20th International Conference on Computing in High Energy and Nuclear Physics (CHEP2013) IOP Publishing
Journal of Physics: Conference Series 513 (2014) 052017 doi:10.1088/1742-6596/513/5/052017

The ATLAS data management software
engineering process

M Lassnig', V Garonne!, G A Stewart', M Barisits', T
Beermann?, R Vigne?, C Serfon!, L. Goossens', A Nairz!, A
Molfetas®, on behalf of the ATLAS Collaboration

! European Organization for Nuclear Research (CERN), 1211 Geneva, Switzerland
2 Bergische Universitat Wuppertal, 42119 Wuppertal, Germany

3 University of Vienna, 1010 Vienna, Austria

4 University of Melbourne, 3010 Victoria, Australia

E-mail: mario.lassnig@cern.ch

Abstract. Rucio is the next-generation data management system of the ATLAS
experiment. The software engineering process to develop Rucio is fundamentally
different to existing software development approaches in the ATLAS distributed
computing community. Based on a conceptual design document, development takes
place using peer-reviewed code in a test-driven environment. The main objectives
are to ensure that every engineer understands the details of the full project,
even components usually not touched by them, that the design and architecture
are coherent, that temporary contributors can be productive without delay, that
programming mistakes are prevented before being committed to the source code, and
that the source is always in a fully functioning state. This contribution will illustrate
the workflows and products used, and demonstrate the typical development cycle of
a component from inception to deployment within this software engineering process.
Next to the technological advantages, this contribution will also highlight the social
aspects of an environment where every action is subject to detailed scrutiny.

1. Introduction
The ATLAS experiment creates and manages non-trivial amounts of data [1]. Since the
detector started taking data, the experiment’s distributed data management system Don
Quijote 2 (DQ2) [2] is responsible to manage petabytes of data on the Worldwide LHC
Computing Grid [3]. DQ2 also manages the entire lifecycle of experiment data, from
raw detector data up to derived data products from physics analysis. The governing
technical policies are defined by the ATLAS Computing Model [4].

With the upgrade of the Large Hadron Collider (LHC) in progress, the rate of data
in the experiment will increase drastically in the next years of operation. A study on the
performance and usability metrics of DQ2 showed that it will not likely be suitable to

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution
BY of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.
Published under licence by IOP Publishing Ltd 1



20th International Conference on Computing in High Energy and Nuclear Physics (CHEP2013) IOP Publishing
Journal of Physics: Conference Series 513 (2014) 052017 doi:10.1088/1742-6596/513/5/052017

cope with the increasing demands [5]. For this reason, and to cope with new use cases
put forth by the physics community, a new version of the data management system has
been developed, called Rucio.

This contribution gives an overview of the software engineering process that has been
used to build Rucio, and how it differs from the commonly employed process in the
ATLAS distributed computing community. First, Section 2 describes the requirements
engineering process that was used to establish the required use cases and scenarios.
Section 3 describes the design phase, where the requirements were translated into
functional pieces for development. Section 4 describes the actual implementation process
and how Rucio is tested. Section 5 details the non-technical factors in the whole process,
such as human interaction, and Section 6 concludes with a summary and an outlook.

2. Requirements engineering

Rucio development follows a waterfall model in principle — that is, in order: specification,
design, construction, integration, testing, installation, maintenance. However, the actual
construction and integration phases follow an agile test-driven model. This has two
reasons, primarily to mitigate potential conflicts with third-party software as efficiently
as possible, and secondly, to make better use of available personpower due unforeseen
extended waiting times. For example, such waiting times can include prolonged
procurement of hardware, or remote grid site administration and configuration. The
testing step in the waterfall model thus becomes almost obsolete because the construction
and integration steps have already thoroughly tested the full system.

The first step in building Rucio was to gather all existing requirements of DQ2
from the experiment, to collect possibly new requirements for the upcoming LHC and
experiments activities, and to distil this information into a conceptual model. This
included sending out surveys to the main clients of the data management system,
the Tier-0, the metadata service AMI, data preparation groups, reprocessing groups,
the workload scheduler PanDA, the physics groups, and the end users, that is, the
physicists themselves. Separate sessions where then held with each group, where the
main points of their written responses were discussed. This lengthy process took about
4 months in the latter half of 2011. In the meantime, technical meetings with the
other LHC experiments, CMS, ALICE, LHCb, were setup, in which the general future
directions of the data management for all experiments were laid out. This allowed to
find overlaps and differences easily, and in turn influenced also the question-and-answers
in the ongoing sessions from the user surveys. Finally, a workshop on the evolution
of ATLAS data handling was held, in which the main directions were discussed, and
the final use cases were confirmed. The results from all this work have been condensed
into the first iteration of the Rucio conceptual design document [6]. The first step of the
waterfall model — specification — was not completed, however. The conceptual model was
distributed for wider review to the ATLAS community to ensure that the information
was correctly understood and described by the Rucio team. It only took three iterations
to come to a conclusion of the document, with only minor changes and one additional use
case added. The document was finally extended to include specific descriptions of each
component within Rucio for the design stage, and has been approved by the experiment.

Since the whole specification process was very lengthy, the intermediate time was



20th International Conference on Computing in High Energy and Nuclear Physics (CHEP2013) IOP Publishing
Journal of Physics: Conference Series 513 (2014) 052017 doi:10.1088/1742-6596/513/5/052017

used to setup an infrastructure to support the later stages of the process. This
included testing of various software packages for suitability and scalability with educated
guesses, including the database management system, the database abstraction layer,
communication protocol libraries, or monitoring tools.

The design phase followed with a component oriented view. As the basic system
functionality was already laid out by the design document, it was easy to devise
components that fulfil the use cases. One engineer was assigned to each component
to write a design proposal that was discussed with the rest of the team using shared
workspaces. This allowed the team to work on the full system design in parallel, coming
to a rapid conclusion within less than 2 months. The downtime between component
design revisions was used to further test various software packages and setting up a
development environment for the actual implementation.

3. Implementation and test

The implementation of Rucio follows one guiding principle: it must be always releasable
from the master branch. This requires that the master branch is fully functional at all
times. To ensure this, the following actions have been taken:

e No engineer is allowed to modify the master branch directly.

e New features are only implemented in separate feature branches.

Feature branches are only merged into the master after approval by at least two
other engineers.

Approval by an engineer requires

— visual scanning of the source code,
— local test of the source code,
— explicit vote.

Feature branches are rejected, in case of

— missing test cases,
— missing documentation or comments,
— wrong code style.

After the feature branch has been merged into the master an automated test suite runs
on the master. If successful, the suite builds a release package, ready for deployment.
The distributed version control software git [7], and the code review server Gerrit
[8] are used to support this. The basic workflow is illustrated in Figure 1. If a new
feature is to be developed, an engineer forks the master into a feature branch. If there
is a second new feature they want to work on, the engineer has to fork a second feature
branch off the master. After developing the code, the engineer uploads the differential
to the master, called a patch, into the code review system, and everyone on the team is
notified that there is a new patch ready for approval. The patch upload only succeeds
if the automated code checker flake8 approves the patch [9]. This checker requires that
every source file follows the same stylistic guidelines, for example, no whitespaces at
the end of lines or unused imports of libraries. If the check fails, the engineer has to
rewrite the source code until it is accepted. There is no way around this and it enforces
a common coding style. Every engineer in the team now pulls the patch into their local



20th International Conference on Computing in High Energy and Nuclear Physics (CHEP2013) IOP Publishing

Journal of Physics: Conference Series 513 (2014) 052017 doi:10.1088/1742-6596/513/5/052017
feature branch 1 code review
branch rebase
CONFLICT
master -

CONFLICT
branch

feature branch 2 code review

feature branch 3

Figure 1: Development model: Feature branches are reviewed separately and merged
into the always releasable master. Conflicts must be rebased.

development environment and begins testing the patch. First, this requires that the
source code is read. This can be done on the web frontend of Gerrit, which displays the
modifications in a split view. Comments on the source code can be inserted directly in
the web frontend. Second, the testing itself is based on unit tests, against the central
libraries, the API, and the clients. There are no unit tests for the daemon processes, but
they can optionally run in single iteration mode, such that they can be tested manually.
In all, there are 190 unit tests, with an average full serial test duration of 105 seconds
against the slowest database backend, SQLite. The faster supported databases, MySQL,
PostgreSQL, and Oracle, can run the full test in 90 seconds. If the test is successful, the
engineer can vote +1, 0, -1 on the patch. If a patch gathers at least +2 votes, anyone
can merge the patch into the master. If there is at least one negative vote, regardless of
the amount of positive votes, the patch cannot be merged. In this situation, the engineer
modifies the source code accordingly and uploads a new patch set. Gerrit automatically
deduces that the new patch set is only a modification of an old patch and handles this
appropriately. If the engineer wants to continue working on a feature, while their patch
is in code review, they can fork a second feature branch of the already existing feature
branch. This is sometimes needed, for example, if an API has to be provided for another
part of the system, but the implementation of the API is not yet ready. This will
eventually lead to conflicts in the master, as the same source files are changed in two
different ways, with different reviews, or possibly by two different persons. This requires
rebasing the patch. This means that the engineer gets the differential of the new state
of the master, and their own patch, and has to select which parts of the patch to apply



20th International Conference on Computing in High Energy and Nuclear Physics (CHEP2013) IOP Publishing
Journal of Physics: Conference Series 513 (2014) 052017 doi:10.1088/1742-6596/513/5/052017

Technology Evaluation Infrastructure Setup

Conceptual Design

Architectural Design

Implementation

Write code > Test > Local check > Submit patch
Retrieve patch > Test

Merge or rebase into master Integration Test
Deploy

Figure 2: The full process: requirements engineering goes in parallel with technology
evaluation and infrastructure setup. Implementation follows an independent and parallel
test-driven approach with always-releasable source code.

to the master. This is necessary, for example, if a problem has been solved in the master
that existed at the time of forking the feature branch. If the engineer temporarily fixed
the problem in their feature branch, they can now select the proper solution from the
master as the authoritative solution. If the patches are non-overlapping inside the same
source file, then git can automatically rebase the patch without user interaction.

Once a patch is merged or rebased into the master, an automated test is run in
addition. This downloads the source code from the master, prepares a fresh installation
with a newly initialised SQLite database, and runs all unit tests. In principle, this
automated test should never raise an error. If it does raise an error, notifications are
sent out to all engineers that the master is broken, with the according log files. Until
now, this has only happened twice. Once through accidental corruption of the Gerrit
backend due to a malfunction of the hosting machine, and once on purpose while adding
support for a second database because two engineers were working on different database
backends with conflicting interfaces.

A summary of the whole process is illustrated in Figure 2. The requirements
engineering phase occurs in parallel to the Technology Evaluation and Infrastructure



20th International Conference on Computing in High Energy and Nuclear Physics (CHEP2013) IOP Publishing
Journal of Physics: Conference Series 513 (2014) 052017 doi:10.1088/1742-6596/513/5/052017

Setup. The implementation itself consists of three independent blocks, development,
approval, and deployment, where each block can be tackled by any engineer at any time.

4. The human factor
This strict model of development has several social implications. Before introducing this
model, several critical points came up, most importantly:

e Won't this take a long time to get my changes into the source code?
e What happens if I need to quickly fix something?
e [ really don’t like that someone else is judging my work.

e Writing test cases is bothersome, and no one uses them anyway.

e We will never agree on a common coding style — everyone is different.

e Branching? Merging? What is this?

e How do we deal with new members in team? How will we educate them?
e How can we deal with outside contributions?

The most important fear was that this is actually a slow process. This was true in the
beginning as the branching strategy was not clear. Only after a few introductory sessions
on the usage of the git and Gerrit tools, the feature branch strategy was adopted. In
this strategy, the notion of slow process essentially disappeared. Submitted code was
already written, but comments and reviews were ultimately helpful in only getting the
highest quality code accepted into the master. It took about 1 month to converge
on this workflow with the most basic problems evened out, for example, committing
patches from a wrong branch, accidentally voting positively on bad patches, or not
having the automated code checker enabled. After this introductory period, newly
submitted patches rarely contained semantically or syntactically wrong code, which in
turn improved the throughput of patch submission, revision, and acceptance. Even
temporary team members, for example, summer students, were able to be productive in
this environment within a day.

The issue of code review itself was surprisingly well-received afterwards. Every team
member judged objectively the code, and never the person writing the code, ultimately
leading to every team member knowing everything about the code base. This allows
every team member to work on every component, even if it was originally not written
by them. Additionally, due to the conceptual design document and architectural design
document, the big picture was clear, therefore every engineer can potentially take over
any component for future developments.

The last critical issue was stressful periods, where parts of the code had to be changed
quickly in an already deployed testbed, for example, to fix a critical bug that would cause
a database lockup. In this case self-approval of the patches in the Gerrit, circumventing
the code review, was used.

Summarised, out of more than 1400 patches, less than 1 percent was self-approved.
The mean time to merge a perfect patch is approximately 4 hours, for patches requiring
one iteration approximately 1 day, and for patches requiring more than one iteration
approximately 7 days. Only 12 patches were rejected, however more than 100 patches
were abandoned. These patches mostly represent temporary features when integrating
with third-party software, and are not needed anymore.



20th International Conference on Computing in High Energy and Nuclear Physics (CHEP2013) IOP Publishing
Journal of Physics: Conference Series 513 (2014) 052017 doi:10.1088/1742-6596/513/5/052017

5. Conclusion

The development of Rucio has followed a different strategy than other software projects
in the ATLAS distributed computing community. Instead of an iterative discuss and
approve-by-committee process, a more strict test-driven process has been enforced. These
tests have been derived from the initial requirements engineering and design phases. The
results show that it is possible to provide high-quality software from the beginning, with
clear testing scenarios to fulfil all required use cases. The initial delays due to social
uncertainties and undefined conduct of the engineers were quickly dismissed, and proper
procedures and conducts were defined. This allowed high throughput when developing
source code, easy injection of new engineers, including temporary ones, into the team,
and eventually a working software system.

Bibliography

[1] ATLAS Collaboration, ATLAS Technical Proposal, 1994 Technical Report CERN/LHCC/94-93

[2] M Branco, et al., Managing ATLAS data on a petabyte-scale with DQ2, J. Phys.: Conf. Ser. 119,
062017, 2008

[3] WLCG Collaboration, Worldwide LHC Computing Grid, http://lcg.web.cern.ch/, 2011

[4] ATLAS Collaboration, ATLAS Computing: Technical Design Report, 2005 Technical Report ATLAS-
TDR-017

[5] V Garonne, et al., The ATLAS Distributed Data Management project: Past and Future, J. Phys.:
Conf. Ser. 396, 032045, 2012

[6] M Barisits, et al., Rucio: Conceptual Model, Technical Report, ATL-COM-SOFT-2011-030, CERN,
2011.

[7] L Torvalds, et al., git, http://git-scm.com/, 2005

[8] S Pearce, et al., Gerrit, https://code.google.com/p/gerrit/, 2009

[9] T Ziade, et al., Flake8, https://bitbucket.org/tarek/flake8/, 2010





