
GENERIC COLORIZED JOURNAL, VOL. XX, NO. XX, XXXX 2021 1

Bioinspired Quantum Oracle Circuits for
Biomolecular Solutions of the Maximum Cut

Problem
Weng-Long Chang, Renata Wong, Yu-Hao Chen, Wen-Yu Chung, Ju-Chin Chen, and Athanasios V.

Vasilakos

Abstract— Given an undirected, unweighted graph with
n vertices and m edges, the maximum cut problem is to
find a partition of the n vertices into disjoint subsets V1
and V2 such that the number of edges between them is as
large as possible. Classically, it is an NP-complete problem,
which has potential applications ranging from circuit lay-
out design, statistical physics, computer vision, machine
learning and network science to clustering. In this paper, we
propose a biomolecular and a quantum algorithm to solve
the maximum cut problem for any graph G. The quantum
algorithm is inspired by the biomolecular algorithm and
has a quadratic speedup over its classical counterparts,
where the temporal and spatial complexities are reduced to,
respectively, O(

√
2n/r) and O(m2). With respect to oracle-

related quantum algorithms for NP-complete problems, we
identify our algorithm as optimal. Furthermore, to justify
the feasibility of the proposed algorithm, we successfully
solve a typical maximum cut problem for a graph with three
vertices and two edges by carrying out experiments on
IBM’s quantum simulator.

Index Terms— data structures and algorithms, the maxi-
mum cut problem, quantum algorithms, quantum comput-
ing, quantum speedup

I. INTRODUCTION

LET G = (V,E) be an undirected, unweighted graph with
a set of vertices V is a set of edges E. Further, let |V | =

n and let |E| = m. A cut {V1, V2} of G is defined as a
partition of vertices into two disjoint subsets V1 and V2. The
size of the cut is the number of the edges between V1 and V2.

Fig. 1: Example graph.

* Corresponding author: Renata Wong (renata.wong@cgu.edu.tw)
W.-L. Chang, W.-Y. Chung and J.-C. Chen are with the Department

of Computer Science and Information Engineering, National Kaohsiung
University of Science and Technology, Kaohsiung City, Taiwan, R.O.C.

R. Wong is with the Department of Artificial Intelligence, College of
Intelligent Computing, Chang Gung University, Taoyuan, Taiwan. She
was with the Physics Division, National Center of Theoretical Sciences,
National Taiwan University, Taipei, Taiwan.

Y.-H. Chen is with the Department of Physics, National Taiwan Uni-
versity, Taipei, Taiwan.

A. V. Vasilakos is with the Center for AI Research (CAIR), University
of Agder, Grimstad, Norway.

Example: Consider an undirected unweighted graph G
that contains three vertices {v1, v2, v3} and two edges
{(v1, v2), (v2, v3)} as shown in Fig. 1. If the cut is V1 = {v1}
and V2 = {v2, v3}, or V1 = {v1, v2} and V2 = {v3}, the size
of the cut is 1. If it is V1 = {v1, v3} and V2 = {v2}, then it
is 2, which is also the maximum cut size for this graph.

In what follows, we assume that X = {xn · · ·x1|xd ∈
{0, 1}, 1 ≤ d ≤ n} is a set of 2n possible cuts. We further
assume that x0d indicates that xd = 0, while x1d indicates that
xd = 1. With this, each element in X is n bits long and
represents one of the 2n possible partitions of n vertices into
two disjoint subsets V1 and V2. Furthermore, if an xd = 1
in xn · · ·x1 ∈ X then this indicates that the d-th vertex in
graph G is in V1. For the same partition, if xd = 0, then this
indicates that the d-th vertex is in V2.

The fact that an edge (xk, xp) ∈ V1 × V2 can be verified
by formula (1). Similarly, the fact that an edge is not shared
between V1 and V2 can also be verified by formula (1).

f(xk, xp) = (xk ∧ xp) ∨ (xk ∧ xp) (1)

where ∧ stands for the logic AND, and ∨ stands for the logic
OR operation. Formula (1) essentially outputs a 1 if xk and
xp belong to different sets of vertices, i.e. either (xk, xp) ∈
V1×V2 or (xk, xp) ∈ V2×V1. Formula (1) outputs a 0 if both
xk and xp belong to the same set of vertices (either both to
V1 or both to V2).

II. RELATED WORKS AND MOTIVATION

Quantum computing promises to solve certain hard prob-
lems more efficiently than classical algorithms. This holds
especially for the case when the input size is too large for
classical algorithms to process. Some of the best known
quantum algorithms that offer such a speedup are quantum
integer factorization [4] which runs exponentially faster than
any known classical algorithm, and quantum search algorithm
[5] that offers a generic square-root speedup over classical
algorithms. It has been shown [3] that classical algorithms
would require Ω(2n) queries where Grover’s algorithm only
requires O(2n/2). Shor’s algorithm is problem-specific. On
the other hand, Grover’s algorithm finds a wide range of
applications as a subroutine in quantum algorithms, such as in
[6], [7], [9], [11], [13].

2 GENERIC COLORIZED JOURNAL, VOL. XX, NO. XX, XXXX 2021

While the opposite problem of finding a minimum cut in a
graph is efficiently solvable by the Ford–Fulkerson algorithm
[10], the maximum cut problem is known to be NP-hard. This
means that there are no known polynomial classical algorithms
for the problem in general graphs. The max-cut problem in
planar graphs can be however solved in polynomial time [12].
As planar graphs constitute only a small subset of the graph
family, it is vital to research on finding ways to solve the
maximum cut problem efficiently.

There exist classical approximation algorithms, the best of
which runs in polynomial time and has an approximation ratio
of ≈ 0.878 [8]. In contrast to that, the algorithm presented in
the present work is exact.

A. Main Contributions and Novelty
In this work, we have devised a biomolecular and a quantum

algorithm for the maximum cut problem for arbitrary undi-
rected graphs. We show how certain quantum operations are
inspired by biomolecular operations. We improve the system
size of the quantum algorithm by a significant factor compared
to the algorithm in [1]. Our quantum algorithm has a quadratic
speedup over comparable classical algorithms for the problem.

III. BIOMOLECULAR ALGORITHM FOR THE MAXIMUM CUT
PROBLEM

In this section, we introduce the biomolecular operations
necessary to carry out our biomolecular algorithm for the
maximum cut problem. Then, we introduce the algorithm
itself.

A. Biomolecular operations
Biomolecular operations employed in this paper were orig-

inally introduced in [2]. Below we present them briefly based
on [9] for completeness. In the following definitions it is
assumed that experimental lab tubes X = {xnxn−1...x1|1 ≤
d ≤ n, xd ∈ {0, 1}}:

1) Given a tube X and a strand xj , the operation
Append-Tail appends xj onto the end of every el-
ement in X , and the operation Append-Head ap-
pends xj onto the front of every element in X .
Formally: Append Tail(X,xj) = {xnxn−1...x1xj}.
Append Head(X,xj) = {xjxnxn−1...x1}. This is
achieved by means of denaturation and annealing.

2) Given m tubes X1, ..., Xm, the Merge operation unifies
their content: Merge(X1, ..., Xm) = X1∪...∪Xm. This
is achieved by pouring the contents of the tubes into a
single tube.

3) Given a tube X , the operation Amplify(X, {Xi})
generates a number of identical copies Xi of X and
then discards X . This is achieved by polymerase chain
reaction.

4) Given a tube X and a strand xj , if xj = 1 then the
Extract operation creates two new tubes +(X,X1

j) =
{xn...x1j ...x1} and −(X,X1

j) = {xn...x0j ...x1}. This is
achieved by affinity chromatography.

5) Given a tube X , the operation Detect(X) returns a True
if X ̸= ∅. Otherwise, it returns a False.

6) Given a tube X , the bio-molecular operation Read(X)
describes any element in X . Even if X includes many
different elements, this operation can give an explicit
description of exactly one of them.

B. Biomolecular algorithm
In the following, we present a molecular algorithm, Algo-

rithm 1, to solve the maximum cut problem for an undirected
unweighted graph G with n vertices and m edges. The first
parameter is an empty tube X0 that is regarded as the input
tube. Each tube T, P in the algorithm is initially empty and
is regarded as an auxiliary storage. Note that in the following
code, bits xa and xb encode vertices va and vb for an edge
ej = (va, vb) in G. Auxiliary bits sj,1, 1 ≤ j ≤ m store
the result of evaluating formula 1. Since there are 4 possible
input combinations, sj,1 store the corresponding 4 outputs.
s0j,1 indicates that the corresponding edge ej ∈ V1 × V2 or
ej ∈ V2 × V1. Similarly, s1j,1 indicates that the corresponding
edge ej /∈ V1 × V2 and ej /∈ V2 × V1.

Data: X0, n, m
Result: a maximum cut

1 Append Tail(T1, x
1
n);

2 Append Tail(T2, x
0
n);

3 X0 =Merge(T1, T2);
4 for d = n− 1 down to 1 do
5 Amplify(X0, T1, T2);
6 Append Tail(T1, x

1
d);

7 Append Tail(T2, x
0
d);

8 X0 =Merge(T1, T2);
9 end

10 for j = 1 to m do
11 P 1 = +(X0, x

1
a) and P 3 = −(X0, x

1
a);

12 P 2 = +(P 1, x1b) and P 4 = −(P 1, x1b);
13 P 6 = +(P 3, x1b) and P 8 = −(P 3, x1b);
14 Append Head(P 8, s0j,1);
15 Append Head(P 6, s1j,1);
16 Append Head(P 4, s1j,1);
17 Append Head(P 2, s0j,1);
18 X0 =Merge(P 8, P 6, P 4, P 2);
19 end
20 for i = 0 to m− 1 do
21 for j = i down to 0 do
22 XON

j+1 = +(X1
j,si+1,1

) and Xj = −(X1
j,si+1,1

);
23 Xj+1 =Merge(Xj+1, X

ON
j+1);

24 end
25 end
26 for c = m to 1 do
27 if Detect(Xc) then
28 Read(Xc) and terminate algorithm
29 end
30 end

Algorithm 1: Overview of the biomolecular algorithm for
the maximum cut problem

Algorithm 1 proceeds as follows. Each execution of steps 1-
2 appends the value 1 for xn as the first bit of every element in

CHANG et al.: BIOINSPIRED QUANTUM ORACLE CIRCUITS FOR THE MAXIMUM CUT PROBLEM 3

a set T1 and the value 0 as the first bit of every element in a set
T2. Hence, T1 = {x1n} and T2 = {x0n}. In step 3, a set union is
performed that results in X0 = T1∪T2 = {x1n, x0n}. After that,
the contents of T1 and T2 are discarded, i.e., T1 = T2 = ∅.
Next, in each execution of step 5, two ideantical copies T1
and T2 of tube X0 are created and then the content of X0 is
discarded, resulting in X0 = ∅. In each step 6, the value 1 is
appended for xd onto the end of xn . . . xd+1 for every element
in T1. And similarly, each execution of step 7 appends the
value 0 for xd onto the end of xn . . . xd+1 for every element
in T2. After that, the two tubes T1 and T2 are merged in step
8 to X0 = T1 ∪ T2, and T1 = T2 = ∅. Having executed
steps 4-9, X0 = {xnxn−1 . . . x2x1|xd ∈ {0, 1}, 1 ≤ d ≤ n}.
This indicates that 2n DNA strands in tube X0 encode 2n cut
candidates.

In steps 10-19, we evaluate formula 1 for j-th edge ej =
(va, vb). Upon each execution of step 11, tube P 1 contains
those DNA strands that have xa = 1, while tube P 3 contains
those DNA strands that have Xa = 0. The contents of X0 is
discarded. Upon each execution of step 12, tube P 2 contains
those DNA strands that have xa = 1 and xb = 1, while tube
P 4 contains those DNA strands that have Xa = 1 and xb =
0. Tube P 1 = ∅. Similarly, upon each execution of step 13,
tube P 6 contains those DNA strands that have xa = 0 and
xb = 1, while tube P 8 contains those DNA strands that have
xa = 0 and xb = 0. Tube P3 = ∅. Next, in steps 14-17 the
value 1 is appended for sj,1 onto the head of every element
in P 6 and P 4. Similarly, the value 0 is appended for Sj,1

onto the head of every element in P 8 and P 2. This indicates
that the molecular solutions in tubes P 4 and P 6 contain those
partitions for which the j-th edge is either in V1 × V2 or in
V2 × V1. Likewise, the molecular solutions in tubes P 2 and
P 8 contain those partitions for which the j-th edge is neither
in V1 × V2 nor in V2 × V1.

Next, step 22 is used to judge the influence of si+1,1 on
the number of 1s in tubes Xj+1 and Xj at iteration (i, j).
Upon each execution of this step, tubes XON

j+1 and Xj are
formed from Xj . Therefore, XON

j+1 has si+1,1 = 1 and Xj has
si+1,1 = 0. This means that at iteration (i, j) si+1,1 records
single 1s in tube XON

j+1 and 0s in Xj . Next, in step 23, the
Merge operation is used to pour the content of tube XON

j+1 into
tube Xj+1. This implies that at iteration (i, j), si+1,1 records
single 1s in tube Xj+1. From iteration (i, j−1) through (m−
1, 0) similar processing is used to compute the influence of
si+1,1 through sm,1 on the number of 1s. Therefore, after each
operation has been completed, the DNA strands in tube Xi for
0 ≤ i ≤ m have i 1s and contain i edges.

In steps 26-30 molecular solutions representing a maximum-
sized cut are read out. If there are DNA strands in tube Xc,
a “true” is returned. In this case, the solution is read out and
the algorithm terminates.

C. Time and space complexity

The maximum cut problem for any undirected, unweighted
graph G with n vertices and m edges can be solved with
O(n + m2) biomolecular operations, O(2n) DNA strands,
O(m) tubes and the longest DNA strand of O(n +m) base

pairs. This analysis follows directly from the structure of
Algorithm 1.

IV. BIOINSPIRED QUANTUM ALGORITHM FOR THE
MAXIMUM CUT PROBLEM

In this section, we present our quantum algorithm that was
inspired by the biomolecular algorithm described in Section
III.

A. Deciding to which cut an edge belongs

After completion of steps 10-19 in Algorithm 1, tube P 2

contains those DNA strands that have xa = xb = 1 and sj,1 =
0, tube P 4 contains those DNA strands that have xa = 1, xb =
0 and sj,1 = 1, tube P 6 includes those DNA strands that have
xa = 0, xb = 1 and sj,1 = 1 and tube P 8 consists of those
DNA strands that have xa = xb = 0 and sj,1 = 0. Hence, the
bioinspired truth table generated from these steps at the same
iteration is the same as the truth table for formula 1.

We use auxiliary bits rj,1 and rj,2, where 1 ≤ j ≤ m,
to store the result of evaluating the first term xk ∧ xp and
the second term xk ∧ xp of formula 1. Further auxiliary bits
sj,1, 1 ≤ j ≤ m are used to store the result of evaluating
rj,1 ∨ rj,2 in formula 1. As assumed previously, s1j,1 indicates
that j-th edge (va, vb) is in V1 × V2 or in V2 × V1, while s0j,1
stands for the fact that j-th edge is in V1 or V2. Flowchart in
Fig. 2 shows the procedure for determining to which cut an
edge belongs step-by-step.

Fig. 2: Flowchart for deciding to which cut an edge belongs.

B. Computing number of edges in a cut

In order to compute the number of edges in each cut,
we introduce auxiliary Boolean variables zi+1,j and zi+1,j+1,
1 ≤ i ≤ m, 0 ≤ j ≤ i. All the variables are initialized to 0.
zi+1,j+1 stores the number of edges in a cut after determining
the influence of bits (xk, xp) encoding the (i + 1)-th edge
(vk, vp) on the number of edges (this corresponds to the
number of 1s). Hence, zi+1,j+1 = 1 indicates that there are
j + 1 edges in the cut. Likewise, zi+1,j stores the number of
edges in a cut after determining the influence of bits (xk, xp)

4 GENERIC COLORIZED JOURNAL, VOL. XX, NO. XX, XXXX 2021

encoding the (i+1)-th edge (vk, vp) on the number of edges.
zi+1,j = 1 indicates that there are j edges in the cut.

In the molecular Algorithm 1, upon each execution of step
22 at iteration (i = 0, j = 0), the extract operation forms
tubes XON

j+1 and Xj from tube Xj . This indicates that XON
j+1

has s1,1 = 1 and Xj has s1,1 = 0. Therefore, s1,1 records
single 1s in tube XON

j+1 and zero 1s in tube Xj . Then, upon
each execution of step 23 at iteration (i = 0, j = 0), the merge
operation is used to pour the content of tube XON

1 into tube
X1. This implies that at this iteration s1,1 records single 1s in
X1. Therefore, incrementing the number of 1s in each solution
is to satisfy the following bioinspired Boolean formula:

s1,1 (2)

Preserving the number of 1s is to satisfy the following bioin-
spired Boolean formula

s1,1 (3)

Next, the extract operation and the merge operation at each
execution of steps 22-23 at iterations other than (i = 0, j =
0) is to determine the influence of auxiliary bit si+1 on
the number of 1s. The biological operations indicate that
increasing the number of 1s in a cut corresponds to satisfying
the condition that the cut currently has to have j 1s and
si+1 = 1. The bioinspired Boolean formula for increasing
the number of 1s in a cut is

si+1,1 ∧ zi,j (4)

The biological operations also indicate that preserving the
number of 1s in a cut is to satisfy that the cut currently has j 1s
and si+1 = 0. The bioinspired Boolean formula for preserving
the number of 1s in a cut is

si+1,1 ∧ zi,j (5)

A flowchart on the calculation of the number of edges in
a cut is given in Fig. 3. Recall that the number of edges
corresponds to the number of 1s. Boolean variable z1,1 in S1

stores the result of implementing formula (2). If z1,1 = 1, the
number of edges is incremented so that the number of edges
in each cut with the first edge (va, vb) is 1. In S2, variable
z1,0 stores the result of implementing formula (3). If z1,0 = 1,
then the number of edges is preserved so that the number of
edges in each cut with two vertices va and vb of the first edge
(va, vb) is 0. S3 sets the index of the first loop variable to 1.
S4 checks the condition if i is smaller than m. If so, S5 is
executed, otherwise the procedure of counting the number of
edges is terminated. In S5, the index variable j of the second
loop is set to the value of i. S6 checks if j ≥ 0. If so, S7 is
executed. Otherwise, the next executed instruction is S10. In
S7, Boolean variable zi,j stores the number of edges in a cut
after determining the influence of the i-th edge on the number
of 1s (edges). zi,j = 1 indicates that there are j edges in the
cut. Boolean variable zi+1,j+1 stores the number of edges in
a cut after determining the influence of si+1,1 on the number
of edges. zi+1,j+1 = 1 indicates that there are j + 1 edges in
the cut.

In S8, Boolean variable zi,j stores the number of edges in
a cut after determining the influence of the i-th edge on the

number of edges. zi,j = 1 indicates that there are j edges in
the cut. Variable zi+1,j stores the number of edges in a cut
after determining the influence of si+1,1 on the number of
edges. zi+1,j = 1 indicates that there are j edges in the cut.
S9 decrements the value of the index variable j in the second
loop. Execute repeatedly S6 through S9 until S6 results in a
False. Then, S10 increments the value of the index variable
i in the first loop. Loop over S4 through S10 until a False
in obtained in S4. When this happens, S11 is executed and
the procedure terminates. The total cost for Fig. 3 is 2 CNOT
gates, m(m+1) AND gates and m(m+1)/2 NOT gates. This
is the cost of counting the number of edges for each cut.

Fig. 3: Flowchart for calculating the number of edges in a cut.

C. Bioinspired quantum circuits for calculating to which
cut an egde belongs

We use auxiliary quantum bits |rj,1⟩ and |rj,2⟩, where 1 ≤
j ≤ m to respectively store the result of evaluating the two
disjunctions in equation 1. The initial state of each auxiliary
quantum bit rj,k is set to |0⟩. We further use auxiliary quantum
bits |sj,1⟩ to respectively store the result of evaluating |rj,1⟩∨
|rj,2⟩ in equation 1. The initial state of each |sj,1⟩ is set to
|1⟩. The quantum circuit in Fig. 4 determines whether an edge
belongs to a cut or not.

CHANG et al.: BIOINSPIRED QUANTUM ORACLE CIRCUITS FOR THE MAXIMUM CUT PROBLEM 5

Fig. 4: Quantum circuit EIIAC is used to implement bioin-
spired Boolean circuits from S3 through S5 in Fig. 2 and to
determine if k-th edge (va, vb) is in a cut or not.

D. Bioinspired quantum circuits for computing the
number of edges

The bioinspired circuits in instructions S1, S2, S7 and S8 of
Fig. 3 for counting the number of 1s in a cut are respectively

z1,1 ← s1,1

z1,0 ← s1,1

zi+1,j+1 ← si+1,1 ∧ zi,j
zi+1,j ← si+1,1 ∧ zi,j

(6)

The outcomes of the operations in (6) are stored in auxiliary
qubits |zi+1,j⟩ and |zi+1,i+1⟩, where 0 ≤ i ≤ m−1, 0 ≤ j ≤ i.
Each of these qubits is initially prepared in the state |0⟩. We
assume that |zi+1,i+1⟩ store the number of edges in a cut
after determining the influence of Boolean variable si+1,1 that
increases the number of 1s. We also assume that |zi+1,j⟩ store
the number of edges in a cut after determining the influence
of Boolean variable si+1,1 that preserves the number of 1s.

Fig. 5: Top left: Increasing the number of 1s for the influence
of s1,1 in each cut using the quantum circuit INO. Top right:
Preserving the number of 1s for the influence of s1,1 in each
cut using the quantum circuit PNO. Bottom left: Increasing
the number of 1s for the influence of si+1,1 in each cut using
the quantum circuit CIO. Bottom right: Preserving the number
of 1s for the influence of si+1,1 in each cut using the quantum
circuit CPO.

In the quantum circuit INO in Fig. 5, a CNOT gate with
target qubit

∣∣z01,1〉 and control qubit |s1,1⟩ implements the

formula z1,1 ← s1,1 in (6) and copies the value of qubit |s1,1⟩
to |z1,1⟩. Next, in the quantum circuit PNO in Fig. 5, a NOT
gate on |s1,1⟩ and a CNOT gate with target qubit

∣∣z01,0〉 and
control qubit |s1,1⟩ implement the formula z1,0 ← s1,1 in (6)
and copy the value of |s1,1⟩ to |z1,0⟩. Then, another NOT gate
restores |s1,1⟩ to its original state. In the quantum circuit CIO
of Fig. 5, a CCNOT gate with target qubit

∣∣z0i+1,j+1

〉
and

two control qubits |zi,j⟩ and |si+1,1⟩ implements the formula
zi+1,j+1 ← si+1,1 ∧ zi,j in (6). Next, in the quantum circuit
CPO in Fig. 5, a NOT gate on qubit |si+1,1⟩ and a CCNOT
gate with target qubit

∣∣z0i+1,j

〉
and two control qubits |zi,j⟩

and |si+1⟩ implement the last operation in (6). Then, another
NOT gate restores qubit |si+1,1⟩ to its original state.

E. Putting the algorithm together

The pieces of our quantum algorithm described above need
to be put together and combined with Grover’s algorithm for
amplification of solutions. This is shown by the pseudo-code
in Algorithm 2. The input to the algorithm are: number of
vertices n, number of edges m in graph G, and the maximum
number of edges among the 2n possible cuts. We note that R
in line (24) of the algorithm is the number of maximum cuts.
R can be determined by the quantum counting algorithm [3].

In Algorithm 2 the initial state is

|ψ0⟩ = |1⟩
1⊗

i=m

0⊗
j=i

∣∣z0i,j〉 1⊗
k=m

∣∣s1k,1〉 1⊗
k=m

1⊗
a=2

∣∣r0k,a〉 1⊗
d=n

∣∣x0d〉
The first register (|1⟩) is a standard auxilliary register used in

Grover’s routine for both the oracle and the diffusion operator.
We will refer to it as aux.

V. COMPLEXITY ASSESSMENT

As Grover’s algorithm has the complexity of O(2n/2), this
is also the complexity of the present algorithm.

VI. EXPERIMENTAL VALIDATION

We have coded [15] and executed our algorithm on IBM
Quantum qasm simulator for the example graph given in
Fig. 1. The statistical outcome is shown in Fig. 6. The
maximum cut V1 = {v1, v3}, V2 = {v2} (or vice versa) is
measured with a probability greater than 1/2.

The circuit was executed using IBM Quantum Qiskit plat-
form. For the experiment, we used qasm-simulator with 1024
shots.

Fig. 7 shows the circuit used to produce the outcome in
Fig. 6. The gates applied before the first occurrentce of EIIAC
circuit belong to the initialization step. The circuit is run once
only in accordance with the formula π

4

√
2n

R , where R = 2

since the maximum cut sets are counted twice, as indicated
in Fig. 6. The single run consists of a block of two IEEAC
circuits, one for each edge, followed by a CNOT gate that
flips the phase of the oracle qubit aux for the case where
aux = 1. After the CNOT gate, all the gates inserted after
the initialization step must be uncomputed to free qubits for
eventual further runs in the case such runs are specified by

6 GENERIC COLORIZED JOURNAL, VOL. XX, NO. XX, XXXX 2021

Data: quantum system in state |ψ0⟩
Result: a maximum cut

1 Apply Hadamard gates to |aux⟩ and |x⟩ to set the
auxiliary register into superposition and to generate
the search space over register |x⟩;

2 for edge e = 1 to m do
3 Apply EIIAC to e
4 end
5 if t > 0 then
6 Apply INO to implement z1,1 ← s1,1
7 end
8 if t < m then
9 Apply PNO to implement z1,0 ← s1,1

10 end
11 for i = 1 to m− 1 do
12 for j = i down to 0 do
13 if j + 1 <= t and m− i+ j = t then
14 Apply CIO to implement

zi+1,j+1 ← si+1,1 ∧ zi,j
15 end
16 if j <= t and m− i+ j − 1 = t then
17 Apply CPO to implement

zi+1,j ← si+1,1 ∧ zi,j
18 end
19 end
20 end
21 Apply CNOT on control |zm,t⟩ and target |aux⟩ to

label the cuts with the largest number of edges;
22 Reverse the operations from row 20 down to 2 to

restore auxiliary qubits to original state;
23 Apply diffusion operator;

24 Repeat rows 2 through 23 at most
√

2n

R times. ;
25 Measure to obtain a solution with a probability ≥ 1

2 .
Algorithm 2: Overview of the quantum algorithm for the
maximum cut problem

the formula π
4

√
2n

R . And lastly, we have a diffusion block
that amplifies the solution in each iteration/run of the Grover
routine.

VII. CONCLUSIONS

In the present paper, we have devised both a biomolecular
and a a quantum algorithm for the max-cut problem and
have shown how a quantum algorithm can be inspired by
biomolecular operations.

The quantum algorithm offers a quadratic speedup over
its classical, exact counterparts. We have further successfully
executed an instance of the proposed quantum algorithm using
IBM’s Qiskit SDK [14]. This version of the algorithm is an
improvement over the quantum algorithm by Chang et al.
[1]. It reduces the number of qubits from 5m2+9m+1

2 + n to
m2 + 5m+ n+ 1, where n is the number of vertices, and m
is the number of edges.

CODE AVAILABILITY

The Python/Qiskit code for the proposed algorithm
can be obtained from R. Wong’s GitHub repository

Fig. 6: The maximum cut found for the example graph
in Fig.1. Note that both 010 and 101 indicate equivalent
maximum cuts. Hence, the maximum cut for Fig.1 is obtained
with probability 1.

Fig. 7: The circuit for the example graph in Fig.1.

https://github.com/renatawong/quantum-maxcut [15].

ACKNOWLEDGMENT

This work was supported by the National Science Foun-
dation of the Republic of China under MOST 105-2221-E-
151-040. R. Wong was supported by the National Science
and Technology Council, the Ministry of Education (Higher
Education Sprout Project NTU-111L104022), and the National
Center for Theoretical Sciences of Taiwan. This work is an
extended and updated version of the conference paper [1].

REFERENCES

[1] W.-L. Chang et al., “Quantum speedup for the maximum cut problem,”
The 28th Workshop on Compiler Techniques and System Software for
High-Performance and Embedded Computing (CTHPC 2023), 2023,
DOI: 10.48550/arXiv.2305.16644.

[2] L. Adleman, “Molecular Computation of Solutions to Combinatorial
Problems”. Science, vol. 266, pp. 1021-1024, 1994.

[3] G. Brassard, P. Hoyer, A. Tapp, “Quantum counting”, in: Larsen, K.G.,
Skyum, S., Winskel, G. (eds) Automata, Languages and Programming.
ICALP 1998. Lecture Notes in Computer Science, vol 1443. Springer,
Berlin, Heidelberg, DOI: 10.1007/BFb0055105.

CHANG et al.: BIOINSPIRED QUANTUM ORACLE CIRCUITS FOR THE MAXIMUM CUT PROBLEM 7

[4] P.W. Shor, “Algorithms for quantum computation: discrete logarithms
and factoring,” Proceedings 35th Annual Symposium on Foundations
of Computer Science. IEEE Comput. Soc. Press: 124–134, 1994,
DOI:10.1109/sfcs.1994.365700.

[5] L.K. Grover, “A fast quantum mechanical algorithm for database
search”, Proceedings of the Twenty-Eighth Annual ACM Symposium
on Theory of Computing. STOC ’96. Philadelphia, Pennsylvania,
USA: Association for Computing Machinery: 212–219, 1996, DOI:
10.1145/237814.237866.

[6] W.-L. Chang et al., “Quantum Speedup for Inferring the Value
of Each Bit of a Solution State in Unsorted Databases Us-
ing a Bio-Molecular Algorithm on IBM Quantum’s Computers,”
IEEE Transactions on NanoBioscience 21(2):286-293, 2022, DOI:
10.1109/TNB.2021.3130811.

[7] W.-L. Chang et al., “Quantum Speedup and Mathematical Solutions from
Implementing Bio-molecular Solutions for the Independent Set Problem
on IBM’s Quantum Computers,” IEEE Transactions on NanoBioscience
20(3):354-376, 2021, DOI: 10.1109/TNB.2021.3075733.

[8] M.X. Goemans and D.P. Williamson, “Improved approximation algo-
rithms for maximum cut and satisfiability problems using semidefinite
programming”, Journal of the ACM, 42 (6): 1115–1145, 1995, DOI:
10.1145/227683.227684.

[9] R. Wong, W.-L. Chang, W.-Y. Chung, and A.V. Vasilakos, “Biomolecular
and quantum algorithms for the dominating set problem in arbitrary
networks,” Scientific Reports 13:4205, 2023, DOI: 10.1038/s41598-023-
30600-4.

[10] L.R. Ford and D.R. Fulkerson, “Maximal flow through a network”,
Canadian Journal of Mathematics 8: 399–404, 1956, DOI: 10.4153/CJM-
1956-045-5.

[11] R. Wong, and W.-L. Chang, “Quantum speedup for protein structure
prediction,” IEEE Transactions on NanoBioscience 20(3):323-330, 2021,
DOI: 10.1109/TNB.2021.3065051.

[12] F. Hadlock, “Finding a Maximum Cut of a Planar Graph in Polynomial
Time”, SIAM J. Comput., 4 (3): 221–225, 1975, DOI: 10.1137/0204019.

[13] R. Wong, and W.-L. Chang, “Fast quantum algorithm for pro-
tein structure prediction in hydrophobic-hydrophilic model,” Jour-
nal of Parallel and Distributed Computing 164:178-190, 2022, DOI:
10.1016/j.jpdc.2022.03.011.

[14] Qiskit contributors, “Qiskit: An Open-source Framework for Quantum
Computing,” 2023, DOI: 10.5281/zenodo.2573505.

[15] R. Wong, “Quantum maximum cut algorithm”, Zenodo, 2023, DOI:
10.5281/zenodo.7790804.

