. universe

Article

Quasi-Homogeneous Black Hole
Thermodynamics in Non-
Commutative Geometry

Hernando Quevedo and Maria N. Quevedo

Topic Collection
Open Questions in Black Hole Physics

Edited by
Dr. Gonzalo J. Olmo and Dr. Diego Rubiera-Garcia



https://www.mdpi.com/journal/universe
https://www.scopus.com/sourceid/21100903488
https://www.mdpi.com/journal/universe/stats
https://www.mdpi.com/journal/universe/topical_collections/OpenQuestionsBlack_Hole_Physics
https://www.mdpi.com
https://doi.org/10.3390/universe11030079

universe

Article

Quasi-Homogeneous Black Hole Thermodynamics in
Non-Commutative Geometry

Hernando Quevedo 123*

check for
updates

Academic Editor: Anzhong Wang

Received: 19 January 2025
Revised: 18 February 2025
Accepted: 25 February 2025
Published: 27 February 2025

Citation: Quevedo, H.; Quevedo,
M.N. Quasi-Homogeneous Black Hole
Thermodynamics in
Non-Commutative Geometry.
Universe 2025,11,79. https://
doi.org/10.3390/ universe11030079

Copyright: © 2025 by the authors.
Licensee MDP], Basel, Switzerland.
This article is an open access article
distributed under the terms and
conditions of the Creative Commons
Attribution (CC BY) license

(https:/ / creativecommons.org/
licenses /by /4.0/).

and Maria N. Quevedo *

Instituto de Ciencias Nucleares, Universidad Nacional Auténoma de México, Mexico City 04510, Mexico
Dipartimento di Fisica and Icra, Universita di Roma “La Sapienza”, 00185 Roma, Italy

Department of Theoretical and Nuclear Physics, Al-Farabi Kazakh National University,

Almaty 055040, Kazakhstan

Departamento de Matematicas, Facultad de Ciencias Bésicas, Universidad Militar Nueva Granada,

Cra 11 No. 101-80, Bogota D.C. 111711, Colombia; maria.quevedo@unimilitar.edu.co

*  Correspondence: quevedo@nucleares.unam.mx

Abstract: We study the thermodynamic properties of a black hole that takes into account the
effects of non-commutative geometry. To emphasize the role of new effects, we have chosen
a specific modified Schwarzschild black hole inspired by non-commutative geometry. We
show that, in order to apply the laws of quasi-homogeneous thermodynamics using the
formalism of geometrothermodynamics, it is necessary to consider the non-commutative
parameter as an independent thermodynamic variable. As a result, the properties of the
black hole change drastically, leading to phase transitions that are directly related to the
value of the non-commutative parameter. We also prove that an unstable commutative
black hole can become stable in non-commutative geometry for particular values of the
non-commutative parameter.

Keywords: non-commutative geometry; black holes; geometrothermodynamics; phase
transitions

1. Introduction

The problem of quantizing gravity is widely considered one of the most challenging
open questions of theoretical physics. Several approaches have been proposed during the
past 90 years, and many technical and conceptual results have been achieved especially in
string theory and loop quantum gravity, often described as the best two candidates to solve
this problem. Nevertheless, none of these theories offers a definitive theory of quantum
gravity. In fact, none of the currently proposed physical quantum gravity models gives an
answer that could even be considered remotely close to the solution [1].

The two paradigms of modern theoretical physics are geometry—represented by the
geometric description of general relativity and Yang—Mills theories in terms of differential
manifolds and fiber bundles—and quantization, represented by quantum field theory.
The current situation is such that it is not clear how to pass from the classical geomet-
ric paradigm to the quantization paradigm, although both of them are quite successful
separately. A possible solution to this problem could be a mathematical formalism that
includes—from the very beginning—both geometry and quantization. This is exactly one
of the goals of non-commutative geometry [2,3], where the spacetime quantization is an
a priori assumption represented by the condition that the operators of the spacetime
coordinates x* be non-commuting quantities [x*,x"] = ©"', where ®"" is an antisym-
metric constant tensor. In particular, one can assume that @ = ©¢"’, where © is the
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non-commutative constant parameter that represents the minimum spacetime scale and
can be used to characterize the deviation of any quantity from commutativity.

From a physical point of view, non-commutativity appears in classical and relativistic
systems once non-local effects are taken into account. Examples are the classical Poisson
brackets, the Dirac and Heisenberg algebras, and the Lie and Clifford algebras, among
others [4]. Therefore, it is expected that a similar result could be obtained in general
relativity. However, this is not the case. So far, no concrete example to realize this idea
is known. A definite theory is also far from being formulated. This is one of the reasons
why the effects of non-commutativity on physical systems cannot be investigated directly.
In such a situation, physicists commonly use intuitive arguments to construct effective
models that try to understand the problem from different points of view. This is the case
of the model we will consider in this work, in which non-commutativity is assumed to be
represented by an effective energy—-momentum tensor at the level of Einstein’s equations.
However, many other models are known in the literature [4,5].

The effect of non-commutativity on gravitational theories has been analyzed exten-
sively [6—13]. In particular, it has been established that the assumption of non-commuting
spacetime coordinates is incompatible with the Lorentz covariance property of field theo-
ries. This opens up the possibility of investigating Lorentz covariance violations within the
framework of non-commutative geometry [14-20]. It has been argued that at the level of
the Einstein equations, non-commutative effects can be implemented, effectively modifying
only the energy—-momentum tensor. This is an important result that allows us to study non-
commutative effects in gravity by analyzing exact solutions of Einstein equations in which
the matter source generalizes the usual point-like representation of mass distributions.

The Schwarzschild black hole solution has been investigated in the framework of
non-commutative geometry, leading to the interesting result that the parameter © enters ex-
plicitly the spacetime metric, implying that the gravitational field is affected by the presence
of non-commutative coordinates [21]. Whereas in Einstein’s gravity, the Schwarzschild
spacetime is generated by a point-like mass distribution, non-commutative geometry offers
an alternative in which a spherically symmetric mass is represented by Gaussian and
Lorentzian distributions that span the entire space [21].

On the other hand, the seminal works of Bekenstein [22] and Hawking [23], which
characterize black holes by an entropy proportional to the horizon’s surface area, have
opened the possibility of investigating black holes from a thermodynamic point of view.
The main point is that the dynamics of black holes satisfy certain rules that resemble the
laws of classical thermodynamics [24,25]. Although there are still many open conceptual
questions, black hole thermodynamics is currently a field of active research in part because
it is widely believed that it represents a tool for exploring problems related to quantum
gravity. In this work, we will assume that black holes can be investigated as thermodynamic
systems, in which the fundamental thermodynamic equation [26] is determined by the
Bekenstein-Hawking entropy relationship.

Moreover, we will explore the thermodynamic properties of a system by using the
tools of thermodynamic geometry [27,28] and geometrothermodynamics (GTD) [29]. These
differential geometric formalisms use the properties of the space of equilibrium states
to investigate the physical properties of the corresponding thermodynamic system. In
particular, we will use a result obtained in GTD, according to which the fundamental
equation of a thermodynamic system is represented either by a homogeneous or a quasi-
homogeneous function [30,31]. The case of homogeneous functions includes all ordinary
laboratory systems, whereas quasi-homogeneous functions are usually associated with
more exotic systems like black holes. In this work, we will investigate the thermodynamic
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properties of the Schwarzschild black hole in non-commutative geometry from the point of
view of quasi-homogeneous thermodynamics.

This work is organized as follows. In Section 2, we present the explicit form of
the modified Schwarzschild black hole metric, which contains the contribution of non-
commutative geometry. To apply the concepts of quasi-homogeneous thermodynamics,
we show that the non-commutative parameter must be considered as an independent
variable in the framework of extended black hole thermodynamics. In Section 3, we
present the fundamentals of quasi-homogeneous GTD, which is the main tool we use to
explore the thermodynamic properties of the black hole. We emphasize the fact that GTD is
invariant with respect to Legendre transformations, which is also a property of classical
thermodynamics, meaning that the properties of a system do not depend on the choice
of thermodynamic potential used for its description. In Section 4, we derive the main
geometric properties of the equilibrium space of the modified Schwarzschild black hole
and find the singularities of the thermodynamic curvature, which are then shown to be
associated with the violation of the stability conditions and with the occurrence of phase
transitions in the black hole. We also show that non-commutative geometry can drastically
change the stability properties and phase transition structure of black holes. Finally, in
Section 5, we summarize our results and mention some open questions that can be treated
in future works. Throughout this work, we use geometric units withc =G =h =kp = 1.

2. The Schwarzschild Black Hole in Non-Commutative Geometry

The simplest spherically symmetric black hole in non-commutative geometry can be
described by the line element [6,32]

b
f(r)

where the metric function f(r) is given by the following:

ds? = —f(r)dt? + ——dr? + 12(d6? + sin® d¢?), 1)

2M  8MVO
f(’”)zl—T‘f‘Wr 2)

with M being the mass of the black hole and ® the non-commutative parameter. From a
physical point of view, the parameters M and © are interpreted as quantities that can be
measured by observers located at infinity in the spacetime described by the line element (1).
From a geometric point of view, M and © should be treated as four scalars with dimensions
of length and length squared.

Notice that this function is similar to the lapse function of the Reissner-Nordstrém solution:

2M ¢
fan(r)=1-==+ 7, )

where g is the electric charge. This means that from the point of view of the gravitational
interaction, the effect of the non-commutative parameter ® on the surrounding spacetime
is equivalent to the effect due to the electric charge, implying that through theoretical
analysis, it is not possible to distinguish one spacetime from the other one. However, this
similarity also opens the possibility of imposing experimental limits on the value of ®
experimentally, for instance, by analyzing the motion of test particles in the spacetime
described by the non-commutative metric (1) with (2). However, as we will see below, for
the analysis of the non-commutative metric, from a thermodynamic point of view, it is
necessary to consider the thermodynamic properties of all the constants entering the metric,
which leads to different results because ® and g are thermodynamically different.



Universe 2025, 11, 79 40f15
The above metric is an exact solution of Einstein’s equations
R
Ryy — Eg;w = 81Ty, 4)
with
Ty = =Ty = —%, Top = Tpp = ﬁ (5)

This is the energy-momentum tensor for this particular solution, containing modifications
due to non-commutative geometry. In the limiting case of vanishing ®, we recover the
commutative Schwarzschild black hole.

The effective gravity source (5) has been introduced as an operative approach to
consider non-commutative effects in gravity without changing the Einstein—Hilbert action
and the entire theory. Although this effective approach drastically reduces the complexity
of considering non-commutative effects in gravity, the resulting metric can depend on the
choice of the gravity source distribution that is necessary to construct the effective energy-
momentum tensor. Nevertheless, this approach has been shown to lead to physically
reasonable results and is, therefore, widely used to study gravitational fields under the
influence of non-commutative geometry [6,32,33].

Although the general spherically symmetric solution inspired in non-commutative
geometry is given in a more complicated form in terms of the lower incomplete gamma
function, which can be handled as an infinite series, here, we will consider only one term of
this series to simplify the analysis and emphasize the role of the non-commutative effects.
Recently, this particular modified black hole solution was investigated in [32] by using the
formalism of extended thermodynamics.

It is important to emphasize that the modified Schwarzschild solution (2) is valid
only in a particular phenomenological and effective model of non-commutative geom-
etry, in which it is assumed that the gravitational source is not point-like, but, instead,
it is represented by an object of mass M that is diffused throughout a spatial region of
characteristic size v/O. However, as indicated above, many other models can be used
to construct gravitational solutions with non-commutative contributions. For instance,
in [34], an alternative procedure was proposed to consider black hole configurations in
the framework of covariant quantum gravity. We expect that different non-commutative
models and approaches to quantum gravity would lead to different effects at the level of
the metric tensor and, consequently, of the effective gravitational field.

According to Equations (1) and (2), the non-commutative effects are represented at
the metric level as a perturbation of the Schwarzschild term 2M /7. To evaluate the non-
commutative effect, we can define from Equation (2) the parameter y =1 — %@, which
measures the deviation from the Schwarzschild black hole. We see that the deviation does
not depend on the mass of the black hole and, consequently, we can consider in our analysis

black holes with small and large masses. Moreover, the deviation is practically determined

Ve)
r

the black hole, the deviation tends to disappear, whereas it increases as the black hole is

by the ratio %=, which depends on the radial coordinate. Then, at large distances from
approached. This means that the deviation is observer-dependent, a common feature of
general relativity.

The non-commutative contribution leads to drastic changes in the behavior of the corre-
sponding gravitational field. For instance, instead of the single horizon located at r;, = 2M,
the modified solution can have two horizons whose radii are given by the expressions

e — Mt |2 SMV® ©

N
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which imply the black hole condition M > %. In realistic matter sources, this condition

can always be satisfied because the value of the non-commutative parameter /@ is either of
the order of magnitude of the Planck length or much smaller than the value of the mass M.

The idea of considering black holes as thermodynamic systems was proposed in 1972
by J. Bekenstein [35], using the fact that the area of the horizon is an increasing function
of the parameters determining the gravitational field of the black hole. To this end, it was
assumed that the black hole is in thermal equilibrium with its surroundings so that the
laws of equilibrium thermodynamics can be applied. In fact, the thermal equilibrium of
black holes follows from the fact that according to classical general relativity no energy can
be extracted from inside the horizon. Although following the approach of semiclassical
relativity, Hawking [23] proved that a black hole emits radiation through the horizon,
black hole thermodynamics is based upon the assumptions of classical general relativity,
implying that the black hole does not interact thermodynamically with its surroundings
and is in thermal equilibrium. Once the laws of classical thermodynamics are assumed to
be valid in black holes, one can use the standard methods of equilibrium thermodynamics
to derive information about the behavior of the system. For instance, Davies [24] proposed
using the zeros and the divergences of the heat capacity to define phase transitions in black
holes. It has been shown in many works that black holes can have complicated phase
structures, including phase transitions of different types [25]. For instance, the Hawking—
Page phase transition occurs in black holes in asymptotically anti-de Sitter space and
involves a transition from an unstable state to a stable state, accompanied by a change in
the asymptotic properties of the black hole. Other types of phase transitions are represented
by drastic changes in the temperature or in the mass of the black hole and are interpreted
as transitions from cold to hot black holes and from small to large black holes. All these
results are based on analogies with classical thermodynamics. A complete understanding
of black hole phase transitions is not yet reached because of the lack of a realistic statistical
model for the inner microstructure of the system. Several models have been proposed, but
none of them can give a definite answer to the question about the physical details of black
hole phase transitions [25].

The Bekenstein-Hawking entropy of the black hole is given in terms of the outer
horizon radius as follows:

8M+\/O ) ’ "

S:nr%Jr:Tc(M—i— M? — NG
and constitutes the fundamental thermodynamic equation from which all the properties
of the system can be derived [26]. In the case of black holes, fundamental equations are
no longer homogeneous functions of their variables. Indeed, the fact that the entropy is
proportional to the area of the horizon and not to its volume leads to important changes
at the level of the Euler identities, which can be taken into account by comparing the
explicit form of these identities with the Smarr formula for specific black holes [24]. In
fact, the Smarr formula can be considered as the gravitational analog of the Euler identity.
An alternative way of improving the explicit form of the Euler identity is to assume that
black holes are quasi-homogeneous thermodynamic systems [30]. This means that if the
fundamental equation is represented by the function S = S(E”), quasi-homogeneity implies
that it should satisfy the following condition:

S(APET) = APSS(E™), (8)
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where A is a real positive constant, which represents the rescaling of the thermodynamic
variables E“, and B, are real constants, which determine the rescaling properties of the
system and are called quasi-homogeneous coefficients. An inspection of the fundamental
Equation (7) shows that the quasi-homogeneity condition cannot be satisfied unless the
parameter © is considered an independent thermodynamic variable. Indeed, it is easy to
see that the rescaling of the entropy function satisfies the quasi-homogeneity condition, i.e.,

2
p Pe/2
S(APMM, APe@) = | APMM + ([ A2PMM2 — BAPMMAFO/2V0
NG
= APs5(M,0) ©)
if the coefficients B, are not arbitrary but satisfy the conditions
Po =2Bm, Bs=2Pm. (10)

The quasi-homogeneity property affects some conceptual issues of thermodynamics,
such as the classification of variables in extensive and intensive, and some technical re-
sults such as the Euler identity, which now contains the quasi-homogeneous coefficients,
explicitly in the following form [30]:

)
Y BuE" oo = pss. ay

In the homogeneous limiting case, all the coefficients 8, are fixed as B, = 1. In the case of
the non-commutative Schwarzschild black hole, the Euler identity reduces to
as as
Mm + 26% =285, (12)
as a result of considering the explicit values (10).

The above result implies that to investigate the properties of the modified Schwarzschild
black hole from the point of view of thermodynamics, it is necessary to consider the non-
commutative parameter ® as an independent thermodynamic variable. This behavior was
first observed in the case of black holes with the cosmological constant and has given rise
to a new way of investigating systems in the framework of the so-called extended black
hole thermodynamics [31,36]. Here, we will follow the idea of this approach and perform
our analysis in the framework of quasi-homogeneous extended thermodynamics.

At first glance, the field of extended black hole thermodynamics may seem perplexing,
as it involves quantities such as the cosmological constant and other constants that influ-
ence the metric and determine the properties of the gravitational field, which are usually
considered fixed parameters in the theory. However, for instance, the cosmological constant
could become a dynamical variable in generalized theories such as gauge supergravity
and string theories [37,38]. Then, in general, it is possible to move around the problem by
taking the fixed parameters of a theory as external variables determined by the dynamics
of a more comprehensive theory. The field of extended black hole thermodynamics has
led to several physical implications and applications. It has been used to investigate black
hole phase transitions from a different perspective, leading to completely new research
fields such as black hole chemistry [36] and internal microstructure [39] by using methods
of thermodynamic geometry [28] and GTD [40,41]. In the case of the black hole under
consideration in this work, the parameter ® should become a dynamic variable in a more
general theory of non-commutative gravity, a theory that is still unknown.
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As we mentioned above, the non-commutative metric (1) is gravitationally equivalent
to the Reissner-Nordstrom metric. The thermodynamic analysis, however, leads to dif-
ferent results. Indeed, from Equation (3) and the condition fry(r;+) = 0, we obtain the
fundamental equation for the Reissner-Nordstrom black hole as follows:

_ VS, 7
M_W(HS), (13)

which is a quasi-homogeneous function if the conditions ; = % Bs and By = % Bs. In
contrast, in the non-commutative case given in Equation (10), we have that fg = s
and Bp = % Bs and, consequently, B; # Be. This means that ® and g are different from
a thermodynamic point of view. In fact, as explicitly shown in the particular example
presented [30], the thermodynamic properties and phase-transition structure of two systems
with different quasi-homogeneity coefficients are completely different. In other words, the
properties of a thermodynamic system depend on the quasi-homogeneity character of its
independent thermodynamic variables.

3. Review of Quasi-Homogeneous Geometrothermodynamics

The main goal of GTD is to represent the physical properties of thermodynamic sys-
tems in terms of concepts of differential geometry. To this end, the equilibrium states
are represented as points of an abstract space called the equilibrium space, which is then
equipped with Riemannian metrics. The choice of these metrics is important and in GTD
this is done by demanding that they are invariant with respect to Legendre transforma-
tions, i.e., they do not depend on the choice of thermodynamic potential used for its
description [26]. From the geometric point of view, it is appropriate to represent Legendre
transformations as coordinate transformations that leave the geometric structure of a differ-
ential manifold invariant. In GTD, this can be achieved by introducing an auxiliary phase
space, which can then be endowed with Legendre invariant metrics [29]. The equilibrium
space turns out to be a subspace of the phase space, which inherits the Legendre invariant
property of the phase space.

To construct the phase space 7 in GTD, we proceed as follows. Consider a sys-
tem with n thermodynamic degrees of freedom. To describe such a system in classical
thermodynamics, it is necessary to introduce a thermodynamic potential ®, n extensive
variables E?, a = 1,...,n, and n intensive variables I,. The set of all these variables
Z4 = {®,E% 1,} is used as coordinates of the (21 + 1) —dimensional phase space 7. The
geometric properties of T are invariant under the action of general diffeomorphisms of the
form Z4 — 74 = Z4'(ZA) under the condition that the inverse transformation exists, i.e.,

oz4

= | #0. (14)

Legendre transformations can be represented as a particular coordinate transformation of
the form [42,43]:
(24} — {24} = {9, £, L} (15)
with
o=, EF=-I, E=F, L=EF, =T, (16)
where i U j is any disjoint decomposition of the set of indices 1,...,nand k,I =1,...,i. It

follows that fori = 1,...,n and i = &, we obtain the total Legendre transformation and
the identity, respectively.
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In the above description, we used the terms “extensive” and “intensive” to denote the
variables E? and I, respectively. This notation should be understood as simple names for
the variables because, in fact, a Legendre transformation (cf. Equation (16)) interchanges
extensive and intensive variables, leading to a loss of their physical meaning. This situ-
ation is similar to classical mechanics, where a canonical transformation can be used to
interchange generalized coordinates and momenta. However, the names for variables and
coordinates continue to be used out of habit [44].

Assuming that 7 is a differential manifold, we can endow it with a Riemannian metric
Gap, which can depend explicitly on the coordinates Z4. To guarantee the Legendre
invariance of 7, we demand that all the geometric objects defined on it remain unchanged
under the action of the coordinate transformations (15) and (16). In particular, we require
that the functional dependence of the components G 4p remains invariant under the action
of Legendre transformations. This resembles the invariance of the Minkowski metric
under Lorentz transformations. We then proceed to apply a Legendre transformation to
an arbitrary metric G4p and find the algebraic conditions that must be satisfied for the
functional dependence of G4p to remain unchanged. It turns out that this condition is
satisfied by the following line elements [30,45]:

G = (d® — LAE")? + (o E'1") (6.4dE°AI?) 17)
G = (d — L, dE")® + (EuE"I") (egdEdI”) , (18)
n
Gl = (d® — LdE")? + Y &, (E*I1*)* 1 dEdI”, (19)
a=1

where 6, = diag(1,---,1), [" = 57T, Nap = diag(—1,1,---,1), &, are real constants,
is a diagonal n x n real matrix, and k is an integer.

It should be mentioned that according to Darboux’s theorem [46], the odd-dimensional
differential manifold 7 can be endowed in a canonical way with a contact structure
determined by the contact 1-form:

O =d® — ,dE, with O A (d®7) #0 (20)

which is also Legendre invariant in the sense that under the action of a Legendre transfor-
mation Z4 — Z4, its functional dependence remains unchanged, as follows:

Or —» Or =dd - [,E". (21)

The canonical contact 1-form O is an important ingredient of the GTD formalism since it
represents the first law of thermodynamics when projected on the equilibrium space.

Furthermore, the equilibrium space € is defined as an n—dimensional subspace of the
phase space 7 that is defined by the smooth embedding map:

¢p: =T, ie, Z4={d(E"),E% L(E")}, (22)
that satisfies the condition
¢*(®7) =0, ie, d®—LE =0, (23)

where ¢* is the pullback of ¢. Since the explicit form of the embedding map requires that
the thermodynamic potential be a function of the variables E?, we obtain the following:

2D . 9P

a —_
dd = E)E“dE , le, I,= SEa

(24)
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It then follows that the embedding map ¢ induces the equation ® = ®(E?), which is
interpreted in classical thermodynamics as the fundamental equation. Consequently, the
relationships (24) in GTD represent the first law of thermodynamics and the equilibrium
conditions of the system [26].

On the other hand, the metric of the equilibrium space is also induced canonically by
the embedding map ¢ by using the corresponding pullback ¢* as follows:

§ = gudE"dE" = ¢*(G) = ¢*(GapdZ*dZP), (25)

or in components
9z4 9ZP

Sab = GABW@- (26)

Consequently, in Equations (17)-(19), we obtain the following independent metrics for the
equilibrium space:

n oD\ %D
I c arb
_ 27
$SE (555 ) o 205" 7
I — f g%, d aidﬁﬂdﬂb (28)
$7= L (PeFgEe )i gpraEs /
" oD\ 0*D
II1 a a b
_ il 2
§ abzzll (5“]5 E)E“) aEmErEIE @9)
1, = diag(—1,1,---,1). (30)

respectively. Here, the free parameters of the line elements G/, G, and G!!! have been
chosen in terms of the quasi-homogeneous coefficients as

$a=Pa, Cap=diag(B1,---,Bn), k=0. (31)

This choice results from the requirement that all three GTD metrics be applied simultane-
ously to the same thermodynamic system and yield compatible results. The use of this
condition will be illustrated below in the case of the Schwarzschild black hole in non-
commutative geometry. In the case of ordinary laboratory systems, the above formalism of
quasi-homogeneous formalism can also be applied simply by considering the special case
Ba = 1, which corresponds to fundamental equations for homogeneous systems.

The final result of the GTD formalism is contained in the GTD metrics given above
in Equations (27)—(29). It shows that to perform the explicit GTD analysis, it is necessary
to have the explicit form of the fundamental equation ® = ®(E”), which is also what is
needed in classical thermodynamics to determine all the properties of the system.

4. Black Hole Thermodynamics in Non-Commutative Geometry

The thermodynamic properties of the Schwarzschild black hole presented in Section 2
can be derived from the fundamental equation S = S(M, ©) given explicitly in Equation (7),
corresponding to the entropic representation of classical thermodynamics. This represen-
tation, however, is rather complicated and leads to cumbersome expressions for other
thermodynamic variables. It is then convenient to use the mass representation in which
the fundamental equation is given as M = M(S, ®). This is possible because one of the
important results of the GTD formalism is that it does not depend on the choice of thermody-
namic potential and representation. Indeed, all the thermodynamic potentials are related by
means of Legendre transformations, which leave the structure of the phase space invariant.
In contrast, a change of representation corresponds to a coordinate transformation in the
equilibrium space, which does not affect the geometric properties of £.
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To find the mass representation in this case, we proceed as follows. The radius of the
horizon is obtained from the metric function (2) and the condition f(r;, ) = 0. Moreover,
the Bekenstein-Hawking entropy is given by S = 7r? - From these two equations, we
obtain the following;:

2y/tM  8y/mTMV©O
f(rns) e (2)
which can be solved with respect to M and yields
S
M= M(S,0) = (33)

2y7 (VS - 4v@)’

an expression that represents the fundamental equation in the mass representation. Notice
that to consider only positive and finite values of the mass, the condition S > 16@ must be
satisfied. This limits the range of applicability of the thermodynamic approach.

In turn, the Euler identity in the mass representation is as follows:

oM oM

where the coefficients Bs, fe, and Sy should satisfy the quasi-homogeneity condition (10).
To calculate the explicit form of the GTD metrics (27)-(29), we identify the thermody-
namic potential as ® = M and the independent variables as E* = (S, ®). Then, we obtain

the following:
oM\ /0*M M 0’M
I _ 2 2
g = (/sss = +ﬁ@®a®)(asz ds +Zasa®d5d®+ 5 d@) (35)
92M 92M
I _ 2 2
§ = (ﬁss +ﬁ@®a®)( 25245+ a@2d®> (36)
oM 9*M oM\ o*M
111 2
gl = BsSogoordSt+ (ﬁssa + o0~ )asa@)de@
OIMPM ,_,
+poO55 557107, (37)

A straightforward calculation using the fundamental Equation (33) and the Euler identity
(34) leads to the following:

M(VS —12/0
o BuM( )) <1d52 16v'S d5d®+s3/2d@2>, (38)

$ T amsa(Vsoave) \E VB 12/0

11

BuM(VS—-12v8) /4
2ya(Vs - 4v0) (-5 ee?). )

gl — Bm [ (VS —8v0) (VS - 12V0)
V(V/S - 4/0)3 16\/7TVS(VS — 4v/0)?

S2(VS —12V0) d®2]

TVreR (Vs -aer |

ds? + 4MdSd®

(40)
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Notice that all three metrics present a coordinate singularity at S = 160, which is, however,
outside the range of validity of the thermodynamic approach since it implies an infinite
mass of the black hole.

The next step consists of calculating the corresponding curvature scalars and their
singularities. Using the Euler identity to simplify the expressions for the curvature scalars,
it can be seen that the curvature singularities are determined by the following conditions:

PMPEM [ @M\2 S (5Y2-245V0 + 14450 ~ 256 0°2)
I: — ( ) = =0, 41
2 2 6
J5% 00 9590 16n(—5+4\@\@) ©3/2
2
Pmam  S7(-5+12/8V5)
II: = =7 = 3 =0, (42)
167(~S +4v/0VS) @32
2 3/2
. 2N > 0. (43)

19500 ﬁ(—s+4\@¢§)3 ]

Finally, it is easy to see that only the first two conditions have non-trivial solutions, namely,
the following:
I1:5=2560, (44)

I1:S=1440. (45)

This is a simple result that—according to the formalism of GTD—indicates the presence
of phase transitions. To see this, notice that condition (41) coincides exactly with the
stability condition of a thermodynamic system with two degrees of freedom [26], namely,
the following:

92M 92 M \ 2
M 32M ( M) -0 )

95? 002 \ 9500
The equality occurs at the critical point where the system becomes unstable. This kind of
critical point is usually associated with a first-order phase transition, which in this case
takes place for the particular value of the entropy S = 2560.

To identify the second singularity, consider the first law of thermodynamics, which,
according to GTD, is valid in the equilibrium space £, and in the mass representation can
be expressed as ¢*(®7) =0, i.e.,

oM oM

dM = TdS + NdO , T_ﬁ’ N—%, (47)

where T is the temperature of the black hole and N is the thermodynamic variable dual to
the non-commutative parameter ©. Then, we have the following:

_ 1 VJ5-8/O B s
TTLAVswer T VRV - aver )

For the temperature to be a physical quantity, the condition S > 64© must be satisfied,

which is compatible with the locations of the curvature singularities. These dual quantities
diverge for S = 160, which, however, is not a physical divergence since it implies an
infinite value for the mass of the black hole, according to the fundamental Equation (33).
The mass, M, given (33) together with the temperature, T, and the dual variable N,
constitute the main thermodynamic variables of the non-commutative Schwarzschild black
hole. They determine the behavior of the black hole in terms of the independent variables
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S and ©. Additional information can also be found in the response functions [26]. In this
context, we now consider the heat capacity of the black hole at a constant value of the
non-commutative parameter ©, i.e., [26],

35S ol
© <W>®

Then, from the fundamental Equation (33), we obtain the following:

_2V5(VS —8V0) (VS —4v/0)
VS -12V0 '

an expression that diverges for S = 1440, indicating the presence of a second-order

Co = (50)

phase transition. Indeed, the divergence shows that the black hole transitions from a
state with negative to one with positive heat capacity, which is interpreted in classical
thermodynamics as a transition from an unstable to a stable state.

In Figure 1, we illustrate the behavior of the heat capacity in terms of the non-
commutative parameter ©. In the limiting case ©® = 0, we see that Cg is negative, indicating
that the commutative Schwarzschild black hole is unstable, as expected. Then, in the range
0 < € < 14, the black hole is still unstable. This interval is followed by a second-order
phase transition at € = 144, which marks the beginning of the interval 1i; < € < 2, in
which the black hole is in a stable state. In the next interval é < % < 11—6, the heat capacity
is negative, becoming positive again for % > 0. Notice, however, that the range % > é is
not physical because it corresponds to states with negative temperature and negative mass
for @ > L.

6,

Figure 1. The heat capacity of the modified Schwarzschild black hole as a function of the non-
commutative parameter O.
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The above analysis proves that the singularity located at S = 1440 in the thermody-
namic curvature corresponds to a physical second-order phase transition, corresponding to
a divergence of the heat capacity. Furthermore, we have shown that an unstable commuta-
tive black hole can become stable as a result of the effects due to non-commutative geometry.

5. Conclusions

The main aim of this work was to find out how non-commutative geometry affects
the properties of black holes from the point of view of thermodynamics. To this end, we
consider a particular black hole solution in which only the mass is the source of gravity, and
the non-commutative effects are considered operationally by means of an effective energy—
momentum tensor, which depends explicitly on the parameter ®. This parameter accounts
for the non-commutative nature of the spacetime coordinates and can be of the order of
magnitude of the square of the Planck length. First, we established that the presence of the
parameter O in the metric leads to the appearance of a second event horizon. In general,
the existence of horizons implies a condition on the possible values of the entropy and the
non-commutative parameter. This condition seems to always be satisfied due to the small
value of ©.

The Bekenstein-Hawking entropy associated with the area of the outer horizon is
interpreted as the fundamental equation from which all the properties of the system can
be derived. The condition that the fundamental equation be treated in the framework of
quasi-homogeneous thermodynamics leads to the conclusion that the non-commutative
parameter ® should be considered as an independent thermodynamic variable, implying
that the entire analysis should be carried out in the framework of extended thermodynamics.
Treating © as a thermodynamic variable implies that all the properties of the black hole can
be affected by the non-commutative contributions.

To explore the effects of non-commutative geometry on the thermodynamics of the
black hole, we use the formalism of GTD that allows us to obtain results independently
of the thermodynamic potential and the representation used to describe the black hole.
Indeed, Lagrangian transformations are treated as coordinate transformations in the phase
space and changes in representations correspond to coordinate transformations in the
equilibrium space. Furthermore, as an important ingredient, the GTD formalism relies on
the fact that fundamental thermodynamic equations are represented by quasi-homogeneous
functions. This allows us to apply the three GTD metrics simultaneously to the same
system, leading to compatible results. In this way, GTD can be applied consistently to any
thermodynamic system.

Starting from the fundamental equation in the mass representation, we derive the
explicit expressions for the metrics of the equilibrium space and show that they possess two
different curvature singularities. Furthermore, we show that these singularities determine
the stability properties and the phase transition structure of the black hole in an invariant
way. In particular, we find that the stability condition is violated when S = 2560, gives
rise to a first-order phase transition. Moreover, at S = 1440, there is another curvature
singularity, which we show to coincide with divergence at the level of the heat capacity,
indicating the presence of a second-order phase transition that brings the black hole from
an unstable state to a stable state. Notice that we interpret the phase transitions of the non-
commutative Schwarzschild black hole by using the standard methods of classical black
hole thermodynamics, i.e., as transitions between different states of the system. To find out
the physical phenomena that occur during a phase transition, it is necessary to develop a
statistical model for the microstates of the black hole, from which the above thermodynamic
approach would follow in the corresponding limit. However, at this moment, there is no
definite statistical model that could be used to describe the inner structure of black holes. In
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general, this is an open question in the field of black hole thermodynamics that is currently
under development through different approaches [25].

Our results show that non-commutative geometry drastically affects the properties
of the Schwarzschild black hole in the sense that the original structure with only unstable
states and no phase transitions transforms into a more sophisticated structure with phase
transitions and the possibility to develop into a stable state. In the case of the modified
Schwarzschild black hole, we have shown that in the interval 0 < 640 < S, the system
can exist only in unstable states. In contrast, the range 640@ < S < 1440 corresponds to
stable states.

Our results show that the formalism of GTD can be used to study the effects of non-
commutative geometry in quasi-homogeneous and extended black hole thermodynamics.
The fundamental equation is the only input that is necessary to investigate all the geo-
metric properties of the equilibrium space, which have been shown to be related to the
thermodynamic properties of the system. This approach can be generalized to include
higher non-commutative contributions [6] as well as other parameters that determine the
physical properties of the gravitational field such as the cosmological constant [32] or
coupling constants in modified theories of gravity. We expect to explore these problems in
future works.
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