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Abstract

The photoproduction of η mesons is a powerful source of information about the excitation spec-
trum of protons and neutrons. There are several methods to extract partial wave or multipole
amplitudes from experimentally measured polarized and unpolarized di�erential cross sections.
In so called isobar models the scattering amplitude is parameterized with two parts: resonances
and non-resonant background. Such a model, EtaMAID, has been developed in Mainz 15 years
ago when �rst precision data for unpolarized cross sections and beam asymmetries were mea-
sured. In the meantime, a signi�cant amount of new data, in particular with polarized beams
and targets, are available. Within this thesis, the EtaMaid model was updated and used to �t
all available new data.
However, a drawback of all isobar models is the fact that they violate analyticity and crossing

symmetry which are important properties of scattering amplitudes. Therefore, in this thesis
�xed-t dispersion relations were applied as a constraint to the EtaMAID model in order to
obtain solutions which do ful�l analyticity and crossing symmetry. By �tting all modern
experimental data resonance parameters are obtained in an improved and less model dependent
way. Parameters like masses, widths, branching rations, and photocouplings for 14 nucleon
resonances were determined and are compared to results of the pure isobar model and to
existing averages from the PDG.
The thesis is organized as following: After a short introduction, baryon spectroscopy is dis-

cussed in Chapter 2 with special focus to quark models and lattice QCD. In Chapter 3 the
general formalism of η photoproduction on protons is introduced. In particular, the relations
between observables, invariant amplitudes, CGLN amplitudes and multipoles is described. Fi-
nally, the connection to the contributing resonances is provided. In Chapter 4 the partial wave
content of recently measured polarization observables is studied in terms of a Legendre poly-
nomial expansion. In Chapter 5 di�erent models, in particular the EtaMAID isobar model,
are discussed. Fixed-t dispersion relations and their application in η photoproduction are ex-
plained in Chapter 6. The results of various �ts with di�erent background models are discussed
in Chapter 7. The thesis ends with a summary and conclusions.
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Zusammenfassung

Die Photoproduktion von η Mesonen ist eine wichtige Informationsquelle über das Anre-
gungsspektrum von Protonen und Neutronen. Verschiedene Methoden wurden entwickelt, um
Partialwellen oder Multipolamplituden aus gemessenen polarisierten und unpolarisierten di�er-
entiellen Wirkungsquerschnitten zu bestimmen. In sog. Isobaren-Modellen wird die Streuam-
plitude aufgebaut aus der Summe von Resonanzen und nicht-resonantem Untergrund. Ein
solches Modell, EtaMAID, wurde vor etwa 15 Jahren in Mainz entwickelt, als erste präzise
Daten für Wirkungsquerschnitte und Strahlasymmetrien gemessen wurden. Inzwischen gibt es
eine groÿe Menge an neuen Daten, die mit polarisierten Strahlen und Targets gemessen wur-
den. In dieser Arbeit wurde das EtaMAID Modell aktuallisiert und verwendet, um alle neuen
Daten zu beschreiben.
Alle Isobaren Modelle haben jedoch das Problem, dass sie mit Analytizität und Crossing-

Symmetrie wichtige Eigenschaften von Streuamplituden verletzen. Daher wurden im Rahmen
dieser Arbeit �xed-t Dispersionsrelationen als Randbedingung für das EtaMAID Modell ver-
wendet, um Lösungen zu erhalten, die analytisch sind und die Crossing-Symmetrie erfüllen.
Durch die Anpassung des Modells an alle moderen Daten wurden Resonanzparameter auf
bessere und modelunabhängigere Weise bestimmt. Paramter wie, Massen, Breiten, Verzwei-
gungsverhältnisse und Photo-Kopplungen für 14 Resonanzen wurden bestimmt und mit Ergeb-
nissen des reinen Isobaren Modells sowie mit Mittelwerten der PDG verglichen.
Die Arbeit ist folgendermaÿen gegliedert: Nach einer kurzen Einführung wird die Baryon-

spektroskopie in Kapitel 2 diskutiert. Ein spezieller Fokus liegt dabei auf Quarkmodellen
und Gitter-QCD. In Kapitel 3 wird der allgemeine Formalismus der η Photoproduktion er-
läutert. Insbesondere werden die Zusammenhänge zwischen Observablen, invarianten Amplitu-
den, CGLN Amplituden und Multipolen hergestellt. Abschlieÿend wird die Verbindung zu den
Resonanzbeiträgen erläutert. In Kapitel 4 werden kürzlich gemessene Polarisationsobservable
hinsichtlich den beitragenden Partialwellen in einer Entwicklung nach Legendre-Polynomen un-
tersucht. In Kapitel 5 werden dann verschiedene Modelle, insbesondere EtaMAID, vorgestellt.
Fixed-t Dispersionsanalysen und deren Anwendung in der η Photoproduktion werden in Kapi-
tel 6 erläutert. Die Ergebnisse verschiedener Anpassungen mit unterschiedlichen Ansätzen für
den nicht-resonanten Untergrund werden in Kapitel 7 vorgestellt und diskutiert. Die Arbeit
endet mit Schlussfolgerungen und einer Zusammenfassung.
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Chapter 1

Introduction

At the present time Quantum Chromodynamics (QCD) is the universally recognized theory of
strong interactions. According to QCD particles consist of gluons and quarks. Gluons transfer
interaction between quarks and quarks carrying non-integer electric charge and do not exists in
a free state, this phenomenon called con�nement. According to QCD mesons consist of quark-
anitquark pairs, baryons consist of three quarks. However some models suppose existence of
so-called exotic particles, which consist of other numbers of quarks (4,5,6) [1�3] and also gluons
and its mix: hybrids [4] and glueballs ( [5] and references therein).

Although the lagrangian of the strong interactions (QCD) is well-known [6,7], our knowledge
about interaction of particles at low and intermediate energies is very limited. This knowledge
is crucial because, for example, baryons form most of the known matter and understanding of
their structure is a very important task. Due to this problem a number of models were created
which explained properties of the ground states and predicted the spectrum of excited baryons.
The classical quark model which considered the baryons as bound states of three constituent
quarks explained very successfully the spectrum of baryon resonances below 1.7 GeV. However
with obtaining of the new data on di�erent reactions it becomes obvious, that such quark model
is a too simpli�ed approach for the description of strong interacting particles. For baryons,
this model predicts a large number of excited states with masses above 1.7 GeV, but it is not
supported by the experimental data. This is the problem of so called missing states: number
of particles predicted by di�erent models exceeds the number of experimentally found states.
The possibly explanation can be that we just did not �nd new states in the experiment or just
do not see them in the data.

However even in the energy region below 1.7 GeV where the number of states is well known
the picture is not so clear. For example in case of γp→ ηp the intermediate states (resonances)
have sometimes large widths therefore they overlap and it is rather hard to determine their
parameters. The procedure of the the analysis of the scattering amplitude is called partial
wave analysis (PWA) and can be done in di�erent approaches. There are di�erent groups that
are working in this area and using di�erent models. The well known groups are: MAID [8, 9],
Bonn-Gathcina (BnGa) [10,11], Jülich-Bonn (JüBo) [12,13], SAID [14]. All these groups have
their own web-pages [15�18].

The �rst direct source of information about baryon resonances was pion-nucleon scattering
reactions. The corresponding data were collected in a set of laboratories over the world, see
SAID web page [18], and a number of new states had been discovered. However a lot of modern
data come from di�erent photoproduction reactions, see BnGa web page [16]. This gives us an
opportunity to analyze these data in order to determine the parameters of poorly known states
or to make the parameters of well known states more accurate.

An approach that is used in Mainz for a data analysis is called isobar model approach.
It has been developed more than 15 years ago [8] when �rst precision data for unpolarized
cross sections and beam asymmetries were measured. In so called isobar models the scattering
amplitude is parameterized with two parts: resonances and non-resonant background.

However with this procedure we do not take into account very important properties of the
scattering amplitude: analyticity and crossing symmetry. In order to ful�ll them we introduce

5



Chapter 1 Introduction

a procedure of �xed-t dispersion relations for invariant amplitudes [19�29]. This procedure
allows us to analyze the existing data on η photoproduction with additional constraints and
less model dependence. In our analysis we work in the energy region W ≤ 1863 MeV, however
we are also able to describe the high energy data at small t values.
The thesis is organized as following: After a short introduction, baryon spectroscopy is dis-

cussed in Chapter 2 with special focus to quark models and lattice QCD. In Chapter 3 the
general formalism of η photoproduction on protons is introduced. In particular, the relations
between observables, invariant amplitudes, CGLN amplitudes and multipoles is described. Fi-
nally, the connection to the contributing resonances is provided. In Chapter 4 the partial wave
content of recently measured polarization observables is studied in terms of a Legendre poly-
nomial expansion. In Chapter 5 di�erent models, in particular the EtaMAID isobar model,
are discussed. Fixed-t dispersion relations and their application in η photoproduction are ex-
plained in Chapter 6. The results of various �ts with di�erent background models are discussed
in Chapter 7. The thesis ends with a summary and conclusions.
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Chapter 2

Baryon spectroscopy

It is good to start this chapter with a very interesting question from Nathan Isgur which he
asked on N ∗ 2000 workshop [30] "Why N∗'s?" He gave three answers:

� The �rst is that nucleons are the stu� of which our world is made. As such they must be
at the center of any discussion of why the world we actually experience has the character
it does. I am convinced that completing this chapter in the history of science will be one
of the most interesting and fruitful areas of physics for at least the next thirty years.

� My second reason is that they are the simplest system in which the quintessentially
nonabelian character of QCD is manifest. There are, after all, Nc quarks in a proton
because there are Nc colors.

� The third reason is that history has taught us that, while relatively simple, baryons
are su�ciently complex to reveal physics hidden from us in the mesons. There are many
examples of this, but one famous example should su�ce: GellMann [6] and Zweig [7] were
forced to the quarks by 3⊗ 3⊗ 3 giving the octet and decuplet, while mesons admitted
of many possible solutions.

Thus he predicted that baryon spectroscopy will be one of the most interesting areas for many
years.
This chapter is devoted to di�erent approaches which give information about the baryon

spectrum. As an example the quark model and the lattice calculations are shown. This short
review is mainly based on PDG review [31] and book on mesons and baryons [32].

2.1 Quark model

In early sixties with the growth of the experimentally observed particles a question of system-
atization of them rased up. As a tool for systematization the quark model was developed. It
was done in the papers of Gell-Mann [6] and Zweig [7] where it was �rst shown that known at
that time hadrons could be built up of three quarks (u, d, s) carrying the non integer charge
and obeying the rules of SU(3) symmetry. Later it became clear that hadrons have to be con-
sidered as bound states of quarks (objects which we call now "constituent quarks"). In this
picture hadrons consist of quark-anitquark M = q̄q pairs (mesons), and three quarks B = qqq
(baryons).
In further development of the quark model one was realized that new quantum numbers

turned out to be necessary. Thus the picture of colored quarks was formulated by Gell-Mann.
In this picture quark possesses a quantum number color, which has three values: red, green
and blue. For the two-quark mesons and the three-quark baryons quark wave functions are

M =
1√
3

∑
qiq̄i , B =

1√
6

∑
i,k,ℓ

εikℓqiqkqℓ . (2.1)

The sum is over the quark colours i, k, ℓ and εikℓ is the fully antisymmetric unit tensor.

7



Chapter 2 Baryon spectroscopy

It is known that quarks are strongly interacting fermions with spin 1/2 and, by convention,
have positive parity. Antiquarks have therefore negative parity. Quarks have the additive
baryon number 1/3, antiquarks −1/3. Table 2.1 and gives the other additive quantum numbers
(�avors) for the three generations of quarks.

Table 2.1: Quarks

d u s c b t

Q - electric charge −1
3 +2

3 −1
3 +2

3 −1
3 +2

3

I - isospin 1
2

1
2 0 0 0 0

Iz - isospin z-component −1
2 +1

2 0 0 0 0

S - strangeness 0 0 -1 0 0 0

C - charm 0 0 0 +1 0 0

B - bottomness 0 0 0 0 -1 0

T - topness 0 0 0 0 0 +1

The quantum numbers are related to the charge Q (in units of the elementary charge e
through the generalized Gell-Mann-Nishijima formula:

Q = Iz +
B + S + C + B + T

2
(2.2)

where B is the baryon number. The convention is that the �avor of a quark (Iz, S, C, B, or T)
has the same sign as its charge Q. With this convention, any �avor carried by a charged meson
has the same sign as its charge. Antiquarks have the opposite �avor signs. The hypercharge is
de�ned as

Y = B + S− C-B+T

3
(2.3)

If we consider the baryon spectrum we can see that three quarks u, d, s form multiplets: the
octet with JP = 1/2+:

isospin strangeness particles

1/2 0 p, n
0 −1 Λ
1 −1 Σ+,Σ0,Σ−

1/2 −2 Ξ0,Ξ− ;

(2.4)

and the decuplet with JP = 3/2+:

isospin strangeness particles

3/2 0 ∆++,∆+,∆0,∆−

1 −1 Σ∗+,Σ∗0,Σ∗−

1/2 −2 Ξ∗0,Ξ∗−

0 −3 Ω .

(2.5)

With this example we obtain the so called low lying baryons which are well known. Many of
their properties, in particular their masses, are in good agreement even with the most basic
versions of the quark model.
Low-lying baryons, octets and decuplets may also be described qualitatively in the framework

of SU(6) symmetry.

6⊗ 6⊗ 6 = 56S ⊕ 70M ⊕ 70M ⊕ 20A (2.6)

8



2.2 Lattice QCD calculations

Here the subscripts indicate symmetric, mixed-symmetry, or antisymmetric states under in-
terchange of any two quarks. The described above octet and decuplet together form 56-plet
in which the angular momenta between the quark pairs are zero. For 70 and 20 we require
additional spatial excitation and as a result we get states with non zero orbital angular mo-
menta. As it was said before the spectra of low lying baryons are well known however in case
of excitation spectra the situation is di�erent. Quark model predict more states that are really
observed. This is so-called missing states problem, which appears, for example, also on the
lattice QCD calculations which will be described in the next section.
Di�erent models were developed to decrease the number of predicted states. For example,

quark-diquark model where two quarks are clastering into a diquark allows to decrease the
number of degrees of freedom and therefore number of predicted states. But this number of
states is still more than experimentally observed ones.
Most of the information about exited baryons came from πN scattering. But some exited

states can be weekly coupled to πN channel. However a lot of new experiments on meson
photoproduction was made by many experimental groups over the world. This gives us an
opportunity to get information about excited baryons coupled to many di�erent two- and
three-body �nal states. To extract this information is a very important task of partial wave
analysis.

2.2 Lattice QCD calculations

Theoretical calculations of hadron properties based on QCD principles is a di�cult task which
includes nonperturbative approaches. Such a method is lattice QCD [33] which needs a big
computational power and e�ective calculation methods.
An example of lattice results is shown on Fig. 2.1 where the resonance spectrum of nucleons

and Deltas is presented. with mπ = 396 MeV.

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

Figure 2.1: The nucleon excitation spectrum from lattice gauge calculations [34]. JP notation
is used for identifying excitation states.

One can see how good ∆(1232) 3/2+ is reproduced. However not all states presented here
were found in PWA. This is the already introduced problem of missing states. Which can
be solved by analyzing the photoproduction spectrum. One can then decide whether the
resonances couple weakly to πN or if the lattice calculations, when using large masses, do not
pick up the correct degrees of freedom adapted to baryon resonances.
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Chapter 3

General formalism of η meson photoproduction on

proton

In this chapter the formalism of η meson photoproduction is presented. The following quantities
are introduced: Mandelstam variables, invariant amplitudes, CGLN amplitudes and multipoles.
The notation for resonances and their relation with multipoles will be explained. Di�erential
cross section and polarization observables are discussed. The part on the observables is based
on the common work of our group and colleagues from Tuzla nd Zagreb, see [35].
The notations for the variables introduced here will be kept and used in further chapters.

3.1 Kinematics

Let us �rst de�ne the kinematics of a process, consider the reaction:

γ(kµ) + p(pµi ) → η(qµ) + p(pµf ), (3.1)

variables in brackets denote the 4-momenta of the participating particles. The 4-momentum
of the photon is denoted as pµγ = kµ = (Eγ ,k). The 4-momenta of target and recoil protons
are denoted as pµi = (Ei,pi) and p

µ
f = (Ef ,pf ) respectively. The subscripts i and f stays for

initial and �nal states. The 4-momentum of the η meson is denoted as pµη = qµ = (ω,q). The
4-momentum conservation holds for the reaction

kµ + pµi = qµ + pµf . (3.2)

The reaction can be described by the three Mandelstam variables [36] s, t and u. They are:

s = (pµi + k
µ)2 = (qµ+ pµf )

2, t = (qµ− kµ)2 = (pµf − p
µ
i )

2, u = (pµi − q
µ)2 = (pµi − q

µ)2, (3.3)

the sum of them is equal to the sum of squares of the external masses

s+ t+ u = 2m2
p +m2

η. (3.4)

Up to now the described physical quantities are independent from the reference frame. In
order to describe the scattering process explicitly two reference frames are used. The labora-
tory (lab) frame, where the target nucleon is initially at rest, and the center of mass frame
(c.m.). Both lab and c.m. coordinates can be transformed in each other by use of Lorenz
transformations.

11



Chapter 3 General formalism of η meson photoproduction on proton

Below the graphical representation of these two frames is shown:

plabγ = (E lab
γ ,pγ

lab)

plabi = (mp, 0)

plabη = (E lab
η ,pη

lab)

θlabη

plabf = (E lab
f ,pf

lab)

pc.m.
γ = (k,k)

pc.m.
η = (Ec.m.

η ,q)

θc.m.
η

pc.m.
f = (Ec.m.

f ,−q)

pc.m.
i = (Ec.m.

i ,−k)

Figure 3.1: Kinematics of η photoproduction in both laboratory and center of mass frames.

Kinematical quantities can be written in both frames, for example the total energy written
in terms photon lab energy looks like

W =
√
s =

√
mp(mp + 2Elab

γ ). (3.5)

The photon laboratory energy therefore

Elab
γ =

W 2 −m2
p

2mp
. (3.6)

Now, let us go into the c.m. frame. Thus one gets the following quantities for the 4-momenta
of participating particles

pµi = (Ei,−k), pµf = (Ef ,−q),

kµ = (k,k), qµ = (ω,q),
(3.7)

note that the subscript c.m. is now dropped.

k = |k| =
W 2 −m2

p

2W
, ω =

W 2 +m2
η −m2

p

2W
,

q = |q| =

(W 2 +m2
η −m2

p

2W

)2

−m2
η

1/2

Ei = W − k =
W 2 +m2

p

2W

Ef = W − ω =
W 2 +m2

p −m2
η

2W
, (3.8)

The formula below gives the relation for the cosine of the scattering angle in c.m. frame

cos θ =
t−m2

η + 2kω

2kq
. (3.9)
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3.1 Kinematics

The face-space-factor is given by

ρ =
q

k
. (3.10)

In order to determine the kinematical limits of our reaction the Mandelstam plane [37] as
a function of 2 variables ν, and t can be drawn. Where ν is so-called crossing symmetrical
variable ν which is expressed by

ν =
s− u

4mp
, (3.11)

ν = Elab
γ +

t−mη

4mp
. (3.12)

Now using t and ν we draw the Mandelstam plane [37] that shows the physical region for
our reaction and three production thresholds:

0.0 0.5 1.0 1.5

-1.5

-1.0

-0.5

0.0

Ν @GeVD

t
@G

e
V
2
D

ΠN ΗN Η'N

Figure 3.2: The Mandelstam plane for γp → ηp. The red solid curves are the boundaries of
the physical region from θ = 0 to θ = 1800. The red dashed line shows θ = 900.
The inclined vertical lines from left to right denote the thresholds for πN, ηN, η′N
production respectively.
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Chapter 3 General formalism of η meson photoproduction on proton

3.2 Cross section and polarization observables

Experiments with three types of polarization can be performed in η photoproduction: photon
beam polarization, polarization of the target nucleon and polarization of the recoil nucleon.
Target polarization will be described in the frame {x, y, z} in Fig. 3.3, with the z-axis pointing
into the direction of the photon momentum k̂, the y-axis perpendicular to the reaction plane,
ŷ = k̂× q̂/ sin θ, and the x-axis given by x̂ = ŷ× ẑ. For recoil polarization the frame {x′, y′, z′}
is used, with the z′-axis de�ned by the momentum vector of the outgoing meson q̂, the y′-axis
as for target polarization and the x′-axis given by x̂′ = ŷ′ × ẑ′.
The photon polarization can be linear or circular. For a linear photon polarization (PT = 1)

in the reaction plane x̂ we get φ = 0 and perpendicular, in direction ŷ, the polarization angle
is φ = π/2. For right-handed circular polarization P⊙ = +1.
Here the hat notation is used to de�ne the unit vector.

γ(k) p(−k)

η(q)

p(−q)

P⊙

PT (ϕ = 0)

⊙

x′ z′

y′

⊙ z

x

y
θ

Figure 3.3: Kinematics of photoproduction and frames for polarization. The frame {x, y, z}
is used for target polarization {Px, Py, Pz}, whereas the recoil polarization
{Px′ , Py′ , Pz′} is de�ned in the frame {x′, y′, z′}, which is rotated around y′ = y
by the polar angle θ. φ is the azimuthal angle of the photon polarization vector
in respect to the reaction plane {x, y} and is zero in the projection shown in the
�gure.

One can classify the di�erential cross sections by the three classes of double polarization
experiments and one class of triple polarization experiments:

� polarized photons (linearly or circularly) and polarized target (transverse or longitudi-
nally)

dσ

dΩ
(Eγ , θ) = σ0 {1− PTΣ(Eγ , θ) cos 2φ

+Px (−PTH(Eγ , θ) sin 2φ+ P⊙F (Eγ , θ))

+Py (T (Eγ , θ)− PTP (Eγ , θ) cos 2φ)

+Pz (PTG(Eγ , θ) sin 2φ− P⊙E(Eγ , θ))} , (3.13)
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3.3 Invariant and CGLN amplitudes

� polarized photons (linearly or circularly) and recoil polarization

dσ

dΩ
(Eγ , θ) = σ0 {1− PTΣ(Eγ , θ) cos 2φ

+Px′ (−PTOx′(Eγ , θ) sin 2φ− P⊙Cx′(Eγ , θ))

+Py′ (P (Eγ , θ)− PTT (Eγ , θ) cos 2φ)

+Pz′ (−PTOz′(Eγ , θ) sin 2φ− P⊙Cz′(Eγ , θ))} , (3.14)

� polarized target (transverse or longitudinally) and recoil polarization

dσ

dΩ
(Eγ , θ) = σ0

{
1 + PyT (Eγ , θ) + Py′P (Eγ , θ) + Px′ (PxTx′(Eγ , θ)− PzLx′(Eγ , θ))

+Py′PyΣ(Eγ , θ) + Pz′ (PxTz′(Eγ , θ) + PzLz′(Eγ , θ))
}
. (3.15)

In these equations σ0 denotes the unpolarized di�erential cross section. The transverse
degree of photon polarization is denoted by PT . The right-handed circular photon polarization
is denoted as P⊙.

3.3 Invariant and CGLN amplitudes

According to the paper of Berends [38] the most general Lorentz covariant pseudo-four-vector
for the nucleon electromagnetic current can be expressed in terms of the eight matrix elements.

By having two photon polarization states, two initial proton target spin states and �nally
two proton recoil spin states we obtain eight matrix elements of the electromagnetic current
and thus eight invariant amplitudes.

In the case of η photoproduction the set of eight amplitudes is reduced to the set of four
amplitudes by applying the parity conservation. Thus the electromagnetic current takes the
form [39]:

Jµ
ηp =

4∑
i=1

Ai(ν, t)M
µ
i . (3.16)

The complex functions

A1(ν, t), A2(ν, t), A3(ν, t), A4(ν, t), (3.17)

are called invariant photoproduction amplitudes and carry kinematical dependencies.

Invariant amplitudes have de�nite crossing symmetry. For η photoproduction, the amplitudes
A1,2,4(ν, t) are crossing even, i.e A1,2,4(−ν, t) = A∗

1,2,4(ν, t). The amplitude A3(ν, t) is crossing
odd, i.e A3(−ν, t) = −A∗

3(ν, t).

The operators Mi are gauge-invariant four-vectors and were written by Chew, Goldberger,
Low and Nambu (CGLN) [39]. They have the following form:

Mµ
1 = −1

2
iγ5 (γ

µ/k − /kγµ) ,

Mµ
2 = 2iγ5

(
Pµ k · (q − 1

2
k)− (q − 1

2
k)µ k · P

)
,

Mµ
3 = −iγ5 (γµ k · q − /kqµ) ,

Mµ
4 = −2iγ5 (γ

µ k · P − /kPµ)− 2MN Mµ
1 , (3.18)
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Chapter 3 General formalism of η meson photoproduction on proton

here /k = kµγ
µ, for Pµ the following convention is used Pµ = (pµi + pµf )/2 and the gamma

matrices are de�ned as in Ref. [40].
The transition matrix element of the electromagnetic current has the form:

ϵµJ
µ
ηp = ū(pf )

4∑
i=1

Ai εµM
µ
i u(pi) = −4πW

mp
χ†
fFχi , (3.19)

here u(p) is the Dirac spinor of the proton carrying information of the spin states of the baryon,
ū(p)u(p) = 2mp, and χ the Pauli spinor of the nucleon.
The operator F can be decomposed in c.m. frame into four complex variables Fi which are

called CGLN amplitudes,

F = −ϵµJµ
ηp

= i (σ⃗ · ϵ̂)F1 + (σ⃗ · q̂) (σ⃗ × k̂) · ϵ̂ F2 + i (ϵ̂ · q̂) (σ⃗ · k̂)F3 + i(ϵ̂ · q̂)(σ⃗ · q̂)F4 , (3.20)

where ϵµ = (ϵ0, ϵ⃗) and ϵ⃗ · k⃗ = 0. and σ⃗ is the Pauli spin operator which has the following matrix
form:

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
. (3.21)

These amplitudes have energy and angular dependence:

F1(W,x), F2(W,x), F3(W,x), F4(W,x), (3.22)

whereW is the total energy and x = cos θ. As we can see from Eq. (3.19) CGLN and invariant
amplitudes are related to each other by a linear transformation.
CGLN amplitudes can be decomposed in terms of partial waves (multipoles) and Legendre

polynomials and their derivatives [41], the relations between them we show below.

F1(W,x) =

∞∑
ℓ=0

[(ℓMℓ+ + Eℓ+)P
′
ℓ+1(x) + ((ℓ+ 1)Mℓ− + Eℓ−)P

′
ℓ−1(x)] ,

F2(W,x) =

∞∑
ℓ=1

[(ℓ+ 1)Mℓ+ + ℓMl−]P
′
ℓ(x) ,

F3(W,x) =

∞∑
ℓ=1

[(Eℓ+ −Mℓ+)P
′′
ℓ+1(x) + (Eℓ− +Mℓ−)P

′′
ℓ−1(x)] ,

F4(W,x) =
∞∑
ℓ=2

[Mℓ+ − Eℓ+ −Mℓ− − Eℓ−]P
′′
ℓ (x) . (3.23)

where x = cos θ is the already introduced cosine of the scattering angle, ℓ is an orbital angular
momentum of the ηN system, Pℓ(x) and Pℓ(x)

′, Pℓ(x)
′′ are Legendre polynomials and their

derivatives.
Factors Eℓ±(W ) and Mℓ±(W ) in the expansion are complex numbers and are called mu-

tipoles. Multipoles are energy dependent functions that can be of two types: electric (E) and
magnetic (M). A certain terminology has been adopted for distinguishing of these types. A
photon having total angular momentum Jγ and parity Pγ = (−1)Jγ is called electric dipole
photon or Ej photon, a photon having parity Pγ = (−1)Jγ+1 is called magnetic dipole or Mj
photon [42]. The labels + or − on multipoles denote the angular momentum addition.
Another important conserved quantity that has not been discussed up to now is an isospin

(I). Isospin is an internal quantum number which determines the number of charge states
of hadrons. Isospin is conserved in strong interactions and is not conserved in weak and
electromagnetic interactions.
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3.4 Nucleon resonances in η photoproduction

3.4 Nucleon resonances in η photoproduction

The multipoles Eℓ±(W ) and Mℓ±(W ) that were discussed in the previous section are partial
wave amplitudes of photoproduction and contain contributions from s-, t- and u-channel pro-
cesses. The biggest contributions in the low energy region come from the s-channel exchanges
(resonances). In PDG [31] one can �nd the discussion about resonance spectrum of photo-
production on proton. The notation scheme is also given there. Here we will discuss some
important aspects from the review and show connection between resonances and multipoles.

In the s-channel we can observe di�erent types of baryons, e.g. N baryons, ∆ baryons, Λ
baryons etc. These types are related to the di�erent quantum numbers of the intermediate
states: isospin (I) and strangeness (S). For example in photoproduction reactions on a proton,
which has an I = 1/2, one can only have N (nucleon) resonances with I = 1/2 or ∆ resonances
with I = 3/2. Then in order to distinguish between the resonances of the same type a notation
JP is used, where J is the total angular momentum and P is parity.

In our case of γp→ ηp reaction we observe only nucleon resonances in the s-channel, because
η meson has an isospin I = 0. The next step is to de�ne the possible values of J for resonances.
The produced η meson is a pseudoscalar therefore it is IJP = 00−, the recoil proton is IJP =
1
2
1
2

+
. Eta-meson and a proton can have an orbital angular momentum ℓ, thus the total angular

momentum J can have values J = ℓ ± 1/2 and parity P = PηPp(−1)ℓ = −(−1)ℓ. Below a
diagram that describes the s-channel process is drawn:

JP

J = ℓ± 1/2

P = −(−1)ℓ

ℓ

γ 1−

p 1
2
+

p 1
2
+

η 0−

Figure 3.4: A schematic description of the s-channel process. Here the notation JP for the
participating particles is used. J is the total angular momentum, P is a parity. ℓ
denotes the orbital angular momentum of the ηN system. Double line indicates
s-channel intermediate state (resonance). I isospin quantum number are omitted
on this picture.

The general rules for quantum numbers of a 2 → 2 processes are given below.

IG1
1 JP1C1

1 +IG2
2 JP2C2

2 → IGJPC → I ′1
G′

1J ′
1
P ′
1C

′
1+I ′2

G′
2J ′

2
P ′
2C

′
2 . (3.24)
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Chapter 3 General formalism of η meson photoproduction on proton

G = G1G2 G = G′
1G

′
2

P = P1P2(−1)ℓ P = P ′
1P

′
2(−1)ℓ

′

|I1 − I2| < I < I1 + I2 |I ′1 − I ′2| < I < I ′1 + I ′2

|J1 − J2| < S < J1 + J2 |J ′
1 − J ′

2| < S′ < J ′
1 + J ′

2

|S − ℓ| < J < S + ℓ |S′ − ℓ′| < J < S′ + ℓ′ (3.25)

where I is an isospin, G denotes G-parity, J is the total angular momentum, P is parity, C is
C-parity, S is a spin of a particle.
Let us now consider the resonance spectrum of nucleon resonances. Below the table, taken

from PDG, shows the resonances and their PDG rating that were used in the present data
analysis:

Table 3.1: Resonances used in the data analysis shown along with the PDG star rating.

Resonance Overall rating Nγ rating Nη rating

N(1440) 1/2+ **** ****
N(1520) 3/2− **** **** ***
N(1535) 1/2− **** **** ****
N(1650) 1/2− **** **** ***
N(1675) 5/2− **** **** *
N(1680) 5/2+ **** **** *
N(1700) 3/2− *** *** *
N(1710) 1/2+ **** **** ***
N(1720) 3/2+ **** **** ***
N(1860) 5/2+ **
N(1875) 3/2− *** ***
N(1880) 1/2+ ** *
N(1895) 1/2− ** * **
N(1900) 3/2+ *** ** **

**** Existence is certain, and properties are at least fairly well explored
*** Existence is very likely but further con�rmation of decay modes is required.
** Evidence of existence is only fair.
* Evidence of existence is poor.
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3.4 Nucleon resonances in η photoproduction

The presented above resonances are related to the multipoles that were discussed in the
previous section. In the Tab. 3.2 we show these resonances along with their quantum numbers
and the related multipoles.

Table 3.2: Resonances in used in the analysis and related multipoles.

Resonance ℓ J P Multipole

N(1535) 1/2− 0 1/2 − E0+

N(1650) 1/2− 0 1/2 − E0+

N(1895) 1/2− 0 1/2 − E0+

N(1440) 1/2+ 1 1/2 + M1−
N(1710) 1/2+ 1 1/2 + M1−
N(1880) 1/2+ 1 1/2 + M1−
N(1720) 3/2+ 1 3/2 + E1+,M1+

N(1900) 3/2+ 1 3/2 + E1+,M1+

N(1520) 3/2− 2 3/2 − E2−,M2−
N(1700) 3/2− 2 3/2 − E2−,M2−
N(1875) 3/2− 2 3/2 − E2−,M2−
N(1675) 5/2− 2 5/2 − E2+,M2+

N(1680) 5/2+ 3 5/2 + E3−,M3−
N(1860) 5/2+ 3 5/2 + E3−,M3−

Let us discuss the relations between the notations of the multipoles and resonances. We
consider the N(1535) 1/2− resonance and the related E0+ multipole as an example.
First let us describe the subscript 0+. This resonance appears is the S-wave of the ηN

system, therefore it has orbital angular momentum ℓ = 0. Then according to the quantum
mechanical rules the total orbital angular momentum is obtained J = 0 + 1/2. By putting
these two things together we get the subscript 0+.
The explanation why this resonance has only electric multipole is a bit more complicated.

As it was written before there are two types of multipoles: electric and magnetic. In order
to distinguish between them we can use parity conservation arguments and write down the
selection rules [41]:

Ej : (−1)Jγ = P = (−1)ℓ+1 ⇒ |Jγ − ℓ| = 1, (3.26)

Mj : (−1)Jγ+1 = P = (−1)ℓ+1 ⇒ Jγ = 1. (3.27)

Now let us have a look on γp→ N(1535) 1/2− process under a di�erent angle. Suppose that
we have γ → p+N(1535) 1/2−. Photon has an total angular momentum and parity J−

γ that
we can get as a sum of JRes = 1/2− and Jp = 1/2+, following the quantum mechanical rules
we get Jγ = 1−. We also know that photon has a spin S = 1 therefore S = Jγ ± Lγ . In order
to obtain this value and to conserve the parity the orbital angular momentum of the photon
must be Lγ = 0. Taking into account Eq. (3.27) we get Lγ = Jγ − 1 which means that the
multipole is electric.
The same procedure we can apply for other resonances and one can see that for 1/2+ inter-

mediate states onlyM1+ multipole is physical. For states with higher total angular momentum
J both multipoles are present.
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Chapter 4

Partial wave content of polarization observables

Before we perform a partial wave analysis, the sensitivity of experimental data to high partial
waves can be discussed. The so-called partial wave content of polarization observables can be
investigated. In this chapter such a procedure is done for the data on the γp → ηp reaction.
The errors of the data are discussed as well. The analysis of the data is performed using
the Legendere expansion of polarization observables which provides qualitative results on their
partial wave content.

4.1 Description of the data using Legendre polynomials

Legendre polynomials are an orthogonal set of functions in the range [-1,1]. Below the formalism
is brie�y shown and an example is given.

Table 4.1 shows all available data, the energy and angular coverage, the number of angular
bins of �tted observables and whether the data are used in the partial wave analysis.

Table 4.1: Observables in η photoproduction

γp→ ηp Observable Energy cos(θ) Number Used
range (MeV) of angles in the analysis

[43] MAMI-C dσ/dΩ 1488-1870 [-0.958,0.958] 24 −
[44] MAMI dσ/dΩ 1488-1956 [-0.958,0.958] 24 +
[45] CBELSA/TAPS dσ/dΩ 1588-2370 [-0.95,0.95] 20 −
[46] CLAS dσ/dΩ 1685-2895 [-0.85,0.85] 18 −
[47] GRAAL Σ 1490-1910 [-0.95,0.84] 10 +
[48] GRAAL Σ 1506-1688 [-0.8,-0.8] 9 −
[49] A2 MAMI T 1495-1850 [-0.916,0.916] 12 +
[49] A2 MAMI F 1495-1850 [-0.916,0.916] 12 +
[50]CLAS E 1525-2125 [-0.9,0.7] 8 +

All observables can be expanded in Legendre series. For getting compact formulas, associated
Legendre polynomials {P 0

ℓ (x), P
1
ℓ (x), P

2
ℓ (x)} are used. They have the form:

P 0
ℓ (x) = Pℓ(x) ,

P 1
ℓ (x) = −

√
1− x2 P

′
ℓ(x) ,

P 2
ℓ (x) = (1− x2) P

′′
ℓ (x) , (4.1)

where P
′
ℓ(x), P

′′
ℓ (x) are �rst and second derivatives of Legendre polynomials over x. Using
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Chapter 4 Partial wave content of polarization observables

these notations one can rewrite expressions for the observables in the following form

Oi(W,x) =

2ℓmax∑
k=0

Ai
k(W ) P 0

k (x), for Oi = {dσ/dΩ, Ê},

Oi(W,x) =

2ℓmax∑
k=1

Ai
k(W ) P 1

k (x), for Oi = {T̂ , P̂ , F̂ , Ĥ},

Oi(W,x) =

2ℓmax∑
k=2

Ai
k(W ) P 2

k (x), for Oi = {Σ̂, Ĝ}, (4.2)

here Oi(W,x) is the general notation for an observable. W is the total energy, ℓmax is the
highest angular momentum up to which the series is truncated.

For all double polarization observables that include recoil polarization, the summation runs
up to 2ℓmax + 1, one term higher than for the other observables

Oi(W, θ) =

2ℓmax+1∑
k=0

Ai
k(W ) P 0

k (cosθ), for Oi = {Ĉz′ , L̂z′},

Oi(W, θ) =

2ℓmax+1∑
k=1

Ai
k(W ) P 1

k (cosθ), for Oi = {Ĉx′ , Ôx′ , L̂x′ , T̂z′},

Oi(W, θ) =

2ℓmax+1∑
k=2

Ai
k(W ) P 2

k (cosθ), for Oi = {Ôz′ , T̂x′}. (4.3)

It was shown that CGLN amplitudes can be expressed as in�nite series in terms of multi-
poles, Legendre polynomials and their derivatives Eq. (3.23). In the Legendre analysis one
has to truncate the series at some ℓmax which gives information about the highest orbital an-
gular momentum. For the CGLN amplitudes Fi(W,x) we therefore obtain the following set of
equations

F1(W,x) =

ℓmax∑
ℓ=0

[(ℓMℓ+ + Eℓ+)P
′
ℓ+1(x) + ((ℓ+ 1)Mℓ− + Eℓ−)P

′
ℓ−1(x)] ,

F2(W,x) =

ℓmax∑
ℓ=1

[(ℓ+ 1)Mℓ+ + ℓMl−]P
′
ℓ(x) ,

F3(W,x) =

ℓmax∑
ℓ=1

[(Eℓ+ −Mℓ+)P
′′
ℓ+1(x) + (Eℓ− +Mℓ−)P

′′
ℓ−1(x)] ,

F4(W,x) =

ℓmax∑
ℓ=2

[Mℓ+ − Eℓ+ −Mℓ− − Eℓ−]P
′′
ℓ (x) . (4.4)

In the work of Fasano and Tabakin [41] it was shown that the experimental observables can
be expressed in terms of CGLN amplitudes. Let us consider examples of the di�erential cross
section and target asymmetry and determine the partial wave content of them.

Assuming the highest orbital angular momentum ℓmax = 1 for the di�erential cross section
(dσ/dΩ) the expression has the following form

dσ/dΩ = Re
{
F ∗
1F1 + F ∗

2F2 + (1− x2) (F ∗
3F3/2 + F ∗

2F3)− 2xF ∗
1F2

}
. (4.5)
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4.1 Description of the data using Legendre polynomials

Substituting the expansion from Eq. (4.4) one gets the result:

dσ/dΩ = Re
{
|E0+|2 +

9

2
|E1+|2 + |M1−|2 +

5

2
|M1+|2 +M∗

1−(3E1+ +M1+)

−3E∗
1+M1+ + x[2E∗

0+(3E1+ +M1+)− 2E∗
0+M1−]

+x2
[9
2
|E1+|2 −

3

2
|M1+|2 − 3M∗

1−(3E1+ +M1+) + 9E∗
1+M1+

]}
. (4.6)

Using the expansion for observables Eq. (4.2) one can can write the following expression

dσ/dΩ =

2∑
k=0

Aσ0
k (W ) P 0

k (x), (4.7)

where

A
dσ/dΩ
0 (W ) = Re

{
|E0+|2 +

9

2
|E1+|2 + |M1−|2 +

5

2
|M1+|2 +M∗

1−(3E1+ +M1+)− 3E∗
1+M1+

}
,

A
dσ/dΩ
1 (W ) = Im

{
2E∗

0+(3E1+ +M1+)− 2E∗
0+M1−

}
,

A
dσ/dΩ
2 (W ) = Im

{
9

2
|E1+|2 −

3

2
|M1+|2 − 3M∗

1−(3E1+ +M1+) + 9E∗
1+M1+

}
, (4.8)

are Legendre coe�cients containing the information about the partial wave content of the
dσ/dΩ.

Thus the lowest partial wave contribution to A
dσ/dΩ
0 comes from the modulus of S-waves

|E0+|2, in A
dσ/dΩ
1 it comes from the interference of S and P waves 2E∗

0+(3E1+ + M1+) −
2E∗

0+M1−, and for A
dσ/dΩ
2 it comes from the modulus of P waves: 9

2 |E1+|2.
For the target asymmetry T̂ one gets the following:

T̂ =
√

1− x2 Im {F ∗
1F3 − xF ∗

2F3} , (4.9)

T̂ = 3
√

1− x2 Im
{
E∗

0+(E1+ −M1+)− x[M∗
1−(E1+ −M1+)− 4M∗

1+E1+]
}
. (4.10)

Using the Eq. (4.2) we have

T̂ =
2∑

k=1

AT̂
k P

1
k (x), (4.11)

where Legendere coe�cients have the following form

AT̂
1 = 3Im

{
E∗

0+(E1+ −M1+)
}
, (4.12)

AT̂
2 = 3Im

{
M∗

1−(E1+ −M1+)− 4M∗
1+E1+

}
. (4.13)

Thus we get the interference of S and P -waves E∗
0+(E1+ −M1+) as the lowest partial wave

contribution to AT̂
1 . The lowest partial wave contribution to AT̂

2 comes from the interference
of P -waves: M∗

1−(E1+ −M1+)− 4M∗
1+E1+.

If we assume that partial waves with orbital angular momentum higher that ℓ = 3 do not
appear in the reaction. One can write partial wave content of the Legendre coe�cients in a

more schematic way. The coe�cients A
dσ/dΩ
k (W ) of Eq. 4.2 for the di�erential cross section

have the following combinations of partial waves with di�erent ℓ = 0, 1, 2, 3, or in notations
S, P,D, F :
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Chapter 4 Partial wave content of polarization observables

A
dσ/dΩ
0 = SS + PP + SD +DD + PF + FF

A
dσ/dΩ
1 = SSsssSP + PD + SF +DF

A
dσ/dΩ
2 = DdddPP + SD +DD + PF + FF

A
dσ/dΩ
3 = DD + sDD + FFPD + SF +DF

A
dσ/dΩ
4 = DD +DDssssssDD + PF + FF

A
dσ/dΩ
5 = DD +DD + FF + FF + FFDF

A
dσ/dΩ
6 = DD +DD + FF + FF + FFFF

The �rst summand shows the lowest partial wave contribution which can be seen in the

coe�cient. For example A
dσ/dΩ
0 contains squares of all partial waves and the lowest combination

of partial waves that could be observed is the modulus of S-waves, whereas A
dσ/dΩ
6 contains

only modulus of F -waves.
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4.2 Di�erential cross section, dσ/dΩ

4.2 Di�erential cross section, dσ/dΩ

In this section, results of the analysis of Legendre coe�cients on di�erential cross section data
from MAMI [44] and CBELSA [45] are presented.

4.2.1 MAMI data

For these data two combined data sets are analyzed. The �rst data set (Run II) has 24 narrow
angular bins for each of 113 energy bins in the range from W = 1488 up to W = 1891 MeV.
The second one (Run III) has the same angular coverage and 12 energy bins which cover an
energy range from W = 1887 MeV up to W = 1956 MeV. Such quality of the data allows us
to obtain the information about partial wave content with good accuracy.

There is also another data set from MAMI [43] (Run I) which is not analyzed in present
work because the analysis of this run was repeated in Run II [44] with an improved cluster
algorithm that better separates electromagnetic showers which are partly overlapping in the
calorimeters, and with �ner angular binning which provides better sensitivity to higher order
partial waves.

For the �rst data set (Run II) only η → 3π0 decays were used in the analysis of η photopro-
duction. Therefore cross sections were obtained by identifying the η meson via its 3π0 mode.
For the second data set (Run III) both neutral decay modes (η → γγ and η → 3π0 ) were
analyzed.

The statistical uncertainties come from the number of events in (Eγ , cos θ). The overall
systematic uncertainty due to the calculation of the detection e�ciency and the photon-beam
�ux was estimated as 4% and 5% for Run II and III respectively. An additional angular-
dependent systematic uncertainty is calculated as well. It includes a combined e�ect caused by
the angular resolution, background subtraction, and uncertainties in the angular dependence of
the reconstruction e�ciency. For the �rst data set this kind of additional systematic uncertainty
was evaluated as 3%, and 5 % for the second one.

The angular-dependent systematic uncertainties were added in quadrature with the statistical
uncertainties in order to combine the results obtained from the di�erent decay modes.

In the Legendre analysis the systematic uncertainties are not taken into account.

Fits with ℓmax = 1, 2, 3, 4 were done in order to test the sensitivity of data to P , D, F and
G waves. Below the comparison of χ2 distributions and data description are shown.
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Figure 4.1: χ2 distributions for the description of the di�erential cross section by the series of
Legendre polynomials with the maximum ℓ = 1 (black), ℓ = 2 (red), ℓ = 3 (blue)
and ℓ = 4 (green).

From the χ2 plots it is clearly seen that the �t with ℓmax = 1 poorly describes the data with
the exception of energies below W = 1500 MeV, where the di�erential cross section is almost
�at, see Fig. 4.2. χ2 distributions for ℓmax = 2, 3 optically look almost identical at energies
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Figure 4.2: Description of the di�erential cross section by the series of Legendre polynomials
with the maximum ℓ = 1 (black).

between W = 1500 and W = 1800 MeV, and the only di�erence which can bee seen is at
energies higher than W = 1800 MeV.
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Figure 4.3: χ2 distributions for the description of the di�erential cross section at high energies
by the series of Legendre polynomials with the maximum ℓ = 2 (red) and ℓ = 3
(blue).

Which means that F waves start to contribute. To check this assumption one can see how
the �ts with ℓmax = 2, 3 describe these data.
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4.2 Di�erential cross section, dσ/dΩ

On the plot the hint is seen in the higher energy bins: the forward data point comes down
together with the blue curve. Also this forward point cannot be explained as as statistical
deviation. Further at higher energies one can observe the same behavior at forward angles.
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Figure 4.4: Description of the di�erential cross section by the series of Legendre polynomials
with the maximum ℓ = 2 (red) and ℓ = 3 (blue).

From such a comparison it is seen that the �t with ℓmax = 3 gives a better result, although
the change in χ2 is very small. To better solve this puzzle one needs to treat the data at higher
energies and to make such an expansion for polarization observables, where the interference of
higher waves is more important in comparison with the di�erential cross section and, �nally,
perform the partial wave analysis.
However despite the very good quality of the data, the low and the middle energy regions

are not sensitive to ℓmax = 3. Either the quality of the data is still not enough to provide
information about higher partial waves or, which is more likely, due to the fact that in con-
tributions from higher partial waves are suppressed by the N(1535) 1/2− and N(1650) 1/2−

resonances η photoproduction in these energy regions. Therefore the in�uence of higher partial
waves cannot be seen in such type of an analysis.
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Chapter 4 Partial wave content of polarization observables

The most signi�cant di�erence is seen at energies above W = 1900 MeV, which corresponds
to the second data set. There the inclusion of G waves certainly improves the χ2 signi�cantly.
By having a closer look at the χ2 distributions one can see how signi�cant the change is.
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Figure 4.5: χ2 distributions for the description of the di�erential cross section by the series of
Legendre polynomials with the maximum ℓ = 3 (blue), ℓ = 4 (green).

Indeed the indication of the presence of F and G waves is seen on the Fig. 4.6. The case
with ℓmax = 3 (blue curves) does not describe the shape of the data above W = 1900 MeV.
Curves with ℓmax = 4 describes the data well.

0

0.1

0.2

W=1888

dσ/dΩ, µb/sr

W=1893 W=1900

0

0.1

0.2

W=1906 W=1913 W=1919

0

0.1

0.2

W=1925 W=1932 W=1938

0

0.1

0.2

-1 -0.5 0 0.5 1

W=1944

-1 -0.5 0 0.5 1

W=1950

-1 -0.5 0 0.5 1

W=1957

cos θ

Figure 4.6: Description of the di�erential cross section by the series of Legendre polynomials
with the maximum ℓ = 3 (blue) and ℓ = 4 (green).
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4.2 Di�erential cross section, dσ/dΩ

Taking into account the discussed results in this section we choose the ℓmax = 4. Figure 4.7
shows the corresponding Legendre coe�cients along with the model predictions from BnGa,
MAID07, and SAID models.
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Figure 4.7: Legendre coe�cients from the �t with ℓmax = 4 for dσ
dΩ . Compared with models

MAID07 (black), BnGa (blue), SAID (green)

As seen from predictions A
dσ/dΩ
0 is described almost identical with all of the models. SAID

and BnGa solutions show close results in all other coe�cients. Except energies belowW = 1700
MeV where SAID gives better description. Also MAID07 solution generally does not provide
proper quality of the �t.
By looking on Legendre coe�cients one can see the resonance structures in coe�cients up

to A
dσ/dΩ
4 in the regions below W = 1800 MeV. Which can be produced by the following well

known resonances: N(1535) 1/2−,N(1440) 1/2+,N(1710) 1/2+, N(1720) 3/2+, N(1520) 3/2−,
N(1700) 3/2−. Which means that data allows to determine modulus of D waves as the lowest
contribution in this coe�cient. However the in�uence of F and higher waves, in particular:
N(1680) 5/2+, N(1860) 5/2+, N(1990) 7/2+ and G-waves due to large errors is not observed
in the coe�cients.
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Chapter 4 Partial wave content of polarization observables

4.2.2 CB ELSA data

CBELSA/TAPS collaboration has published data on the di�erential cross section [45] which
cover a wide energy range from W = 1588 to W = 2370 MeV with a good angular coverage.
The cross sections were measured by identifying the η meson via: η → 2γ and η → 3π0 →
6γ detection modes. Statistical errors are determined from the number of events in each
(Eγ , cos θ) and are bigger than in MAMI [44] data. In addition to the statistical uncertainties
the systematic ones are also present.
According to the [45] the systematic errors come from the uncertainties in the positioning of

the liquid hydrogen target and from the o�set of the photon beam. Using kinematical �t and
Monte Carlo simulations the position of the target cell was found to be shifted upstream by
0.65 cm. Which led us to the angular dependent errors which are 2-3 % on the average and ≤
5 % at most around cos θ = 0.
In addition the photon beam was assumed to be shifted by less than 2 mm o� axis at the

target position. The uncertainty of the proton trigger has been determined from the small
disagreement of the di�erential η cross sections for energies Eγ < 1 GeV and cosine values
cos θ < 0 using two di�erent decay channels.
In addition an overall ± 5.7 % error is assigned to the reconstruction e�ciency. And also

3 % systematic error accounts for the slightly di�erent e�ects of con�dence level cuts on data
and Monte-Carlo events.
Since this data set covers the energy range of MAMI EPT data [44] It is interesting to take

closer look and make a Legendre polynomials expansion for energies above the highest MAMI
EPT limit. Nevertheless the low energy limit is also described. Therefore �ts with ℓmax = 3, 4
were applied to the whole energy range.
Fig. 4.8 shows the χ2 distributions. From these plots �ts give adequate description of the

data. The energies below W = 1900 MeV are described much lower χ2 in comparison with
MAMI data [44] which is due to the large errors of the data.
For the energies above W = 1900 MeV both �ts provide similar description of the data.
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Figure 4.8: χ2 distributions for the description of the di�erential cross section by the series of
Legendre polynomials with the maximum ℓ = 3 (red) and ℓ = 4 (blue).
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4.2 Di�erential cross section, dσ/dΩ

In close comparison of χ2 distributions in the high energy region one can see that �t with
ℓmax = 4 gives slightly better results.
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Figure 4.9: χ2 distributions for the description of the di�erential cross section at high energies
by the series of Legendre polynomials with the maximum ℓ = 3 (red) and ℓ = 4
(blue).

As one can see from the Fig. 4.10, blue curves give a better description in the forward region,
following the shape of data, where the very forward point comes down. The same behavior was
also observed in MAMI EPT data, see Fig. 4.6.
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Figure 4.10: Description of the di�erential cross section by the series of Legendre polynomials
with the maximum ℓ = 3 (red) and ℓ = 4 (blue).

Despite the fact that data from CB ELSA have a larger energy range, and the description
with ℓmax = 4 shows similar behaviour at forward angles, the data does not have the proper
quality to allow us to check the sensitivity to G-waves in the high energy region. Therefore it
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Chapter 4 Partial wave content of polarization observables

is useful to stop the �tting procedure at ℓmax = 3.

Fig. 4.11 shows the Legendre coe�cients for the best �t with ℓmax = 3.
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Figure 4.11: Legendre coe�cients from the �t with ℓmax = 3 for dσ/dΩ.

Below the comparison with MAMI cross section is shown.
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Figure 4.12: Comparison of Legendre coe�cients from the �t with ℓmax = 3 for MAMI (blue)
and CB-ELSA (red) data for dσ/dΩ.

As seen from the plot there is a good agreement with both data sets in the overlapping
energy region. MAMI [44] provides the description of the η threshold region, CB-ELSA [45]
provides information above η′ threshold.

From the Fig. 4.12 one can conclude that the structure in A4
dσ/dΩ Legendre coe�cient at

energies above W = 1900 MeV is produced by the modulus of D-waves, by the interference
of D and F waves and by the modulus of F -waves. Higher coe�cients could be considered as
0. Nevertheless using ℓmax = 4 in the �t slightly smoothen the behavior of higher coe�cients
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basically A5
dσ/dΩ and A6

dσ/dΩ.
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Figure 4.13: A5
dσ/dΩ and A6

dσ/dΩ from the �t with ℓmax = 4 for dσ/dΩ.

This happens because of better �tting of the forward angles, but such change can not be
considered as a purpose to use ℓmax = 4 for truncation.

4.3 Polarization observables F̂ , T̂

This section will be devoted to the description of T and F polarization observables [49]. These
two data sets were obtained with the Crystal-Ball/TAPS detector setup at the Glasgow tagged
photon facility of the Mainz Microtron MAMI. The mesons were identi�ed via η → 2γ or
η → 3π0 → 6γ decay modes.

In order to apply Legendre expansion Eq. (4.2) one has to multiply the measured observable
with the di�erential cross section. For such a procedure the energy and the angular rebinning
procedure was applied to the [44] cross sections data. Uncertainties of the cross sections and
asymmetries were summed quadratically.

The asymmetries T and F are determined in each energy and angular bin as count rate
asymmetries from the number N± of reconstructed γp→ ηp events with di�erent orientations
of target and spin beam helicity

T =
1

PT | sinφ|
Nπ=+1 −Nπ=−1

Nπ=+1 +Nπ=−1

F =
1

PT | cosφ|
1

P⊙

Nσ=+1 −Nσ=−1

Nσ=+1 +Nσ=−1
(4.14)

Here P⊙ and PT denote the degree of circular beam and transverse target polarization φ is
the azimuthal angle of the target polarization vector in a coordinate frame �xed to the reaction
plane with ẑ = p⃗γ/|p⃗γ |, ŷ = p⃗γ × p⃗η/|p⃗γ × p⃗η|, x̂ = ŷ × ẑ, π = P⃗T · ŷ/|P⃗T · ŷ| = ±1 denotes
the orientation of the target polarized vector P̂T to the normal of the production plane and, in
the case of the F asymmetry σ = hP⃗T · x̂/|P⃗T · x̂| = ±1 is given by the product of the beam
helicity h and the orientation of P⃗T relative to the x̂ axis.

The systematic uncertainty is dominated by the determination of the degree of photon po-
larization (4%), the degree of photon beam polarization (2%) and the background substraction
procedure (3-4%). By adding all contributions quadratically a total systematic uncertainty of
less than 6% is obtained.

First the data of the F̂ asymmetry is described then the data of the T̂ asymmetry.
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Chapter 4 Partial wave content of polarization observables

4.3.1 F̂

In order to check the sensitivity of data to D, F and G waves �ts with ℓmax = 2, 3, 4 were done.
Fig. 4.14 shows the comparison of 3 di�erent χ2 distributions.
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Figure 4.14: χ2 distributions for the description of the di�erential cross section by the series
of Legendre polynomials with the maximum ℓ = 2 (black) ℓ = 3 (red) and ℓ = 4
(blue).

As seen from the plots �ts with ℓmax = 2, 3 give almost identical results. Fit with ℓmax = 4
gives much better description in the middle energy rage which can be explained as over�tting
the data. Indeed on Fig. 4.15 which shows description of the data using Eq. (4.2) one can see
how the blue curve is describing each single wiggle in the data.
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Figure 4.15: Description of the di�erential cross section by the series of Legendre polynomials
with the maximum ℓ = 2 (black), ℓ = 3 (red) and ℓ = 4 (blue).
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Due to the identity of χ2 distributions for ℓmax = 2, 3 and by looking on the data description,
shown Fig. 4.15 one can conclude that there is no physical reason to use ℓmax = 3 for the best
�t parameter. Therefore we choose the value ℓmax = 2.
Below the Legendre coe�cients for the best �t and also the model descriptions are shown.

As one can see the only model which describes the coe�cients is BnGa.
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Figure 4.16: Legendre coe�cients for the �t with ℓmax = 2 for the F̂ . Compared with models
MAID07 (black), BnGa (blue), SAID (green)

By looking on Legendre coe�cients one can see that the last coe�cient which provides reason-

able information is AF̂
3 . The structure of this coe�cient gives the knowledge that interference

of P and D waves creates such a structure. AF̂
4 is nose, which means modulus of D waves

cannot be seen in such an analysis.

4.3.2 T̂

The same procedure as for F̂ was applied for T̂ . In order to check the sensitivity of data to D,
F and G waves �ts with ℓmax = 2, 3, 4 were done.
Fig. 4.17 shows the comparison of 3 di�erent χ2 distributions.
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Figure 4.17: χ2 distributions for the description of the di�erential cross section by the series
of Legendre polynomials with the maximum ℓ = 2 (black) ℓ = 3 (red) and ℓ = 4
(blue).

As seen from the plots all �ts with give very close results. Fit with ℓmax = 4may be neglected
due to the same reason as for F̂ : the data points are scattered therefore the blue line tries to
describe every single wiggle in the data points which has no physical sense. Due to the close
results of χ2 distributions for �rst two ℓmax and by looking on the data description, see Fig.
4.18 there is no physical reason to use ℓmax = 3 as a �t parameter. Data is not sensitive to the
modulus of D waves. Therefore the best �t is the �t with ℓmax = 2
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Fig.4.18 shows description of the data using Eq. (4.2)
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Figure 4.18: Description of the di�erential cross section by the series of Legendre polynomials
with the maximum ℓ = 2 (black), ℓ = 3 (red) and ℓ = 4 (blue).

Below the Legendre coe�cients for the best �t and also the model descriptions are shown.
As one can see again, that the only model which describes the coe�cients is BnGa.
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Figure 4.19: Legendre coe�cients for the �t with ℓmax = 2 for the F̂ compared with models
MAID07 (black), BnGa (blue), SAID (green)

By looking on Legendre coe�cients for certain one can see that the last coe�cient which

provides reasonable information is AT̂
3 . The structure of this coe�cient gives the information

that interference of P and D waves creates it. AT̂
4 has no structure, which means that modulus

of D waves cannot be seen in such analysis.
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4.4 Polarization observable Σ̂

This section is devoted to �t of the experimental data on beam asymmetry [47]. This data
set was obtained by GRAAL collaboration and published in 2007. It has 66 energy bins with
the coverage from W = 1490 up to W = 1850 MeV. Each energy bin contains 10 angular
bins with non-constant range. In general it covers θ angles from ≈33 up to ≈160 degrees, or
cos θ ∈ [−0.95, 0.84].
The beam asymmetry was determined from the standard expression:

N̄V (φ)− N̄H(φ)

N̄V (φ) + N̄H(φ)
= PγΣcos(2φ) (4.15)

Where N̄V (φ) and N̄H(φ) are the azimuthal yields normalized by the integrated �ux for the
vertical and horizontal polarization states, respectively. Pγ is the degree of linear polarization
of the beam and φ the azimuthal angle of the reaction plane. For a given bin in energy Eγ and
θ, the beam asymmetry Σ was extracted from the �t of the normalized ratio Eq. (4.15) by the
function PγΣcos(2φ), using the known energy dependence of Pγ . The measured asymmetries
were corrected for the �nite φ binning Σtrue = Σmeas(1 +Rφ) with Rφ = 0.026 for 16 bins.
Two source of systematic uncertainties were considered: the uncertainty to the beam po-

larization (2%) and the uncertainty from the background contamination. For the second one,
two main contributions were identi�ed: other photoproduction (hadronic) reactions and target
wall events. The uncertainty due to hadronic contamination was estimated from the variation
of the extracted asymmetries when opening cuts from ±3σ to ±4σ. The resulting errors range
from δΣ = 0.003 to 0.035. The rate of target wall events was measured via empty target runs
and found to be less than 1%. The corresponding error was neglected.
Fits with ℓmax = 2, 3, 4 were done. Below the χ2 distribution plots are shown.
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Figure 4.20: χ2 distributions for Σ̂ by the series of Legendre polynomials with the maximum
ℓ = 2 (black) ℓ = 3 (red) and ℓ = 4 (blue).

It is seen from the plot that the data only sensitive to �ts with ℓmax = 2, 3. Both �ts give
close results, despite forward angles at energies higher than W = 1800 MeV, where inclusion
of F waves in the �t improves the description, see Fig. 4.21. This �gure shows the description
of the data using Eq. (4.2).
Fit with ℓmax = 4 does not produce good description. Therefore it is necessary to stop at

ℓmax = 2, keeping in mind that in further partial wave analysis one has to take into account
that F waves (ℓmax = 3) could be considered at high energies.
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Figure 4.21: Description of Σ̂ by the series of Legendre polynomials with the maximum ℓ = 2
(black) and ℓ = 3 (red).

Below the Legendre coe�cients along with the models for the best �t is shown. It is seen

that almost all models describe the coe�cients with a good agreement. Despite AΣ̂
4 where only

Bonn-Gatchina model give adequate description.
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Figure 4.22: Legendre coe�cients for the �t with ℓmax = 2 for Σ̂ compared with models
MAID07 (black), BnGa (blue), SAID (green)

It is clearly seen that the lowest contribution to the Legendre coe�cients comes from the
modulus of P waves and from interference of P and D waves.
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4.5 Polarization observable E

These data were obtained in 2015 by CLAS collaboration [50]. However due to a small impact
to the overall χ2 and having a small number of data points it plays minor role in the analysis.
Nevertheless one should give a short overview of this observable.
In order to determine the helicity asymmetry E in a discrete event counting experiment, the

following equation is used to form the asymmetry

E = − 1

|P T
z ||P γ

⊙|

(
N+ −N−
N+ +N−

)
, (4.16)

where N+ and N− which are the number of η mesons counted in beam-target helicity aligned
and anti-aligned settings, respectively.
The measurements were done on a frozen butanol target (C4H9OH), the �nal state particles

photoproduction were detected using CLAS, which is a set of six identical detectors and η
meson was identi�ed via charge mode η → π+π−π0.
Statistical uncertainties dominated the systematic uncertainties in all analyzed bins. The

systematic uncertainties include the target polarization P T
z uncertainty (6.1%) and photon

beam polarization P γ
⊙ uncertainty (3.1%).

4.6 Conclusion

In this section a short conclusion on the �t results of the used data is presented.

dσ/dΩ from MAMI

These data have narrow energy and angular binning and small errors. Fit with ℓmax = 4 was
done for a combined data set. Structures for energies below W = 1600 MeV up to Aσ0

4 are
observed. Modulus of D waves is the lowest contribution in this coe�cient. Contributions of
higher partial waves are suppressed by the N(1535) 1/2− and cannot be observed in this type
of analysis.

dσ/dΩ from CBELSA

In comparison with [44] this data has larger angular and energy bins as well as the errors. But
it has larger energy coverage. Threshold region of η meson is not covered. At energies above

W = 1900 MeV the resonance structure in A
dσ/dΩ
4 is observed. The modulus of D and F waves

and also the interference of them produces it.

Polarization observables T and F

Truncation was done at ℓmax = 2. The resonance structure is observed in the coe�cients up

to AT̂ ,F̂
3 which means that the interference of P and D produces it.

Polarization observable Σ

Fit with ℓmax = 2 was done. The structure is observed up to AΣ̂
3 which means that the modulus

of P waves and also the interference of P and D waves produces it.
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Chapter 5

Partial wave analysis

In this chapter we discuss di�erent partial wave analysis procedures. The main part is devoted
to the description of the procedure that was used in our analysis. After that we give a short
overview of other approaches.

5.1 EtaMAID isobar model approach

The approach which we used for the data analysis and which is historically used in Mainz is
an isobar model approach. Speaking of it an abbreviation MAID is generally used. MAID was
�rst developed for pion photo- and electroproduction [8], later it was extended to the η photo-
and electroproduction [9]. This model is usually called EtaMAID and also has a reggeized
version [51].
The ansatz is basically simple.

tγ,η(W ) = tbgγ,η(W ) + tRes
γ,η (W ) (5.1)

The scattering amplitude tγ,η(W ) is decomposed into two parts. The �rst part is the non-

resonant background tbgγ,η(W ) which consists of Born terms (nucleon exchanges in the s- and
u-channels) and the t-channel vector meson exchanges. The second part is the resonance
amplitude tRes

γ,η (W ) that contains nucleon resonance excitations in the s-channel parameterized
with the Breit-Wigner ansatz.
In addition to the s-channel resonances the u-channel resonances should be included as well

in order to ful�ll the crossing symmetry. However this does not work in practice because the
energy dependent width in the s-channel is �nite and in the u-channel it is o� shell and therefore
it disappears. Therefore conceptually these channels in an isobar model are always di�erent and
do not ful�ll the crossing symmetry. In our approach we treat e�ectively u-channel exchanges
within a background and ful�ll the crossing symmetry with the �xed-t dispersion relations.

5.1.1 Resonance part

We parameterize the resonance part as a sum of Breit-Wigner resonance functions with a
unitary phase Φα

j for each resonance

tα,Res
γ,η (W ) =

Nα∑
j=1

tα,BW,j
γ,η (W )eiΦ

α
j , (5.2)

where Nα is the number of resonances for each partial wave.
Resonances are related to the multipoles (Mℓ±), see Eq. (3.23). We parameterize them with

the following ansatz:

Mℓ±(W ) = M̄ℓ± fγN (W )
MRΓtot(W )

M2
R −W 2 − iMRΓtot(W )

fηN (W )CηN , (5.3)

where fηN (W ) is the usual Breit-Wigner factor describing the ηN decay of the N∗ resonance
with total energy dependent width Γtot(W ), CηN is an isospin factor, which is −1 for ηN �nal

41



Chapter 5 Partial wave analysis

states. The co-called reduced multipoles are denoted as M̄ℓ± and related to the photon decay
amplitudes A1/2 and A3/2. The reduced multipoles M̄ℓ± in terms of an A1/2 and A3/2 can be
found in Appendix Eq. (A.4) and Tab. A.1
The Breit-Wigner factor fηN (W ) and the photon vertex fγN (W ) are described by:

fηN (W ) = ζηN

[
1

(2J + 1)π

mp

MR

k(W )

q(W )

ΓηN (W )

Γtot(W )2

]1/2
, (5.4)

fγN (W ) =

(
k(W )

kR

)2
(

X2
γ + k2R

X2
γ + k2(W )

)2

, (5.5)

with k(W ) and q(W ) the photon and the η meson momenta given in set of Eqs. (3.8). Factor
ζηN = ±1 is a relative sign between the N∗ → ηN and N∗ → πN couplings, X and Xγ are
phenomenological damping parameters. All momenta taken at the resonance position MR are
denoted with an additional index R.
In our approach we assume that all resonances decay at least into 3 channels: πN , ηN

and ππN . The traditional MAID parametrization of the energy dependent partial width is
following:

ΓπN (W ) = βπN ΓR

(
qπ(W )

qπ,R

)2ℓ+1
(

X2 + q2π,R
X2 + q2π(W )

)ℓ

,

ΓηN (W ) = βηN ΓR

(
q(W )

qR

)2ℓ+1( X2 + q2R
X2 + q(W )2

)ℓ

,

ΓππN (W ) = βππN ΓR

(
q2π(W )

q2π,R

)2ℓ+4
(

X2 + q22π,R
X2 + q22π(W )

)ℓ+2

. (5.6)

with the c.m. momenta of pion denoted by qπ(W ). For the e�ective 2π channel we use a mass
of 2mπ. Constants βπN , βηN are branching ratios of the resonances into respective channels.
However this parametrization fails when a resonance has a mass MR that is lower than

production threshold. In this case the momentum qR as well as the branching ratio βηN
become complex. The best example is N(1440) 1/2+ which mass lies below ηN threshold but
this resonance contributes to the ηN production mechanism. For this case we use di�erent
parametrization which takes correctly into account the excitation of the resonances below
threshold.
In this parametrization we set βαN = 0 below αN production threshold and q2(W ) < 0.

After that we calculate the energy dependent width as shown below:

ΓαN (W ) = g2αN
√

|q2α(W )|
(

|q2α(W )|
X2 + |q2α(W )|

)ℓ

, (5.7)

where now |q2α(W )| is well de�ned and always positive function, thus one can take
√
q2α(W ).

Parameter gαN is called coupling constant which plays a role of a branching ratio. We use this
constant in the analysis as a �tting parameter.
However our parametrization is not unique and there are other parameterizations which take

care of the sub-threshold resonances, for example Flatte parametrization, which can as well
been alternatively used.
It is also possible and convenient to use our parametrization of the energy dependent width

above threshold. For this we write the following relations between g2αN and βαN :

g2αN =
βαNΓR

qα,R

(
1 +

X2

q2α,R

)ℓ

, (5.8)
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5.1 EtaMAID isobar model approach

βαN =
g2αNqα,R

ΓR(1 +X2/q2α,R)
ℓ
, (5.9)

with the ΓR as a width of a resonance.

For the 3-body 2π channel we also make a small adjustment:

ΓππN (W ) = g2ππqππ(W )

(
|q2ππ(W )|

X2 + q2ππ(W )

)ℓ+2

. (5.10)

In our analysis we take into account 7 di�erent production thresholds, thus the total width
is calculated as shown below

Γtot = ΓπN + ΓππN + ΓηN + ΓKΛ + ΓKΣ + ΓωN + Γη′N , (5.11)

and the threshold values for the described above decays are mentioned in the Table 5.1

Table 5.1: Threshold values in W (MeV) of various N∗ decay channels

πN ππN ηN KΛ KΣ ωN η′N

1077.84 1217.41 1486.13 1609.36 1686.32 1720.92 1896.05

Now let is make �nal remarks of the Breit-Wigner parametrization. First, one should note
that the total width in the numerator of Eq. (5.3) is canceled by the total width in fηN (W ). The
complex quantity in the partial width ΓηN is canceled by the momentum in the denominator in
Eq. (5.4). Therefore it may be better to write the multipole parametrization in the following
way:

Mℓ±(W ) = M̄ℓ± fγN (W )
MRf̃ηN (W )

M2
R −W 2 − iMRΓtot(W )

CηN , (5.12)

where now the Breit-Wigner factor f̃ηN (W ) is described by:

f̃ηN (W ) = gηN

[
k

(2J + 1)π

mp

MR

(
|q(W )2|

X2 + |q(W )2|

)ℓ
]1/2

, (5.13)

where the coupling constant gηN now carries the sign of ζηN .

Second, let us talk about the unitarity resonance phase Φα
j . If we consider the MAID analysis

of pion production [8], then Φα
j is an energy dependent function and is used, in accordance

with the Fermi-Watson theorem, to adjust the phase of the total multipole (background plus
resonance) to the corresponding pion-nucleon scattering phase δπN or to the experimentally
observed one.

However, in case of η production we do not have any theoretical approach for it. Also phase
was not used in the previous data analysis [9, 52, 53]. Therefore we decided to set it to a
constant.

In recent analysis which is as well combined with the �xed-t dispersion relations approach we
found this modi�cation very productive as it signi�cantly improves the results for the analysis
with the �xed-t dispersion relations constrains.

However, such parametrization is not an optimal one, as it produces problems, i.e phase is not
vanishing at threshold. But on the other hand more sophisticated parametrization introduces
a lot of new �tting parameters, which in our case we do not have.
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5.1.2 Non-resonant background

The non-resonant background in EtaMAID consists of two parts: Born terms and t-channel
exchanges.

tbgγ,η(W ) = tBorn
γ,η (W ) + tt−channel

γ,η (W ) (5.14)

Born terms are constructed similarly to the work [9]. For the t-channel vector meson ex-
changes we use two Regge parameterizations [54]. In the �rst one the Regge amplitudes are
formulated in terms of Mandelstam variable s. In the second one, the Mandelstam variable s
is replaced by crossing symmetrical variable ν.

Born terms

Born terms are obtained by evaluating the Feynman diagrams derived from an e�ective La-
grangian density.

γ

p

N∗

η

p

γ η

ρ, ω

p p

pp

ηγ

p p

ηγ

Figure 5.1: Feynman diagram for s and u Born terms.

The structure for the electromagnetic γNN vertex is known:

LγNN = −e ψ̄
[
γµA

µF p
1 (Q

2) +
σµν
2mp

(∂µAν)F p
2 (Q

2)

]
ψ , (5.15)

with Aµ the electromagnetic vector potential, mp the proton mass and ψ the nucleon �eld
operators. In Eq. (5.15) (F p

1,2(Q
2)) are the proton electromagnetic form factors, with Q2 = 0.

For real photons the form factors are equal to F p
1 (0) = 1 and F p

2 (0) = κp = 1.79.
The ηNN hadronic vertex is described with 2 couplings the pseudoscalar (PS)

LPS
ηNN = −i gηNN ψ̄ γ5 ψ ϕη , (5.16)

and the pseudovector (PV)

LPV
ηNN =

gηNN

2mp
ψ̄ γ5 γµ ψ ∂

µϕη . (5.17)

Using the previous equations (5.15)-(5.17), the usual Born terms are constructed. The contri-
butions from them into invariant amplitudes Ai(ν, t) can be expressed in terms of the following
variables: the crossing variable ν and the variable νB(t).

Apole
1 (ν, t) =

e gηNN

mp

νB
ν2 − ν2B

, (5.18)

Apole
2 (ν, t) =

−e gηNN

2m2
p

1

ν2 − ν2B
, (5.19)

Apole
3 (ν, t) = −

e gηNNκp
2m2

p

ν

ν2 − ν2B
. (5.20)

Apole
4 (ν, t) = −

e gηNNκp
2m2

p

νB
ν2 − ν2B

, (5.21)

νB =
t−m2

η

4mp
, (5.22)
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5.1 EtaMAID isobar model approach

where coupling g2ηNN/4π ≤ 0.1 is very small in comparison with for example g2πN/4π ≈ 14.
This small value for the η-meson coupling was observed after the �rst measurement of the
di�erential cross section with MAMI in Mainz [55] it was also shown in this work that the
coupling must be a pseudo scalar.

In our present analysis we even get smaller results for the g2ηNN/4π constant. Therefore we
conclude that Born terms play very small role in the data analysis in our energy region and,
therefore, may be neglected. Much more important role play t-channel vector meson exchanges
which we will discuss now.

Contribution from the t-channel vector meson exchanges

Traditional and old MAID approach for the t-channel vector meson exchanges is described in [8]
where contributions from ρ and ω mesons were considered as a single poles. In the current
work single poles are replaced with Regge poles [56] and Regge cuts [57�60] and contributions
from more mesons are taken into account, we will describe them later in the text.

The parameterizations for the t-channel exchanges that are used in the model are taken
from the work of Kashevarov, Ostrick and Tiator [54]. In this work Regge approach was
applied to the description of high energy data on η and π0 photoproduction. By modifying the
energy behavior one can apply Regge parametrization to the analysis of the low energy data
and describe the high energy data as well. With this modi�cation we also solve the duality
problem.

This problem appears when we use at the same time resonances in the s-channel and Regge
exchanges in the t-channel. Whenever we add an in�nite series of the resonances in the s-
channel it is equivalent that we add an in�nite series in the t-channel. By adding these contri-
butions together we have a double counting. In our case we only have a partial double counting
since we have only 14 resonances in the s-channel and in�nite series in the t-channel. Therefore
in order to deal with it we decided to apply a damping factor, which we discuss in the end of
this section.

The t-channel contributions can be derived from the Feynman diagrams presented below.

N N

g

N N

 g

N N

  g

Figure 5.2: t-channel contributions to η photoproduction from single poles (left �gure), Regge
poles (middle �gure), and Regge cuts (right �gure). An example for ρ and ω meson
exchange and P and f2 mesons for rescattering of two Reggeons.

If we consider the contributions from vector and axial-vector mesons, parameterized as a
single poles, into invariant amplitudes we get the following set of equations:
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A1(t) =
e λV g

t
V

2mηMN

t

t−M2
V

, (5.23)

A′
2(t) = −

e λA g
t
A

2mηMN

t

t−M2
A

, (5.24)

A3(t) =
e λA g

v
A

mη

1

t−M2
A

, (5.25)

A4(t) =
−e λV gvV

mη

1

t−M2
V

, (5.26)

where A′
2 amplitude is calculated using formula below:

A′
2(t) = A1(t) + tA2(t) . (5.27)

With this parametrization we separate the vector and tensor contributions from individual
mesons. Thus the invariant amplitude A′

2 now has only contributions from the tensor coupling
of an axial-vector exchange.
In these formulas λV (A) denotes the electromagnetic coupling of the vector (V ) or axial (A)

vector meson with mass MV (A). The constants g
v(t)
V (A) denote their vector (v) or tensor (t)

couplings to the nucleon.
In the work [54] couplings λV (A) were used as a �xed parameters and were determined from

the radiative widths ΓV (A) of the decay V (A) → ηγ via formula below

ΓV (A) =
α(M2

V (A) −m2
η)

3

24M3
V (A)m

2
η

λ2V (A) , (5.28)

where α is a �ne-structure constant. Constants g
v(t)
V (A) vice versa were used as a �tting param-

eters.
Table 5.2 and Tab. 5.3 show the quantum numbers of the reggeons and their couplings

Table 5.2: Quantum numbers for pseudoscalar, vector and axial-vector mesons. Isospin I, G-
parity, spin J , parity P , and charge conjugation C.

γ η ρ(770) ω(782) ϕ(1020) b1(1235) h1(1170)

IG 0, 1 0+ 1+ 0− 0− 1+ 0−

JPC 1−− 0−+ 1−− 1−− 1−− 1+− 1+−

Table 5.3: Coupling constants for η photoproduction used in the analysis.

Reggeon ΓV (A)→ηγ(keV) ληγ gv gt

ρ 50.6 0.910 2.7 4.2
ω 3.9 0.246 14.2 0.
ϕ 55.84 0.38 -4.3 -0.08

b1 - 0.1 0. -7.6
h1 - 2/3 b1 0. 2/3 b1

Since there are no data for the decay b1 → ηγ, therefore ληγ was arbitrary �xed to ληγ = 0.1.
The contribution of the h1 meson is suggested to be a fraction of 2/3 of the b1 contribution.
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5.1 EtaMAID isobar model approach

An experimental observation is that mesons fall into linear trajectories when their spin is
plotted over the squared meson masses (Chew-Frautschi plot) [61, 62]. These trajectories are
called Regge trajectories and are shown on the Fig. 5.3. In addition to them the so-called
Regge cuts trajectories, f2 and Pomeron trajectories are plotted on the right side of the �gure.
We will discuss Regge cuts further in the text.
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Figure 5.3: Regge trajectories: (a) ρ black, ω red, ϕ blue, b1 and h1 green; Regge cuts (b) f2
red, P magenta, ρf2 black solid, ωf2 blue dashed, ρP black solid, ωP black dashed.

For the Regge trajectories the general parametrization [63] is used:

α(t) = α0 + α′ t, (5.29)

Technically, the t-channel exchange of Regge trajectories is done by replacing the single
meson propagator by the following expression:

1

t−M2
V (A)

⇒
(
s

s0

)α(t)−1 π α′

sin[πα(t)]

S + e−iπα(t)

2

1

Γ(α(t))
, (5.30)

where S is the signature of the Regge trajectory, s0 is a mass scale factor, commonly set
to 1 GeV 2. The Gamma function Γ(α(t)) is introduced to suppress additional poles of the
propagator.
The signature S is determined as S = (−1)J for bosons and S = (−1)J+1/2 for fermions. So

S = −1 for the vector and axial-vector mesons, and S = +1 for tensor mesons.
As Donnachie and Kalashnikova suggested [60], in addition to Regge trajectories, also Regge

cuts play an important role and can even dominate, they are also shown on Fig. 5.3. These
Regge cuts can be considered as a box diagram, where always two particles are exchanged.
In case of η photoproduction ρP, ρf2 and ωP, ωf2 cuts were taken into account. Here P is
the Pomeron with quantum numbers of the vacuum 0+(0++) and f2 is a tensor meson with
quantum numbers 0+(2++).
The exchange of two Reggeons with linear trajectories

αi(t) = αi(0) + α′
it, i = 1, 2 (5.31)

yields a cut with a linear trajectory αc(t) [59]

αc(t) = αc(0) + α′
c t , (5.32)
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where

αc(0) = α1(0) + α2(0)− 1 ,

α′
c =

α′
1α

′
2

α′
1 + α′

2

. (5.33)

All four contributions from Regge cuts can be written in the following form:

Dcut =

(
s

s0

)αc(t)−1

e−iπαc(t)/2 edct . (5.34)

Thus, the vector meson propagators are replaced by:

DV = DV + cV PDV P + cV f DV f , V = ρ, ω, (5.35)

the axial vector meson propagators are replaced by:

DA = DA +
∑

V=ρ,ω

(c̃V PDV P + c̃V f DV f ) , A = b1, h1 (5.36)

where the coe�cients cV P, cV f are for natural parity cuts and c̃V P, c̃V f for un-natural parity
cuts.
With this addition the invariant amplitudes will be upgraded to the following form:

λρ g
v,t
ρ

1

t−M2
ρ

→ λρ g
v,t
ρ [Dρ(s, t) + cρPDρP(s, t) + cρf Dρf (s, t)] , (5.37)

λω g
v,t
ω

1

t−M2
ω

→ λω g
v,t
ω [Dω(s, t) + cωPDωP(s, t) + cωf Dωf (s, t)] , (5.38)

λb1 g
t
b1

1

t−M2
b1

→ λb1 g
t
b1
Db1(s, t) + λρ g

t
ρ [c̃ρPDρP(s, t) + c̃ρf2 Dρf2(s, t)]

+λω g
t
ω [c̃ωPDωP(s, t) + c̃ωf2 Dωf2(s, t)] . (5.39)

An alternative Regge formalism is discussed in [54] as well. If we consider the Regge propa-
gator from Eq. (5.30) we will see that the energy dependence is proportional to sα(t)−1, which
violates the crossing symmetry. Therefore we cannot predict the behavior of this amplitude
under the dispersion integral. Thus the alternative parametrization is given below:

DV,A = −βi(t)
e−iπαV,A(t) − 1

sin[παV,A(t)]

(
ri

V,A ν
)αV,A(t)−1

. (5.40)

Here the Mandelstam variable s is replaced by the crossing variable ν and the Gamma
function in the denominator of Eq. (5.30) is replaced by a more general residue βi(t), where
i = 1, 2, 3, 4 is index of the invariant amplitudes. ri

V,A are scale parameters of dimension
GeV−1. Each exchange, V or A, has its own scale parameter.
In Ref. [64] the following residues for V = ρ, ω, ϕ and A = b1, h1 are given

βV1 (t) = gV1 t
−πα′V

2

1

Γ(αV (t) + 1)
, (5.41)

βV4 (t) = gV4
−πα′V

2

1

Γ(αV (t))
, (5.42)

β′A2 (t) = gA2 t
−πα′A

2

1

Γ(αA(t) + 1)
. (5.43)
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5.1 EtaMAID isobar model approach

Here the prime in β′2 denotes the fact that this is the A′
2 residue, which explains the factor

of t. The factor −πα′/2 ensures the correct on-shell couplings. Both functions 1/Γ(α+1) and
1/Γ(α) are equal to 1 at the pole α = 1, however they di�er in the physical region.
The values for the given trajectories as well as for Regge cuts are shown in Tab. 5.4

Table 5.4: The Reggeon and cut trajectories used in [54] and present work. Solution I (Regge
(s) in present work)) has contributions from ρ, ω, b1, h1 and ρf2, ωf2, ρP, ωP.
Solution IV (Regge (ν) in present work)) has contributions from ρ, ω, b1, h1, ϕ.

Reggeon or cut α(t)

ρ 0.477 + 0.885 t
ω 0.434 + 0.923 t

b1, h1 −0.013 + 0.664 t
f2 0.671 + 0.817 t
P 1.08 + 0.25 t
ϕ 0.10 + 0.85 t

ρf2 0.148 + 0.425 t
ωf2 0.106 + 0.436 t
ρP 0.557 + 0.195 t
ωP 0.514 + 0.197 t

Both these models were used in the present data analysis. In the beginning we did not
consider the implementation of the reggeized background into our model, since we are working
in the low energy region from η production threshold up to W ≈ 1850 MeV. However, as it
was written in the beginning, we found a productive method to decrease the impact from such
background in the resonance region and perform partial wave analysis.
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Chapter 5 Partial wave analysis

This method is following. We multiply each Regge amplitude with an energy dependent
damping factor that has a form

DF (W ) = 1− e−
W−Wthr

Λ , (5.44)

for Regge amplitudes written in terms of s, and

DF (ν) = 1− e−
ν−νthr

Λ , (5.45)

for Regge amplitudes, written in terms of ν. Here Wthr = mp +mη, and νthr corresponds to
the ηN production threshold for each t value on which we perform our integration. Factors
Λ were obtained from the �t of the data in the resonance region with an isobar model. We
discuss the values for them in Chapter 7.
As a result of this procedure we obtain the following behavior:
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Total cross section HΜbL

Figure 5.4: Regge contributions into the total cross section. Blue line shows normal Regge
contribtuions, red line shows contributions with Regge × DF.

As one can see this method e�ectively deals with large contributions and solves the duality
problem.

5.2 Other partial wave analysis models

In addition to the described above MAID model one should list alternative partial wave anal-
ysis approaches. They are: Bonn-Gatchina (BnGa), Jülich-Bonn (JüBo) and SAID models.
Since the main goal of this work is not related to the comparison of the approaches only brief
introduction of the models based on a common paper which is done by MAID, SAID, JüBo
and BnGa members [65] is listed.

5.2.1 Bonn-Gatchina approach

The BnGa approach relies on a fully relativistically invariant operator expansion method. The
advantage of the model is in direct imposing analyticity and unitarity constraints as well as the
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5.2 Other partial wave analysis models

simultaneous analysis of many (more than 100) reactions. The scattering amplitude includes
in itself the decay of baryon resonances and some t and u-channel exchange diagrams.
In order to impose the listed above properties a so-called N/D-method is applied to the

description of the resonance spectrum. In a simpli�ed version this method uses K-matrix
approach with real parts of the two-body loop diagrams taken into account. For three-body
�nal states, only the imaginary part is taken into account, which is calculated as the three-body
integral.
At high energies the t-channel meson exchanges are taken into account. The contributions

from π, ρ, ω,K or K∗ mesons are written in terms of Regge amplitudes.

5.2.2 Jülich-Bonn approach

Strictly speaking JüBo is not a partial wave analysis but rather a dynamical coupled-channel
approach. This approach allows us to extract the baryon spectrum and simultaneously analyze
pion- and photon-induced reactions.
Its advantage is that the theoretical constraints like analyticity and unitarity are manifestly

implemented. The formalism allows us to determine the resonance states in terms of poles in
the complex energy plane of the scattering matrix together with corresponding residues and
helicity couplings. However this approach has its own disadvantages. For example the long
�tting time and high computational e�orts which is the consequence of the highly complex
equations that leads from theory.

5.2.3 SAID approach

The recent SAID parametrization is based on a Chew-Mandelstam K-matrix. The hadronic T
matrix is described

Tαβ = [1− K̄C]−1
ασK̄σβ (5.46)

where C is the Chew-Mandelstam function. The formalism di�ers from all described before
in the way that resonance properties except ∆(1232) 3/2+ are deduced. This resonance is
explicitly introduced as K-matrix pole, all other resonances are calculated from the factor
[1 − K̄C]−1 which is common for πN scattering and γN reactions. And also the resonance
poles are not added by hand but are generated in the data analysis procedure. Thus only those
are necessary are produced.
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Chapter 6

Fixed-t dispersion relation approach. Previous results

This section is devoted to the method of �xed-t dispersion relations. First, mathematical aspect
is described. Then, previous applications of this method are discussed. The main attention
is put on the work written by Aznauryan on photo- and electroproduction of η meson [66].
Finally the model, used for the present data analysis is considered and the comparison with
work of Aznauryan is done.

6.1 Dispersion relations, mathematical formulation

Dispersion relations should be �rst formulated mathematically. Imagine that we have any com-
plex function f(z) that is analytic in the upper half-plane and satis�es the following condition:
Imf(z) → 0, z → ∞. Therefore we can write the following relation:

f(z) =
1

2πi

˛
f(z′)

z′ − z
dz′ =

1

2πi

(
P
ˆ +∞

−∞

f(z′)

z′ − z
dz′ + iπf(z)

)
(6.1)

Here P is a notation for principle value integral, z′ is a running integrating variable.
By simpli�cation of this formula one can obtain the well-known relations for real and imag-

inary parts of f(z):
For real part one gets:

Ref(z) =
1

π
P
ˆ +∞

−∞

Imf(z′)

z′ − z
dz′ (6.2)

For imaginary part one gets:

Imf(z) = − 1

π
P
ˆ +∞

−∞

Ref(z′)

z′ − z
dz′ (6.3)

For the complex even functions f(−z) = f∗(z) one gets the following relations for real and
imaginary parts:

Ref(z) =
2

π
P
ˆ +∞

0

zImf(z′)

z′2 − z2
dz′ (6.4)

Imf(z) = − 2

π
P
ˆ +∞

0

z′Ref(z′)

z′2 − z2
dz′ (6.5)

For the odd functions f(−z) = −f∗(z), real and imaginary parts are calculated as shown
below:

Ref(z) =
2

π
P
ˆ +∞

0

z′Imf(z′)

z′2 − z2
dz′ (6.6)

Imf(z) = − 2

π
P
ˆ +∞

0

zRef(z′)

z′2 − z2
dz′ (6.7)
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Chapter 6 Fixed-t dispersion relation approach. Previous results

6.2 Data analysis using the �xed-t dispersion relations approach

In data analysis di�erent kinds of dispersion relations may be used and the one we are interested
in is the method of �xed-t dispersion relations for invariant amplitudes, which was successfully
applied in the data analysis in the resonance region [19�29].
For example one can see the application of it in the works of Chew and Ball [39,67], and also

�nd the extensions pion electroproduction from Devenish and Dennery [68,69].
Since 1990's the method was successfully applied to analyze the pion production data from

the new generation of electron accelerators. In 2000's it was applied to η production and used
in the analysis of the data on η photo- and electroproduction [66,70].
Since our goal is to analyze the η photoproduction data we are interested in a work of

Aznauryan [66] where the data existing at that time on γp → ηp reaction [48, 71�74] were
analyzed using �xed-t dispersion relations approach. We consider in details the approach from
this work.

6.2.1 Data analysis using �xed-t dispersion relations in work of
Aznauryan

The data set contained only three experimental observables: dσ/dΩ, T, Σ. Below one can �nd
the table which shows the energy range for the �tted data used in the analysis.

γp→ ηp Observable Energy range W (MeV)

[73]TAPS dσ/dΩ 1491-1537
[71]GRAAL dσ/dΩ 1490-1716
[72]CLAS dσ/dΩ 1528-2012
[74] ELSA T 1492-1719
[48] GRAAL Σ 1506-1688

Table 6.1: Database used in the analysis in the work [66]

These data were analyzed with the set of 13 resonances:

Table 6.2: Resonances used for the
data analysis in work [66].

Resonance ℓ

N(1440) 1/2+ 1
N(1520) 3/2− 2
N(1535) 1/2− 0
N(1650) 1/2− 0
N(1675) 5/2− 2
N(1680) 5/2+ 3
N(1700) 3/2− 2
N(1710) 1/2+ 1
N(1720) 3/2+ 1
N(1900) 3/2+ 1
N(1990) 7/2+ 3
N(2000) 5/2+ 3
N(2150) 3/2− 2
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6.2 Data analysis using the �xed-t dispersion relations approach

As a result the contributions of �rst eight resonances from Tab. 6.2 were found and the model
dependence of the resonance parameters was studied. In order to estimate this dependence the
isobar model approach was used for the analysis of the same data.
Let us consider the formalism used in this work, taking into account that formulas were

written originally for case γ∗N → ηN , and in this work are simpli�ed for γp→ ηp.
The �xed-t dispersion relations were performed for a set of four invariant amplitudes:

B1(s, t)[GeV
−2], B2(s, t)[GeV

−2], B6(s, t)[GeV
−3], B8(s, t)[GeV

−3]. (6.8)

These amplitudes were chosen as an independent set out of eight ones [38], that describe the
electromagnetic current. The dimensions of the amplitudes are given in quadratic brackets.
At �xed value of t the dispersion relations were performed according to the the formula below

Re Bi(s, t) = egηNNR
p
i

(
1

s−m2
p

+
ηi

u−m2
p

)

+
P
π

∞̂

scut

Im Bi(s
′, t)

(
1

s′ − s
+

ηi
s′ − u

)
ds′, (6.9)

where mp denotes the proton mass, s, t and u are the Mandelstam variables, scut = (mp+mπ)
2

is the lowest limit for integration, e2/4π = 1/137, gηNN is the ηNN pseudoscalar coupling
constant.
The factors ηi in the dispersion relations de�ne the crossing symmetry properties of the

invariant amplitudes, they are equal to η1 = η2 = η6 = 1, η8 = −1. Rp
i correspond to the

residues in the nucleon poles and are recalculated through the nucleon proton Pauli form
factors F p

1 = 1, F p
2 = κp/2mp with κp = 1.79. Thus the residues have the following form:

Rp
1 = F p

1 + 2mpF
p
2 ,

Rp
2 = −F p

1 ,

Rp
6 = 2F p

2 ,

Rp
8 = F p

2 . (6.10)

The integrating path at a �xed-t lies in both physical and unphysical regions. In the
unphysical region from scut = (mp + mπ)

2 up to s = (mp + mη)
2 the contributions only

from N(1440) 1/2+, N(1535) 1/2− and N(1650) 1/2− resonances are taken into account for
Im Bi(s, t).
In the physical region contributions from all resonances are taken into account and con-

structed from the Breit-Wigner parameterizations.
The resonance contributions to the multipole amplitudes for all resonances except Roper

are parameterized with a slightly di�erent original MAID isobar model described in [9]. And
therefore very similar to parametrization given Eqs. (5.3 - 5.5) with some small and insigni�cant
changes. The energy dependent widths are as well very similar to what is written in a set of
formulas given in Eqs. (5.6)
For N(1440) 1/2+, however parametrization di�ers from the one that we use. Roper is a

broad resonance and, despite lying below threshold, is expected to have also an in�uence on
the production mechanism above threshold.
For such a case Aznauryan starts from an e�ective Lagrangian for the nucleon to Roper

excitation and for the invariant amplitudes BR
i (s, t) for both physical and unphysical regions

we obtain:

BRop
i (s, t) = egηNRR

Rop
i

1

s−M2
Rop + iMRopΓtot

, (6.11)
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where:

RRop
1 = (mp +MRop)F

Rop
2 ,

RRop
2 = 0,

RRop
6 = 2FRop

2 ,

RRop
8 = FRop

2 .

The mass and the width of N(1440) 1/2+ were set to MRop = 1440 MeV, Γ = 350 MeV
respectively. The branching ratio into the πN channel was taken to βπN = 60%. Values for
A1/2 were taken from the Particle Data Group an then calculate the from factor FRop

2 :

A1/2 = e

(
πkR

MRop

mp

)1/2

FRop
2 . (6.12)

FRop
2 ≡

κRp
2mp

, κRp = −0.5. (6.13)

The contributions from N(1535) 1/2− and N(1650) 1/2− resonances in the unphysical region
the were calculated using following expressions:

E0+ ≡ E0+

2W [(Ei +mp)(Ef +mp)]1/2
,

B1(s, t) = E0+,
B2(s, t) = 0, (6.14)

B6(s, t) = 2B8(s, t) = −(W −mp)(Ei +mp)E0+
Wk2

.

with Ei and Ef energies in the initial and the �nal state.

6.2.2 Data analysis using �xed-t dispersion relations with Eta-
MAID

Since the previous work [66] was published a new and precise data on η photoproduction were
taken. We want to analyze these data using �xed-t dispersion relations procedure. Let us
consider our parametrization and discuss the di�erences from [66].
The data with the preliminary analysis with Legendre polynomials have already been given

in Chapter 4, the energy and the angular coverages of these data are shown on Tab. 4.1. An
EtaMAID isobar model approach is described in Section 5.1.
In present data analysis the dispersion integrals are preformed for Ai(ν, t), i = 1, 2, 3, 4

invariant amplitudes which we chosen alternatively to Bi(s, t). These amplitudes are related
to the amplitudes B1, B2, B6, B8 by the following relations:

A1(ν, t)[GeV
−2] = B1(ν, t)−mpB6(ν, t) ,

A2(ν, t)[GeV
−4] =

2B2(ν, t)

t−m2
η

,

A3(ν, t)[GeV
−3] = −B8(ν, t) ,

A4(ν, t)[GeV
−3] = −1

2
B6(ν, t) . (6.15)

In our formalism the Mandelstam variable s is replaced with a crossing symmetrical variable
ν. The relations between between them are given in Eqs. (3.11) and (3.12).
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6.2 Data analysis using the �xed-t dispersion relations approach

Let us �rst describe the construction of invariant amplitude below threshold as this is the
most di�cult part in the analysis.

Multipoles and CGLN amplitudes are functions in close connection to experimental observ-
ables. They are generally only de�ned above threshold, and for multipoles, the threshold
behavior is given by Eℓ± ,Mℓ± ∝ qℓ, see Eqs. (5.12 and 5.13). Taking this into account we can
de�ne:

Ẽℓ± = Eℓ±/q
ℓ, M̃ℓ± = Mℓ±/q

ℓ. (6.16)

Then by going into unphysical region we face the problem with the meson momenta q(W )
which real part becomes zero at threshold and below threshold the momenta starts having only
imaginary part. In our parametrization of the multipoles Eq. (5.12) and Eq. (5.13) we always
use |q2(W )| which is very convenient because this value can be easily de�ned in this area.

Then we have a problem with the scattering angle θ which is unde�ned in the area outside
θ = 0 and θ = 180 degrees. Cosine of the scattering angle cos θ is in�nite at threshold, however
the product of cos θ, and q remains �nite and can be easily extrapolated into unphysical region
for any t and s or ν, and using Eq. (3.9):

q cos θ =
t−m2

η + 2kω

2k
. (6.17)

Taking this into account we we construct modi�ed CGLN amplitudes F̃i:

F̃1 = F1, F̃2 = F2/q, F̃3 = F3/q, F̃4 = F4/q
2. (6.18)

At threshold these modi�ed CGLN amplitudes retain contributions from any multipole. In our
case we truncate our series at the maximal orbital angular momentum ℓmax = 3:

F̃1 = Ẽ0+ + 3 (M̃1+ + Ẽ1+) q cos θ + (3M̃2− + Ẽ2−)q
2

+(Ẽ2+ + 2M̃2+)(15(q cos θ)
2 − 3q2)/2

+3 q2(4M̃3− + Ẽ3−)q cos θ , (6.19)

F̃2 = 2M̃1+ + M̃1− + 3 (3M̃2+ + 2M̃2−) q cos θ

+3M̃3−(15(q cos θ)
2 − 3q2)/2 , (6.20)

F̃3 = 3 (Ẽ1+ − M̃1+) + 15 (Ẽ2+ − M̃2+) q cos θ

+3(Ẽ3− + M̃3−)q
2 , (6.21)

F̃4 = 3 (M̃2+ − Ẽ2+ − M̃2− − Ẽ2−)− 15(M̃3− + Ẽ3−)q cos θ . (6.22)

The leading contributions are:

F̃1 = Ẽ0+ , (6.23)

F̃2 = 2M̃1+ + M̃1− , (6.24)

F̃3 = 3 (Ẽ1+ − M̃1+) , (6.25)

F̃4 = 3 (M̃2+ − Ẽ2+ − M̃2− − Ẽ2−) . (6.26)
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Now we construct the invariant amplitudes:

A1 = N
{
W +mp

W −mp
F̃1 − (Ef +mp) F̃2 +

mp(t−m2
η)

(W −mp)2
F̃3

+
mp(Ef +mp) (t−m2

η)

W 2 −m2
p

F̃4

}
,

A2 =
N

W −mp

{
F̃3 − (Ef +mp) F̃4

}
, (6.27)

A3 =
N

W −mp

{
F̃1 + (Ef +mp)F̃2 +

(
W +mp +

t−m2
η

2(W −MN )

)
F̃3

+

(
W −mp +

t−m2
η

2(W +mp)

)
(Ef +mp) F̃4

}
,

A4 =
N

W −mp

{
F̃1 + (Ef +mp) F̃2 +

t−m2
η

2(W −mp)
F̃3 +

t−m2
η

2(W +mp)
(Ef +mp) F̃4

}
,

where N = 4π/
√

(Ei +mp) (Ef +mp), Ei and Ef are de�ned in Eq. (3.8).
With this procedure we get the imaginary parts of invariant amplitudes which remain �nite

down to πN threshold and containing contributions from all partial waves. This can bee seen
later in the text on Fig. 6.3
Finally after obtaining the imaginary parts of A1(ν, t), A2(ν, t), A3(ν, t), A4(ν, t) we can

calculate the real parts via principle value integral:

ReAi(ν, t) = A pole
i (ν, t) +

2

π
P

∞̂

νthr(t)

dν ′
ν ′ ImAi(ν

′, t)

ν ′2 − ν2
, for i = 1, 2, 4 (6.28)

ReAi(ν, t) = A pole
i (ν, t) +

2ν

π
P

∞̂

νthr(t)

dν ′
ImAi(ν

′, t)

ν ′2 − ν2
, for i = 3 (6.29)

where νthr(t) is a value corresponding to the πN production threshold, and caculated as

νthr(t) =
W 2

thr −m2
p

2mp
+
t−m2

η

4mp
(6.30)

with Wthr = mp + mπ, A
pole
i (ν, t) are the nucleon pole contributions coming from the Born

terms. ImAi(ν
′, t) contain contributions from resonances and Regge contributions (when used

in the analysis).
For the upper limit of the integration with resonances we choose νRes = 2660 MeV because

at higher energies the contributions from the resonances might be neglected. In case when we
use Regge background we choose νRegge = 20 GeV.
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6.2 Data analysis using the �xed-t dispersion relations approach

Thus at �xed-t our path lies in the following regions: red, orange and green, see plot below.
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Figure 6.1: The Mandelstam plane for γp → ηp. The red solid curves are the boundaries of
the physical region from θ = 0 to θ = 1800. The red dashed line shows θ = 900.
The inclined vertical lines from left to right denote the thresholds for πN, ηN, η′N
production respectively. Horizontal line plotted at t = −0.5GeV2 with 3 colors:
red, orange, green shows the energy regions for the integration at this value. The
combination of red and orange regions cover energies from νthr up to νη thr. The
green region covers energies from νη thr up to νRes and νRegge.

Thus the relation for the real part can be written in simple form:

ReAi(ν, t) =

νη thrˆ

νthr(t)

ImAi(Res) +

νResˆ

νη thr

ImAi(Res+Regge) +

νReggeˆ

νRes

ImAi(Regge) ,(6.31)

where νη thr is calculated via

νη thr =
W 2

ηthr −m2
p

2mp
+
t−m2

η

4mp
, (6.32)

with Wηthr = mp +mη. A more clear way is to use the upper limits as a t dependent function,
however this will change the results insigni�cantly.
After the real parts of invariant amplitudes are obtained we use the projection formulas

written in the Appendix Eq. (A.7) in order to get the CGLN amplitudes which we then combine
into helicity amplitudes Eq. (A.8) because of more compact formulas for the experimental
observables.

6.2.3 Restrictions on the t values for dispersion relations

It is also important to mention the di�culties with the data analysis using �xed-t dispersion
relations. They are related to the divergence of the dispersion relations at t = const. This
problem was discussed in paper on pion photoproduction by Pasquini, Drechsel, Tiator [75].
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Chapter 6 Fixed-t dispersion relation approach. Previous results

In Eqs. (6.28, 6.29) we start integration from some νthr(t) and go up to νRegge, therefore
part of our integral lies in the unphysical region. The way to construct the imaginary parts of
invariant amplitudes in this area is to use the partial wave expansion of CGLN amplitudes Eq.
(6.27) Where CGLN amplitudes are constructed according to already described procedure in
Eq. (6.22).

But what about convergence of this expansion at large negative t-values? In present partial
wave analysis we go up to t ≈ −1.5 GeV2 which is related to the last backward angle of Σ
asymmetry [47]. Therefore we preform dispersion integrals for invariant amplitudes at this
�xed value of t. According to [75] the convergence is based on the mathematical lemma: If
a function f(z = x + iy) is analytic inside and on an ellipse C whose foci are at the points
(x = cos θ = ±1, y = 0), it can be expanded in a Legendre series. If we follow then the
arguments from this paper we will have to solve the following equation.

[s− (mp +mη)
2][s− (mp −mη)

2][u− (mp +mη)
2]

×[u− (mp −mη)
2]− (4m2

p −m2
η)m

2
η

×[2su− 2(m2
p −m2

η)(s+ u) + 2m2
p −m4

η] = 0, (6.33)

for t = const, when s = u and

s+ t+ u = 2m2
p +m2

η, (6.34)

we get t = −4.83 GeV2 therefore the the region where we are working have no kinematical
boundaries.

In addition there is a work of Noelle [76] where the presented below box-diagram is discussed.

γ

p

p

π
0
, η

π
+

n

π
−

n

Figure 6.2: Diagram A from [76] for γp → π0p which gives the shape of su double spectral
region.

This diagram also give corrections on our t values. However according to our analysis we
can conclude that in our case the impact of this diagram should be small because we replace
pion with an η that couples to the nucleon and the gηNN coupling is small, therefore we can
omit it.

6.2.4 Comparison of the approaches.

Taking into account information about these two approaches that were discussed in this chapter
one can conclude that both of them are very similar to each other at some points. However
there are di�erences between them. For the small di�erences we may put di�erent multipole
parametrization of the partial waves, less decay channels were taken into account by Aznauryan.

For the signi�cant and most important di�erences we have that in our approach we take
into account contributions from all resonances. Not only N(1440) 1/2+, N(1535) 1/2− and
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6.2 Data analysis using the �xed-t dispersion relations approach

N(1650) 1/2−. This is especially important for N(1520) 3/2− which contribution to the invari-
ant amplitude is huge in comparison with other resonances despite very small branching ratio
βηN < 1% and therefore must be taken into account. Such contribution you may see on �gure
below, where we compare invariant amplitudes from our initial solution with and without this
resonance
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Figure 6.3: Invariant amplitudes for initial solution. Blue solid line shows imaginary parts of
invariant amplitudes for a full set of resonances. Blue dashed line shows imaginary
part of invariant amplitudes without N(1520) 3/2−.

The second important di�erence is the resonance phase Φα
j which is introduced in our ap-

proach, as it will be shown in the chapter with the �t results it plays important role in the
analysis.
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Chapter 7

Fit results

This chapter is devoted to the description of the �t results obtained using isobar model (IB)
and �xed-t dispersion relations (DR) approaches. We pay a special attention to the comparison
of results obtained with di�erent methods. In our analysis we analyze the data presented in
the table below.

Table 7.1: Data used in present work. In the �rst part of the table the �tted data is shown. In
the second part of the table we show high energy data that was only described be
our models.

γp→ ηp Observable Energy range (MeV)

[44] MAMI dσ/dΩ 1488-1851
[49] A2 MAMI T 1495-1850
[49] A2 MAMI F 1495-1850
[47] GRAAL Σ 1490-1863
[50]CLAS E 1525-1825

[77�80] DESY, Wilson, Daresbury, CEA dσ/dt 2360-3987
[79] Daresbury Σ 2360-2551
[81]Daresbury T 2896

In our analysis we used the set of 14 resonances that were shown on the Tab. 3.1.

In our analysis we performed many �ts where we tested the in�uence of resonant terms, Born
terms and t-channel exchanges on the description the data. We obtained seven illustrative
solutions with which we can show the evolution of our results. These 7 solutions are:

� Solution 1: With resonances only

� Solution 2: With resonances and Born terms

� Solution 3: With resonances Regge trajectories (s) and Regge cuts (s)

Then we added unitarity phases Φα
j for j : 3/2−, 3/2+, 5/2− states as a �tting parameters.

� Solution 4: With resonances ×eiΦ
α
j and Born terms

� Solution 5: With resonances ×eiΦ
α
j , Regge trajectories (s) and Regge cuts (s)

� Solution 6: With resonances ×eiΦ
α
j and Regge trajectories (ν)

As a �nal step we added unitarity Φα
j for all resonances except N(1440) 1/2+.

� Solution 7: With resonances ×eiΦ
α
j for all resonances except N(1440) 1/2+, and Regge

trajectories (ν)
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Chapter 7 Fit results

We decided not to add the unitarity phase for Roper since we wanted to �t only the coupling
constant of this resonance which describes the decay of N(1440) 1/2+ → ηN .
Thus we get two groups of solutions. Group 1 where solutions are obtained without phases

(Solutions 1-3). Group 2 where solutions are obtained using additional �tting parameters
(Φα

j )(Solutions 4-7). Solutions from the �rst group have larger χ2 values than solutions from
the second one. Solutions 6 and 7 we consider as the �nal ones.
For each solution we show description of the observables. After we discuss solutions of

group 1 and compare invariant amplitudes for them. Then we discuss solutions of group 2
and show comparison of invariant amplitudes as well. We show multipoles only for the last
solution, however one can �nd plots of multipoles for all solutions in the Appendix. Resonances
parameters, including unitarity phases, are discussed in the end.

7.1 Starting solution

Based on general considerations the starting solution has to be a good one, in order to get
a reliable results during the minimization procedure. This means that resonance parameters
should be more or less in agreement with, for example, PDG estimations and they should
not vary too much from reliable physical values. Following these ideas and using the set of
resonances from Tab. 3.1 we were able to obtain starting solution with a χ2/Ndof = 2.33.
The same resonance parameters are used as a staring parameters for the analysis using �xed-t

dispersion relations. The χ2 value is much higher in this case: χ2/Ndof = 130. To get a good
and reliable result one we use method of series, i.e we �rst obtain solution 1 (DR), then we use
it as a starting solution for solution 2 (DR), then solution 2 (DR) is used as a starting one for
solution 3 (DR) etc.
Below the description of the data with all obtained solutions is shown.
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7.2 Solution 1. Fit results with resonances only

7.2 Solution 1. Fit results with resonances only

As a �rst step the �t was done with resonances only. The table below shows χ2 values for the
�tted data sets:

Table 7.2: χ2 values for solution 1

Data Observable χ2
IB χ2

DR Number of points (Npt)

[44] MAMI dσ/dΩ 4054 6889 2544
[49] A2 MAMI T 523 1353 144
[49] A2 MAMI F 509 975 144
[47] GRAAL Σ 822 947 130
[50] CLAS E 42 52 42

χ2
IB/Ndof = 2.07 χ2

DR/Ndof = 3.4

7.2.1 Description of the dσ/dΩ and the total cross section
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cos θ
Figure 7.1: IB (red) and DR (blue) �t results for dσ/dΩ [44]. Data are plotted from the

threshold up to the last measured energy with the W step ∼50 MeV. For the IB �t
χ2/Npt = 4054/2544, for the DR �t χ2/Npt = 6889/2544.

It is clearly seen that the data are described within the errors by both approaches. In most
cases the di�erences between two curves are small. The descriptions are mainly overlapping
with each other. Therefore the χ2 di�erence is due to the small data errors. There is the
problem with the description of the data at highest energies. The reason is that at these
energies the contributions of t-channel exchanges should be taken into account. Fig. 7.2 shows
the description of the total cross section. These data were not used in the analysis but it is
useful to show the description of this observable because it indirectly shows the quality of the
�t of the di�erential cross section. In addition the �gure mainly shows the description of the
cusp e�ect observed in the data which can be explained by the decay of N(1650) 1/2− into
KΣ channel.
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Figure 7.2: IB (red) and DR (blue) �t results for the total cross section. for solution 1. Results
for all other solutions are very similar. Therefore we do not show similar �gure for
other solutions.

One can conclude that the data are perfectly described by both approaches and the cusp
e�ect is reproduced.

7.2.2 Description of T and F asymmetries

The descriptions of polarization observables T and F are shown below on Figs. 7.3 and 7.4.
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Figure 7.3: IB (red) and DR (blue) �t results for T [49]. For the IB �t χ2/Npt = 523/144, for

the DR �t χ2/Npt = 1353/144.
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7.2 Solution 1. Fit results with resonances only
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Figure 7.4: IB (red) and DR (blue) �t results for F [49]. For the IB �t χ2/Npt = 509/144, for

the DR �t χ2/Npt = 975/144.

Unlike the case of di�erential cross section, the di�erences between IB and DR �ts are bigger.
In case of F red and blue curves are closer one to another than in case of T , where the red
curves mostly lie within the errors but the blue ones are mainly o�.
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7.2.3 Description of Σ and E asymmetries

The descriptions of polarization observables Σ and E are shown below on Figs. 7.5 and 7.6.
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Figure 7.5: IB (red) and DR (blue) �t results for Σ [47]. For the IB �t χ2/Npt = 822/130, for

the DR �t χ2/Npt = 947/130
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Figure 7.6: IB (red) and DR (blue) �t results for E [50]. For the IB �t χ2/Npt = 42/42, for

the DR �t χ2/Npt = 52/42

As one can see from Figs. 7.5 and 7.6 the results of both approaches are in a good agreement.
Nevertheless the description is inconsistent with the data in case of Σ observable for energies
above W = 1754 MeV and with the data on E observable for energies above W = 1625 MeV.
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7.2 Solution 1. Fit results with resonances only

7.2.4 Solution 1 summary

This solution provides a good description of the data only for the di�erential and the total
cross section. However the polarization data are only described with isobar model approach.
Such a simple case where we have only resonances shows that one needs to improve our model
in order to get good results.
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7.3 Solution 2. Fit results with resonances and Born terms

In the next step Born terms were taken into account and Solution 2 was obtained. Unlike the
case of pion photoproduction Born terms do not have a big impact to the scattering amplitude
in η photoproduction. Nevertheless it is interesting to study the e�ect of such background.
The table of χ2 values for the �tted data is presented below:

Table 7.3: χ2 values for solution 2

Data Observable χ2
IB χ2

DR Number of points (Npt)

[44] MAMI dσ/dΩ 3822 5170 2544
[49] A2 MAMI T 605 1196 144
[49] A2 MAMI F 443 711 144
[47] GRAAL Σ 637 1111 130
[50]CLAS E 29 37 42

χ2
IB/Ndof = 1.88 χ2

DR/Ndof = 2.78

7.3.1 Description of the dσ/dΩ
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Figure 7.7: IB (red) and DR (blue) �t results for dσ/dΩ [44]. Data are plotted from the

threshold up to the last measured energy with the W step ∼50 MeV. For the IB �t
χ2/Npt = 3822/2544, for the DR �t χ2/Npt = 5170/2544.

The description of this observable is similar to what was shown on Fig. 7.1
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7.3.2 Description of T and F asymmetries
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Figure 7.8: IB (red) and DR (blue) �t results for T [49]. For the IB �t χ2/Npt = 605/144, for

the DR �t χ2/Npt = 1196/144.
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Figure 7.9: IB (red) and DR (blue) �t results for F [49]. For the IB �t χ2/Npt = 443/144, for

the DR �t χ2/Npt = 711/144.

Figs. 7.8 and 7.9 show that the discrepancy between two curves, IB and DR, still remains.

71



Chapter 7 Fit results

7.3.3 Description of Σ and E asymmetries
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Figure 7.10: IB (red) and DR (blue) �t results for Σ [47]. For the IB �t χ2/Npt = 637/130,
for the DR �t χ2/Npt = 1111/130
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Figure 7.11: IB (red) and DR (blue) �t results for E [50]. For the IB �t χ2/Npt = 29/42, for
the DR �t χ2/Npt = 37/42.

The results are very similar to what was shown on Figs. 7.5 and 7.6.

7.3.4 Solution 2 summary

Fit results in this case are almost identical to the previous ones. The introduction of the Born
terms did not change the results signi�cantly. The improvement in χ2 comes mostly from the
di�erential cross section. However one can see also an improvement in χ2 for polarization data,
but still the discrepancy between IB and DR results is still rather big. Obtained values for the
coupling constant g2ηNN/4π = 3.07× 10−3 in IB �t and g2ηNN/4π = 3.34× 10−2 in DR �t.
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7.4 Solution 3. Fit results with resonances and Regge contribu-
tions (s)

Up to now the background was purely real. With the introduction of Regge trajectories and
Regge cuts one has to take into account their contributions to the imaginary part of the invariant
amplitudes. In addition we apply the damping factor, see Eq. (5.44) in order to suppress the
the Regge contributions in the resonance region and also in order to deal with duality problem.
The constant Λ for the damping factor was set to Λ = 400 MeV which comes from the result
of the �t of high energy proton and neutron data with an isobar model.
The speci�c choice of the Regge expression was based on the results of [54].
Regge formulas are written in terms of Mandestam variable s, therefore they violate the

dispersion relations, as it was explained before. But we expected that this violation has not a
strong e�ect and the results at high energies should not be changed signi�cantly.
The table of χ2 values for the �tted data is presented below:

Table 7.4: χ2 values for solution 3

Data Observable χ2
IB χ2

DR Number of points (Npt)

[44]MAMI dσ/dΩ 5008 6361 2544
[49] A2 MAMI T 453 1082 144
[49] A2 MAMI F 425 809 144
[47] GRAAL Σ 1117 1005 130
[50]CLAS E 56 42 42

[77�80] DESY, Wilson, Daresbury, CEA dσ/dt 33 108 52
[79]Daresbury Σ 4 33 12
[81]Daresbury T 3 31 3

χ2
IB/Ndof = 2.45 χ2

DR/Ndof = 3.11
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7.4.1 Description of the dσ/dΩ
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Figure 7.12: IB (red) and DR (blue) �t results for dσ/dΩ [44]. Data are plotted from the

threshold up to the last measured energy with the W step ∼50 MeV. For the IB
�t χ2/Npt = 5008/2544, for the DR �t χ2/Npt = 6361/2544.

The description of the di�erential and total cross section data is very similar to solutions 1
and 2.

7.4.2 Description of T and F asymmetries
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Figure 7.13: IB (red) and DR (blue) �t results for T [49]. For the IB �t χ2/Npt = 453/144,

for the DR �t χ2/Npt = 1082/144.

Both approaches show the same inconsistency observed in solutions 1, 2.
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Figure 7.14: IB (red) and DR (blue) �t results for F [49]. For the IB �t χ2/Npt = 425/144,

for the DR �t χ2/Npt = 809/144.

7.4.3 Description of Σ and E asymmetries
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Figure 7.15: IB (red) and DR (blue) �t results for Σ [47]. For the IB �t χ2/Npt = 1117/130,

for the DR �t χ2/Npt = 1005/130.

The description of Σ at energies above W = 1754 MeV is similar to solutions 1, 2, but the
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Figure 7.16: IB (red) and DR (blue) �t results for E [50]. For the IB �t χ2/Npt = 56/42, for

the DR �t χ2/Npt = 42/42.

di�erence between IB an DR curves is bigger. The description of E did not change signi�cantly.

7.4.4 Description of dσ/dt, Σ, and T at high energies

0

0.5

2360 MeV
dσ/dt, µb/GeV2

2551 MeV

0 1

2896 MeV

0 1

3484 MeV

0 1

3987 MeV

t (GeV2)

0

0.5

1
Σ (2360 MeV)

0 0.5 1

Σ (2551 MeV)

t (GeV2)

-1

-0.5

0

0.5

0 0.5 1

T (2896 MeV)

t (GeV2)

Figure 7.17: IB (red) and DR (blue) �t results for dσ/dt, Σ, T [77�80]. For the IB �t χ2/Npt =
33/52 4/12 3/3, for the DR �t χ2/Npt = 108/52 33/12 31/3.

Fig. 7.17 shows that the given form of Regge trajectories and Regge cuts strongly violates
the �xed-t dispersion relations which leads to the bad description of the data by DR �t.
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7.4 Solution 3. Fit results with resonances and Regge contributions (s)

7.4.5 Regge contributions to the invariant amplitudes at �xed
t-values

In this solution Regge contributions (W ) were taken into account. It is interesting to plot
invariant amplitudes Ai in order to see how they changes. Fig. 7.18 shows Ai(W ) amplitudes
at t = −0.2 GeV2 with only Regge contributions taken into account.
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Figure 7.18: Regge contributions to the invariant amplitudes A1, A2, A3, A4 for t = −0.2 GeV2.
Solid red and blue lines denote real and imaginary parts obtained with an IB
model. Red dashed lines denote real parts obtained using dispersion relations
from the imaginary parts. Black vertical lines show the threshold of the physical
region for a given t-value.

From Figs. 7.18 one can observe how big is the discrepancy between real parts in IB and DR
approaches therefore the expected coincidence of the real parts at high energies is not observed.

7.4.6 Solution 3 summary

The �t results for the polarization observables did not change much. One can also observe that
the Regge expressions in given form violate the �xed-t dispersion relations signi�cantly, thus
high energy data are undescribed by such approach. In order to solve the problem with the
description of high energy data it was concluded to use another form of Regge formulas, namely
in terms of crossing symmetrical variable ν which obeys the dispersion relations by de�nition.
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7.5 Intermediate conclusion for solutions 1-3

The common feature of all presented �ts is the inconsistency of the �t results of two di�erent
approaches for the T observable. The description of Σ and F with an IB �ts usually gives the
χ2 value which is about two times better than the DR �t. The good agreement is only observed
in the results for the di�erential and the total cross sections.
A good description of the di�erential cross section can be easily explained. If one has a look

at the multipole decomposition of the observable using Legendre polynomials Eq. (4.6), one
can see that the main contribution into this observable comes from the squares of the multipoles
therefore the interference of them plays smaller role.
Also due to the dominance of N(1535) 1/2− and N(1650) 1/2− resonances which have the

biggest branching ratios in η channel, βη ≈ 45 % and βη ≈ 20 % respectively, the total cross
section is reproduced as well.
On Figs. 7.19 invariant amplitudes Ai for solutions 1-3 are presented.
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Figure 7.19: Invariant amplitudes Ai for solutions 1-3. Solution 1 is plotted in black, solution
2 in red, solution 3 in green. IB and DR results are drawn as solid and dashed
curves respectively. Black vertical lines show the threshold of the physical region
for a t = −0.2 GeV2.

In order to improve the description of the data, we have included the unitarity phases for
JP : 3/2−, 3/2+, 5/2− intermediate states as a �tting parameters. As it has been described
above in the Section 5.1. Such implementation signi�cantly improved the results.
The reason why we have chosen these states is because the biggest description in the IB and

DR results was observed in the T asymmetry. If we look on the partial wave contributions
into this observable Eq. (A.30) we will see that the main impact comes from the interferences
of E0+ with E1+, M1+, E2−, M2−, E2+, M2+ multipoles. The interferences of other partial
waves may be neglected due to the dominance of E0+ multipole.
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7.6 Solution 4. Fit results with resonances × eiΦ
α
j for j : 3/2−, 3/2+, 5/2−

states, and Born terms

Solution 4 is obtained by modifying the solution 2, where Born terms were used as a background.
Here phases of N(1520) 3/2−, N(1675) 5/2−, N(1700) 3/2−, N(1720) 3/2+, N(1875) 3/2−,
N(1900) 3/2+ were chosen as �tting parameters, the other ones were �xed to zero.
The table of χ2 values for the �tted data is presented below:

Table 7.5: χ2 values for solution 4

Data Observable χ2
IB χ2

DR Number of points (Npt)

[44]MAMI dσ/dΩ 3427 3890 2544
[49]A2 MAMI T 532 708 144
[49]A2 MAMI F 316 534 144
[47] GRAAL Σ 490 794 130
[50]CLAS E 38 33 42

χ2
IB/Ndof = 1.68 χ2

DR/Ndof = 2.02

7.6.1 Description of the dσ/dΩ
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Figure 7.20: IB (red) and DR (blue) �t results for dσ/dΩ [44]. Data are plotted from the

threshold up to the last measured energy with the W step ∼50 MeV. For the IB
�t χ2/Npt = 3427/2544, for the DR �t χ2/Npt = 3890/2544.

As in solutions 1-3 the description of these observables are good. The di�erence in χ2 values
became much smaller in comparison with solution 2.
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α
j for j : 3/2−, 3/2+, 5/2− states, and Born

terms

7.6.2 Description of T and F asymmetries
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Figure 7.21: IB (red) and DR (blue) �t results for T [49]. χ2/Npt = 532/144, for the DR �t

χ2/Npt = 708/144.

Comparing the results on Fig. 7.8 and Fig. 7.21, one can see a big improvement in the
description of T at energies above W = 1646 MeV. The description of the data at energies
W = 1588 MeV and W = 1617 MeV is now a bit worse than in solution 2.
The improvement in the description of F is observed at all energies.
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Figure 7.22: IB (red) and DR (blue) �t results for F [49]. For the IB �t χ2/Npt = 316/144,

for the DR �t χ2/Npt = 534/144.
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7.6.3 Description of Σ and E asymmetries
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Figure 7.23: IB (red) and DR (blue) �t results for Σ [47]. For the IB �t χ2/Npt = 490/130,
for the DR �t χ2/Npt = 794/130
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Figure 7.24: IB (red) and DR (blue) �t results for E [50]. For the IB �t χ2/Npt = 38/42, for
the DR �t χ2/Npt = 33/42

The χ2 values became better. The consistency in the description remains.

7.6.4 Solution 4 summary

The introduction of the phases led to an improvement of the χ2 values for all data, especially
for the di�erential cross section. The description of other observables, especially T , also became
better.
The value of the Born term coupling constant was obtained to be equal to g2ηNN/4π = 10−6.

This means that contribution from the Born term is completely negligible.
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7.6 Solution 4. Fit results with resonances × eiΦ
α
j for j : 3/2−, 3/2+, 5/2− states, and Born

terms

However one can see on Fig. 7.23 that data on Σ at energies W = 1837 and W = 1863 MeV
are nor described due to the very small impact from Born terms. This motivates us to use
Regge background.
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7.7 Solution 5. Fit results with resonances × eiΦ
α
j for j : 3/2−, 3/2+, 5/2−

states, and Regge contributions (s)

As we already seen the Regge contributions formulated in terms of W violate the �xed-t dis-
persion relations. Nevertheless it is interesting to see the e�ect of the phases on the description
of the data in the resonance region.
The table of χ2 values for the �tted data is presented below:

Table 7.6: χ2 values for solution 5

Data Observable χ2
IB χ2

DR Number of points (Npt)

[44]MAMI dσ/dΩ 4729 3527 2544
[49] A2 MAMI T 606 503 144
[49] A2 MAMI F 316 581 144
[47] GRAAL Σ 832 796 130
[50]CLAS E 38 26 42

[77�80] DESY, Wilson, Daresbury, CEA dσ/dt 34 102 52
[79]Daresbury Σ 7 15 12
[81]Daresbury T 3 19 3

χ2
IB/Ndof = 2.23 χ2

DR/Ndof = 1.86

7.7.1 Description of the dσ/dΩ and the total cross section
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Figure 7.25: IB (red) and DR (blue) �t results for dσ/dΩ [44]. Data are plotted from the

threshold up to the last measured energy with the W step ∼50 MeV. For the IB
�t χ2/Npt = 4729/2544, for the DR �t χ2/Npt = 3527/2544.
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7.7 Solution 5. Fit results with resonances × eiΦ
α
j for j : 3/2−, 3/2+, 5/2− states, and

Regge contributions (s)

7.7.2 Description of T and F asymmetries
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Figure 7.26: IB (red) and DR (blue) �t results for T [49]. For the IB �t χ2/Npt = 606/144,

for the DR �t χ2/Npt = 503/144.
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Figure 7.27: IB (red) and DR (blue) �t results for F [49]. For the IB �t χ2/Npt = 316/144,

for the DR �t χ2/Npt = 581/144.
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7.7.3 Description of Σ and E asymmetries
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Figure 7.28: IB (red) and DR (blue) �t results for Σ [47]. For the IB �t χ2/Npt = 832/130,

for the DR �t χ2/Npt = 796/130
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Figure 7.29: IB (red) and DR (blue) �t results for E [50]. For the IB �t χ2/Npt = 45/42, for

the DR �t χ2/Npt = 33/42
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7.7 Solution 5. Fit results with resonances × eiΦ
α
j for j : 3/2−, 3/2+, 5/2− states, and

Regge contributions (s)

7.7.4 Description of dσ/dt, Σ, and T at high energies
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Figure 7.30: IB (red) and DR (blue) �t results for dσ/dt, Σ, T [77�80] as functions of t. dσ/dt
is shown in µb/GeV2 units. For the IB �t χ2/Npt = 34/52 7/12 3/3, for the DR
�t χ2/Npt = 102/52 15/12 19/3

7.7.5 Solution summary

The results for the low energy data clearly show the improvement in the description of all
�tted observables. Blue curves now lie closer to the red ones. Although the problem of the
description of high-energy data by the DR �t still presents. The reason is that here for the
Regge contributions non-crossing symmetrical expressions are still used.
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7.8 Solution 6. Fit results with resonances × eiΦ
α
j for j : 3/2−, 3/2+, 5/2−

states, and Regge contributions (ν)

In order to describe the high energy data another Regge formalism was used. As well as the
previous one this formalism is also described in the paper of [54]. Now the Regge amplitudes
are formulated in terms of crossing symmetrical variable ν and ful�ll the dispersion relations
by de�nition.
The damping constant for the damping factor in Eq. (5.45) was set to Λ = 689 MeV and

was obtained from the analysis of high and low energy data with the isobar model approach.
The table of χ2 values for the �tted data is presented below:

Table 7.7: χ2 values for solution 6

Data Observable χ2
IB χ2

DR Number of points (Npt)

[44]MAMI dσ/dΩ 3946 3641 2544
[49] A2 MAMI T 536 519 144
[49] A2 MAMI F 333 394 144
[47] GRAAL Σ 377 437 130
[50]CLAS E 53 36 42

[77�80] DESY, Wilson, Daresbury, CEA dσ/dt 11 13 52
[79]Daresbury Σ 7 7 12
[81]Daresbury T 1 2 3

χ2
IB/Ndof = 1.84 χ2

DR/Ndof = 1.77
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7.8 Solution 6. Fit results with resonances × eiΦ
α
j for j : 3/2−, 3/2+, 5/2− states, and

Regge contributions (ν)

7.8.1 Description of the dσ/dΩ
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Figure 7.31: IB (red) and DR (blue) �t results for dσ/dΩ [44]. Data are plotted from the

threshold up to the last measured energy with the W step ∼50 MeV. For the IB
�t χ2/Npt = 3946/2544, for the DR �t χ2/Npt = 3641/2544.

Fit results for this observable show the best agreement among all �ts that were described
here. DR �t now describes the data better than IB �t, especially the highest energy bins.

7.8.2 Description of T and F asymmetries
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Figure 7.32: IB (red) and DR (blue) �t results for T [49]. For the IB �t χ2/Npt = 536/144,

for the DR �t χ2/Npt = 519/144.

Both these observables are described with a close χ2 and show the good agreement with the
data.
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Figure 7.33: IB (red) and DR (blue) �t results for F [49]. For the IB �t χ2/Npt = 333/144,

for the DR �t χ2/Npt = 394/144.

7.8.3 Description of Σ and E asymmetries
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Figure 7.34: IB (red) and DR (blue) �t results for Σ [47]. For the IB �t χ2/Npt = 377/130,
for the DR �t χ2/Npt = 437/130

This �t has solved the problem with the description of Σ at energies above W = 1754 MeV .
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j for j : 3/2−, 3/2+, 5/2− states, and

Regge contributions (ν)
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Figure 7.35: IB (red) and DR (blue) �t results for E [50]. For the IB �t χ2/Npt = 53/42, for

the DR �t χ2/Npt = 36/42

7.8.4 Description of dσ/dt, Σ, and T at high energies
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Figure 7.36: IB (red) and DR (blue) �t results for dσ/dt, Σ, T [77�80] as functions of t. dσ/dt
is shown in µb/GeV2 units. For the IB �t χ2/Npt = 11/52 7/12 1/3, for the DR
�t χ2/Npt = 13/52 7/12 2/3.

The high energy data for dσ/dt is now equally well described with both approaches. The
descriptions of Σ and T are however does not coincide.

7.8.5 Solution 6 summary

The description of the observables is now much better in comparison with the previous solutions.
High energy data are now also described with the new Regge formalism. Next and the �nal
step should be done by �tting the phases of all other resonances except of N(1440) 1/2+.
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7.9 Solution 7. Fit results with resonances × eiΦ
α
j for all reso-

nances, and Regge contributions ν)

Here the �nal solution is considered, where phases of all other resonances except ofN(1440) 1/2+

are varied. The same parametrization of Regge contibutions as in previous solution 6 is used,
damping constant is �xed to Λ = 689 MeV.
The table of χ2 values for the �tted data is presented below:

Table 7.8: χ2 values for solution 7

Data Observable χ2
IB χ2

DR Number of points (Npt)

[44]MAMI dσ/dΩ 3448 3388 2544
[49] A2 MAMI T 456 423 144
[49] A2 MAMI F 318 426 144
[47] GRAAL Σ 323 353 130
[50]CLAS E 38 31 42

[77�80] DESY, Wilson, Daresbury, CEA dσ/dt 11 13 52
[79]Daresbury Σ 7 13 12
[81]Daresbury T 1 2 3

χ2
IB/Ndof = 1.61 χ2

DR/Ndof = 1.61

7.9.1 Description of the dσ/dΩ
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Figure 7.37: IB (red) and DR (blue) �t results for dσ/dΩ [44]. Data are plotted from the

threshold up to the last measured energy with the W step ∼50 MeV. For the IB
�t χ2/Npt = 3448/2544, for the DR �t χ2/Npt = 3388/2544.
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7.9.2 Description of T and F asymmetries
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Figure 7.38: IB (red) and DR (blue) �t results for T [49]. For the IB �t χ2/Npt = 456/144,

for the DR �t χ2/Npt = 423/144.
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Figure 7.39: IB (red) and DR (blue) �t results for F [49]. For the IB �t χ2/Npt = 318/144,

for the DR �t χ2/Npt = 426/144.
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7.9.3 Description of Σ and E asymmetries
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Figure 7.40: IB (red) and DR (blue) �t results for Σ [47]. For the IB �t χ2/Npt = 323/130,

for the DR �t χ2/Npt = 353/130
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Figure 7.41: IB (red) and DR (blue) �t results for E [50]. For the IB �t χ2/Npt = 38/42, for

the DR �t χ2/Npt = 31/42
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7.9.4 Description of dσ/dt, Σ, and T at high energies
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Figure 7.42: IB (red) and DR (blue) �t results for dσ/dt, Σ, T [77�80] as functions of t. dσ/dt
is shown in µb/GeV2 units. For the IB �t χ2/Npt = 11/52 7/12 1/3, for the DR
�t χ2/Npt = 13/52 7/12 2/3
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7.9.5 Regge contributions to the invariant amplitudes at �xed
t-values

In this solution Regge contributions (ν) were used. It is interesting to plot invariant amplitudes
Ai in order to see how they changes. Fig. 7.43 shows Ai(W ) amplitudes at t = −0.2 GeV2 with
only Regge contributions taken into account. On Figs. 7.43 it is seen that at high energies now
real parts in IB and DR approaches coincide.
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Figure 7.43: Regge contributions to the invariant amplitudes A1, A2, A3, A4 for t = −0.2 GeV2.
Solid red and blue lines denote real and imaginary parts obtained with an IB
model. Red dashed lines denote real parts obtained using dispersion relations
from the imaginary parts. Black vertical lines show the threshold of the physical
region for a given t-value.
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7.9.6 Multipoles

For this �nal solution we show the obtained electric and magnetic multipoles. For all other
solutions the multipoles are presented in Appendix.
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Figure 7.44: Multipoles for Solution 7. Here real parts of multipoles are drawn in red, imag-
inary parts in blue. IB results are drawn as solid curves, DR results as dashed
curves. Vertical lines show the resonance positions.

An interesting observation is that despite the fact that solutions have very close χ2 the
multipoles look very di�erent except for the E0+ which is the dominant one. This e�ect is
known and the di�erence between multipoles is not so strong for γp → πN [65], where much
more observables are measured. Therefore with the measuring of new polarization data for
γp→ ηp one can also make the di�erence smaller.
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7.9.7 Solution 7 summary

Descriptions of all analysed experimental data show good consistency with the data in both
approaches. Observables are described with similar χ2 values.

7.10 Intermediate conclusion for solutions 4-7

When we input phases for resonances and take into account Regge contributions in the proper
form, we obtain a good description od the data. Our Ai amplitudes now obey dispersion
relations equations.

On �gs. 7.45 invariant amplitudes A4 for solutions 4-7 are presented.
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Figure 7.45: Invariant amplitudes Ai for solutions 4-7. Solution 4 is plotted in black, solution
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7.11 Final discussion of the resonance parameters

The partial wave analysis of γp → ηp was done with two di�erent approaches: using MAID
isobar model and using �xed-t dispersion relations.
Similar work was done in 2003 by Aznauryan [66] where �xed-t dispersion relations approach

was applied to analyze the existing experimental data at that time [48,71�74].
The di�erence between present work and [66] is that

1) now modern and more precise data are used in the analysis,
2) in the DR case contributions of the unphysical region from all resonances are taken into
account.
In the work [66] contributions below threshold were only taken into account fromN(1440) 1/2+,
N(1535) 1/2−, N(165) 1/2−.
The initial task was to describe low-energy data and to determine the leading singularities of

the scattering amplitude, i.e the extraction of the resonance parameters. During the study, it
was found that the use of t-channel exchanges and resonance phases provide a good description
of the low energy data, and also the description of the high energy data. We did not attempt
description of the high energy data in the beginning, but nevertheless the result gives space for
further research.
Seven di�erent solutions were investigated. Summary tables 7.9 and 7.10 show χ2 values for

all solutions together.

Table 7.9: χ2 values. Red values are for IB �ts, blue ones are for DR �ts.
Sol. χ2

dσ/dΩ χ2
T χ2

F χ2
Σ χ2

E χ2
dσ/dt χ2

Σ χ2
T χ2/Ndof

1 4054 6889 523 1353 509 975 822 947 42 52 2.07 3.04

2 3822 5170 605 1196 443 711 637 1111 29 37 1.88 2.78

3 5008 6361 453 1082 425 809 1117 1005 56 42 33 108 4 33 3 31 2.45 3.11

4 3427 3890 532 708 316 534 490 794 38 33 1.68 2.02

5 4729 3527 606 503 316 581 832 796 38 26 34 102 7 15 3 19 2.23 1.86

6 3946 3641 536 519 333 394 377 437 53 36 11 13 7 7 1 2 1.84 1.77

7 3448 3388 456 423 318 426 323 353 38 31 11 13 7 13 1 2 1.61 1.61

Table 7.10: χ2/Npt values. Red values are for IB �ts, blue ones are for DR �ts.
Sol. χ2

dσ/dΩ χ2
T χ2

F χ2
Σ χ2

E χ2
dσ/dt χ2

Σ χ2
T

1 1.59 2.71 3.63 9.4 3.53 6.77 6.32 7.28 1 1.24

2 1.5 2.03 4.2 8.3 3.07 4.93 4.9 8.55 0.69 0.88

3 1.97 2.5 3.15 7.51 2.95 5.61 8.59 7.73 1.33 0.98 0.63 2.08 0.33 2.75 1 10.3

4 1.35 1.53 3.69 4.92 2.19 3.71 3.77 6.11 0.9 0.79

5 1.86 1.39 4.21 3.49 2.19 4.03 6.4 6.12 0.9 0.62 0.65 1.96 0.58 1.25 1 6.33

6 1.55 1.43 3.72 3.6 2.31 2.74 2.9 3.36 1.26 0.86 0.21 0.25 0.58 0.58 0.33 0.66

7 1.36 1.33 3.17 2.94 2.21 2.96 2.48 2.72 0.9 0.74 0.21 0.25 0.58 1.08 0.33 0.66
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Below the summary tables of resonance parameters for each resonance and all solutions are
given. Red values are for IB �ts and blue values are for DR �ts. Values which were �xed in
the �t are given in black bold type. The last line gives PDG values and star rating. Branching
ratios are shown with the sign that is taken into account in the coupling constant gηN .

� All given errors for masses, widths, photoexitation helicity amplitudes and phases were
taken from the �tting program (MIGRAD) and correspond to the values of the last (best)
solution. The shown errors for the branching ratios are calculated out of errors of the
coupling constants gηN , which were used as a �tting parameters. For presented errors all
correlations are taken into account by the MIGRAD package.

� For each resonance at least one of the photoexitation helicity amplitudes (A1/2 or A3/2)
must be �xed. These 2 parameters strongly correlate with each other, therefore we cannot
�t both of them together. We decided to �x always A3/2 when both of them are present
and �x A1/2 for 1/2

+ and 1/2− states. We �x these values either to the PDG estimations
or to the results obtained in the latest EtaMAID analysis.

N(1440) 1/2+

At �rst let us discuss the �t parameters of N(1440) 1/2+. This is four-star resonance which
parameters are very well known. In all calculations mass, width, and A1/2 were �xedM = 1430

MeV Γ = 350 MeV A1/2 = −60 × 10−3GeV−1/2 respectively. Branching ratios into other
channels βπN = 65%, βKΛ = βKΣ = βωN = βη′N = 0%, βππN = 1 −

∑
βi The only �tting

parameter was coupling constant into ηN channel. The values for gηN are listed in the table
below:

Table 7.11: Fit results for gηN for N(1440) 1/2+. Red values were obtained in the IB �t, blue
ones in DR �t.

Solution gηN
1 17, 51
2 12, 22
3 13, 49

4 10, −11
5 3, −3
6 4, −27
7 18±94, −19± 37

As one can see implementation of phases and additional physical constrains forced �t to pick
a di�erent sign of the coupling constant. The obtained errors are large because this is a sub-
threshold resonance and only limited part of its energy dependent behavior is under control.
However one can see that in the case of DR the error is about 2 times smaller because in this
approach the real parts of the invariant amplitudes are obtained via the integration of the
imaginary parts, therefore the sub-threshold behavior is taken into account.
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N(1520) 3/2−

Table 7.12: Resonance parameters for N(1520) 3/2−. Red values were obtained in the IB �t,
blue ones in DR �t. Fixed values are written in bold black. Branchings into other
channels were �xed to βπN = 61%, βKΛ = βKΣ = βωN = βη′N = 0%, βππN =
1−

∑
βi. Stars show the overall PDG rating.

N(1520) 3/2− Solution M Γ ζηNβη(%) A1/2 A3/2

1 1510, 1520 115 +0.09, +0.05 −25, −25 140

2 1511, 1519 115 +0.08, +0.06 −25, −25 140

Phase(Φα
j ) 3 1510, 1510 115 +0.08, +0.02 −25, −25 140

33, −18 4 1520, 1510 115 +0.13, +0.07 −25, −25 140

34, −25 5 1510, 1510 115 +0.12, +0.07 −25, −25 140

21, −37 6 1520, 1510 115 +0.1,+0.09 −25, −25 140

−2±73, −31±18 7 1510±10, 1514±6 115 +0.05±1, +0.1±1 −25±6, −25±6 140

**** PDG 1515± 5 115+10
−15 0± 1 −20± 5 140± 10

According to the PDG star rating N(1520)3/2− is well studied resonance. Results of our
analysis show consistency with the PDG estimations for this resonance. The A1/2 values
however are at the top border of the interval in which we vary the values for this parameter.
We also �xed the width of this resonance. In the research we have observed that this

parameter always got stuck in the unphysical value of ≈ 50 MeV.
We can conclude that the values obtained with both approaches are in a good agreement

with each other and with PDG.

N(1535) 1/2−

Table 7.13: Resonance parameters for N(1535) 1/2−. Red values were obtained in the IB �t,
blue ones in DR �t. Fixed values are written in bold black. Branchings into other
channels were �xed to βπN = 52%, βKΛ = βKΣ = βωN = βη′N = 0%, βππN =
1−

∑
βi. Stars show the overall PDG rating.

N(1535) 1/2− Solution M Γ ζηNβη(%) A1/2 A3/2

1 1525, 1525 156, 168 +40, +40 115 -
2 1525, 1525 155, 174 +40, +41 115 -

Phase(Φα
j ) 3 1537, 1525 174, 175 +45, +41 115 -

0 4 1525, 1525 157, 175 +40, +44 115 -
0 5 1525, 1525 148, 175 +38, +43 115 -
0 6 1525, 1531 160, 175 +39, +41 115 -

−4± 31, 10± 27 7 1525±17, 1530±13 158±37, 175±47 +40±15, +40±13 115 -

**** PDG 1535± 10 150± 25 42± 10 115± 15 -

N(1535) 1/2− is also a well determined resonance with a big branching ratio into ηN channel.
Results of the analysis show a very good agreement with the PDG values. Both IB and DR
approaches give close results. The obtained errors are qualitatively similar to the ones given
by PDG.
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N(1650) 1/2−

Table 7.14: Resonance parameters for N(1650) 1/2−. Red values were obtained in the IB �t,
blue ones in DR �t. Fixed values are written in bold black. Branchings into other
channels were �xed to βπN = 51%, βKΛ = 10%, βωN = βη′N = 0%, βππN =
1−

∑
βi. Stars show the overall PDG rating.

N(1650) 1/2− Solution M Γ ζηNβη(%) A1/2 A3/2

1 1641, 1642 137, 117 −22, −16 45 -
2 1640, 1640 135, 130 −22, −16 45 -

Phase(Φα
j ) 3 1640, 1640 125, 120 −20, −12 45 -

0 4 1640, 1643 135, 123 −21, −16 45 -
0 5 1640, 1640 135, 114 −23, −15 45 -
0 6 1645, 1650 137, 119 −22, −26 45 -

4±27, −18±22 7 1653±21, 1640±27 137±29, 122±28 −23±16, −25±14 45 -

**** PDG 1655+15
−10 140± 30 1± 2, 18± 4 45± 10 -

Another four star resonance is N(1650) 1/2−. As well as N(1535) 1/2− it has a big branching
ratio into ηN channel. The result for all parameters is a good agreement with the PDG values.
The branching ratio into ηN channel coincides with the results of Bonn-Gatchina analysis
(18± 4%). Both IB and DR approaches give similar results.
In addition in order to describe the decay of N(1650) 1/2− into KΣ channel, coupling

constant gKΣ was used. Using this constant we were able to describe the cusp e�ect in the
total cross section, see Fig. 7.2. Table below shows gKΣ values for all solutions.

Table 7.15: Fit results for gKΣ for N(1650) 1/2−

Solution gKΣ

1 94, 100
2 92, 89
3 99, 91

4 95, 97
5 100, 78
6 81, 35
7 68±83, 43±67

Values for the coupling constant coincide within the errors in both approaches. One can also
see that in the DR case the error is smaller, the previous explanation for the case of Roper is
valid for this constant also.
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N(1675) 5/2−

Table 7.16: Resonance parameters for N(1675) 5/2−. Red values were obtained in the IB �t,
blue ones in DR �t. Fixed values are written in bold black. Branchings into other
channels were �xed to βπN = 41%, βKΛ = 1%, βKΣ = βωN = βη′N = 0%, βππN =
1−

∑
βi. Stars show the overall PDG rating.

N(1675) 5/2− Solution M Γ ζηNβη(%) A1/2 A3/2

1 1670, 1670 165, 147 −1, −0.06 11, 11 20

2 1670, 1670 165, 135 −1, −0.15 11, 13 20

Phase(Φα
j ) 3 1670, 1670 165, 135 −1.7, −0.06 11, 26 20

60, 30 4 1670, 1680 165, 135 −1.2, −0.7 26, 26 20

−60, −6 5 1680, 1670 162, 157 0.2, −2 14, 27 20

43, −10 6 1680, 1678 165, 159 −1.4, −1.7 11, 11 20

22±91, −2±16 7 1680±10, 1677±8 165±19, 135±15 −2±1, −1.2±1 11±16, 12±8 20

**** PDG 1675± 5 150+15
−20 0± 1 19± 8 20± 5

N(1675) 5/2− is a four star resonance which parameters were well studied in pion photopro-
duction due to a high branching ratio, ≈ 45%, into this channel. However in η photoproduction
the branching ratio is small. The value βηN = 0 ± 1 is the only result which is given in PDG
above the line. The results of di�erent analysis below the line coincide with this estimation
within the errors. Both approaches in our analysis are matched with PDG estimations. Ob-
tained phases can not be precisely determined. But one can observe that DR errors are much
smaller than the ones obtained with an IB.

N(1680) 5/2+

Table 7.17: Resonance parameters for N(1680) 5/2+. Red values were obtained in the IB �t,
blue ones in DR �t. Fixed values are written in bold black. Branchings into other
channels were �xed to βπN = 62%, βKΛ = betaKΣ = βωN = βη′N = 0%, βππN =
1−

∑
βi. Stars show the overall PDG rating.

N(1680) 5/2+ Solution M Γ ζηNβη(%) A1/2 A3/2

1 1684, 1675 120, 122 +0.22, +0.14 −21, −21 133

2 1680, 1675 120, 120 +0.3, +0.24 21, −21 133

Phase(Φα
j ) 3 1675, 1689 120, 120 +0.1, +0.2 −9, −21 133

0 4 1679, 1695 120, 120 +0.22, +0.12 −21, −9 133

0 5 1675, 1695 120, 120 +0.13, +0.1 −19, −10 133

0 6 1680, 1675 120, 129 +0.16, +0.05 −21, −9 133

3±83, 2±4 7 1691±18, 1675±10 120±20, 138±12 +0.16±1, +0.02±1 −21±10, −19±8 133

**** PDG 1685± 5 130± 10 0± 1 −15± 6 133± 12

Another four star resonance with a small branching ratio to the ηN channel is N(1680) 5/2+.
The masses and widths of all solutions are in a good agreement with PDG values. The results
for A1/2 are close to PDG mean values as well.
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N(1700) 3/2−

Table 7.18: Resonance parameters for N(1700) 3/2−. Red values were obtained in the IB �t,
blue ones in DR �t. Fixed values are written in bold black. Branchings into other
channels were �xed to βπN = 15%, βKΛ = 3%, βKΣ = βωN = βη′N = 0%, βππN =
1−

∑
βi. Stars show the overall PDG rating.

N(1700) 3/2− Solution M Γ ζηNβη(%) A1/2 A3/2

1 1726, 1650 100, 100 −0.01, +0.3 20, 24 −37
2 1750, 1650 146, 100 +0.09, +0.6 80, 20 −37

Phase(Φα
j ) 3 1750, 1650 223, 250 +0.2, −0.2 80, 80 −37

55, 49 4 1750, 1665 100, 115 −0.5, +1.1 20, 20 −37
−60, 60 5 1694, 1686 100, 100 −0.43, +0.15 20, 20 −37
20, 25 6 1650, 1685 250, 100 −0.4, +2 80, 20 −37

30±86, 27±40 7 1650±56, 1686±39 250±117, 100±81 −0.3±1, +2.7±1 80±56, 20±57 −37
*** PDG 1700± 50 150+100

−50 No average 41± 17 −37± 14

Obtained masses and widths of N(1700) 3/2− are in agreement with the PDG estimations.
However the latest BnGa analysis [82] gives values for them≈ 1800 and ≈ 400MeV respectively,
which is higher than the results from our IB and DR �ts. Also the boundary values for the
width were preferred by both �ts.
There are no estimations for the branching ratio that are above the line from PDG. The

values that were not used for averaging varies from 1% (old result) to 14% (latest result). In
our analysis a big branching ratio is not observed.
The allowed boundary values for A1/2 were preferred in all solutions except DR �t for the

�rst solution.

N(1710) 1/2+

Table 7.19: Resonance parameters for N(1710) 1/2+. Red values were obtained in the IB �t,
blue ones in DR �t. Fixed values are written in bold black. Branchings into other
channels were �xed to βπN = 5%, βKΛ = 23%, βKΣ = βωN = βη′N = 0%, βππN =
1−

∑
βi. Stars show the overall PDG rating.

N(1710) 1/2+ Solution M Γ ζηNβη(%) A1/2 A3/2

1 1701, 1680 100 +1.1, −1.7 50 -
2 1701, 1740 100 +1.5, −1.1 50 -

Phase(Φα
j ) 3 1694, 1702 100 +0.8, +0.4 50 -

0 4 1700, 1724 100 −1, +0.8 50 -
0 5 1695, 1706 100 +0.2, +1.4 50 -
0 6 1710, 1740 100 +1.6, −0.3 50 -

−35±107, −43±111 7 1699±48, 1732±32 100 +0.96±4, −0.19±5 50 -

**** PDG 1710± 30 100+150
−50 10− 50 50± 10 -

The mass of N(1710) 1/2+ was determined with an agreement with the PDG values. The
width was �xed for the same reasons as for the N(1520) 3/2−. With the open ranges this
parameter always got stuck in the unphysical value of ≈ 50 MeV. However the branching ratio
obtained in our analysis is much smaller in comparison with the results of other groups.
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7.11 Final discussion of the resonance parameters

N(1720) 3/2+

Table 7.20: Resonance parameters for N(1720) 3/2+. Red values were obtained in the IB �t,
blue ones in DR �t. Fixed values are written in bold black. Branchings into other
channels were �xed to βπN = 11%, βKΛ = 8%, βKΣ = βωN = βη′N = 0%, βππN =
1−

∑
βi. Stars show the overall PDG rating.

N(1720) 3/2+ Solution M Γ ζηNβη(%) A1/2 A3/2

1 1750, 1731 190, 213 +0.6, +1.7 96, 127 80

2 1750, 1734 195, 171 +0.7, +1.4 93, 130 80

Phase(Φα
j ) 3 1750, 1750 397, 168 +0.9, +1.2 80, 82 80

−6, −40 4 1750, 1747 228, 326 +1.2, +2.7 80, 80 80

−17, −44 5 1750, 1750 400, 370 +1, +6 80, 80 80

10, −39 6 1750, 1750 231, 344 +1, +7 80, 115 80

12±92, −40±7 7 1750±49, 1750±31 211±173, 323±191 +0.64±3, +9.2±2 80±50, 92±27 80

**** PDG 1720+30
−20 250+150

−100 0± 1, 3± 2 100± 20 135± 40
48± 2

The mass and the width of N(1720) 3/2+ are in agreement within the errors with the PDG
estimations and results of other analysis. A clear tendency of choosing the bordered values
for the mass of the resonance is observed. It is also seen that the uncertainties for the width
obtained with both approaches are large. The obtained branching ratio into ηN channel is
compatible with other results. For A3/2 di�erent two values above the line a given in PDG. In
our case we �xed this value to 80.

N(1860) 5/2+

Table 7.21: Resonance parameters for N(1860) 5/2+. Red values were obtained in the IB
�t, blue ones in DR �t. Fixed values are written in bold black. Branchings into
other channels were �xed to βπN = 20%, βKΛ = βKΣ = βωN = 0, βππN =
1−

∑
βi, gη′N = 0. Stars show the overall PDG rating.

N(1860) 5/2+ Solution M Γ ζηNβη(%) A1/2 A3/2

1 1860 270 −5, −2.5 1, −22 29, 49
2 1860 270 −5.6, −3.9 −5, −31 36, 44

Phase(Φα
j ) 3 1860 270 −3.5, −1.2 16, −5 8, 54

0 4 1860 270 −5.1, −0.4 2, −37 24, 9
0 5 1860 270 −3.4, −4.9 5, −7 21, 8
0 6 1860 270 −1.1, −6.3 59, −12 22, 11

3± 90, 0± 1 7 1860 270 −0.6±7, −6.9±8 54±123, −18±15 38±111, 1±18

** PDG 1860+100
−40 270+140

−50 No average No average No average

N(1860) 5/2+ is a poorly studied resonance with no given PDG estimations for the branching
ratio and for A1/2, A3/2 photoexitation helicity amplitudes. The results that we obtained with
isobar model and with a �xed-t dispersion relations are scattered. The errors of A1/2, A3/2

obtained with an IB �t are very large, however with an implementation of dispersion relations
they are much smaller. One can conclude that even if the parameters are strongly correlated
an additional physical constraint helps us to decrease the error.
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Chapter 7 Fit results

� Until this point all resonances had masses that lay within the analyzed data interval.
However we also included resonances with higher masses and large widths. We reduced
the number of �tted parameters for these resonances because our analyzed data are not
su�cient for the correct determination of their values.

� For N(1875) 3/2− we �t only coupling constant, A1/2 helicity amplitude and phase.

� For the resonances with higher masses we �t only coupling constants and phases. Other
parameters were �xed to the results obtained in the latest EtaMAID analysis or to the
PDG estimations.

N(1875) 3/2−

Table 7.22: Resonance parameters for N(1875) 3/2−. Red values were obtained in the IB �t,
blue ones in DR �t. Fixed values are written in bold black. Branchings into other
channels were �xed to βπN = 4%, βKΛ = 4%, βKΣ = 15%, βωN = 20%, βππN =
1−

∑
βi, gη′N = 0. Stars show the overall PDG rating.

N(1875) 3/2− Solution M Γ ζηNβη(%) A1/2 A3/2

1 1875 250 +27, +20 11, 30 −7
2 1875 250 +29, +23 10, 30 −7

Phase(Φα
j ) 3 1875 250 −0.6, +25 30, 30 −7

60, −27 4 1875 250 +1, +17 29, 24 −7
60, −16 5 1875 250 +20, +34 25, 12 −7
60, −34 6 1875 250 +0.7, +6 30, 25 −7

60±84, −32± 21 7 1875 250 +2.2± 10, +5.5± 8 30± 19, 30± 17 −7
*** PDG 1875+45

−55 250± 70 0± 1 18± 10 −7± 4

In case of N(1875) 3/2− due to a limited data range the obtained results have large uncer-
tainties.
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7.11 Final discussion of the resonance parameters

N(1880) 1/2+, N(1895) 1/2−, N(1900) 3/2+

Table 7.23: Resonance parameters for N(1880) 1/2+. Red values were obtained in the IB �t,
blue ones in DR �t. Fixed values are written in bold black. Branchings into other
channels were �xed to βπN = 6%, βKΛ = 2%, βKΣ = 17%, βωN = 0%, βππN =
1−

∑
βi, gη′N = 0. Stars show the overall PDG rating.

N(1880) 1/2+ Solution M Γ ζηNβη(%) A1/2 A3/2

1 1880 230 −4, +6.7 21 -
2 1880 230 −20, +1.6 21 -

Phase(Φα
j ) 3 1880 230 +0.05, +5.5 21 -

0 4 1880 230 −19, +8.5 21 -
0 5 1880 230 −0.7, +4.3 21 -
0 6 1880 230 −19, −2.7 21 -

−60± 118, −31± 72 7 1880 230 −19± 15, −9.8± 10 21 -

** PDG 1875± 40 230± 50 25+30
−20 No average

Table 7.24: Resonance parameters for N(1895) 1/2−. Red values were obtained in the IB �t,
blue ones in DR �t. Fixed values are written in bold black. Branchings into other
channels were �xed to βπN = 2.5%, βKΛ = 18%, βKΣ = 13%, βωN = 0%, βππN =
1−

∑
βi, gη′N = −71. Stars show the overall PDG rating.

N(1895) 1/2− Solution M Γ ζηNβη(%) A1/2 A3/2

1 1896 130 +27, +24 −36 -
2 1896 130 +21, +15 −36 -

Phase(Φα
j ) 3 1896 130 +18, +5 −36 -

0 4 1896 130 +21, +7 −36 -
0 5 1896 130 +6, +11 −36 -
0 6 1896 130 +3.5, +2.5 −36 -

−35± 107, 56± 63 7 1896 130 +1.1± 4, +0.2± 8 −36 -

** PDG 1905± 12 100+30
−10 21± 6 −16± 6 -

Table 7.25: Resonance parameters for N(1900) 3/2+. Red values were obtained in the IB �t,
blue ones in DR �t. Fixed values are written in bold black. Branchings into other
channels were �xed to βπN = 4%, βKΛ = 12%, βKΣ = 5%, βωN = 13%, βππN =
1−

∑
βi, gη′N = −12. Stars show the overall PDG rating.

N(1900) 3/2+ Solution M Γ ζηNβη(%) A1/2 A3/2

1 1900 200 −1.5, −0.9 19 −67
2 1900 200 −2, −2.1 19 −67

Phase(Φα
j ) 3 1900 200 −0.07, 1.2 19 −67

−28, −49 4 1900 200 −1.9, −1.4 19 −67
60, −60 5 1900 200 −0.6, −1 19 −67
−11, −18 6 1900 200 −3, −6 19 −67

−15± 81, −13± 46 7 1900 200 −3.2± 10, −4.1± 8 19 −67
*** PDG 1900± 30 200± 50 2± 2, 10± 4 24± 14 −67± 30
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Chapter 7 Fit results

For N(1880) 1/2+, N(1895) 1/2− and N(1900) 3/2+ resonances the obtained values for the
�tted parameters have large errors.

Damping parameters

Finally we present the phenomenological parameters X and Xγ that are used in the the
parametrization fγN (W ) and f̃ηN (W ) Eqs. (5.5 and 5.13). These factors plays minor role
in the parametrization therefore we give them without errors.

Table 7.26: Fit results for damping parameters X and Xγ for all resonances. IB results are
written in red, DR results are written in blue.

Solution X Xγ

1 209, 318 0, 0
2 190, 278 204, 500
3 220, 250 500,0
4 221, 375 350, 177
5 319, 83 500, 319
6 235, 100 500, 227
7 219, 123 194, 260

In addition to the presented above parameters we also use damping factors Xγ for selected
resonances. They are shown below.

Table 7.27: Fit results for damping parameters Xγ for selected resonances.

Solution Xγ(N(1520) 3/2−)) Xγ(N(1535) 1/2−) Xγ(N(1650) 1/2−) Xγ(N(1895) 1/2−)

1 500, 500 462, 177 292, 0 288, 0
2 500, 500 285, 145 324, 9 35, 0
3 500, 440 156, 173 328, 0 248, 0
4 500, 71 304, 462 347, 25 73, 490
5 0, 17 292, 321 0, 0 500, 1
6 9, 32 359, 5 500, 500 500, 13
7 428, 44 338, 342 0, 500 10, 132
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7.11 Final discussion of the resonance parameters

7.11.1 Conclusion for the resonance parameters and error discus-
sion

Below the �nal table of parameters from solution 7 is presented for the convenience. All the
errors discussed above are presented as well.

Table 7.28: Parameters for the resonances used in the analysis. Red values correspond to the
IB results from solution 7, blue values to the DR results from solution 7. Fixed
values are written in bold black. The presented errors correspond to the errors
from solution 7 as well.

Resonance Phase(Φα
j ) M Γ ζηNβη(%) A1/2 A3/2

N(1520) 3/2− −2± 73 1510± 10 115 +0.05± 1 −25± 6 140

−31± 18 1514± 6 115 +0.1± 1 −25± 6 140

N(1535) 1/2− −4± 31 1525± 17 158± 37 +40± 15 115

10± 27 1530± 13 175± 47 +40± 13 115

N(1650) 1/2− 4± 27 1653± 21 137± 29 −23± 16 45

−18± 22 1640± 27 122± 28 −25± 14 45

N(1675) 5/2− 22± 91 1680± 10 165± 19 −2± 1 11± 16 20

−2± 16 1677± 8 135± 15 −1.2± 1 12± 8 20

N(1680) 5/2+ 3± 83 1691± 18 120± 20 +0.16± 1 −21± 10 133

2± 4 1675± 10 138± 12 +0.02± 1 −19± 8 133

N(1700) 3/2− 30± 86 1650± 56 250± 117 −0.3± 1 80± 56 −37
27± 40 1686± 39 100± 81 +2.7± 1 20± 57 −37

N(1710) 1/2+ −35± 107 1699± 48 100 +0.96± 4 50

−43± 111 1732± 32 100 −0.19± 5 50

N(1720) 3/2+ 12± 92 1750± 49 211± 173 +0.64± 3 80± 50 80

−40± 7 1750± 31 323± 191 +9.2± 2 92± 27 80

N(1860) 5/2+ 3± 90 1860 270 −0.6± 7 54± 123 38± 111
0± 1 1860 270 −6.9± 8 −18± 15 1± 18

N(1875) 3/2− 60± 84 1875 250 +2.2± 10 30± 19 −7
−32± 21 1875 250 +5.5± 8 30± 17 −7

N(1880) 1/2+ −60± 118 1880 230 −1.9± 15 21

−31± 72 1880 230 −9.8± 10 21

N(1895) 1/2− −35± 107 1896 130 +1.1± 4 −36
56± 63 1896 130 −0.2± 8 −36

N(1900) 3/2+ −15± 81 1900 200 −3.2± 10 19 −67
−13± 46 1900 200 −4.1± 8 19 −67

As one can see from our analysis the resonance parameters obtained with 2 approaches in
general coincide with the results of other groups. With both approaches the data are described
similarly good, however we prefer the DR results over the IB ones because they were obtained
with an additional physical constraints.
What is also very important are the obtained uncertainties. A general picture is that the

errors obtained with the �xed-t dispersion relations procedure are smaller or even much smaller
than the ones obtained with the isobar model approach. The best example of this observation
are the errors for the unitarity phases or the coupling constants for the N(1440) 1/2+ and
N(1650) 1/2−.
The results for the resonances with masses higher that MR ≥ 1860 MeV have large errors

because we are not able to precisely determine them with the limited data set.
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Chapter 8

Summary and conclusion

In this work a partial wave analysis of η photoproduction data was performed in two approaches:
isobar model approach (IB) and approach with �xed-t dispersion relations for invariant ampli-
tudes (DR). For both types of the approaches we used the EtaMAID model. In this model the
scattering amplitude is parameterized with two parts the resonant part and non-resonant part.
For a resonant part we took into account a set of 14 nucleon resonances. For the non-resonant
part we considered two di�erent types of background: Born terms in s and u channels, and
t-channel exchanges. As a result we obtained 7 illustrative solutions that show di�erent aspects
of our parametrization and progression in the description of the data. The maximum energy
and the largest negative t-value that were analyzed in the resonance region are Wmax = 1863
MeV and tmax = −1.5 GeV2 respectively. The maximum energy and the largest negative t-value
that were taken into account for high energy data are Wmax = 3987 MeV and tmax = −1.37
GeV2.

The t-channel exchanges were parameterized with Regge anzatz that typically works only at
high energies whereas and at low energies it has large contributions. However we were able to
smoothly damp this behavior at low energies which gave us a possibility to use Regge in the
resonance region. On order to do this we multiplied Regge amplitudes with a damping factor
function (DF), See Eqs. (5.44 and 5.45).

In our analysis we considered two types of Regge formalism and tested the behavior of them
under the dispersion relations. In the �rst one the Regge anzatz was formulated in terms of
Mandelstam variable s and contained Regge trajectories and Regge cuts. It was found that it
strongly violates the dispersion relations. In the second one the Regge formalism was written
in terms of crossing symmetrical variable ν which ful�lls the dispersion relations by de�nition.

For the resonance part we found that unitarity resonance phase Φα
j plays a very important

role. The approach with phases was used in a MAID analysis for pion photoproduction [8],
however it was never used for η photoproduction. We found that it signi�cantly improved the
results for the DR approach, however for the IB one the improvement is not so big.

We also compared our analysis with the one that was done in 2003 by Aznauryan [66] and
found signi�cant improvements in our case. For example in the unphysical region we took into
account contributions from all resonances and not only N(1440) 1/2+, N(1535) 1/2−, and
N(1650) 1/2−. We found out that N(1520) 3/2− despite very small branching ration into ηN
channel produces the largest contribution into invariant amplitudes and should be taken into
account.

We presented 7 illustrative solutions that describe our data with di�erent χ2. However only
solutions 6 and 7 should be considered as a good ones, if we follow the χ2 criteria. The overall
χ2
Sol6 (IB/DR) = 1.84/1.77 and χ2

Sol7 (IB/DR) = 1.61/1.61.

Nevertheless other solutions are informative as well. We show that Born terms play a small
role in the η photoproduction and sometimes even negligible but they can still improve the
results. In solutions 2 and 4 we obtained the values for g2ηNN/4π coupling constant. In solution

2 we got g2ηNN/4π = 3.07 × 10−3 and g2ηNN/4π = 3.34 × 10−2 for IB and DR �t respectively.

In solution 4 in both cases value were in the order of g2ηNN/4π ≈ 10−6
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Chapter 8 Summary and conclusion

As a �nal result of our analysis we obtained resonance parameters in an improved a less
model dependent way that takes into account such important properties as analyticity and
crossing symmetry.
For example for the dominant resonance N(1535) 1/2− we got the results that coincide with

the results of other analysis and PDG estimations:

Table 8.1: Resonance parameters for N(1535) 1/2−. Obtained with solutions 6 and 7. IB
results are written in red, DR results are written in blue, �xed parameters are
written in black. We omit here the obtained errors since we discussed them in the
thesis before.

N(1535) 1/2− Solution M Γ ζηNβη(%) A1/2 A3/2

6 1525, 1531 160, 175 +39, +41 115 -
7 1525, 1530 158, 175 +40, +40 115 -

**** PDG 1535± 10 150± 25 42± 10 115± 15 -

In principle all 1/2− states give very stable results that are in agreement with with the results
of other analysis and PDG estimations
One can also mention the example of N(1700) 3/2−. For this resonance it appeared that

DR choose opposite sign for the factor ζηN . The values for the A1/2 amplitude are di�erent as
well.

Table 8.2: Resonance parameters for N(1700) 3/2−. Obtained with solutions 6 and 7. IB
results are written in red, DR results are written in blue, �xed parameters are
written in black. We omit here the obtained errors sicse we discussed them in the
thesis before.

N(1700) 3/2− Solution M Γ ζηNβη(%) A1/2 A3/2

6 1650, 1685 250, 100 −0.4, +2 80, 20 −37
7 1650, 1686 250, 100 −0.3, +2.7 80, 20 −37

*** PDG 1700± 50 150+100
−50 No average 41± 17 −37± 14

We also discussed the errors for the resonance parameters that were obtained using subrou-
tine MINOS in the MINUIT package. One can observe in case of �xed-t dispersion relations
approach the errors are considerably smaller than in case of an isobar model approach. This
means that the dispersion relations approach is not only more fundamental but also more
accurate.
For further improvement one can also perform a combined �t of pion and η photoproduc-

tion data. This will give us additional constraints and allow us to determine the resonance
parameters more precisely.
However in PDG pole positions are preferred over the Breit-Wigner parameters. In order to

obtain them we collaborate with Tuzla and Zagreb (MTZ collaboration) where people developed
the so-called L+P method (Laurant + Pietarinen) [83�86] with which these parameters can be
obtained. This can be considered as a proposal for further improvement of the results.
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Despite that both solutions 6 and 7 have very close χ2 if we plot predictions for the unmea-
sured observables, for example P and H, we will get di�erent results, see �gures below.
For P we have:
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Figure 8.1: Predictions from solutions 6 and 7 for P observable at energies 1700 MeV and 1800
MeV. Solution 6 is plotted in blue (blue solid - IB, blue dashed - DR). Solution 7
is plotted in red (red solid - IB, red dashed - DR)

For H we have:
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Figure 8.2: Predictions from solutions 6 and 7 for H observable at energies 1700 MeV and 1800
MeV. Solution 6 is plotted in blue (blue solid - IB, blue dashed - DR). Solution 7
is plotted in red (red solid - IB, red dashed - DR)

In order to solve this problem one has to perform a PWA including new polarization data.
This can be considered as a proposal for further experimental improvement.
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Chapter A

Formalism

A.1 Reduced multipoles in terms of photo decay amplitudes A1/2

and A3/2

M̄ℓ+ = − 1

ℓ+ 1

(
Aℓ+

1/2 +

√
ℓ+ 2

ℓ
Aℓ+

3/2

)
, (A.1)

Ēℓ+ = − 1

ℓ+ 1

(
Aℓ+

1/2 −
√

ℓ

ℓ+ 2
Aℓ+

3/2

)
, (A.2)

M̄ℓ+1,− = +
1

ℓ+ 1

(
Aℓ+1,−

1/2 −
√

ℓ

ℓ+ 2
Aℓ+1,−

3/2

)
, (A.3)

Ēℓ+1,− = − 1

ℓ+ 1

(
Aℓ+1,−

1/2 +

√
ℓ+ 2

ℓ
Aℓ+1,−

3/2

)
. (A.4)

JP Ē M̄

1/2− −A1/2 �

1/2+ � A1/2

3/2+ 1
2(

1√
3
A3/2 −A1/2) −1

2(
√
3A3/2 +A1/2)

3/2+ −1
2(
√
3A3/2 +A1/2) −1

2(
1√
3
A3/2 −A1/2)

5/2− 1
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3(
√
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5/2+ −1
3(
√
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3(
1√
2
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Table A.1: The reduced multipoles M̄α in terms of the photon decay amplitudes Aλ.

A.2 Helicity amplitudes in terms of CGLN amplitudes

The helicity amplitudes are related to the CGLN amplitudes in the following way:

H1 = −1

2

√
(1− x2)(1 + x)(F3 + F4) (A.5)

H2 =
√
1 + x [F2 − F1 +

1− x

2
(F3 − F4)] (A.6)

H3 =
1

2

√
(1− x2)(1− x) (F3 − F4) (A.7)

H4 =
√
1− x [F1 + F2 +

1 + x

2
(F3 + F4)] (A.8)

with x = cos θ.
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Appendix A Formalism

A.3 Expansion of Bi invariant amplitudes in terms of CGLN am-
plitudes

Amplitudes Bi can be expressed by the CGLN amplitudes Fi accordingly:

B1 = N
{
F1 −

W +mp

W −mp
(Ef +mp)

F2

q

}
, (A.9)

B2 =
N

2(W −mp)
(t−m2

η)

{
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q
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F4

q2

}
,
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−2N
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{
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F2

q
+
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η
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q
+
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(Ef +mp)

F4

q2

}
,

B8 =
−N

W −mp

{
F1 + (Ef +mp)

F2

q
+

(
W +mp +

t−m2
η

2(W −mp)

)
F3

q

+

(
W −mp +

t−m2
η

2(W +mp)

)
(Ef +mp)

F4

q2

}
.

where N = 4π/
√

(Ei +mp) (Ef +mp).

A.4 Expansion of CGLN amplitudes in terms of Ai and Bi invari-
ant amplitudes

The CGLN amplitudes are obtained from the invariant amplitudesAi by the following equations

F1 =
W −mp

8πW

√
(Ei +mp)(Ef +mp)

(
A1 + (W −mp)A4 −

2mpνB
W −mp

(A3 −A4)
)
,

F2 =
W +mp

8πW
q

√
Ei −mp

Ef +mp

(
−A1 + (W +mp)A4 −

2mpνB
W +mp

(A3 −A4)
)
,

F3 =
W +mp

8πW
q
√

(Ei −mp)(Ef +mp)
(
(W −mp)A2 +A3 −A4

)
,

F4 =
W −mp

8πW
q2

√
Ei +mp

Ef +mp

(
− (W +mp)A2 +A3 −A4

)
, (A.10)

with νB = (t−m2
η)/(4mp).

The CGLN amplitudes are obtained from the invariant amplitudes Bi by the following equa-
tions

F1 =
W −mp

8πW

√
(Ei +mp)(Ef +mp)

(
B1 −

1

2
(W +mp)B6 −

2mpνB
W −mp

(
1

2
B6 −B8)

)
,

F2 =
W +mp

8πW
q

√
Ei −mp

Ef +mp

(
− (B1 +

1

2
(W −mp)B6)−

2mpνB
W +mp

(
1

2
B6 −B8)

)
,

F3 =
W +mp

8πW
q
√

(Ei −mp)(Ef +mp)

(
W −mp

2mpνB
B2 +

1

2
B6 −B8

)
,

F4 =
W −mp

8πW
q2

√
Ei +mp

Ef +mp

(
− W +MN

2mpνB
B2 +

1

2
B6 −B8

)
. (A.11)

with νB = (t−m2
η)/(4mp).
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A.5 Observables expressed in CGLN amplitudes

σ0 = Re
{
F ∗
1F1 + F ∗

2F2 + (1− x2) (F ∗
3F3/2 + F ∗

4F4/2 + F ∗
2F3 + F ∗

1F4

+xF ∗
3F4)− 2xF ∗

1F2} ρ (A.12)

Σ̂ = −(1− x2) Re {(F ∗
3F3 + F ∗

4F4) /2 + F ∗
2F3 + F ∗

1F4 + xF ∗
3F4} ρ (A.13)

T̂ =
√

1− x2 Im
{
F ∗
1F3 − F ∗

2F4 + x (F ∗
1F4 − F ∗

2F3)− (1− x2)F ∗
3F4

}
ρ (A.14)

P̂ = −
√

1− x2 Im {2F ∗
1F2 + F ∗

1F3 − F ∗
2F4 − x (F ∗

2F3 − F ∗
1F4) (A.15)

−(1− x2)F ∗
3F4}ρ (A.16)

Ê = Re
{
F ∗
1F1 + F ∗

2F2 − 2xF ∗
1F2 + (1− x2) (F ∗

2F3 + F ∗
1F4)

}
ρ (A.17)

F̂ =
√

1− x2 Re {F ∗
1F3 − F ∗

2F4 − x (F ∗
2F3 − F ∗

1F4)} ρ (A.18)

Ĝ = (1− x2) Im {F ∗
2F3 + F ∗

1F4} ρ (A.19)

Ĥ =
√

1− x2 Im {2F ∗
1F2 + F ∗

1F3 − F ∗
2F4 + x (F ∗

1F4 − F ∗
2F3)} ρ (A.20)

Ĉx′ =
√

1− x2 Re {F ∗
1F1 − F ∗

2F2 − F ∗
2F3 + F ∗

1F4 − x (F ∗
2F4 − F ∗

1F3)} ρ (A.21)

Ĉz′ = Re
{
2F ∗

1F2 − x (F ∗
1F1 + F ∗

2F2) + (1− x2) (F ∗
1F3 + F ∗

2F4)
}
ρ (A.22)

Ôx′ =
√

1− x2 Im {F ∗
2F3 − F ∗

1F4 + x (F ∗
2F4 − F ∗

1F3)} ρ (A.23)

Ôz′ = −(1− x2) Im {F ∗
1F3 + F ∗

2F4} ρ (A.24)

L̂x′ = −
√

1− x2 Re
{
F ∗
1F1 − F ∗

2F2 − F ∗
2F3 + F ∗

1F4 + (1− x2) (F ∗
4F4 − F ∗

3F3)/2

+x (F ∗
1F3 − F ∗

2F4)} ρ (A.25)

L̂z′ = Re
{
2F ∗

1F2 − x (F ∗
1F1 + F ∗

2F2) + (1− x2) (F ∗
1F3 + F ∗

2F4 + F ∗
3F4)

+x(1− x2) (F ∗
3F3 + F ∗

4F4)/2
}
ρ (A.26)

T̂x′ = −(1− x2) Re {F ∗
1F3 + F ∗

2F4 + F ∗
3F4 + x (F ∗

3F3 + F ∗
4F4)/2} ρ (A.27)

T̂z′ =
√

1− x2 Re {F ∗
1F4 − F ∗

2F3 + x (F ∗
1F3 − F ∗

2F4)

+(1− x2) (F ∗
4F4 − F ∗

3F3)/2
}
ρ (A.28)

with Σ̂ = Σσ0 etc. and ρ = q/k . (A.29)
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Appendix A Formalism

A.6 T asymmetry expressed in terms of multipoles from the set
of resonances used in the analysis

T̂

1− x2
=

3

2
Im

[
2E∗

0+(E1+ −M1+) + E∗
3−(−2E0+ + 4E2− + 9E2+)
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+ 2M∗
1−(E2− + E2+ +M2− −M2+) +M∗
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2
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∗
1+ + 30M2+M

∗
2−)

]
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1

2
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− 30E∗
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2+(486E3− + 30M1− − 75M1+)− 90M2−E

∗
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∗
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∗
2− + 54M∗
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]
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45

2
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[
E1+(4E3− +M3−)− 3E2+E

∗
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2+(M2− − 6M2+)
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∗
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]
− x4

675

2
Im

[
E3−E

∗
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∗
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]
(A.30)

A.7 Projection formulas for multipoles out of CGLN amplitudes

Mℓ+ =
1

2(ℓ+ 1)

+1ˆ

−1

dx

(
F1Pℓ(x)− F2Pℓ+1(x)− F3

Pℓ−1(x)− Pℓ+1(x)

2ℓ+ 1

)
(A.31)

Eℓ+ =
1

2(ℓ+ 1)

+1ˆ

−1

dx

(
F1Pℓ(x)− F2Pℓ+1(x) + ℓF3

Pℓ−1(x)− Pℓ+1(x)

2ℓ+ 1

+(ℓ+ 1)F4
Pℓ(x)− Pℓ+2(x)

2ℓ+ 3

)
(A.32)

Mℓ− =
1

2ℓ

+1ˆ

−1

dx

(
−F1Pℓ(x) + F2Pℓ1−1(x) + F3

Pℓ−1(x)− Pℓ+1(x)

2ℓ+ 1

)
(A.33)

Eℓ− =
1

2ℓ

+1ˆ

−1

dx

(
F1Pℓ(x)− F2Pℓ+1(x)− ℓF3

Pℓ−1(x)− Pℓ+1(x)

2ℓ+ 1

+ℓF4
Pℓ−2(x)− Pℓ(x)

2ℓ− 1

)
(A.34)
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Chapter B

Plots of the �t results

B.1 Plots for Solution 1
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Figure B.1: Invariant amplitudes for Solution 1. Real parts of amplitudes are drawn in red,
imaginary parts in blue. IB results are drawn as solid curves, DR results as dashed
curves. Vertical black line denote the physical threshold for a given t value.
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Figure B.2: Invariant amplitudes for Solution 1. Real parts of amplitudes are drawn in red,
imaginary parts in blue. IB results are drawn as solid curves, DR results as dashed
curves. Vertical black line denote the physical threshold for a given t value.
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Figure B.3: Invariant amplitudes for Solution 1. Real parts of amplitudes are drawn in red,
imaginary parts in blue. IB results are drawn as solid curves, DR results as dashed
curves. Vertical black line denote the physical threshold for a given t value.
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B.1 Plots for Solution 1
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Figure B.4: Multipoles for Solution 1. Real parts of multipoles are drawn in red, imaginary
parts in blue. IB results are drawn as solid curves, DR results as dashed curves.
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B.2 Plots for Solution 2
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Figure B.5: Invariant amplitudes for Solution 2. Real parts of amplitudes are drawn in red,
imaginary parts in blue. IB results are drawn as solid curves, DR results as dashed
curves. Vertical black line denote the physical threshold for a given t value.
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Figure B.6: Invariant amplitudes for Solution 2. Real parts of amplitudes are drawn in red,
imaginary parts in blue. IB results are drawn as solid curves, DR results as dashed
curves. Vertical black line denote the physical threshold for a given t value.
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Figure B.7: Invariant amplitudes for Solution 2. Real parts of amplitudes are drawn in red,
imaginary parts in blue. IB results are drawn as solid curves, DR results as dashed
curves. Vertical black line denote the physical threshold for a given t value.
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Figure B.8: Multipoles for Solution 2. Real parts of multipoles are drawn in red, imaginary
parts in blue. IB results are drawn as solid curves, DR results as dashed curves.
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B.3 Plots for Solution 3
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Figure B.9: Invariant amplitudes for Solution 3. Real parts of amplitudes are drawn in red,
imaginary parts in blue. IB results are drawn as solid curves, DR results as dashed
curves. Vertical black line denote the physical threshold for a given t value.
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Figure B.10: Invariant amplitudes for Solution 3. Real parts of amplitudes are drawn in red,
imaginary parts in blue. IB results are drawn as solid curves, DR results as dashed
curves. Vertical black line denote the physical threshold for a given t value.
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Figure B.11: Invariant amplitudes for Solution 3. Real parts of amplitudes are drawn in red,
imaginary parts in blue. IB results are drawn as solid curves, DR results as dashed
curves. Vertical black line denote the physical threshold for a given t value.
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Figure B.12: Multipoles for Solution 3. Real parts of multipoles are drawn in red, imaginary
parts in blue. IB results are drawn as solid curves, DR results as dashed curves.
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B.4 Plots for Solution 4
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Figure B.13: Invariant amplitudes for Solution 4. Real parts of amplitudes are drawn in red,
imaginary parts in blue. IB results are drawn as solid curves, DR results as dashed
curves. Vertical black line denote the physical threshold for a given t value.
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Figure B.14: Invariant amplitudes for Solution 4. Real parts of amplitudes are drawn in red,
imaginary parts in blue. IB results are drawn as solid curves, DR results as dashed
curves. Vertical black line denote the physical threshold for a given t value.
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Figure B.15: Invariant amplitudes for Solution 4. Real parts of amplitudes are drawn in red,
imaginary parts in blue. IB results are drawn as solid curves, DR results as dashed
curves. Vertical black line denote the physical threshold for a given t value.
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Figure B.16: Multipoles for Solution 4. Real parts of multipoles are drawn in red, imaginary
parts in blue. IB results are drawn as solid curves, DR results as dashed curves.
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B.5 Plots for Solution 5
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Figure B.17: Invariant amplitudes for Solution 5. Real parts of amplitudes are drawn in red,
imaginary parts in blue. IB results are drawn as solid curves, DR results as dashed
curves. Vertical black line denote the physical threshold for a given t value.
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Appendix B Plots of the �t results
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Figure B.18: Invariant amplitudes for Solution 5. Real parts of amplitudes are drawn in red,
imaginary parts in blue. IB results are drawn as solid curves, DR results as dashed
curves. Vertical black line denote the physical threshold for a given t value.
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Figure B.19: Invariant amplitudes for Solution 5. Real parts of amplitudes are drawn in red,
imaginary parts in blue. IB results are drawn as solid curves, DR results as dashed
curves. Vertical black line denote the physical threshold for a given t value.
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B.5 Plots for Solution 5
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Figure B.20: Multipoles for Solution 5. Real parts of multipoles are drawn in red, imaginary
parts in blue. IB results are drawn as solid curves, DR results as dashed curves.
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B.6 Plots for Solution 6
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Figure B.21: Invariant amplitudes for Solution 6. Real parts of amplitudes are drawn in red,
imaginary parts in blue. IB results are drawn as solid curves, DR results as dashed
curves. Vertical black line denote the physical threshold for a given t value.
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B.6 Plots for Solution 6
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Figure B.22: Invariant amplitudes for Solution 6. Real parts of amplitudes are drawn in red,
imaginary parts in blue. IB results are drawn as solid curves, DR results as dashed
curves. Vertical black line denote the physical threshold for a given t value.
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Figure B.23: Invariant amplitudes for Solution 6. Real parts of amplitudes are drawn in red,
imaginary parts in blue. IB results are drawn as solid curves, DR results as dashed
curves. Vertical black line denote the physical threshold for a given t value.

135



Appendix B Plots of the �t results

-10

0

10

20

E
0+

 (
m

fm
)

0

2

M
1−

 (
m

fm
)

0

0.5

E
1+

 (
m

fm
)

0

1

2

M
1+

 (
m

fm
)

-0.5

0

0.5

E
2−

 (
m

fm
)

-0.25

0

0.25

0.5

M
2−

 (
m

fm
)

0

0.1

E
2+

 (
m

fm
)

-0.2

-0.1

0

0.1

M
2+

 (
m

fm
)

-0.2

0

0.2

1500 1600 1700 1800

W (MeV)

E
3−

 (
m

fm
)

0

0.1

0.2

1500 1600 1700 1800

W (MeV)

M
3−

 (
m

fm
)

Figure B.24: Multipoles for Solution 6. Real parts of multipoles are drawn in red, imaginary
parts in blue. IB results are drawn as solid curves, DR results as dashed curves.
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B.7 Plots for Solution 7
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Figure B.25: Invariant amplitudes for Solution 7. Real parts of amplitudes are drawn in red,
imaginary parts in blue. IB results are drawn as solid curves, DR results as dashed
curves. Vertical black line denote the physical threshold for a given t value.
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Figure B.26: Invariant amplitudes for Solution 7. Real parts of amplitudes are drawn in red,
imaginary parts in blue. IB results are drawn as solid curves, DR results as dashed
curves. Vertical black line denote the physical threshold for a given t value.
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Figure B.27: Invariant amplitudes for Solution 7. Real parts of amplitudes are drawn in red,
imaginary parts in blue. IB results are drawn as solid curves, DR results as dashed
curves. Vertical black line denote the physical threshold for a given t value.
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