as the following dimension-6 operators

£ Sull LR S S, )

2
VA

with Cs, Cps, Cy, and Cpy denoting the scalar, pseudo-scalar, vector, and pseudo-vector pieces of
the quark-gauge couplings respectively. The contributions governed by Cpg and Cy- are velocity-
suppressed and we neglect them in the following. After matching to the UV theory, the coefficients
are given by

1
Cs=SRe lyer Crrv = gzygzsar. (4.2.8)
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In the zero momentum transfer limit, the nucleon-level operators are matched to the quark-level ones

via form factors

(NOIFPANG) = (o) |87 (27 | ) (+29)
<N(P)I]7ﬂN<P/)> = Z}Zf]jf\[”N(P)%N@/) (4.2.10)

where Nrepresents a nucleon (a proton or neutron), g = p’ — p denotes the momentum transfer, and
the form factors are listed in Table 4.1. We have neglected higher order terms in ¢*. For the scalar term
specifically, the heavy quarks also contribute via a gluon loop. After integrating out heavy quarks, the

relevant operator for each flavor appears as

G

lzﬁmf;@((}‘“ (4.2.11)

To match to the nucleon-level picture the following matrix element is taken into account

<N@)‘GWG/W‘N(P/)> = _;ZWNJ?MN(P)%N(PI)- (4.2.12)

In terms of the quark-level couplings, the nucleon-level spin-independent cross section is given by

2,2
osp = 47(my + mn)? m% f@zdj)’hf;]dv +f€z[;tyhf?7 . (4.2.13)
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AN

Protons | 0.80 -0.46 -0.12 | 0.018 0.027 0.037 0.917

Neutrons | -0.46 0.80 -0.12 | 0.0I3 0.040 0.037 0.910

Table 4.1: Here we show the light quark and gluon form factors for the proton and neutron. These values come

from 146:259:88.188 and are summarized in Y.

As discussed earlier, the cross section only depends on the real part of the Higgs coupling. Fur-
thermore, the dependence on the coupling to the Z boson vanishes in the g — 0 limit. Likewise the

spin-dependent cross section is given by

2
3mim?
X &z Nf
osp = arA . (4.2.14)
P w(my + mn)? | 4m, fen djng s

4.2.3 REsSULTs AND Discussion

In this subsection we examine the phenomenology of the effective theory, and discuss the regions of pa-
rameter space where a high annihilation and low scattering cross section can be achieved — specifically
we are interested in an annihilation cross section between approximately 1 and 1o pb to fit the GCE
and a scattering cross section consistent with direct detection experiments. For spin-independent
scattering, the strongest limits come from XENONT1T ##7, while for spin-dependent scattering, the
strongest limits come from both XENON1T*# and PICO#**. LZ3* and XENONnT* are pro-
jected to improve on current limits within the parameter space of interest. The projected limits are

comparable, so we show only one in our figures for clarity. We omit limits from IceCube '*, LUX %"
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Figure 4.1: The ratio between annihilation and spin-independent direct detection cross sections on the 7z, — gDhZ plane
for different values of I)’h)(" The region allowed by direct detection is inside the solid XENON1T 447 constraint line, while
the region allowed by annihilation is between the solid 1 pb and 10 pb lines. We also show projected limits from LZ%2 as
dashed lines. Note that the axis scales on the two plots are different. We assume 72;, = 125.2 GeV here and throughout
this chapter. The left plot shows the mass resonance with smallyb}(, for which the dark matter mass must be tuned to
within less than a GeV of the pole, but there is some flexibility in the phase. The right plot shows the phase tuning: away
from m;, = 27”2( a large coupling is required to achieve a sufficient annihilation cross section, but tuning the phase
near 7r/2 avoids direct detection limits despite the large coupling. In this case, the flexibility of the allowed mass range
changes to (9(10) GeV. Both of these plots include a small non-zero Z coupling that is consistent with spin-dependent
direct detection constraints. The limits are similar for vanishing Z coupling.
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Figure 4.2: Spin-dependent direct detection limits as a function of dark matter mass and dark matter-Z coupling. Con-
straints are close to horizontal because the spin-dependent cross section depends on the reduced mass. For neutrons,
XENON1T*® is the strongest model independent constraint. For protons, PICO 4243 provides a slightly stronger constraint.
Additionally, we show projected limits from LZ 82,



and PandaX-II"5* because they are slightly weaker than those we’ve shown for O(60) GeV dark mat-
ter. For the spin-independent constraints, we consider only dark matter-proton scattering because in
this case the difference between proton and neutron cross sections is negligible.

First we review which masses and coupling magnitudes are in general concordance with scatter-
ing constraints and annihilation requirements. Typical couplings that can generate an annihilation
cross section of ~ 1 pb are shown in Equation 4.2.15 for two different dark matter masses. In Equa-
tion 4.2.16, we show approximate couplings and masses that are consistent with direct detection con-

straints.

()] g 32 [ =] sty
1pb] ~ [80GeV] | 10* GeV? 1.0
_ (4.2.15)
- L62.5GeV 50 GeV? 0.007
|: os7 :| B |:)11%COS ¢Ia;[:|2
1070 pb | 0.02
P (4.2.16)

[fw] - [#=] ?
105pb] — Lo.01

We remind the reader that the free parameters of the theory are m,, ¢7,, and the complex coupling
iy with phase ¢, . While gz, and Im([yj,] set the annihilation cross section, only Re[yy,] sets the
magnitude of scattering. In order to generate a large enough annihilation cross section while avoiding
direct detection constraints, Higgs portal dark matter models typically tune the dark matter mass close

271,95,128,250,116,84,227,

to half the Higgs mass 18,119 While tuning the mass is one way to generate the
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correct ratio in this model, we emphasize that in the EFT, the correct ratio can also be obtained for a
wider mass range by increasing the magnitude of the Higgs coupling while tuning the phase, ¢ . of the
Higgs coupling close to 7/2 to suppress direct detection constraints. This is illustrated in Figure 4.1,
which plots annihilation and spin independent direct detection constraints in the 72, — @, plane for
different magnitudes of the Higgs couplings. We can see that near the mass resonance, a small Higgs
coupling (~ 0.02) is sufficient to generate the annihilation cross section and the phase does not need
to be near 7/2 to avoid direct detection constraints. However, with phase tuning, the larger Higgs
coupling required to generate the correct annihilation cross section away from resonance is allowed
because direct detection only constrains the real part of yj,. This widens the mass range considerably
to O(10) GeV. Even for the mass resonance, the coupling cannot be purely real, because the leading
velocity dependent term is not large enough to generate the required annihilation cross section given
the finite Higgs width. See Appendix C.1 for more details. Note that while in principle a large pseudo-
vector Z coupling could also generate a sufficient annihilation cross section, this is constrained by
spin-dependent direct detection constraints, as shown in Figure 4.2. Within the range of Z couplings

allowed by direct detection, the effect on the allowed annihilation signal is negligible.

4.3 SINGLET-DOUBLET MODEL

A well-motivated way to UV complete the dark matter EFT provided in Section 4.2 in a gauge invari-
ant manner is to introduce additional particles charged under Ggyy. In this section, we discuss a simple

potential UV completion, where the only additional particles we introduce to the Standard Model are
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a singlet Majorana fermion and a doublet Dirac fermion. This model has previously been discussed

in other contexts in325’170’192’149’129’17’113’2“’68’IH’321.

4.3.1 MODEL IN THE UV

We start by establishing notation and describing the model. The model contains a singlet Majorana
fermion y; and an additional SU(2) doublet Dirac fermion with hypercharge 1/2. We describe the
SU(2) doublet with two left handed Weyl fermions y, (with neutral component ¢/ and charged com-
ponent ) and 7, (with neutral component ; and charged component ;). All new fermions are

SU(3) singlets. The Lagrangian for this model is
- m - -
L= Ly + Lineic — ma¥ - ¥, — 71%% + Y),H'Y, — Y3 H - i, +he. (4.3.1)

As we introduce three new fields and four free parameters, there is one remaining physical phase. We

make the choice to fix each of the Yukawa terms to the same phase, which carries the CP-violation,
YEye”‘;CP/Z, ij}eﬁcp/?‘. (4.3.2)

After SSB, the mass terms are written as

v.

~—1 ~0 mi v i ~0
Emass = —my (%2 % - %2%3) - TWﬁh + 5)’6 SCP/Zwl'%g + 5}/6 3CP/2¢1¢2 + h.c. (4'3'3)
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Let us define ¢, = %(;ﬁg + ;}g) and ¢4 = %(wg — ;}g) to be the two Majorana fermions that
constitute the neutral Dirac fermion {y5, ;}g} The mass eigenstates thus result from the mixing of
the doublet and singlet Majorana fermions, ¥, = (¥, 1//5 ,¥,):- We will denote the mass eigenstates

X: = (0:x12,)i» the lightest of which, y, is the dark matter candidate. Then

~_1 1
'Cmass = —WL2¢2 % - E%sz £t (4.3.4)

where A is the mass matrix. This basis change is governed by /, the matrix of eigenvectors that diag-
onalizes both ML and M, phase rotated such that JEMJ has real eigenvalues. After diagonalizing,

the Higgs Yukawa couplings are

1
Ltiiggs = Eb)(,-VTUhﬂz]?(j + he. (4.3.5)
where
0 0 (Y;h
U, = 0 0 (Yj’) ) (4.3.6)

Since one of the new fermions is an SU(2) doublet, the new fermions also couple to the electroweak

gauge bosons. The Z couplings are

Lz =} Uzl Za, + g2(cos? 6w — sin® o) (51 259y — 0, 259, ) (4.3.7)

71



— My=mn/2 — my=mp/2 yy=-0.375, y2 — j?>= 0.2

40001 ¢ _ sm2 4000{ g s
— 3000 ]
3000 < 3000
s (0]
S O
~ 20001 = |
g £2000

1000 ;

000 35 1000 { )
/, vjyﬁ,nvz'% ' y? —y'?= 0.2, 5'Cp= 1.5 — 555(1: N\
40 50 60 70 80 90 100 , : : , :
my [GeV] 40 50 60 70 80 90 100

my [GeV]

Figure 4.3: Plots show EFT coupling phase and dark matter mass as a function of 72; and 2, for different values ofy,jl,
and dcp. Left: dcpis fixed to 1.5 Whi|e}’5/ is varied. Right: yj/ is fixed to —0.375 while d¢p is varied. The shaded regions
give a sense of the width of the regions of interest: 60 GeV < my < 65 GeVand1.55 < %X < 1.60. We can see

that changingyjl has a minimal effect on m, at large m, but strongly affects which masses correspond to the central value
of g%{ = 7r/2. yj/ also affects the smallest value of 72, that can lead to a mass resonance. Changing dcp has a larger

effect on which 72y is required to get the mass resonance, and also affects the width of the @b;( = 7r/2 band in addition
to the position of its central value.

while the 777 couplings are
Lo =4 b7y, + 9 W*a—[aﬂﬂpj + he. (4.3.8)

where g is the SU(2) gauge coupling, ¢’ is the U(1) hypercharge gauge coupling, )y is the Weinberg

angle, and g7 = /g% + ¢'*/2. Here,a; = (¢/2,¢/2,0);,b: = (g/2,—¢/2,0); and

0 —gz 0
Uz=|—-, 0 of- (4.3.9)
0 0 0

The dark matter candidate y obtains the couplings seen in the EFT via mixing between the singlet
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and doublet. The strength of these couplings can be adjusted by altering the makeup of the lightest
Majorana fermion. The theory at this level is fully specified by five degrees of freedom: the singlet
mass 71, the doublet mass 72, the doublet Yukawa coupling magnitudes {y, 7} and the associated

CP-violating phase dcp.

4.3.2 TRANSLATING TO THE EFT

Now we discuss how the EFT parameters gz, 7, and y), depend on the UV parameters y, y, m1, ma,
and dcp. We focus mostly on the region where 2, islarge, but also comment on the more general case.
Since the theory has a charged fermion with mass 72,, parameter space with small 72, will generically
be ruled out by collider constraints »*. EDM and electroweak constraints are likewise more stringent
in this regime.

Figure 4.3 shows the EFT mass and phase as a function of 7; and m, for different values of the UV
coupling magnitudes and phase. On the left we show multiple values of yy for fixed dcp while on the
right we show multiple values of d¢p for fixed yy. In both cases, we can see that only a narrow range in
m translates to dark matter with mass near the mass resonance. When 2, is large, the lightest fermion
is mostly 7;. In this limit, mixing is small, so to have the dark matter mass near the mass resonance,
m must be fairly close to half the Higgs mass. We can see that changing yy changes where ¢ = /2
is located but only has a minimal effect on which 2; value translates to the mass resonance. We can

also see that for the same 21, smaller yy requires a correspondingly smaller 72, to get dark matter with

*We also omit the case where both 721 and 7, are large. In this case, extremely large couplings are required
in order to get dark matter with mass near 72, /2. This means the dcp must be small to avoid EDM constraints,
which leaves us with @ I mostly real and prevents us from simultaneously evading spin-independent constraints.
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my, = my/2. Changing dcp also changes the location of Py = 7/2 contour, but additionally affects

the 72 required to get the mass resonance and the width of the @ by 7/2 band.
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Figure 4.4: Diagram generating dark matter mass in the limit where 2, is large.
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Figure 4.5: Plot of as a function of d¢p for different values of 72,. We note that as 72, increases, the IR phase maps
92)/7;(
directly to the UV phase and ¢1% ~ dcp.

Figure 4.4 shows that the corrections to the mass scale as yyv* /m,.3 This diagram also tells us that
Py = dcpin the large m, limit, as long as mixing is small and the dark matter mass comes mostly from
m rather than the Higgs vev. This can also be seen in Figure 4.5. When the dark matter mass gets a
large contribution from the Higgs vev the story is more complicated: when yy and 21 have opposite

signs, the Higgs contribution can cancel with m2; at yy = —mam / v* to get amassless state. Thereisa

> Although we need to phase rotate ¢, the phase rotations in the couplings and mass insertion cancel out.
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Figure 4.6: Dark matter mass, EFT phase, and dark matter-Higgs Yukawa coupling as a function of the UV parameters yj/
and J¢p for different values of 72,. In each plot we see a similar mass structure: we see a massless state when yj/ and 2
have opposite signs, and have a lightest fermion near 60 GeV for both larger and smalleryj/ than this value. We can also
see the scaling of both the EFT mass and Higgs coupling with yj/ and 72,. Note the different values on theyjf axis in each
of the plots.

mass resonance contour for yy both larger and smaller than this value, which can be seen in Figure 4.6.
‘We might also ask whether a small 0¢p in the UV can translate to ~ 7/2in the IR and produce an
g by p
annihilation signal that evades both direct detection and EDM constraints. However, from the same
figure, we can see that although there is a point where small d¢p translates to ~ 7/2,it corresponds
g g p by p
precisely to the massless state mentioned above and cannot generate our annihilation signal. This is

evidenced by all the phase contours converging at the massless point, because when 7, is zero, we can
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freely rotate 72 to absorb the phase in y since the phase is no longer physical.

In the small mixing and large 2, limit, there are two contributions to the Higgs coupling: one
where ¢, mixes into ¥, and one where it mixes into %l, as shown in Figure 4.7. Each of these con-
tributes (y & 7)*v/my, with a relative minus sign between the two contributions because we need to
phase rotate ¥, to have positive mass. This means the Higgs coupling scales as yyv/m;,, which deter-
mines the scaling of the annihilation signal. This can also be seen from the pink lines in Figure 4.6.
Note that this scaling breaks down once the Yukawa contributions become the dominant contribu-

tion to the mass.

Figure 4.7: Diagram that generates the dark matter-Higgs coupling in the limit where mz, is large.

In the same limit, the dominant contribution to the Z coupling comes from Figure 4.8, which scales
as g7(y* — 7*)v*/m3. Even away from this limit, we still get a vanishing Z coupling for y = 7, because
only one of the doublet states mixes with the singlet when y = y. For small 2, spin-dependent direct
detection constraints require y /= ¥, but for 7, 2 500 GeV this constraint becomes irrelevant, since
the Higgs coupling (which determines the annihilation signal) scales as 7, while the Z coupling

scales as 72, *. This can be seen in Figure 4.9.
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Figure 4.8: Diagram that generates the dark matter-Z coupling in the limit where 2, is large.

mi= 65 GeV, yy= 0.5, 6cp = 1.5 ——

gZ X

2]

10 — m,=200GeV  —— m,=2000 GeV

— m, =500 GeV —— m,=5000 GeV
m, = 1000 GeV

T T T

00 02 04 06 08 1.0
y2_)72

Figure 4.9: Plot of gz, as a function of y2 — )72 for different values of m,. g7y increases with increasing yz - 5/2 and
decreases with increasing 72,, corroborating the scaling derived from the diagrams in Figure 4.8.

4.3.3 CONSTRAINTS

In this section, we discuss the experimental constraints that apply to the singlet-doublet model. We
focus on constraints that apply directly to the parameters in the UV theory, including discussing their

scaling in the large 72, limit.
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4.3.3.1  ELECTRIC DIPOLE MOMENT

Any new source of CP-violation in a given model can lead to additional contributions to electric
dipole moments. Since our model contains new CP-violating couplings to the Higgs, we expect elec-
tron EDM constraints to be relevant for our model. For small 725, the EDM limit will be one of the
strongest on our model, since the EDM is precisely constrained to be below 1.1 x 1072 ¢ cm*+.

For the singlet-doublet model above, the only relevant diagram is the Barr-Zee diagram with 17
bosons in the outer loop”?, displayed in Figure 4.10. There are no other Barr-Zee diagrams with
Higgs or Z legs; since CP-violation is only in the neutral sector of this model and a charged particle is
necessary to radiate a photon, the inner loop must contain both a neutral and charged particle. Ad-
ditionally, there are no other non-Barr-Zee diagrams that contribute to the EDM at 2 or fewer loops.
For any non-Barr-Zee diagrams to contribute, there would have to be a CP-odd correction to a gauge
boson or Higgs propagator. With only a single external momentum, it is impossible to contract with
an epsilon tensor and make a non-vanishing CP-odd Lorentz invariant.

To compute the value of the relevant Barr-Zee diagram, we use a simplified version of Equation 21

in®', where we have neglected the neutrino mass, approximated lepton couplings as flavor diagonal,

and used the fact that one of the fermions in the loop is neutral:

e = - g2 m([a]]’ N [ Pn it X o
¥ = i Dl () o). s
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Here, x, = m2 /M3, and G(a, b, c) is defined as

1 U dx ¢ ¢
G(a,b,c) = log ( =
(4,4,¢) l—c/o 1—x<z—cog(z>+

1 1
1_zlog <z>> (4.3.11)

with

b
2(x,a,b) = — + “

x 1—x

(4.3.12)

Recall from Section 4.3.1 that couplings #; and b; parameterize the /7 boson couplings to the inner
loop fermions in the gauge basis, which are given in Equation 4.3.8, and Jis the change of basis matrix.

When 2, is large enough that we can integrate out the doublet and mixing is small, the dominant
contribution to the EDM comes from Figure 4.10, since each helicity of charged fermion couples to a
different neutral doublet component and mixing with the singlet is necessary to generate CP-violation.
This contribution scales as yyo* /m3. The m scaling follows from dimensional analysis: three factors

of my from the integral measure cancel with three of the five factors of 7, from the propagators.*

4.3.3.2 ELECTROWEAK PARAMETERS

Here we consider constraints from electroweak precision measurements, where deviations from the

SM are parametrized by oblique parameters S, 7, U, W, and Y?#>"*°, defined in Equations 4.3.13-

4.3.17.

+The ¥, propagator also scales as m{l since p = my > my.
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Figure 4.10: Leading contribution to the non-zero Barr-Zee diagram in the large 72, limit. In this limit, we can work
perturbatively in the gauge basis. The relevant I couplings are the coefficients of;(;1 % Wj{zo and;fzr0 % WJ“;N(Z_I.

4¢%5% -5
5= 50 00 - S 0) - ,(0) (+3.13)
ro L [Mww(0) _ Oz(0)
= - == (4.3.14)
a, myy, my
_ 45> / €1 /
U= == [y (0) - “113,(0) — 1, (0)| =5 (4.3.15)
m2s2 2s 5
w= - I1%,(0) + =I12%,(0) + =117 (0 3.16
e 112,00) + 2100 + 511500 (4:316)
m%/VSZ 211/ Am "
Y= S |© IT,,(0) + 5s"TI7,(0) — 2sIT,(0) (4.3.17)

The masses and couplings are evaluated at m% and ¢ and s are cos fy and sin &y respectively. Tlyy

represents the new particles’ contribution to the vacuum polarization of the gauge boson X at 1-loop,
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computed in MS scheme under the convention shown in Figure 6.4.

X XV

Figure 4.11: New particles that couple to the Standard Model gauge bosons contribute to the vacuum polarization at
1-loop through this diagram. The X¥ represents an electroweak gauge boson. We ignore thep“p” terms since they aren’t
relevant for Equations 4.3.13 - 4.3.17.

To lend intuition, we note that 7"parametrizes custodial SU(2) breaking inherent in the asymmetry
within the doublet terms; in our theory this manifests in the difference in Yukawa couplings y and y.
U'is the derivative of 7, and thus is typically smaller. All these parameters fall oft with increasing 2,.

The most recent constraints, at 95% CL, from the LHC yield

§=-0.01+£010 T=0.03£0.12 U= —0.01%0.10 (4.3.18)

with correlations +0.92 between S and 7, -0.80 between S and U, and -0.93 between T'and U?°°. W

and Y are measured to be

W= (-27+20)x10"° Y= (42+49)x107° (4.3.19)

with correlation —0.967°, though we find these to be subdominantly constraining for this theory.
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4.3.3.3 COLLIDER EXPERIMENTS

Constraints from many collider searches (in particular SUSY searches) can be applied to this model.
Specifically, we consider those searches included in the database of the publicly available SModelS
version 1.2.4 software*840:184:41303,60.372:37,104 Ty generate the necessary input, we use SARAH
4.14.3 377378379 1o create modified versions of SPheno**?53 and Madgraph **3° which include the
singlet and doublet. Then we use this version of SPheno at tree level to compute the spectrum and
branching ratios for SModelS and the run card for Madgraph, which was used to obtain the produc-
tion cross sections that SModelS also needs as input. These constraints are combined into a single
exclusion limit labeled LHC when included in our plots. In addition to this constraint, we also show
the constraint from invisible Higgs decay. We do not include the constraint from invisible Z decay,

since it is not kinematically allowed in the parameter space of interest.

4.3.4 FuLL ExcLusioN LiIMITS AND DISCUSSION

Finally, combining all of these constraints, we examine the remaining parameter space for singlet-
doublet dark matter that has the desired amount of annihilation. Our results are shown in Figures 4.12
and 4.13. We find that in all cases, some tuning of the parameters is required, but that there is flexibility
in which UV parameters we need to tune.

Asin the EFT, in order to achieve a pure mass resonance (and not have to tune the EFT phase) we
need small couplings. This can be seen in Figures 4.12a and 4.12b. The spin-independent constraints

are weak for small couplings, regardless of dcp or the EFT phase. Other constraints are even less re-
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Figure 4.12: Full constraints on the model parameter space in theyjf — dcp plane, for different values of 72; and 72,. In
this and subsequent plots the shaded regions denote parameter space ruled out by experimental bounds ***7%4¢47 " For
annihilation, we include both an upper and lower bound. Other constraints are not relevant for these slices of parameter
space. Spin-dependent direct detection constraints in particular are weak since y2 — 5/2 is small. Dotted lines indicate
proximity to mass resonance and pure imaginary EFT coupling: the green dotted lines bound a region with dark matter
mass 60 GeV < m, < 65 GeV, the yellow with EFT phase 1.55 < Py < 1.6. In Figures (a) and (b) we show that viable
parameter space can be found at small couplings, corresponding to a pure mass resonance with flexibility in %z' In this
case, smaller values of 72, are allowed but 72; must be close to m;,/2. Figures (b) - (d) also show allowed parameter space
for larger couplings: (b) shows m2; ~ m;]/Z; (c) and (d) show 72 further away from mh/Z for two different values of 72,.
In all of (b) - (d), viable parameter space requires m; ~ 60 — 70 GeV, dcp =, 1, and ¢h)( ~ /2.
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strictive, except for the EDM at very large dcp. Since the couplings are small, 72; must be tuned near
my,/2 in order to achieve a sufficient annihilation signal, but there is flexibility in the value of 5, as
can be seen in Figure 4.13a. This is the region of parameter space that is relevant for the best fitin***.

If instead we choose our parameters so that we allow the EFT phase to be tuned near 7/2, there
is other viable parameter space with larger couplings. Here, we have slightly more flexibility in 7z,
(which still needs to be roughly 60 — 70 GeV), but 72, must be large (m, 2 O(1) TeV) to avoid EDM,
electroweak, and collider constraints. This can be seen in Figure 4.13b. Additionally, to achieve an
EFT phase near 7/2 and avoid spin-independent constraints, generally dcp 2 1. Note that limits from
spin-dependent scattering can be avoided, since they vanish when y = =£y. This part of parameter
space generally requires proximity to both the mass resonance and the phase 7/2 line. However, there
is still some flexibility in both values; masses my > 65 GeV and phases Phy < 1.5 are allowed in these
intersections, albeit not simultaneously. Unlike in the case of the EFT, it is very difficult to tune only
the phase because we cannot make couplings arbitrarily large without affecting the mass spectrum, as
we saw in Section 4.3.2.

Figures 4.12b - 4.12d shows several examples of this. In Figure 4.12b, we can see the case where
we still choose 2 to be near 72,/2 but allow larger couplings. If instead we choose 72; further away
from m,/2, the only viable parameter space requires large couplings in order to get the dark matter
mass sufficiently close to resonance. This is shown in Figures 4.12¢ and 4.12d. Comparing these two
plots, we can see that there is more flexibility in dcp and larger required coupling values for higher 2,
because higher 72, changes the shape of the EFT phase 7/2 contour. Specifically, there is more overlap

between @), Dear 7/2 and the annihilation signal in the large 72, case since the condition Py = /2
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Figure 4.13: Similar to Figure 4.12, in slices of the m; — m, plane and for different values of yj/ and dcp. We show

399,70,48,42,43,298,40,184,41,303,60,372,37,104

constraints from in addition to the constraints shown in Figure 4.12. Dotted lines

around the critical mass and phase values give a guide towards the proximity of any viable space to mass resonance and
pure imaginary EFT coupling: the green dotted lines bound a region with dark matter mass 60 GeV < my < 65 GeV, the
yellow with EFT phase 1.55 < ¢h)( < 1.6. The left shows the case of a mass resonance with small couplings, where 72,

down to ~ 500 GeV is allowed. The right shows the case of larger couplings, where we need 7, Z O(l) TeV. We omit
light charged fermion constraints since small 72, is already ruled out.

becomes less dependent on yy at larger 2,5

4.4 DOUBLET-TRIPLET MODEL

In this section, we describe another potential UV completion, doublet-triplet dark matter. This model
includes the addition of a doublet Dirac fermion and a triplet Majorana fermion to the Standard

Model. This model has been previously discussed in other contexts in 164,17,221,321

5This is because the ¢ e = 7/2 contour always goes through the massless state that exists for negative y7,
which occurs at larger couplings for larger 72,. All phase contours go through this point since the phase becomes
unphysical when the lightest state is massless.
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4.4.1 MoDELIN THE UV

We begin by describing our model and establishing the notation. This model contains a Dirac doublet
of two left handed Weyl fermions with hypercharge 1/2 (denoted by ¥, and ¢, as in the singlet-doublet
case) and a triplet of Majorana fermions (with components 5 *, ¥, ¥3), all of which are SU(3) singlets.

The Lagrangian is given by

1 - ~ -
L= Lswi + Lianeic = 539393 = mafy ¥y = YH p59, = VEH )y +he. (44.1)

As in the singlet-doublet case, this theory also has a single physical phase, and we can choose the same

convention as the previous section to localize CP-violation to the Yukawa couplings, where

Y= ye”‘;cp/z, Y= jleﬂcp/z. (4.4.2)

Next we describe our notation after SSB. We denote the gauge basis neutral particles by ¢, =
{v3. %2 372{} and the gauge basis charged particles by ¢ = {y3", 95 '} and y = {y5", 3}2_1} We
label the neutral mass eigenstates y, = {¥,7,,x,} and the charged mass eigenstates " = {z{", v, '},
andy~ = {;',7;'}. Eachis ordered from least to most massive, and y again denotes the dark matter.
We call the basis change matrices /, and J, which are defined by ¥, = /,,, ¥~ = Jx=. The phases

of the eigenvectors are chosen such that the mass eigenvalues are real. Then the mass terms are given

by

86



1 -
Emms = _EZnVEM”]”];(n — X, [/ZMJJ,_]}[;F + h.c. (4,4,3)

with
m3 (y=3v/2v2 (y+7)0/2V2
my  —y/V2
My = (y—5)o/2V2 —my 0 ; M, =
_)N’U/ﬂ my
(4-4.4)
The Higgs Yukawa couplings are
Higgs = 5 2o Un Yalult, + b, V=Y 1" + he. (4-4-5)
with
0 ~(y—3)/2vV2 —(y+3)/2v2
0 y/V2
L= -(p-5/2v2 0 0 , Y=
V20
~(y+3)/2v2 0 0
(4.4.6)
The Z couplings are
1 —— —
Lz =29, Ul + 2 o U U+ 2 e U Iy (447)
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with

(=)
(e}
(=)

—V&+g? 0 (4.4.8)

0 (glfg/z) 0 _ (ngglz)

z _ I 0
Uy = o ) , U-= Ve

while the /7 couplings are

Lw = W g, gl ADJ-lx. + W 1,au D/l + he. (4.4.9)
with
g 0 £ 0
D-=10 g2 |+ D+=[o0 g/2f- (4.4.10)
0 —g/2 0 g/2

The charged fermions also couple to the photon with charge +1.

4.4.2 CONSTRAINTS

We treat most of the constraints in the doublet-triplet model similarly to those in the singlet-doublet
model. There are two exceptions that we discuss in more detail: the EDM and collider constraints.
The EDM calculation differs from the singlet-doublet case because there are additional diagrams.

Like in the singlet-doublet case, the relevant contributing diagrams are all Barr-Zee diagrams”*. The
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diagram with charged 17 legs, shown in Figure 4.10, that contributed in the singlet-doublet case is
still relevant, but for the doublet-triplet model there are two additional relevant Barr-Zee diagrams:
Zh and yh, shown in Figure 4.14. There is still no yZ contribution because in that case the same
charged fermion runs through the entire loop, leaving no place for CP-violation to enter since the
diagonal Z coupling is real. We also neglect the b diagram since it is suppressed by two factors of the

electron Yukawa. We use the general forms of the Zh and yb contributions from33°,

~V
1 ! 1 m3 A m
" = / d. | =L, = | h—= 4.
¢ 167*m3 Jq xx(l —x)J m?’ m3 ecom,n (44-11)

where geV is the electron coupling to Z or y, v is the Higgs vev, and we define

1 rlogr  slogs
J(rys) = ( & 7% ) (4.4.12)

r—s\r—1 s—1

cg and A v are determined by the inner fermion loop which only contains charged fermions for both

yhand yZ. They are given by

= 55 Re(mid (1= ) (el + ighet™) + (L= )l (gfg)” — iehgl™) ).

~z  xmi+ (1—x)m B ezjj . o ()2
A= x(1—x) %——ﬁ(l—x)mﬂ, A a1 —x)

(4.4.13)
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where

€= UI ), = 0T ),

(4.4.14)
& =JLU +]1U+j+, g=rur —fLU+f+

are given in terms of the matrices defined in Section 4.4.1. By definition, % is the fermion which

radiates the on-shell external photon, and ¢; = (g;)™.

Y

Figure 4.14: Additional class of Barr-Zee diagrams contributing to the electron EDM.;(C is the tuple of charged fermions
in the mass basis. For the yb diagram, 7 :j, whereas for the Zh diagram, we also have contributions where 7 5&]'.

A key difference between the singlet-doublet and doublet-triplet cases is that in the latter the mass
of the lightest charged fermion is set by similar scales as those that set the mass of the dark matter, and
thus generically the lightest charged fermion mass is O(100) GeV for the doublet-triplet model. This
allows us to treat collider constraints differently here than in the singlet-doublet case; we apply generic

LEP constraints on charged fermions rather than running the full collider pipeline we considered pre-
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viously. Specifically, charged fermions lighter than 92.4 GeV are ruled out as long as the mass splitting

between the lightest neutral and lightest charged particle is > 100 MeV *->.6

4.4.3 FurL ExcrusioN Limrts AND DiscussioN

Unlike in the singlet-doublet case, there is no viable parameter space in this model. In order to show
this, we consider three different cases. First, we discuss the case where the magnitude of the couplings
is small, for any phase. Then we discuss the case of large coupling and large phase. Finally we discuss
the case of large coupling but very small phase.

In the first case, parameter space is entirely ruled out by charged fermion constraints, as we can see
from Figure 4.15. On the left, this figure shows the values of several EFT parameters for fixed y, j, and
dcp and various values of 7, and m3. On the right, we show the annihilation signal and a subset of
constraints that are sufficient to rule out this region of parameter space.” From these plots, we can see
that since the couplings are small, in order to get a sufficient annihilation signal one of 72, or 73 must
be 2 m),/2, with the other UV mass larger. Since the magnitude of the couplings is small while the
UV masses are large, in this region there will only be a very small splitting between charged and neu-
tral fermions. Therefore, the parameter space here will be entirely ruled out by charged fermion con-
straints from LEP. This occurs regardless of phase, though EDM constraints are also strong enough

to rule this out for larger phases.

“If the lightest charged state is more than 3 GeV heavier than the lightest neutral state, then there isa stronger
bound ruling out charged fermions up to mass 103.5 GeV*. We use the smaller of the two values for simplicity
since it is sufficient for our purposes.

7The other constraints from the singlet-doublet case still apply here, but we omit them from these plots for
clarity.
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Figure 4.15: Example where the magnitude of couplings y and 5! are small, for different values of 72, and m3. The left
plot shows the values of the EFT parameters: dark matter mass, dark matter-Higgs coupling phase, dark matter-Higgs
coupling magnitude, and lightest charged fermion mass. Regions around the mass and phase points of interest are shaded:

55GeV < m, < 70GeVandl.3 < gDhZ < 1.85. The right shows the annihilation signal and a subset of relevant

constraints including EDM“**, spin-independent direct detection“¢*”, and charged fermion constraints from LEP*2. The

annihilation signal appears as a single brown line because a viable annihilation signal is only achievable in a tuned region
of parameter space.

In the second case of large coupling and large phase, EDM constraints are typically very strong. The
only exceptions are if both 72, and 23 are very large (which can’t generate the necessary annihilation
signal) or if one of 725 or 3 is very small. This is because in the limit where one of 72, or m3 is exactly
zero, the phase becomes unphysical since we can rotate it away. In the limit where 2, is small, the
lightest state will have mass even less than 7, and the DM mass won’t be in the right mass range to
generate the necessary annihilation signal. But in the limit where 723 is small, if the couplings are large
enough we can potentially generate the right annihilation signal. However, since the physical phase is

small, the EFT phase will also be small, and spin-independent direct detection constraints will always
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rule out any part of the annihilation signal that isn’t constrained by the EDM. This can be seen in
Figure 4.16, which again shows various values of EFT parameters for fixed y, y, and d¢cp and different

my and m3 values on the left, and the annihilation signal and a subset of constraints on the right.

1 Gann 1 os 1 EDM 1 LEP
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Figure 4.16: Here we show plots where the magnitude of couplings y andj/ are large and d¢p is also large, for different
values of 72, and m3. The left plot shows the values of EFT parameters: dark matter mass, dark matter-Higgs coupling
phase, dark matter-Higgs coupling magnitude, and lightest charged fermion mass. Regions around the mass and phase
points of interest are shaded: 55 GeV < m, < 70 GeV and 1.3 < §Dh;( < 1.85. The right shows the annihilation
signal and a subset of relevant constraints, and from here we can see that the combination of EDM constraints and spin-
independent constraints entirely rule out the parameter space generating a viable annihilation signal.

The third case of large magnitude coupling but very small phase is shown in Figure 4.17. The
top plots show the case where y and y are similar in magnitude, while the bottom plots show a large
splitting between y and y. In both, the EFT coupling is mostly real since the phase is small. There
are two different trends depending on the magnitude of the coupling. In both plots, we see regions

where the magnitude of the EFT coupling is large, and the annihilation signal is ruled out by spin-

independent constraints. In the case of small splitting, we also see a region where the EFT coupling is
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small (because the lightest state doesn’t mix), which is unable to generate the necessary annihilation

signal.
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Figure 4.17: Two examples where the magnitude of couplings y andjl are large and d¢p is small, for different values of 72,
and 3. The top plots show the case where y andjl have similar magnitudes; the bottom plots show the case where their
magnitudes are very different. Asin the other doublet-triplet plots, the left plots show the values of various EFT parameters
with shaded regions of interest and the right plots show the annihilation signal and a subset of relevant constraints. The
annihilation signal appears as two brown lines on each plot, since the region of allowed masses is so narrow. In both cases,
spin-independent constraints rule out the signal. In the case where the couplings are nearly equal, there is also a region
where the lightest neutral state decouples, and the dark matter-Higgs coupling is insufficient to generate the annihilation
signal despite the dark matter mass being close to mb/Z.
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4.5 CONCLUSION

Given that the GCE is one of the most persistent signals of potential new physics, it is worth cataloging
and understanding what could generate it. While there is still substantial debate over the source of the
GCE, one promising and well explored possibility is dark matter annihilating to 6. In this chap-
ter, we revisit the particular case where dark matter is a Majorana fermion with a CP-violating Higgs
coupling, which allows annihilation and spin-independent scattering to be governed by different pa-
rameters. Specifically, the leading contribution to annihilation is determined by the imaginary part
of the coupling to the Higgs, while spin-independent scattering constraints depend primarily on the
real part of the coupling to the Higgs in the mass ranges we are interested in. We study the EFT of this
dark matter model for the GCE in detail, and find that while tuning the dark matter mass very close
to half the Higgs mass is one potential way to obtain a large enough signal, tuning the phase of the
Higgs coupling to make it near imaginary loosens this restriction in the context of the EFT.

We also explore two potential UV completions: singlet-doublet dark matter and doublet-triplet
dark matter. In both, the story is more complicated than the EFT because the UV phase and mass are
not independent parameters. Although more elaborate supersymmetric realizations of a CP-violating

119

Higgs portal have been discussed in **?, our goal throughout this work has been to gain a more detailed
qualitative understanding of the mechanism through simpler models. In particular, we have discussed
the scaling of the signal and various constraints with the different parameters in the simplified mod-

els, as well as quantified how much tuning is necessary to explain the signal without running into

constraints. The singlet-doublet dark matter case is particularly interesting because it is a minimal
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working example of how Majorana dark matter could explain the GCE through the Higgs portal.

We find that in the minimal singlet-doublet case, there is still viable parameter space when the dou-
blet mass is much larger than the singlet mass. There are two viable regions of parameter space for the
singlet-doublet model. In the case where the UV couplings are small, the tuning of the dark matter
mass manifests as a tuning of the singlet mass, but the restriction on both UV and EFT phase is loose.
When the couplings are larger, the doublet mass is required to be 2 O(1) TeV. The EFT phase, and
often the UV phase as well, must be close to pure imaginary to avoid spin-independent constraints,
and the dark matter and singlet masses also must still be relatively close to 72;,/2 to generate a sufficient
annihilation signal (though the allowed region is comparatively much wider).

Upcoming direct detection and EDM experiments, such as LZ, XENONnT and ACME, will
search through significant portions of the remaining parameter space. These two types of probes com-
bine to explore both the limits of minimal and maximal CP-violation, and we expect to definitively
rule out doublet masses below the TeV scale in the small coupling case. In the more optimistic case
of larger coupling, new experiments will be able to probe doublet masses up to O(15) TeV or larger
for some phases. In either case, this type of model offers a range of complementary detection avenues
that may combine to elucidate the nature of annihilating dark matter.

In the doublet-triplet case, we do not find any viable parameter space. Spin-independent and EDM
constraints restrict the size of the real and imaginary parts of the Higgs coupling, respectively. When
the coupling is small in overall magnitude, the annihilation signal requires a dark matter mass near
the 7,/ 2 resonance, and the small splitting between the lightest charged and neutral states results in

a prohibitively light charged fermion. Hence, the remaining parameter space is ruled out by LEP.
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While our results are framed in the context of the GCE, models which include a CP-violating Higgs
portal interaction coupling the dark and visible sectors are also compelling for other reasons. These
types of interactions could be the key to some of the biggest mysteries of particle physics, including the
particle nature of dark matter and also various problems that CP-violation is necessary to solve, such as
the matter/antimatter asymmetry of the universe and the strong CP problem. For example, for some
models the addition of a CP phase around the weak scale could increase the viability of electroweak
baryogenesis. While new Higgs boson couplings have the potential to make the hierarchy problem
worse, the minimal models we studied can also be realized within the larger framework of SUSY **?
which can ameliorate this issue. These connections could be potential avenues for further exploration,
if it turns out that dark matter communicates with the Standard Model through a CP-violating Higgs

portal.
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Interpreting the Electron EDM Constraint

5.1 INTRODUCTION

The ACME collaboration has used ThO molecules to constrain the electron electric dipole moment
(EDM) to be#++

|d,|< 1.1 x 107% ¢cm. (s.1.1)
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This is about an order of magnitude improvement on the previous bound from ACME”" and from
studies of HfF ' at JILA'**. A nonzero electron EDM would establish physics beyond the Standard
Model. The electron EDM violates CP (or equivalently, T) symmetry. In the Standard Model, this
symmetry is violated by a handful of parameters: the CKM phase, which generates an electron EDM

0~ %* ¢ cm but also a2 CP-0dd electron-nucleon interaction that can

only at four loops with |d,|~ 1
mimic an EDM of size |d,|~ 10738 ¢cm?55 (see>°®*5¢ for earlier work); the strong phase 6, which
generates an electron EDM |d,|< 10737 ecm '3%22%; and phases associated with the lepton sector,
which give contributions at two loops suppressed by neutrino masses**” with an expectation that
|d.|< 107%3 ecm or, in the presence of severe fine-tuning, at most |d,|< 10732 ecm ', As a result,
it is of great interest to continue searching for a smaller electron EDM consistent with (5.1.1) but
inconsistent with the Standard Model.

The recent progress in EDM searches comes at a key time in the field of particle physics. The dis-
covery of the Higgs boson at the LHC filled in the last missing piece of the Standard Model. While
there are many motivations for searching for physics beyond the Standard Model, three of the most
important are the matter-antimatter asymmetry of our universe, the existence of dark matter, and the
fine-tuning puzzle of the Higgs boson mass. The matter-antimatter asymmetry clearly indicates a need
for new CP-violating physics, which could first be detected through its indirect effect on the electron
EDM. As we will discuss below, EDM:s also have interesting connections with WIMP dark matter (in
specific models) and with the fine-tuning problem.

The possibility of testing heavy new physics through electric dipole moment measurements has

been studied extensively; reviews include 354193,305,144  Here we attempt to briefly summarize some
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of the important history of the topic, with apologies for inevitable omissions. Some early theoreti-
cal studies of lepton EDMs appeared already in the 1970s%#'7%. Many of the early studies of CP
violation in supersymmetric theories focused on the neutron EDM 189,130,351 e studies of the elec-
tron EDM in supersymmetry commenced '*® shortly after a suggestion of Gavela and Georgi that lep-
ton EDM:s could be effective probes of new physics**5. Subsequently, a variety of additional sources
of EDMs were studied, such as 3-gluon operators?°* or two-loop diagrams mediated by electroweak
bosons”*3'3. A variety of new physics scenarios have been shown to predict interesting EDMs, in-
cluding: stops in SUSY '*#; electroweakinos in SUSY?*> and specifically split SUSY%*3*; two Higgs
doublet models3'3:125:28416, SUSY beyond the MSSM ?%35; and fermionic top partners %,

Our goal in this chapter is to give a brief survey of how theories of new physics are constrained by
the ACME result, including a range of novel possibilities where an EDM is mediated by the charm
or top quark. We begin in §5.2 by giving a general argument, based on effective field theory, for the
range of mass scales that are probed by the EDM. In scenarios with two-loop EDMs where the elec-
tron Yukawa coupling appears explicitly in the new physics couplings—which includes many SUSY
scenarios—the ACME constraint probes masses of a few TeV. Other scenarios, where loop effects
generate both the EDM and the electron Yukawa coupling, potentially probe scales of hundreds of
TeV. We also discuss the case where the dominant effect on ThO is not the electron EDM at all but
the CP-odd electron-nucleon coupling (as discussed in e.g. 39%16%:35+283:145) Next we turn to a discus-
sion of EDM constraints on supersymmetric scenarios: one-loop SUSY in §5.3; two-loop split SUSY
in §5.4; and two-loop natural SUSY in §s.5. Our calculations in the two loop cases follow 3¢, which

can be consulted for more details. Our discussion of split SUSY includes a comparison of the reach of
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EDMs and of recent dark matter direct detection results from Xenon1T#7. Most of our discussion
of SUSY draws heavily on earlier literature, but updates it in light of the new experimental result. In
the context of one-loop effects, if sleptons and squarks are at a comparable mass scale then we show
that there is an interesting complementarity between the requirement of consistency with a 125 GeV
Higgs (which prevents making the scalar mass too large, for any given tan 8) and the EDM constraint
(which prevents the scalars from being too light, for a given CP-violating phase). This interesting qual-
itative point is shown in Figure 5.4, which provides a novel way to visualize how EDM experiments
are encroaching on the viable SUSY parameter space. In §5.6 we discuss the possibility that the EDM
is induced by the QULE operator (¢@*#y) - (£7,,¢). In this case new physics need not couple to the
Higgs boson at all to generate an EDM. Instead, new physics couples quarks and leptons, and then the
quark Yukawa coupling supplies the necessary interaction with the Higgs. The most plausible version
of this scenario has the top quark inducing the EDM, though the charm quark could also play this
role. (If the up quark is the leading coupling, then the CP-odd electron-nucleon coupling plays a more
important role in the ThO measurement than the electron EDM itself.) The QULE operator could
be induced by scalar leptoquark exchange at tree level, as previously discussed in 58224165 Tt could also
arise from a box diagram, a case that we discuss for the first time. We classify a number of possibilities
for the quantum numbers of the particles appearing in the loop, which could have a variety of distinc-
tive collider signals. In some of these models, the QULE-generated EDM is the leading contribution,
as couplings allowing for other EDM contributions (e.g. of Barr-Zee type) are absent. We conclude
in §5.7 with a few remarks on the implications of future improvements in EDM searches. If no EDM

is detected, then the CP-violating phases associated with any new physics near the TeV scale will be
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constrained to be very small. We believe that it is timely to further investigate how naturally small CP-
violating phases might be explained. Conversely, if a nonzero EDM is detected, then either it arises
from TeV-scale particles that may be detected at future colliders, or from even heavier particles, out
of reach of currently feasible experiments. We argue that in the latter case, these new particles would
lead to a very concrete form of the hierarchy problem, motivating the construction of new colliders

even if the particles directly contributing to the EDM are out of reach.

5.2 INTERPRETING THE EDM CONSTRAINT: THE BIG PICTURE

In this section, we present a general argument for the range of mass scales probed by the EDM ex-
p g g g p Y
periments. The cases where the dominant effect on ThO comes from the CP-odd electron-nucleon

coupling as well as the electron EDM are discussed.

5.2.1 THEELECTRON EDM

Dipole momentinteractions flip the chirality of a fermion. In the Standard Model, since left- and right-
handed fermion fields carry different charges, gauge invariance requires that the EDM is a dimension-
six operator involving the Higgs boson: either 7b(c*"¢B,,, or ih! o' VV;V. Hence, an EDM gener-
ated by new physics at a mass scale M is always proportional to v/ M? times a product of couplings and
loop factors. Physics that produces the EDM operators can also produce corrections to the electron
Yukawa interaction b e, simply by removing the gauge interaction vertex from the Feynman diagrams
that appear in the EDM calculation. As aresult, we expect the size of the EDM to be bounded in terms

of the size of the electron Yukawa in typical scenarios without fine-tuning.
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We can consider three scenarios for how to treat the relationship between the EDM and the electron

Yukawa:

* Spurion approach. Here we assume that the couplings generating the EDM are directly pro-

portional to y,. If the EDM is generated at £ loops, we expect:

2 k
Vi e
de ~ dcpv <16772> A (5.2.1)

with y standing in for whatever coupling arises in the loop, generally presumed to be an order-

one number, and dcpy the size of the CP-violating phase.

* Radiative stability approach. Here we make the weaker assumption that the interactions gen-
erating the EDM make no more than an order-one change to the size of the electron Yukawa
coupling. This could be the case, for example, if the electron Yukawa coupling is radiatively

generated by the same interactions. We have:

nie

yYeR (5.2.2)

d, ~ dcpy

In this case the estimate matches the o-loop spurion estimate, as we assume that the same loop

factors are shared by y, and 4.

* Tuning approach. In this case, we allow for the interactions generating the EDM to generate
a contribution to the electron Yukawa much larger than the Yukawa itself, so that the final
Yukawa is tuned to be small via a cancellation. This is the least aesthetically appealing case, but
is a logical possibility. The EDM can arise from a k-loop diagram containing 2k + 1 Yukawa
couplings, each in principle as large as y S 47, the value estimated by Naive Dimensional

Analysis (NDA). Hence we estimate a maximum EDM consistent with NDA:

2 47v

~ IV B e
d. ~dcpvy <16772> A S ey 5 (5.2.3)

The tuning approach allows for the largest mass scale for new physics.

Following these simple estimates and taking, for concreteness, y = ¢ with ¢ ~ 0.65 the weak

coupling constant, we obtain the following rough estimates of the mass scales of new physics probed
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Table 5.1: Mass Scale of New Physics Necessary for |d,|< 1.1 X 107 ¢cm

o-loop 1-loop 2-loop
Spurion 1000 TeV so TeV 3 TeV
Radiative | 1000 TeV 1000 TeV 1000 TeV
Tuned |2 x10°TeV | 2 x 107 TeV | 2 x 107 TeV

by the EDM measurement (5.1.1):

We see that with fine tuning to cancel large corrections to the electron Yukawa, the EDM mea-
surement can in principle probe physics far above that being studied at colliders. However, for more
theoretically plausible models, the mass scale probed is below 1000 TeV and, in a wide range of models

that lead to EDM:s at two loops, is of order 1 TeV.

< 3
< 7
€R €r

Figure 5.1: One-loop EDMs in supersymmetric theories.

In later sections, we will see the simple estimates in the table substantiated in a variety of concrete
models of new physics, but let us briefly summarize the models we expect in each category of the table.
First, we look at tree-level contributions to the electron EDM. If the lepton sector couples to some new
strongly-coupled sector with CP violation, we do not expect any loop suppression factor in the expres-

sion of the EDM. In the case where the physics giving the electron chirality flip is still proportional to
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Figure 5.2: Two-loop EDMs in supersymmetric theories. The one-loop diagram in the dashed box is a CP-violating analogue
of familiar “electroweak precision” corrections.

the electron Yukawa, this corresponds to the tree-level spurion approach. On the other hand, in the
scenario of partial compositeness where the lepton sector linearly couples to a new strongly-coupled
sector giving a composite Higgs**?, the electron EDM is generated by the same interactions realizing
the electron Yukawa coupling, which is the tree-level radiative stability approach.

An example of a one-loop EDM in SUSY theories is shown in Figure s.1. The right diagram is
explicitly proportional to the electron Yukawa while the left diagram is not. However, depending
on the proportionality of the 4-term to y,, this contribution is classified into the spurion scenario
or the other scenarios. These diagrams illustrate an important general point: one-loop diagrams for
the EDM will generally contain some new particle with lepton quantum numbers, like the electron
superpartner appearing in this diagram. If all new particles with lepton quantum numbers are heavy,
there may be no important one-loop diagrams contributing to the EDM, and the most important
contributions may arise at two loops.

A two-loop electron EDM can arise from the Barr-Zee type diagrams”?, from similar diagrams
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induced by the 17 boson EDM®’, or from rainbow diagrams?°5. They are all proportional to the
electron Yukawa coupling and classified into the spurion approach. The two-loop EDM can also arise
from RGE running induced by g#/e-type operators arising from a one-loop box diagram** which
provides an example of the radiative stability approach as we will study in detail later. An example of

a two-loop EDM in SUSY theories is shown in Figure s.2.

5.2.2 AN ALTERNATIVE: THE CP-ODD ELECTRON-NUCLEON COUPLING

We should consider the possibility that the electron EDM inferred from ThO is not really the electron
EDM at all, but instead evidence of a CP-odd electron-nucleon interaction —z'CSE;/SeNN Indeed, in
the Standard Model this is expected to be a larger effect **5, though we will argue that the opposite is

true for many models of new physics. The coupling Cs contributes to the effective EDM as 45

dtho ~ d. + kCs,

k1.6 %1075 GeV? ecm. (5-2-4)

The size of k depends in a somewhat nontrivial way on factors including the ratio of atomic and nu-
clear radii and the value of Zz for the atoms involved; we refer readers to the appendix of "*5 for details.
The microscopic origin of such a four-fermion interaction is in similar interactions with quarks in

place of nucleons:

LFour—Fermi O Z qu (éq) (Ei}/se) ) (5-2.5)
q
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where g denotes any flavor of quarks. These four-fermion interactions lead to

Cs =~ Cdﬁ(M;id|jv> + CJ€<MES|N> + Cbe<MZb|]\]>

+ Cue(Nlau|N) + Cee{Nlee|N) + Cpo(N[22|N)

29MeV _ 49MeV 74 MeV (526
€ e e
~ Cdt’ + Ce + Cbc
my m my,
16 MeV 76 MeV 77 MeV
+ G+ G 4+ G
my me my
Here, we have used the matrix elements 95
(my, + my)(N|an + dd|N) ~ 90 MeV, (Nlau — dd)N) ~ 0,
m(N[ss|N) ~ 49 MeV, my(N|bb|N) ~ 74 MeV, (5-27)

m(N|cc|N) ~ 76 MeV, m(N[#t|N) ~ 77 MeV.

and m,, /my = 0.55.

As in the case of the electron EDM, physics generating the Cs coupling can also produce corrections
to the electron mass by connecting two quark legs of (5.2.5) with an insertion of the quark mass, and
we can consider three scenarios in the relationship between the Cy coupling and the Yukawa couplings:

* Spurion approach. We assume that the couplings generating the four-fermion interactions
are directly proportional to the electron and quark Yukawa couplings. If the four-fermion

interactions are generated at & loops, we expect:

2 k
J Mgl
Coe ey (1@:) 2L 628
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In this scenario, the quark mass suppression in (5.2.6) is cancelled by the quark mass depen-
dence in Cp. If we take this ansatz for all of the quarks, the top quark gives the most important

contribution.

* Radiative stability approach. As in the case of the electron EDM, we make the weaker as-
sumption that the generated four-fermion interactions do not lead to more than an order-one
change to the size of the electron Yukawa coupling, which gives a constraint on the size of the
coupling in an underlying theory to generate the four-fermion interactions. Then, we expect:

167%m, 1
Cpe ~ dcpv———51- 5.2.9
7 my  M? ( )
Due to the quark mass suppression in this expression as well as in (5.2.6), the up quark gives the
most important contribution (assuming that we take this ansatz for all of the quarks). Since
my > me, the requirement that the four-fermion interactions do not lead to more than an
order-one change to the size of quark Yukawa couplings does not lead to a further constraint

on the size of Cp,.

Notice that because the operator breaks both quark and lepton chiral symmetries, if it has a
large coefficient one can think of it as leaving invariant only a combined chiral rotation of both

quarks and leptons.

* Tuning approach. In this scenario, we allow for underlying interactions generating the four-
fermion interactions to generate a contribution to the electron Yukawa much larger than the
correct size, so that the final electron Yukawa is tuned to be small. If the four-fermion interac-

tions are generated at k£ loops, we expect from NDA:

2 1672

k
1
qu: ~ 3CPV}/2 (1-2’7[2) M ,S SCPVW. (S.Z.IO)

The quark mass suppression in (5.2.6) makes the top quark contribution naively very small

and the up quark gives the most important contribution.

Following these simple estimates and taking y = g, we obtain the following rough estimates of the
mass scales of new physics probed by the EDM measurement (the parenthesis denotes the dominant

contribution in each category):
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Table 5.2: Mass Scale of New Physics Necessary for |dno|< 1.1 X 1072 ¢cm

o-loop 1-loop 2-loop
Spurion 300 GeV (Cp,) 20 GeV (C,,) 0.8 GeV (Cy)

Radiative | 1 x 10> TeV (C,.) | 1 x 10° TeV (C,.) | 1 x 10°> TeV (C,,)
Tuned | 4 x 10° TeV (C,.) | 4 x 10° TeV (C,.) | 4 x 10° TeV (C,.)

In listing the dominant contribution we assume the same ansatz applies for all quarks; of course,
a more general flavor structure, including the possibility of off-diagonal couplings, is also possible,
but the simple ansatz gives a qualitative sense of the range of mass scales of interest. The tuned and
radiative stability approaches probe large energy scales. On the other hand, in the spurion approach,

the mass scale is below 1 TeV even in the o-loop case and has been already explored at colliders.

5.3 THE EDM CONSTRAINT ON ONE-LOOP SUSY

In this section we discuss constraints on supersymmetry arising from 1-loop EDMs. The relevant
formulas are well-known in the literature (e.g. *7?), but it is useful to update the bounds in light of new
data. Furthermore, by comparing the parameter space ruled out by EDMs with the parameter space
in which the MSSM cannot accommodate the measured Higgs mass, we provide a novel visualization
of the power of EDM searches (see Figure s5.4).

We showed examples of one-loop SUSY EDMs above in Figure s.1. To unpack the diagrams a bit
more: the electron splits into a virtual pair of its superpartner (the selectron) and a neutralino (the
superpartner of the photon, Z, or Higgs boson). The diagram at right contains a selectron—electron—
Higgsino interaction, which depends on the electron Yukawa coupling y. = m,/v. Then, it is pro-

portional to 2. The diagram at /efz, on the other hand, transforms the left-handed selectron to the
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right-handed selectron using the A-term trilinear coupling, a.Hereg. In a general supersymmetric
theory, 4, is formally independent of the Yukawa coupling y,, although in many models they are pro-
portional: . ~ y.Msusy, where Msysy is some measure of the SUSY-breaking scale. Since attempt-
ing to break this proportionality would lead to large corrections to z,, it is reasonable to assume the
proportionality. In this section, we concentrate on flavor-diagonal contributions to the EDM, which
exist even in the absence of flavor violation in soft scalar masses generating dangerous FCNCs. If
there are large off-diagonal scalar mass terms, different diagrams with insertion of scalar mass mixing
become important %3¢,

In the diagram at left, the invariant phase that would contribute to CP violation is arg(4; A1 7). In
many particular models of SUSY breaking, like gauge mediation (for reviews,**"*?), this CP phase
is zero, and the contribution is absent. In more general models, like gravity mediation, it is unclear
whether we should expect this phase to be small. The diagram at right is sensitive to the phase arg(uA424;).*
Generation of g, the Higgsino mass parameter, is typically one of the thorniest problems in building a
supersymmetric model, and it seems very plausible that it could have a CP phase different from other
SUSY-breaking parameters.

Let us summarize a general one-loop formula of the fermion EDM induced by a fermion ¢, with

mass 72; and electric charge Q; and a complex scalar ?; with mass m; and electric charge Q- Their

interactions with the SM fermion fare:

Lypp = Ly (¥,Prf) ;D; + Ry (¥,Pxf) gpjf + h.c., (5.3.1)

*Much of the literature performs a field redefinition to remove the phase of 4, and refers to this simply as

arg(uMM>), which we will sometimes write below.
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Figure 5.3: The ACME Il constraint on the selectron mass scale Asysy and the Bino mass A4;. The left region of each
contour is excluded. We plot four cases of the phase ¢ = arg[ﬂ::Mz] = 0.1,1072,1073,10~%. We assume the
left-handed and right-handed selectron soft masses are the same, m;, = m;, = Mysy.

where Pp 1 = % (1 + 7; ) and L and R;; are coupling constants. With these interaction terms, the

one-loop calculation gives*7

dr m; N 1 2logr I+r+ Zrllo_g,(r)
o = tamzm | LR Lil | Q=5 <1— o ) AT E
(5-3-2)

2 /2
Here, » = m; [m;.

We now look at the contribution to the electron EDM from the diagram at the left of Figure 5.1.

The mass terms of the selectrons and the Bino and their interaction terms (in two-component spinor
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notation) are

1 .
LD —m} |er|*—m?, |er|*— <2M1BB - h.c.>
(5-3-3)

—a.Hyerey —g/YLBqEz —g’YRZ%JIEE‘R + h.c.,

where ¢’ is the U(1)y coupling constant and Y7 and Y are the hypercharges of the left-handed and
right-handed electrons respectively. With a nonzero vev of Hy, the A-term gives an off-diagonal com-
ponent in the selectron mass matrix. We first diagonalize the mass matrix and rewrite the interactions
in terms of the mass-eigenstate basis. Then, using the above general formula (5.3.2), we can obtain the
expression for the electron EDM d,. There are also contributions from the other neutralinos in the
similar loops, but they are subdominant when the gaugino masses are large enough compared to the
electroweak breaking scale and ignored. Figure 5.3 shows the ACME II constraint on the selectron
mass scale Msysy and the Bino mass A4;. The left region of each contour is excluded. We plot four
cases of the phase ¢ = arga*M;] = 0.1,1072,1073,10™*. We assume that the left-handed and
right-handed selectron soft masses are the same, mz, = m;z, = Msysy. Since the diagram contains an
insertion of the vev v; and 2, = y.Msusy is assumed, the contribution to the EDM is proportional
to a,04 = meMsusy and does not depend on tan 4.* Taking into account the size of the U(1)y cou-
pling (¢’ /¢)* & 0.3, the obtained lower bound on the mass is consistent with our general argument

presented in Section 5.2.1.

*Choosing 4,y of the same order as the soft masses can, in the stop sector, lead to color- and charge-breaking

148,121

vacua . Fora,/y, = mp, = mz, = Msusy there is no vacuum stability problem, but for @,/y; an order-

one factor larger there could be '+>".
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Figure 5.4: The ACME Il constraint on Mgysy and tan ﬂ The electron EDM is generated by the right diagram of Figure 5.1.
The orange region is excluded from 72;, > 125 GeV. The upper left and right panels correspond to the case of split SUSY,
M5 < my = Msusy. Wetake |u|= Msysy and ||= 350 GeV in the left and right panels respectively. The lower
panel corresponds to the case of high-scale SUSY, M1,2,3 ~ mqy = Msysy. Inall cases, we assume a gaugino mass ratio,
My : My : Mz =3 :1:10. In each panel, we plot three cases of the phase ¢ = arg(M,x) =1,0.1,0.0L

We next consider the diagram at the right of Figure s.1. As above, the contribution to the electron
EDM can be calculated by applying the general formula (5.3.2). The relevantinteraction terms should

be given in terms of the basis of the neutralino and chargino eigenstates. With the resulting expression
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of the electron EDM, the ACME II gives a direct constraint on slepton masses. However, most sce-
narios of SUSY breaking, including gauge mediation and anomaly mediation 3°>3°, generate squark
and slepton soft masses at the same order of magnitude. In addition, a large splitting between slepton
and squark masses inside each generation induces a large one-loop effect of the hypercharge D-term,
which may drive light scalars tachyonic. Then, it is reasonable to assume squark and slepton masses at
the same order and the null result of the EDM experiment implies a lower bound on squark masses as
well as slepton masses. Since top/stop loops give a significant radiative correction to the Higgs mass,
too-large stop masses may lead to a Higgs mass larger than 125 GeV, which sets an upper bound on
the mass scale of squarks and sleptons.

In Figure 5.4, we show constraints on the parameter space for EDMs from mixed electroweakinos
and left-handed sleptons. We compute the Higgs mass using SusyHD ?#® assuming universal scalar
masses 729. The orange region is excluded from ), > 125 GeV. The upper left and right panels
correspond to the case of split SUSY, M523 < mo = Msysy. We take |u|= Msysy and |u|=
350 GeV in the left and right panels respectively. The lower panel corresponds to the case of high-
scale SUSY, M 5 3 ~ mo = Msysy. In all cases, we assume a gaugino mass ratio, M : M, : Mz =
3 :1:10. In each panel, we plot three cases of the phase ¢ = arg(M,u) = 1, 0.1, 0.01. In the upper
two cases of split-SUSY, the EDM bound has already hit the excluded region of a too-large Higgs mass
(provided tan 2 is not too small) while there is still room between the EDM bound and the Higgs mass

bound in the case of high-scale SUSY.
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5.4 THE EDM CONSTRAINT ON TWO-LOOP SPLIT SUSY

In this and the following section, we will examine how the new experimental result allows us to update
earlier conclusions about EDM constraints from 2-loop SUSY contributions. In split supersymme-
try, if we decouple the squarks, sleptons, and heavy Higgs bosons (working at relatively low tan 4), the
dominant EDMs will arise from loops of charginos and neutralinos’#*3*. These are Barr-Zee type
diagrams with an inner loop connected to the electron with yh, Zh, or W propagators. The domi-
nant diagram is yb; WV is not negligible, but Zb is subleading since % —sin? Oy happens to be small.

If we integrate out charginos at one loop we obtain the effective operator

& ~ & Im(g?MouH, - Hy) . ~
(argdet M=) F,, F* = — E, R 4
12 (g det M), 872 | Moy — ¢2H, - Hy* * (5-4.1)

where M is the chargino mass matrix. This operator mixes into the EDM at one loop, allowing us
to easily understand the leading-log contribution to the two-loop calculation. Because the numerator
involves H,, - H;, the EDM becomes smaller at large tan 8 when the light Higgs boson has little overlap
with Hy.

The EDM requires a coupling to the Higgs boson, meaning that it vanishes if we send either the
gaugino masses M » or the higgsino mass ¢ to infinity. As a result, the size of the EDM is highly
correlated with a variety of other observables, including the dark matter direct detection cross section if
the lightest neutralino is dark matter (see e.g. >>+*°* for further discussion of the EDM/DM interplay).

Majorana neutralinos have a dominant spin-independent scattering rate through their coupling to the
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Figure 5.5: Constraints on electroweakinos from EDMs and from dark matter direct detection in the case of a large CP-
violating phase, sin(@ﬂ) = l/\/i Left-hand panel: bounds as a function of |M2| and |‘u| assuming M, = M2/2.
We have fixed tan 8 = 10 for relatively weak EDM constraints. The orange Xenon1T and LZ curves are for P, = /4
while the red curves are for @;4 = 37r/4, where the direct detection constraints are weaker. We see that the EDM
constraint is generally stronger except near the diagonal. The green dashed curves are fine-tuning contours and the
upper-left triangular region requires tuning away a threshold correction to M5; see 336 §6.1 for further discussion. The
dashed “future” curves represent hypothetical future improvements, possibly arising from experiments with polyatomic
molecules®*'. Right panel: bounds as a function of || and |A4;| with tan8 = 2. Here we present two scenarios,
one with M, = 2M and one where winos are decoupled (M, — 00, see®'?)

dominant (}/b) Barr-Zee contributions to the EDM and leaves a much weaker constraint from the /%" boson EDM. Dark
matter experiments more strongly constrain the parameter space in this case.

. Decoupling the winos removes the

Higgs boson 9 which is highly constrained by xenon-based dark matter experiments like Xenon1T#7
and PandaX I1*5#. Of course, dark matter direct detection experiments can only constrain new physics
if the particles in question actually constitute dark matter. In the discussion here we will consider only
neutralinos that saturate the observed dark matter relic abundance. (In particular, we do not assume
that neutralinos are thermal relics; nonthermal mechanisms for populating dark matter are ubiquitous
in SUSY theories.) Neutralinos making up a subdominant fraction of dark matter are more weakly

constrained.
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Figure 5.6: Constraints on electroweakinos from EDMs: the case of small phases. Here we have fixed M, = 3M;, as in
anomaly mediated SUSY breaking, and tanﬂ = 2. We see that the ACME result is compatible with light electroweakinos
only for percent-level phases.

In Figure 5.5 we show comparisons of the electron EDM constraint on electroweakino parameter
space with the dark matter direct detection constraint from Xenon1T+” and a projected future con-
straint corresponding to the goal of the LZ experiment?®*?. (For the nucleon matrix elements used in
the direct detection calculation we follow”®, which in turn uses””.) We see that both experiments are
powerful probes of electroweakino masses, reaching into regions of multi-TeV mass. In all curves we
have taken the phase appearing in the EDM to be P, = arg(uM,b),) = m/4 and assumed the phases
of M and M, to be equal. In the left-hand panel, we fix M; = M, /2 and tan# = 10. The right
panel of Figure 5.5 gives a different look at the constraints, focusing on the bino/higgsino sector. The
orange curves assume M; = %M » as in the left panel, but the light blue curves correspond to the
case of a completely decoupled wino (M, — 00), as in the Hypercharge Impure model of Split Dirac
SUSY>"®. This case is of interest for the possibility of nearly pure Dirac higgsino dark matter; we see

from the figure that ACME’s constraint is relatively weak, though for weak-scale higgsino masses it
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still probes multi-TeV bino masses. Finally, in Figure 5.6 we zoom in on the low-mass region of elec-
troweakino parameter space, showing that compatibility with the ACME bound requires small (10%
or lower) phases in the region with a chargino below 1 TeV.

Although we have focused in this section on charginos and neutralinos in the SUSY context, so
that the Yukawa couplings are pinned to the size of Standard Model gauge interactions, much of the
discussion would carry over to a more general scenario with new fermions with electroweak quantum
numbers and Yukawa couplings to the Higgs boson. These are often discussed in the dark matter con-
text as singlet-doublet and doublet-triplet models 354 9164 The interplay between EDM constraints
and other probes of such fermions as dark matter has been discussed in*°'. If new fermions with
large Yukawa couplings are added to the Standard Model without additional bosons (such as their
supersymmetric partners), radiative corrections can destabilize the Higgs potential and lead to rapid

281,52,92

vacuum decay . As a result such particles are often discussed in the context of supersymme-

try **%, and are interesting for explaining the 125 GeV Higgs mass”. In the presence of CP violation,

these models also provide an appealing fermionic scenario for electroweak baryogenesis '5¢"'7.

5.5 THE EDM CONSTRAINT ON NATURAL SUSY

In this section, we explore implications of the EDM constraint from the ACME II experiment on
the framework of natural SUSY where the only particles that play a key role in naturalness of the
electroweak breaking are relatively light. That is, only higgsinos, stops, the left-handed sbottom and

gauginos are light and the other superpartners such as the first and second generations of squarks and

118



arg(A)=n/2, n/8,m/32,ms= 400 [GeV] arg(Agi)=r/2,7/8,7/32, tanB = 10

1. 2. 3. 4._ 5. 6. 10
: : —10.
Ap=10 i
=
Q ) |
= =)
s g /2
/8 :1.
/32 |
1. 2, 3. 4. 5. 6. ! 10
Mstop [TeV] Mstop [TeV]

Figure 5.7: The implication of the EDM bound in the ACME Il experiment on the stop parameter space in the MSSM
where the 125 GeV Higgs mass is realized by stop loops with a large 4-term. The horizontal axis is the common stop mass
Mstop = m@ = my;,. The vertical axes show tanﬂ and 724 in the left and right panels respectively. We fix m; =

400 GeV in the left panel and tan 8 = 10 in the right panel. The phase is taken to be arg(4,u) = 7/2,7/8,7/32.
The parameter |‘u| is 350 GeV. The green region is excluded by the small Higgs mass with any values of the 4-term. The
blue curves denote the ACME Il constraint. The green dotted curve describes the degree of fine-tuning defined in (5.5.1 )

sleptons can be very heavy. While the squarks and sleptons contribute to sizable FCNCs and 1-loop
EDMs, these contributions are suppressed in natural SUSY. In this framework, the two-loop Barr-Zee-
type diagram, with an inner stop loop connected to the electron with a photon and a pseudoscalar
Higgs, gives the dominant contribution to the electron EDM. This scenario gives a minimum size of
the EDM in TeV-scale SUSY with CP-violation whether or not 1-loop contributions from the squarks
or sleptons exist or not.

The MSSM predicts a small Higgs mass because the tree-level Higgs quartic coupling is related to

the electroweak gauge couplings. Then, a sizable radiative correction is needed to explain the 125 GeV
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Figure 5.8: The implication of the EDM bound in the ACME Il experiment on the stop parameter space assuming some
other interactions to explain the correct Higgs mass. The A-term is still radiatively generated from the gluino mass. The
parameters are taken to be the same values as those of figure 5.7. The blue curves denote the ACME Il constraint with

phases arg(4,u) = 7/2, w/8, m/32.

Higgs mass. In general, stop masses must be around 10 TeV, which leads to a serious fine-tuning.
However, if we consider a near-maximal stop mixing, the correct Higgs mass can be realized with light
stops by a large A-term. The two-loop EDM induced by stops is proportional to the 4-term and we
obtain a detectably large EDM with a nonzero phase of the A-term, arg(4,u). Another direction to
realize light stops and reduce the tuning is to extend the Higgs sector of the MSSM and provide a new
interaction to lift up the Higgs mass. In this case, we do not need a large 4-term (and heavy stops),
but the 4-term is still radiatively generated from the gluino mass, which can lead to a nonzero EDM.

Let us now investigate implications on the natural SUSY parameter space from the ACME II ex-

periment. We consider two scenarios to raise the Higgs mass described above. Figure 5.7 shows the
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stop parameter space in the MSSM where the 125 GeV Higgs mass is realized by stop loops with a
large A-term. We use the SusyHD code 3#° for the Higgs mass calculation. We assume the same left
and right-handed stop masses m0p = me, = M for simplicity. The parameter |« is taken to be
350 GeV. The green region is excluded by the small Higgs mass with any values of the 4-term. The
blue curves denote the ACME II constraint. We estimate the degree of tuning by using the following

measures (for a more detailed discussion, see>9+33¢),

2m> 257}’1121[
Ay= ——A4 A; = £ .5.1
A mitanzﬁ’ t mi 9 (5 S )

where .4 is the pseudoscalar Higgs mass and 37;1%{% denotes the stop radiative correction to the up-
type Higgs soft mass squared. The degree of fine-tuning from the stop radiative correction is worse
than one percent in this scenario.

Figure 5.8 shows the EDM constraint on the stop parameter space assuming some other interac-
tions to explain the correct Higgs mass. As described above, the A4-term is still radiatively generated
from the gluino mass. The parameters are taken to be the same values as those of figure 5.7. The blue

curves denote the ACME II constraint. In the viable parameter region, at least one percent tuning is

needed.
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5.6 QULE-INDUCED EDMs

5.6.1 THE RGE oF THE ELECTRON EDM

The electron EDM could be induced from various other dimension-six operators in the Standard
Model through renormalization group equations. The relevant RGE has been given in** (which to-
gether with*7%*7% constructs the RGE:s for all of the SM dimension-six operators*#°). In a standard
chosen basis of dimension six operators, the subset which are of interest for the measurement of CP

violation through leptons is:

Liime D Cyggh' W, B + i bW, W + C,zh' bB,., B
+ | Conllee) DI, + Con(E#e)B + b

+ [Clmzqif(lﬁe) . (a_lqu) + Cl(jq)%f(ge) “(gpur) + Cl(:q)”if(gawe) - (gpunp) + h.c.} . (5.6.1)

We see several four-fermion operators in the last line. Only one of them, the operator (¢ #y) - (£7,,¢),
which we will refer to as the “QULE operator,” feeds into the electron EDM through the 1-loop RGE.
On the other hand, the first two types of operators, whose coefficients are Cj,.rand Cz(flq)u p contribute
to the CP-odd electron-nucleon coupling Cs that we discussed in §5.2.2. We can easily extract the
coefficients C, in (5.2.5) from these operators.

The RGE in*# is given for a quantity C:y which is, in our conventions, —/2d, /(ev). The one-loop

RGE shows that the EDM can be generated from:

* The electron EDM (Zy or the related C,z which replaces the photon coupling with a coupling
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to the Z-boson. When these contributions appear, we just have a one-loop renormalization of

a pre-existing EDM.

¢ The Wilson coefficients C,—; B

EDM they generate is of the well-studied Barr-Zee type.

C,7» and C) 7. If these arise at one loop, then the two-loop

* The Wilson coefficient Im Cl(fq)u ple. the “QULE operator.”

Itis the last of these contributions, which has received relatively little attention in the literature, that
we turn our attention to now. The EDM arises diagramatically by closing up the quark loop with a
Higgs insertion and attaching a photon line. (We make the simplifying assumption that quarks appear
in a flavor-diagonal manner.) The leading-log estimate of the EDM induced by the quark flavor fis
given by

d, = s log — Im Cl(equfﬂ (5.6.2)

with 72 the mass of the quark flavor appearing in the loop and A the scale at which the QULE oper-
ator is generated.

Some models of new physics will generate four-fermion operators that are not expressed in the
chosen basis, so we must make use of identities to reduce to this basis to determine if the QULE Wilson
coeflicientIm qu) .sis nonzero. By Fierz rearrangement, we see that the four-fermi operators (¢1)-(ge)
and (£-7)(ue) generate an EDM although the operator (£¢) - (gu) does not (though it does contribute

to the CP-odd electron-nucleon term Cy discussed in §5.2.2). Specifically, we have

(ge) - () = == [(¢7"2) - (Lae) + (qn) - (Le)] ,

NM—‘ N\'—‘

(g O)(ie) =+ [(¢777) - ((5,08) — (q2) - (Le)] - (5-6:3)
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Thus, models that generate (ge) - (¢x) or (g - ¢)(ue) will, when rewritten in the operator basis of >4,
have a QULE contribution. In this section we will survey models of QULE-induced EDMs. The first
case is a one-loop EDM arising from a tree-level QULE operator. The second case is a two-loop EDM
arising when a QULE operator is generated through a one-loop box diagram.

The two 4-fermi operators in (5.6.3) generate both Cl(jq)u f(and hence, at one higher loop order, an
EDM) as well as C'Z(jq)u p which contributes to Cg as discussed in §5.2.2. Since ACME constrains the lin-
ear combination dpo in (5.2.4), we can ask whether the constraint on these operators is dominantly
from d, or from Cs. The ratio of the two contributions is

dhoEDM | my log(M/m,)
72 x 1.6 X 10~15 GeV2 cm (NJ|g4|N)

ATho:cy

6x1073, g=u,

Q

2x10%, g=c¢ (5.6.4)

2x10% g=t

In the numerical estimate we have plugged in /4 = 10 TeV for the mass scale running in the loop,
though the result depends only logarithmically on this choice. The upshot is that if new physics cou-
ples dominantly to a heavier up-type quark, the constraint is primarily on the electron EDM, while if
new physics couples dominantly to the up quark, the constraint is primarily on the CP-odd electron-
nucleon interaction Cs. This is consistent with results in**#. Of course, new physics might couple to

all of the quarks, in which case the flavor structure of the interaction will determine which quark gives
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the largest contribution.

5.6.2 ONELoOOP EDM FrROM TREE LEVEL QULE

3)

A nonzero Wilson coefficient CE . (after reducing to the appropriate basis) can be generated at tree
equif

level by integrating out a scalar with leptoquark-type couplings. In such a model, there is a one-loop

electron EDM 58179224165 There are two possible charge assignments for the scalar that will generate

a QULE operator that induces an EDM:

pe(3,1)_y;3 LD (ylfgﬂqf- €+ yoppinfe + h.c.) —myplo, (5.6.5)
generates : Cz(jq);f = —Cl(elq):f = );ij’;, (5.6.6)
€ (3,2)47/6, L£D <y1f¢Tqﬁ + yopp - biip+ h.c.) — mégp%, (5.6.7)
generates : Cz(:;;f: Cl(jq):;f: );ijj (5.6.8)

The case (3,1)_/3 (the quantum numbers of a down-type squark) allows for diquark-like couplings
®q7 - g¢ and ¢Tﬁﬂg, which together with the couplings above violate baryon number and can lead to
proton decay. Hence, this case requires some mechanism (or an extreme accident) to suppress these
dangerous couplings. However, the case of (3,2) 7 /s does not share this problem. Both models
generate a contribution to Cs and to d, (our result appears to differ from **#, which claims that only
the case (3, 2) 7/ generates both operators). In the case where the scalar @ couples to the top quark,
the constraint that loop corrections do not generate a large correction to the electron Yukawa coupling

is [y1292|< O(107). A variety of assumptions about the flavor structure of the model are possible:
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in some models @ may couple most strongly to the third generation, while in others it may couple to
all generations of quarks. In any case, the electron mass naturalness constraint prevents the couplings
from being too large. In the case where the scalar @ couples to the up quark, the CP-odd electron-
nucleon coupling Cy leads to the strongest constraint on the model. The scalar particle in this model

must be very heavy and far out of reach for collider searches unless it has small couplings.

5.6.3 Two roor EDM rroM ONE LoOP QULE

We could also consider theories in which a QULE-type operator is generated, not at tree level, but at
one loop. In this case the corresponding EDM will arise from a 2-loop diagram, as depicted in Fig-
ure 5.9. These diagrams are topologically distinct from Barr-Zee diagrams in that they do not contain
a closed internal fermion loop; rather, a single fermion line runs continuously through the diagram.
(The diagrams are also different from previously discussed rainbow diagrams which have Standard
Model fermions on some internal lines*”5.) As shown in the figure, such diagrams can arise if we in-
troduce new vectorlike fermions V120 ;}1’2 and complex scalars @, , @, with appropriate Yukawa cou-
plings. A variety of choices of quantum numbers for the particles are possible. For simplicity, we make
the simplifying assumption that a single SU(3) color index and SU(2) weak isospin index run contin-
uously through the diagram, e.g. in Figure 5.9 we might take ¢, to be a color singletand ¥, @,, ¥, to
be color triplets. With such an assumption, it is a straightforward (but lengthy) task to enumerate all
of the possibilities. We provide these results in Appendix D.1.

In some cases, models with these contributions also allow couplings that generate contributions of

more well-studied types. For example, from Figure 5.9 we see that the quantum numbers allow for a
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Figure 5.9: Feynman diagrams for an EDM arising at two loops from a one-loop QULE operator. Similar diagrams exist
that generate the operator (g¢) - (#{) instead of (g - £)(ue).

vertex connecting ¥; and ¢, to a Higgs boson, which would allow a 1-loop electron EDM. If this cou-
pling to the Higgs is present, then the 1-loop EDM could dominate over the QULE contribution we
study. We could assume the Higgs coupling to be small, so that the QULE contribution is dominant,
but this assumption is not obviously well-motivated. On the other hand, if we exchanged the position
of # and ¢ in the lower line of Figure 5.9, then in general the quantum numbers of the new particles
would not allow any direct couplings to the Higgs boson. In that case both 1-loop EDMs and 2-loop
Barr-Zee EDMs would be absent, and the QULE contribution would be dominant.

Rather than directly computing a 2-loop diagram as in the right panel of Figure 5.9, we consider the
leading-log approximation given by feeding the box diagram in the left panel into the RGE estimate
(5.6.2). The coefficient of the four-fermion operator generated by this box diagram is given by
d*p 1 my 1 my,

! 2 (5.6.9)
5 PR ) 2 2 2 5
277)4]) —mplp —m;lp _szp —m%’

Cg 'y1y2y3)'4/ (

with C, a group-theory factor depending on the SU(3) ¢ and SU(2), representations of the particles

running in the loop. With our simplifying assumption about representations above, the group theory
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factor is 1. Evaluating the loop integral, we obtain

Coyryaysyamy,my, “
2 2 2 2 2 2 2 2 2 2 02 2 _ 2
167 (m},/1 7}1%)(7n¢1 m%)(m%2 m%)(m%1 mg,l)(mw2 7}152,1)(7}152,1 m%)
2 2 2
m m m
22 4 4 ?1 22 4 4 ?1 22 4 _ 4 ?1
m?’lm% (m% m%) log m2 + m%m%(m% m%) lOg m2 + m¢1m¢z (m% mVl) log m2
1 |2 12
2 2 2
m m m
2.2 4 4 ¥ 2 2/ 4 4 4 2.2 4 4 Vs
+mV1 m%z(m¢z m?’l) log le + mfpz Wl% (Wl% m?’]) log m2 + m?’zmlkz(m% Wl%) log m2
|2 P> 2
(5.6.10)
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Figure 5.10: The constraint of the electron EDM arising at two loops from a one-loop QULE operator. Contours show
the largest allowed imaginary part of the product of Yukawa couplings appearing in the box diagram, as a function of the
masses of the fermions and scalars in the loop. The shaded region shows the case where the constrained value of ) is
small enough that it does not generate an unnaturally large correction to the electron Yukawa coupling. We see that new
physics as heavy as a few hundred TeV can be constrained, consistent with the estimate in the radiative scenario in §5.2.

While we reserve the detailed discussion of possible quantum numbers for the appendix D.1, let us
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highlight some example scenarios here.

* SUSY: in Figure 5.9, we could take ¢, = %; y; = H, ¥ = Hy; ¢, =6Gandy, =y, = B
Then the diagram gives rise to a 2-loop SUSY EDM, distinct from the Barr-Zee type diagram,
and scaling approximately as ~ g7y,y7 M/ [(167*)*m?mZ| log(mgy/m;). Such a contribu-

tion is generally expected to be smaller than the one-loop diagrams considered in §5.3.

* New physics parities: some possibilities resemble SUSY in having an analogue of R-parity,
with all of the new physics particles in the loop charged under a parity symmetry so that they

can cascade decay to a neutral parity-odd particle (which could serve as a dark matter candidate).

For example, consider this scenario (the ¥ = % row of table D.1.1.1)
1
q(3,2): (1,1) 0(1,2)_1
(3’2)% v v (1’2)7%
¢(1,1) (3,2): “(3,1) 2

(5.6.11)

This case includes an exotic vectorlike doublet quark X of hypercharge 7/6, corresponding to
electric charges 5/3 and 2/3. This particle can decay as, for example, X5 /3 — tetyP with
¥’ a neutral stable fermion. Thus we see that the collider signals for some scenarios resemble
SUSY in having missing momentum, but resemble leptoquarks in having decay chains with
both quarks and leptons. The final state for X pair production is ze*e™ + p7*°. Because two
different decay chains with the same final state are open (moving clockwise or counterclockwise
from the (3,2); /¢ particle to the (1,1)o particle in the diagram), reconstructing masses of the

intermediate scalars could be an interesting challenge.

Notice that this is an example in which the two-loop QULE contribution is the leading possible

EDM, because no couplings permitting a one-loop EDM or Barr-Zee diagram exist.

* Leptoquarks: In some cases, the quantum numbers permit one of the particles running in the

loop to decay to one Standard Model quark and one lepton. For example, consider the Y= 0
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rowof D.1.4.1:

q(3,2)1 (3,2)1 e(1,1)
Lo + v 3:2):
u 3,’1 2 (371'72 14 1,‘2 1
(3,1)_2 )2 (1,2) s (5.6.12)

In this case, the scalar @, with quantum numbers (3, 2); /¢ can decay to one quark and one lep-
ton if appropriate Yukawa couplings exist to g¢ or to (¢#)'. The other particles could cascade

down to it, for instance,

Py uyy, Yy Z¢;7 @5 — L, (5.6.13)

so that the final states could involve several quarks and leptons. An alternative phenomeno-
logical scenario for this choice of quantum numbers is that ; or ¥, a vectorlike quark, is the
lightest of the new particles; these could then decay through a Yukawa coupling with a SM
quark and the Higgs boson.

This is an example of a case where couplings leading to a 1-loop EDM are allowed to exist, and

so the 2-loop contribution considered here may be subdominant.

Scalar leptoquarks are of phenomenological interest for many reasons. For example, a lepto-
quark with the quantum numbers of a right-handed down squark has been suggested as an
explanation for the B — D*) oy anomaly*** and could even fit other flavor anomalies through

loop effects”7.

In Figure 5.10 we plot the experimental constraints on these models. The product of Yukawa cou-
plings ' = y1927373 in the one-loop QULE are constrained such that it does not generate an un-
naturally large correction to the electron Yukawa coupling. The maximum value of Y allowed by

naturalness is weakly dependent on the masses of the scalars and fermions in the loop, and coincides
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roughly with ) ~ 10~—%. Contours of fixed )V < 1074 lay neatly in the shaded region and are allowed.

We see that new physics up to several hundred TeV are consistent with this constraint.

5.7 CONCLUSIONS

We have studied implications of the new ACME constraint on a variety of theories of new physics
with CP violation. The general argument based on effective field theory has revealed the range of
mass scales probed by the EDM constraint. In scenarios with two-loop EDMs where the electron
Yukawa coupling appears explicitly in the new physics couplings, including many SUSY scenarios, the
new ACME constraint probes masses of a few TeV. Other scenarios, where loop effects generate both
the EDM and the electron Yukawa coupling, potentially probe scales of hundreds of TeV. We have
also discussed the case where the dominant effect on ThO comes from the CP-odd electron-nucleon
coupling. Then, we have interpreted the bound in the context of different scenarios for SUSY. For
1-loop SUSY, the constraint probes sleptons above 10 TeV. Assuming the universal mass for squarks
and sleptons, the mass bound start to hit the excluded region giving a too-large Higgs mass. For 2-
loop SUSY, multi-TeV charginos in split SUSY or stops in natural SUSY are constrained from the
new EDM result, which is consistent with the general argument.

Although there has been extensive study of scenarios where an electron EDM is induced at two
loops by new electroweak physics coupling to the Higgs boson, an equally viable possibility is that the
electron EDM arises at two loops from physics that is decoupled from the Higgs boson. Such physics,

instead, would couple to the charm or (perhaps more plausibly) the top quark. This possibility is real-
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ized through the QULE operator which generates the EDM through RG evolution. We have classified
scenarios in which the QULE operator is generated at one loop through a box diagram, which include
SUSY and leptoquark models. The electron EDM bound gives the leading constraint in most viable
models. If a nonzero electron EDM is measured in the future, it will be of paramount importance
for colliders to search for the particles responsible for the effect. We have seen that a variety of models
with distinctive phenomenology could be the source of the EDM through the QULE operator. In
particular, searches for scalar leptoquarks or heavy vectorlike fermions that decay to Standard Model
fermions could play a role in pinning down the origin of the EDM if it is measured to be nonzero.
The rest of this section is devoted to a brief discussion on the implications of future improvements
in EDM searches. We will discuss first the possibility that null results persist, and then the possibility
that a nonzero EDM is measured. We argue that both cases indicate a variety of interesting directions

in the exploration of physics beyond the Standard Model with CP violation.

5.7.1 NULL RESULTS AND NEW PHYSICS: SPONTANEOUSLY BROKEN CP?

If EDM experiments continue producing null results even as they attain orders of magnitude more
sensitivity than ACME (proposals include e.g. 3923993 ¢), theorists must decide whether to doubt that
any new physics near the TeV scale interacts with the Standard Model. Our naive expectation is that
anywhere a CP phase is allowed, it should be order one. The CKM phase is order one; the QCD theta
angle is not, but we know a simple dynamical mechanism for relaxing it to zero (the axion), unlike
generic phases. Furthermore, there are tentative indications from neutrino experiments (so far at low

statistical significance) that the CP violating phase in the PMNS matrix is large as well (see e.g. *%).
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Is our intuition that new physics should come with order-one CP violating phases robust, or could
there be fundamental reasons (apart from fine tuning) why the CP phases associated with new physics
could all be small? One possible explanation for small phases lies in spontaneously broken CP. It is
likely that, at a fundamental level, CP is a gauge symmetry; in this case, the CP violation that we see
in nature is a result of spontaneous breaking by the VEVs of various scalar fields 735, If the fields
spontaneously violating CP also violate other symmetries, then their contributions may generically be
suppressed by small symmetry-breaking order parameters®*°. For instance, if only flavon VEVs have
CP-violating phases, they can effectively contribute a large phase in the CKM matrix when added
to other VEVs violating the same flavor symmetries, but they will have subleading contributions to
parameters that do not violate flavor. Since**? focused on the quark sector, it could be interesting to
revisit such models given that the neutrino Jarlskog invariant appears to be ~ 0.03, much larger than
3 x 107 in the quark sector '%%.

More generally, UV complete theories could have additional structure suppressing some CP vio-
lating effects. It has been observed that “mirror mediation” of SUSY breaking, with flavor structure
arising from complex structure moduli and SUSY breaking from Kihler moduli (or vice versa), sup-

150

presses CP phases in soft SUSY breaking terms'5°. The structure appears somewhat ad hoc in low
energy effective field theory, but arises from a higher dimensional theory with extended SUSY. Rel-
atively little exploration has been carried out of the sizes of small CP-violating phases arising from
corrections to this picture. (For a different moduli mediation scenario, see **, which predicts an elec-

tron EDM of about 5 x 1073° ¢ cm—not far below the current bound!)

Detailed model building of the origin of the CKM matrix and complex phases in supersymmetric
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theories, and their correlation with the predicted size of EDMs, has somewhat fallen out of fashion.
We believe that the current rapid improvement in experimental results makes it very timely to revisit
these questions: the answer could have major implications for the plausibility of scenarios like mini-

split SUSY in light of data.

5.7.2 AN EDM wWOULD REIFY THE HIERARCHY PROBLEM

If a nonzero electron EDM is detected in the foreseeable future, it will necessarily indicate physics
beyond the Standard Model. As we have seen, this physics could arise over a wide range of mass scales.
In some models, the particles generating the EDM would likely lie within reach, if not of the LHC, at
least of a conceivable future collider. In other cases, they would not. For instance, in §5.3 we have seen
that EDM:s arising at one loop in a SUSY theory could come from sleptons with masses approaching
10 TeV, well out of reach of any proposed collider. Scenarios where the electron Yukawa coupling
is generated radiatively could come from even higher energy physics, as discussed in §5.2. While an
EDM discovery would be a solid indicator that there is physics beyond the Standard Model at energies
far below the GUT scale, it would not immediately give rise to a “no-lose” theorem for technologically
feasible colliders.

Despite the lack of a clean no-lose theorem, an electron EDM would clearly motivate renewed
enthusiasm for searching for heavy particles. In particular, new CP phases need not be order one, and
as we have just discussed, in some models there could be compelling reasons for phases to be small
and for the associated EDM-generating particles to be lighter. However, there is another argument

for searching for new physics at colliders if EDMs are generated by heavy particles: the Higgs mass
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fine-tuning problem, which would assume a new and very concrete form.

Figure 5.11: Two-loop correction to the Higgs boson mass-squared parameter proportional to the mass squared of any
heavy field ¥ (here depicted as a fermion for concreteness) with electroweak quantum numbers. Such contributions
produce a very concrete, calculable variation on the Higgs fine-tuning problem if the particles generating an EDM are
much heavier than the TeV scale.

Discussions of fine-tuning of the Higgs mass are often phrased in terms of quadratic divergences:
if we cut off loops of Standard Model particles at a scale A, we obtain corrections to the Higgs mass
squared parameter proportional to A%, However, as is often pointed out by skeptics, UV cutoffs are
theorists’ conventions; what we really should mean by a hierarchy problem is sensitivity to physical
mass scales, such as masses of heavy particles beyond the Standard Model. To be confident that the
hierarchy problem is a problem, we must know that there 7s new physics at energies above the weak
scale. While there is a compelling argument to be made that the existence of gravity necessitates such
physics, one can (and many do) question this logic. However, if we have actual evidence of new physics
at high energies from the measurement of a small coefficient for a higher dimension operator like an
EDM, it becomes much harder to dismiss the hierarchy problem.

If heavy particles with electroweak quantum numbers exist, the hierarchy problem can assume a
concrete, calculable form in which the Higgs boson mass parameter receives corrections proportional

to the physical masses of those new particles. Such dependence always arises from two-loop diagrams
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Finite Naturalness Tuning
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Figure 5.12: “Finite naturalness” tuning measure for a model consisting of a bino and left- and right-handed selectrons.
Contours correspond to A = \3mlzoop/mﬁiggs\ for two different choices of UV cutoff, A = 2 x 10" GeV (blue) and

101 GeV (orange), with log divergences included but no power divergences.

as shown in Figure s.11. The size of this loop correction relative to the measured Higgs boson mass,
A= \Smlzoop / mﬁiggs |, is a very conservative measure of fine tuning (see e.g.>**°7'%3 for related dis-
cussions). The two-loop Higgs mass squared corrections proportional to the mass squared of new
fermions or scalars transforming in any representation of the electroweak gauge group have been given
in*7. (These have logarithmic sensitivity to the UV cutoft, but no power law sensitivity.) Using these
expressions, we have plotted the corresponding “finite naturalness” tuning contours in Figure .12 for
amodel with an EDM generated by particles with the quantum numbers of a bino, left-handed selec-

tron, and right-handed selectron. We see that as the masses approach the 10 TeV scale, the theory is

tuned at worse than a percent level. We emphasize that we are zof assuming that the underlying theory
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is SUSY or that any new particles exist except for the ones that produce the EDM. Already, this mini-
mal model for EDM generation would imply a sharp form of the hierarchy problem, which would be
much more difficult for skeptics to dismiss than the usual formulation of the problem. Nonetheless,
this problem could only be solved by invoking the same types of physics that solve the usual hierarchy
problem, such as supersymmetry or compositeness of the Higgs boson. These in turn imply new par-
ticles (such as top partners) whose masses the Higgs is sensitive to, and all of the usual arguments for
expecting such particles near the TeV scale would go through—Dbut resting on a firmer foundation.
In summary, we believe that any future nonzero electron EDM measurement would have profound
and exciting implications for particle physics. It would immediately provide a much stronger case
for pursuing new high energy colliders, and would guarantee that we have more to learn about the
fundamental laws of nature. In the meantime, null results of EDM experiments like the recent ACME
result provide stringent constraints on theories of new physics and motivate further work to assess
what principles could lead to small CP-violating phases if new TeV-scale physics exists. We eagerly

await further results from precision measurements.
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Oblique Lessons from the /7 Mass

Measurement at CDF II

6.1 INTRODUCTION

The Standard Model of particle physics (SM) has been remarkably successful in explaining various

experimental results. The discovery of the Higgs boson**7 at the Large Hadron Collider (LHC) was
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imperative to confirming the pattern of spontaneous symmetry breaking in the electroweak sector
of the SM. However, as we continue to collect data and improve analysis techniques, we have seen a
proliferation of precision measurements that deviate from SM predictions, such as the muon magnetic
moment?**"%* and the Rx/R} anomalies ***. The most recent anomalous measurement reported
is the mass of the W boson My,°. A discrepant measurement of My could be an indication of
supersymmetry (SUSY), composite Higgs, or other phenomena beyond the Standard Model (BSM)
at potentially very high energy scales. It is therefore essential that we explore the phenomenological
implications of this new A4 measurement.

Measuring the /7 mass with high precision requires a global fit of the SM, known as the electroweak
fit. This method involves fitting over a set of well-measured SM observables, and minimizing the ;(2
value over both the fitted (‘free’) observables as well as derived observables, see Refs. >'%5¢4, The elec-
troweak fit leverages the small uncertainties of the fitted observables to produce precise predictions of
the derived observables. Additionally, since this fit is an exceptional probe of precision measurements,
it is also highly sensitive to BSM effects.

We can parameterize the effects of new physics phenomena on the electroweak sector using oblique
parameters S, 7, and U3#934% (see also Refs.>92¢5-235). These parameters capture the effects of higher-
dimension operators*>%*53 that can arise in a variety of UV completions. In most models, Sand 7"are
the dominant corrections since they arise from dimension 6 operators, whereas Uis dimension 8 and
therefore suppressed by a factor of > / Ay,

The power of the electroweak fit is dependent on precision of experimental measurements of SM

observables, and improves along with collider technology and luminosity. The leading measurements
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are made at the Large Electron-Positron Collider (LEP), Stanford Linear Collider (SLC), Tevatron,
and LHC. The discovery of the Higgs greatly improved the electroweak fit as it provided the final
measured value to span the free parameters of the SM #°%147:162,

The most recent update to the SM values used in the fit comes from the CDF collaboration at
the Tevatron®. Their analysis was completed with a four-fold increase of data, reduced uncertainty
in PDFs and track reconstruction, and updated measurements compared to their previous result'".

They report

MW,CDFH = 80.4335 + 0.0094 GCV, (6.1.1)

which, without averaging with other experimental results, shows a 7o deviation from the SM predic-
tion. This value is notably higher than the previous measurement averaged from the Tevatron and
LEP experiments (M = 80.385 % 0.015 GeV)'°, as well as ATLAS (M, = 80.370 £ 0.019
MeV)? and LHCb' (M = 80.354 4 0.032 GeV)7.

In this chapter we explore how new physics contributions, parameterized by the values of the
oblique parameters, can adjust the electroweak fit such that A4y is consistent with the updated CDF
measurement. We first perform our fits scanning over values of S and 7" with U fixed to zero (since U
is suppressed) and identify the range of these variables that can resolve the observed anomaly in A4y
We then study how the fit changes if we allow U'to float. Large values of U can easily accommodate the
observed increase in Mp; however, it is difficult to construct models with the primary new physics

contributions affecting only U while leaving S and 7"unchanged.

"This total error is calculated assuming all errors are uncorrelated and can be added in quadrature. The
LHCD collaboration reports My = 80.354 4= 0.023, &= 001y, &= 0.017, £ 0.009ppE.

140



Next we consider several well-motivated simple extensions of SM that can produce nonzero S and
T'values. The models discussed in this chapter include a generic dark photon with kinetic mixing, a
two Higgs doublet model (2HDM), a neutral scalar SU(2);, triplet (that can be referred to correctly as
a swino), and various singlet-doublet fermion scenarios. For each model we check if there is available
parameter space that corresponds to the fitted values of 7°and S. We find that a dark photon or a
scalar singlet/doublet extension of SM can not explain the observed anomaly in A4 measurements,
while singlet-doublet fermion extension are strongly constrained by various experimental bounds. A
O(TeV) swino, on the other hand, can explain the observed anomaly while evading current bounds
and provides a well-motivated target for future high energy colliders.

The remainder of the chapter is organized as follows. In Section 6.2, we define the parameters
and methodology of our electroweak fit. Section 6.3 discusses the results and the implications of the
oblique parameters on fitting the measured observables. In Section 6.4 we map the values of the fitted
oblique parameters to the parameters of various models, and comment on the viability of this space.

We conclude in Section 6.5.

6.2 ELECTROWEAK FIT

To assess the impact of the new measurements of My, and the implications for potential new physics,
we perform an electroweak fit to a representative set of observables, following the strategy of the GFit-

ter group“(”(’s’("*’ZSZZ with a modified version of the code used in Refs. >34, A set of five core ob-

*With respect to the GFitter results in*5*, we consider an updated value of the Higgs mass and the revised
values of I'z and aﬁad from?*77,
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servables are free to vary in the fit: the Z boson mass Mz, the top mass M;, the Higgs mass A1), the
Z-pole value of the strong coupling constant «;(Mz), and the hadronic contribution to the running
of &, denoted Azx}(lzgi (M%).

These five predicted values and other observables derived from them are compared to their mea-
sured values (see Table 6.1). In addition to measurements of these five parameters, the observables
considered include the /7 mass and a host of other electroweak precision measurements performed at
SLC, LEP, the Tevatron, and the LHC, which are listed with their measured values below the horizon-
tal line in Table 6.1. These other observables can be determined in the SM as functions of the five core
observables, the Fermi constant Gf, and the fine structure constant a(qz = 0). In the electroweak fit,
Gr = 1.1663787 x 107> GeV 2 and @ = 1/137.03599084 are treated as fixed values since they are
determined with much higher precision than the rest of the observables *°.

For the 17 mass, we will consider several different values to assess the impact of the recent CDF

measurement on the overall state of the global EW fit. These are,

My = 80.4335 £ 0.0094 GeV  (CDFII),
My = 80.4112 + 0.0076 GV (LHC + LEP + Tevatron), (6.2.1)

My = 80.379 £ 0.012 GeV (PDG 2020),

where the uncertainties quoted above include the statistical, systematic and modeling uncertainties

used in each experiment. The second scenario is our estimate for the global average of different 44> mea-
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Observable Measured Value
My [GeV] 91.1876 + 0.0021
M, [GeV] 125.25 + 0.17
M, [GeV] 172.89 + 0.59
o, (M3) 0.1181 = 0.0011
AePh(MZ) | 0.02766 + 0.00007
I, [GeV] 2.4955 + 0.0023
Iy [GeV] 2.085 = 0.042
& . [nb] 41.481 4 0.033
RY 20.767 £ 0.025
A% 0.0171 % 0.0010
Ay 0.1499 4 0.0018

0.2324 £ 0.0012
0.23148 £ 0.00033

A, 0.923 + 0.020
A, 0.670 £ 0.027
AW 0.0992 + 0.0016
Ay 0.0707 4 0.0035
RO 0.21629 + 0.00066
R 0.1721 4 0.0030

Table 6.1: Summary of the observables included in the fit, and their experimental values. The five observables above the
horizontal line are allowed to float in the fit, while the SM values of the remaining obseryables are determined from these
five values, as discussed in the main text. The values of M, M,, M, a,(M2), Azx}(lz()i(Mé) and I'yp- are taken from
the most recent PDG average *°. For I'z and &), we use the updated values computed in Ref.?”’. The remaining Z-pole
observables are taken from the LEP and SLC measurements®®’. For Ay we use the average of the LEP and SLC values,

foIIowinngz.
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surements, assuming zero correlations between experimental result to first approximation.? In addi-
tion, to assess the particular impact of the new, high precision measurement from CDF II, we will also
perform the fit with A4y taken to be the CDF II value with the systematic uncertainty artificially in-
flated by a factor of 2, My = 80.4335 £ 0.0157, to better understand the compatibility of the CDF
measurement with the SM prediction. This scenario is referred to as the CDFII (2x Syst.) throughout
the chapter.

The SM values of the other observables are determined from the free parameters using the full two-
loop electroweak results available in the literature. The running of « is computed using the floating
value of A“}(;)i as well as the leptonic piece, Aayep = 0.031497686 3%, which is kept fixed in the fit.
The I mass is determined using the parameterization in®, which also includes corrections up to
O(aa?) for the radiative correction (referred to as Arin the literature). The expression for the width
of the W is taken from the parameterization in'**. For the Z width I'z, hadronic peak cross section
Jﬁa 4 and width ratios RY, Rg, R?, we use the parameterizations in 81 For the effective weak mixing
angle, sin? 8, we use the results in ®>. The value of sin & is used as a proxy for the weak mixing angle

to determine the left- and right-handed couplings of the Z, allowing us to compute the asymmetries:

&gy

A
/ L5t &y

(6.2.2)

for f = £, ¢, b. The value of sin* & is also used to compute the forward-backward asymmetry Agif .

3While there are sources of uncertainty such as parton distribution functions that might introduce some
correlation between these results, when we repeated the world average Ay scenario (Tevatron + LEP + LHC)
with a few different values for the correlations, we arrived at similar qualitative results. A comprehensive global
averaging of these experimental results considering all correlations is left for future work.
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Finally, for the other forward-backward asymmetries, we compute the eftective weak mixing angles

sin? & and sin® & using the parameterizations in Refs. ®>%

, respectively. These are then translated
0, . . . . .

to Apj “ using the standard relations summarized e.g., in 189 See also Ref. 95 for a recent review of the

status of relevant theoretical calculations.

We parameterize potential effects of BSM physics in the electroweak fit in terms of the oblique

parameters, S, 7and [J349:348.

42,52 2, — 52
S= WA, (0) — 211, (0) — IT. (0
I T15(0) - = (0) - 13, (0)
1 [Ty (0)  Tzz(0
T= { WI/ZV( ) ZZZ( )]7 (6.2.3)
a miy, ms
452 cw
U= X \11,,,(0) — —II, (0) — IT'_(0)| — S
5 300) = 2218 0) - 1(0)] -5,

where ITyy denotes the vacuum polarization for X = W, Z, v, and cyp, sy are cos Gy, sin Gy with Gy
denoting the Weinberg mixing angle. (Note that S, 7and U do not completely characterize potential
BSM effects in the electroweak precision data—a larger set of oblique parameters was developed in
Refs.”>'°. We will not consider their effects here, as they are typically smaller in perturbative theo-
ries*°>'33.) The new physics contributions to the electroweak observables can be expressed as linear
functions of S, 7'and U3#9-34%:326:106:197 \which are are summarized in Appendix A of '+7.

For a class of universal effective theories, both Sand 7T are related to the Wilson coefficients *54*53:249
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of dimension-6 operators*:

o

) 2
Loplique =S ( ) H'W #HB,, — T <f> \H'D,H. (6.2.4)
v

JWCWUZ

The U parameter is often fixed to zero in electroweak fits, as it corresponds to a dimension-8 operator
from an effective field theory point of view, and its effects are therefore subleading compared to S'and
T. We will frequently set U = 0 in our fits, but consider its effect in more details in Section 6.3.2.
We will discuss new physics interpretations of S and 7 following the results of the fit with U = 0 in
Section 6.4.

With all of these inputs, we perform the electroweak fit by minimizing a x* function,

M:— O\ 2
f:Z< ja}- J) ] (6.2.5)
J

where the sum runs over all the observables in Table 6.1, in addition to the /7 mass. Here, M;is
the experimentally measured value of the observable, 0 is the predicted value in terms of the five
free parameters and S, T, U, and g; is the measured uncertainty on the observable. We repeat this

calculation for all the four scenarios for A4 measurements defined around Equation 6.2.1.

+See Ref.??* for a detailed discussion of the relationship between the oblique parameters and effective theo-
ries.
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6.3 RESULTs OF THE FIT

6.3.1 FITTINGSAND T

We first consider the fit results where U'is fixed to zero. The results of our electroweak fit with different
values of My are summarized in Table 6.2. The first row indicates the y* per degree of freedom (d.o.f.)
for the SM for the fit with each value of My We observe that, prior to the CDF measurement, the
Standard Model provides a good fit to the data using the PDG 2020 value of My, with y? /(14,05 =
15) = 1(p = 0.45). Taking instead the recent CDF II measurement of My, however, the p-value for
the SM drops t0 2.52 x 1077, exemplifying the tension discussed in?. This is somewhat ameliorated
when considering the smaller world average value of My (p = 1.06 x 10~*), but notable tension
remains.

In the middle rows of Table 6.2 we summarize the results of the fit when we allow S and 7 to float
in addition to the five free observables. We report the best fit values of S and 7, and then the * per
degree of freedom. We find a good fit to the data with the PDG average value of My, prior to the CDF
measurement (p = 0.53), where the fit prefers small values of S'and 7"at 0.05 and 0.08, respectively.
This is consistent with the electroweak fit presented in#°°. For all of the fits accounting for the new
measurement of My from CDF II, the fit instead prefers much larger values of S and 7. Despite this,
we still find a good fit to the data, with p values ranging from 0.26 when using the CDF measurement
alone to 0.41 using the combination of measurements at LHC, Tevatron, and LEP.

The results of the fit for the oblique parameters S and 7 are illustrated in Figure 6.1. Here we
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CDF-II
CDF-II World Average PDG 2020
(2% syst.)
SM 1/ (naor =15) 4.00 2.30 2.94 1.00
Best Fit (U — 0) (S, 7) (0.17,0.27) (o.15,0.24) (0.12,0.20) (0.05,0.08)
Zz/(}'ld_o_f = 13) I.21 1.17 1.04 0.92
Best Fit (U floating) (S, 7,0) (0.03,0.05,0.19) (0.03,0.05,0.19) (0.03,0.05,0.12) (0.03,0.05,0.03)
X/ (naog = 12) 0.99 0.99 0.99 0.99

Table 6.2: Fit results including the oblique parameters and;(2 per degree of freedom. Different columns correspond to
different input A4 ;- measurement scenarios around Equation 6.2.1.The first row shows the;(2 per degree of freedom for
SM in each My scenario. Results of the fit including (excluding) U in the list of floating parameters are included in the
middle (bottom) row.

show ellipses indicating the 2 & contours around the best-fit values of S and 7. These are computed
by computing the y* at each point in the § — 7 plane, marginalizing over the free observables, and
requiring Ay* = (S, T) — x2;, < 6.18, where 2. is the minimum value of the y* as a function of
all the free parameters as well as S'and 7.

The 27 contours of the fit with the PDG average value of My (excluding the recent CDF II mea-
surement) are shown in blue and agree with the results of *°*. This fit slightly prefers 7" > 0, though
the correlation between § and 7T leaves some parameter space with S, 7 < 0 as well. Once the new
measurement of My from CDF ITis included, however, the preferred region in the S — T plane shifts
dramatically. The correlation between S and 7 remains, but values of 7" < 0 are no longer allowed,
even when the systematic error on the CDF measurement is artificially inflated. In all, we find a strong
preference for BSM contributions in the electroweak fit, particularly for positive, nonzero values of
T.

For each fit, we also find the best fit value of each individual observable both for the SM (with Sand

T fixed to zero) and for the best-fit value of S and 7. The results are shown in Table 6.3. Each entry
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Figure 6.1: The 20 preferred regions in the S and 7T plane from the electroweak fit, marginalizing over the five input
parameters and for various experimental values of A4}~ (see the discussion around Equation 6.2.1). We do not include
U'in these fits. The blue curve is in good agreement with results of GFitter group 214454252 |ncluding the recent CDF Il
measurement of M -° moves the best-fit region to larger positive values of S and 7' The SM (with (S, 7) = (0, 0))is
strongly disfavored when the new CDF Il A4 ;> measurement is included in the fit.

indicates the best-fit value of the observable, along with the pull (calculated as the fit value minus the
measured value, divided by the experimental uncertainty) shown in parentheses. For all three values of
My including the new CDF measurement, we see a significant pull (ranging from —4.5 to —6.3) on
the fit value of My in the Standard Model. This is entirely ameliorated at the best fit values of Sand 7,
at the cost of a small tension in the values of I'z, which are fit to be larger than the experimental value
when S'and T"are allowed to float. All of the other observables have quite similar values at their best-fit
point and at the SM, regardless of the experimental value of My used in the fit. Note also that the
previously existing tension in the forward-backward asymmetry, Agﬁb measured at LEP is unaffected

by the floated values of S and 7"and is roughly the same for any value of A1y
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6.3.2 THE UPARAMETER

In the fits described above, we have fixed U = 0. As discussed in Section 6.2, this is motivated by the
fact that the U-parameter is dimension 8, and is typically suppressed relative to S and 7'in concrete
models.

Nevertheless, in light of the large value of My measured at CDF II, it is worth examining the
effects of the U-parameter on the electroweak fits in more detail. This is because, of all the electroweak

precision observables we consider, the U parameter affects only two: the /7" mass and width 326,106,147 5

M M
MW:MW,SM I_LZ)Z(S_ZCZVV’]")_'_ﬂ( 2‘Z)(] ,
) 857
( 2) : 2) (6.3.1)
3o (M- 3a( M
Iyw=T 1— ———2 (§—22 Z2U).
=T (1 g 20 -2 + XEE)

The 7 decay width is not measured to nearly as high precision as My, so the observed discrepancy in
the 77 mass at CDF II” can be accommodated in the SM electroweak fit by setting U ~ 0.11, without
affecting any of the other observables.

To illustrate this in more detail, we perform the fits to the S and 7 parameters as described above
again, except that we now marginalize over the value of Uin addition to the free observables, rather
than fixing it to zero. The results are shown in Figure 6.2. We see that, when marginalizing over U, the
20-preferred range of S'and 7'with the new CDF measurement of My is quite similar to the allowed
region using the smaller value of A7y Instead, the U parameter is inflated to account for the shift in

mass.

5We thank Ayres Freitas for emphasizing this point to us.
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Figure 6.2: Similar to Figure 6.1, but now also marginalizing over U in the global fit. We show the 20 preferred region of
all oblique parameters in the S — T plane (left), S — U plane (center), and U — T plane (right). We find that when we
include U'in the fit, S and 7 remain nearly centered about O, whereas U has a notable positive shift. Getting such large
values of U are quite challenging in perturbative models.

The difficulty in this interpretation is that a large value of U'is challenging to generate in perturba-
tive models, because, as mentioned in Section 6.2, U corresponds to a dimension-8 operator 248 and
avalue of O(0.1) indicates scales of order few 100 GeV for tree-level models, and < 100 GeV for par-
ticles contributing in loops. As the U parameter violates custodial symmetry, it is difficult to imagine
amodel that generates a large, nonzero value of U without also generating large values of 7. We there-
fore do not attempt to construct models generating large values of U. In the concrete BSM models we

consider in the next section, we will ignore the (subleading) U-dependence altogether.

6.4 ImrrLICATIONS FOR BSM MODELS

From the results of our electroweak fit shown in Section 6.3, we see that the value of M3 can dramat-
ically change the preferred values of the oblique parameters. While the 95% CL region fitting with
PDG measurements is nearly centered around the predicted SM values of (S, T, U) = (0,0, 0), the

updated value of My shifts this region to positive O(0.1) values of oblique parameters (see Figures 6.1
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and 6.2).

In this section we explore various tree-level and loop-level contributions to the oblique parameters
from simple models, and assess their viability. For clarity, we focus on the scenario of My equal to
the world average from Tevatron, LEP, and LHC measurements (second scenario in Equation 6.2.1).

It is first worthwhile to estimate the scale of new physics implied by O(0.1) values of Sand 7. Com-
paring to the dimension-6 operators defined in Equation 6.2.4, we see that for tree-level matching with
perturbative couplings, these operators can be generated by new physics at a scale A ~ TeV. If the
new physics arises in loops, on the other hand, the loop factor suppression implies a scale closer to
O(100 GeV). We will examine this matching in both scenarios, first considering minimal extensions
to the SM that can be integrated out at tree-level, such as an additional gauge boson or scalar, then con-
sider a one-loop example with new singlet-doublet fermion pairs. Note that, as indicated in Figure 6.1,

it is important for these models to shift 7"to positive values to be consistent with our electroweak fit.

6.4.1 TREE-LEVEL MODELS

Here we consider models that lead to corrections to the oblique parameters at tree level. Given the
results of the fits shown in Figure 6.1, we are particularly interested in models that can accommodate
large positive values of S'and 7.

The simplest examples of models leading to oblique parameter corrections are new vectors that ac-
quire couplings to the Higgs. As an example, consider a Z’ from a spontaneously broken additional
U(1) gauge symmetry. The oblique corrections from a new gauge boson have been worked out in the

most general case in 264 Focusing on the simplest example, where the gauge boson has only kinetic
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mixing with SM hypercharge gauge boson, £ D —%EB/"’Z/'W, the corrections to the oblique parame-

ters are given by

where » = (mz /M z)?, with m’, the mass of the new gauge boson. While S can change sign depend-
ing on whether the new gauge boson is heavier or lighter than A7, the T parameter in this model is
always negative, and therefore cannot resolve the tension in the electroweak fit.

In the more general case with mass mixing, the simple relations above no longer hold, and different
values of §'and 7"may be possible, but generating the necessary mixing terms would require strong
dynamics involved in electroweak symmetry breaking, which are likely tightly constrained and beyond
the scope of this work.

Instead, we are led to consider new scalars affecting the oblique parameters. An SU(2) singlet
scalar leads only to an overall rescaling of the Higgs couplings that do not affect S'and 7 or shifts in
the Higgs self-coupling. Models with extra SU(2); doublet scalars, such as a 2HDM??, can affect
the Higgs couplings to the gauge bosons, but these deviations are proportional to cosz({@ — a), the
square of the alignment parameter, which from an effective field theory perspective is dimension 8,
and therefore cannot affect the oblique parameters S'and 7, which are dimension 6.

An SU(2), triplet scalar ¢%, however, leads to more interesting possibilities°*.¢ Such a triplet can

have interactions with the SM Higgs ~ ¢“H 0" H. After electroweak symmetry breaking, this inter-

¢We thank Matthew Strassler for bringing this model to our attention.
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action leads to a small vacuum expectation value for the scalar triplet, which shifts the mass of the 7
bosons without changing the mass of the Z, therefore offering a possibility of resolving the tension
between the CDF measurement of My and the SM expectation.

For concreteness, we will consider a real scalar SU(2), triplet ¢* with Y = 0 which we will refer to

as a swino. The Lagrangian takes the form
1 1
LD 2 Dug D" — 5M%bﬂgb“ + kg H' 0" H — pH' Hp" " (6.4.2)

The constraints on SU(2),, triplet scalars, including the oblique parameters, have been worked out
in*7, where they include the matching up to one-loop order. At tree-level, the contribution to .S
from scalar triplets vanishes. The ¥ = 0 swino does, on the other hand, lead to a contribution to the

T parameter given by

v K

T=——-
aM/}

(6.4.3)

Importantly, unlike the dark photon model, this contribution is positzve for any value of x and can
naturally explain the observed discrepancy in Ay measurement.

One can also consider scalar triplets with ¥ = 1, but these lead to the wrong sign for 7 at tree level.
Atoneloop, both Y= 0 and Y = 1 triplets lead to additional corrections to both S'and 7, which can
be potentially large and positive, depending on the quartic couplings to the Higgs. We leave a more
detailed study of these possibilities to future works.

In Figure 6.3, we show the band of values of x and A1 that are compatible with the electroweak
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Figure 6.3: The 20 band in the M — « plane of the triplet scalar model. We find viable parameter space for (’)(TeV)
swino masses that can potentially be probed with future high-energy colliders.

fit with the combined value of My at 2¢. As is clear from the scaling in Equation 6.4.3, the necessary
large value of 7T can be achieved even for large triplet masses. Requiring x/M7 < 1, the triplet mass

can be up to O(~ TeV), evading any potential collider bounds.

6.4.2 SINGLET-DOUBLET MODEL

We now shift our attention to another simple extension of the SM, the SU(2), singlet-doublet fermion
model. Unlike the previous discussion, the contribution of this model to electroweak precision mea-
surements first occurs at loop level. The model includes Ny families of a singlet Majorana and dou-
blet Dirac fermion charged under the electroweak sector 32517192 149:129,17:11 3,221,08,111,321,220 7 Gyych

asetup can be embedded inside supersymmetric extensions of the SM. The SU(2); doublet has hyper-

7For simplicity, we consider the scenario where these fermions do not mix with each other, but in principle
mixing could lead to richer phenomenology.
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Figure 6.4: The 1-loop contribution to the vacuum polarization of SM gauge bosons. X* here stands for any electroweak
gauge boson X = W, Z, .

charge 1/2 and is composed of two left-handed Weyl fermions v, and 1}2. The Lagrangian is
~ ¥17) . ~ 7 o
L = Lsar + Liineic — M2V, - ¥, — 71%;4 +yePo 2y Hiy — 572y H- g, + he. (6.4.4)

This Lagrangian has a physical CP-violating phase, as we have four new parameters and three new
fields. Since S and 7 are CP-even observables, we set dcp = 0 in this analysis for simplicity. How-
ever, this model is also interesting with nonzero values of dcp as it can potentially explain the Galactic
Center Excess (see** for details). Additionally, because of the Yukawa terms, there is mass mixing
between the fermions and the ¥, fields are not the propagating degrees of freedom. We call attention
to this point because the mass of the lightest propagating fermion is relevant for Higgs (and Z) decay
constraints, which require M, > M, /2.

The singlet-doublet model contributes to the Sand 7'parameters atloop-level with the new fermions
running in the loop. While more details of the calculation are given in**°, we provide a quick sum-

mary here. We write a generic coupling between gauge bosons 7 and fermions ; as zy“(Cl]V - Cg )
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where C le/ and Cj} are the vector and axial vector couplings respectively. In MS, we find

Z'H(Pz)g{w _ _lgu” /0' dx((|CVl]|2+’CA1]|2)p2x(1 —.X‘)

472

, (6.4.5)
+ (ICry=|Cagl?) mom; = (|Cr*+]Cagl?) &) log &
where A = m? + x(mj2 — m?) — x(1 — x)p*. The other relevant expression is I1'(p*), which is given
by
o2 = Z27 [ aed 2 (1 P+1Casl?) 51— ) log
AT (P)g" = 5 | (ICry*+1Cagl?) x(1 — x) og
HCHPHCPP — 0 + (Crif—ICaf) momy  (649)

— (ICrlP+1CasP) 4] x(lA—x)}

The diagram topology contributing to S and 7'in this model is shown in Figure 6.4 and scales lin-
early with the number of new fermion generations, Np. We can only get a nonzero 7 value when the
custodial symmetry is broken, i.e. y # 7. Furthermore, S and T both decrease as 7, or m; increase,
making it difficult to reach values consistent with both the updated electroweak fit and existing exper-
imental constraints.

In Figure 6.5 we plot the dependence of S and 7"on the new fermion mass parameters 721 and 7, to
get a benchmark value of the couplings. Lower values of 721 and 2, are strongly constrained by a host
of different measurements (including LEP bounds on charged fermions, Higgs and invisible Z decays,
and direct searches for light fermions carrying electroweak charge). In the left panel of the figure we

consider the model with only one generation of new fermions. We find that the contribution to S and

158



Singlet—Doublet Model Singlet—Doublet Model
20 Contour 20 Contour
800 800
Ny=1 Ny=4
— 600 — 600
> >
v B
) )
N N
S 400 S 400
200 200
M, <iz,/0
100 150 200 250 300 350 400 100 150 200 250 300 350 400

my [GeV] my [GeV]

Figure 6.5: Contribution to the S and T parameters from singlet-doublet fermions for benchmark values of the couplings
(y=01y=1, dcp = 0)and ]\]fgenerations of new fermions, where ]\1} =1 (]\ff = 4) on the left (right). In the
blue band the model can give rise to large enough .S and 7 to explain the world average A4} measurement within 20.
Relevant constraints on the model are briefly discussed in the text; in particular, direct LHC searches can potentially rule
out most of the blue band for ]\/}c = 1 and probe much of the ]Vf = 4 allowed region.

T'is only large enough to explain the CDF II anomaly in a small corner of the parameter space; direct
searches at LHC strongly constrain this range of masses.

In the right panel of Figure 6.5 we show the contribution of the model to the oblique parameters
with Ny = 4. We now find a larger range of masses that give rise to My values within 2 of the global
average measurement. Direct LHC searches can again rule out some of this parameter space, but
there is still viable parameter space in the range of masses shown in the figure, specifically in the limit
of degenerate masses or at high values of 7,. A more thorough exploration of the viable parameter

space (with other values of y and y) is left for future work.
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6.5 CONCLUSION

In this chapter we studied the effect of recent Ay measurement at CDF I on global fits of electroweak
precision observables and the implications for physics beyond the SM.. By performing a standard y* fit
over SM parameters as well as the oblique parameters S, 7, and U, we explored the efficacy of a variety
of models for generating an upward shift in the Ay mass. After combining all A1 measurements
at the Tevatron, LEP, and the LHC, there exists a significant discrepancy with SM predictions.

The results of our fit suggest that new physics models that contribute to §'and, more substantially,
a positive 7" are potential candidates to explain the anomaly. While we considered a global fit also
including U, the results did not have a natural model-building interpretation. Of the models we con-
sider, we find that a generic dark photon mixing with SM photon, a singlet scalar extension of SM,
and a 2HDM model fail to yield S and 7" contributions consistent with our fit. However, the swino
model was markedly successful since it generated positive O(0.1) values of 7'in unconstrained regions
of parameter space. Viable triplet mass values were found to be near or above the TeV scale, which can
evade current experimental bounds while giving rise to interesting signatures in future high energy
colliders such as FCC-hh or muon colliders. We leave a detailed study of such signals to future work.
Additionally, we found some success with a singlet-doublet fermion model when considering multiple
generations.

As previously mentioned, there are other anomalies in the SM that could arise from discrepant elec-
troweak precision measurements, such as the anomalous magnetic moment of the muon g — 2. It was

pointed out in Ref. > that the existing discrepancy between the theoretical and measured values of
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(g — 2), can be absorbed in a shift to the hadronic vacuum polarization contribution by changing
Aa}(é?i, at the cost of increasing the tension in the SM electroweak fit, particularly by decreasing the
preferred value of Myy. It is of high importance to explore if the necessary change in the fit to ame-
liorate the (g — 2), discrepancy can be accommodated by the BSM effects of interest for the /7 mass
measurement, or if something much more exotic is required.

Finally, we would like to call attention to the fact that a tension arising from the global SM elec-
troweak fit is not unique to the /#"boson mass. For example, significant deviations from the SM have
been evident the forward-backward asymmetry observable at LEP for many years 3%7_ and numerous
attempts at explaining this with BSM physics (e.g.'*”, among others). This further motivates future
study of how potential new physics affects electroweak precision observables.

These results can be interpreted as new oblique signs of BSM appearing around the TeV scale. In
light of this new measurement, further experimental results, including improvement to measurement

of My, at LHC or future colliders, are strongly motivated.
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A Tale of Two U(1)’s: Kinetic Mixing from

Lattice WGC States

7.1  MOTIVATION AND INTRODUCTION

One generic feature of string compactifications is the presence of hidden sectors containing additional

matter that is possibly charged under extensions of the Standard Model (SM) gauge group Gsp. This
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Figure 7.1: If bi-charged matter exists in the UV model, integrating it out can generate a 1-loop kinetic mixing in the IR via
this diagram.

expectation is borne out in our universe through the existence of a dark sector. In fact, cosmological
observations have shown that about 95% of the energy density in the universe resides within such
a dark sector, with 25% as dark matter and 70% as dark energy**. Despite this abundance of dark
matter, it has proven difficult to detect any non-gravitational interactions between our sector and the
dark sector. It is a logical possibility that dark matter is not charged under any gauge group or that
interactions between the two sectors are only mediated by operators suppressed by a large mass scale.
In these cases, directly observing any hidden sector physics would require high energy experiments
beyond the reach of current technology. However, if dark matter is charged under an additional U(1)y,
there is a dimension four kinetic mixing operator between U(1) y and the SM hypercharge U(1) y that

is not suppressed by a large mass scale:

1 ) 1 2 X
£5 —3Fn — 3Fo + i Foow

This operator can be generated by integrating out massive particles in a UV theory that are charged
under both Abelian groups*®? (see also'*? for a review), as shown schematically in Figure 7.1. Each

scalar bi-charged state, with mass 7 and charges Q, and Qj under the respective U(1)’s, contributes
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an amount y to the kinetic mixing given by”

2
g;; = %Sj ln::—z (7.1.1)
alb

The effect is similar to that of a threshold correction to the gauge coupling. If the low-energy theory
does not contain any more particles charged under U(1)x, one is free to define a rotation in field space
Ay = Ay — yAy along with a new gauge coupling ¢y = gv/ ﬂ that removes all effects of
the kinetic mixing operator. But in the presence of light charged hidden matter, the effect of a kinetic
mixing operator is to give certain dark matter species a ‘minicharge’ under the visible U(1) yand in turn
U(1)gm. This can be seen by a similar field redefinition as above which causes a dark matter particle of
charge gxQ under U(1)x to acquire a charge yQgx/¢y under U(1)y. So far, we have assumed that the
U(1) x gauge boson is also massless, which provides the freedom to rotate the mixing into either sector.
An interesting alternative is to consider a massive dark photon. In this scenario, diagonalizing to the
mass basis fixes the eigenstates and uniquely determines the coupling of the photon and dark photon
to both the Standard Model and dark currents. The standard mechanism for generating a mass for the
dark photon is by spontaneously breaking the symmetry with a Higgs or by providing a Stueckelberg
mass, which is a special case of the Higgs mechanism where the Higgs has been decoupled. In either
case, above the symmetry breaking scale, we have a massless Abelian field, so for the purposes of our
analysis, we will restrict our attention to this case, with the expectation that our results will also apply

to the massive case as well. The phenomenological implications of the massive dark photon have been

"'The numerical prefactor changes if we integrate out fermions or chiral supermultiplets in a supersymmetric
theory, but the dependence on charges and masses remains.
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extensively explored in recent years, so we will, of necessity, refer the readers to an excellent recent
review article and the references therein'9°.

Numerous current and near-future experimental efforts (see for example'*? for a recent review)
are directed at detecting minicharged particles. These have phenomenological signatures that vary
with the mass of the dark matter particle and the strength of the kinetic mixing parameter y. For
masses below ~ 0.1 MeV, the most constraining effect is due to stellar energy loss. This has been
investigated using data from the Sun3®s, white dwarves, red giants and horizontal branch stars 388,
SN1987a also provides constraints extending to ~ 1 MeV '*. At higher masses, cosmological obser-
vations (for y < 1073) and laboratory searches (for larger y) are more relevant. The former rely on
N constraints from BBN and the CMB**® as well as effects of minicharged particles on acoustic
oscillations during recombination "*®. The latter involve collider searches>”*'*°, beam-dump exper-
iments?57, ortho-positronium decays®, light shining through a wall experiments'®” and neutrino
experiments >*4. Future experiments will further explore this parameter space 301358:359:67:295,234:233

Given the vast parameter space, it is important to provide theoretical input on the expected mag-
nitude of the coefficient y. Since the value of y in any effective field theory (EFT) is very model-
dependent, one may hope that turning to a UV complete theory (with a more rigid framework) would
provide a better picture of generic expectations. Indeed, several such investigations have been carried
out in the literature giving predictions for the value of y ranging over many orders of magnitude with

some models having a seemingly vanishing mixing parameter.”

*Although the expectation is that mixing is present anyways from low-energy effects such as SUSY breaking,
GUT symmetry breaking or Dine-Seiberg-Witten vacuum shifts.
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One of the pioneering studies is due to '7? where contributions to y from massive string states were
computed in semi-realistic orbifold compactifications of the heterotic string in the fermionic formula-
tion. The surprising result was that massive string states do not contribute to mixing in the low-energy

theory. Later works*+°

outlined the requirements for kinetic mixing to be present in heterotic orb-
ifolds by extending early results about threshold corrections**'75. When present, the kinetic mixing
effect is considerable with ¥ 2> 10™*. In the context of Type II theories with D-branes, kinetic mixing
has been found in Calabi-Yau orientifolds with D7-branes>*°, D6-branes ', Ds-branes*#” and in the
LARGE volume scenario**. Additionally, kinetic mixing can occur in non-SUSY set-ups with anti-

20,1

branes in the extra dimensions*>'? such as D3-branes in Klebanov-Strassler throats. Finally, kinetic

mixing has also been shown to arise at strong coupling in F-theory constructions '*®.

As such, different limits of the string landscape have been investigated but no overall picture is
currently available. Here we revisit some of these arguments in light of the Sublattice Weak Gravity
Conjecture (sSLWGC) which is expected to hold in the entire landscape*®*7. As we review in the
next section, the SLWGC requires massive states charged under all Abelian symmetries. When inte-
grated out, these can generate the kinetic mixing operator in the low-energy EFT. Of course, explicit
constructions include these states but the highly symmetric set-ups required for computational con-
trol can possibly lead to large cancellations and thus biases estimates of y towards lower values. In this
chapter, we point out that the SLWGC, in addition to an assumption about the mass spectrum of
relevant states, also leads to an estimate of y, extending the analysis of 81 This approach is comple-

mentary to the available constructions in the sense that it is more general but inevitably less precise.

The question of computing kinetic mixing effects is replaced by an estimate of the mass spectrum of
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states charged under the various U(1) symmetries.

This chapter is organized as follows. In Section 7.2, we begin with a review of the relevant Swamp-
land conjectures. Next, we discuss a statistical approach to estimating the kinetic mixing arising from
a generic spectrum of sSLWGC states in Section 7.3. We discuss specific constructions in Section 7.4.
This includes a QFT construction in Section 7.4.1, heterotic orbifold constructions in Section 7.4.2,
and Type IT on a Calabi-Yau in Section 7.4.3. Section 7.5 discusses various potential known loopholes.

Finally, we ofter concluding remarks in Section 7.6.

7.2 SWAMPLAND/QUANTUM GRAVITY PRELIMINARIES

The Swampland conjectures are a set of conjectures which impose constraints on low-energy effective
theories. These constraints arise from the fact that seemingly innocuous eftective field theories in the
IR run into pathologies when we try to UV complete them into a theory of quantum gravity. Theories
satisfying these constraints are said to be in the Landscape, while theories violating these constraints
live in the Swampland. Taking these conjectures as a theoretical input, we can make predictions for the
size of certain parameters in our effective field theory, such as the kinetic mixing parameter y. These
predictions allow us to bring quantum gravity into contact with our rich experimental program. In
this section, we will review the relevant Swampland conjectures. See the reviews'°*#* for more de-

tails.
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7.2.1  REVIEwW OoF sSLWGC

The Weak Gravity Conjecture (WGC)5° is one of the oldest conjectures in the Swampland program.
The WGC states that if we have a U(1) gauge theory coupled to gravity, then there exists a (superex-
tremal) particle whose charge to mass ratio is larger than that of a large, non-rotating, extremal black
hole 5°.

The conjecture was originally proposed to avoid the existence of stable black holes. If there is a
particle in the spectrum of states satisfying the WGC, then an extremal black hole can decay away
from extremality by emitting a superextremal particle. Although appealing, a priori there isn’t any
fundamental obstruction in having a stable extremal black hole charged under a gauge symmetry in
the same way that there is for a global symmetry. On the other hand, we know the WGC holds in
a large class of string theory constructions. Furthermore, simple toy examples such as Kaluza-Klein
(KK) reductions also generate towers of states satisfying the WGC.

The authors of >**7 further refined this conjecture. They generalized the Weak Gravity Conjec-
ture to state that an Abelian p-form gauge field with gauge coupling ¢, in 4 dimensions with varying

dilaton couplings «, necessitates the existence of a (p — 1)-brane of tension 7, and charge g satistying

_l’_

5 ) -dszi_z (7.2.1)

2 p(dpz)]T;S

They also proposed the Sublattice Weak Gravity Conjecture. The sSLWGC states that if we have a

charge lattice I' in a given theory, then there exists a sublattice I'sy, € I such that all g e [gyp corre-
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spond to a superextremal state. The coarseness of the sublattice, defined as the smallest integer /N such
that Ng € Csup, V4 € T, is finite. Therefore, T sup and I have the same dimensionality. Crucially, in
a U(1)xU(1) gauge theory, the SLWGC implies the existence of a sublattice of superextremal states
charged under both gauge groups. The existence of these states is an important starting point for gen-
erating kinetic mixing. A toy model illustrating this feature is the KK compactification of 6D pure
gravity on 72. This dimensional reduction generates two graviphotons, giving us a U(1)x U(1) gauge
theory in 4D. The masses of the KK modes are given by

2 Pl

m R2

Qi=mn; (7.2.2)

@ denotes the metric on moduli space and R? is the overall compactification scale. The extremality

bound, which was also derived in*°, is given by

(7.2.3)

The KK modes saturate this bound. Furthermore, we have a state for each choice of Q. So, we imme-

diately see that the SLWGC is satistied with I'g,, = I'.?

3This was intended as an illustrative example. If we compactify on other manifolds, such as toroidal orb-
ifolds, we are only guaranteed a sublattice of superextremal states.
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7.2.2  SPECIES SCALE

The QFT we analyze is an effective lower dimensional theory with gravity propagating in higher di-
mensions. This effective theory is valid up to a cutoff scale which is set by the species scale A;. Above
the species scale, gravity becomes strongly coupled in the higher dimensional theory. The species scale
conjecture states that if we consider a d-dimensional gravitational theory having N'single particle states,
with Planck mass A1, ](,d), then requiring gravity to remain weakly coupled necessitates a cutoft scale A

below the species scale given by

A= {7 : (7'2'4)

This conjecture can be derived by counting KK modes, but is expected to hold more generally. For
computing kinetic mixing, this implies that every light state we integrate out, lowers the cutoft of our
theory. States with masses below A, contribute to kinetic mixing, while states with masses above are

not part of our effective description and hence are excluded.

7.3 ESTIMATING y FROM SLWGC STATES

In this section, we carry out a phenomenological estimate of y by assuming that the sSLWGC holds
in a high energy theory and integrating out string-scale states to obtain the low-energy kinetic mixing
coefhicient. This also allows us to investigate the dependence of the mixing on the mass distribution of
superextremal particles on the charge lattice. To isolate the effect of these particles, we assume that the

U(1)’s under consideration do not kinetically mix in the full theory. In addition, we assume that this

170



mixing cannot be rotated away by redefining the U(1) generators. This could be due to the existence
of alight particle carrying either U(1) charge for example, as mentioned in Section 7.1, or other effects
such as the possibility of measuring the coupling constant of a GUT. The y estimates obtained here
should be viewed as lower bounds since we are only considering superextremal states whereas any
string construction typically includes a large number of subextremal states as well.

More precisely, we consider the charge lattice of a U(1),, X U(1) , theory with superextremal particles

of mass:

Te=exg 4=1/@00+ @Q) (31)

at position (Q,, Q) on the lattice. The expression for g4 in Equation 7.3.1 is a good approximation
when the mixing is small. However when the mixing is O(1), the off-diagonal elements of the metric
on field space contribute to this formula. We will ignore this subtlety for our estimate. The ¢’s are
random coefhicients drawn from a distribution that depends on the charge site and are strictly less
than unity to ensure superextremality. In principle, the probability density function of ¢ is calculable
from Landscape constructions but this is prohibitively difficult in practice except perhaps within the

context of a limited class of models.# For our estimate, we choose the following distribution:

(g —q)c
c
P(c;q,90) = a(q* — 45)

e (7.3.2)

+Assigning a probability distribution to ¢ is akin to assigning a probability measure on theory space and
we are certainly not claiming that we have access to that measure. Instead one may think of this probability
distribution as an area weight over moduli space.
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where we define

90 = \/ g2 +gﬁ- (7-33)

This choice of probability distribution makes it exponentially difficult for states far out on the lattice
to be light. This aligns with WGC intuition, according to which very massive string states should be
viewed as black holes and, since we are modeling superextremal states only, their mass-to-charge ratio
must therefore match the black hole extremality bound. In addition, for# = 1and large ¢, the mean of
the above distribution is 1 — 1/4* which lines up with the mass-to-charge ratio of superextremal states
of the heterotic string. The width of the distribution and the parameter « can then be thought of as
resulting from symmetry breaking effects that contribute to particle masses. These effects are certainly
less prominent for heavy states and this is captured by the decreasing width of the distribution as ¢*
increases.

Our choice of probability distribution is invariant under a Z, symmetry where Q, , — —Q, ; and
this will result in a distribution of y that is centered at o, as illustrated in the right panel of Figure 7.2.
In order to facilitate comparisons with string constructions in Section 7.4.2, we consider a particle
spectrum which includes states with charges (Q,, £|Qs|). As above, the masses of these states are
different and are drawn at random from the distribution in Equation 7.3.2. The contribution of any

such pair of states is z-independent and given by:

_ &l my _ gaQag| Q]| e+

X~ 4872 m_ 4872 c (7:3-4)
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where the subscripts on ¢+ indicate the sign of the charge under U(1),, and we use the (7, /) subscripts
(withj > 0, say) as a reminder that this is the contribution from one pair of lattice sites’. We can now
derive an expression for probability distribution of X using the distribution we assumed for P(c). We
leave the details to Appendix E.1 and quote the result here:

U1 — (1 + 7)) —1

( forr <1
y (1—é2(1+r)(1+ 1) (7.3.5)
A1 —p+ ) —1

(1= 21+ (1+r7)

4872

Pry) = 2:Q:25Qs

forr >1

where we have defined

_ ¢ 4-8”2/’{/’] d [8 _ ( 2 2)
V= — — X —_———— an = — .
— P L0l 70

Note that under y,, — —y,, we have » — 1 /r and the distribution is invariant implying P(;(Z.j.) =
P( —;(z.j). The mean of y then vanishes as a result of the vanishing of (;(l]> in agreement with the ex-
pectation outlined above. It is difficult to use P(;(lj) to determine the distribution of y = Xy since
the latter sum requires knowledge of which lattice sites represent states with masses below the species
scale, as discussed in Section 7.2.2. This question can only be answered by considering the full lattice
realization at once. Thus, determining whether a particular (pair of) lattice sites contributes to the ki-
netic mixing is a complicated problem that depends on the probability distributions of all other lattice

sites. For this reason, we approach this problem numerically and use the above analytic distribution

5Of course we can label the lattice by the coordinates (Q,, Q5) but we use the notation X sinceitis simpler

than 20,0, The reader can always take Q,(f’j) =7and Qgi’j) =]
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to compute y in the limit where the relevant lattice sites form a dense subset of the full charge lattice.

The numerical estimate of y is carried out by creating an ensemble of lattice realizations and esti-
mating the kinetic mixing by summing contributions of the form shown in Equation 7.3.4. We show
the Q, > 0 region of a sample charge lattice in the left panel of Figure 7.2. The red and blue lattice
sites correspond to states with masses below the species scale which are relevant for the estimate of
kinetic mixing. The right panel of the same figure shows the distribution of y in an ensemble of 2500
lattices. As explained above, the distribution is centered at y = 0 but we generically expect a value of
the mixing of order the standard deviation which is & ~ 1073 in this case.

We now briefly comment on the dependence of y on parameters of the distribution in Equation 7.3.2.
First, the parameter « controls how quickly the exponential rises. For larger , states approach the ex-
tremality bound at smaller charge and are on average more massive than the corresponding states with
the same charge for a lower value of 2. As such, increasing « has the effect of discarding some states
with large charges since these would now have masses that exceed the species scale. In turn, this de-
creases the value of the mixing on average and suppresses the tails of the y distribution. We show this
effect in Figure 7.3. Second, the coupling constants roughly control the eccentricity of the ellipse con-
taining the relevant states. As such, increasing one of the couplings, say g,, from a small value while
holding the other fixed, again removes the contribution of some states with large charge and the kinetic
mixing decreases. This continues until we have gfl ~ gﬁ + 27! when the variance begins to increase
again. This increase in variance can be attributed to the fact that we are limited by small numbers. For
such large couplings, the lattice is populated by only a few superextremal states. Now if we make g,

large, the most common configuration for these states is to lie on the Q, axis. The next most common
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configuration is when one state has a nonzero charge Q,. This generates a larger contribution to the
kinetic mixing compared to when two states have nonzero Q, charge, but partially cancel. As g, gets
larger, having multiple states with nonzero Q, charge is exceedingly difficult and as a result the kinetic
mixing, and its variance, both increase. We show this behavior in Figure 7.4. Finally, we note that in
the regime g, > g3, we found that most of the states have Q, = 0. In the context of the Swampland,
this amounts to lifting the U(1), WGC towers above the species bound cutoff of U(1). This effect
is ubiquitous and we will see it again in Section 7.4.1.

We now turn to a limit where we can use the analytical form of P(;(Z.j) to get an estimate of the
kinetic mixing. Note that the probability distribution of ¢ = m/(gM,) is controlled by the single
parameter 2. As such, in regions of the lattice where 8 < 1, we typically have a large number of
light states below the species scale. By taking the limit of large « and small couplings g, g, < 1 we
can arrange for < 1in a region on the lattice that spans a large number of sites. In this limit, the
relevant states for kinetic mixing can be approximated by a continuum inside the region 8 < 1. We
can then calculate the variance of y = > X by noting that the Xy are independent variables (i.e. with
avanishing covariance). This allows us to first compute the variance of X and integrate the result over
the ellipse defined by £ < 1 to get the variance of y. Evaluating the integral numerically, we get:

(Xj}) =1.49 x <g“gl’Q”Qb>2 ~ 3 (‘W)z. (7.3.6)

4872 2 48772

175



—-0.005 0.000 0.005
X

Figure 7.2: We show a sample charge lattice on the left. The relevant states are indicated by black (zero contribution), red
(negative) and blue (positive) circles with the size of the circle being proportional to the magnitude. The right panel shows
the distribution of kinetic mixing results. Due to our choice of PDF for the ¢;7, We expect this distribution to be centered
around y, = 0. Here we set g, = 0.1, g, = 0.2 and « = 6 and take N = 2500 lattice realizations.

Finally, summing the contributions from the 8 < 1 half-ellipse, we get:

 (+alg+g)’
@)= 737287r3a3gjg;9 ' (7:37)

In its regime of applicability, this is a decreasing function of each of its three parameters as expected
from the explanation above. For example, for = 10% and g, = g, = 1073, we get y ~ 107>,
Surprisingly, this also gives a good estimate for the benchmark values of couplings and 2 shown in

Figure 7.2.

7.4 COMPUTING y IN ExpLICIT EXAMPLES

In this section we consider explicit QFT and string theory examples and compute the kinetic mixing
parameter in these constructions. We aim to support the above arguments based on the SLWGC by
showing that generic backgrounds typically lead to mixing between Abelian gauge groups in the low-

energy theory. First we consider a sD U(1) gauge theory compactified on a circle. The associated
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Figure 7.3: In the left panel, we show the variance as a function of «. We fix g, = 0.1 and g;, = 0.2. We notice that as «
increases, the variance decreases. In the right panel, we show the distributions for;(db for « = 4 (yellow) and « = 8 (blue)
and N = 2500 lattice realizations.
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Figure 7.4: Here we show the dependence of the variance on the coupling. We fix # = 8. The blue curve shows g, = 0.2
and the orange curve shows g, = 0.02. We take N = 2500 lattice realizations.
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graviphoton provides us with the second U(1). We further consider scalars in this sD theory which
satisfy the LWGC. Upon compactification on S', we get a 4D theory with associated KK towers for
each scalar that are charged under both gauge groups. These states generate kinetic mixing at 1-loop
provided we turn on a background Wilson line. The next class of examples we consider are toroidal
orbifold compactifications of the Eg X Ejg heterotic string. In particular, we consider the ensemble of
Z—_11 orbifolds of 3*® and compute the kinetic mixing distribution of these 1858 MSSM-like models.
Finally, we work out the kinetic mixing in Type IIB supergravity compactified on the mirror quintic
manifold. Here we perform an area average over the complex structure moduli space to produce an

estimate of the kinetic mixing.

7.4.1  sD U(1) EXAMPLE

We start with the simplest example that illustrates mixing from a lattice by considering a sD Abelian
gauge theory coupled to gravity. The LWGC implies that each site on the charge lattice I'is populated
with a state.® We will take these states to be represented by complex scalars @, of mass m; and charge

¢;. This is given by the following action:

1
z’ch

S—/dsxﬁ[

1 "
R - 46‘2 FMN N : :(DMp)T(DM@;) - m?’?’l‘z . (7'4-1)
5D

i€l

6Assuming a sublattice won’t qualitatively change the results and is similar to rescaling the charges of the
states by an O(1) number.
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For the following discussion, we turn off the dilaton coupling (i.e. « = 0 in Equation 7.2.1). For a

1-form gauge field in §D, this implies that a state of charge ¢ has a mass satisfying

%ng <épg*Mip  —  mip < %fiquMiD (7.4.2)
We will take each of our scalars to have a mass saturating the bound in Equation 7.4.2. This is con-
servative because of two effects. The first is that the contribution of states with %+ is proportional
to log (m4/m_) and the fractional difference in the masses decreases as 7sp increases. The second
effect is a reduction in the number of contributing particles since the masses of heavy states saturate
the species bound for a smaller total number of states. We compactify on a circle of radius R yielding
a U(1)r x U(1)gxk gauge theory where U(1)f descends from sD with coupling e4p in 4D and U(1)kk
arises from the graviphoton with coupling e R* = 167G.” A KK tower is generated for each scalar.
Furthermore, under the assumption of genericity, there can exist a nonzero Wilson line § = f dyAS
along the compact direction which shifts the mass of each state. The 4D theory then contains a full

lattice of states. Each lattice site is labelled by (g, ) and is populated by a state with mass given by

2
1 g
mip = map + =2 <” - ;) (7.4.3)

The charge under U(1)r is denoted by g and € Z denotes the charge under U(1)kk. In addition to

the scalars, the KK compactification generates a tower for the graviton as well as the photon. These

7The 5D and 4D gauge coupling and Planck mass M, are related via ¢ = 27Re; | and ij =
2aRM5 2.
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states are charged under U(1)gk, but uncharged under U(1)g. Their masses are given by settingg = 0
in Equation 7.4.3. Although these states don’t contribute to the mixing, they are important because
they are light states included in our effective theory which determine the species scale. We show our
results in Figure 7.5. We fix the 4D gauge coupling to e,n = 107>, This leaves the compactification
radius R and the Wilson line ¢ as the two free parameters.

The parameter R controls the size of the extra dimension, and in turn also controls the size of exx.
Increasing R decreases the KK gauge coupling. As we begin to develop a hierarchy between the two
gauge couplings in our 4D theory, we also begin to lift the tower of one of our U(1)s above the species
bound cutoft of the other U(x). This means that the species bound of our theory is saturated by
states which are uncharged under one of the U(1) gauge groups. This can be seen in Figure 7.5, where
increasing R leads to a decreased magnitude of kinetic mixing.

The parameter & controls the breaking of an exact Z, symmetry.® When § = 0, states with charge
(£q, n) are exactly degenerate as can be seen from Equation 7.4.3. In this limit, the contribution to the
kinetic mixing, as shown in Equation 7.1.1, from both of these states exactly cancels. As we increase
g, we increase the mass splitting between these oppositely charged states. This allows for a nonzero
contribution to the mixing. This is reflected in Figure 7.5, where larger values of & correspond to
an increased magnitude of kinetic mixing. We note that the mixing increases until # = 7 and then
decreases. In particular, the mixing is symmetric about ¢ = 7. We can consider the symmetries of

our theory to better understand this behavior. The theory is invariant under & — &+ 27 due to large

$This is a global symmetry which we expect to either be broken or gauged. When @ # 0 mod 2, it is broken.
We relegate discussion of the gauged case to Section 7.5.
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gauge transformations in the compact dimension. This is consistent with the fact that the mixing
vanishes at § = 0 and § = 27. Furthermore, parity in the fifth dimension implies that § — —&also
leaves the theory invariant. Combining these two symmetries, we find that the theory is identical at
¢ = 7 £ &, and hence the mixing contours are symmetric about ¢ = 7. Since our theory is endowed
with an integer charge lattice, these symmetries can also be understood using GL(2,Z) transformations.

Suppose we define the generators of GL(2,Z) as follows

S= I'= P= (7-4-4)

According to these definitions, § — ¢ 4 27 is given by L4(742) = Ly12,(Z) and § — —8is given by
Ly(PZ) = L_4(d), where 4 is a vector containing our two gauge fields. As an example, suppose we
consider our theoryat 6, = 7/2and 6, = 37/2. Forastate withg = 1 under U(1), the lightest state,
given by Equation 7.4.3, corresponds to # = 0 for & and » = 1 for £,. We can either fix the gauge
eigenbasis, in which case the lightest mass eigenstate has different charges at the two values of ¢, or we
can fix the charges of the lightest mass eigenstate, and redefine our gauge eigenbasis. We choose to do
the latter. Performing this gauge basis change, we find that the spectrum of the theory is identical at

¢ and 0, producing identical mixings, consistent with our discussion of the symmetries above.

7.4.2 HETEROTIC STRING THEORY ON ORBIFOLDS

Kinetic mixing has been studied in the three popular settings for string phenomenology: heterotic

string compactifications, brane-world scenarios for the Type Il string and F-theory. The earliest inves-
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Figure 7.5: Here we show the one-loop y generated from integrating out the KK modes of the graviton, photon and
scalars as a function of the compactification radius R and the Wilson line 8. We fix e, = 1073, Ginduces a mass
splitting between oppositely charged states leading to the increase in;(db as a function of &. The symmetries of the theory,
namely parity and large gauge transformations in the compact dimension, imply that the theory is identical at ¢ = 7 = «.
We discuss this in more detail in the text. Increasing R decreases exk which eventually lifts all states charged under both
U(1)s above the species scale, thereby decreasing;{.



tigations were based on the heterotic string but later studies also found mixing in Type II construc-

8 as well as F-theory compactifications®. In this section, we will focus on orbifold compact-

tions”
ifications of the heterotic string as an example where the generic expectation for kinetic mixing can
be estimated. We will study the statistics of the mixing parameter in a large sample of semi-realistic
heterotic orbifold models. Our aim is to compare these estimates with the phenomenological ones
derived above.

In heterotic orbifolds, being exact CFT constructions, the full spectrum of states is known which
allows for an explicit calculation of threshold corrections to kinetic mixing. This is similar to the
computation of threshold corrections to gauge coupling constants which have been studied in **. The
latter formalism was extended to compute kinetic mixing between the gauge bosons of two different

U(1)’s in'7? and we now review the relevant details. If we take y = 0 at the string scale, then the

low-energy kinetic mixing between U(1),, and U(1),, at one loop is given by:

x by . M 1
= = 1 —A 4.
{gﬂgb} (@)= 5n 2 + o2l (7.4-5)

where M is the string scale. In the above expression, the first term describes the running of the mixing
parameter due to the presence of light bi-charged matter and the second term gives the string threshold
correction to kinetic mixing due to the presence of massive states above the string scale. We are mainly
interested in estimating the magnitude of the kinetic mixing parameter and so we will focus on the

value of the threshold correction A, and will ignore contributions of the first term. That said, the
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threshold correction is computed by:

d?z _
Ay = / 7 Boy(e.7) — buy) (7.46)
F 72

where we have ignored a universal term proportional to £, the coefficient of the 1/ 22 pole in the OPE
J(2)/5(0) between the U(1) worldsheet currents. This is justified since we have chosen the two U(1)
generators to be orthogonal in the UV theory implying the vanishing of the 1/z* pole in the OPE of
their worldsheet currents. What remains then is an integral over the PSL(2, Z) fundamental domain

of

Bu(r.?) = (A Y (= LD (g0 ) 4

= 27id7
from which we have subtracted the contribution of the massless states, 4,;. In the above expression,
7(7) is the Dedekind eta function and Zy (s, 7) is the partition function of the right-moving non-
compact complex fermion with spin structure s. The threshold correction A, then calculates the
effect of integrating out massive string states above the string threshold.

After developing the above formalism, '7* applied it to three standard-like models * 5,205,200

as an ex-
ample. The kinetic mixing in all these models surprisingly vanishes but this result is not robust to any
correction to the mass spectrum and the expectation is that kinetic mixing is still present from other

low-energy effects. Subsequently, *4°

investigated mixing in symmetric Abelian factorizable orbifolds
arguing, along the lines of ***'75, that models with non-zero mixing are ones that have an N =2

subsector. For this class of models, the existence of an N = 2 subsector requires an orbifold point

184



group of non-prime order so that certain twists fix one of the compact tori leaving additional unbro-
ken SUSY charges.

We will focus on these N = 2 subsectors but briefly comment on the other sectors. The orbifold
models we are considering also have N = 1 (e.g. the first twisted sector) and N = 4 (the untwisted
sector) subsectors but these do not provide moduli-dependent contributions to the kinetic mixing
and can be ignored for our purposes as we now briefly explain. We begin by considering the untwisted
sector. In this sector it is easy to see that the spin structure dependent part of B,;, becomes:

Sy = L LS (apez, (7.49)

dr

even S even s

which vanishes due to Jacobi’s abstruse identity. Turning to the A/ = 1 subsectors it is easy to see
that any contribution they provide cannot depend on the Kihler and complex structure moduli 7;
and U; describing the compact torus since such states reside at fixed points and cannot probe the
torus geometry. Any contribution to A,, must then be an additive constant. However, since the
contribution from the N' = 2 sector is moduli dependent and we will choose rough O(1) numbers
for these moduli, computing the N = 1 contributions is of little value for our estimate.’

The focus is then on A/ = 2 subsectors which are twisted sectors whose twist fixes one of the three
directions of the compact torus. String states in these sectors are not localized along the fixed direction
and can probe the torus geometry allowing for dependence of the threshold correction on the torus

moduli. The form of the moduli dependence was first calculated in***'75 for threshold corrections

°For a more accurate calculation, one could average over moduli space and produce an area weighted prob-
ability distribution but we leave this for future work.
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240

to gauge couplings and then adapted to the kinetic mixing scenario in *#°. The exact dependence will

not be important for our estimates. Instead, with O(1) values for the moduli vevs, we have:

g
Aab = O(l) X Z #2‘6‘ (749)

i

where &', is evaluated from the massless states in the A" = 2 subsector that fixes the i-th torus, | G| is
the order of the orbifold group and |G| is the order of its subgroup fixing the i-th torus.

Using this expression for the mixing, we evaluate y/g,¢, for models from the mini-Landscape?**
which contains a large number of inequivalent heterotic orbifold models. The results are shown in
Figure 7.6. This is similar to what we saw in our phenomenological estimate: the distribution again
has zero mean and a variance that is comparable in magnitude to the distributions of Section 7.3. This
gives us confidence that the phenomenological estimate carried out above reproduces the generic ex-
pectation in the string Landscape. In addition, it shows that modeling the superextremal states is
sufficient for our estimate given the agreement with the string computation which takes into account

all charged states.

7.4.3 TYPE Il oN A CALABI-YAU MANIFOLD

In the previous section we considered models based on the heterotic string on orbifolds (CFT con-
structions) but we can also estimate the mixing using supergravity, i.e. using the low energy effective
description of string theory. For concreteness we will take an example based on Type IIB supergravity

compactified to four dimensions on the mirror quintic where the mixing is determined in terms of the
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Figure 7.6: We show the distribution of the kinetic mixing coefficient in a sample of 1858 MSSM-like Z_1y orbifolds.

one-dimensional complex structure moduli space and thus receives no &’ corrections. In addition, we
imagine we are at a fixed point in Kihler moduli space at large volume so that the supergravity approx-
imation is valid. The supergravity approach can be used to estimate the kinetic mixing distribution
on backgrounds more general than orbifolds, such as flux compactifications (see for example*®).

We begin by recalling the bosonic terms in the Type IIB low-energy action in Einstein frame (see

for example *5°):

1 1 1 1 1
2x30St0p = /dloxv -G <R - Eaﬂa‘u@ - 25_¢|H3’2—2€2¢|H\2—25¢|F3|2—4|F5|2>

(7-4.10)
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where

H3 = de, F] = dCo, F3 = dC2 - Co /\H3 (7.4.1 I)

1 ~
Fs=d(Cs — ECZ ABy) =dCy with Fs = *Fs. (7.4.12)

Dimensional reduction of the above action on a CY threefold leads to an effective action in 4D whose
field contentis determined by topological data (namely Hodge numbers /°7) of the compact space. In
particular, the RR potentials decompose into a sum over a basis of harmonic forms on the CY where
the coefficients are 4D massless fields. Of relevance to the gauge kinetic function is the real symplectic
basis of 3-forms (;, ) with7 = 0, ..., h*!. The expansion of Cy thus includes 2(h** + 1) 1-forms
in 4D (i.e. gauge potentials which are the coefficients of («;, ﬂ])) However, the self-duality condition
imposed on Fs halves the number of 4D gauge fields. In total we therefore get 41 gauge fields,
one of which resides in the 4D N = 2 gravity multiplet and the remaining »*! are part of the vector

multiplets. In 4D, the terms relevant for our study of these gauge potentials are given by:
1

. 1 oo~
Sip 2 /d4xv -4 (SWIli-jF;wFW + &L_RCM@‘P;VFW> (7.4.13)

where the gauge kinetic function can be derived from the periods of the holomorphic 3-form  on
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the CY and depends on the complex structure parameters. Explicitly, we have:

Zi = QA ﬂl’a gi = QA 2, (7414)
CY CY
—= ImG;,,2" ImG;, 2"
My =Gy + 2 4 4+
§= G+ 2 e (7.4.15)

where G;; = 0,:Gj, recalling that the periods are not independent and that one may regard G;(z) as
functions of z* which are homogeneous coordinates on the complex structure moduli space. More
details on the effective theory of Type II supergravity can be found in>#¢.

As an example CY3, we consider the mirror of the quintic hypersurface in CP* which has /! = 1
and is thus characterized by a single complex structure parameter we call . The periods and the geom-
etry of the moduli space have been studied long ago in**> and the results can be expressed analytically
in terms of hypergeometric functions. These periods can be used to determine the mixing between
the two photons in the 4D theory according to the gauge kinetic function described above - the two
photons being the graviphoton and the additional one in the vector multiplet. We show the metric
and the kinetic mixing in the y~plane in the left panel of Figure 7.7.

At this point, it is necessary to make a few comments. First, the choice of basis 3-forms (a;, 4
is not unique and any other basis related to the one chosen by a symplectic transformation is equally
valid. In the 4D theory, this corresponds to a choice of electric-magnetic duality frame. While all these
choices are physically equivalent, they do not always allow for a weakly coupled description and one

must be careful when extracting information about kinetic mixing. In addition, the kinetic mixing,

like the couplings, depends on the choice of duality frame but one ideally wants a basis-independent
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prediction for the mixing. In order to deal with these issues, we adopt a specific basis choice given by
placing all M,; matrices in the so-called genus 2 Siegel’s fundamental domain'®. We describe Siegel’s
fundamental domain and the procedure we follow in Appendix E.2. Despite these duality transfor-
mations, there remain parts of moduli space (colored gray in Figure 7.7), where there is no weakly cou-
pled description and we excise this region before carrying out our statistical estimate. Finally, since the
Arg[y] = {0, 27/5} rays are identified, we see a monodromy effect like that discussed in Section 7.4.1.

In order to estimate the generic expectation for kinetic mixing, we calculate an area weighted dis-

tribution using the metric and M,;() on the y-plane taking:

P(y)dy oc dd(y, x + dy) (7.4.16)

where d4(y, y + dy) is the area on the y-plane with y values in the range (y, 7 + dy). The result-
ing distribution is shown in the right panel of Figure 7.7. We find that the distribution’s variance is
6 x 1073 which is in rough agreement with the phenomenological, orbifold, and KK estimates. One
might worry whether contributions to P(y) from regions of large || diverge or skew the distribution
making our estimate unreliable. However, it is easy to check that the large || region only contributes
toy < y.. = V37w/Slog|y]. Asy__ isa decreasing function of |¢], one can conclude that the
variance does not diverge. In addition, the contribution to P(y) close to y ~ 0 is proportional to
log(\/37/5y) which changes the variance negligibly since it has to be integrated against y or *. We

also check this numerically by ensuring that our estimate is stable against removing points from our

"*Technically, we work with ./\/l; since this has positive definite imaginary part but this distinction does not
affect the results.
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Figure 7.7: We show the moduli space metrich as a function of the complex parameter ;kin therange 0 < Arg[;k] <
271‘/5. The color coding corresponds to the size of the kinetic mixing coefficient at that point.

sample. This then provides an example where the y distribution has a nonzero mean and shows that
the phenomenology of kinetic mixing could be much richer than one might expect from the simplest

estimates of the previous sections.

7.5 LOOPHOLES

In this section we review potential loopholes that could obstruct the above genericity arguments and
lead to vanishing kinetic mixing between low energy U(1)’s. These loopholes typically correspond to
finely tuned regions of parameter space and/or enjoy an enhanced symmetry.

* Non-Abelian unification: The simplest loophole to the above genericity arguments is the
presence of a symmetry between charged particles running in the loop that leads to cancella-
tions when evaluating the total kinetic mixing from all available species. These symmetries are
easy to come by since one can consider, for instance, a non-Abelian SU(N) gauge group that is
Higgsed down to a product of U(1) factors by going on the Coulomb branch. Since the genera-
tors of SU(N) are traceless, each SU(IN) representation decomposes into U(1) representations

where particles have charges with a vanishing sum under each U(1). It is then easy to see that
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kinetic mixing from such a spectrum would vanish (e.g. by considering all the particles with
charge ¢, under the first U(1)). In this scenario, however, Higgs insertions can still allow for a
kinetic mixing effect (albeit a mass suppressed one). Estimates of this effect have been carried

out in the context of GUT models (see for example *** for a recent discussion).

Charge conjugation in the dark sector: This is similar to the unification scenario discussed
above and implements a symmetry in the spectrum that leads to cancellations preventing loop
corrections from generating kinetic mixing. We saw this explicitly in the example in Section 7.4.1,
where § = 0 corresponds precisely to the case where the 4D particle spectrum has a charge
conjugation symmetry. Alternatively, one can note that the operator Ffﬁ)F([’)f"” is not invari-
ant under separate charge conjugations and is thus forbidden if the symmetry is left intact. In
a theory of quantum gravity, this charge conjugation must be a discrete gauge symmetry such
as the one obtained by Higgsing SO(3) with a Higgs in the s-dimensional irreducible represen-
tation to U(1) x Z; ~ O(2). We see then that in a theory with strict U(1) (rather than O(2))
gauge groups, this charge conjugation is absent. In addition, in cases where it is present, there
are additional physical effects that could potentially distinguish the two gauge groups such as

‘Alice’ strings.

Fine-tuned loci in moduli space: In theories with supersymmetry, there could be a mod-
uli space of vacua parametrized by the vev of scalar fields. In these cases, it might be possi-
ble to tune the moduli to a value that leads to vanishing kinetic mixing. However, such loci
are typically lower dimensional submanifolds of the moduli space and would thus be missed
by generic field vevs. An example is an N' = 2 SU(N) gauge theory where one can give a
vev to the scalar in the vector multiplet to Higgs SU(N) — U(1)N~1. The low-energy La-
grangian then contains a gauge coupling matrix that depends on the particular vev configura-
tion; £ D f d*677 (@) W; W;. However, the mixing in the case would vanish only on a lower

dimensional subspace of the full moduli space and is non-zero at a generic point.

Prime orbifolds: This scenario is similar to the previous case since orbifolds are special points
in moduli space. In particular, prime orbifolds provide many examples where kinetic mixing
vanishes. In this case, generic points on moduli space describe orbifolds where the singularities
have been blown up by giving vevs to twisted moduli. This alters the spectrum of states and
is expected to generate kinetic mixing. In addition, these prime orbifold examples typically
include massless bi-charged matter which must be lifted for the model to become phenomeno-

logically viable. Giving these states mass would again generically induce a kinetic mixing signal.
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* Braneworld Scenarios: In this case, the two U(1) gauge groups can be localized on separate
branes and the kinetic mixing between them could be exponentially suppressed if it relies only
on the overlap between the two wavefunctions localized on each brane. In the presence of light
bi-charged bulk modes, kinetic mixing can still be appreciable. An example is considered in 8
where a bulk B,, field mediates the interaction and leads to a wide range of values for the mix-
ing parameter depending on the relation between the B-field mass and the radius of the extra
dimension. In string theory, it might not be possible to engineer exponentially sequestered sec-

286,83,255)

tors (e.g. as in phenomenological RS setups and as such these light modes may always

be present in quantum gravity constructions.

* Large lattice index: It has been shown that the lattice WGC does not hold in full generality
but that a sublattice version holds in all known examples. If the index of the sublattice could
be made arbitrarily large then the kinetic mixing signal estimated here could be suppressed.
However, it is believed that there is a universal upper bound on the index and indeed in all

known examples, it is an O(1) number.

7.6 CONCLUSION AND OUTLOOK

String theory provides a natural framework for exploring generic expectations at low energies since it
provides us with a large number of consistent vacua. It is important to quantify these expectations
by studying Landscape constructions, however these constructions tend to be limited to highly sym-
metric scenarios and can sometimes lead to biased results. A complementary approach is to appeal to
a feature believed to hold in quantum gravity generally and directly derive estimates from it. In this
work, we performed such an estimate by considering the connection between the WGC and kinetic
mixing. Ideally, both approaches should give comparable results and we verify this by also computing

the kinetic mixing in a large number of heterotic orbifolds and Type IIB supergravity on a Calabi-Yau
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manifold.

In this work, we focused on the massless dark photon, but our results are equally applicable to
the case of massive light U(1) gauge bosons as well. We generically expect the WGC to apply to light
gauge bosons. In particular, since these bosons get masses from either Higgsing or the Stueckelberg
mechanism, there is some UV scale where they are effectively massless. Above this scale, the theory
contains a massless dark photon and the analysis we carried out holds. To connect these results to
experiment, we require knowledge of the dynamics governing the mass generation mechanism, which
are model-dependent, but calculable.

A clear future direction that would allow for further explorations of this type is to better under-
stand the distribution of massive states. On the one hand, some of these states could reside in the dark
sector of our universe. Alternatively, they could contribute threshold effects to the low energy theory
when integrated out. For instance, in the example of kinetic mixing we consider here, we saw that
there is a minimum variance to kinetic mixing as a function of the gauge coupling. It would be inter-
esting to see if this effect is verified in more rigorous constructions or seen using mass distributions
derived from string theory. Genericity studies of this type could also help in isolating a few ‘loophole’

scenarios for focused exploration if experiment happens to rule out all generic expectations.
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Appendices to Chapter 2

A1 ANGULAR MOMENTUM BAsis CONVERSIONS

The potentials we are looking at are spherically symmetric potentials. For the case of scalar and vector
interactions, the following decomposition is unnecessary, but for the potentials generated by pseu-
doscalar and axial vector interactions, we have to evaluate the matrix elements of operators such as

S1-S2and 3(S; - 7)(S2 - 7) — St - 2. These operators can change spin and orbital angular momentum
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but, due to the overall spherical symmetry, won’t change total angular momentum /? or /. So, we can
consider our states to be labeled by the eigenvalues of /7, L2, $%, and /, and look at the decomposition
of one of these states into the basis of states labelled by L2, L,, 5%, S,.

Consider a state with eigenvalues j(7 + 1) and o for /* and J, respectively. For spin-1/2 fermions the

total spin can either be o or 1, as we saw above. The state with the spin singlet configuration looks like

I]’ ’.]’ >j,m]7 s = V7 a'>l,ml ® |07 0>Jr,mJ (A.I.I)

The states with the spin triplet configurations look like

(j—o+1)(
[/ 7.] +1 1]7”7]7[j \/

(7+2

1, 1,1),,,
2(]+1 2j+3 I]+ g— >Z7ml®|’>75

)
)(
\/(/—o—+1)( +7+1l]+1mml®ll 0 (Ara)
)
1)(

)(27+3)

1, 1,-1),

+¢0+a+10+0+2

. —o+1){+o),.
1]70-7]7 1>j,mj',l,: = \/(] . )(] )b70'_1>1,m1 ® |171>:,m,

2j(7+1)
I] >l my & ’17 0>5,m; (A.1.3)
0—00+a+
\/ 2](]+1 b +1lml®|1 >5mI
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1]; 7] >] mj, s —\/(]'—i_at_.l)(i—’— J) V_ 170'_ 1>l,m1 0y ‘17 1>:,mj

2/(2/ - 1)
Q—UU+ 1
1, 1,0 )
\/(I - ‘7;]1_ 1 [] = Lo+ Dim @ (1L, 1),

A1.1 S-7OPERATOR

A useful decomposition of S - 7is given by
. 1 . .
S 7= Sysinfcos @ + S sin sin @ + S, cos & = £[S+e_‘¢ sin@+ S_e?sind] + S, cosf (A.1.5)

The action of the angular operators is given by

(€+1+m)(€+1—m) L+ m)(l —m)

(A.1.6)

; C+m+2)l+m+1 1 C—m)(l —m—1 1
(7 sin ) 176, ¢):_\/( i2411;§2€++ 3)+ )Y’gfl @ ¢)+\/( (2¢ +)§)(2€—1) )anjl 32

(A.1.7)
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l—m+2)l—m+1)

—ip . _ C+m)l+m—1)_,
?5in 6)- Y7 (8, p) = Yi1(8, 0)— | Vgl
(77 5in 9)- Y7 (6, 0) \/ aiinait3)  en (@9 \/ itnai—1 19
(A.1.8)
The action of O = 3(5'; - 7) (Sz 7)) — S, - S, on our states is
OTIja 0'7]‘7 0>j,mj,1,5 =0 (A'I'9)
o L. .
OTV? 7,7, 1>j,mj-,l,5 = 51]7 9,/ 1>j,mj,l,5 (A.I.IO)
. —G+2),. . 3WViG+1),. .
1.1, ;,, = ——= 1.1): . —_— —-1,1),,,. A1,
OTI]va'J + 1, )],mj,l,J 2(2]_|_ 1) 1]70-7] +1, >],mj,l,5 + 2(2]+ 1) 1]70-7] 3 >],mj,l,5 ( I II)
. G-, . 3ViG+1),. .
—1,1),,;,, = —= —1,1);,,. —_— 1.1):,. A1,
OTI]70-7J ’ >]7W‘]7175 2(2]+1) b70,j ’ >]7m17175+ 2(2j+1) b7a7j+ ? >]7m17175 ( I IZ)

So we see that the states with angular momentum 7 + 1 and j — 1 mix with each under the action of

the operator O7.

198



—(+2) 3Gt

l]', 0',_]. + 1, 1>]’7le:175 2(2j+1) 2(2j+1) I].) 0'7]. + 17 1>j,mj7l,5
Or =
.. 3VAGHD == Lo
[i,oj— 1, 1>j7m/,17: 2(2/40) 2(2/+1) o7 =1, 1>/'7m/vlvf

A.2 FERMION/ANTIFERMION SPIN MATRICES AND MINUS SIGNS

Following the conventions of >#7, we have the following definitions:

1 1
Jag|0) = £2a10)  Jebil10) = F 4 10)

Upper Sign & = Lower Sign

This means that for a particle, we have

Flof = +£1¢ = 497

and for an antiparticle, we have

Flof =528 = 707
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More generically, let’s identify = ¢£;. ¢ is the antisymmetric tensor and o satisfies the relation:
de = —e(d)*.

7'y = (£)13(c8) = Eleoely = £(—7)4 (A.s)

Now this is a scalar quantity so we are free to transpose it and this gives us —f%&’ » Where this 7 gets
identified with the spin matrix S. From this, we see that the minus sign naturally arises when looking

at ;ﬁ&’;; for any generic state, and not just the z eigenstates.

A.3 FEYNMAN DIAGRAMMATIC ARGUMENT FOR SOMMERFELD ENHANCEMENT

D1 {+py D3
Z* pl—p3+€€(
Do €;p2 P4

Figure A.1: The box diagram corresponds to the first diagram in the infinite set of ladder diagrams being resummed by our
procedure. Sommerfeld enhancement arises when this diagram gives a contribution that is comparable to or larger than
the tree level contribution to the scattering process.

There are a few lines of evidence supporting our claim that Sommerfeld enhancement is absent in
the pseudoscalar case. We can show this analytically by computing the box diagram in Figure 4.1. The

general amplitude for this diagram is given by

. [ di N
Mi-toop ~ £ / (2m)* [(pr + D2 = m2[(L = p2)* = (2 — m2][(pr — p3 + 1)* — m]

(A.3.1)

200



where the numerator A is

N =(ps) (D@, + 1+ m)U) ulpr) x p2) (VU = B, + )T ) o(ps) (A3.2)

The I' matrices represent the matrix structure arising from the vertices. We will focus on two cases:
the Yukawa interaction, where I is the identity matrix, and the pseudoscalar case, where I' = };

On the equations of motion, for the pseudoscalar case, the numerator simplifies to

#(p3)Lu(pr)o(p2) fv(ps)- (A.3.3)

We introduce Feynman parameters and perform the integral over the loop momentum. Since we are
interested in the nonrelativistic regime, we take the v — 0 limit of the amplitude. This allows us
to perform the integration over two of the Feynman parameters and we are left with the following
expression.

(1—w—x)

w—x)*+m3z(l —w—x))

m?(w — x)%(1 — w — x)

—|—zg4u(p3)u(pl)v(p2)v(p4)/0 dw/o_wdx167;2( X

mi(w — )2+ m(l —w—x))*

1 1—w
Ml—loop ~ = lg4u(ﬁ3)7"u”(Pl)U(P2)7’uU(P4)/o dw/() dx327r2(m§(

(A3.4)

In the nonrelativistic limit, the leading term from the y matrices comes from the y°. We also define
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&= m% / mé This allows us to combine the two terms into

Mi-toap ~ i (p3)u(p)5(p2) v (ps) /1 » /lw G —(g)z(l —w-x) - (l-w—x)?

327 ms, w—x)2+(1—w—x))?
(A3.5)
This integral can be computed analytically and we obtain the following result
1 (2 — 6¢) arctan [;] + (=2 + 6¢) arctan [1_725] +
28 /—1+ 4 V14 4 V14 4 (436
3.
V —1+ 4528+ logé — flogf)> :
A series expansion around large £yields
1(2—logé 3 /1\3/2 3+2logf 15/
= — -l < —_— - . A
(2 - ()" 2 o) e
The box diagram then gives a contribution to the matrix element scaling as
4 2
g "
—loop ~ 72— log —5-. 3.
M, loop 3272 og mé (A 3 8)

This should be compared with the tree-level amplitude, which scales as M gee ~ g2 Note that al-
though the #-channel contribution to the tree-level amplitude is momentum suppressed in the non-
relativistic limit, the s-channel contribution is not. Hence M_jo0p / Mree is on the order of a naive,
log-enhanced loop factor, and nonrelativistic effects do not enhance the cross section predicted by

perturbative QFT.
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By contrast, for the scalar case, we expect to find a Sommerfeld enhancement. The numerator
simplifies to”

N =u(p3) (] + 2my)u(p1)o(p2) ([ + 2my )v(ps). (A3.9)

Computing the integral over Feynman parameters analytically for the scalar case yields

I S (=2 4 6£ — 328) arctan {é} +
2P it i NEvTT

(A.3.10)
(2 — 65+ 328) arctan [ 1-2 } + /14 4528 — log &+ flogf)) :

NEET

For large &, this behaves like 471\/;3. This means that the Sommerfeld enhancement can be important

for low mediator masses, when

Ml*loop

7V 1-loop < @
Mtree

21:>m¢w4.
4

(A.z.11)

This is consistent with the standard claim about the regime of nonrelativistic enhancement for a
Yukawa potential (e.g.,?**).

One can understand the origin of the enhancement as follows: the numerator of the integral scales
as £ and the denominator as &, so in most of the integration region one expects a suppressed contri-

bution at large £ However, when (w — x)* ~ £~ !, the denominator takes order-one values and the

'In the vector case, a priori the I" should be Y but in the nonrelativistic limit, the dominant contribu-
tion comes from y,. Therefore, even the vector case maps back down to the scalar case and the argument goes
through in the same manner which is why we get Sommerfeld enhancement for an attractive Yukawa potential
which can be generated by scalar and vector mediators.
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integrand is of order £ This occurs only in a region of size £~ 1/2 within the overall integration region,
and accounts for an integral of size \/;r This did not occur in the pseudoscalar case, where one can
check that, precisely when the denominator becomes of order one, the numerator is suppressed as

well.

204



Appendices to Chapter 3

B.1  HiGHER DERIVATIVE TERMS AND THE POTENTIAL INVOLVING SCALARS

Scalars do not possess any intrinsic spin. As a result, the non-relativistic limit of the amplitude can

only depend on the vector ¢”. In particular, the amplitude, and hence 7(7), can be parameterized in

the following manner

o A~ ang™
V(g) = 5 = 2 7+ (B.1.1)




m is the mass of the mediator and f{4?) is a function that can be determined by the specific structure of
theinteractions in the QFT. We will show explicitly that the first few terms in this series are nonsingular
and then generalize to the case of arbitrary 7.

For concreteness, we will consider an example where f(qz) =ag + alqz + 42q4. We find that

ay — dlmz + 427}14

q2+m2

= ap+ alqz + 424/*
|4 =
4) 7+

= azqz +a; — aym® + (B.1.2)

The last term generates a Yukawa potential and the constant terms generate 8° (7). Both of these po-
tentials are nonsingular. The first term is nontrivial. It generates a term proportional to V28* (7). To
show that the first Born approximation in Equation 3.1.5 is finite, we will evaluate the integrand

e _ 107

V29(r) A = o3 (9@)#"“) = U+ YU+ 0 —1)5(r)A 2 (B.1.3)

The integral is divergent when £ + ¢' < 2, but we see that the coefficient vanishes for those choices of
fand ¢'. We can generalize these results to higher order qz terms. The expression in Equation B.1.1

can be rewritten as follows

o

() = L + iZz 2 (B.1.4)
! n=0 qz + m2 qz + mz n=0 " o

The g% terms generate terms in the potential proportional to V2#8% (7). Evaluating the integrand, we
find

V(R AT = (U + YU+ 0 —1) - (U + 0 +1—22)3(r) A2 (B.1.5)
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This integral is divergent for £ 4+ ¢/ < 2z, which happens to be where the coefficient vanishes. There-
fore, all the higher derivative terms are well-behaved and produce finite nonsingular first Born approx-
imations.

We can construct a similar argument for the scalar-fermion case as well. Due to the fermion’s spin,
q - S exists as an additional independent operator. Therefore, the general amplitude can be parameter-

ized as follows

B 2)(1 . o n2n ann.
g =SS ot b S
qg-+m o9 tm q-+m

(B.1.6)

The second set of terms in this sum generate terms proportional to S - 70,V28° (7). Evaluating the

integrand, and using the results of Equation B.1.5, we find

S NN =S U+ YL+ = 1) (040 +1—20)0,0() AT
=S HUALY AL =) (L0 +1=20) (L + 0 — 20— 1)3(r) A2

(B.1.7)

This integral is divergent for £ + ¢ < 2 + 1. The coefficient vanishes for £ + ¢’ < 2z as before.
(40" = 27 seems problematic, but here we note that an additional operator exists for this potential. In
particular, S-7links states with angular momenta that differ by one unit. Therefore, ¢ 40 must be odd,
but 27 is manifestly even, and the operator prevents the singularity from arising for this combination

of states.
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B.2 EVALUATING THE DERIVATIVES ON & (7)

As an example, we explicitly evaluate the derivatives on the following position space potential:

(8- V)(S2- V)P (B.2.1)

mymy A\

We make use of the following relations

B (7) = jf;)z L) = 80), A0 = 230) (B.2.2)

In particular, we want to show that the first Born approximation in Equation 3.1.5 is finite. For clarity

of notation, we will omit overall factors.

/O s (651 - )G - )P Pselhr) S35, / ", D ) ) (Ba)

Now we isolate and evaluate the integrand.

V() = 6005 + 05 0) + 9" 0:3(r) + 1 0:0()
(B.2.4)
= (A2 (0 = D)3y + B+ (C+ )+ € — 4))7y
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We see that the integral is divergent when ¢ + ¢/ < 2. If £ = ¢/ = 0, the operator simplifies to Or
which vanishes when sandwiched between states of ¢ = ¢/ = 0. If ¢ = 1 or ¢/ = 1, then the integrand
also vanishes. The cancellation is nontrivial in both cases and the operator structure conspires to
produce a nonsingular first Born approximation. We have checked explicitly that the other potentials

in Section 3.2.2 also produce nonsingular first Born approximations.
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Appendices to Chapter 4

C.1  NEXT-ORDER VELOCITY EXPANSION OF THE ANNIHILATION CROSS SECTION

As established, to leading order in dark matter velocity, the annihilation signal is set by the pseu-
doscalar coupling Im([yy,] (and subdominantly by gz,), while spin-independent scattering is set by
the scalar coupling Relyy,]. However, we would also like to understand whether we can generate the

annihilation signal atall in the limit that yj, is real. In this limit, the leading velocity independent term
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vanishes, and we need to consider terms of higher order in the halo velocity v.

For this argument we will neglect the contribution of the Z portal; a gz, consistent with spin-
dependent constraints cannot generate a thermal relic annihilation cross section, as it does not have
a mass resonance.” Thus, for hypothetically viable parameter space it is safe to assume that the Z-
mediated annihilation is subdominant.

When iy has vanishing imaginary part, the leading contribution to the spin averaged annihilation

amplitude squared is

49397, my my — m2)o?
2 IR TS 4
|M|}0t—>ﬁ’_ (mi_4m§)2+mﬁfi + O("). (C.r.x)

This term is suppressed by the non-relativistic speeds of dark matter, for typical values »* ~ 107¢,
and the magnitude of the purely real coupling is stringently constrained by direct detection. Thus,
any allowed parameter space would require precise fine-tuning of the dark matter mass. However,
the enhancement obtained from the 7, — /2 resonance is limited by the finite width of the
Higgs, which is ~ 4 MeV in the SM*7". Since the branching ratio of » — yy near the resonance is
vanishingly small due to phase space suppression, we may take 4 MeV as a conservative bound for the
Higgs width. Thus, the comparative ratio between annihilation and scattering cross sections, given in

Equations 4.2.4 and 4.2.13, can be bounded by

'In fact, the O(v*) Z-coupling term does have a mediator resonance, but enhancement is limited by the
significantly larger width of the Z boson.
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As the current direct detection limits bound the spin-independent scattering rate at < 10719 pb,
a model without CP-violation may exhibit an annihilation cross section of at most O(0.1) pb. We
emphasize here that these statements are specifically valid for Majorana fermion dark matter, and dark
matter models with a different CP-structure could certainly achieve the required hierarchy between

annihilation and scattering with sufficient tuning on this resonance.
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Appendices to Chapter

D.1  CrassiFicaTION OF QULE BOX DIAGRAMS

This appendix lists all possible quantum numbers of the new vectorlike fermions and complex scalars
we introduced to generate (g - £)(#e) or (ge) - (¢u) operators through a box diagram. We will make
the simplifying assumption that the particles are either (anti-)fundamental or singlet under SU(3)

and SU(2). Even with this assumption, there are infinitely many possibilities as a function of a free

213



parameter Y, the hypercharge of one of the particles. Two different criteria are then used to constrain
the value of Y. The first is to make at least one of the particles an electrically-neutral color singlet, such
that all particles can decay to Standard Model particles and the neutral particle. The second is to make
at least one of particles couple to a pair of Standard Model particles, such that all particles can decay
back to the Standard Model.

For every set of quantum numbers, we also check for three potentially problematic behaviors. The
firstis whether the particles also generate (¢-£) (#e) or (ge)- () operators at tree-level, thus an electron
EDM at 1-loop. The second is whether the particles generate Cs operator at tree-level, which can be
more dominant than the two-loop electron EDM even after applying the suppression factorsin (5.6.4).
The third is whether the particles cause proton decay. Tree-level proton decay can be caused by scalar
particles alone, while loop-level proton decay can happen when the fermions and scalars also generate,
through a box diagram, the 4-fermion operators that lead to proton decay. However, no case in this
appendix has been found where the particles cause loop-level proton decay without causing tree-level
proton decay. Therefore, from this point on, “proton decay” will always refer to a tree-level process.

Finally, we note that, as discussed around Fig. 5.9, in some models a coupling of #; ¢, to the Higgs
boson is allowed, which can generate a 1-loop EDM. This is always true for the models in §D.1.2 and
§D.1.4 below. On the other hand, the models in §D.1.1 and §D.1.3 have an intermediate state ¥, ¢,
with the quantum numbers of lu or g, and as such do not generate 1-loop contributions to the EDM
in the same way. Furthermore, because there is no possibility for Higgs couplings for either the two-
fermion or two-scalar intermediate states obtained by cutting these diagrams, these models do not

lead to Barr-Zee contributions. Hence, these are the models in which (unless otherwise flagged in the
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tables below) we expect the 2-loop EDM generated from the QULE operator to dominate.

For clarity, we list below the quantum numbers of the scalar particle that can cause one or more
of the problematic behaviors. The quantum number of scalar mediators for tree-level (g - ¢)(#e) or
(ge) - (fn) were discussed in §5.6 and for proton decay were discussed in’?. For tree-level Cg, it is

equivalent to finding scalar mediators that generate (dg) - (¢e), (g - £)(ue), (ge) - (¢n), or (gu) - (Ce),

as discussed in §5.6.1 and at the beginning of §5.6.

Quantum number of scalar | EDM at 1-loop? | Tree-level Cs? | Proton decay?
(3,3,-1/3) No No Yes
(3,2,7/6) Yes Yes No
(3,2,1/6) No No Yes
(3,2,-5/6) No No Yes
(3,1,—1/3) Yes Yes Yes
(3,1,—4/3) No No Yes
(1,2,1/2) No Yes No
(1,2,-1/2) No Yes No

We also list here all possible renormalizable couplings to Standard Model particles for each quantum
number pattern that appears in the box diagram. Couplings which only differ by exchanging ¢(y)

and () are considered distinct, because in the box diagram, the hypercharge of ¢(y) is in general a
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linear equation in the hypercharge of other particles, and choosing ¢(¢) or gDT(;}) couplings will give

different hypercharge value.

@ charge coupling and Y value coupling and Y value
3,2)y Au, o ge Y=7/6 - d Y=1/6
P ¢q P
(3,1)y piie, plq - £ Y=-1/3 ode Y=—4/3
(1,2)y 0 - gi, plqd, p'le Y=1/2 0 qgdyp-le,plgun | Y=—1/2
pl- L Y=1 o Y=-2
<1a I)Y
oll- ¢ Y=-1 olee Y=2
¥ charge coupling and Y value coupling and Y value
b -y, biyd Y=1/6 hlya Y=7/6
(37 Z)Y
b yd Y=-5/6 N/A N/A
(3,1)y q-hy Y=2/3 hay Y=-1/3
h-ye Y=-3/2 hiye Y=-1/2
(17 Z)Y
h-ye Y=3/2 hiye Y=1/2
(1,1)y bty Y=1 hiey Y=-1
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Appendices to Chapter 7

E.1 ANaALYTIC ESTIMATE OF MIXING

The calculation of (y*) can be broken into a few steps. In order to compare with the string construc-
tions, we chose a particle spectrum that included states with charges (Q,, |Q|). This led to the
contribution we see in Equation 7.3.4. The first step then is to find the distribution of » = ¢ /¢c_. In

statistics, this is known as the ratio distribution. For two random variables X and Y, the distribution
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of R = X/Yis given by

P®) = [ ORI (E11)

where we have made use of the fact that ¢, and c_ are independent variables so their joint PDF is just
the product of their individual PDFs. To compute this ratio distribution, we have to consider the
cases » > 1and » < 1 separately. For » < 1, we integrate over a triangle in the ¢y — ¢_ plane defined
by ¢ € [0,7c_] and c_ € [0, 1]. Computing the integral in Equation E.1.1, we find

L1 (14 B+ B)
P = ey

r<1 (E.1.2)

The » > 1 case is slightly more involved. The region we integrate over is a trapezoid. We can break
this into two regions. The first is defined by ¢ € [0,7c_] and c_ € [0,7']. The second is defined
bycy € [0,1]andc_ € [+, 1]. Finding the CDF and differentiating with respect to 7, we find

r+ eﬂ(l'”_l)(r(ﬂ —1)+4)

P = e 1

r>1 (E.1.3)

Given the probability distribution of 7, we can find the probability distribution of y which is a func-

tion of 7. Suppose we take

1 4877

xr=-3 log(r) — r=-exp(—ky) k= 2000, (E.1.4)
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If we take y = g(7), then we have

Py =P (g () ’2{g1@)' = |k] exp (—ky) P, (exp (—ky)) (E.15)

Symmetrizing with respect to 7and 71, we find the results in Equation 7.3.5. With 2, (y) in hand, we

can compute ()(2} by evaluating

] 0 o0
)= | _grepin= | apepit [ Al E10

Py (y) is piecewise defined, so we split our integral into two at y = 0, which corresponds to » = 1.
Since Py(y) = Py,(—y) and the integrand is even, we can consider just one of these regions, which
provides us the computational benefit of having to only consider » > 107 » < 1. Computing this
integral gives us the results in Equation 7.3.6. Finally, to compute (3*), we have to integrate ()(2) over
the 8 < 1ellipse. Since we have already taken into account states with charges £|Q;|, we focus on the

half-ellipse where Q; > 0. Integrating over this region, we arrive at the results in Equation 7.3.7.

E.2 CY 3-FORM BASES AND SIEGEL’S FUNDAMENTAL DoMAIN

We begin by recalling the symplectic basis transformations that act on the real 3-form basis of a CY

manifold. For a CY manifold with Hodge number />, there are 2(h*! + 1) 3-forms in real cohomol-

243



ogy that we label (2;, #) with 7,7 = 0, ..., h*1. These have the following pairing relations:

/ al-/\ﬂ/zé’;; / a; Ny = 0; BN =0 (E.2.1)
cY cY

which are preserved by transformations under the symplectic group Sp(2h*! + 2; Z). For a matrix in

Sp(2h*! + 2;Z), the action on the («;, ﬂ/ ) and the complex matrix M defined in 7.4.15 is given by:
i M= (AM+B)(CM + D)™ (E.2.2)

As briefly mentioned previously, we work with the matrix M* which has the same transformation as
above with the replacement M — M*. The matrix M* takes values in Siegel’s upper half space of
genus (or degree) »*! + 1 defined to be the subset of (b*! +1) x (b*! + 1) complex matrices that are
symmetric with a positive definite imaginary part. The latter condition ensures that ImM is negative
definite which is required for the gauge kinetic terms to have the correct sign. The symplectic action
preserves these conditions. As a familiar example, one can consider the genus 1 case of Siegel’s upper
half space which is the well-known Teichmiiller space describing the complex structure of the torus
with the usual PSL(2,7Z) action.

Asin the case of the upper half plane, a natural question to ask is: what is the fundamental domain
of Siegel’s half space under the symplectic action? It turns out that the conditions defining one such

fundamental domain provide a choice of electric-magnetic duality frame that matches our needs. This
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also resolves the issue related to basis-dependence. We now specialize to the case of interest, i.e. genus
2, and summarize these conditions (see for example 37375 for a more detailed account) and their

physical meaning.

Definition (Siegel’s fundamental domain for genus 2): Let M;; = X; + 7/Y;;bea2 X 2 complex
matrix that is symmetric, with Y positive definite. Then M is said to be in the fundamental domain
if:

LX< 3
2. The matrix Yhas elements that satisfy Y3; > Yoo > 2130 > 0

3. |det(CQ+ D)|> 1for matrices Cand D that are submatrices of a symplectic matrix, as shown

above.

Given that the real part of M is the coefficient of the topological terms in the 4D action, the first
condition amounts to using the periodicity of the #angles so that they are not arbitrarily large. The sec-
ond condition guarantees that the first U(1) has a smaller gauge coupling than the second and that the
mixing is small compared to the gauge couplings. Finally, the third condition ensures that the matrix
M gives the most weakly coupled theory, although this is harder to demonstrate without considering
the details of the algorithm provided in "*?.

The algorithm to reduce a matrix to Siegel’s fundamental domain proceeds by repeatedly carrying
outafew simple operations. The first operation is Minkowski reduction which is simply a basis change
not related to electric-magnetic duality. Using integer coefhicients, the fields are redefined to ensure

that the two U(1)’s are as orthogonal as possible with gauge couplings and kinetic mixing satisfying the
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second condition in the definition above. This is followed by shifting the theta angles to ensure that

the real part of the matrix lies in the range [—2, 1]. These latter transformations are the analogue of

202
T transformations for the genus 1 case. Finally, one has to ensure that the third condition is satisfied.
Naively, this seems to require checking an infinite number of inequalities, however Gottschling*+*
showed that one only needs to verify this for a finite set of 19 matrices. Correspondingly, there is
a series of 19 transformations (analogous to the S transformations of genus 1) that are carried out

whenever one of Gottschling’s conditions is not satisfied. This algorithm is iterated until all three

conditions are simultaneously satisfied.
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