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Abstract: We review constructions of three-dimensional ‘quantum’ black holes. Such spacetimes arise

via holographic braneworlds and are exact solutions to an induced higher-derivative theory of gravity

consistently coupled to a large-c quantum field theory with an ultraviolet cutoff, accounting for all

orders of semi-classical backreaction. Notably, such quantum-corrected black holes are much larger

than the Planck length. We describe the geometry and horizon thermodynamics of a host of asymp-

totically (anti-) de Sitter and flat quantum black holes. A summary of higher-dimensional extensions

is given. We survey multiple applications of quantum black holes and braneworld holography.

Keywords: black holes; semi-classical gravity; AdS/CFT; gravitational holography; braneworlds

1. Overview

Semi-classical gravity remains a useful proxy to study quantum effects in gravity from
the perspective of a macroscopic observer. In this context, quantum fields live in a classical
dynamical spacetime where the combined system is characterized by the semi-classical
Einstein equations [1,2]

Gab(g) + Λgab = 8πGN⟨TQFT
ab ⟩. (1)

On the left-hand side is the usual Einstein tensor for a classical spacetime gab with cos-

mological constant Λ, while on the right-hand side ⟨TQFT
ab ⟩ is the expectation value of the

(renormalized) stress–energy tensor of the quantum field theory in some quantum state |Ψ⟩.
Semi-classical gravity should be viewed as an approximation and only valid in a certain
regime. Indeed, the semi-classical approximation fails near the Planck scale, as at this level,
quantum gravity effects become important, such that (1) can no longer be trusted. Further,
the semi-classical fields in Equation (1) are not expected to be valid for generic quantum
states |Ψ⟩, e.g., macroscopic superpositions [3]. They are, however, known to be valid when
|Ψ⟩ is approximately classical, i.e., a coherent state.

Even in its regime of validity, solutions to semi-classical gravity, particularly black
holes, are difficult to study consistently. Largely, this is because solving (1) amounts
to solving the problem of a backreaction—how quantum matter influences the classical
geometry and vice versa—which is a notoriously difficult and open problem, as it requires
simultaneously solving a coupled system of geometry and quantum correlators. Often, in
three spacetime dimensions and higher1, the problem is examined perturbatively, offering
limited insight, especially when backreaction effects become large. These difficulties only
compound when there are a large number of quantum fields, or when the field theory is
strongly coupled, as is the case for quantum chromodynamics and the standard model of
particle physics.

A context in which the physics of a large-N number of strongly interacting quantum
fields may be probed is the Anti-de Sitter/conformal field theory (AdS/CFT) correspon-
dence [6]. Born out of studies in string theory, AdS/CFT is a non-perturbative candidate
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model of quantum gravity, where gravitational physics in a bulk d + 1-dimensional asymp-
totically AdS spacetime has a dual description in terms of a CFT living on the d-dimensional
conformal boundary of AdS. This duality is therefore a concrete realization of gravitational
holography [7,8]. More specifically, in a large-N expansion, the planar diagram limit of
the CFT, the bulk is well approximated by classical gravity (we will state this dictionary
more precisely below). A powerful feature of the AdS/CFT correspondence is strong–weak
coupling duality: coupling constants between the bulk and boundary theories are inversely
related, GN ∼ N−1. Thus, computations of strongly coupled field theories may instead
be performed via a classical gravity calculation. While the boundary geometry on which
the CFT lives may be curved (and even contain black holes [9]), it is fixed. Consequently,
standard AdS/CFT holography alone is insufficient for addressing the semi-classical back-
reaction problem2.

Enter braneworld holography [11]. Historically introduced as a possible solution to
the hierarchy problem [12,13], braneworld models treat the four-dimensional universe
we experience as a membrane sitting in a spacetime with large extra-dimensions. When
combined with holography, braneworlds function as a useful toolkit to address difficult
problems in semi-classical gravity. In this framework, AdS/CFT duality is adapted to
incorporate situations where a portion of the bulk, including its boundary, is removed by a
d-dimensional Randall–Sundrum [13,14] or Karch–Randall [15,16] braneworld. Crucially,
the geometry of the end-of-the-world (ETW) brane is dynamical, having an induced theory
of gravity. More precisely, the brane serves as an infrared cutoff in the bulk, translating to a
ultraviolet (UV) cutoff for the holographic CFT. As in holographic renormalization [17–21],
a tower of higher-derivative corrections to the d-dimensional Einstein–Hilbert action are in-
duced by the holographic cutoff CFTd. From the brane perspective, the induced theory may
thus be interpreted as a semi-classical theory of gravity [22], where the higher-derivative
corrections incorporate backreaction effects due to the CFT living on the brane, which is
governed by

Gij + Λdgij + (higher-curvature) = 8πGd⟨TCFT
ij ⟩planar. (2)

Here, Λd and Gd are induced cosmological and Newton constants on the brane, and the
right-hand side indicates the holographic CFT is in its planar limit3.

At first glance, it would appear the braneworld has only complicated the situation
with its higher-derivative corrections: solving the induced field Equation (2) requires solv-
ing the problem of backreaction in a complex higher-derivative theory of gravity. The
computational advantage of braneworld holography, however, is that the semi-classical
induced brane theory has an equivalent bulk description in terms of classical AdSd+1

gravity coupled to a brane obeying Israel junction conditions. Thus, exact spacetimes
solving the classical bulk field equations with brane boundary conditions automatically cor-
respond to exact solutions to the semi-classical brane equations of motion (2). Holographic
braneworlds thus provide a means to exactly study the problem of backreaction without
having to explicitly solve semi-classical field equations. In particular, classical AdSd+1

black holes which localize on the ETW brane are conjectured to precisely map to black
holes in d-dimensions, including all orders of quantum backreaction [22], i.e., ‘quantum’
black holes.

The primary purpose of this article is to review the state of the art regarding such holo-
graphic quantum black holes. Emphasis is given to a particular class of analytic black holes
which localize on an AdS4 braneworld, which were first uncovered by Emparan, Horowitz
and Myers [23,24], corresponding to three-dimensional quantum black holes [22,25–27].
These braneworld black holes lead to an important observation: a backreaction can lead
to the existence of black holes where there were none before. That is, famously, there are
no black hole solutions in vacuum to classical Einstein gravity in three dimensions with
positive or vanishing cosmological constant. Rather, the geometry of a point mass in Mink3

or dS3 is described as a conical defect without a black hole horizon [28,29]; Schwarzschild-
dS3, for example, is a conical defect with a single cosmological horizon but no black hole
horizon. Quantum corrections due to backreaction alter the three-dimensional geometry in



Universe 2024, 10, 358 3 of 119

such a way that a black hole horizon is induced, leading to a type of (quantum) censorship
of conical singularities. Meanwhile, classical black holes do exist in three-dimensional
Einstein gravity with a negative cosmological constant [30,31], which is a consequence
of the tendency for gravitational collapse afforded by the negatively curved geometry.
Nonetheless, in such contexts, a backreaction yields behavior strikingly different from their
classical counterparts.

A secondary goal of this review is to advertise a host of applications of holographic
quantum black holes. These include the exact study of semi-classical horizon thermody-
namics, holographic entanglement entropy and complexity, and the prospect of probing
black hole singularities. Combined, quantum black holes serve as a theoretical laboratory
to exactly test ideas in semi-classical/quantum gravity, deserving of further exploration.

Road Map and High-Level Summary

Backreaction without holography. Section 2 sets the stage by exploring quantum correc-
tions to three-dimensional geometries at the perturbative level. This demonstrates that one
need not appeal to AdS/CFT or holographic braneworlds to see how a quantum backreac-
tion alters classical three-dimensional geometry. For example, a conformally coupled scalar
field in Schwarzschild-(A)dS3 produces a Casimir effect with negative energy density such
that, upon solving the semi-classical Einstein Equation (1), the linear-order change to the
tt-component of the metric in static patch coordinates goes like [32,33]

δgtt =
2LPF(M)

r
, (3)

where LP = h̄G3 is the Planck length in three dimensions4 and F(M) is a positive function
of the mass of the point particle generating the conical defect. The 1/r-correction—which
is solely a quantum effect—modifies the original blackening factor and its root structure,
implying a black horizon may arise due to a backreaction. However, since the correction is
on the order of the Planck length, this conclusion is tenuous, since quantum gravity effects
are expected to play a role at this scale. If there is a large-c amount of such quantum fields,
it is conceivable that their combined quantum effect is to produce a correction proportional
to cLP ≫ LP, for which quantum gravity effects can be neglected. Unfortunately, it is thus
far unknown how to solve the backreaction problem with such a large number of fields via
non-holographic methods. Thus, while the perturbative analysis is suggestive, it advocates
for the holographic braneworld approach described above.
Holographic braneworlds and quantum black holes. In Section 3, we present a general
portrait of braneworld holography and quantum black holes. Historically, this framework
is a natural extension of holographic renormalization, and it is a prescription where bulk
infrared (IR) divergences are eliminated by introducing an IR cutoff hypersurface near the
AdS boundary, adding local counterterms, and employing a minimal subtraction scheme.
In standard braneworld holography, the IR cutoff surface is replaced by an end-of-the-
world brane B of tension τ. The would-be divergent counterterms now combine with
the brane action as seen from the bulk, leading to an induced theory of higher-derivative
gravity on the brane (34)

IBgrav =
1

16πGd

∫

B
ddx

√
−h
[

R − 2Λd +
L2

d+1

(d − 4)(d − 2)

(

R2
ij −

dR2

4(d − 1)

)

+ · · ·
]

, (4)

coupled to a CFT with an ultraviolet cutoff. Here, Gd and Λd are induced scales dependent
on the bulk Newton and cosmological constant and brane tension, and the ellipsis denotes
an infinite tower of higher-derivative terms, which is proportional to increasing positive
powers of the bulk AdS length scale Ld+1. A metric variation of this action results in the
semi-classical equations of motion (2), the solutions of which are conjectured to constitute
quantum-corrected geometries due to the backreaction of a large-c holographic CFT with a
UV cutoff.
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Benchmarking quantum black holes. Section 4 is devoted to constructing three-dimensional
quantum black holes using holographic braneworlds, including static and rotating black
holes in AdS3 (Section 4.2), dS3 (Section 4.3), and Minkowski3 (Section 4.4). In all cases,
the bulk geometry is taken to be the AdS4 C-metric, with either a Karch–Randall (asymp-
totically AdS3) or Randall–Sundrum (asymptotically flat or dS3) end-of-the-world brane
embedded inside. The neutral, static geometries induced on the brane include corrections
of the type (3), supporting the intuition gained from the perturbative analysis. For example,
the static quantum BTZ black hole is (64)

ds2
qBTZ = −

(

r̄2

ℓ2
3

− 8G3M − ℓF(M)

r̄

)

dt̄2 +

(

r̄2

ℓ2
3

− 8G3M − ℓF(M)

r̄

)−1

dr̄2 + r̄2dϕ̄2, (5)

where M is the black hole mass, and G3 is a renormalized Newton’s constant due to an
all-order resummation of the higher-derivative terms appearing in the induced action (4).
One notable difference between the black hole (5) and the perturbative geometry (3) is
that ℓ ∼ cLP ≫ LP, where c is the central charge of the cutoff CFT3 on the brane. Thus,
the correction appears on a scale where quantum gravitational effects can be consistently
ignored; the geometry (5) is a quantum-corrected black hole much larger than the Planck
length. Further, the geometry (5) is an exact solution to the semi-classical brane theory.
Quantum black hole thermodynamics. Section 5 focuses on the horizon thermodynamics
of quantum black holes. As with the geometry, the thermodynamics of the braneworld
black hole is induced from the thermodynamics of the bulk AdS4 black hole. For example,
the bulk and brane horizon temperatures coincide. Meanwhile, the bulk entropy, given by
the Bekenstein–Hawking area relation, is reinterpreted as generalized entropy

S(4)
BH ⇐⇒ S(3)

gen, (6)

the sum of gravitational and matter entanglement entropies. Consequently, from the brane
perspective, the first law of thermodynamics of quantum black holes is

dM = TdS(3)
gen + ..., (7)

where the ellipsis refers to possible additional variations such as rotation or charge. Thus,
by accounting for a semi-classical backreaction, classical gravitational entropy is replaced
by its semi-classical generalization. Since the bulk thermodynamic variables are exactly
known, the first law holds to all orders of backreaction. This is highly non-trivial from the
brane perspective. Indeed, the induced semi-classical theory includes an infinite tower
of higher-derivative terms and the matter entropy of the cutoff CFT3. To determine the
entropy and mass non-perturbatively in a backreaction would require a resummation of
the infinite tower of terms and knowledge of how to compute the von Neumann entropy
of the CFT3, which is a supremely challenging task. Via holography, this resummation is
performed by the bulk.

Holographic braneworlds, moreover, provide a natural higher-dimensional origin
of extended black hole thermodynamics (Section 5.6), where the cosmological constant is
treated as a dynamical pressure. This is because the cosmological constant on the brane is
partly induced by the brane tension. Tuning the brane tension alone amounts to varying the
induced brane cosmological constant, such that mechanical work performed by the brane
is interpreted as extended thermodynamics of the black hole on the brane. Intriguingly, all
AdS3 quantum black holes obey a semi-classical generalization of the reverse isoperimetric
inequality, indicating quantum black holes have a maximal entropy state at fixed volume.

Quantum black holes can also have a wildly different thermal phase structure than
their classical counterparts (Section 5.8). Specifically, in the case of the static quantum
BTZ black hole, a large enough backreaction triggers reentrant phase transitions, e.g., a
transition from thermal AdS to the quantum black hole back to thermal AdS. The first
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of these transitions can be understood as a quantum analog of the familiar first-order
Hawking–Page transition of AdS black holes, while the second transition back to thermal
AdS is entirely a consequence of non-perturbative backreaction effects.

Puzzles in higher-dimensions. Section 6 briefly reviews the history and status of higher-
dimensional braneworld black holes and their semi-classical interpretation. Indeed, while
we focus on three-dimensional quantum black holes, the conjecture [22,34] that classical
bulk black holes correspond to quantum-corrected black holes on the brane, in principle,
holds in arbitrary spacetime dimensions. After assessing arguments that imply four and
higher-dimensional quantum black holes must be evaporating, we describe static four-
dimensional braneworld black holes and their peculiar features when viewed as quantum
black holes. We conclude with a short summary regarding the holographic duals of
evaporating black holes.
Applications. In Section 7, we present a non-exhaustive list of applications and possible
avenues for future research using the quantum black hole constructions described in this
review. Historically, braneworlds, motivated by string theory, were conceived as possible
resolutions to problems in high-energy phenomenology, e.g., the hierarchy problem of the
standard model of particle physics [12,13]. Although there are yet to be any experimental
signatures of extra dimensions or braneworlds, the view taken here is that braneworld
holography provides an invaluable framework to test ideas in (non-perturbative) semi-
classical gravity and beyond. For example, prescriptions in holographic information theory,
i.e., entanglement entropy and complexity, can be tested in the context of quantum black
holes. Moreover, classical ideas such as cosmic censorship can be revisited using quantum
black holes as a guide.
Appendices. While unnecessary to follow the core narrative of this review, we include
a number of appendices to be self-contained and pedagogical. The conventions used in
the majority of this review are presented in Appendix A. In Appendix B, we provide
further details about holographic regularization, including a detailed derivation of the
local counterterms that give rise to the induced gravity theory on the brane. Appendix
C summarizes the relevant history and physics of braneworlds. Geometric elements of
the C-metric utilized in the main text are given in Appendix D. Appendix E presents a
derivation of the thermodynamics of the static, neutral quantum BTZ black hole using a
(bulk) canonical partition function.

2. Black Holes and Backreaction in 3D: A Perturbative Analysis

2.1. Three-Dimensional Black Holes and Conical Defects

In vacuum general relativity, black holes tend to disappear when lowering the space-
time dimension from four to three. This can be understood at the level of dimensional
analysis. If the only dimensionful parameter is three-dimensional Newton’s constant G3,
then introducing a massive object of mass M does not introduce an additional length scale
needed to characterize a black hole horizon solely in terms of its mass; indeed, G3M is
dimensionless5. In fact, a massive point particle in flat (2+ 1)-dimensional general relativity
is a conical defect with angular deficit δ = 2π(1 −√

1 − 8G3M) and a conical singularity at
the origin [28]. Moreover, while a cosmological constant Λ will introduce another length
scale, this alone is not sufficient to have a black hole horizon. Gravitational attraction is
also required.

To elaborate, there are black holes in asymptotically AdS3. Namely, the Bañados–
Teitelboim–Zanelli (BTZ) black hole [30,31]

ds2 = −N(r)dt2 + N−1(r)dr2 + r2(dϕ + Nϕdt)2, (8)

with lapse and shift metric functions

N(r) ≡ −8G3M +
r2

L2
3

+
(4G3 J)2

r2
, Nϕ ≡ −4G3 J

r2
, (9)
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for mass M and spin J. The roots of the lapse,

r2
± =

L2
3

2



8G3M ±
√

(8G3M)2 −
(

8G3 J
L3

)2


, (10)

characterize the outer (r+) and inner/Cauchy (r−) horizons, with r+ ≥ r− ≥ 0, assuming
ML3 ≥ J > 0 to avoid naked singularities. The reason we can interpret the BTZ metric
as a ‘black hole’ is because the negatively curved geometry of AdS3 provides an innate
geometric tendency for gravitational collapse (see, e.g., [35])6. Alternatively, there are no
black holes in dS3; the positively curved dS3 background leads to an inability for collapse7.
Consequently, a point mass in dS3, is described by a conical defect [29] with a single
cosmological horizon.

To see this latter point, consider the Kerr–dS3 metric. The line element formally takes
the same form as (8) except now with lapse and shift functions

N(r) ≡ 1 − 8G3M − r2

R2
3

+
(4G3 J)2

r2
, Nϕ ≡ +

4G3 J
r2

, (11)

where R3 denotes the dS3 length scale and the ‘+’ sign in Nϕ denotes convention. Next, we
introduce dimensionless parameters γ ≡ r+/R3 and α ≡ −4G3 J/γR3 = ir−/R3, where
r± are

r2
± =

R2
3

2



(1 − 8G3M)±
√

(1 − 8G3M)2 −
(

8G3 J
R3

)2


, (12)

with only a single positive root, r+, identified as the cosmological horizon. Then, the
coordinate transformation [27,29,39]

t̃ = γt + αR3ϕ, ϕ̃ = γϕ − αt/R3, r̃/R3 =

√

(r/R3)2 + α2

γ2 + α2
(13)

brings the Kerr–dS3 geometry into an empty dS3 form, i.e.,

ds2 = −
(

1 − r̃2

R2
3

)

dt̃2 +

(

1 − r̃2

R2
3

)−1

dr̃2 + r̃2dϕ̃2. (14)

Here, however, the coordinates (t̃, ϕ̃) do not have the same periodicity as standard dS3,
where (t, r, ϕ) ∼ (t, r, ϕ + 2π). Rather,

(t̃, ϕ̃) ∼ (t̃ + 2πR3α, ϕ̃ + 2πγ). (15)

Thence, Kerr–dS3 is a conical defect geometry with angular deficit δ = 2π(1 − γ).
It is worth pointing out that the AdS3 geometry (8) is not always a black hole. For

8G3M < 0, the geometry is a conical defect, taking the form of empty AdS3 (the line
element (14) with Wick rotation R3 = −iL3), with the same periodicity (15), where now
α ≡ r+/L3 and γ ≡ 4G3i J/L3

8. In particular, when J = 0, the states with −1 < 8G3M <

0 correspond to conical defects with angular deficit δ = 2π(1 − √−8G3M), while for
8G3M < −1, the geometry has a conical excess; at 8G3M = −1, the BTZ geometry is exactly
empty AdS3. Furthermore, when 8G3M < 0 (for arbitrary J), the metric components are
well defined everywhere; i.e., there is no horizon and the conical singularity at r = 0
is ‘naked’.

2.2. Backreaction and Quantum Dressing

Another way to introduce a dimensionful parameter is to allow for quantum effects.
Namely, for h̄ ̸= 0, there exists the three-dimensional Planck length LP = h̄G3 (though
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there is no notion of Planck mass in three dimensions). The question then is whether such
quantum effects can modify the classical three-dimensional geometry so as to induce a
(black hole) horizon when there was none before.

Evidence of this comes from perturbatively solving the semi-classical Einstein
Equation (1) for a conformally coupled scalar field Φ [26,27,40–45], which is character-
ized by the action

I =
1

16πG3

∫

d3x
√

−g[R − 2Λ]− 1

2

∫

d3x
√

−g
[

(∇Φ)2 +
1

8
RΦ2

]

. (16)

In such a set-up, the first step is to determine the renormalized stress tensor ⟨Tab⟩. This
is accomplished by first constructing the Green function associated with the equation of
motion for the scalar field Φ in (A)dS3, (□− 1

8 R)Φ = 0. Generically, the Green function is

G(x, x′) =
1

4π

1

|x − x′| +
λ

4π

1

|x + x′| , (17)

where λ = 0, 1,−1 corresponds to the scalar field obeying transparent, Neumann, or
Dirichlet boundary conditions, respectively. For non-rotating backgrounds9 and assuming
transparent boundary conditions, the renormalized stress tensor has the form

⟨Ta
b⟩ =

h̄F(M)

8πr3
diag(1, 1,−2), (18)

where F(M) is a positive function of the mass. The explicit expression for F(M) is differ-
ent depending on whether the background is conical (A)dS3 or the BTZ geometry (see,
e.g., [26,27,44,45] for details), while the radial dependence and diagonal tensorial structure
will change when considering non-transparent boundary conditions [42]. In any case,
the Green function of the quantum scalar field in the BTZ background is in the Hartle–
Hawking state, satisfying the Kubo–Martin–Schwinger (KMS) condition at the black hole
temperature [42].

Having the stress tensor (18) source the right-hand side of the semi-classical Einstein’s
Equation (1), one finds for the static geometry the O(LP) correction to the three-dimensional
metric (8) is

N(r) =
r2

L2
3

− 8G3M − δgtt , δgtt =
2LPF(M)

r
, (19)

for the AdS3 geometries, and

N(r) = 1 − 8G3M − r2

R2
3

− δgtt , δgtt =
2LPF(M)

r
, (20)

for conical dS3. Notably, δgtt > 0, indicating gravitational attraction [32,33]10. This
attractive effect suggests that a horizon induced due to a semi-classical backreaction might
appear to dress the naked AdS3 conical singularity or, in the case of conical dS3, lead to a
black hole horizon in addition to its classical cosmological horizon.

The ‘horizon’ radius, however, is proportional to the Planck length at the scale when
quantum gravitational effects are expected to become important. Consequently, the above
perturbative semi-classical analysis cannot be trusted, and we are not able to conclude
the backreacted geometry results in a genuine horizon. This is not to say a semi-classical
backreaction will always result in Planckian-sized horizons. Indeed, both gravitational
and quantum effects are at play: a large c ≫ 1 number of conformally coupled scalars
results in a combined quantum effect ∝ ch̄ which may gravitate to yield large semi-classical
black holes, i.e., those with horizon radius ∼ Gch̄ = cLP ≫ LP, for which quantum gravity
effects may be safely neglected. To verify this, the backreaction problem of a large number
of fields must be non-linearly accounted for, and, thus far, perturbative methods have been
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unable to accomplish this consistently. Braneworld holography provides a framework for
which the backreaction problem due to a large-c holographic conformal field theory can be
exactly solved.

3. Braneworld Holography and Quantum Black Holes

The perturbative analysis above suggests that a semi-classical backreaction due to
quantum fields can lead to the appearance of a black hole horizon when there was none
before. Due to the limitations of the perturbative approach, however, the observation is
cursory at best. Since the perturbative correction to the classical geometry is on the order
of the Planck scale, we cannot definitively argue that a black horizon appears. Only if
there are a large-c number of quantum fields present would this conclusion be plausible.
The only known framework where a solution with these requirements can be consistently
achieved is braneworld holography, where one innately works in a large-c limit. Below, we
summarize the relevant aspects of holographic braneworlds.

3.1. AdS/CFT Dictionary and Holographic Renormalization

The AdS/CFT correspondence [6], in its strongest form, describes a duality between
a theory of gravity and conformal field theory at the level of their partition functions, as
summarized by Gubser, Klebanov, Polyakov and Witten (GKPW) [46,47]

〈

e−
∫

∂M Oϕ(0)

〉

CFT

= Zgrav[ϕ(0)]|M. (21)

On the right-hand side, we have the gravitational partition function of a bulk field Φ

over an asymptotically d + 1-dimensional AdS spacetime M, with conformal boundary
∂M, and ϕ(0) is the fixed boundary value of the bulk field Φ. On the left-hand side is
the generating functional for the dual d-dimensional CFT living on ∂M, where O is the
field theory operator dual to the bulk field. Taking variations with respect to ϕ(0) and then
setting ϕ(0) = 0, one can obtain correlation functions of O, which are sourced by ϕ(0). This
equivalence of partition functions (21) is often dubbed the standard AdS/CFT dictionary,
and, at least formally, it defines a model of non-perturbative quantum gravity.

One of the essential features of the AdS/CFT correspondence is that it can probe
strongly coupled field theories on a non-dynamical background using weakly coupled,
classical (super)gravity. This is because, typically, the holographic field theories are non-
Abelian gauge theories with a gauge group of rank N and ’t Hooft coupling λ, where,
at large-N and λ ≫ 1 (the planar-diagram limit), the dynamics are effectively classical,
with O(1/N) corrections in the dual field theory corresponding to bulk gravity quantum
corrections O(G)11. More generally, the dual field theory degrees of freedom are encoded
in the central charge c, which, for known holographic theories scale with N, i.e., c ∼ Nα

for positive, real α. Thus, the large-c limit coincides with the classical limit12 in the bulk,
and the right-hand side of the dictionary (21) may be approximately given by a sum over
classical saddles {Φi}

lim
c→∞

〈

e−
∫

∂M Oϕ(0)

〉

CFT

= ∑
i

e−Ion-shell
grav [Φi ], (22)

where each field configuration Φi is a solution to the bulk classical gravity equations of
motion subject to the prescribed boundary conditions13. A particular case of interest is to
turn off all sources ϕ(0) except those with the boundary value of the bulk metric. In such an
event, at large c, it is consistent to turn off all bulk fields except the metric, such that the
bulk is described by a pure theory of gravity, which is often taken to be the Einstein–Hilbert
action.
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Holographic Renormalization

The standard dictionary (21), however, requires special care in regard to divergences.
Indeed, even at tree level (22), the gravity partition function exhibits long-distance infrared
(IR) divergences, which correspond to ultraviolet (UV) divergences in the CFT correlation
functions. These divergences may be removed via holographic renormalization, which is
a prescription that adds appropriate local counterterms [17–21] in a minimal subtraction
scheme. Since they will become relevant momentarily, let us outline the holographic
renormalization procedure, leaving further computational details for Appendix B.

Consider a bulk asymptotically AdSd+1 spacetime M of curvature scale Ld+1 and
cosmological constant Λd+1 = −d(d − 1)/2L2

d+1, which is governed by classical Einstein
gravity

Ibulk =
1

16πGd+1

∫

M
dd+1x

√

−ĝ
(

R̂ − 2Λd+1

)

+
1

8πGd+1

∫

∂M
ddx

√
−hK. (23)

Here, Gd+1 is the d + 1-dimensional Newton’s constant, ĝab is the metric endowed on M,
and K in the Gibbons–Hawking York (GHY) boundary term is the trace of the extrinsic
curvature of the boundary submanifold ∂M endowed with induced metric hij. Working in
the large-c, planar-diagram limit, the bulk gravity theory has a dual holographic description
in terms of a CFTd living on the asymptotic conformal boundary ∂M.

Asymptotically, the bulk AdS spacetime can be cast in a Fefferman–Graham gauge [48,49]
such that near the boundary

ds2 = ĝabdxadxb = L2
d+1

(

dρ2

4ρ2
+

1

ρ
gij(x, ρ)dxidxj

)

, (24)

where the d-dimensional metric has the expansion gij(x, ρ) = g(0)ij (x) + ρg(2)ij (x) + ... +

ρd/2g(d)ij (x). The conformal boundary is located at ρ = 0. By perturbatively solving the bulk

Einstein’s equations, the higher-order metric coefficients g(k>0)
ij (x) may be cast covariantly

in terms of the metric g(0)ij and derivatives thereof.

On shell, the bulk action (23) has IR divergences at ρ = 0. To isolate and regulate these
divergences, we introduce an IR cutoff ρ = ϵ, for ϵ ≪ 1, near the asymptotic boundary, and
integrate over bulk coordinate ρ between ϵ < ρ < ρc, where ρc > ϵ is some constant14. See
Figure 1 for an illustration. This procedure produces a regulated bulk action,

Ireg
bulk =

1

16πGd+1

[

∫

ρ>ϵ
dd+1x

√

−ĝ
(

R̂ − 2Λd+1

)

+ 2
∫

ρ=ϵ
ddx

√
−hK

]

. (25)

Using the perturbative expansion for gij(x, ρ), the regulated action (25) may be divided
into a contribution Idiv which diverges in the limit ϵ → 0 and a finite contribution Ifin

Ireg
bulk = Idiv + Ifin. (26)

Schematically, the IR divergent contribution is (see Appendix B for details)

Idiv =
Ld+1

16πGd+1

∫

ddx
√

g(0)
[

ϵ−d/2a(0) + ϵ−d/2+1a(2) + ... + ϵ−1a(d−2) − log ϵa(d)
]

, (27)

with coefficients a(0), a(2), ... that are covariant combinations of g(0)ij and its derivatives. In

terms of the boundary metric hij, it may be cast as

Idiv=
Ld+1

16πGd+1

∫

∂M
ddx

√
−h

[

2(d − 1)

L2
d+1

+
R

(d − 2)
+

L2
d+1

(d − 2)2(d − 4)

(

R2
ij −

dR2

4(d − 1)

)

+ ...

]

(28)
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ρ = ϵ

AdSd+1

Figure 1. Holographic regularization. A constant timeslice of empty AdSd+1. An IR cutoff surface is

introduced at ρ = ϵ (thick, red line). The regulated action follows from integrating out the bulk radial

coordinate from ϵ < ρ < ρc. As ϵ → 0, the cutoff surface recedes to the AdS boundary.

where the ellipsis indicates higher-curvature and higher-derivative contributions (see,
e.g., [17,21,51,52]). The finite contribution Ifin ∼ O(ϵ0) +O(ϵ)... survives the ϵ → 0 limit,
though it will also typically include higher-curvature terms. Its interpretation will be
given momentarily.

At this stage, the renormalized action is obtained by minimal subtraction,

Iren
bulk = lim

ϵ→0
(Ireg

bulk + Ict), (29)

where a local counterterm action has been introduced, Ict = −Idiv, to precisely cancel the
IR divergences. Then, via the standard AdS/CFT dictionary, variations with respect to the
metric hij of the renormalized action yields the quantum expectation value of the stress
tensor of the holographic CFT,

⟨TCFT
ij ⟩ = lim

ϵ→0

(

− 2
√

ĝ(x, ρ)

δIren
bulk

δĝij(x, ϵ)

)

≡ − 2√
h

δWCFT[h]
δhij , (30)

such that the renormalized bulk action is identified with the quantum effective action of
the CFT, WCFT[h]. Thus, at leading order, the finite action Ifin characterizes the CFT.

3.2. Braneworld Holography

In braneworld holography [11], the bulk IR cutoff surface ∂M is instead replaced by a
d-dimensional end-of-the-world (ETW) Randall–Sundrum [13,14] or Karch–Randall [15,16]
brane B at a small fixed distance away from the boundary (for a lightning review of
braneworlds, see Appendix C). Hence, the physical space is cut off at the ETW brane and
there are no longer IR divergences to be removed. For simplicity, assume the brane is purely
tensional, having an action

Iτ = −τ
∫

B
ddx

√
−h, (31)

where τ is the brane tension. Since a portion of the bulk has been removed, to complete the
space, a second copy of AdSd+1 with a brane is sewn to the first cutoff geometry along the
cutoff surface (see Figure 2). This surgical procedure leads to a discontinuity in the extrinsic
curvature Kij across the junction. The Israel junction conditons [53] relate this discontinuity
to the brane stress tensor Sij via

∆Kij − hij∆K = 8πGd+1Sij = −8πGd+1τhij, (32)
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AdSd+1 AdSd+1

B B

∂M∂M
Figure 2. Braneworld surgery. Replace the IR cutoff surface with an end-of-the-world (Karch–

Randall) brane B (thick, red line), excising the shaded region from the bulk spacetime. To complete

the space, two copies of the spacetime are glued along B, making the brane double-sided. A BCFTd

lives on the AdSd+1 boundary ∂M and is coupled to a defect CFTd−1 where B intersects the AdS

boundary (yellow dot). The induced brane theory is characterized by a specific higher-derivative

gravity coupled to a CFTd with a UV cutoff.

where ∆Kij = K+
ij − K−

ij denotes the difference between the extrinsic curvature across either

‘+’ and ‘−’ sides of the brane (here, we take K+
ij = −K−

ij such that ∆Kij = 2Kij), and

the last equality follows from taking the metric hij variation of the brane action (31), i.e.,

Sij ≡ − 2√
−h

δIτ

δhij . Thus, the location of the brane in the completed space is determined by the

junction conditions (32), which in the present case amounts to tuning the brane tension τ.
Moreover, unlike the metric on the AdS boundary, the brane metric is dynamical, and

it is governed by a holographically induced higher-curvature theory of gravity coupled
to matter. Precisely, the induced brane theory is found by adding to the bulk theory (23)
the brane action (31). Integrating out the bulk up to the ETW brane B, as in holographic
regularization, leads to an effective induced theory with action I

I ≡ IBgrav[B] + ICFT[B], (33)

where the brane gravity theory is (cf. [52,54])

IBgrav = 2Idiv + Iτ

=
1

16πGd

∫

B
ddx

√
−h
[

R − 2Λd +
L2

d+1

(d − 4)(d − 2)

(

R2
ij −

dR2

4(d − 1)

)

+ · · ·
]

,
(34)

where the factor of two accounts for integrating out the bulk on both sides of the brane,
and the ellipsis corresponds to higher curvature densities, entering with higher powers of
L2

d+1. So far, the higher-derivative contributions have been computed up to quintic order in
curvature for arbitrary d and sextic order for d = 3 [52]. In principle, these results could be
extended to arbitrary order, even though the calculations might be practically prohibitive.
Here, Gd represents the effective brane Newton’s constant induced from the bulk

Gd =
d − 2

2Ld+1
Gd+1, (35)

and Λd = −(d − 1)(d − 2)/2L2
d is an effective brane cosmological constant with an induced

curvature scale Ld
1

L2
d

=
2

L2
d+1

(

1 − 4πGd+1Ld+1

d − 1
τ

)

. (36)
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As written, it has been assumed the brane has a negative cosmological constant such that
the bulk theory is coupled to a Karch–Randall brane [15]. When coupled to a Randall–
Sundrum brane, the brane cosmological constant can be tuned to be positive or zero, as
will be considered later.

Due to the presence of higher-derivative terms in the induced action (34), the brane
theory of gravity is in general ‘massive’ since a massive graviton bound state will localize
on the brane [15]. This brane graviton mass, however, will become negligible for a brane
very near the boundary. Furthermore, general higher-derivative theories of gravity are
often sick since they are typically accompanied by ghosts. In the present case, however,
provided the series of higher-derivative terms is not truncated, the brane theory is not
expected to inherit these usual pathologies, since the starting bulk theory and the procedure
of integrating out bulk degrees of freedom are not pathological.

The action ICFT[B], meanwhile, describes the CFT theory, now living on the brane, and
corresponds to the finite contribution to the regulated bulk action upon integrating out the
bulk. To see this, note that upon integrating out the bulk degrees of freedom on both sides
of the brane, we have

I ≡ 2Ireg
bulk + Iτ . (37)

Then, add and subtract the 2Idiv, giving

I ≡ (2Idiv + Iτ) + (2Ireg
bulk − 2Idiv), (38)

where the first term in parentheses is recognized as IBgrav (34). The second term is simply
2Ifin ≡ ICFT, which, to leading order in the cutoff ϵ, is identified with the quantum effective
action of the CFT, ICFT = WCFT +O(ϵ). In most cases of interest, we work in the limit
that ϵ is small, i.e., when the brane is close to the (now fictitious) AdSd+1 boundary, such
that the matter on the brane has an approximate description as a large-c holographic CFT.
Roughly speaking, a portion of the conformal AdSd+1 boundary has been pushed into the
bulk, such that the dual CFTd is now residing on the brane—however, this comes at a cost.
Since the brane represents an IR cutoff surface, the CFT has a UV cutoff [55,56]. The cutoff,

from the perspective of the boundary g(0)ij metric, is denoted by ϵ, while from the induced

brane metric hij = (L2
d+1/ϵ)g(0)ij , the UV cutoff of the CFT is δUV = Ld+1.

3.3. Double Holography

A Karch–Randall braneworld15 has three equivalent descriptions: (i) bulk, (ii) interme-
diate, and (iii) boundary.

• Bulk: The bulk perspective is that of classical dynamical gravity in AdSd+1 coupled to
an asymptotically AdSd ETW brane of tension τ. The simplest set-up assumes Einstein
gravity plus a purely tensional brane; however, it is in principle possible to include
higher-curvature corrections or fields to the bulk or brane actions. Israel junction
conditions determine the location of the brane in the bulk, such that for a purely
tensional brane, tuning the tension constitutes changing the position of the brane.

• Intermediate: The intermediate brane viewpoint describes induced dynamical gravity
coupled to a UV cutoff CFTd UV, which further communicates with a boundary CFTd
(BCFTd) via transparent boundary conditions. Bulk graviton fluctuations localize
on the brane [13,14]. A subset of these graviton modes are light states with mass
controlled by the tension; hence, the induced brane theory is an example of a massive
theory of gravity. The remaining bulk graviton modes appear as a tower of Kaluza–
Klein modes with masses set by the effective AdSd brane length scale 1/Ld.

• Boundary: Holographically, the bulk system has a dual description in terms of a CFTd
with a boundary (where the brane intersects the AdSd+1 boundary), i.e., a boundary
CFTd. This set-up constitutes AdS/BCFT [57,58]. This perspective emerges when the
brane gravity itself has a dual description in terms of a (d − 1)-dimensional conformal
defect. Upon replacing the brane gravity by a conformal defect (by integrating out
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the bulk and brane), the boundary perspective is characterized by the CFTd on a
fixed background, which is coupled to the defect. The boundary perspective is thus a
UV/microscopic description of the bulk/brane gravity viewpoints.

Specific models exhibiting this type of ‘double holography’—holographic spacetimes
dual to a BCFT that have three equivalent descriptions—have top–down string theoretic
realizations [59]. We, however, will work with bottom–up constructions, for which their
doubly holographic nature will play an important role in studying aspects of holographic
entanglement and complexity, as we summarize in Section 716.

3.4. Holographic Quantum Black Holes: A Conjecture

Two equivalent ways to interpret the theory (33) are as follows. From the bulk per-
spective, I characterizes a theory of a (d + 1)-dimensional system with dynamics ruled
by Einstein gravity coupled to an end-of-the-world brane obeying appropriate boundary
conditions. Meanwhile, from the (intermediate) brane perspective, I represents a specific
higher-curvature gravity in d dimensions coupled to a large-c cutoff CFT that backreacts
on the brane metric hij. The tower of higher-order derivative terms to the Einstein–Hilbert
contribution represents quantum corrections induced by the backreaction of the CFTd. We
refer to this higher-derivative tower as ‘corrections’ because in most cases of interest, one
treats the brane action as an effective theory, assuming Ld ≫ Ld+1 and guaranteeing the
higher-derivative terms are suppressed by at least O(L2

d+1/L2
d)

17. Consistency between
these two viewpoints implies solutions to the classical bulk equations satisfying proper
brane boundary conditions exactly correspond to solutions to the semi-classical field equa-
tions on the brane. Therefore, the classical (d + 1)-dimensional geometry encodes the entire
series of quantum corrections to the d-dimensional brane geometry, accounting for all or-
ders in the backreaction. Thus, holographic braneworlds provide a distinct computational
advantage: rather than directly solving a complicated semi-classical theory of gravity, one
may instead solve simpler classical gravitational field equations one dimension higher.

This philosophy, combined with the observation [62] that the ∼ 1/r3 corrections to
the four-dimensional Newtonian potential due to massive Kaluza–Klein modes in the
Randall–Sundrum model precisely coincide with corrections induced by one-loop quantum
effects of the graviton propagator [63], suggests braneworld black holes from the brane
perspective are quantum-corrected geometries. These insights in part motivated Emparan,
Fabbri and Kaloper [22] to make the following conjecture:

Conjecture: Classical black holes which localize on a brane in AdSd+1 exactly map to
d-dimensional quantum-corrected black holes including all orders of backreaction.

Such quantum-corrected black holes are dubbed ‘quantum’ black holes, though, they
technically are solutions to the semi-classical theory induced on the brane. An illustration
is given in Figure 3.

Explicit tests of this proposal include the exact localized AdS4 braneworld black
holes discovered by Emparan, Horowitz, and Myers [23,24] with their projection onto the
brane being reinterpreted as three-dimensional quantum black holes18. As we will see
below, at least for the neutral, static geometries, the exact quantum black holes receive the
same modifications to their geometry as suggested by the (non-holographic) perturbative
analysis summarized in Section 2. The rotating and charged holographic quantum black
holes, meanwhile, do not match the non-holographic perturbatively corrected counterparts
(cf. [27,40,45]). In particular, a perturbative backreaction to the rotating BTZ black hole
or Kerr–dS3 solution due to a conformally coupled scalar field leads to a wildly more
complicated radial dependence than that of a holographic CFT and a quantum stress tensor
with a qualitatively different singularity structure, having an impact on the status of strong
cosmic censorship. The remainder of this review will focus on these three-dimensional
quantum black holes.

Before moving on to analyze the three-dimensional black holes, it is worth briefly
commenting on the status of the proposal [22] in higher and lower dimensions. For brane
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∂M
BB

∂M

Figure 3. Braneworld black hole. The bulk white region is excised down to the brane B (blue line)

and glued to a copy of itself. A bulk black hole with an event horizon (red line) is intersected by

(depicted here, Karch–Randall) brane, inducing a horizon on the brane.

dimensions d ≥ 4, the most physically relevant case being d = 4, there are still no known
exact stationary solutions (see [64] for a review of analytic and numerical braneworld
black holes)19. In fact, there is a no-go theorem [66] which alleges the exterior geometry
on the brane in d ≥ 4 cannot be static. The lack of exact solutions makes identifying the
specific state of the CFTd more difficult. In [22,34], for d ≥ 4, it was qualitatively argued
the obstruction to having static quantum black holes can be understood as a consequence
of backreaction due to Hawking effects, such that any black hole that localizes on the
brane must evaporate. However, static braneworld black holes in higher dimensions have
been found numerically, e.g., [67–72], and the qualitative argument was shown to have
flaws [69]. We review the status of the conjecture for higher-dimensional quantum black
holes in Section 6.

In d = 2 dimensions, the induced theory on the brane is characterized by a matter
quantum effective action, which to leading order in expansion in the UV cutoff is char-
acterized by the Polyakov action [4] coupled to a topological term and a cosmological
constant. The precise form of the brane action likewise follows from a modification of
holographic renormalization [19,50,73], where the counterterm action exactly truncates
(see also [74,75]). Such a theory does not admit black hole solutions by itself. Thus, in
order to find two-dimensional braneworld black holes, the theory must be modified by
including a Dvali–Gabadadze–Porrati (DGP) term [76] to the tensional brane action (31).
For example, one may replace the brane action (31) with a non-minimally coupled dilaton
theory, e.g., Jackiw–Teitelboim (JT) gravity [77,78], as seen in [54]20. Such dilaton models of
gravity admit exactly solvable black hole solutions including a semi-classical backreaction,
e.g., [84–87].

Lastly, let us make some general remarks about static black holes localized on the
brane. First, a brane with non-vanishing tension is an accelerated trajectory with respect
to the bulk, i.e., the brane does not undergo geodesic motion. Thus, a black hole which
localizes on the brane is in an accelerating frame, and it is the same for any observer glued
to the brane. Next, a static black hole stuck to the brane will neither eat the brane nor
slide off it. The reason is as follows [88]. To be static, the brane intersects the black hole
orthogonally; otherwise, the black hole would grow by eating the brane21. Consequently,
the brane bends to remain orthogonal to the black hole if the latter is being pulled off the
brane (by, say, another black hole in the bulk). Thus, a static black hole localized on the
brane experiences a restoring force due to the tension of the brane and does not slide off.
Evaporating black holes, on the other hand, eventually slide off the brane.

4. Quantum Black Hole Taxonomy

Having laid the groundwork of braneworld holography in general dimensions, here
we focus on the d = 3 case, i.e., a holographic AdS4 bulk with a three-dimensional ETW
brane. In this set-up, it is possible to write down a host of analytic braneworld black hole
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solutions to the bulk field equations plus Israel junction conditions. From the brane perspec-
tive, these black holes may be interpreted as ‘quantum’ black holes—those which exactly
solve the induced semi-classical brane gravity including all orders of backreaction due to
a large-c holographic CFT3 with a UV cutoff. Below, we classify known quantum black
holes in three-dimensional (A)dS and Minkowski backgrounds. These include the quantum
BTZ family of black holes (static, rotating, and charged) and their de Sitter/Minkowski
analogs. Each of these braneworld black holes arise from specific parametrizations of the
AdS4 C-metric coupled to a Randall–Sundrum or Karch–Randall brane.

4.1. Bulk Geometry: AdS C-Metric

In this review, the bulk AdS4 gravity is taken to be Einstein–Maxwell theory. The
most general metric solving the Einstein–Maxwell−Λ gravity is the Plebiański–Demiański
type-D metric [89]. We are interested in a specific sub-class of solutions, namely the AdS4

C-metric, which can be interpreted as a single or pair of accelerating black holes in an
AdS4 background, depending on the parameters of the solution. Here, we summarize
the essentials for the braneworld construction (see Appendix D for a longer review). In
particular, the neutral, non-rotating C-metric in Boyer–Lindquist-like coordinates has a line
element (primarily following the conventions of [25])

ds2 =
ℓ2

(ℓ+ xr)2

[

−H(r)dt2 +
dr2

H(r)
+ r2

(

dx2

G(x)
+ G(x)dϕ2

)]

, (39)

with metric functions

H(r) =
r2

ℓ2
3

+ κ − µℓ

r
, G(x) = 1 − κx2 − µx3. (40)

We treat t and r as time and radial coordinates, respectively. However, the range for r is
not the usual one for Boyer–Lindquist coordinates, with the AdS4 conformal boundary
shifted from its familiar location, r = ∞. Rather, the position of the boundary depends on
the coordinate x: for some values of x, the conformal boundary is closer than infinity, while
for other values of x, the boundary is ‘further’ than infinity. That is, the radial coordinate
has range r ∈ (−∞, rbdry) ∪ (0, ∞), with xrbdry = −ℓ being the location of the asymptotic
AdS4 boundary, where the conformal factor diverges (this unfamiliar range for the radial
coordinate can be seen more readily using the (t, x, y, ϕ) coordinates in Appendix D).
Further, (x, ϕ) are angular variables, with x ∈ [−1, 1] analogous to cos θ, and ϕ is a general
azimuthal coordinate whose periodicity will be discussed below.

Here, µ, κ, ℓ and ℓ3 are real parameters characterizing the solution whose physical
meaning will become more apparent momentarily. For now, κ = ±1, 0 describes different
possible slicings of the brane geometry, e.g., κ = −1 will recover the classical BTZ geom-
etry on the brane; however, here, we leave κ unspecified, thereby describing a family of
braneworld black holes. The non-negative parameter µ is related to the mass of the bulk
black hole. When interpreted as an accelerating black hole, the parameter ℓ ≥ 0 equals the
inverse acceleration, A = ℓ−1, and is related to the bulk AdS4 length scale L4 via

L4 =

(

1

ℓ2
+

1

ℓ2
3

)−1/2

, (41)

Lastly, the positive parameter ℓ3 will be related to the AdS3 brane curvature scale, however,
with 0 ≤ ℓ < ∞, such that ℓ3 > L4.
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To gain further intuition for the global aspects of the metric (39), first set µ = 0 and
perform the coordinate transformation [25]

cosh(σ) =
ℓ3

L4

1

|1 + rx
ℓ
|

√

1 +
r2x2

ℓ2
3

, r̂ = r

√

√

√

√

1 − κx2

1 + r2x2

ℓ2
3

. (42)

This brings the C-metric line element (39) to the form

ds2 = L2
4dσ2 +

L2
4

ℓ2
3

cosh2(σ)



−
(

κ +
r̂2

ℓ2
3

)

dt2 +

(

κ +
r̂2

ℓ2
3

)−1

dr̂2 + r̂2dϕ2



, (43)

which is recognized to be empty AdS4, which is foliated by AdS3 slices with radius
L4 cosh(σ) at constant σ. Written this way, the role of κ becomes apparent: for constant σ,
κ = +1,−1 and 0, respectively, correspond to global AdS3, BTZ and Poincaré AdS3.

To obtain a better sense for the parameter ℓ and why the geometry (39) describes a
black hole, perform the parameter and coordinate rescalings µ = 2m/ℓ and r = ℓ3ρ/ℓ.
Keeping m, L4, and ρ finite, the limit ℓ → ∞ results in

ds2 = − f (ρ)dt2 + f−1(ρ)dρ2 + ρ2

(

dx2

(1 − κx2)
+ (1 − κx2)dϕ2

)

, f (ρ) = κ +
ρ2

L2
4

− 2m
ρ

,

(44)
the metric for static, neutral AdS4 black holes (further clarified upon transforming x =
cos θ). Since ℓ−1 = A, the limiting geometry (44) shows the acceleration distorts spherical
surfaces parametrized by (x, ϕ).

4.1.1. Horizons and Bulk Regularity

The limiting geometry (44) also shows black holes appear for µ ̸= 0. More generally,
whether the C-metric (39) has a black hole depends on the root structure of the metric
functions (40). In particular, the roots of H(r) correspond to Killing horizons generated by
the time translation Killing vector ∂t, where we desire positive roots if we are to describe
physical black hole horizons. Since the system is accelerating, it will also have non-compact
Rindler-like acceleration horizons. To rid ourselves of the acceleration horizon, it is suffi-
cient to work in the case where ℓ > L4. With this restriction, H(r) has a single positive root
r+ representing a black hole horizon22, and the C-metric describes a single ‘slowly acceler-
ating’ black hole suspended away from the center of AdS4 by a cosmic string attached at
the horizon [90]. As with other spherical surfaces, the acceleration distorts the horizon into
a conical shape.

Real roots of G(x), meanwhile, correspond to symmetry axes of the Killing vector
ξa = ∂a

ϕ, i.e., ξ2 ∼ G(x), vanishing at a zero of G(x). These roots characterize the geometry
of the horizon in the bulk. To ensure a finite black hole horizon in the bulk, one must be in
the parameter space where there exists at least one positive root of G(x), the smallest of
which will be denoted x1, and then work in the restricted range 0 ≤ x ≤ x1. The general
strategy is the following [23,24]. Treat the root x1 as a primary parameter while µ is derived
from x1 via G(x1) = 0, i.e.,

µ =
1 − κx2

1

x3
1

. (45)

The desired parameter range follows from taking x1 > 0 and

x1 ∈ (0, 1] for κ = +1, (46)

x1 ∈ (0, ∞) for κ = −1, 0. (47)

Observe µ monotonically decreases from +∞ to zero, where µ = 0 coincides with the upper
limit of x1, e.g., when κ = +1, µ → 0 as x1 → 1.
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ϕ

Figure 4. Accelerating black hole. A constant t and ϕ slice of the AdS4 C-metric in the ‘slow

acceleration’ limit. Conical singularities in the C-metric distort the black hole horizon, giving it a

conical shape at one pole where a cosmic string is attached. The string pulls the black hole toward

the conformal boundary, suspending it away from the center.

Further, for the range of µ and κ we are interested in, G(x) has three distinct zeros,
each of which leads to a distinct conical singularity. The conical singularity at x = x1, for
example, is removed via the identification

ϕ ∼ ϕ + ∆ϕ, ∆ϕ =
4π

|G′(x1)|
=

4πx1

3 − κx2
1

. (48)

We see for the range of x1, the function G′(x1) = − 3−κx2
1

x1
< 0, and that ∆ϕ is independent

of ℓ and ℓ3. Moreover, ∆ϕ grows monotonically from 0 to 2π. Fixing the period of ϕ in
this way, the spacetime will have conical singularities at the remaining roots of G(x). The
effect of these conical singularities is a distortion to the black hole horizon, which may be
viewed as a cosmic string with a tension proportional to the angular deficit pulling the
black hole away from the center of AdS4 toward the boundary, generating the black hole
acceleration (see Figure 4). Below, we will see how the spacetime surgery used to construct
a Z2 braneworld will eliminate these conical singularities from the surgically complete bulk
geometry.

4.1.2. Karch–Randall Braneworld Construction

The most advantageous geometric feature of the C-metric (39), for any µ and κ, is
that the x = 0 timelike hypersurface is umbilic. That is, the extrinsic curvature Kij of the
hypersurface is proportional to the induced metric hij on x = 0. In particular, the outward

unit normal to timelike surfaces of constant x is ni = −
(

x
ℓ
+ 1

r

)

√

G(x)∂i
x, such that23 (see

Appendix D.4)

Kij =
1

ℓ
hij, (49)

at x = 0. Umbilic surfaces automatically satisfy the Israel junction conditions (32). In this
case, upon substituting (49), a brane at x = 0 has tension

τ =
1

2πG4ℓ
. (50)

Thus, the tension is proportional to the acceleration of the bulk black hole. The tensionless
limit corresponds to ℓ → ∞, where ℓ3 → L4 by virtue of (41).



Universe 2024, 10, 358 18 of 119

(µ = 0) (µ ̸= 0)

Figure 5. Karch–Randall braneworld. Left: A constant t and ϕ slice of the AdS4 C-metric with µ = 0

and κ = +1 (Poincaré disc). Lines of constant x are denoted in blue, while lines of constant r are

denoted in red. The ϕ-axis of rotation is at x = ±1. Right: Schematic of a Karch–Randall ETW brane

at x = 0 with a static black hole (µ ̸= 0). Only the (gray) shaded region, 0 ≤ x ≤ x1, is kept where

x = x1 is the ϕ-axis of rotation. To complete the space, a second copy of the shaded region is glued

along x = 0, resulting in a Z2-symmetric double-sided braneworld.

To see how tuning the tension amounts to changing the position of the brane, recall
the empty AdS4 metric (43). The x = 0 brane amounts to surfaces of fixed σ = σb obeying

cosh(σb) =
ℓ3

L4
=

√

1 +
ℓ2

3

ℓ2
, (51)

and the brane geometry is AdS3 with curvature radius ℓ3, i.e., a Karch–Randall brane. In
the tensionless limit, ℓ → ∞, then σb = 0, cutting the bulk in half through the equator.
Alternatively, as the tension becomes larger, ℓ → 0, it follows σb → ∞, i.e., the brane is
pushed to the asymptotic boundary of AdS4. The solution is valid for all 0 ≤ ℓ < ∞;
however, we will be primarily interested in the case where the brane is near the AdS4

boundary (before it has been removed via the ETW brane). See Figure 5 for an illustration
(and refer to Appendix D.5 for details projecting to the Poincaré disk).

More generally, the induced metric at x = 0 simply follows from setting x = 0 in the
bulk C-metric (39), resulting in

ds2|x=0 = −
(

r2

ℓ2
3

+ κ − µℓ

r

)

dt2 +

(

r2

ℓ2
3

+ κ − µℓ

r

)−1

dr2 + r2dϕ2, (52)

For κ = −1, the boundary geometry (ℓ → 0) has a black hole with horizon radius r+ = ℓ3.
For ℓ ̸= 0, it is clear the geometry (52) is capable of describing a static black hole, which
will ultimately be understood as the quantum BTZ black hole as we detail below.

Recall the bulk geometry will retain conical singularities at the remaining roots of
G(x) (not x = x1). As it happens, there are no conical singularities in the restricted range
0 ≤ x ≤ x1; for µ > 0, the remaining conical singularities live in the range x < 0. Then,
treating the x = 0 hypersurface as a cutoff brane, excising the x < 0 region leads to
a spacetime free of conical singularities. To complete the space, a second copy of the
0 ≤ x ≤ x1 region is glued along x = 0, resulting in a Z2-symmetric double-sided Karch–
Randall braneworld. Further, with the conical singularities removed, the final bulk solution
no longer has a cosmic string. Nonetheless, the static black hole attached to the brane is in
an accelerated frame.
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4.1.3. Karch–Randall Braneworld Holography

Applying the formalism of Section 3, the induced brane action is (setting d = 3 in (33))

I =
1

16πG3

∫

B
d3x

√
−h
[

R − 2Λ3 + L2
4

(

3

8
R2 − R2

ij

)

+ ...

]

+ ICFT, (53)

with induced Newton’s constant

G3 =
G4

2L4
(54)

and effective (AdS3) brane cosmological constant and curvature scale,

Λ3 = − 1

L2
3

,
1

L2
3

=
2

L2
4

(

1 − L4

ℓ

)

, (55)

where we used tension (50). Note that while L3 appears in the action, the solutions on the
brane are characterized by ℓ3.

In fact, we will primarily be interested in the case when L3 ≈ ℓ3. This is because we are
interested in the case when the three-dimensional graviton becomes effectively massless,
i.e., when the brane is near the boundary. Hence, using the bulk length scale (41), it follows

1

L2
3

=
1

ℓ2
3

[

1 +
ℓ2

4ℓ2
3

+O
(

ℓ4

ℓ4
3

+ ...

)]

, (56)

with ℓ ∼ L4 ≪ ℓ3. In this limit, the induced theory is

I =
1

16πG3

∫

B
d3x

√
−h

[

R +
2

ℓ2
3

+ ℓ
2

(

3

8
R2 − R2

ij

)

+ ...

]

+ ICFT, (57)

such that the higher-curvature expansion can be viewed as an expansion in an effective
cutoff scale ℓ. Notice higher-curvature corrections enter at quadratic order.

The parameter ℓ also features into the coupling to the gravity theory of the cutoff CFT3

on the brane. To see this, first note the central charge c3 of the CFT3 is normalized such that

c3 =
L2

4

G4
=

ℓ

2G3

√
1 + ν2

, (58)

where we introduced the parameter ν ≡ ℓ/ℓ3. Expanding for small (ℓ/ℓ3) gives

2c3G3 = L4 ≈ ℓ

(

1 − ℓ2

2ℓ2
3

+
3

8

ℓ4

ℓ4
3

+ ...

)

, (59)

and c3 ∼ ℓ

G3
, which enters at a linear order in ℓ. Thus, the matter contributions enter at

order O(ℓ), while higher-curvature corrections appear at O(ℓ2). Proceeding, the typical
value of ICFT is |ICFT| ∼ c3, while the typical value of the gravitational part of the action

(53) is |IBgrav| ∼ L3
G3

. Combined, this leads to an effective dimensionless coupling geff

quantifying the size of the effects the CFT3 has on the brane geometry [91]

geff ∼
|ICFT|
|IBgrav|

∼ G3c3

L3
. (60)

Thus, for small ℓ < ℓ3, we see geff ≈ ν ≪ 1, backreaction effects are ‘small’, and the induced
theory is effectively characterized by the action (57). Further, from (59), we see for a fixed c3,
gravity becomes weak (G3 → 0) as ℓ → 0. Alternatively, when ν ≥ 1, backreaction effects
are said to be large.
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It is worth comparing the cutoff length scale to the three-dimensional Planck length
LP = h̄G3 (where here, we have temporarily restored factors of h̄). From (59), it follows

ℓ ∼ c3h̄G3 = c3LP ≫ LP, (61)

since the holographic cutoff CFT3 obeys c3 ≫ 124. Recalling the induced brane metric (52),
notice the blackening factor includes a O(r−1) term which goes like µℓ. We can anticipate
this term as a semi-classical correction which sets the size of the braneworld black hole to
be much larger than the Planck length.

4.2. Quantum BTZ Black Holes

Let us now delve into the geometry of quantum black holes. We begin with the simpler
neutral, static quantum BTZ solution to establish its essential features, which we later enrich
by adding rotation and charge.

4.2.1. Static Quantum BTZ

Recall the induced geometry at x = 0 (52). Naively, we might refer to this as the
quantum black hole; however, the angular coordinate ϕ has period ∆ϕ (48). We thus rescale
coordinates (t, r, ϕ) to put the naive metric (52) in canonically normalized coordinates
(t̄, r̄, ϕ̄). Specifically,

t = η t̄ , r =
r̄
η

, ϕ = ηϕ̄ , (62)

with

η ≡ ∆ϕ

2π
=

2x1

3 − κx2
1

. (63)

The line element for the brane metric is now

ds2
qBTZ = −

(

r̄2

ℓ2
3

− 8G3M − ℓF(M)

r̄

)

dt̄2 +

(

r̄2

ℓ2
3

− 8G3M − ℓF(M)

r̄

)−1

dr̄2 + r̄2dϕ̄2 . (64)

Here, we have suggestively identified the three-dimensional mass

M ≡ − κ

8G3

ℓ

L4
η2 = − 1

2G3

κx2
1

(3 − κx2
1)

2
, G3 ≡ G3

L4

ℓ
=

G3√
1 − ν2

, (65)

and

F(M) ≡ µη3 = 8
(1 − κx2

1)

(3 − κx2
1)

3
. (66)

The mass identification (65) is primarily motivated by the fact that for in Einstein–
AdS gravity, the mass corresponds to the subleading constant term in the gtt metric in
appropriate coordinates. However, the induced theory on the brane is a higher-derivative
theory, and thus the definition of mass is expected to be modified due to higher-derivative
corrections, starting at O(ℓ2). When treated as corrections to Einstein gravity, the mass
M may still be identified as the constant term in gtt; however, now the classical Newton’s
constant G3 is ‘renormalized’ by the higher-derivative terms [92]

G3 =

(

1 − ℓ2

2L2
3

+O
(

ℓ

L3

)4
)

G3 =

(

1 − ν2

2

)

G4

2L4
+O

(

ℓ

L3

)4

. (67)

Alternatively, here, it is assumed that the renormalized Newton’s constant be identified

as G3 ≡ G3
L4
ℓ

at all orders in ℓ, although this differs from (67) at order O(ℓ/L3)
425. As

such, G3 in mass (67) is interpreted as an all-order resummation of the higher-derivative
corrections to the mass [25], whilst G3 is the ‘bare’ Newton constant, since it is the physical
constant G3M which is being corrected. Further evidence for the identification of the mass
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will be given when we explore the horizon thermodynamics of the three-dimensional black
hole. Lastly, the form function F(M) (66) is purely a function of mass M because it depends
on M only through x1 and is otherwise independent of ν = ℓ/ℓ3.

The metric (64) is highly reminiscent of the perturbative geometry (19) incorporating
the semi-classical backreaction effects of a conformally coupled scalar26. We emphasize,
however, that the 1/r correction in gtt (19) is perturbative, while it is exact in (64). In
particular, the geometry (64) is an exact solution to the gravitational field equations of the
semi-classical induced action (57)

8πG3⟨Tij⟩ = Rij −
1

2
hij

(

R +
2

L2
3

)

+ ℓ
2

[

4R k
i Rjk −

9

4
RRij −□Rij +

1

4
∇i∇jR +

1

2
hij

(

13

8
R2 − 4R2

kl +
1

2
□R
)]

,

(68)

where □ ≡ ∇2. Decomposing the holographic stress tensor in an expansion in ℓ2, i.e.,
⟨Ti

j⟩ = ⟨Ti
j⟩0 + ℓ2⟨Ti

j⟩2 + ..., it follows

8πG3⟨Ti
j⟩0 = Ri

j −
1

2
δi

j

(

R +
2

ℓ2
3

)

, (69)

8πG3⟨Ti
j⟩2 = 4RikRjk −□Ri

j −
9

4
RRi

j +
1

4
∇i∇jR +

1

2
δi

j

(

13

8
R2 − 3R2

kl +
1

2
□R − 1

2ℓ4
3

)

.

(70)

Substituting in the metric (64), we obtain for the renormalized stress-energy tensor

⟨Ti
j⟩0 =

1

16πG3

ℓF(M)

r̄3
diag{1, 1,−2} (71)

to leading order and

⟨Ti
j⟩2 =

1

16πG3

ℓF(M)

r̄3

(

1

2ℓ2
3

diag{1,−11, 10} − 24G3M
r̄2

diag{3, 1,−4}+ ℓF(M)

2r̄3

)

(72)

for the O(ℓ2) corrections. Notice ⟨Tij⟩2 has a non-zero trace, which is a consequence of
breaking the conformal symmetry due to the cutoff ℓ. In principle, one could compute ⟨Tij⟩
at all orders of backreaction—unlike the non-holographic perturbative analysis—however,
it proves cumbersome to do so.

Since the backreaction is turned off as ℓ → 0, the metric (64) in this limit may be
interpreted as ‘classical’; indeed, the 1/r correction is eliminated, and the resulting geometry
solves the three-dimensional vacuum Einstein equations. Hence, for ℓ ̸= 0, the geometry
(64) is naturally understood as a quantum black hole in AdS3, namely, the quantum BTZ
(qBTZ) black hole. Notice further, in the limit of a small backreaction (ν < 1), the 1/r term
in (64) is proportional to ℓ ∼ cG3 ≫ LP (61), such that the horizon size of the quantum BTZ
black hole is large compared to the Planck length. Further, it is worth emphasizing that the
solution (64) consistently solves the semi-classical brane equations of motion for any ℓ > 0,
including large backreaction effects (ν > 1).

Unlike the classical BTZ black hole, the quantum BTZ (64) has a curvature singularity
at r̄ = 0, as evidenced by the Kretschmann invariant,

Rijkl Rijkl =
12

ℓ4
3

+
6F(M)2ℓ2

r̄6
. (73)
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The curvature singularity descends from the curvature singularity of the bulk four-dimensional
C-metric at r = 0, and it is hidden behind the (bulk) horizon r = r+. Here, the singularity at
r̄ = 0 sits behind the horizon at r̄ = r̄+, the largest positive root of the metric function H(r̄),
where the time-translation Killing vector ζ̄ i = η∂i

t̄ goes null. Thus, at least for holographic
quantum matter, the singularity structure of a classical black hole becomes dramatically
altered due to a semi-classical backreaction. Note, moreover, relative to ζ̄ i, the surface
gravity, defined via ζ̄ i∇i ζ̄ j = κ+ ζ̄ j, is

κ+ =
η

2
|H′(r+)| =

1

2
|H′(r̄+)| =

1

2ℓ2
3

∣

∣

∣

∣

2r̄+ +
µℓη3

r̄2
+

∣

∣

∣

∣

, (74)

In the limit ℓ → 0, this corresponds to the surface gravity of the classical BTZ black hole.
Aside from the match of the perturbed geometry, the leading order contribution to

⟨Tij⟩ (71) agrees with the renormalized stress tensor of the free conformal scalar (except
LP → ℓ). This match between the holographic and free field results is because transparent
boundary conditions have been imposed on the CFT or the free scalar. In the former, these
boundary conditions are naturally selcted because bulk fluctuations, which are dual to
CFT excitations, move freely throughout the bulk. For the free field computation, however,
transparent boundary conditions were an explicit choice. In either case, notice the leading
order contribution to the stress tensor is not of the standard thermal type, i.e., diag{−2, 1, 1}.
Nonetheless, the CFT is in a thermal state. Indeed, the Green’s function from which ⟨Tij⟩ is
derived (in the perturbative treatment) is periodic in imaginary time with a period given
by the (inverse) Tolman temperature [42]. Further, the Green function obeys analyticity
properties shared by the Hartle–Hawking state, which is a state describing a black hole in
thermal equilibrium with its own radiation.

A family of quantum black holes. From the mass identification (65), M takes values in the
finite range [23,24],

− 1

8G3
≤ M ≤ 1

24G3
, (75)

where ℓ is held fixed. The upper bound follows from studying for the end behavior of
M(x1), with x1 =

√
3 (excluding x1 = −

√
3 on account of the parameter range (46)) at

κ = −1 being a maximum. The lower bound, meanwhile, occurs for κ = +1 and x1 = 1
(where µ = 0 according to (45)), and M = 0 for either x1 = 0 or κ = 0. Thus, the qBTZ
solution has negative and positive masses.

In fact, the solution may be categorized into physically distinct branches:

Branch 1: − 1 < −κx2
1 < 3 ,

Branch 2: 3 < −κx2
1 < ∞ .

(76)

To understand how these branches arise, it is first natural to distinguish solutions with
negative mass versus those with positive mass. All negative mass solutions occur for
κ = +1 and for x1 ∈ (0, 1], while all positive mass solutions occur for κ = −1 and
x1 ∈ (0, ∞). Note further M = 0 for either x1 = 0 (for both κ = ±1) or x1 → ∞ (and
κ = +1). This suggests the positive mass solutions subdivide along the range x1 ∈ (0,

√
3)

and x1 ∈ (
√

3, ∞), smoothly joining at x1 =
√

3. Further, since it is the combination κx2
1

that appears in all physical quantities of interest, the negative mass branch and the positive
mass branch with x1 ∈ (0,

√
3) smoothly connect at x1 = 0. Succinctly, the qBTZ solution is

characterized by the two branches (76); however, a finer subdivision of the two branches
is [25]
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Figure 6. The qBTZ family of solutions. The qBTZ black hole consists of quantum-dressed conical

singularities, branch 1a (red) and quantum-corrected BTZ black holes, branch 1b (blue) and branch 2

(green). Branches 1a and 1b join at M = 0 and F = 8/27 (x1 = 0), while branches 1b and 2 coincide at

8G3 M = 1/3 and F = 4/27 (x1 =
√

3). Another branch describes (uncorrected) BTZ black holes with

mass M ≥ 0 induced from the bulk BTZ black string (the positive horizontal axis).

Branch 1a: κ = +1, 0 < x1 < 1 ,

Branch 1b: κ = −1, 0 < x1 <
√

3 ,

Branch 2: κ = −1,
√

3 < x1 < ∞ .

(77)

Although each of the mass branches (77) smoothly connects, each branch has a different
physical interpretation. This can be better understood by considering the types of solutions
belonging to each branch in the limit of vanishing backreaction. Firstly, branch 1a contains
the ground state M = − 1

8G3
, where F(M) = 0 (substitute x1 = 1 into (66)). Geometrically,

the qBTZ line element (64) takes the form of global AdS3. Notably, however, this ground
state is valid for any ℓ ≥ 0, and thus for ℓ ̸= 0, it can be thought of as three-dimensional
quantum anti-de Sitter spacetime, qAdS3, accounting for a large-c cutoff CFT3 living in
AdS3 with a vanishing renormalized stress tensor. Above this ground state, negative mass
solutions (branch 1a) correspond to AdS3 conical defects in the limit ℓ → 0, such that
for ℓ ̸= 0, the negative mass family of solutions are understood to be quantum-corrected
conical singularities, though are still referred to as quantum ‘black holes’. Classically, the
conical defects are horizonless, while when ℓ > 0, the quantum Casimir stress tensor
shrouds the conical singularity in a horizon.

Branches 1b and 2, having M ≥ 0, both describe quantum corrections to the classical
BTZ black hole geometry. The sources of the corrections of these two branches, however,
differ. Since branch 1a and 1b connect at x1 = 0 (where M = 0 and F(0) = 8/27) and 1a
black holes form due to the backreaction of Casimir stress–energy, so too are the corrections
resulting in the 1b black holes dominated by Casimir energy. Alternatively, the M = 0
state of the branch 2 black holes (where x1 → ∞) have zero F(M) and hence stress–energy.
This suggests the non-zero stress–energy of the M > 0 states among the branch 2 black
holes is due to Hawking radiation in thermal equilibrium with the finite temperature black
hole (where the dominant Casimir energy has been subtracted from the quantum state
appearing in ⟨Tij⟩ [25]).

Classically, the negative mass conical singularities and positive mass BTZ black holes
are disconnected sets of solutions to Einstein–AdS3 gravity—there is a ‘mass gap’ [31].
Evidently, a semi-classical backreaction smoothly connects these solutions, such that the
quantum BTZ geometry represents a family of quantum black holes. We illustrate this
family in Figure 6.

It is natural to wonder if there exist any other bulk solutions which give rise to a BTZ
black hole on the brane with masses M ≥ 0, including those that exceed the upper bound
in the range (75). Indeed, recall the AdS4 geometry (43) for which µ = 0. When κ = −1,
this four-dimensional geometry is dubbed the ‘BTZ black string’, since sections of constant
σ contain a BTZ black hole. Despite µ = 0, a BTZ black hole lives on the brane at x = 0 with
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mass M ≥ 0 in the canonically normalized coordinates (t̄, r̄, ϕ̄); however, the geometry is
uncorrected from its classical counterpart, since the quantum stress tensor vanishes (on
account of F(M) = 0 for all M ≥ 0). Unlike the three branches (77), this braneworld black
hole has no upper bound on M, and hence solutions with M > 1/24G3 are induced by a
BTZ black string localized on the AdS3 brane.

4.2.2. Rotating Quantum BTZ

Bulk and Brane Geometry

It is reasonably straightforward to find rotating quantum BTZ black holes. The starting
point is the rotating AdS C-metric describing accelerating Kerr–AdS4 black holes,

ds2 =
ℓ2

(ℓ+ xr)2

[

− H(r)
Σ(x, r)

(

dt + ax2dϕ
)2

+
Σ(x, r)
H(r)

dr2

+ r2

(

Σ(x, r)
G(x)

dx2 +
G(x)

Σ(x, r)

(

dϕ − a
r2

dt
)2
)]

,

(78)

where

H(r) =
r2

ℓ2
3

+ κ − µℓ

r
+

a2

r2
, G(x) = 1 − κx2 − µx3 +

a2

ℓ2
3

x4 ,

Σ(x, r) = 1 +
a2x2

r2
.

(79)

Here, a controls the rotation (the angular momentum per unit mass) and for a = 0, we
recover the static C-metric (39). By evaluating the Kretschmann scalar invariant RabcdRabcd,
there is a curvature singularity when r2Σ = r2 + a2x2 = 0, i.e., where r = x = 0. This is the
familiar ring singularity of Kerr black holes.

Despite complicating the geometry by including rotation, the x = 0 hypersurface
remains umbilic, such that Kij = ℓ−1hij (49) and a Karch–Randall brane at x = 0 has tension
(50). The geometry at x = 0 is

ds2|x=0 = −H(r)dr2 + H−1(r)dr2 + r2
(

dϕ − a
r2

dt
)2

. (80)

At first glance, this line element looks like a rotating black hole in Boyer–Lindquist-like
coordinates. As in the static case, however, this geometry does not reflect the whole story.
In particular, the ‘naive metric’ (80) unexpectedly no longer has a ring singularity but
instead a curvature singularity at r = 0. Of course, we should not yet expect the geometry
(80) to describe a black hole, since bulk regularity conditions to deal with the conical nature
of the bulk solution have not yet been imposed. Unlike the static system, however, bulk
regularity conditions for the rotating solution are more subtle because they affect more
than just the periodicity of angular coordinate ϕ. Our treatment below follows the analysis
in [27].

Firstly, notice that the Killing vector ∂ϕ of the bulk C-metric (78) no longer has a
vanishing norm at a zero xi of G(x). Rather, it is the Killing vector

ξb = ∂b
ϕ − ax2

i ∂b
t , (81)

which obeys ξ2|xi = 0. Thus, avoiding conical defects at x = xi requires one to identify
points along the integral curves of (81) with an appropriate period. To determine the
correct periodicity, consider the rotating C-metric (78) near a zero x = xi such that G(x) ∼
G′(xi)(x − xi). The removal of a conical singularity at, say x = x1 (denoting the smallest
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positive root of G(x)), has us simultaneously perform a coordinate transformation t̃ =
t + ax2

i ϕ together with the periodicity condition for ϕ

ϕ ∼ ϕ + ∆ϕ, ∆ϕ =
4π

|G′(x1)|
=

4πx1

3 − κx2
1 − ã2

, (82)

where to arrive to the second equality, we recast the parameter µ in terms of x1 and define

µ =
1 − κx2

1 + ã2

x3
1

, ã ≡ ax2
1

ℓ3
. (83)

In other words, identifying points along the orbits of (81) are made on surfaces of constant

t̃ ≡ t + ax2
1ϕ. (84)

As in the static braneworld construction, the remaining zeros xi ̸= x1 are effectively
removed by gluing a second copy of the spacetime with the end-of-the-world brane at
x = 0 such that the complete bulk spacetime has the restricted range 0 ≤ x ≤ x1.

Now, return to the naive metric (80) and consider the limit r → ∞. The metric
is asymptotic to ‘rotating AdS3’, where the dtdϕ metric component is a constant. The
coordinates (t, r, ϕ), however, are not canonically normalized due to the periodicity in
ϕ (82). Further, since points along orbits of (81) are identified, the ϕ-periodicity returns
one to a different point in time t: indeed, from (84), we see that assuming t̃ ∼ t̃, then
t ∼ t − 2πηax2

1, for η ≡ ∆ϕ/2π. Unfortunately, this means we cannot merely rescale
coordinates (t, r, ϕ) → (t̄, r̄, ϕ̄) as in the static case. Moreover, the periodicity alters the
asymptotic form of the metric such that the dtdϕ would instead grow as r2, implying a
diverging angular momentum27.

The r2-divergence can be ameliorated by changing coordinates (t, ϕ) to (t̃, ϕ̃) where,

t = t̃ − ax2
1ϕ̃, ϕ = ϕ̃ − ã

ℓ3
t̃. (85)

The coefficient − ã
ℓ3

in ϕ is carefully chosen such that the r2 divergence in the t̃ − ϕ̃ com-

ponent of the naive brane metric is eliminated. Even still, the angular coordinate ϕ̃ is not
periodic in 2π. Luckily, this is now easily resolved by the simple rescaling, t̃ = η t̄ and
ϕ̃ = ηϕ̄, such that the transformation [25]

t = η(t̄ − ãℓ3ϕ̄), ϕ = η

(

ϕ̄ − ã
ℓ3

t̄
)

, (86)

places the brane geometry (80) in a more canonical form. It proves useful to also have the
inverted coordinate transformation (86),

t̄ =
1

η(1 − ã2)
(t + ãℓ3ϕ) , ϕ̄ =

1

η(1 − ã2)

(

ϕ +
ã
ℓ3

t
)

. (87)

From here, the Killing vectors transform as

∂t =
1

η(1 − ã2)

(

∂t̄ +
ã
ℓ3

∂ϕ̄

)

, ∂ϕ =
1

η(1 − ã2)

(

∂ϕ̄ + ãℓ3∂t̄

)

. (88)

Notice in the coordinates (t̄, ϕ̄), the Killing vector (81) is now ξb = η−1∂ϕ̄.
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With the coordinate change (86), the brane metric does not quite have the canonical
asymptotic form of a rotating AdS black hole. To do so, one introduces a normalized radial
coordinate r̄ such that [25].

r2 =
r̄2 − r2

s

(1 − ã2)η2
, rs ≡ ℓ3

ãη

x1

√

2 − κx2
1 = ℓ3

2ã
√

2 − κx2
1

3 − κx2
1 − ã2

, (89)

Altogether, having imposed bulk regularity conditions, the brane geometry (80) in the
canonically normalized coordinates (t̄, r̄, ϕ̄) is

ds2|x=0 = −
(

κη2

(

1 + ã2 − 4ã2

κx2
1

)

+
r̄2

ℓ2
3

− µℓη2

r

)

dt̄2

+

(

κη2

(

1 + ã2 − 4ã2

x2
1

)

+
r̄2

ℓ2
3

− µℓ(1 − ã2)2η4r
r̄2

+
ℓ2

3 ã2µ2x2
1η4

r̄2

)−1

dr̄2

+

(

r̄2 +
µℓã2ℓ2

3η2

r

)

dϕ̄2 − ℓ3 ãµx1η2

(

1 +
ℓ

x1r

)

(dϕ̄dt̄ + dt̄dϕ̄),

(90)

where we have kept both r and r̄ when convenient (treating r = r(r̄)).

Quantum Black Hole

As in the static case, we reexpress the metric (90) as

ds2 =−
(

r̄2

ℓ2
3

− 8G3M − ℓµη2

r

)

dt̄2 +

(

r̄2

ℓ2
3

− 8G3M +
(4G3 J)2

r̄2
− ℓµ(1 − ã2)2η4 r

r̄2

)−1

dr̄2

+

(

r̄2 +
µℓã2ℓ2

3η2

r

)

dϕ̄2 − 8G3 J
(

1 +
ℓ

x1r

)

dϕ̄dt̄

(91)

where we have suggestively identified the mass and angular momentum J of the black
hole,

8G3M = −κη2

(

1 + ã2 − 4ã2

κx2
1

)

= 4
−κx2

1 + ã2(4 − κx2
1)

(3 − κx2
1 − ã2)2

(92)

4G3 J = ℓ3η2 ãµx1 =
4ℓ3 ã(1 − κx2

1 + ã2)

(3 − κx2
1 − ã2)2

. (93)

The above identifications are made on geometric grounds: in the asymptotic limit r̄ → ∞,
the terms proportional to ℓ decay faster than than the constant −8G3M or the J in the dt̄dϕ̄
component. Further, G3 ≡ L4G3/ℓ is again the renormalized Newton’s constant, which
now also plays the role of accounting for higher-derivative corrections to the angular mo-
mentum.

Horizon and singularity structure. In the static case, roots of the bulk metric function H(r)
correspond to the bulk Killing horizon of the time-translation Killing vector ∂t. Including
rotation in the bulk, the Killing vector

ζb = ∂t +
a
r2

i

∂ϕ, (94)

for ri finite has modulus ζ2 = gabζaζb = − ℓ2

(ℓ+xr)2 H(ri)Σ(x, ri) at r = ri. Taking ri to be

real, ζ2 = 0 when H(ri) = 0, where ri are positive real roots of H(r) (79) (restricting to a
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coordinate range where there exists at least one real root). Let r+ denote the largest positive,
real root of H(r), corresponding to the radius of the outer black hole. As with Kerr–AdS4,
there is a second positive real root r−, satisfying r− < r+, which corresponds to the inner
black hole horizon. Using H(r±) = 0 and assuming r+ ̸= r−, it is straightforward to
express

µℓ =
(r+ + r−)

ℓ2
3

[

(r2
+ + r2

−) + ℓ
2
3κ
]

,

a2 =
r+r−
ℓ2

3

[

r2
+ + r2

− + r+r− + ℓ
2
3κ
]

.
(95)

The limit of vanishing angular momentum, a → 0, coincides with r− → 0.

In canonically normalized coordinates (t̄, r̄, ϕ̄), the inner and outer horizons of the
quantum black hole are generated by orbits of the canonically normalized generator (94),
i.e.,

ζ̄b
± ≡ η(1 − ã2)

1 +
a2x2

1
r±

ζb =
∂

∂t̄
+ Ω±

∂

∂ϕ̄
, (96)

where we used the Killing vector transformation (88). Here, Ω± is the angular velocity of
the horizons r± relative to a non-rotating frame at spatial infinity

Ω± ≡ a
r2
± + a2x2

1

(

1 +
r2
±x2

1

ℓ2
3

)

. (97)

For x1 = 1, this coincides with the familiar angular velocity of Kerr–AdS4 (e.g., [94,95]).
Meanwhile, the angular velocity Ω′ relative to a rotating frame at spatial infinity is

Ω′
± ≡ a

r2
± + a2x2

1

(

1 − a2x4
1

ℓ2
3

)

, (98)

obeying Ω± − Ω′
± = ax2

1/ℓ2
3. Further, relative to ζ̄b, the surface gravity of the inner and

outer horizons is

κ± =
η(1 − ã2)

(r2
± + a2x2

1)

r2
±
2
|H′(r±)| =

η(1 − ã2)

(r2
± + a2x2

1)

1

2ℓ2
3r±

|ℓ2
3µℓr± + 2r4

± − 2a2
ℓ

2
3|, (99)

where we used the definition of the surface gravity κ± on a Killing horizon generated by ζ̄,
ζ̄b∇b ζ̄c ≡ κ± ζ̄c. In particular, using parameters (95)

κ+ =
η(1 − ã2)

2ℓ2
3(r

2
+ + a2x2

1)
(r+ − r−)|(r2

+ + r2
− + ℓ

2
3κ) + 2r+(r+ + r−)|,

κ− =
η(1 − ã2)

2ℓ2
3(r

2
− + a2x2

1)
(r− − r+)|(r2

+ + r2
− + ℓ

2
3κ) + 2r−(r+ + r−)|.

(100)

In the limit of vanishing rotation, κ+ becomes the surface gravity of the static qBTZ, (74).
Further, the surface gravities vanish in the extremal limit, i.e., where the inner and outer
black hole horizons coincide, r+ = r−.

The horizons shroud a ring curvature singularity at r = 0, i.e., r̄ = rs. Further, near the
ring singularity, there exists the possibility of closed timelike curves. Indeed, consider the
norm of the axial Killing vector ∂ϕ̄ of (91) to be

∂2
ϕ̄ = hϕ̄ϕ̄ = r̄2 +

µℓã2ℓ2
3η2

r
= r̄2 +

µℓã2ℓ2
3η3

√

r̄2 − r2
s

√

1 − ã2 , (101)
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meaning that if one has a too small and negative enough radii r, the axial vector becomes
timelike, and its orbits are closed curves around the rotation axis. To ensure ∂2

ϕ ≥ 0 requires

an additional restriction of the solution parameters: (i) 1 − ã2 ≥ 0, and (ii) η > 0, which
implies −κx2

1 > ã2 − 3. Notice the second condition is always implied by (i) if κ = −1.

Quantum stress tensor. As an exact solution to the full semi-classical theory (57), the
metric (91) is known as the rotating quantum BTZ black hole. In the limit of vanishing
backreaction, ℓ → 0, the classical rotating BTZ black hole is recovered for κ = −1, while for
κ = +1, the geometry is that of a rotating AdS3 conical defect. For ℓ ̸= 0, the non-vanishing
components of the renormalized quantum-stress tensor (69) are found to be [25]

⟨T t̄
t̄⟩0 =

1

16πG3

ℓµ

(1 − ã2)r3

(

1 + 2ã2 +
3ã2ℓ2

3

x2
1r2

)

,

⟨Tr̄
r̄⟩0 =

1

16πG3

ℓµ

r3
,

⟨Tϕ̄
ϕ̄
⟩0 = − 1

16πG3

ℓµ

(1 − ã2)r3

(

2 + ã2 +
3ã2ℓ2

3

x2
1r2

)

,

⟨T t̄
ϕ̄⟩0 = − 1

16πG3

3ℓ3ℓµã
(1 − ã2)r3

(

1 +
ã2ℓ2

3

x2
1r2

)

,

⟨Tϕ̄
t̄ ⟩0 =

1

16πG3

3ℓµã
ℓ3(1 − ã2)r3

(

1 +
ℓ2

3

x2
1r2

)

.

(102)

These are most efficiently computed by first computing the components of the stress tensor
in the naive coordinates (80) and then performing the appropriate coordinate transfor-
mations imposing bulk regularity. The O(ℓ2) components ⟨Tij⟩2 (70) are cumbersome to
express in canonically normalized coordinates; however, in naive coordinates, ⟨Tij⟩2 is not
traceless, indicating the presence of a UV cutoff breaking the conformal symmetry of the
CFT3.

Notice the mass (92) and angular momentum (93) only depend on ã and κx2
1 and not

on ℓ. Meanwhile, ℓ only enters as an overall prefactor in the stress tensor components (102).
Hence, the leading-order stress tensor only depends on backreaction effects via G3 and not
G3M or G3 J. Further, unlike the static solution (71), the stress tensor for the rotating qBTZ
black hole is not characterized by a single function F(M). Consider, however, the large-r̄
asymptotics of the components (102). For example, substituting normalized coordinate (89)
into ⟨T t̄

t̄⟩0, yields

lim
r̄→∞

⟨T t̄
t̄⟩0 → η3µℓ

√
1 − ã2

16πG3r̄3
(1 + 2ã2). (103)

Peeling off ℓ/16πG3r̄3, identify the form function

F(M, J) ≡ η3µ
√

1 − ã2(1 + 2ã2) =
8
√

1 − ã2(1 + 2ã2)(1 − κx2
1 + ã2)

(3 − κx2
1 − ã2)3

, (104)

such that for large r̄

⟨T t̄
t̄⟩0 → 1

16πG3

ℓF(M, J)
r̄3

. (105)

Due to the ∼ µ/r3 behavior in each of the remaining components, up to unimportant factors,
the large-r̄ structure of (102) essentially depends on F(M, J) as defined in (104). We will
use F(M, J) to better understand the family of rotating quantum black holes momentarily.

It is worth comparing the structure of the holographic stress tensor (102) to the stress
tensor of a conformally coupled scalar field found by solving the semi-classical Einstein
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equations perturbatively (in particular, see [25,45]). The non-holographic stress tensor may
be expressed as an infinite sum over images, e.g.,

8πG3⟨T t̄
t̄⟩ =

∞

∑
n=1

1

r3
n

(

An +
Ān

r2
n

)

, (106)

with rn =
√

Dn r̄2 + D̄n, where coefficients An, Ān, Dn and D̄n are all complicated functions
of M and J. An analogous structure holds for the remaining components. Coefficients aside,
each term of the infinite sum has a similar radial dependence as the holographic stress tensor.
The radial dependence of the entire infinite sum (106), however, is far more complicated
than the radial dependence of the holographic stress tensor (102). Notably, while the
holographic stress tensor is manifestly non-singular away from the ring singularity r̄ = rs,
it is not clear whether the same is true for the perturbative stress tensor.

Black hole branches revisited. In the non-rotating case, there are three branches of quantum
black holes, branches 1a, 1b, and 2 (77). There is an analogous set of branches for non-
vanishing J, where, in particular, branches 1b and 2 meet at a maximum value of M for
fixed J. This occurs when

x2
1 + ã2 = 3, M =

1

8G3

(

12

x4
1

− 1

)

, J =
ℓ3

G3

√

3 − x2
1

x4
1

. (107)

At x1 =
√

2, one attains an extremal bound, where M = J/ℓ3 = 1/4G3. There is another
extremal bound among the branch 2 black holes, founding by minimizing the mass M for
fixed J,

ã = 1, M =
J
ℓ3

=
1

G3(2 + x2
1)

, (108)

which coincides with the bound (107) at x1 =
√

2. Classically, the rotating BTZ black hole
obeys the extremality bound M ≥ J/ℓ3. For the quantum black hole, however, for any
value of J, this classical extremality bound is violated, M ≤ J/ℓ3, when −κx2

1 < 2ã2, giving
rise to ‘super-extremal’ black holes among the branch 1 solutions. Pictorially, the branches
of quantum black holes have a similar representation as Figure 6 (see Figure 6 of [25]).

4.2.3. Charged Quantum BTZ

Bulk and Brane Geometry

It is relatively straightforward to generalize the neutral quantum BTZ solutions to
a charged system. Now, the bulk is characterized by the charged AdS4 C-metric. For
simplicity, setting rotation to zero, the line element is of the same form as (39), except the
metric functions (40) receive an additional term:

ds2 =
ℓ2

(ℓ+ xr)2

[

−H(r)dt2 +
dr2

H(r)
+ r2

(

dx2

G(x)
+ G(x)dϕ2

)]

, (109)

H(r) =
r2

ℓ2
3

+ κ − µℓ

r
+

q2ℓ2

r2
, G(x) = 1 − κx2 − µx3 − q2x4. (110)

This is a solution to four-dimensional Einstein–Maxwell gravity with negative cosmological
constant −2Λ4 = 6/L2

4,

I =
1

16πG4

∫

d4x
√

−ĝ

[

R̂ +
6

L2
4

− ℓ2∗
4

F2

]

, ℓ
2
∗ =

16πG4

g2∗
(111)
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where ℓ∗ is a coupling constant with dimensions of length, g∗ is the dimensionless gauge
coupling constant, and Fab = ∂a Ab − ∂b Aa is the Maxwell field tensor. The U(1) gauge field
Aa for the charged C-metric (109)

A = Aadxa =
2ℓ

ℓ∗

[

e
(

1

r+
− 1

r

)

dt + g(x − x1)dϕ

]

, (112)

where e and g, respectively, denote the electric and magnetic charge parameters of the
accelerating black hole such that q2 = e2 + g2. A gauge has been chosen for the gauge
potential (112) such that it remains regular at the largest root of H(r) = 0, denoted r+, and
x = x1.

As for the neutral black hole, real roots of G(x) correspond to symmetry axes of the
Killing vector ∂a

ϕ, and we work in the restricted regime 0 ≤ x ≤ x1. The conical singularity
at x = x1 is removed via the identification

ϕ ∼ ϕ + ∆ϕ, ∆ϕ =
4π

|G′(x1)|
=

4π

| − 3 + κx2
1 − q2x4

1|
, (113)

where we treat µ as a ‘derived’ parameter following G(x1) = 0,

µ =
1 − κx2

1 − q2x4
1

x3
1

, (114)

while x1 and q are primary parameters.
Lastly, as usual, the x = 0 hypersurface is totally umbilic, such that the Israel junction

conditions fix the brane tension to be τ = (2πG4ℓ)
−1. The Maxwell field strength also has

junction conditions to obey. In particular, let na denote the normal to the brane at x = 0
(pointing toward increasing values of x) and let ea

i be a basis for tangent vectors to the

brane. Then, projecting Fab onto the brane such that Fij ≡ Fabea
i eb

j and fi ≡ Fabea
i nb, one has

the following junction conditions [96] for a purely tensional brane

∆Fij = F+
ij − F−

ij = 0,

∆ fi = f+i − f−i = 4π ji,
(115)

where ji is the electromagnetic surface current.

Induced Brane Theory

As in the neutral examples, the induced theory on the brane essentially follows from
replacing the IR bulk cutoff in holographic renormalization with a brane. When the bulk
theory of gravity is Einstein–Maxwell, the induced brane action (53) receives corrections
due to the bulk Maxwell contribution, such that the induced brane action is now

I =
1

16πG3

∫

B
d3x

√
−h
[

R − 2Λ3 + L2
4

(

3

8
R2 − R2

ij

)

+ ...

]

+ IEM + ICFT, (116)

where the electromagnetic term IEM is

IEM = 2
∫

d3x
√
−hAi j

i + Ict
EM. (117)

The first contribution is a boundary term with respect to the bulk Maxwell term necessary
to keep the Dirichlet variational problem well posed. The second contribution describes
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local counterterms associated with the four-dimensional bulk Maxwell action that are
included in holographic renormalization28 [97]

Ict
EM =

L4ℓ
2∗

8πG4

∫

d3x
√
−h
[

− 5

16
F2 + L2

4

(

1

288
RF2 − 5

8
Ri

jFikFjk

+
3

98
Fij(∇j∇kFki −∇i∇kFkj) +

5

24
∇iF

ij∇kFk
j

)

+O(L3
4)

]

.

(118)

Then, treating ℓ < ℓ3 such that L4 ∼ ℓ, the effective theory on the brane (57) is now

I =
1

16πG3

∫

d3x
√
−h
[

R +
2

ℓ2
3

− ℓ̃2∗
4

F2 + 16πG3 Ai j
i

+ ℓ
2

(

3

8
R2 − R2

ij

)

+
4

5
ℓ

2
ℓ̃

2
∗

(

1

288
RF2 − 5

8
Ri

jFikFjk

+
3

98
Fij(∇j∇kFki −∇i∇kFkj) +

5

24
∇iF

ij∇kFk
j

)

+O(ℓ3)

]

+ ICFT.

(119)

where in addition to the induced scales (54) G3 = G4/2L4, and L3 (55), there is an effective
three-dimensional gauge coupling

ℓ̃
2
∗ =

16πG3

g2
3

, g2
3 =

2

5

g2∗
L4

≈ 2

5

g2∗
ℓ

, (120)

such that ℓ2∗ = 4ℓ̃2∗/5. It is clear that in the limit ℓ → 0, the coupling g3 → ∞ becomes
non-dynamical. Indeed, we will see how this ‘charge’ contribution to the metric disappears.

The metric equations of motion of the induced theory to order O(ℓ2) are as in the
neutral case, except now with an additional contribution coming from the F2 contribution
in the action. That is,

8πG3⟨Tij⟩ = Gij −
1

L2
3

hij −
ℓ̃2∗
2

(

Fk
i Fjk −

1

4
hijF

2

)

+ 16πG3 Ak jkhij + ..., (121)

where the ellipsis constitutes terms at higher order in ℓ; the O(ℓ2) contribution is precisely
the same as in the neutral case (70), while O(ℓ3) contributions arise from the ℓ2ℓ̃2∗ term in
the action (119). Further, varying with respect to the gauge field Ai, we find the analog of
the semi-classical Maxwell equations,

⟨J j⟩ = jj +
ℓ̃2∗

16πG3

{

∇iF
ji +

16

5
ℓ

2

(

− 1

72
R∇iF

ji +
11

18
Fj

i∇iR +
209

294
Rij∇kF k

i

+
5

4
Rik∇kFj

i +
5

4
Fik∇kRj

i +
317

588
∇i∇i∇kFjk +

317

588
∇j∇k∇iF

ik
)

+O(ℓ3)

}

.

(122)

Quantum Black Hole

Upon imposing bulk regularity conditions (equivalent to those for the neutral, static
geometry), the induced geometry on the brane at x = 0, in terms of canonically normalized
coordinates (t, r, ϕ) = (η t̄, η−1r̄, ηϕ̄), is [98] (see also [99])

ds2
cqBTZ =− H(r̄)dt̄2 + H−1(r̄)dr̄2 + r̄2dϕ̄2,

H(r̄) = −8MG3 +
r̄2

ℓ2
3

− ℓF(M, q)
r̄

+
ℓ2Z(M, q)

r̄2
.

(123)
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Here, the mass is identified to be

M ≡ − κ

8G3
η2 = − κ

8G3

4x2
1

(3 − κx2
1 + q2x4

1)
2

, (124)

and form functions

F(M, q) ≡ µη3 = 8
1 − κx2

1 − q2x4
1

(3 − κx2
1 + q2x4

1)
3

, (125)

Z(M, q) ≡ q2η4 =
16q2x4

1

(3 − κx2
1 − q2x4

1)
4

. (126)

As an exact solution to the semi-classical theory (119), the geometry (123) is recognized as
the ‘charged’ version of the quantum BTZ black hole. Notice, however, in the limit ℓ → 0
the q-dependent correction vanishes, indicating the charge of the braneworld black is a
consequence of backreaction. Notably, the classical geometry (ℓ = 0) is not that of the
charged BTZ metric [100]; we will return to this point momentarily.

Substituting the metric (123) into the stress tensor at the leading order in ℓ is equivalent
to the neutral static qBTZ stress tensor (71), while the effects of charge arise at O(ℓ2).
Further, in coordinates (t̄, r̄, ϕ̄), the projected components of the electromagnetic tensor are

Fr̄t̄ =
2eℓ
ℓ∗ r̄2

η2, fϕ̄ = −2gℓ
ℓ∗ r̄

η2. (127)

Using the junction conditions (115), the induced current density is

jϕ̄ =
gℓη2

πℓ∗ r̄3
. (128)

With these, the leading-order O(ℓ) contribution to the semi-classical current density (122)
has components

⟨J t̄⟩ = − ℓℓ̃2∗
8πG3ℓ∗

eη2

r̄3
∝

eℓ
√

c
g∗ r̄3

,

⟨Jϕ̄⟩ = ℓ

ℓ∗
gη2

πr̄3
∝

gg∗
√

c
r̄3

.

(129)

Interestingly, the temporal component vanishes in the limit ℓ → 0, while the azimuthal
component is independent of backreaction. This is consistent with the three-dimensional
dyonic defect in conical AdS3 or a BTZ black hole [98].

Unlike the rotating case, the limit of vanishing backreaction does not return a classi-
cally AdS3 geometry charged under three-dimensional Maxwell theory. Indeed, in three
dimensions, the (electric) gauge field At has a logarithmic dependence, At ∼ q log(r),
producing a logarithmic correction to the three-dimensional blackening factor of a classical
charged BTZ [100]. This lack of logarithmic behavior arises from the fact the bulk four-
dimensional gauge field does not localize on the brane in the same way as a gravity [98].
Still, the quantum black hole (123) is charged. As with mass or angular momentum, com-
puting charge Q from the brane perspective would require a resummation of the infinite
tower of higher-derivative terms appearing in the induced theory. Alternatively, the bulk
theory performs this resummation, and the charge of the brane black hole is identified with
the electric charge of the bulk black hole [98] (see also [101])

Q =
2

g2∗

∫

⋆F, (130)
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where the factor of two in the first equality is due to the Z2 symmetry, ⋆F refers to the
Hodge dual of the bulk Maxwell tensor, and the integration is taken to be at the boundary.
In particular, the electric charge is

Qe =
2eℓ
g2∗ℓ∗

∫ 2πη

0
dϕ
∫ x1

0
dx =

8πℓeηx1

g2∗ℓ∗
, (131)

where ⋆F = r2Frtdϕdx. Similarly, the magnetic charge Qg is

Qg =
2

g2∗

∫

F =
8πℓgηx1

g2∗ℓ∗
, (132)

and Q2 = Q2
e + Q2

g. Notice Q2 does not explicitly appear in the blackening factor (123).
Associated with the electric and magnetic charges are their respective potentials µe and

µg. Since, holographically, the bulk Einstein–Maxwell theory (111) has a dual interpretation
in terms of a CFT3 with a chemical potential, it is natural to refer to µe and µg as chemical
potentials. In particular, the electric chemical potential equals the electric component of the
bulk gauge field (112) at the boundary intersecting the brane at x = 0 (where rbdry → −∞),

lim
rbdry→−∞

At̄ ≡ µe =
2ℓeη

r+ℓ∗
. (133)

Similarly, under electromagnetic duality of the bulk solution, the magnetic chemical poten-
tial µg has the same form as (133), except with e ↔ g. Notice µgQe − µeQg = 0.

A Family of Charged Quantum Black Holes

Having included q, the parameter x1 depends on q and belongs to a different range than
the static (46) or rotating case. To determine this range, two conditions are imposed [98]:
(i) the bulk has a horizon r0 > 0, and (ii) x1 is finite, having a maximum xmax

1 , such that
constant (t, r) surfaces are compact. The finite maximum value of x1 is linked to the fact
that the bulk (and brane) geometry has an extremal limit. Demanding there are no naked

singularities requires µ to be bounded below by µ
(κ)
ext , i.e., the value of µ when the bulk

black hole becomes extremal. The parameter x1 = xmax
1 when µ = µ

(κ)
ext .

Explicitly, for arbitrary κ, the extremal mass is [98]

µ
(κ)
ext =

√

2

3

√

√

κ2 + 12ν2q2 − κ
(

2κ +
√

κ2 + 12ν2q2
)

3ν
. (134)

This can be derived as follows. First, the condition of extremality requires two positive
real roots of H(r) to be coincident; i.e., r+ = r− = r0 implies H(r) = (r − r0)

2 f (r) for some
differentiable function f (r) such that H(r0) = H′(r0) = 0. A little algebra yields

µ
(κ)
ext(r0) =

2r0

ℓ

(

κ +
2r2

0

ℓ2
3

)

, q(κ)ext(r0) =
r0

ℓ

√

κ +
3r2

0

ℓ2
3

. (135)

Inverting q(κ)ext(r0) for r0 gives

r(κ)0 =
ℓ3

√

√

κ2 + 12ν2q2 − κ
√

6
. (136)

Substituting this into µ
(κ)
ext (135) yields (134). Evidently, extremality occurs when a backreac-

tion is non-vanishing (ν ̸= 0) or charge is non-zero for κ = +1. Alternatively, for κ = −1,

there exists an extremal radius, r(−1)
0 = ℓ3/

√
3, even when q = 0 and where µ

(−1)
ext < 0.
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Figure 7. Branches of charged qBTZ. Metric function F(M, q) as a function of mass M for fixed q
and ν = 1/5. The blue (bottom) and red (top) lines correspond to, respectively, extremal and neutral

qBTZ solutions. The gray lines are non-extremal charged solutions with, from darkest to lightest,

q = 1/5, 1, 5.

In fact, generally, µ
(−1)
ext can become negative (whenever q <

1√
12ν

), as does F(M, q), for

κ = −1; meanwhile, κ = +1, 0 gives µ
(−1)
ext ≥ 0.

Furthermore, xmax
1 is determined by substituting the extremal parameter (134) into

(114) and solving for the resulting x1 in terms of q and ν. An analytic expression for xmax
1 is

possible but cumbersome and not particularly illuminating. Some intuition can be gained,
however, by looking at the limit when both q and ν are small. Three cases are worth
highlighting:

• κ = 1: for q = 0, x1 is bounded above by 1, as µ → 0. For q ≪ 1, this upper bound is
lowered to

xmax,1
1 = 1 − q + 2q2. (137)

• κ = −1: for q = 0, x1 covers the whole real line, approaching x1 = 0 from above as
µ → ∞ and vice versa. Turning on q ≪ 1, the maximum xmax

1 is

xmax,0
1 =

2

3
√

3νq2
+

√
3ν

2
− 21

√
3ν3q2

8
+ ... . (138)

• κ = 0: in the neutral case, the parameter range is equivalent to the κ = −1 case;
however, for q ≪ 1, then

xmax,0
1 =

h(ν)√
q

, (139)

with h(ν) = 1 −
√

ν
33/4 +

ν
2
√

3
+O(ν3/2) + ...

A visual representation of the branches for the charged qBTZ black hole can be found in
Figure 7. Notably, the branches have qualitatively similar features as the neutral qBTZ. This
is because the finite mass range of the charged black holes is a subset of the mass range of
the neutral qBTZ (75). The branch with M < 0 corresponds to the classically horizonless
charged defects, now with a horizon induced by quantum backreaction. Note, however,
unlike the neutral or rotating quantum BTZ solutions, here, F(M, q) can go negative for
any ν when charge parameter q is large enough.

The limit of vanishing backreaction, ν → 0, is more subtle than the neutral quantum
BTZ solutions. As is usual, in this limit, the brane is sent closer to the asymptotic AdS4

boundary, where both gravity and the gauge theory become frozen. The geometry becomes
that of a charged defect in conical AdS3 or Mink3 (κ = +1) or a black hole (κ = −1).
Since the latter is a black hole geometry, the backreaction (ν ̸= 0) produces a quantum-
corrected charged black hole; i.e., the horizon is not induced solely due to a backreaction.
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Figure 8. Parameter space for charged quantum BTZ. The blue square and yellow ‘banana’ regions

correspond to solutions with a conical defect and excess, respectively, delimited by a thick black

contour. The rightward directed (red) lines denote the extremal family of solutions at fixed ν (from

darkest to lightest, ν = 0, 1/3, 1, 5, 20). Here, κ = 1. For details, refer to [98].

Alternatively, for the conical charged defects, horizons can only arise via quantum effects.
Unlike the neutral set-up, however, whether a horizon appears depends on a balance
between µ and q—a backreaction does not always dress the conical defects with a horizon.
Specifically, when the non-backreacted solution has q ≥ µ/2, then the backreaction will
result in a spacetime possessing a naked (timelike) singularity [98]. Meanwhile, for q < µ/2,
a backreaction will produce a quantum black hole provided the backreaction is not too
large. As ν increases for a fixed q, an extremal black hole forms, and an even stronger
backreaction results in naked singularities. For an illustration, see Figure 8.

4.3. Quantum dS Black Holes

In Section 2, we saw, perturbatively, that a semi-classical backreaction modifies conical
dS3 geometries to induce a black hole horizon (in addition to its classical cosmological
horizon). This observation is bolstered using braneworld holography. The construction
and analysis are similar to the quantum BTZ black hole; however, there are some essential
differences.

4.3.1. Bulk Set-Up

The starting point in the bulk is again the AdS4 C-metric (39) with metric functions
(40) except with fixed κ = +1 and ℓ2

3 = −R2
3 (or Wick rotate ℓ3 → iR3). The AdS4 length

scale is then
1

L2
4

=
1

R2
3

− 1

ℓ2
. (140)

Unlike the qBTZ set-up, keeping L2
4 > 0 requires R2

3 > ℓ2, placing an upper bound on ℓ

for fixed R3. Further, rearranging (140) yields ℓ < L4—the opposite of the quantum BTZ
construction. This condition is the first crucial difference between the quantum BTZ and dS
set-ups, as maintaining ℓ < L4 implies the acceleration horizon is not effectively eliminated.
To see this explicitly, consider the analog of the coordinate transformation (42) [26]

sinh(σ) =
R3

L4

1

|1 + rx
ℓ
|

√

1 − x2r2

R2
3

, r̂ = r

√

√

√

√

1 − x2

1 − x2r2

R2
3

, (141)
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such that the line element of the C-metric (39) (with µ = 0) becomes

ds2 = L2
4dσ2 +

L2
4

R2
3

sinh2(σ)



−
(

1 − r̂2

R2
3

)

dt2 +

(

1 − r̂2

R2
3

)−1

dr̂2 + r̂2dϕ2



. (142)

Clearly, constant-σ slices give dS3 in static patch coordinates with radius R3 = L4 sinh(σ)
and a cosmological horizon at r̂ = R3.

The cosmological horizon at r̂ = R3 (for constant σ) is in fact identified with the bulk
acceleration horizon. This can be seen via the coordinate transformation

t
R3

=
tR

L4
, cosh(σ) =

ρ

L4
cosh(ϑ),

r̂2

R2
3

=
ρ2 sinh2(ϑ)

ρ2 cosh2(ϑ)− L2
4

, (143)

which brings the line element (142) to AdS4–Rindler form,

ds2 = −
(

ρ2

L2
4

− 1

)

dt2
R +

(

ρ2

L2
4

− 1

)−1

dρ2 + ρ2(dϑ2 + sinh2(ϑ)dϕ2). (144)

Orbits of the Rindler-time translation Killing vector ∂tR
correspond to uniformly acceler-

ating trajectories. The cosmological horizon in (142) corresponds to the (non-compact)
acceleration horizon ρ = L4 with horizon temperature TR = (2πL4)

−1.
As in the qBTZ black hole, when µ ̸= 0, the root structure of the metric function H(r)

results in a black hole horizon. Meanwhile, real roots of G(x) correspond to orbits of ∂ϕ,
and to ensure a finite black hole horizon, we again restrict to the range 0 ≤ x ≤ x1, where
x1 is the smallest root of G(x). Specifically, since κ = +1, it follows x1 ∈ (0, 1] (46), where
µ, via (45), is monotonically decreasing from +∞ to zero, with µ = 0 for x1 = 1. Further, as
before, the conical singularity at x = x1 is removed via the identification (48) with κ = +1.

The next essential difference between the quantum AdS and dS black hole construc-
tions is that an asymptotically dS3 Randall–Sundrum brane is embedded AdS4 at the
umbilic x = 0 hypersurface. Israel junction conditions again fix the brane tension to be
τ = (2πG4ℓ)

−1. In terms of the empty dS3 geometry (142), the brane sits at

sinh(σb) =
R3

L4
, (145)

excluding the region σ > σb. Notice, moreover, the area of the bulk horizon at r̂ = R3 is
finite,

2πL2
4(cosh(σb)− 1) = 2πR2

3
ℓ

ℓ+ R3
. (146)

That is, while the bulk acceleration horizon is generally non-compact (since it extends to the
asymptotic boundary at σ → ∞), its intersection with the brane is compact. Thus, the bulk
acceleration horizon induces a (compact) cosmological horizon on the dS3 brane. When
µ ̸= 0, the bulk black hole horizon is projected onto the brane, resulting in an induced
geometry

ds2|x=0 = −
(

1 − r2

R2
3

− µℓ

r

)

dt2 +

(

1 − r2

R2
3

− µℓ

r

)−1

dr2 + r2dϕ2, (147)

with a single black hole and cosmological horizon. See Figure 9 for an illustration.
Another caveat about the Randall–Sundrum brane construction is that the brane geom-

etry will contain Big Bang and Big Crunch singularities in the asymptotic past and future.
The reason follows because of the amount the brane radiates as it accelerates in the bulk.
From the brane perspective, the time to reach the asymptotic past or future dS boundaries
is infinite. Thus, the brane emits an infinite amount of radiation, thereby causing a piling



Universe 2024, 10, 358 37 of 119

Figure 9. Randall–Sundrum braneworld. Left: Bulk AdS4 with a dS3 brane. The brane is represented

as a (magenta) hyperboloid. The bulk region up to the brane (x < 0, dashed magenta region) is

excluded. To complete the construction, glue a second copy along the two-sided brane. Cosmological

horizons on the brane correspond to bulk acceleration horizons intersecting the brane (red dashed

line). Center: AdS4 C-metric with µ = 0, in (r, x) coordinates in a slice at t = 0 and constant ϕ.

Lines of constant x are blue arcs; lines of constant r are red arcs (full circles for 0 < r < ℓ). The

thick blue circle x = 0 is where we place the dS3 brane; its interior is 0 < x ≤ 1, with x = 1 the ϕ

axis of rotation. The exterior region x < 0 is excluded in the braneworld construction. The vertical

red dashed line is the horizon at r = R3. Its intersection with the brane yields a dS3 cosmological

horizon. The coordinates only cover half of the disk with the other half being obtained through

analytic continuation. Right: Constant t-time slice of a single AdS4 cylinder with a de Sitter brane

(thick red circle) containing black holes. The coordinates cover half of the disk, containing a single

black hole and cosmological horizon, where the other half is obtained via analytic continuation.

of rays at future/past Cauchy horizons. The formation of the cosmological singularities
is essentially the same phenomenon that enforces (strong) cosmic censorship at the inner
Cauchy horizon in charged or rotating black holes. Alternatively, the Randall–Sundrum
braneworld can be understood in terms of false vacuum decay [102–104] mediated by
Coleman and de Luccia bubbles [105] of ‘nothing’. This vacuum decay process inevitably
leads to Big Bang/Big Crunch singularities.

4.3.2. Quantum Schwarzschild–de Sitter

The naive metric (147) is not cast in canonically normalized coordinates, as ϕ has
periodicity ϕ ∼ ϕ + ∆ϕ. Rescaling coordinates (t, r, ϕ) → (η t̄, η−1r̄, ηϕ̄) with η given in (63)
(for κ = +1), the geometry on the dS3 brane is

ds2
qSdS = −H(r̄)dt̄2 + H(r̄)−1dr̄2 + r̄2dϕ̄2, H(r̄) =

(

1 − 8G3M − r̄2

R2
3

− ℓF(M)

r̄

)

(148)

where we identify

8G3M ≡ 1 − η2 = 1 − 4x2
1

(3 − x2
1)

2
, F(M) ≡ 8

(1 − x2
1)

(3 − x2
1)

3
(149)

with renormalized Newton’s constant G3 ≡ G3
L4
ℓ

. The mass identification is motivated
by how the mass of de Sitter black holes in Einstein–dS gravity is typically given by the
subleading constant term in the gtt component of the metric.

Analogous to the quantum BTZ set-up, the dS metric (148) has the same form as
the perturbative solution (20) to the semi-classical Einstein equations. Again, here, the
1/r correction is exact, and the metric is an exact solution to the whole tower of higher-
derivative terms of the induced action. Substituting the metric into the gravitational
equations of motion (see (69)—(70) with ℓ2

3 = −R2
3) yields the same structure of the stress–

energy tensor ⟨Ti
j⟩0 (71) and ⟨Ti

j⟩2 (72). In the limit of vanishing backreaction, the geometry
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(148) takes the form of classical Schwarzschild–dS3, which is a conical defect with a single
cosmological horizon. For ℓ ̸= 0, the metric is interpreted as a static quantum black hole in
dS3, i.e., a three-dimensional quantum Schwarzschild–de Sitter black hole (qSdS) [26]. As in
the qBTZ system, the qSdS black hole for ℓ > 0 has a curvature singularity at r̄ = 0 that is
hidden behind a black hole horizon induced by a semi-classical backreaction.

In contrast with the qBTZ system, the qSdS solution does not subdivide into several
branches of quantum black holes. Indeed, since κ = +1, here, 0 < x1 < 1. In this range,
given the mass identification (149), the qSdS always has M ≥ 0, with M = 1/8G3 and
F = 8/27 at x1 = 0, and M = F = 0 at x1 = 1. The M = 0 solution with ℓ ̸= 0 is dubbed
quantum dS3, accounting for a large-c cutoff CFT living in dS3. Meanwhile, the M = 1/8G3

solution is the analog of the upper bound on the classical Schwarzschild–dS3 conical defect.
The quantum SdS black hole, in fact, has a more stringent upper bound on mass

than the conical defect mass. This is a consequence of the fact that the geometry (148) has
both a black hole and cosmological horizon, and it is in complete analogy with classical
higher-dimensional Schwarzschild–de Sitter black holes. It is well known that classical
SdS black holes (in four or higher spacetime dimensions) have an upper bound on their
mass in order to avoid the presence of a naked singularity. This largest mass black hole is
known as the Nariai black hole [106] with mass MN. Geometrically, the Nariai black hole
is one in which the (typically smaller) black hole horizon rh coincides with the (typically
larger) cosmological horizon rc, i.e., rh = rc ≡ rN, which is the Nariai horizon radius. In
the context of the AdS4 C-metric, the four-dimensional geometry has a Nariai limit that
induces a Nariai geometry on the brane at x = 0 [26]

ds2
N = −

(

1 − ρ2

r̄2
N

)

dτ2 +

(

1 − ρ2

r̄2
N

)−1

dρ2 + r̄2
Ndϕ̄2. (150)

Here, τ and ρ are time and radial coordinates, respectively, and r̄N = ηrN with rN = R3/
√

3.
The (bulk) Nariai black hole places an upper bound on (µℓ) in the C-metric; specifically,
(µℓ) ≤ (µℓ)N = 2rN/3. This bulk upper bound places an upper bound on the mass M
of the qSdS black hole, which is denoted MN. The precise form of MN is complicated;
however, the Nariai mass was found to live in the finite range [26]

11

27
< 8G3M < 1, (151)

where the upper limit corresponds to when ℓ/R3 → 0, while the lower limit occurs for
ν ≈ 1. Therefore, the Nariai mass bound M ≤ MN is generally more restrictive than the
conical defect bound M ≤ 1/8G3. Notably, the classical SdS3 conical defect does not have a
Nariai limit. Thus, a semi-classical backreaction induces an upper limit on the amount of
mass allowed in dS3 which does not saturate the maximum conical deficit angle.

Finally, the Nariai solution puts a bound on the quantum backreaction due to the CFT
for which a quantum dS3 black hole exists. In particular, for non-vanishing backreaction
(ℓ ̸= 0), the form function F(M) has a maximum value. Correspondingly, the angular
deficit ∆ϕ has a maximum value. For too large angular deficits, a backreaction creates a
black hole with a mass M > MN such that it is too large to fit inside the dS3 static patch.
For such deficits, the quantum SdS solution no longer exists, and the resulting geometry
is described by a naked conical defect spacetime, which is analogous to the braneworld
geometry induced by the bulk BTZ black string.

4.3.3. Quantum Kerr–de Sitter

As in the static case, rotating quantum dS3 black holes can be constructed in essentially
the same way as the rotating qBTZ (91). Starting from the rotating C-metric (78) with
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κ = +1 and replacing a → −a, and imposing bulk regularity, the metric on the brane in
canonically normalized coordinates is [27]29

ds2
qKdS = −

(

1 − 8G3M − r̄2

R2
3

− µℓη2

r

)

dt̄2

+

(

1 − 8G3M − r̄2

R2
3

+
(4G3 J)2

r̄2
− µℓ(1 + ã2)2η4r

r̄2

)−1

dr̄2

+

(

r̄2 +
µℓã2R2

3η2

r

)

dϕ̄2 − 4G3 J
(

1 +
ℓ

x1r

)

(dϕ̄dt̄ + dt̄dϕ̄).

(152)

with mass and angular momentum identified as

8G3M ≡ 1 − η2

(

1 − ã2 +
4ã2

x2
1

)

= 1 − 4[x2
1 − ã2(x2

1 − 4)]

(3 − x2
1 + ã2)2

, (153)

4G3 J ≡ −R3 ãµx1η2 =
4R3 ã(x2

1 + ã2 − 1)

(3 − x2
1 + ã2)2

. (154)

The metric (152) is dubbed the quantum Kerr–dS3 black hole since when ℓ → 0, the
geometry of the classical Kerr–ds3 conical defect is recovered. There are a couple of limits
worth noting: (i) when the parameter µ (83) vanishes, i.e., x1 =

√
1 − ã2, both M = J = 0,

resulting in the empty dS3 geometry, and (ii) mass M also vanishes when x1 =
√

9 − ã2;
however, J ̸= 0 and µ ̸= 0, resulting in a quantum rotating dS3.

Substituting the geometry (152) into the gravity field equations results in a holographic
stress tensor with components of essentially the same form as (102)—see [27] for explicit
details. Now, the function F(M, J) from evaluating the large-r̄ behavior of ⟨T t̄

t̄⟩0 is

F(M, J) ≡ µη3
√

1 + ã2(1 − 2ã2) =
8
√

1 + ã2(1 − 2ã2)(1 − x2
1 − ã2)

(3 − x2
1 + ã2)3

. (155)

Notice F(M, J) will vanish either when µ = 0, i.e., x2
1 = 1 − ã2. The zero ã2 = 1/2,

meanwhile, is unique only to the ⟨T t̄
t̄⟩0 component with the remaining components of the

holographic stress tensor being non-zero for this value of ã. This stands in contrast with the
rotating qBTZ black hole, for which every component vanishes when ã2 = 1. Further, as in
the qBTZ case, the radial dependence of the renormalized stress tensor due to a conformally
coupled scalar field (found perturbatively in [27]) is significantly more complicated than
the holographic stress tensor.

Horizon Structure

Horizons in the bulk correspond to positive real roots ri of H(r), where the Killing vector

ζb = ∂t −
a
r2

i
∂ϕ (156)

becomes null. To classify the types of horizons, define the function Q(r) ≡ r2H(r). Since
Q(r) is a quartic polynomial in r, it will generally have either four, two, or zero real roots.
Consider the case when there are four real roots: three positive roots correspond to the
cosmological horizon rc, the outer black hole horizon r+, and inner black hole horizon r−,
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obeying r− ≤ r+ ≤ rc, while the fourth root, rn = −(rc + r+ + r−) < 0 and resides behind
the singularity at r = 0. Using H(rc) = 0, and H(r±) = 0, we can express

R2
3 = r2

c + r2
+ + rcr+ + r−(rc + r+ + r−),

µℓ =
(rc + r+)(rc + r−)(r+ + r−)

r2
c + r2

+ + rcr+ + r−(rc + r+ + r−)
,

a2 =
rcr+r−(rc + r+ + r−)

r2
c + r2

+ + rcr+ + r−(rc + r+ + r−)
.

(157)

The limit r− → 0 coincides with a = 0, while r+ = r− = 0 corresponds to µ → 0, resulting
in the Kerr–dS3 geometry with a single cosmological horizon.

The positive roots ri to H(r) correspond to rotating horizons with rotation Ωi,

Ωi ≡
a

R2
3

(x2
1r2

i − R2
3)

(r2
i + a2x2

1)
, (158)

generated by the (canonically normalized) Killing vector

ζ̄b ≡ η(1 + ã2)
(

1 +
a2x2

1

r2
i

) ζb = ∂b
t̄ + Ωi∂

b
ϕ̄. (159)

Moreover, the surface gravity κi associated with each horizon ri is given by

κi =
η(1 + ã2)
(

r2
i + a2x2

1

)

r2
i
2
|H′(ri)| =

η(1 + ã2)
(

r2
i + a2x2

1

)

1

2R2
3ri

|R2
3µℓri − 2r4

i − 2a2R2
3|, (160)

where we used the definition ζ̄b∇b ζ̄c = κζ̄c. Explicitly,

κc = − η(1 + ã2)

2R2
3

(

r2
c + a2x2

1

) (rc − r+)(rc − r−)(r+ + r− + 2rc),

κ+ =
η(1 + ã2)

2R2
3

(

r2
+ + a2x2

1

) (rc − r+)(r+ − r−)(rc + r− + 2r+),

κ− = − η(1 + ã2)

2R2
3

(

r2
− + a2x2

1

) (rc − r−)(r+ − r−)(rc + r+ + 2r−).

(161)

Notice the cosmological horizon surface gravity κc vanishes when rc = r+ or rc = r− and
similarly for the other surface gravities. When r− → 0, i.e., κc and κ+ simplify to the surface
gravities of the cosmological horizon and black hole horizon of the qSdS black hole [26].

In the naive coordinates, a computation of the Kretschmann scalar reveals a curvature
singularity at r = 0, corresponding to a ring singularity at r̄ = rs in canonically normalized
coordinates. As in the rotating qBTZ black hole, closed timelike curves can appear near the
ring singularity. These closed timelike curves can be eliminated via an appropriate periodic
identification [107], such that constant t̄ hypersurfaces are closed and span two black hole
regions with opposite spin, cutting through intersections of r = rc and r = r+.

Ergoregions. As with classical Kerr–dS spacetimes, the qKdS black hole has a stationary
limit surface and two ergoregions associated with the outer black hole and cosmological
horizons. Explicitly, the Killing vector ∂t in the naive metric has norm N

N = −H(r) +
a2

r2
. (162)

Thus, at the outer and cosmological horizons, the time-translation Killing vector ∂t becomes
spacelike. The locus of points where N = 0 yields a stationary limit surface, satisfying
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r(R2
3 − r2) = R2

3µℓ. Since there exist regions in between the outer and cosmological horizons
where ∂t is timelike, there are two ergoregions, where an observer is forced to move in the
direction of rotation of the outer black hole horizon or cosmological horizon. In principle,
the Penrose process of energy extraction in the qKdS solution operates in morally the same
way as a classical four-dimensional Kerr–de Sitter black hole (see, e.g., [108]).
Extremal limits. As with the four-dimensional Kerr–de Sitter black hole, the quantum
Kerr–dS3 has a number of limiting geometries. Specifically, (i) extremal or ‘cold’ limit,
where r+ = r−; (ii) rotating Nariai limit, where rc = r+, and (iii) the ‘ultracold’ limit where
rc = r+ = r−. In the near-horizon regime, the geometries appear as fibered products of a
circle and two-dimensional anti-de Sitter, de Sitter, and Minkowski space, respectively. For
details, see [27]. These limiting geometries, moreover, have the same qualitative features as
(warped) dS3 black hole solutions to topologically massive gravity, cf. [37,38,109]. There is
also a ‘lukewarm’ limit, where the surface gravities κc = κ+ at a value different from the
surface gravity of the Nariai black hole.
Adding charge. Similar to the charged quantum BTZ black hole, quantum de Sitter black
holes can be charged (see [110]). In this context, as with the classical charged dS black holes
in 3 + 1-dimensions and higher, the charged black hole has three horizons: outer and inner
black hole horizons, and the cosmological horizon. As such, the solution has three limiting
geometries: (i) the extremal limit, where r+ = r−; (ii) the charged Nariai limit, where
rc = r+, and (iii) the ultracold limit, where rc = r+ = r−. Moreover, the physical parameter
space of the solution is characterized by a ‘shark fin’ diagram for non-zero backreaction
parameter ν.

4.4. Quantum Black Holes in Flat Space

A point mass in three-dimensional Minkowski space, Mink3, is described by a coni-
cal singularity with no horizon; the Schwarzschild solution in three dimensions is not
a black hole. Again, quantum backreaction effects alter the geometry such that the
black hole horizon appears to hide the conical singularity [32]. The only known way
to consistently construct an exact quantum black hole in asymptotic Mink3 space is via
braneworld holography.

The bulk set-up is the same as for quantum dS3 black holes: the AdS4 C-metric with
a two-sided Randall–Sundrum brane. In some respects, the asymptotically flat quantum
black holes may be viewed as a special limit, R3 → ∞, of the dS3 black holes. Although they
were the first exact three-dimensional braneworld black hole solution to be discovered [23],
quantum black holes in Mink3 have received less attention than their (A)dS cousins [22].
For this reason, we present a fresh take on quantum Mink3 black holes.

4.4.1. Bulk Set-Up

Consider the static C-metric (39) with metric functions (40), except κ = +1 and without
the (A)dS factor, such that H(r) has the form

H(r) = 1 − µℓ

r
. (163)

It is straightforward to verify the bulk geometry is an Einstein metric with a negative
cosmological constant where the bulk length scale is

L4 = ℓ. (164)

This is the first notable difference compared to the (A)dS examples and will have ramifi-
cations as we proceed. This means the acceleration horizon is present in the spacetime.
However, it has a different effect than in the dS case where ℓ < L4.

For µ ̸= 0, the bulk geometry has a black hole horizon at H(r+) = 0,

r+ = µℓ, (165)
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Figure 10. Randall–Sundrum braneworld. Left: A constant t and ϕ slice of the AdS4 C-metric

with µ = 0 and κ = +1 (Poincaré disc). Lines of constant x are in blue, while lines of constant r
are in red. The ϕ-axis of rotation is at x = ±1. The thick blue circle is x = 0. Right: Schematic

of an asymptotically flat Randall–Sundrum ETW brane at x = 0 with a static black hole (µ ̸= 0).

The shaded magenta region is excluded. The acceleration horizon for the dS3 braneworld has been

effectively pushed to the AdS4 boundary.

hiding the curvature singularity at r = 0. There is a second horizon at r → ∞ corresponding
to the bulk AdS4 horizon30. To see this, consider the bulk geometry with µ = 0 (such that
H(r) = 1 and G(x) = 1 − x2). The coordinate transformation

w ≡ ℓ+ xr, r̂ ≡ r
√

1 − x2, (166)

brings the bulk metric to empty AdS4 in Poincaré form

ds2 =
ℓ2

w2

(

−dt2 + dr̂2 + r̂2dϕ2 + dw2
)

. (167)

Evidently, r = 0 no longer represents a curvature singularity but instead a non-singular
worldline w = ℓ, r̂ = 0. Meanwhile, xr = −ℓ maps to the asymptotic boundary w = 0 and
r → ∞ to the AdS4 horizon w → ∞.

As is now standard, real roots of G(x) correspond to orbits of ∂ϕ. Let x1 denote the
smallest root of G(x) and again restrict to the range 0 ≤ x ≤ x1. With κ = +1, x1 ∈ (0, 1]
(46), where µ is defined in (45). The conical singularity at x = x1 is removed via the
identification (48) with κ = +1.

The x = 0 hypersurface is umbilic. In Poincaré coordinates with µ = 0 (166), this
surface is located at w = ℓ. We place a two-sided ETW Randall–Sundrum brane at x = 0,
retaining only the region 0 ≤ x ≤ x1 (Figure 10). To complete space, we glue another
copy of the region 0 ≤ x ≤ x1 along the brane at x = 0. Israel junction conditions fix the
brane tension to be τ = (2πG4ℓ)

−1. Notably, since ℓ = L4, the tension is said to be at its
critical value. As we will see momentarily, this condition leads to a vanishing induced
cosmological constant. The induced geometry at x = 0 is

ds2
x=0 = −

(

1 − µℓ

r

)

dt2 +

(

1 − µℓ

r

)−1

dr2 + r2dϕ2. (168)

For ℓ ̸= 0, this geometry describes a black hole with horizon radius r+ = µℓ. In terms
of coordinate w, the black hole horizon is located at w+ = ℓ+ xr+. Therefore, the brane
at w = ℓ cuts through the bulk black hole horizon such that the black hole extends only
slightly off of the brane to a distance wmax = ℓ+ r+x1 ≤ ℓ+ r+ (since x1 ≤ 1).

The induced brane theory is (53); however, since L4 = ℓ, the induced brane cosmo-
logical constant (55) is zero, while the induced Newton’s constant (54) is G3 = G4/2ℓ. The
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central charge of the cutoff CFT3 is c3 =
L2

4
G4

= ℓ

2G3
. Higher-derivative terms enter at order

O(ℓ2), and treating the cutoff as small, ℓ ≤ 1, the higher-derivative contributions serve as
corrections to three-dimensional Einstein gravity.

4.4.2. Quantum Schwarzschild Black Hole

The angular coordinate ϕ in the naive metric (168) has a periodicity of ϕ ∼ ϕ + ∆ϕ.
Working with rescaled coordinates (t, r, ϕ) → (η t̄, η−1r̄, ηϕ̄) for η (63) (with κ = +1), the
geometry on the Mink3 brane is31

ds2
qSchw = −H(r̄)dt̄2 + H(r̄)−1dr̄2 + r̄2dϕ̄2, H(r̄) = 1 − 8G3M − ℓF(M)

r̄
(169)

where we identified the mass as in the de Sitter context (149)

M ≡ 1

8G3

(x2
1 − 1)(x2

1 − 9)

(3 − x2
1)

2
, F(M) ≡ 8

(1 − x2
1)

(3 − x2
1)

3
. (170)

Since L4 = ℓ, the renormalized Newton’s constant G3 = G3.
The geometry (169) is an exact solution to the induced semi-classical equations of

motion (68) (with ℓ3 → ∞) with a quantum stress tensor as in (71) and (72) (with ℓ3 → ∞).
Thus, we interpret the solution as the three-dimensional quantum Schwarzschild black hole.
A curvature singularity at r̄ = 0 is hidden behind a black hole event horizon at

r̄+ =
ℓF(M)

(1 − 8G3M)
. (171)

At the horizon, the time-translation Killing vector ζ̄ i = η∂i
t̄ goes null, having surface gravity

κ+ =
1

2
|H′(r̄+)| =

ℓF(M)

r̄2
+

=
(1 − 8G3M)2

ℓF(M)
. (172)

4.4.3. Quantum Kerr Black Hole

Rotating black holes in Mink3 are constructed by embedding a Randall–Sundrum
brane with critical tension inside the rotating C-metric (78), such that the metric func-
tions are

H(r) = 1 − µℓ

r
+

a2

r2
, G(x) = 1 − x2 − µx3,

Σ(x, r) = 1 +
a2x2

r3
.

(173)

Formally, the bulk regularity analysis is the same; however, some of the expressions are
simpler because in this limit ã = 0, which is a consequence of the G(x) function losing its
quartic term compared to its (A)dS siblings. Thus, the metric on the brane in canonically
normalized coordinates is

ds2
qKerr = −

(

1 − 8G3M − µℓη2

r

)

dt̄2 +

(

1 − 8G3M +
(4G3 J)2

r̄2
− µℓη4r

r̄2

)−1

dr̄2

+

(

r̄2 +
µℓa2x4

1η2

r

)

dϕ̄2 − 4G3 J
(

1 +
ℓ

x1r

)

(dϕ̄dt̄ + dt̄dϕ̄),

(174)
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with canonical coordinates

t̄ = η−1(t − ax2
1ϕ), ϕ̄ = η−1ϕ,

r̄2 = η2r2 + r2
s , rs ≡ −

2ax2
1

√

2 − x2
1

(3 − x2
1)

,
(175)

where η = 2x1/(3 − x2
1). Further, the angular momentum J is identified as

4G3 J ≡ 4ax2
1(x2

1 − 1)

(3 − x2
1)

2
. (176)

while the mass is identified as in the static case (170) and is thus independent of the rotation
parameter a. A ring singularity appears at r̄ = rs.

The metric (174) is dubbed the quantum Kerr3 black hole. In the limit of vanishing
backreaction, one recovers the classical conical Kerr geometry. At leading order in a small-ℓ
expansion, the stress tensor of the holographic CFT3 is

⟨T t̄
t̄⟩0 =

µℓ

16πG3r3

(

1 +
3a2x2

1

r2

)

,

⟨Tr̄
r̄⟩0 =

µℓ

16πG3r3
,

⟨Tϕ̄
ϕ̄
⟩0 = − µℓ

16πG3r3

(

2 +
3a2x2

1

r2

)

,

⟨T t̄
ϕ̄⟩0 =

3µℓax2
1

16πG3r3

(

1 +
a2x2

1

r2

)

,

⟨Tϕ̄
t̄ ⟩0 = − 3µℓa

16πG3r5
.

(177)

Notice now that function F(M, J) from evaluating the large-r̄ behavior of ⟨T t̄
t̄⟩0 is exactly

equal to F(M) = µη3, as in the static case.

4.5. Horizon Structure

Bulk black hole horizons correspond to real roots ri of H(r), i.e.,

r± =
1

2
(µℓ±

√

(µℓ)2 − 4a2). (178)

These correspond to rotating horizons with rotation

Ω± = − a
(r2

± + a2x2
1)

, (179)

generated by Killing vector ζ̄ j = ∂
j
t̄ + Ω±∂

j
ϕ̄

. The surface gravities are

κ± =
η

(r2
± + a2x2

1)

r2
±
2
|H′(r±)| =

η

2(r2
± + a2x2

1)

∣

∣

∣

∣

µℓ− 2a2

r±

∣

∣

∣

∣

. (180)

There is an extremal black hole when the inner and outer horizons coincide, r+ = r− ≡ rex,
i.e., when µℓ = 2a. In this limit, the surface gravities (180) vanish.
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5. Quantum Black Hole Thermodynamics

Black hole thermodynamics [111–114] reveals an interplay between geometry, quan-
tum mechanics, and thermodynamics. This is encapsulated by the Bekenstein–Hawking
entropy–area relation,

S =
kBc3

h̄G
A[H]

4
, (181)

for Boltzmann constant kB, and we have temporarily restored factors of h̄ and speed of
light c. The area law states black holes carry a thermodynamic entropy proportional to the
area of a codimension-2 cross-section of their event horizon H. Hence, black holes may
be treated as genuine thermal systems with energy, entropy, and temperature, and other
thermodynamic variables depending on the type of black hole. In the case of stationary
black holes, the laws of black hole mechanics [115] may be reinterpreted as laws of thermo-
dynamics. For example, the first law relates a variation in mass M to variations of the other
thermodynamic variables

dM = TdS + ..., (182)

with Hawking temperature T, and where the ellipsis implies variations of other possible
thermodynamic variables, e.g., electric/magnetic charge, rotation, and so forth.

As we review below, just as the bulk geometry imprints itself on the brane, so too
does its thermal description. Thus, classical thermodynamics of the bulk black hole geom-
etry is interpreted as semi-classical thermodynamics of the quantum black hole system.
This allows for an exact study of quantum black hole thermodynamics at any order in a
backreaction.

5.1. Bulk Thermodynamics

When we think of mapping out the properties of a thermodynamic system, we typically
think of one near equilibrium. Likewise, in black hole thermodynamics, often the first task
is to check whether the system has a well-defined notion of thermal equilibrium. Such is
the case, for example, of Kerr–Newman black holes in AdS, where thermal equilibrium is
unambiguously defined [116]. Alternatively, the thermodynamics of black holes in de Sitter
space is conceptually more subtle because a static patch observer encounters a system with
two horizons at different temperatures (except in special limits, e.g., Nariai), such that the
system is not generally in equilibrium. Similarly, due to the presence of an acceleration
and black hole horizon, the thermodynamics of the C-metric is generally more subtle than
non-accelerating black holes—even when the accelerating black holes are embedded in
AdS. Furthermore, although the C-metric line element does not display time dependence,
uniformly accelerating black holes will deliver non-vanishing radiation at asymptotic
infinity [117]. Thus, it is not obvious how an accelerating black hole could possibly be in
equilibrium.

The AdS4 C-metric, does, however, have a distinct advantage over the flat or dS C-
metrics. Working in a particular regime of parameters, the negative cosmological constant
has the effect of essentially removing the acceleration horizon such that it can be consistently
neglected. This regime is precisely the ‘slowly accelerating’ black hole [90] where the
(inverse) acceleration and AdS4 length scale satisfy

Slowly accelerating: ℓ > L4. (183)

In such situations, the AdS4 C-metric is described by a single black hole suspended away
from the origin by a cosmic string attached to the AdS boundary (recall Figure 4). Con-
sequently, being able to ignore the acceleration allows for the temperature of the black
hole system to be defined in a straightforward way. Even still, due to the presence of
cosmic strings, the black hole is not isolated. This makes consistently carrying out the
thermodynamic analysis of the slowly accelerating black hole non-trivial. Indeed, one must
account for both the black hole and cosmic string, leading to a modified first law including
variations of the tension of the cosmic string [118–121]32.
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While the starting point is the same, the thermodynamics of the bulk black hole system
used in the braneworld black hole constructions in Section 4 is ultimately different from
the usual AdS4 C-metric. Firstly, in the braneworld construction, there is no cosmic string;
instead, there is a brane. For a purely tensional brane of constant tension, the brane does
not play an obvious role in the bulk black hole thermodynamics (we will revisit this when
we allow for variable tension). Second, the bulk geometry is regular in that the zeros to the
metric function G(x) are removed along with the conical defects they induce. These two
facts make the thermodynamic analysis less subtle than the standard C-metric.

In general, however, the question of thermal equilibrium remains due to the presence
of the bulk acceleration horizon. In fact, this question distinguishes the treatment of the
Karch–Randall and Randall–Sundrum braneworld constructions. For the former, the bulk
system started with a slowly accelerating black hole (183), such that the acceleration horizon
does not imprint itself on the brane. Alternatively, for a dS3 Randall–Sundrum brane, the
bulk acceleration horizon cannot be ignored because one is not in the slow acceleration
regime, thus complicating the thermal analysis. Instead, ℓ ≤ L4. The edge case ℓ = L4

corresponds to the flat Randall–Sundrum brane. Recall in this scenario the acceleration
horizon does not localize on the brane (as in the dS3 Randall–Sundrum brane) such that the
acceleration horizon may be ignored. We will return to these differences momentarily.

Moving forward, let us first consider the thermodynamics of the bulk system with an
AdS3 Karch–Randall braneworld. In the literature on the exact three-dimensional braneworld
black holes, typically, one assumes the Bekenstein–Hawking entropy Formula (181) and
Hawking temperature. The energy is then identified by demanding the first law hold,
which is subsequently found to coincide with the mass M identified geometric construction.
For example, consider the static, neutral black hole construction (39). It proves useful to
introduce the real and non-negative parameter [24]

z ≡ ℓ3

r+x1
, (184)

for black hole horizon radius r+. Given the range of x1, generally, z ∈ [0, ∞). It is possible
to express the parameters x1, µ and r+ solely in terms of z and ν ≡ ℓ/ℓ3. In particular,
solving H(r+) = 0 for x2

1 yields

x2
1 = −1

κ

(1 − νz3)

z2(1 + νz)
. (185)

Rearranging z (184) and substituting for x2
1 above gives

r2
+ = −ℓ

2
3κ

(1 + νz)
(1 − νz3)

. (186)

Further, with (185), the parameter µ (45) obeys

µx1 = −κ
(1 + z2)

(1 − νz3)
. (187)

The Hawking temperature T of the bulk black hole horizon is proportional to the
surface gravity relative to the canonical timelike Killing vector ∂t̄ (74). Using (185)–(187),
the temperature can be recast in terms of z and ν,

T =
κ+
2π

=
1

2πℓ3

z(2 + 3νz + νz3)

1 + 3z2 + 2νz3
. (188)
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The Bekenstein–Hawking entropy, meanwhile, is (setting c = h̄ = kB = 1)

S =
Area(r+)

4G4
=

2

4G4

∫ 2πη

0
dϕ
∫ x1

0
dxr2

+
ℓ2

(ℓ+ xr+)2

=
8πℓ2

3

4G4

νz
1 + 3z2 + 2νz3

,

(189)

where the factor of two appearing in the second equality is because the brane is two-sided.
Keeping parameters ℓ3 and ν fixed, we can identify the energy E via

∂zE = T∂zS, (190)

such that the first law
dE = TdS (191)

is obeyed. In particular, the energy E is explicitly found to be

E =

√
1 + ν2

2G3

z2(1 − νz3)(1 + νz)
(1 + 3z2 + 2νz3)2

= M, (192)

where in the second equality, we substituted (185)–(187) into the identified mass (65). This
confirms M should indeed be identified as the mass of the bulk black hole.

Gravitational Path Integral Approach

The above method is sufficient for studying the thermodynamics, assuming the identi-
fication of the thermodynamic variables is correct. A more fundamental approach would
be to evaluate the quantum gravitational canonical partition function in the semi-classical
limit via the on-shell Euclidean action [123]. Such an approach was taken in [124] (see
Appendix E for details).

Formally, the partition function Z(β) is given by a Euclidean path integral whose fixed
boundary data on field configurations corresponds to thermodynamic data defining the
thermal ensemble. At leading order in a stationary phase approximation, this becomes

Z(β) ≈ e−Ion-shell , (193)

where β is the (inverse) temperature of the system and Ion-shell is the on-shell Euclidean
action. In say, the Schwarzschild black hole, β is introduced as the periodicity of the
Euclidean time circle to make the Euclidean solution regular at the horizon. In the case
of the AdS4 warped geometry, additional care is needed. Firstly, one Wick rotates the
Lorentzian geometry (39) tE = it for Euclidean time tE. To avoid a conical singularity at
r = r+, the Euclidean time direction is compactified into a circle, tE ∼ tE + ∆tE, with period

∆tE =
4π

|H′(r+)|
. (194)

Further, the bulk regularity conditions eliminating the conical singularity at x1 must
be respected. Combined, one works with Euclideanized canonically normalized time
coordinate t̄E with periodicity

t̄E ∼ t̄E + β, β =
∆tE

η
. (195)

Working at fixed β thus defines working in a canonical ensemble of fixed temperature
T = β−1. Indeed, the periodicity (195) is the inverse of the temperature (188).
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With respect to the partition function (193), the thermodynamic energy E and entropy
S are defined as

E ≡ −∂β log Z ≈ ∂β Ion-shell,

S ≡ βE + log Z ≈ (β∂β − 1)Ion-shell.
(196)

With some work, the on-shell action for the static, neutral black hole is

Ion-shell = −2πℓ2z
G4ν

[1 + 2νz + νz3(2 + νz)]
(2 + 3νz + νz3)(1 + 3z2 + 2νz3)

, (197)

from which one recovers the mass (192) and entropy (189). In summary, the thermodynam-
ics of the bulk black hole directly follow from a Euclidean gravitational path integral.

Critical to this approach is being able to identify a system in thermal equilibrium.
The black hole system in question has multiple non-degenerate horizons, as in the case
with the dS3 Randall–Sundrum brane. Thus, upon Wick rotating to Euclidean signature,
the geometry will have multiple conical singularities: one associated with each horizon.
In such cases, one removes a single conical singularity by fixing the periodicity of the
Euclidean time coordinate for the associated horizon. Consequently, one is only able to
treat a part of the entire system (neglecting the other horizons). Strictly speaking, however,
in such situations, the complete system is not in thermal equilibrium, and it is not clear
how to define a thermal partition function (without further modification).

5.2. Identifying Bulk and Brane Thermodynamics

The thermodynamics of the classical four-dimensional black hole is reinterpreted as
the semi-classical thermodynamics of the three-dimensional quantum black hole. This is a
by-product of the fact that the bulk black hole horizon localizes on the brane such that the
temperature of the bulk black hole coincides with the temperature of the horizon induced
on the brane. To wit, consider a (d + 1)-dimensional static bulk geometry with line element

ds2 = −A(r)dt2 + A−1(r)dr2 + r2dΩ2
d−1, (198)

where r = rh denotes the event horizon of the black hole, equal to the largest root of
A(r) = 0, and is generated by the time-translation Killing vector ∂a

t . Let Φ = Φ(r, ϕi) for
(d − 1) Gaussian normal coordinates {ϕi} denote the hypersurface equation of the brane B.
The induced metric on B is [125]

ds2
B = −A(r)dt2 +

(

A−1(r) + r2(∂rΦ)2
)

dr2 + r2γijdϕidϕj

≡ − f (r)dt2 + g−1(r)dr2 + r2γijdϕidϕj,
(199)

having identified

f (r) ≡ A(r), g(r) ≡ A(r)
1 + A(r)r2(∂rΦ)2

. (200)

The bulk event horizon at r = rh corresponds to a horizon on B, i.e., the bulk and brane
blackening factors have the same root structure. Further, assuming ∂rΦ is regular such that
A(r)(∂rΦ)2 vanishes at r = rh, the temperature of the bulk black hole coincides with the
horizon induced on the brane:

Th
bulk =

|A′(r)|
4π

∣

∣

∣

∣

r=rh

=

√

f ′(r)g′(r)
4π

∣

∣

∣

∣

r=rh

= Th
B . (201)

Geometrically, the identification of the bulk and brane horizon temperatures is because
the bulk time-translation Killing vector remains a time-translation Killing vector on the
brane33.
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Below, we review the thermodynamics for each type of quantum black hole explored
in Section 4, starting with the static neutral quantum BTZ family of black holes.

5.3. Quantum BTZ Black Holes
5.3.1. Static Quantum BTZ

The thermodynamic variables of the static bulk black hole worked out above are

M =

√
1 + ν2

2G3

z2(1 − νz3)(1 + νz)
(1 + 3z2 + 2νz3)2

,

T =
1

2πℓ3

z(2 + 3νz + νz3)

1 + 3z2 + 2νz3
,

S =
8πℓ2

3

4G4

νz
1 + 3z2 + 2νz3

.

(202)

The claim is that these thermodynamic variables are to be interpreted as the thermodynamic
quantities of the quantum black hole. Above, we already saw how the temperatures
coincide. From the brane perspective, determining the mass is a highly non-trivial task
due to the higher-derivative nature of the gravity action. Let us therefore first focus on the
entropy S.

Entropy

From the bulk perspective, S is the classical four-dimensional Bekenstein–Hawking

entropy, S = S(4)
BH (189). Alternatively, from the brane point of view, S must be a sum of

gravitational entropy and the von Neumann entropy of the holographic CFT3. That is, S is
identified as the generalized entropy [126]:

S(4)
BH ≡ S(3)

gen =
4πℓ3

4G3

z
√

1 + ν2

1 + 3z2 + 2νz3
, (203)

where we replaced G4 = 2G3L4 = 2G3ℓ/
√

1 + ν2. Because we have the full bulk solution,

S(3)
gen is exact and valid for all ν. To parse the gravitational and matter contributions to the

entropy, however, it is useful to expand (203) in a small ν expansion,

S(3)
gen =

4πℓ3z
4G3(1 + 3z2)

− 8πℓ3z4

4G3(1 + 3z2)2
ν +

2πℓ3z(1 + 6z2 + 9z4 + 8z6)

4G3(1 + 3z2)3
ν2 +O(ν3). (204)

The first term can be understood as the three-dimensional Bekenstein–Hawking entropy of
the classical BTZ black hole34

SBTZ =
4πℓ3z

4G3(1 + 3z2)
=

π2ℓ2
3

G3
TBTZ = πℓ3

√

2MBTZ

G3
. (205)

where TBTZ ≡ limν→0 T and similarly for MBTZ. The second term in (204) is proportional
to ℓ ∼ c3. Since higher-derivative contributions to the entropy enter at order ν2, the O(ν)
term can only correspond to the von Neumann entropy of the CFT3 in the limit of weak
backreaction. The O(ν2) and higher-order terms are in principle a combination of the
matter and higher-derivative effects that are difficult to distinguish.

Since the brane theory is in general a higher-derivative theory, in principle, the entire
gravitational entropy can be computed using the Iyer–Wald entropy functional [127,128],

SIW ≡ −2π
∫

H
dD−2x

√
q

∂L
∂Rijkl ϵijϵkl . (206)

Here, qij is the induced metric of the codimension-2 cross-section H of the horizon with
binormal ϵij, and L is the scalar Lagrangian scalar characterizing the gravity theory, e.g.,
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for the Einstein–Hilbert Lagrangian, SIW = A[H]
4GD

= SBH. In the case of the semi-classical

induced theory on the brane (57), the Iyer–Wald entropy is [25]35

S(3)
IW =

1

4G3

∫

dx
√

q
[

1 + ℓ
2

(

3

4
R − gij

⊥Rij

)

+O(ℓ4/ℓ6
3)

]

, (207)

with g⊥ij = gij − qij being the metric in the directions orthogonal to the horizon36. The

leading contribution is the three-dimensional Bekenstein–Hawking entropy,

S(3)
BH =

1

4G3

∫

H
dx

√
q =

1

4G3

∫ 2π

0
dϕ̄r̄+ =

2πr̄+
4G3

. (208)

Substituting in parameters (185) and (186), notice

S(3)
BH =

(1 + νz)√
1 + ν2

S(3)
gen = SBTZ +

πℓ3z2(1 + z2)

G3(1 + 3z2)2
ν +O(ν2). (209)

Due to its dependence on ν, S(3)
BH contains semi-classical backreaction effects; only when

ν = 0 does (208) coincide with the classical entropy in (204). Notice the difference

S(3)
BH − SBTZ =

νz(1 + z2)

1 + 3z2
SBTZ, (210)

It is natural to interpret this difference as the leading contribution to the CFT entropy.
Evaluating the Iyer–Wald entropy (207) on the quantum BTZ background (64) yields

S(3)
IW =

[

1 − ν2

2
− z(1 + z2)

1 + νz
ν3 +O(ν4)

]

S(3)
BH. (211)

Thus, the higher-derivative contributions to the gravitational entropy enter at order O(ν2).
With the Iyer–Wald and generalized entropies, the CFT3 entropy can be determined.

This is because the generalized entropy associated with a black hole horizon is, generally,

Sgen = SIW + Smat
vN , (212)

where Smat
vN ≡ −trρ log ρ is the von Neumann entropy of state ρ of quantum fields living on

the classical background confined to one side of the horizon. Typically, the matter entropy
is UV divergent due to vacuum entanglement just across the horizon. The leading order
divergence is of the form A[H]/ϵD−2 for UV regulator ϵ, while there will also be sublead-
ing divergences in ϵ. The Bekenstein–Hawking contribution to SIW (with renormalized
Newton’s constant) regularizes the area divergence of the matter entropy, while the sub-
leading divergences are regulated via the higher-derivative contributions to SIW. Thence,
the generalized entropy is UV finite and independent of the UV cutoff [130–132]. Therefore,
the matter entanglement entropy can be formally computed by taking the difference of the
generalized and gravitational entropies. Explicitly to leading order in ν37

S(3)
CFT ≡ S(3)

gen − S(3)
IW ≈ − 4πℓ3z2ν

4G3(1 + 3z2)
= −νzSBTZ. (213)

Note that the minus here does not imply the entanglement entropy is negative. Rather, here,

S(3)
CFT corresponds to the finite contribution to the entanglement entropy after the leading

piece has been absorbed in a renormalization of G3 (which differs from the renormalization
of G3 due to higher-derivatives effects on the mass).
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Observe when z ≪ 1, the matter entropy (213) takes the form

S(3)
CFT

∣

∣

z≪1
≈ −πℓ3νz2

G3
= −2πc3(πℓ3T)2, (214)

where we used TBTZ|z≪1 ≈ z/πℓ3 and ℓ ≈ 2c3G3. The proportionality to T2 is consistent
with the behavior of a 2 + 1-dimensional conformal gas, implying the entropy is thermal.
Meanwhile, for large-z but νz ≪ 1,

S(3)
CFT

∣

∣

z≫1
≈ −πℓ3ν

3G3
= −2πc3

3
, (215)

a non-thermal entropy. Comparing the two limits of the matter entropy, we can infer
z ≪ 1 characterizes states where thermal effects dominate, while z ≫ 1 describes states
dominated by non-thermal effects. In fact, as we will see momentarily, the large and small-z
limits, respectively, coincide with quantum states having large and small Casimir effects.

The First Law of Thermodynamics

Having identified the bulk horizon entropy with the generalized entropy on the brane
(203), the bulk first law (191) from the brane perspective reads

dM = TdS(3)
gen. (216)

This observation is consistent with two-dimensional quantum black holes (another context
where the backreaction problem can be exactly solved) [133,134]. Thus, accounting for a
semi-classical backreaction, the standard first law of horizon thermodynamics is modified
by replacing ‘classical’ entropy with Sgen. It is worth emphasizing this first law is exact and
valid for all ν, i.e., for small or large backreaction.

From the brane perspective, since the theory includes an infinite tower of higher-
derivative contributions, an unambiguous definition of the mass is lacking. Therefore, the
first law (216) provides another route to determining the mass. That is, we demand that
the quantum BTZ black hole satisfies the semi-classical first via which the right-hand side
defines the mass M (202). Notice that in the large-z limit, the mass hits its minimum value

lim
z→∞

M = − 1

8G3
. (217)

This mass can be thought of as the negative Casimir energy of the cutoff CFT3, thus
explaining the non-thermality of the matter entropy (215). Alternatively, for small ν and z,
the Casimir effects are suppressed, leading to a thermal matter entropy (214).

Recall that the qBTZ solution parametrizes a family of quantum black holes with three
branches (76)38. As depicted in Figure 11, all quantum black holes have higher temperatures
than classical BTZ with the same mass. Incidentally, the branch 1a quantum dressed conical
singularities (−1/(8G3) < M < 0) have negative heat capacity, ∂M/∂T < 0, except at
M = 0, where the heat capacity diverges. In this range, where Casimir effects are dominant,
the entropy S is most naturally understood to be entanglement entropy due to vacuum
fluctuations across the horizon. Meanwhile, the largest black holes in branch 1b also have
negative heat capacity, Mc < M < 1/24G3, where Mc ̸= 0 is some critical value of the mass
where the heat capacity diverges. Further, the branch 1b black holes have a larger entropy
than branch 2, which is likely due to the fact that the branch 1b black holes are formed due
to backreaction of the Casimir energy.

5.3.2. Rotating Quantum BTZ

Using the analysis of the static quantum BTZ as a guide, it is in principle straightfor-
ward to analyze the thermal properties of the rotating quantum BTZ black hole (91). The
essential new feature here is that there is an outer and inner black hole horizon, r+ and
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Figure 11. Quantum BTZ thermodynamics. Top: Mass (solid, red curve) versus temperature for

ν = 1/3. Bottom: Generalized entropy (solid, red curve) versus mass for ν = 1/3. The black dashed

lines correspond to the classical BTZ behavior.

r−, with r− < r+. Thus, there is a parameter z (184) for each horizon. Below, we report
only the thermodynamics for the outer horizon as the analysis of the inner horizon follows
mutatis mutandis. In addition to z = ℓ3/r+x1, we also introduce the rotation parameter

α ≡ ã/
√−κx1, (218)

where, recall, ã ≡ ax2
1/ℓ3.

Following the logic leading to the parameters (185)–(187), now

x2
1 = −1

κ

1 − νz3

z2[1 + νz − α2(z − ν)]
,

r2
+ = −ℓ

2
3κ

1 + νz − α2z(z − ν)

1 − νz3
,

µx1 = −κ
(1 + z2)(1 + α2(1 − z2))

1 − νz3
.

(219)
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Substituting these into the expressions for mass (92), rotation (93), surface gravity (100),
and angular velocity (97), the thermodynamic variables are [24,25]

M =

√
1 + ν2

2G3

(1 − νz3)[z2(1 + νz) + α2(1 + 4νz3(1 + α2)− (1 + 4α2)z4)]

[1 + 3z2 + 2νz3 − α2(1 + 4νz3 + 3z4)]2
,

T =
1

2πℓ3

[z2(1 + νz)− α2(1 − 2νz3 + z4)][2 + 3νz(1 + α2)− 4α2z2 + νz3 + α2νz5]

z(1 + νz)[1 + α2(1 − z2)][1 + 3z2 + 2νz3 − α2(1 − 4νz3 + 3z4)]
,

S =
πℓ3

√
1 + ν2

G3

z(1 + α2(1 − z2))

[1 + 3z2 + 2νz3 − α2(1 + 4νz3 + 3z4)]
,

J =
ℓ3

√
1 + ν2

G3

αz(1 + z2)[1 + α2)(1 − z2)]
√

(1 − νz3)[1 + νz − α2z(z − ν)]

[1 + 3z2 + 2νz3 − α2(1 + 4νz3 + 3z4)]2
,

Ω =
α(1 + z2)

ℓ3

√

(1 − νz3)[1 + νz − α2z(z − ν)]

z(1 + νz)[1 + α2(1 − z2)]
.

(220)

As with the static case, these variables serve as the thermal quantities of the bulk AdS4

black hole and are identified to be the thermodynamic variables of the quantum black hole.
In particular, the Bekenstein–Hawking entropy of the bulk black hole is

S(4)
BH =

2

4G4

∫ 2πη

0
dϕ
∫ x1

0
dx

r2
+ℓ

2

(ℓ+ r+x)2
η

(

1 +
a2x2

1

r2
+

)

=
π

G4
η
ℓx1(r2

+ + a2x2
1)

ℓ+ r+x1
,

(221)

and is identified to be the generalized entropy of the black hole on the brane S(3)
gen. Notice

that in the limit of vanishing backreaction, the entropy reduces to the classical BTZ entropy

lim
ν→0

S(3)
gen =

πℓ3√
2G3

(
√

M +
J
ℓ3

+

√

M − J
ℓ3

)

. (222)

The Wald entropy is formally no different than before, and the matter entropy (213) obeys
the same relation at the leading order in ν.

It can be explicitly verified that the thermodynamic variables (220) satisfy (for fixed ν)

∂z M − T∂zS − Ω∂z J = 0,

∂α M − T∂αS − Ω∂α J = 0.
(223)

Consequently, from the brane perspective, the semi-classical first law is

dM = TdS(3)
gen + ΩdJ. (224)

Again, n.b., mass M and angular momentum J, from the point of view of the brane, include
the infinite tower of higher-derivative contributions in the gravity action (encoded in G3),
which was exactly resummed due to our knowledge of the bulk theory.

While the first law holds for any range of parameters, not all ranges are physically
sensible. Thus, restrictions are made when exploring the thermodynamics of the rotating
solution [25]. In particular, for non-extremal solutions, one takes

0 ≤ α2 ≤ 1 + νz
z(z − ν)

. (225)

The lower bound is chosen to avoid naked closed timelike curves (κ = +1 negative mass
quantum-dressed cones belonging to branch 1a have α2 < 0 (218)). The upper bound
follows from demanding the outer black hole event horizon r+ be real and positive. For
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Figure 12. Parameter space for rotating quantum BTZ. The blue region covers solutions that obey

the extremality bound of classical rotating BTZ black holes, 0 ≤ α ≤ αext. Green and red regions

correspond to superextremal black holes, α > αext. The red region contains black holes that violate

the quantum reverse isoperimetric inequality (277) and are thermodynamically unstable.

κ = −1 and ν < z < ν−1/3, the upper bound implies 1 + α2(1 − z2) > 0. Even with
this bound, however, the temperature T of the black hole can go negative without further
restricting the range of parameters. The classical BTZ extremal limit (108) occurs when

α2 = α2
ext =

z2(1 + νz)
1 − 2νz3 + z4

, (226)

where temperature T = 0.
As noted in Section 4.2.2, the rotating quantum black holes can exist beyond the classi-

cal extremality bound (226). This is because the temperature T and angular momentum
J are in general non-monotonic with respect to α. There are thus two distinct types of
rotating black holes: (i) those which respect the classical extremality bound, 0 ≤ α ≤ αext,
where T and J are monotonic in α, and (ii) the ‘superextremal’, i.e., α > αext, where T
and J are non-monotonic. In Figure 12, we illustrate these distinct families, where the
blue region corresponds to black holes respecting the extremality bound, while the green
and red regions correspond to ‘superextremal’ solutions. The superextremal black hole
solutions are possible due to the combined non-linear effects of the rotation and quantum
backreaction, and they are consequently dubbed non-perturbative rotating black holes [135].
Among these solutions (those belonging to the red region) are black holes which are both
thermodynamically unstable (having a negative heat capacity) and violate the so-called
quantum reverse isoperimetric inequality (see Equation (277)).

5.3.3. Charged Quantum BTZ

As with the rotating case, the charged quantum BTZ black hole (123) has an outer and
inner horizon. In addition to the parameter z = ℓ3/r+x1, it is useful to introduce

γ ≡ qx2
1, (227)
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along with γe ≡ ex2
1 and γg ≡ gx2

1, obeying γ2 = γ2
e + γ2

g. Consequently, following the

logic yielding parameters (185)–(187) gives [99]39

x2
1 = −1

κ

(1 − νz3 + γ2νz3 + γ2ν2z4)

z2(1 + νz)
,

r2
+ = − κℓ2

3(1 + νz)
(1 − νz3 + γ2νz3 + γ2ν2z4)

,

µx1 = − κ(1 + z2 − γ2z2 + γ2ν2z4)

(1 − νz3 + γ2νz3 + γ2ν2z4)
.

(228)

In terms of these parameters, the thermodynamic quantities are [98]

M =

√
1 + ν2

2G3

z2(1 + νz)[1 − νz3 + γ2νz3(1 + νz)]
[1 + 3z2 + 2νz3 + γ2z2(1 + νz)2]2

,

T =
z

2πℓ3

2 + 3νz − νz3(γ2(1 + νz)2 − 1)

[1 + 3z2 + 2νz3 + γ2z2(1 + νz)2]
,

S =
πℓ3

√
1 + ν2

G3

z
[1 + 3z2 + 2νz3 + γ2z2(1 + νz)2]

,

Qe =

√

16π

5g2
3G3

γez2(1 + νz)
√

1 + ν2

[1 + 3z2 + 2νz3 + γ2z2(1 + νz)2]
,

µe =

√

5g2
3

4πG3

γeνz3(1 + νz)
[1 + 3z2 + 2νz3 + γ2z2(1 + νz)2]

.

(229)

More specifically, parameters (228) are substituted into mass (124), electric charge (131) and
potential (133) (the form of the magnetic charge Qg and potential µg are of the same form but

with γe → γg). Further, the temperature follows from the surface gravity, T = κ+
2π = |H′(r̄+)|

4π ,
while the entropy is

S = S(4)
BH =

2

4G4

∫ 2πη

0
dϕ
∫ x1

0
dx

ℓ2r2
+

(ℓ+ xr+)2
=

4πℓr2
+x1η

G4(ℓ+ r+x1)
, (230)

and is identified as the three-dimensional generalized entropy S(3)
gen. It can be easily verified

that the thermodynamic quantities (229) satisfy

∂z M − T∂zS − µe∂zQe − µg∂zQg = 0,

∂ν M − T∂νS − µe∂νQe − µg∂νQg = 0,

∂γi M − T∂γi S − µe∂γi Qe − µg∂γi Qg = 0,

(231)

where γi = γe, γg. Thus, from the brane perspective, the first law of thermodynamics is

dM = TdS(3)
gen + µedQe + µgdQg. (232)

Notice that in the limit ν → 0, the chemical potentials µe and µg vanish (as does the
charge, which is readily apparent from (131)). This is indicative of the fact that the charge
of the brane black hole is a quantum effect, and the charged quantum BTZ black hole
does not reduce to the classical charged quantum BTZ black hole. Further, in the limit of
vanishing backreaction ν → 0, the classical relation (205) between SBTZ, TBTZ and MBTZ

continues to hold. In fact, the generalized entropy has a qualitatively similar behavior as
the entropy of the neutral, static qBTZ (Figure 11). The only essential difference between
entropies of the charged and neutral black holes is that, rather than reaching zero, the
charged black hole entropy ends at a finite, non-zero value—the entropy of the extremal
black hole [98]. Meanwhile, in stark contrast with the neutral qBTZ, with q ̸= 0, as the mass
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Figure 13. Charged quantum BTZ thermodynamics. Top: Temperature versus mass for ν = 1/3 and

q = 0.1, 0.3, 1 (left to right; blue, black, red). Bottom: Generalized entropy versus mass for ν = 1/3

and q = 0.3. The entropy ends at a non-zero finite value (black dot).

decreases monotonically below zero, the temperature reaches a finite maximum value and
then quickly tends to zero at the extremal limit (shown in Figure 13). For a more complete
treatment of the thermodynamics of the extremal black hole, see [98].

5.4. Quantum dS Black Holes

Geometrically, the chief difference between the quantum BTZ and dS3 black holes is
that the latter are equipped with a cosmological horizon. As with classical de Sitter black
holes, the black hole horizon is generally hotter than the cosmological horizon. According
to a static patch observer, then, the system is characterized by two generally unequal
temperatures and thus not in thermal equilibrium. This complicates and enriches the
thermodynamic analysis of quantum de Sitter black holes.

5.4.1. Quantum Schwarzschild–de Sitter

Along with ν ≡ ℓ/R3, it is useful to introduce the dimensionless parameter [26]

z ≡ R3

rix1
, (233)

where ri refers to either the black hole or cosmological horizon, rh and rc, respectively. We
can now express x1, µ, and r+ solely in terms of ν and z

x2
1 =

1

z2

1 + νz3

1 + νz
,

r2
+ = R2

3
1 + νz
1 + νz3

,

µx1 =
z2 − 1

1 + νz3
.

(234)
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These are the Wick rotated counterparts of the qBTZ solution parameters (185)–(187).
Further, G4 = 2ℓ4G3 = 2G3ℓ/

√
1 − ν2. In terms of parameters (234), the mass (149) is

M =
1

8G3

√

1 − ν2
(z2 − 1)(9z2 − 1 + 8νz3)

(3z2 − 1 + 2νz3)2
. (235)

In the quantum de Sitter limit, where z = 1, it follows M = 0. Also note the mass M
vanishes at large z, limz→∞ M ≈ 1

4G3νz +O(1/z2). For fixed x1 ̸= 1 and for z = zh, it is
natural to think of the large zh limit as a small quantum Schwarzschild black hole, where
R3 ≫ rhx1.

Temperature

On the brane, the black hole and cosmological horizons will appear to emit radiation
at the Hawking and Gibbons–Hawking temperatures Th, Tc, respectively. Explicitly,

Th = − zh

2πR3

2 + 3νzh − νz3
h

3z2
h − 1 + 2νz3

h

, Tc =
zc

2πR3

2 + 3νzc − νz3
c

3z2
c − 1 + 2νz3

c
. (236)

In the limit ν → 0, the black hole temperature vanishes, since zh diverges, while the
cosmological horizon temperature reduces to

lim
ν→0

Tc =
1

πR3

zc

3z2
c − 1

≡ TSdS3
. (237)

Since in general rh < rc, and hence zc < zh, the black hole horizon has a higher temperature
than the cosmological horizon, Th > Tc. Thus, as usual for Schwarzschild–de Sitter
spacetimes, the black hole and cosmological horizons are not in thermal equilibrium. Only
in the Nariai limit do the temperatures of the two horizons coincide. There is more on this
below.

Entropy and the First Law

The four-dimensional Bekenstein–Hawking entropy of the bulk black hole is

S(4)
BH =

Area(r+)
4G4

=
2

4G4

∫ 2πη

0
dϕ
∫ x1

0
dxr2

+
ℓ2

(ℓ+ xr+)2

=
πR3

G3

z
√

1 − ν2

3z2 − 1 + 2νz3
.

(238)

As with the AdS3 quantum black holes, from the brane perspective, the bulk entropy is

interpreted as the three-dimensional generalized entropy S(3)
gen. In the limit z = 1, the

generalized entropy of the quantum de Sitter solution is proportional to the Gibbons–
Hawking entropy of the dS3 cosmological horizon, i.e., the sum of gravitational entropy
and entanglement entropy due to the CFT living outside of the cosmological horizon.
Further, the generalized entropy is related to the three-dimensional Bekenstein–Hawking

entropy S(3)
BH of the horizon(s) on the brane via

S(3)
gen =

√
1 − ν2

1 + νz
S(3)

BH, (239)

where S(3)
BH = 2πr+η

4G3
. In the limit of vanishing backreaction, the three-dimensional entropies

coincide and are equal to the cosmological horizon entropy of classical Schwarzschild–
dS3 [136]

lim
ν→0

S(3)
gen =

πR3

G3

zc

3z2
c − 1

=
π2R2

3

G3
TSdS3

=
πR3

2G3

√

1 − 8G3M = SSdS3
. (240)
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In a perturbative series expansion of small ν, the linear-order O(ν) contribution to the
generalized entropy (238) captures the CFT matter entropy, while quadratic and higher-
order contributions include the effects of the higher-derivative corrections. Formally, the
matter entropy is given by the difference of the generalized entropy and Iyer–Wald entropy,
which, to leading order and for large-z, has the same non-thermal result as static quantum
BTZ (215).

Putting together the mass (235), temperatures (236) and entropy (238), there is a
separate first law for the black hole and cosmological horizons,

dM = ThdS(3)
gen,h, (241)

and
dM = −TcdS(3)

gen,c. (242)

In combination, notice

0 = ThdS(3)
gen,h + TcdS(3)

gen,c. (243)

Thus, as the generalized entropy attributed to the black hole increases, the generalized
entropy of the cosmological horizon decreases. This is a consequence of the minus sign
appearing in the first law for the cosmological horizon (242), i.e., the entropy of the cos-
mological horizon decreases as the mass increases. Akin to classical de Sitter space, this
suggests quantum dS3 represents a maximum entropy state with a finite number of degrees
of freedom. Hence, quantum de Sitter black holes behave as instantons constraining the
states of the original de Sitter degrees of freedom (see, e.g., [137–139]).

Nariai Limit

As noted above, in general, a static patch observer sees the quantum SdS3 black hole
as one with two unequal temperatures. A special limit where the temperatures coincide is
the (quantum) Nariai solution (150), i.e., the largest mass black hole able to fit inside the
cosmological horizon, where rh = rc = rN. Recall that in this limit, (µℓ) attains a maximum

µN =
2

3
√

3

1

ν
. (244)

such that

zN =
R3

rNxN
1

=

√
3

xN
1

. (245)

In this case, xN
1 is the particular value of x1 in the Nariai limit found by solving µN =

(1 − x2
1)/x3

1 for x1. For arbitrary ν, there will generally be one real solution for x1 and one
real solution, which for small ν takes the form

xN
1 =

√
3
(ν

2

)1/3
−

√
3

2
ν +O(ν5/3), (246)

vanishing in the limit ν → 0 (as one would expect). In terms of xN
1 , the mass of the Nariai

solution MN is therefore defined by MN ≡ M|z=zN
. Similarly, the entropy of the Nariai

solution is defined as S(3)
N ≡ S(3)

gen|z=zN
. See Figure 14 for a plot of the horizon entropies as

a function of mass M normalized with respect to the Nariai mass.
Regarding the temperature, the Nariai limit is subtle. Naively, setting rc = rh leads to

the horizon temperatures (236) vanishing. This is a consequence of working with surface
gravities κh and κc defined with respect to the time-translation Killing vector ξ = ∂t̄:

κh =
1

2
H′(r̄h) =

1

2r̄hr2
N

(r̄2
N − r̄2

h), κc = −1

2
H′(r̄c) = − 1

2r̄cr2
N

(r̄2
N − r̄2

c ), (247)
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Figure 14. Quantum SdS3 thermodynamics. Left: Plot of S(3)
gen (red), S(3)

BH (blue) and SSdS3
(green) as

a function of mass M and ν = 1/3. Dashed curves refer to black hole entropies Sh, while the solid

curves denote the entropies associated with the cosmological horizon Sc. Right: Temperature as

a function of mass M for ν = 1/3. Blue and red curves, respectively, correspond to temperatures

Th and Tc, while the magenta and orange curves denote T̄h and T̄c, respectively. The green curve

represents the temperature of the Schwarzschild limit (R3 ≫ rh).

which clearly vanish when r̄h,c → r̄N = R3√
3

η. However, for Schwarzschild–de Sitter, there

is a more natural choice of normalization of the time-translation Killing vector, owed to
Bousso and Hawking [140], resulting in a non-vanishing Nariai temperature. Technically,
the Bousso–Hawking normalization is chosen such that ξ2 = −1 at the radius r̄0 where the
blackening factor H(r̄) obtains a maximum,

H′(r̄0) = 0 =⇒ r̄3
0 =

r̄i

2
(3r̄2

N − r̄2
i ). (248)

for a positive real root r̄i of H(r̄). Physically, the radius r̄0 corresponds to the location where
an observer can stay in place without accelerating, i.e., the position where the acceleration
due to the gravitational attraction from the black hole balances out the cosmological
acceleration. This is consistent with the asymptotically flat Schwarzschild black hole where
r̄0 → ∞ (since R3 → ∞), and it is empty de Sitter where r̄0 → 0 (via r̄i → ηR3).

In terms of radius r̄0, where

H(r̄0) =
1

r2
N

(r̄2
N − r̄2

0). (249)

the analogous Bousso–Hawking temperature is

T̄ =
T

√

H(r̄0)
. (250)

In terms of the horizon radii r̄h,c,

T̄h,c = ∓ 1

4πrNr̄h,c

r̄2
N − r̄2

h
√

r̄2
N −

(

r̄h,c
2 (3r̄2

N − r̄2
h,c)
)2/3

,
(251)
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where the minus sign corresponds to the black hole temperature, and the plus sign cor-
responds to the cosmological horizon temperature. Carefully taking the limit r̄N ≈ r̄h,c,
the temperature T̄h,c of both horizons approaches the Nariai temperature TN = 1/(2πrN)
(see, e.g., Appendix B of [134]). The expression for T̄ in terms of z and ν is cumbersome to
leading order, for small ν is equal to the dS3 Gibbons–Hawking temperature [26]. Figure 14
displays the temperatures Tc, Th, and T̄ as a function of mass M normalized by the Nariai
mass. The behavior is essentially identical to classical four-dimensional Schwarzschild–de
Sitter black holes (see, e.g., Figure 2 of [137]), reflecting the holographic character of the
induced geometry.

5.4.2. Quantum Kerr–de Sitter

The new feature of the quantum Kerr–de Sitter black hole (152) compared to the
quantum SdS is that now there is an outer and inner black hole horizon obeying r− < r+ <

rc. In addition to z (233), we introduce the rotation parameter

α ≡ ax1

R3
=

ã
x1

, (252)

where {ri} = {r±, rc}. We can express x1, µ and ri solely in terms z, ν, and α:

x2
1 =

1 + νz3

z2[1 + νz + α2z(z + ν)]
,

r2
i = R2

3
1 + νz + α2z(z + ν)

1 + νz3
,

µx1 =
(z2 − 1)(1 + α2(1 + z2))

1 + νz3
.

(253)

Using the parameters (253), the thermodynamic variables are [27]

M =
1

8G3

√

1 − ν2
(z2 − 1)[1 + α2(1 + z2)][9z2 − 1 + 8νz3 + α2(9z4 − 1 + 8νz3)]

(3z2 − 1 + 2νz3 + α2(1 + 4νz3 + 3z4))2
,

J =
αR3

G3

√

1 − ν2
z(z2 − 1)[1 + α2(1 + z2)]

√

(1 + νz3)(1 + νz + α2z(z + ν))

(3z2 − 1 + 2νz3 + α2(1 + 4νz3 + 3z4))2
,

Ωi =
α

R3

(z2 − 1)
√

(1 + νz3)(1 + νz + α2z(z + ν))

z(1 + νz)(1 + α2(1 + z2))
,

Ti =
1

2πR3

(z2(1 + νz) + α2(1 + 2νz3 + z4))|(2 + 3νz − νz3 + α2(4z2 + νz(z4 + 3)))|
z(1 + νz)(1 + α2(1 + z2))(3z2 − 1 + 2νz3 + α2(1 + 3z4 + 4νz3))

,

S =
πR3

G3

√
1 − ν2z(1 + α2(1 + z2))

(3z2 − 1 + 2νz3 + α2(1 + 3z4 + 4νz3))
,

(254)

which follow from substituting the parameters (253) into mass M (153), angular momentum
J (154), rotation Ωi (158), surface gravity (160), and the Bekenstein–Hawking area formula40.
Collectively, the variables obey the first law

dM = TidSi + ΩidJ, (255)

for all values of the parameters. On the brane, S has the usual interpretation as the

generalized entropy S(3)
gen.

The quantum Kerr–dS3 black hole has limits where two or more horizons become
degenerate. These include the extremal (r+ = r−) black hole, where Text = 0, the lukewarm
black hole (Tc = T+), and the Nariai geometry (rc = r+). As with quantum SdS3, the
Nariai black hole will have a vanishing temperature using the standard normalization of
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the Killing vector. However, in its near horizon geometry, the temperature of the Nariai
black hole and cosmological horizons are equal to the same non-zero temperature TN.

Lastly, two limiting cases include the quantum de Sitter, at z = 1 or µ = 0, leading to

M = J = Ωi = 0, (256)

S =
2πR3

4G3

√
1 − ν2

1 + ν
, Tc =

1

2πR3
, (257)

and the limit of vanishing backreaction, where

M =
1

8G3

(z2 − 1)(1 + α2(1 + z2))(9z2 − 1 + α2(9z4 − 1))

(3z2 − 1 + α2(1 + 3z4))2
,

J =
αR3

G3

z(z2 − 1)(1 + α2(1 + z2))
√

1 + α2z2

(3z2 − 1 + α2(1 + 3z4))2
,

Ωc =
α(z2 − 1)

√
1 + α2z2

R3z(1 + α2(1 + z2))
,

Tc =
1

2πR3

2(1 + 2α2z2)(z2 + α2(1 + z4))

z(3z2 − 1 + α2(1 + 3z4))(1 + α2(1 + z2))
,

Sc =
πR3

G3

z(1 + α2(1 + z2))

(3z2 − 1 + α2(1 + 3z4))
,

(258)

with z = zc, since there are no black holes. It is straightforward to verify that the resulting
thermodynamic variables (258) agree with classical Kerr–dS3 [27].

5.5. Quantum Black Holes in Flat Space

As with the quantum de Sitter black holes, the thermodynamics of the asymptotically
flat quantum black holes follow from the bulk AdS4 black hole geometry with a Randall–
Sundrum brane. Notably, however, in this case, the tension is tuned to its critical value (since
L4 = ℓ) such that no cosmological horizon appears. Therefore, only the thermodynamics of
the black hole horizons in the bulk are imprinted on the brane.

5.5.1. Quantum Schwarzschild Black Hole

In a sense, the thermodynamics of the quantum Schwarzschild black hole (169) is given
by the R3 → ∞ limit of the thermodynamics of the quantum Schwarzschild–de Sitter. Some
care must be taken, however, since in this limit, z = R3/r+x1 diverges, while ν = ℓ/R3

goes to zero. To be more illustrative, recall the mass (170). Rearranging µx1 = (1 − x2
1)/x2

1
such that x2

1 = 1/(1 + µx1) yields

M =
ℓx̂(8 + 9x̂)

16G4

(

1 + 3
2 x̂
)2

, (259)

where
x̂ ≡ µx1. (260)

It is easy to verify µ2 = x̂2(1 + x̂). Meanwhile, from the surface gravity (172), the tempera-
ture of the bulk horizon is

T =
1

4πℓx̂
1

(

1 + 3
2 x̂
) . (261)
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Further, the four-dimensional Bekenstein–Hawking entropy is

S(4)
BH =

4πη

4G4

∫ x1

0
dxr2

+
ℓ2

(ℓ+ xr+)2
=

4π

4G4

r2
+ℓx1

ℓ+ r+x1

=
4πℓ2

4G4

x̂2

(

1 + 3
2 x̂
) ,

(262)

where to reach the final line, we used r+ = µℓ.
In summary, the thermodynamic variables of the bulk AdS4 black hole are mass (259),

temperature (261), and entropy (262), and they obey the first law41

dM = TdS(4)
BH. (263)

From the brane perspective, these thermodynamic quantities are identified as the thermo-
dynamic variables of the quantum Schwarzschild black hole, upon substituting G4 = 2ℓG3,

and where S(4)
BH = S(3)

gen.
It is easy to verify the mass is a monotonically increasing function of x̂ with a minimum

M = 0 (at x̂ = r+ = 0) and a maximum at M = 1
8G3

, at x̂ → ∞. Further, for small x̂, the

temperature goes like T ∼ 1/x̂ and T ∼ 1/x̂2 for large x̂, while the entropy behaves as

S(3)
gen ≈ πℓx̂2

2G3
(small x̂),

S(3)
gen ≈ πℓx̂

3G3
(large x̂).

(264)

It is useful to think about these limits in terms of the bulk parameter µ, where x̂ ≈ µ for

small x̂ and x̂ ≈ µ2/3 for large x̂42. So, for small µ, the entropy S(4)
BH ≈ π(µℓ)2

G4
, having the

behavior of a classical four-dimensional Schwarzschild black hole of mass 2MG4 = µℓ and
temperature T = (4πµℓ)−1. Alternatively, for µ ≫ 1, the black hole extends a distance ℓ

off of the brane, looking like a ‘flattened pancake’ [23].
Lastly, notice that in the limit of large ℓ, the temperature (261) vanishes while the

entropy (262) diverges, whereas for small ℓ, the temperature diverges and the entropy
decreases. The latter is consistent with the fact that for a vanishing backreaction, there is no
black hole.

5.5.2. Quantum Kerr Black Hole

The (outer) horizon thermodynamics of the quantum Kerr black hole (174) are readily
worked out to be

M =
(r2

+ + a2)x1[8r+ℓ+ 9x1(r2
+ + a2)]

8G3[3x1(r2
+ + a2) + 2r+ℓ]2

,

T =
ℓ

2πr+

(r2
+ − a2)(x1(r2

+ + a2) + r+ℓ)

(r2
+ + a2)x1(r+x1 + ℓ)[3(r2

+ + a2)x1 + 2r+ℓ]
,

S(3)
gen =

πr+(r2
+ + a2)x2

1

G3[3x1(r2
+ + a2) + 2r+ℓ]

J =
ar+(r2

+ + a2)x2
1

G3[3x1(r2
+ + a2) + 2r+ℓ]2

√

ℓ[x1(r2
+ + a2) + r+ℓ]

r+
,

Ω =
a

x1(r2
+ + a2)(r+x1 + ℓ)

√

ℓ[x1(r2
+ + a2) + r+ℓ]

r+
.

(265)
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Alternatively, using (r2
+ + a2) = r+µℓ, x̂ ≡ µx1, and introducing â ≡ a/(µℓ), the thermo-

dynamic variables become

M =
x̂(8 + 9x̂)

32G3

(

1 + 3
2 x̂
)2

,

T =
(1 + x̂)

4πℓx̂
(

1 + 3
2 x̂
)

(1 − 4â2 +
√

1 − 4â2)
[

1 + x̂
2 (1 +

√
1 − 4â2)

][

1 − 2â2 +
√

1 − 4â2
] ,

S(3)
gen =

πℓ

4G3

x̂2

(

1 + 3
2 x̂
) (1 +

√

1 − 4â2),

J =
âℓx̂2

4G3

(

1 + 3
2 x̂
)2

√
1 + x̂,

Ω =
4â
√

1 + x̂

x̂ℓ[x̂(1 +
√

1 − 4â2) + 2][1 +
√

1 − 4â2]
,

(266)

and obey the first law

dM = TdS(3)
gen + ΩdJ. (267)

The quantum Schwarzschild black hole thermodynamics is recovered in the â → 0 limit. As

before, T ∼ 1/x̂ for small x̂ and T ∼ 1/x̂2 for large x̂, while S(3)
gen has the same x̂-dependence

as in the non-rotating case (264).

5.6. Extended Black Hole Thermodynamics

While black holes have a thermodynamic description, they are peculiar in that the
first law (182) lacks a pressure–volume work term. This is because for general black
holes, there is no clear notion of pressure or volume. For black holes in spacetimes with a
cosmological constant, the situation changes dramatically. A first glimpse of this comes
from Euler’s theorem of homogeneous functions, which implies black holes with a non-zero
cosmological constant Λd+1 obey [141]

(d − 2)Gd+1M = (d − 1)TS − 2Pd+1V + ..., (268)

where T refers to temperature , S refers to Bekenstein–Hawking entropy, and the ellipsis
refers to other possible thermodynamic variables, e.g., ΩdJ. The essential new feature is
used to identify the cosmological constant as thermodynamic pressure

Pd+1 ≡ − Λd+1

8πGd+1
. (269)

Then, V is the conjugate variable to the pressure, which is dubbed the ‘thermodynamic
volume’ [141–143] formally equal to43

V ≡
(

∂M
∂P

)

S,...

. (270)

For spacetimes with a vanishing cosmological constant, the relation (268) reduces to the
Smarr formula; however, for Λd+1 ̸= 0, the P − V term is required for consistency.

Going one step further, treating the cosmological constant as a dynamical variable
leads to an extended framework of black hole thermodynamics, resulting in the first law of
extended black hole thermodynamics

dM = TdS + VdPd+1 + .... (271)

Glossing over the details, allowing for the cosmological constant to be a dynamical pres-
sure means that the thermodynamics of anti-de Sitter black holes, in particular, acquire
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a richer structure than their asymptotically flat counterparts, behaving as Van der Waals
fluids [145,146], polymers [147] and allowing for the construction of black hole heat en-
gines [148]. Thus, the extended thermodynamics of AdS black holes offer a rich gravita-
tional perspective on everyday phenomena (for a review, see [149]).

Extended black hole thermodynamics is not without its criticisms. A common critique
is treating the cosmological constant as a variable pressure. Indeed, while the P − V term
in the Smarr Formula (268) is required for consistency, its appearance does not imply the
pressure should be made variable, at least from a gravitational perspective. Assuming
AdS/CFT duality, it is more natural to allow for varying the cosmological constant since
variations in Λd+1 are dual to variations in the number of degrees of freedom of the dual
theory [141,148,150–155].

Holographic braneworlds suggest a higher-dimensional origin for extended black
hole thermodynamics [156]. In particular, a dynamical cosmological constant on the brane
naturally follows from tuning the brane tension. In fact, keeping other bulk parameters
Ld+1 and Gd+1 fixed, varying the tension alone corresponds to varying the induced brane
cosmological constant on the brane Λd:

δτ =
δΛd

8πGd
. (272)

Hence, classical black hole thermodynamics in the bulk including work completed by the
brane induces extended thermodynamics of quantum black holes on the brane.

This observation can be made explicit in the context of the braneworld constructions
considered here. Specifically, when treating the brane tension τ as a thermodynamic
variable akin to the surface tension of liquids, the first law of the bulk black hole is

dM = TdS + Aτdτ, (273)

where Aτ ≡
(

∂M
∂τ

)

S
is the variable conjugate to τ. Consequently, tension variation dτ

induces extended thermodynamics on the brane. Particularly, the bulk first law (273) maps
to the extended first law on the brane

dM = TdSgen + VdPd + ..., (274)

thus extending the quantum first law, where the pressure Pd is the pressure of the quantum
black hole and V is its conjugate thermodynamic volume.

In summary, since the scales of the brane theory are induced, holographic braneworlds
provide a gravitational motivation for treating the cosmological constant as a variable. For
example, the pressure and volume of the static quantum BTZ black hole are [156]

P3 ≡ − Λ3

8πG3
=

√
1 + ν2

4πν2ℓ2
3G3

(
√

1 + ν2 − 1),

V ≡
(

∂M
∂P3

)

Sgen,c3

= −2πℓ2
3z2[−2 + ν2 + 3ν3z3 + ν4z4 + νz(ν2 − 4)]

(1 + 3z2 + 2νz3)2
.

(275)

Together with the standard thermodynamic variables (202), it is straightforward to verify
the extended first law (274) is obeyed. Extended thermodynamics for charged and rotating
qBTZ black holes were computed in [135] (see also [99] for charged BTZ).

5.7. Quantum Reverse Isoperimetric Inequality

One of the more puzzling aspects of extended black hole thermodynamics is the
thermodynamic volume V. In simple cases, e.g., D ≥ 4 AdS-RN, volume V coincides with
the geometric volume of the black hole, i.e., the amount of spacetime volume excluded
by the black hole horizon. In general, however, the thermodynamic volume is not the
geometric volume, cf. [142–144]44. Nonetheless, the thermodynamic volume plays a crucial
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role in understanding black hole thermodynamics. A sharp example of this is that there is
strong evidence that AdS black holes obey the reverse isoperimetric inequality [143]

R ≡
(

(D − 1)V
ΩD−2

)
1

D−1
(

ΩD−2

ABH

) 1
D−2

≥ 1. (276)

Here, ΩD−2 is the volume of a unit (D − 2) sphere, of D-dimensional AdS, and ABH is the
area of the black hole horizon. Notably, it is the thermodynamic volume for which this
inequality holds, not the geometric volume. Refined generalizations of the inequality (276),
inspired by the classical Penrose inequality [157,158], have been conjectured and tested for
a plethora of examples [159].

Physically, the reverse isoperimetric inequality states an asymptotically AdS black hole
with fixed thermodynamic volume has an entropy no larger than Schwarzschild–AdS of the
same volume, i.e., Schwarzschild–AdS is a maximal entropy state at fixed (thermodynamic)
volume. While there is no general proof of the inequality (276), there are very few known
counterexamples45 and all such ‘superentropic’ black holes have a negative heat capacity at
constant volume, CV < 0, and are thus thermodynamically unstable [165]. Via AdS3/CFT2

duality, black hole superentropicity can be microscopically understood as an overcounting
of the (naive) Cardy entropy of the CFT2 [166].

When semi-classical quantum effects are accounted for, the classical inequality (276)
is known to be violated [156]. A natural quantum generalization of (276) is proposed to
be [135]

RQ ≡
(

(D − 1)Vth

ΩD−2

)
1

D−1
(

ΩD−2

4GDSgen

) 1
D−2

≥ 1. (277)

Here, the classical area has been replaced by the generalized entropy and Vth is the Casimir-
subtracted thermodynamic volume,

Vth = V − Vcas, (278)

where, in analogy with Casimir mass, Vcas is the thermodynamic volume assigned to empty
AdS space. In the case of D = 3, the quantum reverse isoperimetric inequality (277) has
been shown to hold for all AdS3 quantum black holes at all orders of backreaction—except
for a subspace of rotating black holes (those belonging to the red region in Figure 12),
which are all found to be thermodynamically unstable, in accordance with Johnson’s
conjecture [165] regarding the classical inequality. This implies there exists a maximum
entropy state among thermodynamically stable quantum black holes at fixed volume.

5.8. Phase Transitions of Quantum Black Holes

As with ordinary thermodynamic systems, black holes in AdS can undergo phase
transitions. A paradigmatic example is the Hawking–Page (HP) phase transition [116]:
below a certain temperature THP, large AdS black holes in equilibrium with their radiation
transition to thermal AdS. At the level of the quantum gravitational partition function,
this transition signals an exchange between dominant contributions in the Euclidean path
integral. The classical BTZ black hole also undergoes a HP phase transition [167,168]. To
wit, the canonical free energy FBTZ = −T log Z of a static BTZ black hole is

FBTZ = M − TS = −π2ℓ2
3

2G3
T2, (279)

for temperature T = r+/2πℓ2
3. Comparing with the free energy of thermal AdS, FAdS =

MAdS = −1/8G3, a first-order phase transition occurs at a temperature

THP =
1

2πℓ3
. (280)
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When T < THP, thermal AdS has a lower free energy than the black hole and is, therefore,
the dominant contribution to the partition function; for T > THP, the black hole has lower
free energy and becomes the dominant contribution to the partition function.

Quantum AdS black holes also undergo thermal phase transitions [124,169]. In fact,
large backreaction effects can trigger new transitions unseen by their classical counterparts.
Consider, for example, static, neutral quantum BTZ. Working in the standard canonical
ensemble, where c and P are held fixed46, the free energy is

FqBTZ ≡ M − TSgen = − z2
√

1 + ν2

2G3

[1 + 2νz + νz3(2 + νz)]
(1 + 3z2 + 2νz3)2

. (281)

As with the classical scenario, compare to ‘quantum’ thermal AdS3 (qTAdS), i.e., pure AdS3

including a backreaction due to the cutoff CFT3, with free energy

FTqAdS = MqTAdS = − 1

8G3
. (282)

In Figure 15, we present a side-by-side comparison of the canonical free energy of the
classical BTZ black hole and quantum BTZ for large backreaction, ν > 1. Focusing on the
quantum BTZ black hole, as the temperature monotonically increases, there are reentrant
phase transitions from thermal AdS to qBTZ and back to thermal AdS: (i) for temperatures
up to a critical temperature (where ∆F ≡ FqBTZ − FqTAdS = 0), thermal AdS has lower free
energy, until at the critical temperature, there is a discontinuity in the slope of the free
energy, i.e., a first-order phase transition and a quantum analog of the Hawking–Page phase
transition. (ii) After this temperature, the qBTZ black hole has a lower free energy until there
is a jump discontinuity in the free energy, a zeroth-order phase transition, beyond which
TAdS always has a lower free energy. The reentrant phase transition is the combination of
the first- and zeroth-order phase transitions as the temperature monotonically varies, and
it is exhibited by an (inverse) swallow tail.

As displayed in Figure 15, reentrant phase transitions do not occur for the classical BTZ
black hole. Reentrant phase transitions, however, are known to appear in (classical) higher-
derivative theories of gravity in higher dimensions and Born–Infeld gravity [172–175]. In
all such cases, the transitions are between different phases of the black hole, e.g., large
to small and back to large black holes. For the quantum black hole, the reentrant phase
is a reentrant Hawking–Page phase transition, moving between thermal AdS and the
same black hole. Again, the zeroth-order phase transitions only occur for a large enough
backreaction. In this regime, the brane has decreasing tension, and the gravitational theory
on the brane becomes more massive and effectively four-dimensional. Meanwhile, for a
small backreaction, thermal AdS dominates at all temperatures until the ν = 0 limit where
one recovers the phase behavior of classical BTZ.

Even though the phase structure admits a region where the black hole is thermody-
namically favored, it may not contribute to the Euclidean path integral if it is thermally
unstable. The heat capacity serves as a diagnostic to determine whether the black hole is
stable against thermal fluctuations. For example, classically, the Hawking–Page transition is
between thermal AdS and stable black holes (small AdS black holes are unstable). Likewise,
in the case of quantum BTZ, a computation of the heat capacity [176] reveals reentrant
phase transitions occur in the canonical ensemble between thermal AdS and a branch of
thermally stable quantum black holes. More precisely, a study of the temperature of the
qBTZ solution reveals three branches47 of continuously connected black holes: (A) ‘cold’
black hole, (B) ‘intermediate’ black hole, and (C) ‘hot’ black hole. Black holes belonging
to branches A and C have a negative heat capacity and are thus unstable, while branch
B black holes have a positive heat capacity and are thermally stable. The reentrant phase
transitions occur only between thermal AdS and these intermediate black holes.
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Figure 15. Phases of BTZ black holes. Top: Hawking–Page transition of classical BTZ. For temper-

atures T < THP, thermal AdS has a lower free energy (red, dashed line) than the black hole (blue,

solid curve). At T = THP, there is a first-order phase transition, and for T > THP, the black hole has

a lower free energy, leading to an exchange in dominance in the quantum gravitational partition

function. Bottom: Reentrant phase transition of quantum BTZ black hole with large backreaction.

Below a critical temperature (the analog of the HP temperature), quantum TAdS has the lower free

energy. At this critical temperature, there is a first-order transition between qTAdS and intermediate

black holes. Between this HP-like temperature and a second critical temperature, the qBTZ has a

lower free energy. At the second critical temperature, there is a zeroth-order transition back to TAdS.

6. Braneworld Black Holes in Higher Dimensions

The majority of this review focused on exact constructions of three-dimensional quan-
tum black holes. From the perspective of the non-holographic perturbative treatment, work-
ing in three spacetime dimensions, d + 1 ≥ 4 was solely to simplify the problem. Indeed,
the expectation value of the renormalized quantum stress tensor ⟨Tij⟩ is not known in gen-

eral. Exceptions do exist48. For example, for even-dimensional homogeneous and isotropic
FRW cosmologies, the trace anomaly for conformal quantum fields is known [178,179]. In
the case of static, spherically symmetric backgrounds, however, the renormalized stress
tensor is only known up to an arbitrary function of an appropriate radial coordinate [5].

One possible way to circumvent this issue is to instead work in a truncated s-wave
sector of the matter theory and use the two-dimensional conformal anomaly to fix the form
of the quantum-stress tensor and find quantum corrections to, say, the Schwarzschild black
hole [180–183]. Another approach is to solve the (semi-classical) Tolman–Oppenheimer–
Volkoff equations for a massless conformally coupled scalar field [184]. Working pertur-
batively in h̄, one can construct analytic asymptotically flat, static, spherically symmetric
solutions, while numerics yields non-perturbative corrections in h̄49. Thus, the situation
for solving the backreaction problem in d + 1 ≥ 4 is more complicated and subject to
quantum gravitational corrections. This again motivates the use of holographic techniques
as employed in the three-dimensional case. However, as we now review, the status of
finding higher-dimensional quantum black holes via braneworlds is more complicated.
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6.1. Higher-Dimensional Quantum Black Holes?

Given the success of studying three-dimensional quantum black holes starting from
the AdS4 C-metric, it is natural to wonder if a similar analysis follows from a higher-
dimensional C-metric. Notably, however, no exact solutions to Einstein’s equations de-
scribing accelerating black holes in dimension D = d + 1 > 4 are known50. As reasoned
in [192], this is because in D ≥ 5, the string generating the acceleration has a singularity
along its symmetry axis passing through the black hole, which is distinctly less mild than
in D = 4. Put another way, in four dimensions, there exist more general accelerating black
holes accelerated by Levi–Civita strings or rods. The C-metric is a special limit of such a
geometry, which is singled out as a metric where the string has a milder singularity along
its axis and better-behaved asymptotics than its brethren. In D ≥ 5, it seems there is no
such special limit for accelerating black holes. Alternately, one can perturbatively construct
a C-metric in D > 4 by perturbing a higher-dimensional Schwarzschild black hole to give
it uniform acceleration [193]. However, it was found that such a solution with constant
string tension does not allow for localized braneworld black holes (they do not satisfy the
Israel junction conditions). Moreover, allowing for non-uniform string tension results in
infinitely many localized braneworld black hole solutions.

Historically, the first attempt at finding a four-dimensional braneworld black hole
embedded in a five-dimensional bulk was carried out by Chamblin, Hawking and Re-
all [194]. Their starting point takes the original Randall–Sundrum model and replaces the
Minkowski line element on the brane with a four-dimensional Ricci flat metric, e.g., the
Schwarzschild black hole,

ds2
5 = dy2 + a2(y)gSchw

ij dxidxj. (283)

Here, y denotes the bulk extra direction, and a2(y) denotes the warp factor (for the RS-II
scenario, a2(y) = e−2|y|/L5 for bulk AdS5 length scale L5). The brane is located at y = 0,
such that from the brane perspective, the geometry is exactly the static, four-dimensional
Schwarzschild black hole. Note, however, the five-dimensional Chamblin, Hawking, Reall
‘black string’ (283) suffers from a classical dynamical instability [195] analogous to the
Gregory–Laflamme instability of Kaluza–Klein black strings [196,197]. We will return
to this instability momentarily. Further, the black string extends to the AdS5 horizon at
y = ∞ and where the black hole horizon becomes singular with diverging scalar curvature
invariants.

The Chamblin, Hawking, Reall braneworld black hole thus cannot describe the end
state of gravitational collapse. In fact, whilst searching for examples of Oppenheimer–
Synder gravitational collapse of braneworld black holes, a no-go theorem was posed [66]:
the exterior geometry of the dust cloud cannot be static. This theorem, and the dearth
of evidence of exact static black holes localizing in the RS-II construction (circa 2002),
in part motivated Tanaka [34] and Emparan, Fabbri, and Kaloper [22] to conjecture that
higher-dimensional braneworld black holes must be time-dependent (see also [198]). Their
reasoning utilized AdS/CFT holography and was argued to be consistent with the proposal
that black holes that localize on the brane may be interpreted as quantum black holes.

6.2. Predictions from Holography

Let us review the arguments [22,34] predicting higher-dimensional braneworld black
holes must be time-dependent. Take the bulk to be classical AdS5 general relativity with
a four-dimensional RS brane. According to braneworld holography, the induced theory
on the brane describes a higher-derivative theory of gravity coupled to a large-N gauge
theory in the ’t Hooft planar limit with large ’t Hooft coupling λ = Ng2

YM (we refer to
this matter theory as a large-c CFT4 with an ultraviolet cutoff owed to the presence of
the brane). In particular, the full AdS/CFT duality in this case is between type IIB string
theory on AdS5 × S5 and N = 4 super Yang–Mills SU(N) gauge theory with AdS length
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L5 = L(10)
P (gsN)1/4 (for string coupling gs and ten-dimensional Planck length L(10)

P ) and ’t
Hooft coupling λ = gsN. The effective number of CFT degrees of freedom is51

c ∼ N2 =

(

L5

L(5)
P

)3

=

(

L5

L(4)
P

)2

, (284)

such that large N = L5/L(4)
P coincides with the four-dimensional Planck length going to

zero. Further, notice the combination

N2h̄ =

(

L5

L(4)
P

)2
(L(4)

P )2

G4
=

L2
5

G4
, (285)

remains fixed as h̄ → 0 and keeping L5, G4 fixed.
Now, according to the conjecture [22], the braneworld black hole must be a solution to

the semi-classical theory sourced by the CFT stress tensor ⟨Tij⟩ in some quantum state. For
a black hole background, in principle, the quantum state could be in any of the common
choices of the vacuum state, i.e., the Hartle–Hawking, Boulware, or Unruh state. Recall
that the Hartle–Hawking state describes a black hole in a thermal bath in equilibrium with
its own radiation, producing a non-dynamical configuration. On the other hand, the Unruh
vacuum describes a time-dependent evaporating black hole (there is a thermal flux of
radiation at future null infinity). To infer whether a black hole in the Hartle–Hawking state
is possible—without finding an explicit solution—one can instead estimate the evaporation
time of a radiating black hole; if the time for evaporation is finite, then a static black hole
solution is not possible. To this end, consider a weakly coupled CFT in four dimensions. In
particular, the trace anomaly for N = 4 SU(N) super Yang–Mills theory to leading order
in h̄ is

⟨Ti
i⟩ =

h̄(N2 − 1)

32π2

(

R2
ij −

1

3
R2

)

≈ h̄N2

32π2

(

R2
ij −

1

3
R2

)

, (286)

taking N ≫ 1. Thus, the anomaly for such a CFT is simply the free field result enhanced by
a O(N2) factor. With this in mind, the power emitted by Hawking quanta modeled by the
large-N CFT will be

dM
dt

∼ N2h̄
R2

0

, (287)

for initial horizon radius R0 = 2 ∼ G4M. Then, the time for evaporation tevap heuristically
is

t−1
evap ≡ 1

R0

dR0

dt
=

2G4

R0

dM
dt

∼ 2

R3
0

h̄G4N2 =
2L2

5

R3
0

, (288)

where we substituted in (285). Thus, the evaporation time is finite (even as h̄ → 0).
Moreover, such a black hole would evaporate rapidly due to the O(N2) enhancement of
the free theory result. Altogether, this suggests black holes cannot remain static on the
brane: they shrink and evaporate in a finite time.

Assuming the bulk/brane correspondence holds, the semi-classical evaporation of the
black hole localized on the brane should have a classical bulk signature. One possibility,
originally put forth in [34] (see also [199]), is that the semi-classical evaporation is linked
to a classical instability of the bulk five-dimensional solution. The intuition is as follows.
Consider the five-dimensional black Chamblin, Hawking, Reall black string (283), and
have a Randall–Sundrum brane intersect it. The radius of the black hole will exponentially
shrink with the AdS5 length L5 as one moves away from the brane. Further, the black string
suffers from a Gregory–Laflamme instability when the horizon radius becomes smaller
than L5. As a result of the instability, a portion of the horizon localized on the brane will
pinch off and fall into a region of the bulk black hole away from the brane. Thus, while the
horizon area of the bulk black hole does not shrink, the area of the horizon localized on the
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brane shrinks. This five-dimensional deformation due to dynamical instability implies a
type of classical evaporation of braneworld black holes.

Another view is that semi-classical radiation corresponds to gravitational radiation
of the bulk black hole. Indeed, from the brane perspective, the Hawking quanta are
modeled by the large-c CFT, corresponding to bulk Kaluza–Klein gravitons. Further, a
black hole stuck to a brane is accelerating away from the center of AdS, thus producing
gravitational waves. Thus, Hawking radiation from the brane perspective corresponds to
bulk gravitational bremsstrahlung [22]. Qualitatively, moreover, the classical gravitational
waves emitted into the bulk have a characteristic frequency ω which from the brane
perspective is estimated to be ω ∼ (G4M)−1, which is the four-dimensional Hawking
temperature. This reasoning suggests why the classical bulk gravitational radiation appears
as thermal radiation on the brane.

6.3. Counterexamples

The essential problem of the holographic argument leading to the finite evaporation
time (288) is that the result assumes the large-N CFT is weakly coupled. Of course, for the
holographic construction of the bulk/brane set-up to be valid, the cutoff CFT on the brane
is strongly coupled, i.e., large ’t Hooft coupling. Thus, as first recognized by Fitzpatrick,
Randall, and Wiseman [69], it is not clear the radiation has access to all of its O(N2)
degrees of freedom. Importantly, being at strong coupling can lead to a reductionin the
accessible degrees of freedom, from O(N2) to O(1) via confinement (see also [200])52. Such
a reduction thus makes it plausible that static braneworld black holes in higher dimensions
do exist.

In fact, there are several examples of higher-dimensional static braneworld black holes,
both analytically and numerically constructed [67–72,201–208]. The question is whether
these static solutions are to be viewed as quantum black holes on the brane. To explore
this point, reconsider the 5D/4D Randall–Sundrum construction with the five-dimensional
Schwarzschild black string (283). Despite its dynamical instability, this is an example
of a static braneworld black hole, where the black hole on the brane is simply the four-
dimensional Schwarzschild geometry. Seemingly then, the cutoff CFT on the brane does
not modify the geometry: from the looks of it, the brane geometry consists of a non-trivial
zero mode and no excited Kaluza–Klein modes [69]. Nonetheless, Fitzpatrick, Randall,
and Wiseman argued the dual quantum black hole description might be consistent with
the existence of such static localized black hole solutions. It is simply that the quantum
corrections to the geometry are suppressed53.

To appreciate this last point, consider the set-up of [202], consisting of an asymptoti-
cally AdS5 bulk spacetime, with two positive tension Karch–Randall branes with an AdS5

Schwarzschild black string stretching between the two branes (see Figure 16). In particular,
the bulk geometry has line element

ds2
5 =

L2
5

cos2(u)

[

du2 +
1

ℓ2
4

gijdxidxj

]

, (289)

with bulk AdS5 radius L5, and induced four-dimensional radius ℓ4 = L5sec(u0). The AdS5

boundary is located at u = ±π/2, while the two AdS4 branes are at u = ±u0, each with

the same positive tension τ = 6 sin(u0)
8πG5L5

, and separated a finite distance apart. Further, take
the four-dimensional metric gij to be the AdS4–Schwarzschild black hole,

gijdxidxj = − f (r)dt2 + f−1(r)dr2 + r2(dθ2 + sin2 θdϕ2), f = 1 +
r2

ℓ2
4

− 2G4M
r

. (290)

Without branes, this system has an instability when r+/ℓ4 < 1 (small black holes of horizon
radius r+), while it is stable for large black holes, r+/ℓ4 > 1 [210]. The stability structure
remains the same with branes included [202].
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Figure 16. Black string with Karch–Randall branes. An AdS5 black string stretches between two

two end-of-the-world AdS4 branes, such that all magenta regions (including the AdS5 boundary) are

removed. The black string can be replaced by a uniform black funnel, and the ETW branes may be

replaced with Randall–Sundrum branes.

The classical bulk is stable for large mass black holes that localize on the branes
(focus on only a single brane as a being living on one brane would not directly experience
the other brane). From the brane perspective, the induced geometry is simply the AdS4–
Schwarzschild black hole. Seemingly, the geometry has no quantum corrections due to the
backreacting holographic field theory living on the brane. This runs counter to what would
be expected based on a weakly coupled analysis of the quantum-stress tensor54. Indeed,
recall the trace anomaly of weakly coupled N = 4 SU(N) super Yang–Mills theory (286).
Substituting in the AdS4–Schwarzschild geometry (290), the anomaly reads

⟨Ti
i⟩ = −3h̄(N2 − 1)

8π2ℓ4
4

. (291)

Since ⟨Ti
i⟩ is non-vanishing, one expects the AdS4–Schwarzschild black hole to become

quantum-corrected due to backreaction. In view of the conjecture of holographic braneworld
black holes, the question thus becomes in what sense can the AdS4–Schwarzschild black
hole on the brane be viewed as a ‘quantum’ black hole.

The resolution of this apparent tension with the conjecture is the following. The
quantum stress tensor of the strongly coupled CFT (as required for a consistent holographic
description of the bulk gravity) simply does not correct the geometry, at least at leading
order. To see this, consider the boundary CFT stress tensor, which can be computed in full
using holographic renormalization methods, leading to [202]

⟨Tij⟩ = − 3h̄N2

32π2ℓ4
4

gij. (292)

Taking the trace returns the anomaly (291). The main takeaway is that the stress tensor is
proportional to the metric. In such an instance, the CFT only renormalizes the effective
brane cosmological constant and thus does not lead to any quantum-corrected geometry.
Notice that in the limit, the brane cosmological constant vanishes, ℓ4 → ∞, and so too does
the quantum stress tensor, ⟨Tij⟩ → 0. This is consistent with the Schwarzschild black string
with a Randall–Sundrum brane construction in [69].

A conclusion, then, is that formally, the AdS4–Schwarzschild braneworld black hole
can be interpreted as a quantum black hole. The cutoff CFT, however, is special in that
it does not explicitly backreact on the brane geometry, and it only serves to renormalize
the induced cosmological constant. Geometrically, this is a manifestation of the bulk
spacetime (289) being foliated by the AdS4–Schwarzschild black hole. Consequently, the
classical Kaluza–Klein graviton modes are not excited in the background solution. Observe,
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moreover, the correction to the cosmological constant is independent of the black hole mass
and hence its temperature. The brane black hole thus does not radiate, which is consistent
with no excited Kaluza–Klein modes. This is at first puzzling from the perspective of
AdS/CFT, as one would have expected a component of the holographic stress tensor to
correspond to a thermal plasma of CFT degrees of freedom outside the black hole. As noted
in [200], this is a consequence of the large-N super Yang–Mills theory confining to O(1)
degrees of freedom.

It is worth emphasizing the implications of the static solution found from the AdS5

black string [202]. There is no Hawking emission, and up to the term generating the
Weyl anomaly, the quantum stress tensor is everywhere vanishing. Despite the lack of
thermal radiation near infinity, the static state of the CFT is in thermal equilibrium with
the black hole since they nonetheless obey the Kubo–Martin–Schwinger (KMS) condition.
This suggests, from the bulk perspective, such braneworld black holes remain stuck to the
brane, while from the brane perspective, the black hole evaporation is disallowed due to
the large-N and large ’t Hooft coupling of the holographic CFT.

6.4. Evaporating Braneworld Black Holes

Putting the status of the higher-dimensional static quantum black holes aside, braneworld
holography has proven useful in studying black hole evaporation. Indeed, while some bulk
black holes can get stuck on the brane and never shrink (‘black droplets’) [71] and hence are
dynamically stable, there are other bulk black solutions that evaporate due to a Gregory–
Laflamme instability [72], as originally suggested in [22,34]. The essential physical insight
is that evaporation takes place when the brane black hole is coupled to an appropriate
thermal bath modeled by thermalized O(N2) degrees of freedom of the CFT. From the bulk
perspective, this means the horizon of the black hole on the brane is to be connected to
another horizon in the bulk. The bulk system will have a Gregory–Laflamme-like instability
such that the black hole attached to the brane slides off the brane into the bulk, forming a
(typically) larger black hole horizon. Thus, while the horizon on the brane reduces its size
(evaporation), the horizon in the bulk does not shrink, which is consistent with the classical
evolution of black hole horizons.

There are in fact several examples of evaporating braneworld black holes (see [72] for
details). In all cases, the bulk system considers D-dimensional black holes in the large-D
limit [212–214] that localize on either one or a pair of Karch–Randall branes55. In particular,
these holes include the following: (i) A small AdS black string is stretched between two
branes with black holes localizing on both branes. The string instability triggers either
the evaporation of both black holes into a single bulk black hole or the evaporation of
one brane black hole into the other brane black hole. (ii) A small AdS black hole on
the brane is connected to a larger bulk black hole (bath) such that the brane black hole
evaporates entirely into the bulk. (iii) A large unstable AdS black droplet is connected to a
non-gravitating boundary (bath) via a thin black funnel, such that the droplet evaporates
into the boundary.

In short, the exhaustive large-D analysis reveals holographic CFTs coupled to black holes
have distinctive traits over their weakly interacting counterparts. According to [72,215], their
semi-classical dynamics are always dual to classical Gregory–Laflamme-like dynamics of
bulk black holes.

7. Outlook and Applications

We have seen how holographic braneworlds provide a means to exactly study the
problem of semi-classical backreaction. In particular, there is a precise construction of
quantum-corrected black holes and an exploration of their horizon thermodynamics. But
this is only a small cross-section of the utility of braneworld holography. Phenomenological
considerations aside—a historical motivation to study braneworld physics—holographic
braneworlds have a number of applications, particularly in the interdisciplinary field of
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holographic information theory. Below, we very briefly give a non-exhaustive and biased
list of applications of quantum black holes and, more broadly, holographic braneworlds.

7.1. Applications
7.1.1. Holographic Entanglement and Gravitational Entropy

For a quantum mechanical system in state ρ, the von Neumann entropy is defined as

SvN ≡ −tr [ρ log ρ]. (293)

If the system is in a pure quantum state, the entropy (293) is identically zero. When the
system comprises smaller subsystems, SvN quantifies how entangled the subsystems are.
In quantum field theory, subsystems are often chosen to be spatial regions Σ of the entire
quantum system. Intriguingly, for ground states of local Hamiltonians, the entanglement
entropy, while divergent in the ultraviolet, generally adheres to an area law (in d + 1-
spacetime dimensions)

SvN = c0
Area[∂Σ]

ϵd−1
+ ..., (294)

where c0 refers to the constant, ϵ refers to the UV regulator, and the ellipsis refers to
subleading UV divergences whose precise terms are state-dependent. Thus, SvN scales
with the boundary area of the subsystem rather than its volume, which is in contrast to
the volume law typically observed in thermal states. The entropy–area relation (294) is
clearly reminiscent of the Bekenstein–Hawking entropy formula for black holes, suggesting
black hole entropy arises from vacuum entanglement due to quantum fields across the
horizon, tracing out the interior degrees of freedom [131,216–220]. In particular, in scenarios
of gravity induced due to matter loops [221,222], the Bekenstein–Hawking entropy is
solely due to entanglement due to vacuum fluctuations [223–225], where the UV-cutoff
dependence can be absorbed in a renormalization of Newton’s constant [130].

Gravitational entropy, therefore, is imbued with an information–theoretic character.
This is crystallized in AdS/CFT, where the entanglement entropy of a holographic CFT can
be computed using the Ryu–Takayanagi (RT) formula [226,227]

SvN
A =

Area(γ)

4G
. (295)

Here, γ denotes a codimension-2 minimal surface in the bulk asymptotically AdS space,
anchored to region A on the AdS boundary, such that ∂γ = ∂A and γ is homologous
to A. The RT prescription generalizes the Bekenstein–Hawking entropy formula for
black holes: a black hole horizon is an example of a minimal surface, and the bulk AdS
spacetime need not contain a black hole56. As such, it has led to numerous insights into
gravitational physics, notably in understanding the emergence of gravity from quantum
entanglement [233–238]57 following analogous insights from coarse-grained thermody-
namics [240–245].

When the bulk theory includes higher curvature and semi-classical quantum correc-
tions, the RT Formula (295) generalizes to the following extremization prescription [246]

SvN
A = min

γ

{

ext
γ

[

Area(γ)

4G
+ SDC(γ) + Sbulk

A (Σγ)

]}

. (296)

Here, SDC denotes the Dong–Camps anomaly terms [247,248] analogous to the Wald
corrections to the Bekenstein–Hawking entropy, and Sbulk

A is the entanglement entropy of
bulk fields across the entanglement wedge of A, Σγ, such that the quantity in brackets is
recognized to be the generalized entropy Sgen(γ). Further, in the event there are multiple
extremal surfaces, the prescription says the von Neumann entropy SvN

A is given by choosing
the extremal surface which minimizes the generalized entropy Sgen(γ). Notably, the
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von Neumann entropy can undergo phase transitions as extremal surface configurations
exchange dominance.

Holographic braneworlds provide additional evidence that gravitational entropy can
be interpreted as entanglement entropy. Indeed, the gravity on the brane is induced from
the cutoff CFT58. In combination with the RT prescription, it readily follows that the
area entropy of black holes localized on an ETW brane is exactly equal to entanglement
entropy [55]—the minimal surface coincides with the bulk black hole horizon intersecting
the brane. Additionally, the braneworld set-up naturally resolves various subtleties in
identifying Bekenstein–Hawking and entanglement entropies [251]. In particular, the UV
cutoff ϵ for the CFT—equal to the bulk AdS length scale Ld+1— fixes the number of species
of the dual CFT such that Newton’s constant is correctly reproduced (cf. Equation (203)),
thus resolving the ‘species problem’. Heuristically, consider bulk AdS4 with a black hole.
The contribution of a single field to the CFT3 entanglement entropy is of the order SvN

A ∼ c0
L4

.

Then, for a large number of fields c3 = L2
4/G4 ∼ L4/G3, the total entanglement entropy is

SvN
A = c3c0/L4 ∼ c0/G3.

7.1.2. The Entropy of Hawking Radiation

Hawking’s discovery that black holes emit thermal radiation leads to the information
puzzle [252]: do black holes evolve unitarily or not? According to Hawking’s original calcu-
lation, the fine-grained von Neumann entropy of radiation Srad

vN grows in time indefinitely,
paradoxically surpassing the coarse-grained entropy of the black hole. Alternatively, if the
black hole plus radiation obeys standard quantum principles, the radiation entropy instead
follows a unitary Page curve [253], never exceeding the black hole entropy. Previously
thought to be a problem only quantum gravity would solve, the paradox can be addressed
in semi-classical gravity for which the extremization prescription (296) plays a prominent
role [254–256]. In particular, a variant of (296) known as the ‘island formula’,

SvN(ΣX) = min
X

{

ext
X

[

Area(X)

4G
+ SDC(X) + Ssc

vN(ΣX)

]}

, (297)

can be used to explicitly compute unitary Page curves in evaporating or eternal black hole
backgrounds. Here, SvN(ΣX) is the fine-grained entropy in the full quantum theory, Ssc

vN is
the von Neumann entropy of bulk quantum fields in the semi-classical approximation, and
ΣX is a codimension-1 slice bounded by a codimension-2 quantum extremal surface (QES)
X and a cutoff surface. Generally, ΣX is disconnected, ΣX = ΣR ∪ I, where ΣR is the region
outside the black hole collecting radiation and I is an ‘island’ (with X = ∂I) lying primarily
inside the black hole.

Originally achieved for models of two-dimensional dilaton gravity59, holographic
braneworlds confirm unitary Page curves arise in higher-dimensional gravity [65,260]. This
is accomplished using ‘double holography’ (recall the description before Section 3.4). For
simplicity, consider the boundary perspective, i.e., the vacuum state of the d-dimensional
boundary CFT on R× Sd−1 coupled to a (d − 1)-dimensional conformal defect along the
equator of the sphere Sd−1. The entanglement entropy of the holographic boundary CFT
can be computed using the RT prescription. Taking the bulk to be AdSd+1 with an AdSd
Dvali–Gabadadze–Porrati (DGP) brane [261] (where the brane action includes, e.g., its own
Einstein–Hilbert term), the entropy of the boundary CFT vacuum reduced to a boundary
region A is given by [54]

SvN(A) = min
γ

{

ext
γ

[

Area(γ)

4Gd+1
+

Area(γ ∩ brane)

4Gd

]}

, (298)

for bulk extremal surface γ homologous to A and ∂A = ∂γ. The first term on the right-hand
side is the familiar RT formula, while the second term is the gravitational contribution that
arises when the bulk RT surface intersects the DGP brane. There are topologically distinct
configurations for the bulk extremal surface γ: surfaces γ which do not intersect the brane
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and (ii) surfaces that intersect the brane; only with (ii) does the second term in the brackets
contribute. As both are candidate extremal surfaces, the entropy SvN(A) is computed using
the surface which gives the smallest value on the right-hand side (298). Transitions between
‘disconnected’ and ‘connected’ phases will occur depending on the size of γ and the brane
tension and gravitational coupling.

The holographic entropy Formula (298) can be understood as a relation between the
boundary and bulk perspectives. It is through the brane perspective that the right-hand
side can be reinterpreted as the QES or island formula60. Qualitatively, the disconnected
phase corresponds to the situation where, according to beings confined to the brane,
no quantum extremal islands are formed, while in the connected phase, extremal islands
appear61. By applying this doubly holographic reasoning to higher-dimensional topological
black holes [65], black strings [264,265], and de Sitter space [82,266], the prescription (298)
yields unitary Page curves except in cases where the horizon is extremal with a vanishing
temperature.

Notably, thus far, all 3 + 1-dimensional braneworld models that have been explored
and exhibit island formation are described by massive gravity theories; islands disappear in
the limit at which the graviton on the brane becomes massless [267] (see, e.g., [268] for a
review). Further, long-range gravity theories have that the energy of an excitation localized
to the island can be detected outside the island, which is inconsistent with the principle
that operators in an entanglement wedge commute with operators in its complement [269].
Combined, this suggests the phenomenon of island formation is a feature of massive gravity,
and it is even inconsistent in massless theories.

7.1.3. Holographic Complexity

Quantum complexity is another useful diagnostic in information theory. Loosely
speaking, complexity measures the difficulty of constructing an arbitrary quantum state
from a reference state using a specific set of resources. This concept has proven highly
valuable in computer science and quantum computation, where the resources are given
by some elementary operations (‘gates’) and the mapping between reference and target
states defines a quantum circuit. Complexity has also been fruitful in gravitational physics,
particularly as a tool to quantify the information processing of black holes. This application
touches upon the foundational aspects of gravity and its interplay with quantum mechanics
with some evidence suggesting that gravity itself may emerge from the minimization of
complexity —that is, from efficient quantum computation [270–276].

Historically, computational complexity was proposed as a new entry in the holo-
graphic dictionary to address the puzzle of why black hole interiors continue to grow
after scrambling [277]. Various conjectures for its precise duality have been proposed with
the initial contenders being ‘complexity=volume’ (CV) [278,279] and ‘complexity=action’
(CA) [280,281]. CV posits that the complexity of a CFT state |Ψ⟩ defined on a Cauchy slice
σ is given by the maximal volume of a codimension-one bulk surface Σ anchored on the
boundary slice σ,

CV(|Ψ⟩) = Vol(Σ)

GL
. (299)

On the other hand, CA asserts that complexity is defined by the on-shell gravitational
action I evaluated within a codimension-zero bulk region known as the Wheeler–deWitt
(WdW) patch W , anchored at the given boundary slice σ,

CA(|Ψ⟩) = I(W)

π
. (300)

Conceptually, CV is arguably more intuitive than CA, resembling the computational
complexity of a tensor network circuit that captures the entanglement structure of the CFT
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state [282–285]. For high-temperature thermofield double states, however, CV and CA
complexities have the same late time behavior

d CV,A

dt

∣

∣

∣

∣

t≫β

∼ TS, (301)

which is consistent with the expectation of complexity in such states.
More generally, an infinite number of gravitational duals to holographic complexity

are technically possible [286,287]. Dubbed ‘complexity=anything’ (CAny), these general-
izations are designed to encapsulate key aspects of complexity, including the anticipated
linear growth following scrambling and the observed ‘switchback effect’ —a delay in the
onset of linear growth caused by perturbations. While rigorous proof connecting any of
these proposals to a concrete field theory definition of complexity is currently lacking, the
notion is that they may be associated with ambiguities inherent in its definition. These
ambiguities include the arbitrary choice of elementary gates, cost factors, and the reference
state, among others.

Aspects of holographic complexity proposals have been explored using
braneworlds [82,91,288–290], including the influence of backreaction effects using the
static quantum BTZ black hole as a guide [91]. In summary,

• In the braneworld effective theory, CV admits a semi-classical expansion of the form

CV(|Ψ⟩) = Vol(Σ)

GL
+

δVol(Σ)

GL
+ V(Σ) + Cbulk

V (|ϕ⟩) + . . . , (302)

with the leading term being the complexity of the classical black hole, δVol(Σ) is
the change in the volume due to the quantum backreaction, V(Σ) represents higher
curvature terms akin to the Wald corrections to the Bekentein–Hawking entropy, and
Cbulk

V (|ϕ⟩) is the complexity of the bulk state |ϕ⟩ defined on Σ. Note that the structure
of (302) resembles an expansion of the QES prescription (296). Furthermore, (302) does
satisfy the late time growth (301), upon replacing S with the generalized entropy Sgen.

• Conversely, CA does not simplify to the classical three-dimensional CA proposal plus
corrections. The action involves cancellations among the bulk, boundary, and joint
terms, making the late-time growth highly sensitive to quantum effects. As a result,
the late time behavior (301) is not reproduced. This discrepancy arises because the
WdW patch extends to the singularity, whose structure is significantly altered by
quantum backreaction, leading to substantial quantum contributions to CA.

Analogous features have been observed for the rotating quantum BTZ [289]. Based
on these preliminary studies, quantum black holes advocate the need for a semi-classical
generalization of holographic complexity62.

7.1.4. Singularity Probes and Quantum Cosmic Censorship

Black hole singularities reflect the fact that classical gravity is incomplete. Further, the
Hawking–Penrose singularity theorems imply their inevitability. Due to their unphysical
consequences, Penrose conjectured there must exist a type of cosmic censorship [158],
known as weak cosmic censorship, where a horizon must shroud the singularity from
null infinity. Singularities, moreover, mark a lack of predictive power in an otherwise
classically deterministic theory. The strong cosmic censorship conjecture [292,293], which is
independent of weak cosmic censorship, asserts classical general relativity should remain
deterministic. In technical terms, for generic smooth initial data, the Cauchy evolution
of a Cauchy hypersurface is inextendible beyond the Cauchy horizon. For example, for
charged and rotating black holes, whose inner horizons are Cauchy horizons, the past
timelike singularity heralds a lack of predictivity beyond the inner horizon. Conceivably,
however, the infinitely blue-shifted energy of a particle entering from the exterior of the
black hole should result in a large backreaction so as to turn the smooth (regular) inner
Cauchy horizon into a non-smooth barrier [294,295].
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It is natural to wonder whether either form of cosmic censorship holds when semi-
classical backreaction effects are accounted for. Thus far, there is agreement that the expec-
tation value of the quantum stress tensor of a free scalar field diverges at the inner horizon
of a RN or Kerr black hole (in D = d + 1 = 4) on approach from the exterior [296–299],
suggesting a type of strong cosmic censorship. A notable exception, however, is the classical
rotating BTZ black hole, where the backreaction is mild enough such that the inner horizon
does not become singular, indicating a violation in strong cosmic censorship [298,299]63.
A limitation of these works is that the analysis was only accomplished at leading order
in backreaction. The rotating quantum BTZ black hole, on the other hand, which ex-
actly accounts for all orders of backreaction, has essentially the structure of an AdS4–Kerr
black hole. Consequently, as argued in [300], and verified in [301] using the techniques
of [299], rotating quantum BTZ has a singular inner horizon. Thus, for the BTZ black hole,
strong cosmic censorship still holds once backreaction effects beyond leading order are
accounted for.

There is an intuitive sense that quantum effects induce a weak form of cosmic cen-
sorship. Indeed, backreaction of the Casimir stress tensor modifies the conical (A)dS3

and Mink3 defect geometries such that the naked singularities become hidden behind a
horizon. A standard test of (classical) weak cosmic censorship is to try to overspin or over-
charge near-extremal black holes such that they shed their horizons. So far, Kerr–Newman
black holes do not [302,303]. Likewise, the rotating quantum BTZ black hole cannot be
overspun [176].

Another test of weak cosmic censorship is the conjectured classical Penrose inequal-
ity [304]. Loosely speaking, assuming there are no naked singularities and collapsing matter
settles to a Kerr black hole, then the total mass M for a D ≥ 4-dimensional asymptotically
flat [305–308] or AdS spacetime [309,310] with a marginally trapped surface σ is bounded
below by the area A[σ]

16πGD M
(D − 2)ΩD−2

≥
(

A[σ]

ΩD−2

)
D−3
D−2

+ ℓ
−2
D

(

A[σ]

ΩD−2

)
D−1
D−2

. (303)

Here, GD and ℓD denote the D-dimensional Newton’s constant and curvature scale, re-
spectively, and Ωn ≡ 2π(n+1)/2/Γ[(n + 1)/2] is the volume of a unit n-sphere. In the
limit ℓD → ∞, the Penrose inequality for asymptotically flat space is recovered. While
the Penrose inequality has not been proven in general, any spacetime violating (303) is
believed to be a counterexample to weak cosmic censorship. Notably, the classical Penrose
inequality can be violated at leading order in perturbative backreaction [311,312]. This
motivates the need for a semi-classical generalization of (303), i.e., a quantum Penrose
inequality [311,312]

16πGD M
(D − 2)ΩD−2

≥
(

4GDSgen

ΩD−2

)
D−3
D−2

+ ℓ
−2
D

(

4GDSgen

ΩD−2

)
D−1
D−2

(304)

where the area A[σ] has been replaced for the generalized entropy Sgen associated with a
(quantum) marginally trapped surface. To test whether the quantum inequality (304) holds
even for large backreaction effects, a three-dimensional inequality was proposed in [135]

8πG3(M − Mcas) ≥ ℓ
−2
3

(

4G3Sgen

2π

)2

, (305)

where Mcas = −1/8G3 is the Casimir energy of backreacting quantum fields. All static and
rotating quantum BTZ black holes were found to satisfy (305) at all orders of backreaction.
This implies the existence of weak quantum cosmic censorship64 in non-perturbative
semi-classical gravity for which the quantum Penrose inequality would be a logical input.
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7.1.5. Imprints of Quantum Backreaction Beyond Thermal Equilibrium

Realistic, astrophysical black holes are generally thought to be dynamical. Such non-
stationary black holes lack an equilibrium thermodynamic description, and their horizons
change shape and oscillate. One way to explore black hole dynamics is to consider (small)
time-dependent perturbations to static or stationary black holes. Such perturbations display
characteristic patterns of damped oscillations, dubbed quasi-normal modes (QNMs), that
capture deviations away from equilibrium [314,315]. Furthermore, certain quasi-normal
resonances serve as black hole signatures in gravitational wave astronomy.

Technically, QNMs are derived by examining the fluctuation equations of gauge-
invariant perturbations. The simplest example involves the study of probe fields. For exam-
ple, for a probe scalar field ϕ, the fluctuation equation is given by the Klein–Gordon equation,

(□+ m2)ϕ = 0, (306)

where ϕ is subsequently decomposed intro Fourier and harmonic modes, ϕ = eiωtYm
l (Ω)Φ(r).

The characteristic quasi-normal mode frequencies ω that solve the fluctuation equation
are generally complex, ω = ωR − iωI , with a negative imaginary part indicating the decay
of perturbations. For holographic AdS black holes, quasi-normal modes appear as poles
in relevant retarded two-point correlators of the dual CFT, providing a field-theoretic
characterization of black holes out of thermal equilibrium [316].

It is natural to wonder how a backreaction modifies characteristic traits of black hole
dynamics. A detailed study of QNMs of the quantum BTZ black hole provides some
preliminary insights [317]. Considering probe fields of brane localized matter, dual to CFT
operators with conformal dimension ∆ ∈ [1, 2] (accessible via the standard quantization)
and spin s = 0,±1/2, it was found that the QNMs and their overtones exhibit qualitatively
different behavior depending on the branch of the qBTZ solution selected. This distinction
can be used to differentiate between the types of singularities cloaked by a horizon: dressed
conical singularities versus genuine quantum-corrected black holes. Furthermore, the
magnitude ωI of the imaginary part of the leading mode generally decreases with the
strength of backreaction for the quantum-corrected black hole branch. This implies the
thermalization time, tth ∼ 1/ωI , defined by the late-time decay of two-point correlators
⟨O(0)O(t)⟩ ∼ et/tth , accelerates due to semi-classical effects. This phenomenon can be
explained from the perspective of the dual CFT: quantum matter in the bulk with a large
central charge corresponds to coupling a large number of light operators in the boundary
CFT, increasing the number of degrees of freedom a small perturbation needs to excite
before thermalization is reached.

The pole structure of retarded two-point CFT correlators dual to quantum BTZ QNMs,
moreover, exhibits a markedly different behavior than its classical counterpart [317]. This
includes, for example, ‘pole-skipping’, i.e., points in momentum space where the retarded
Green’s function is not unique. Specifically, for the quantum BTZ black hole, the mo-
mentum of the pole-skipping points exhibits a non-trivial dependence on the parameter
controlling the strength of backreaction. This implies, given the connection between hy-
drodynamics and chaos in holographic CFTs [318,319], the chaotic dynamics of black holes
are dramatically altered when backreaction is accounted for65. Further, by studying pole
collisions in complex momentum space, quantum corrections have a significant impact on
the analytic structure of the poles of retarded Green’s functions. In particular, the quantum
corrections intertwine the tower of modes in a series of level-crossing events noticeably
distinct from the level-touching events observed in the classical BTZ geometry [322].
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Appendix A. Conventions

Here, we summarize our conventions for bulk and hypersurface geometry. We also
describe the variational principle with Neumann boundary conditions, leading to the brane
equations of motion.

Appendix A.1. Background Geometry

Let M be a d + 1 dimensional spacetime endowed with metric ĝab with coordinates
xa on M. We take a ‘mostly plus’ convention for Lorentzian signature. The Riemann
curvature tensor with respect to ĝab is

Rc
dab = ∂aΓc

bd − ∂bΓc
ad + Γc

a f Γ
f
bd − Γc

b f Γ
f
ad. (A1)

Appendix A.2. Hypersurface Geometry

Let Σ denote a timelike or spacelike d-dimensional hypersurface embedded in M. The
hypersurface is defined by a restriction on coordinates xa, i.e., it introduces a scalar function
Φ(xa) which obeys the constraint Φ(xa) = 0. The unit normal na to this hypersurface is
na = ϵN ∂aΦ, with ϵ ≡ n2 = nana = ±1, where ϵ = +1 indicates the hypersurface is
timelike, ϵ = −1 has Σ spacelike, and N is a normalization, N = |ĝab∂aΦ∂bΦ|−1/2. Denote
the induced metric hij on Σ and its inverse as hij, which are defined by

hij ≡ ĝabea
i eb

j , ei
a ≡ hijGabeb

j , (A2)

for vectors ea
i ≡ dxa

dyi tangent to curves contained in Σ and coordinates yi intrinsic to Σ. By

definition, naea
i = 0. In terms of the background metric ĝab,

ĝab = ϵnanb + hije
i
aej

b = ϵnanb + hab, hab ≡ hije
i
aej

b, (A3)

where hab is the projector onto hypersurfaces orthogonal to na. Similarly, hab = ĝab − ϵnanb.
Note habna = habnb = 0.

Define the extrinsic curvature Kij as

Kij ≡ (∇bna)ea
i eb

j . (A4)

The trace of the extrinsic curvature is

K = hijKij = ∇ana. (A5)

Equivalently, the extrinsic curvature with respect to bulk coordinates is

Kab = ei
aej

bKij = −hc
ahd

b∇cnd. (A6)
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Using the decomposition (A3), it follows

Kab = ∇anb − ϵnaab, (A7)

where ab is the acceleration for the integral curves of the unit normal nb, ab = na∇anb.
Since nbab = 0, then Kabnb = nb∇anb = 0. Further, ab∇anb = −nb∇aab, from which it
follows K = habKab = ĝabKab.

Appendix A.3. Neumann Boundary Conditions and the Brane Equations of Motion

With these conventions, the Einstein–Hilbert action supplemented with a Gibbons–
Hawking–York (GHY) boundary term is

I =
1

16πGN

∫

M
dd+1x

√

−ĝ(R − 2Λ) +
1

8πGN

∫

∂M
ddξ
√

|h|ϵK, (A8)

where here, GN is Newton’s constant in d + 1-dimensions. The GHY term makes the
variational problem well posed, assuming the metric obeys Dirichlet or Neumann (see
below) boundary conditions at boundary ∂M. Indeed, a standard computation shows the
metric variation of the Einstein–Hilbert term is (upon imposing the Einstein equations of
motion)

16πGNδIEH =
∮

∂M
ddy
√

|h|ϵ(Kab − Khab)δhab − 2δ

(

∮

∂M
ddy
√

|h|ϵK
)

, (A9)

where we have assumed the manifold M is void of codimension-2 corners. Thus,

δI =
1

16πGN

∮

∂M
ddy
√

|h|ϵ(Kab − Khab)δhab. (A10)

The action is stationary when either Dirichlet boundary conditions are imposed, δhab|∂M =
0, or Neumann boundary conditions are imposed

(Kab − Khab)|∂M = 0. (A11)

Next, consider introducing a brane of tension T at ∂M, which is characterized by a
brane action,

Ibrane = − T
8πGN

∫

∂M
ddy
√

|h|. (A12)

The total action I + Ibrane will be stationary provided the bulk Einstein equations hold and
the Neumann boundary condition (A11) is modified to

ϵKab|∂M = (ϵK − T)hab|∂M, (A13)

as is referred to as the brane equations of motion. Taking the trace, the tension is

T =
ϵ(d − 1)

d
K, (A14)

such that the brane equation of motion (A13) becomes

ϵKab|∂M =
T

(d − 1)
hab|∂M. (A15)

Appendix B. Holographic Regularization: A Detailed Summary

Here, we review holographic renormalization á la [19] and derive the induced gravity
action on the brane. For a less brute-force and algorithmic approach of deriving the effective
action, see, e.g. [17,21,51,52].
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Appendix B.1. Fefferman-Graham Expansion and Einstein’s Equations

Following [19], express the asymptotically AdSd+1 bulk metric ĝab in a Fefferman–
Graham (FG) expansion [48,49] near the asymptotic boundary

ds2
d+1 =

L2

4ρ2
dρ2 +

L2

ρ
gij(ρ, x)dxidxj, (A16)

where L is the AdSd+1 curvature scale of the d + 1-dimensional bulk, and the asymptotic
boundary is located at ρ = 066. Here, we use the hat notation to denote the bulk quantities,
e.g., the bulk metric is represented by ĝab. The d-dimensional boundary submanifold has
metric ĝij(ρ, x) ≡ hij(ρ, x) = (L2/ρ)gij(ρ, x).

The non-vanishing Christoffel symbols with respect to metric (A16) are

Γ̂
ρ
ρρ = −1

ρ
, Γ̂

ρ
ij = 2

(

gij − ρ∂ρgij
)

,

Γ̂k
ρi =

1

2ρ
[−δk

i + gjkρ∂ρgij], Γ̂k
ij = Γk

ij[g].
(A17)

Consequently, the non-zero components of the Riemann curvature tensor are67

R̂ρ
jρk = −2ρ∂2

ρgjk −
1

ρ
gjk + ρgil(∂ρgjl)(∂ρgik),

R̂ρ
jkl = 2ρ(∇l∂ρgjk −∇k∂ρgjl),

R̂i
jkl = Ri

jkl [g] +
1

ρ
[−δi

kgjl + ρδi
k∂ρgjl + ρgimgjl∂ρgkm − ρ2gim(∂ρgjl)(∂ρgkm)]

− 1

ρ
[−δi

l gjk + ρδi
l∂ρgjk + ρgimgjk∂ρglm − ρ2gim(∂ρgjk)(∂ρglm)],

(A18)

where ∇i refers to the covariant derivative compatible with gij. It is also useful to know

R̂ijkl =
L2

ρ
Rijkl [g]−

L2

ρ2
(gikgjl − gil gjk) +

L2

ρ
[gik∂ρgjl + gjl∂ρgik − gil∂ρgjk − gjk∂ρgil ]

+ L2[(∂ρgjk)(∂ρgil)− (∂ρgjl)(∂ρgik)].

(A19)

Let us now work out the form of Einstein’s equations near the conformal boundary.
One route is to explicitly compute the Ricci tensor and scalar. Alternatively, we can use the
fact that the bulk spacetime, asymptotically, has a vanishing Weyl tensor such that

R̂abcd = − 1

L2
[ĝac ĝbd − ĝad ĝbc] (A20)

near the boundary. In summary, we find

Rijkl [g] = gil g
′
jk + gjkg′il − gikg′jl − gjl g

′
ik + ρ(g′jl g

′
ik − g′jkg′il),

g′′jk −
1

2
gil g′jl g

′
ik = 0,

∇l g
′
jk −∇kg′jl = 0,

(A21)
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where we introduced the notation ∂ρgij ≡ g′ij. Our expressions match Equations (7)–(9)

of [50]68. Equivalently, by contracting (A21) with gij, one often expresses Einstein’s equa-
tions as

(

Ric[g] + (d − 2)g′ + Tr(g−1g′)g + ρ(2g′g−1g′ − 2g′′ − Tr(g−1g′)g′)
)

jl
= 0,

Tr(g−1g′′)− 1

2
Tr(g−1g′g−1g′) = 0,

∇lTr(g−1g′)−∇jg′jl = 0,

(A22)

matching Equation (2.5) of [19]69. Deriving the Einstein equations in this relied on using
(A20), i.e., that the Weyl tensor vanishes near the boundary. Note that for d = 2, (A20)
holds everywhere.

Appendix B.2. Perturbatively Solving Einstein’s Equations

With Einstein’s equations in hand, we now want to solve them perturbatively near the
boundary ρ = 0. To this end, we expand the metric gij(x, ρ) as

g(x, ρ) = g(0)(x) + ρg(2)(x) + ρ2g(4)(x) + ... (d odd),

g(x, ρ) = g(0)(x) + ρg(2)(x) + ... + ρd/2g(d)(x) + ρd/2(log ρ)h(d)(x) +O(ρd/2+1) (d even).
(A23)

As we will see, the tensors g(k) are given by some covariant expression with respect to the
boundary metric g(0), its Riemann tensor, and their derivatives. Additionally, the subscript
or superscript in g(k) indicates the number of derivatives with respect to coordinates

xi, e.g., g(2) contains two derivatives, g(4) contains four derivatives, and so forth. The
basic algorithm for solving Einstein’s equations order by order in ρ is to differentiate
Einstein’s Equation (A21) with respect to ρ and then take the limit when ρ = 0, recasting
the coefficients g(k ̸=0) in terms of g(0). Notably, for even d, this procedure would have
broken down at order d/2 had the logarithm proportional to h(d) not been introduced
(A23). Further, the computation differs for d = 2 and d > 2 in that the expansion truncates
in d = 2. Below, we will focus on the procedure for d > 2 (see [19,50,73] for the d = 2 case).

Coefficients g(k) for k ̸= d: We can use the first of Einstein’s equations in (A21) to cast
coefficients g(k) for k ̸= d solely in terms of covariant expressions of g(0). Begin with g(2)jk.

Substitute g(ρ, x) = g(0) + ρg(2) + ρ2g(4) + ... into the first expression in (A21), giving

Rijkl = g(0)il g(2)jk + g(0)jk g(2)il − g(0)ik g(2)jl − g(0)jl g(2)ik + ρ(g(2)il g(2)jk − g(2)jl g(2)ik ) +O(ρ2) + .... (A24)

Now, recall that in the limit ρ → 0, the Weyl tensor Wijkl on the boundary vanishes. Using
the following useful expression for the Weyl tensor in d-dimensions,

Wijkl = Rijkl + (Pjkgil + Pil gjk − Pikgjl − Pjl gik), (A25)

where Pjk is the Schouten tensor,

Pjk[g] =
1

(d − 2)

(

Rjk[g]−
1

2(d − 1)
R[g]gjk

)

, (A26)

it follows Wijkl = 0 implies

Rijkl = −(Pjkgil + Pil gjk − Pikgjl − Pjl gik). (A27)
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Thus, in the limit ρ → 0,

lim
ρ→0

Rijkl = −(Pjk[g(0)]g
(0)
il + Pil [g(0)]g

(0)
jk − Pik[g(0)]g

(0)
jl − Pjl [g(0)]g

(0)
ik ), (A28)

with

Pjk[g(0)] =
1

(d − 2)

(

Rjk[g(0)]−
1

2(d − 1)
R[g(0)]g

(0)
jk

)

. (A29)

Here, we used that limρ→0 Rij[g] = Rij[g(0)], which is easy to show since Rij, using the
expansion in terms of g(ρ, x) will vanish for any term proportional to g(k) for k ̸= 0.

Substituting limρ→0 Rijkl (A28) into (A24) gives

g(0)il g(2)jk + g(0)jk g(2)il − g(0)ik g(2)jl − g(0)jl g(2)ik = −(Pjk[g(0)]g
(0)
il + Pil [g(0)]g

(0)
jk − Pik[g(0)]g

(0)
jl

− Pjl [g(0)]g
(0)
ik ).

(A30)

Matching like terms, we find

g(2)jk = −Pjk[g(0)] = − 1

(d − 2)

(

Rjk[g(0)]−
1

2(d − 1)
R[g(0)]g

(0)
jk

)

, (A31)

recovering Equation (A.1) of [19] (up to an overall sign due to our convention). Note that

this same argument also reveals h(2)jk = 0. To go to higher order, e.g., g(4)ij one takes ρ

derivatives of Rijkl and then takes the limit ρ → 0.

Trace of g(n): The third Einstein equation in (A21) yields the trace of g(n) for any n. For
example, substituting in the expansion (A23) up to g(4) and taking the limit ρ → 0 gives

2g(4)jk − 1

2
g(2)jl gml g(2)km = 0 ⇒ g(4)jk =

1

4
g(2)jl gml g(2)km . (A32)

Taking the trace with by contracting with gjk, we are led to

Trg(4) =
1

4
Tr(g2

(2)), (A33)

where here, Trg(4) = gij
(0)

g(4)ij and matches Equation (A.2) in [19].

To reach the next order, write g(ρ, x) = g(0) + ρg(2) + ρ2g(4) + ρ3g(6), and take the
derivative of the second Einstein Equation (A21) with respect to ρ and then set ρ → 0,
giving

6g(6)jk − 1

2

[

4g(4)ij gil g(2)lk − g(2)ij g(2)lk g(2)mngimgnl
]

= 0. (A34)

Taking the trace and simplifying gives

Trg(6) =
2

3
Tr(g(4)g(2))−

1

6
Tr(g3

(2)). (A35)

Following this procedure, it is also straightforward to show that h(d) is traceless, i.e.,

gij
(0)

h(0)ij = 0. Likewise, gij
(0)

g(3)ij = gij
(0)

g(5)ij = 0.

Covariant divergence of g(k): The second of Einstein’s Equation (A21) fixes the covariant
divergence of g(k) for any k. For example, substituting expansion (A23) up to order O(ρ)
and taking the ρ → 0 limit of both sides gives

lim
ρ→0

∇jg′jl = ∇ig(2)ij = lim
ρ→0

∇j(glkg′lk) = ∇j(gkl
(0)g

(2)
kl ) = ∇i(g(0)ij gkl

(0)g
(2)
kl ). (A36)
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Once the limit has been taken, it is understood that the covariant derivative is compatible
with g(0). More compactly,

∇ig(2)ij = ∇i(g(0)ijTrg(2)), (A37)

matching the first expression in Equation (A.4) of [19]. To get to the next order, we take a ρ
derivative of the equation of motion, keeping in mind that the covariant derivative itself
has ρ dependence inside and then take the limit ρ → 0 [19].

Appendix B.3. Regulated Bulk Action

Thus far, we have shown, given a conformal structure at infinity, and the metric can
be determined asymptotically up to order ρd/2, i.e., the coefficient g(d). The aim now is to
study the IR divergent structure of the bulk theory gravity, which is characterized by the
action

Ibulk =
1

16πG

[

∫

M
dd+1x

√

−ĝ
(

R̂ +
d(d − 1)

L2

)

+ 2
∫

∂M
ddx

√
hK
]

, (A38)

where K is the trace of the extrinsic curvature of the boundary submanifold ∂M. Here,
it is understood that G and L refer to the bulk Newton’s constant and AdS curvature
scale, respectively. As stated in the main text, the on-shell bulk gravity action will have IR
divergences near the boundary ρ = 0. To regulate IR divergences of the theory, introduce an
IR cutoff surface at ρ = ϵ near the asymptotic boundary, where the preceding analysis has
taken place. Thus, in the bulk contribution, we consider the integration region ϵ ≤ ρ ≤ ρc,
where ρc is some value such that ρc ≫ ϵ70. The GHY boundary term is simply evaluated at
ρ = ϵ. Thence, the IR regulated bulk action is

Ireg
bulk =

1

16πG

[

∫

ρ≥ϵ
dd+1x

√

−ĝ
(

R̂ +
d(d − 1)

L2

)

+ 2
∫

∂M
ddx

√
hK|ρ=ϵ

]

, (A39)

To evaluate the bulk contribution, we use that on-shell R̂ = −d(d + 1)/L2 near the bound-
ary. Consequently, the bulk contribution becomes

∫

ddx
∫

ρ≥ϵ
dρ

Ld+1

2ρd/2+1

(

−2d
L2

)

√

g(ρ, x) =
∫

ddx
∫

ρ≥ϵ
dρ

dLd−1

ρd/2+1

√

g(ρ, x). (A40)

The form of the boundary action requires a little more work. We have a hypersurface
equation defined by Φ ≡ ρ − ϵ = 0 with unit normal na = [ĝab(∂aΦ)(∂bΦ)]−1/2∂aΦ,

whose only non-zero component is nρ = 2ρ
L . The components of the extrinsic curvature

Kab = ∇̂anb are easily worked out to be

Kρρ = Kiρ = Kρi = 0, Kij = − L
ρ
(gij − ρ∂ρgij), (A41)

where we used the Christoffel symbols (A17). The trace K is

K = ĝijKij = − 1

L

(

d − ρgij∂ρgij

)

. (A42)

Also, note
√

h = Ld

ρd/2

√

g(ρ, x). Therefore, the GHY term becomes

2
∫

∂M
ddx

√
hK =

∫

∂M
ddx

[

−2Ld−1

ρd/2

√

g(x, ρ)
(

d − ρgij∂ρgij

)

]

ρ=ϵ

=
∫

∂M
ddx

Ld−1

ρd/2

(

−2d
√

g(x, ρ) + 2ρ
√

g(x, ρ)gij∂ρgij

)

ρ=ϵ

=
∫

∂M
ddx

Ld−1

ρd/2

(

−2d
√

g(x, ρ) + 4ρ∂ρ

√

g(x, ρ)

)

ρ=ϵ

,

(A43)
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where to arrive to the final line, we used that δ
√

g = 1
2

√
ggijδgij.

Combining (A40) and (A43), the (on-shell) regulated bulk action to evaluate is

Ireg
bulk =

Ld−1

16πG

∫

ddx

[

∫

ρ≥ϵ
dρ

d
ρd/2+1

√

g(ρ, x) +
1

ρd/2

(

−2d
√

g(x, ρ) + 4ρ∂ρ

√

g(x, ρ)

)

ρ=ϵ

]

. (A44)

All that remains is an evaluation of the metric determinant
√

g(ρ, x) and performing the
bulk integral. To evaluate the determinant, we apply perturbation theory, which says for

gij = g(0)ij + qij, where qij is small compared to g(0)ij , then

√
g =

√

g(0)

(

1 +
1

2
qi

i +
1

8
qi

iq
j
j −

1

4
qi

jq
j
i

)

. (A45)

For d > 2, qij = ρg(2)ij + ρ2g(4)ij + ..., treating ρ small. Explicitly,

qi
i = gij

(0)
qij = gij

(0)

(

ρg(2)ij + ρ2g(4)ij + ...
)

= ρTr(g(2)) + ρ2Tr(g(4)) + ..., (A46)

such that
qi

iq
j
j = ρ2(Trg(2))

2 + ρ3(Trg(2))(Trg(4)) + ..., (A47)

and
qi

jq
j
i = gik

(0)g
jl
(0)

[

ρ2g(2)kj g(2)li + ρ3(g(4)kj g(2)li + g(2)kj g(4)li ) + ...
]

. (A48)

Collecting terms,

√
g ≈ √g(0)

(

1 +
1

2
ρTrg(2) + ρ2

[

1

2
Trg(4) +

1

8
(Trg(2))

2 − 1

4
Tr(g2

(2))

]

+ O(ρ3)

)

. (A49)

Consequently, the term to evaluate on the boundary is, to order O(ρ2),

1

ρd/2

(

−2d
√

g + 4ρ∂ρ
√

g
)

ρ=ϵ
= −√g(0)

[

2dϵ−d/2 + (d − 2)(Trg(2))ϵ
−d/2+1 + O(ϵ−d/2+2)

]

. (A50)

Meanwhile, the bulk term is

∫ ρc

ϵ
dρ

√
g

d
ρd/2+1

=
√

g(0)

{

− 2ρ−d/2
c −

dTrg(2)
(d − 2)

ρ−d/2+1
c + O(ρ−d/2+2

c ) + 2ϵ−d/2

+
dTr(g(2))

(d − 2)
ϵ−d/2+1 + O(ϵ−d/2+2)

}

.

(A51)

Together, the regulated bulk action may be cast as

Ireg
bulk = Idiv + Ifin, (A52)

the sum of an IR divergent term

Idiv =
L

16πG

∫

ddx
√

g(0)
[

ϵ−d/2a(0) + ϵ−d/2+1a(2) + ϵ−d/2+2a(4) + ...
]

, (A53)

with coefficients71

a(0) = 2(1 − d)Ld−2, a(2) = − (d − 1)(d − 4)

(d − 2)
Ld−2Trg(2),

a(4) =
(−d2 + 9d − 16

4(d − 4)

)

Ld−2[(Trg(2))
2 − Tr(g2

(2))],

(A54)

and a finite contribution Ifin, whose explicit form we will not need.
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This is not the full story, as the terms ρd/2g(d) + ρd/2 log ρh(d) in the expansion (A23)
must be accounted for. These will enter the metric determinant at a higher order in ρ;
however, generally, they lead to a logarithmic divergence as well as adding to the finite
contributions. For example, reconsider the term

qi
i = ρTr(g(2)) + ρ2Tr(g(4)) + ... + ρd/2Tr(g(d)) + ρd/2 log ρTr(h(d)). (A55)

But Tr(h(d)) = 0 [19]. So, including the ρd/2Tr(g(d)) contribution to the metric determinant,
adding to Ifin and a logarithmic divergence to Idiv, i.e.,

∫ ρc

ϵ

d
ρd/2+1

(

1

2
ρd/2Trg(d)

)

=
d
2

Trg(d)(log ρc − log ϵ). (A56)

Thus, taking into account this term, the divergent contribution to Ireg
bulk is

Idiv =
L

16πG

∫

ddx
√

g(0)

[

ϵ−d/2a(0) + ϵ−d/2+1a(2) + ϵ−d/2+2a(4) + ...

+ ϵ−1a(d−2) − log(ϵ)a(d)

]

,

(A57)

with a(0), a(2), and a(4) as in (A54) and, at this order,

a(d) = Ld−2 d
2

Trg(d). (A58)

Note that a(d) here is only including the first term and in general is more complicated (see
Equation (B.1) of [19]).

Regulated Action on Boundary

Thus far, the regulated action is expressed in terms of the metric g(0). It is preferable

to express the action in terms of the induced metric hij(ϵ, x) = L2

ϵ gij(ϵ, x). Then,

ϵd/2

Ld

√

h(ϵ, x) =
√

g(ϵ, x) =
√

g(0)(x)
(

1+
1

2
ϵTrg(2)+

1

8
ϵ2
[

(Trg(2))
2 − Tr(g2

(2))
]

+O(ρ3)

)

,

(A59)
where we used Tr(g(4)) =

1
4 Tr(g2

(2)). Rearranging and performing a power series expansion

in ϵ yields

√

g(0) =
ϵd/2

Ld

√

h(ϵ, x)
(

1 − 1

2
ϵTrg(2) +

1

8
ϵ2
[

(Trg(2))
2 + Tr(g2

(2))
]

+ O(ϵ3)

)

, (A60)

matching the first expression in Equation (B.3) of [19].
The aim now is to evaluate quantities Trg(2) and Tr(g2

(2)). To this end, we first recall

some relations from metric perturbation. It is sufficient for our purposes to consider

gij = g(0)ij + ϵg(2)ij, with gij = gij
(0)

− ϵgij
(2)

. Then, the linear variation of the Christoffel

symbol is

δΓk
ij ≡ Γk

ij[g]− Γk
ij[g(0)] =

ϵ

2

[

∇ig
k

(2)j +∇jg
k

(2)i −∇kg(2)ij
]

, (A61)

where here, ∇i refers to the Levi–Civita connection compatible with g(0)ij . Consequently,

δRa
bcd = ∇cδΓa

bd −∇dδΓa
bc

=
ϵ

2

[

∇c∇bg a
(2)d +∇c∇dg a

(2)b −∇c∇ag(2)bd −∇d∇cg a
(2)b −∇d∇bg a

(2)c +∇d∇ag(2)cb

]

,
(A62)
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The leading order change to the Ricci tensor is then

δRij =
ϵ

2

[

∇a∇ig
a

(2)j +∇a∇jg
a

(2)i −□g(2)ij −∇j∇ig
a

(2)a

]

= − ϵ

2

[

∇a

(

∇iR
a
j [g(0)] +∇jR

a
i [g(0)]

)

− d
2(d − 1)

∇i∇jR[g(0)]

−□Rij[g(0)] +
g(0)ij

2(d − 1)
□R[g(0)]

]

.

(A63)

where the second equality follows from substituting the expression for g(2)ij , (A31). Using72

∇a∇iR
a
j = ∇a∇jR

a
i =

1

2
∇i∇jR + (RikRk

j − Rk
jaiR

a
k), (A64)

we find

δRij =− ϵ

2(d − 2)

[

d − 2

2(d − 1)
∇i∇jR[g(0)]−□Rij[g(0)] +

g(0)ij
2(d − 1)

□R[g(0)]

+2Rki[g(0)]R
k
j [g(0)]− 2Rl jki[g(0)]R

lk[g(0)]
]

.

(A65)

Lastly, the Ricci scalar R[g] = gijRij[g] = gij(Rij[g(0)] + δRij), to leading order in an
ϵ-expansion is

R[g] = R[g(0)] +
ϵ

d − 2

(

R2
ij[g(0)]−

1

2(d − 1)
R2[g(0)]

)

, (A66)

where we used (A31) and that gij
(0)

δRij = 0.

With these expressions, we have

gij
(0)

g(2)ij = − 1

2(d − 1)
R[g(0)]

≈ − 1

2(d − 1)

[

R[g]− ϵ

d − 2

(

Rij[g]Rij[g]−
1

2(d − 1)
R2[g]

)]

≈ − L2

ϵ

1

2(d − 1)

[

R[h]− L2

d − 2

(

Rij[h]Rij[h]−
1

2(d − 1)
R2[h]

)]

,

(A67)

where in the second line, we inverted (A66), and in the last line, we used hij =
L2

ϵ gij, such
that Rij[g] = Rij[h]. Meanwhile,

gij
(2)

g(2)ij =
1

(d − 2)2

(

Rij[g(0)]Rij[g(0)]−
(3d − 4)

4(d − 1)2
R2[g(0)]

)

≈ L4

ϵ2

1

(d − 2)2

(

Rij[h]Rij[h]−
(3d − 4)

4(d − 1)2
R2[h]

)

.

(A68)
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Consequently,

Trg(2) ≈ − L2

ϵ

1

2(d − 1)

[

R[h]− L2

d − 2

(

R2
ij[h]−

1

2(d − 1)
R2[h]

)]

,

Tr(g2
(2)) ≈

L4

ϵ2

1

(d − 2)2

[

R2
ij[h]−

(3d − 4)

4(d − 1)2
R2[h]

]

,

(Trg(2))
2 + Trg2

(2) ≈
L4

ϵ2

[

1

(d − 2)2
R2

ij[h] +
R2[h]

4(d − 1)2

(

d2 − 7d + 8

(d − 2)2

)

+ O(R3) + ...

]

,

(Trg(2))
2 − Trg2

(2) ≈ − L4

ϵ2

[

1

(d − 2)2
R2

ij[h]−
dR2

4(d − 2)2(d − 1)
+ O(R3) + ...

]

,

(A69)

where O(R3) schematically refers to terms in cubic powers of curvature and the +...
corresponds to higher powers in curvature. The first two expressions match Equation (B.3)
of [19]. Substituting these expressions into our perturbative expression for

√g(0) (A60),
we find

√

g(0) =
√

h
ϵd/2

Ld

{

1 +
L2

4(d − 1)

(

R − L2(d − 3)

2(d − 2)2

[

R2
ij −

d
4(d − 1)

R2

])

+ ...

}

. (A70)

Substituting this into the divergent action (A57) along with coefficients (A54) gives

Idiv = − L
16πG(d − 2)

∫

ddx
√

h
[

2(d − 1)(d − 2)

L2
+ R

+
L2

(d − 2)(d − 4)

(

R2
ij −

d
4(d − 1)

R2

)

+ ...

]

.

(A71)

With the divergent action in hand, holographic renormalization is completed via minimal
subtraction by adding to the regulated action (A52) a local counterterm action of the form
Ict = −Idiv, rendering the action finite in the limit ϵ → 0. Alternatively, as described in
the main text, in braneworld holography, where ϵ ̸= 0, a local counterterm need not be
introduced.

Appendix C. Braneworld Basics

String theory is a candidate model of quantum gravity which requires the existence
of extra dimensions. The observable universe, however, is well described by a four-
dimensional spacetime, whose local gravitational dynamics is governed by Einstein’s
general relativity on macroscopic scales and the background on which the Standard Model
of particle physics lives. Thus, it is of interest to come up with a mechanism which reduces
the number of extra dimensions predicted by string theory such that our observable world
emerges as an effective theory in some limit. Historically, the simplest way to reduce the
number of extra dimensions is via Kaluza–Klein (KK) dimensional reduction, where the
extra dimensions are compactified into a small but finite-dimensional internal manifold.
Alternatively, braneworlds provide a mechanism in which a lower-dimensional ‘brane’ (or
domain wall) lives in a higher-dimensional ‘bulk’ spacetime, where the brane effectively
describes the observable world.

Broadly, braneworlds are in part motivated by the membrane-like solutions in string
theory and higher-dimensional supergravity; indeed, some braneworld models have string
theoretic realizations (though in this review, we will be agnostic to the stringy origins
of any particular model). More specifically, braneworlds come in three types: (i) the
Arkani–Hamed–Dimopoulos–Dvali (ADD) model [12], (ii) Randall–Sundrum (RS) [13,14]
and Karch–Randall (KR) models [15], and the Dvali–Gabadadze–Porrati (DGP) model [261].
As we will briefly review below, the braneworld models distinguish themselves by the
type of bulk spacetime the brane is embedded and the way in which gravity is localized on
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the brane. In particular, the RS and KR models embed a brane inside a bulk anti-de Sitter
spacetime—such that the AdS/CFT correspondence applies—and gravity localizes either
in a way similar to KK reduction or via warped compactification.

Appendix C.1. Braneworld Bestiary

ADD model. Motivated by resolving the hierarchy problem in particle physics, the original
braneworld construction, the ADD model consists of a tensionless brane inside a large
bulk spacetime where the extra dimensions are compactified in a manner similar to KK
reduction. The bulk spacetime is assumed to be governed by Einstein gravity with zero
cosmological constant. Massive KK modes in the extra dimensions are largely ignored such
that, upon integrating out the extra dimensions, the effective action is four-dimensional
Einstein gravity with scales induced by the higher-dimensional parent theory. Notably,
the case in which the bulk spacetime is five-dimensional is ruled out because the one-
dimensional volume of the compactified directions is on astrophysical distance scales; ADD
models with at least three extra dimensions are in principle observationally viable.
RS models. There are two distinct Randall–Sundrum models, which are known as RS-I [13]
and RS-II [14]. In both models, the bulk is taken to be asymptotically AdS spacetime73. The
brane geometry is either asymptotically Minkowski or de Sitter. In the RS-I model, the bulk
is bounded two codimension-1 branes, one with positive tension τ+ and the other with nega-
tive tension τ−. In the RS-II model, the negative tension brane is sent to asymptotic infinity.

More explicitly, the bulk physics of the RS-I model is characterized by five-dimensional
Einstein gravity with a negative cosmological constant Λ5 = −6/L2

5, plus an action charac-
terizing the two branes:

IRS-I =
1

16πG5

∫

d5x
√

−ĝ(R̂ − 2Λ5)

−
∫

dyd4x
√
−h[(τ+ + L(+)

mat)δ(y) + (τ− + L(−)
mat)δ(y − y−)].

(A72)

Here, y denotes a bulk spatial coordinate to be integrated over, hij is the four-dimensional

induced metric of the constant-y hypersurfaces, and L(±)
mat refers to matter Lagrangians

localized on their respective branes. A negative tension brane is positioned at y = y− > 0
while a positive tension brane is at y = 0, and only the region 0 < y < y− is retained.
To complete the space, a Z2 reflection symmetry is assumed across each boundary plane,
leading to a jump discontinuity in the extrinsic curvature of each brane. Thus, aside from
the bulk Einstein equations, the bulk must obey brane boundary conditions, e.g., the Israel
junction conditions which relate the discontinuity in the extrinsic curvature across the

branes to the brane tension and the stress tensor S(±)
ij ,

∆K±
ij − hij∆K± = 8πG5(τ±hij + S(±)

ij ), (A73)

where ∆Kij = K+
ij − K−

ij denotes the difference between the extrinsic curvature across

the branes. Imposing the junction conditions sets the branes to have equal and opposite
tensions. The simplest such solution to the bulk Einstein equations plus Israel junction
conditions is the warped geometry (in horospherical coordinates)

ds2
5 = dy2 + e−2|y|/L5 ηijdxidxj, (A74)

where ηij is the four-dimensional Minkowski spacetime, though it may be replaced by any
four-dimensional metric which solves the four-dimensional brane theory. The AdS5 horizon
is located at y = ∞ (which includes a point at infinity) where the coordinate system (A74)
breaks down (see Figure A1 for an illustration). Mass scales on the negative tension brane
will be exponentially suppressed with respect to the positive tension brane. Consequently,
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beings confined to the negative tension brane would experience weak gravity, while beings
on the positive tension (‘Planck’) brane would experience strong gravity. The RS-I model
thus provides a possible solution to the hierarchy problem of the standard model.

The starting point for the RS-II model is the same except that the negative tension
brane of the RS-I model is sent off to infinity (y− → ∞), such that the five-dimensional
warped geometry (A74) takes the form

ds2
5 → dy2 + e−2|y|/L5 ηijdxidxj

=
L2

5

(L5 + |z|)2
(dz2 + ηijdxidxj),

(A75)

where in the second line, the conformal coordinate z ≡ sign(y)L5(e|y|/L5 − 1) was intro-
duced. Unlike the RS-I model, the RS-II model is not used to solve the hierarchy problem.
Further, although the extra bulk spatial dimension becomes infinite in extent, the higher-
dimensional gravity becomes localized on the brane nonetheless74. One way to see this
is through a perturbative analysis of the weak gravitational created by isolated matter

sources on the brane [323–325]75. Define a bulk metric perturbation by γab ≡ ĝab − ĝ(0)ab

(with ĝ(0)ab being the unperturbed five-dimensional background). Working in the Randall–
Sundrum gauge,

hzz = hiz = 0, ∂ih
i
j = 0, hi

i = 0, (A76)

the linearized equations of motion for the metric perturbation are

[−∂2
z + V(z)]ψij = ηkl∂k∂lψij, (A77)

for ψij ≡
√

|z|+ L5hij and ‘Volcano’ potential

V(z) =
15

4(|z|+ L5)2
− 3L2

5δ(z). (A78)

Separating variables as ψij ∼ um(z)e
ikjxj

, one obtains an eigenvalue equation for eigen-
functions um(z) characterizing an effective four-dimensional massive mode with mass
m2 = −kiki. The general solution for um(z) is given in terms of Bessel functions. Alongside
the massive modes is a discrete set of massless ‘zero modes’. From the mode functions,
Green’s function for −∂2

z +V(z) from which the induced brane metric for a spherical source
of mass M will have components (in the RS gauge)

htt =
2G4M

r

(

1 +
2L2

5

3r2

)

, hij =
2G4M

r

(

1 +
L2

5

3r2

)

δij. (A79)

The htt metic component is simply a modified Newtonian potential for a source M where the
1/r3 correction can be shown to be precisely of the form of the corrections to the Newtonian
due to 1-loop quantum effects induced by the four-dimensional graviton propagator [62,63].
KR model. An important extension of the RS-II model is the Karch–Randall braneworld
model [15]. In this set-up, the positive tension brane is detuned such that the four-
dimensional brane geometry is asymptotically AdS4

76. To this, consider the RS-II model
with a two-sided brane with a decreased tension

τ =
3(1 + δ)

4πL5G5
, (A80)

for δ < 0. The (unperturbed) five-dimensional warped geometry takes the form

ds2 =
L2

5

L2
4 sin2[(|z|+ z0)/L4]

(hijdxidxj + dz2), (A81)
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Figure A1. RS-I warped solution. Left: Bulk AdS with a ‘horosphere’ (red curve), and horizon at

y = ∞ (diagonal lines). Vertical lines represent timelike infinity. Right: A positive and negative

tension brane in bulk AdS5 with the shaded (blue) region being retained. The dotted (magenta)

regions are excluded and are identified.

with

hijdxidxj = −
(

1 +
r2

L2
4

)

dt2 +

(

1 +
r2

L2
4

)−1

dr2 + r2dΩ2
2, (A82)

and z0 = L4arcsin(L5/L4). The brane is located at z = 0 and has an effective negative
cosmological constant Λ4 = −3/L2

4 ≡ 3(2δ + δ2)/L2
5. A perturbative analysis similar to

the RS-II case yields a linearized Equation (A77) though with a different potential V(z).
While we will not go into the details, the shape of the potential in the KR model leads to
a totally discrete mass m2 spectrum. Further, the m2 = 0 zero mode is not normalizable.
Imposing a normalizability condition shifts the zero mode to an ‘almost zero mode’ with
mass m ∼ O(L5/L2

4). Hence, localized four-dimensional gravity has a massive graviton.
Massive gravity theories have the behavior that gravitational attraction becomes short-
ranged as opposed to long ranged, and where gravity waves propagate at subluminal
speeds. Note, however, for regions where L5/L2

4 ≪ 1, the graviton becomes essentially
massless.
DGP model. In the DGP model, an Einstein–Hilbert term is added to the brane action. The
original incarnation of the model consisted of higher-dimensional Einstein gravity with a
vanishing cosmological constant with the bulk being described by the action

IDGP =
1

16πG5

∫

d5x
√

−ĝR̂ −
∫

d4x
√
−h
(

1

16πG4
R4D + Lmat

)

. (A83)

A distinguishing feature of this model is that the graviton propagator is such that the
effective four-dimensional theory is left unmodified at short distances.

Appendix C.2. Stringy Connections

The codimension-1 branes described above are not the same types of branes which
appear in string theory; however, there is a stringy connection via AdS/CFT duality. Recall
that in string theory, Dp-branes are extended p (spatial)-dimensional objects: open strings
with endpoints obeying Dirichlet boundary conditions end on. D-branes are to be viewed
as physical, dynamical objects with their own mass and (Ramond–Ramond) charges carried
by the string endpoints [329]. In the case of N parallel Dp-branes, each open string endpoint
can lie on one of N different branes, yielding a total of N2 choices. When these N parallel
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Dp-branes are coincident at the same location, the resulting string theory has a particle
spectrum which in part describes a U(N) gauge theory.

Since string theories have a low-energy effective description in terms of an appropriate
theory of supergravity, a D-brane or a stack of coincident Dp-branes have a realization
as a supergravity solution with a corresponding mass and charge. A relevant example
is a stack of N coincident D3-branes in ten-dimensional spacetime. Such a set D-brane
configuration exists in type IIB string theory with string coupling gs and string length scale
ℓs =

√
α′. In the decoupling limit, where α′ → 0 and the ratio of the distance between

the non-coincident configuration of parallel branes and coupling, u ≡ r/α′, is kept fixed,
the gauge theory on the brane is that of four-dimensional N = 4 SU(N) super Yang–Mills
theory (a superconformal field theory). The corresponding supergravity solution has line
element [330]

ds2
10 = f−1/2dx∥ + f 1/2dx2

⊥, f = 1 +
4πgsα′2

r4
. (A84)

Here, dx2
∥ denotes the set of coordinates along the four-dimensional worldvolume of the

D3-brane configuration, while dx2
⊥ = (dr2 + r2dΩ2

5) is the collection of coordinates of the
six-dimensional space perpendicular to the stack of branes where the radial coordinate r
characterizes the distance between the branes (before taking the coincident limit) and dΩ2

5
denotes the metric of the unit 5-sphere.

Introduce coordinate u ≡ r/α′ such that f = 1 + 4πgs N
α′2u4 . The supergravity geometry

(A84) of the aforementioned decoupling limit (α′ → 0, u fixed) is valid when gsN ≫ 1,
i.e., at large ’t Hooft coupling λ ≡ gsN. In this ‘near horizon’ limit, the 10-dimensional
geometry is approximately

ds2
10 ≈ ℓ

2
s

[

u2

√

4πgsN
dx2

∥ +
√

4πgsN
du2

u2
+
√

4πgsNdΩ2
5

]

. (A85)

This line element is simply AdS5 × S5, with AdS5 length L5 =
√

4πgsNℓ2
s and a 5-sphere

of the same radius77. In other words, the supergravity solution has a dual description in
terms of the four-dimensional superconformal field theory, which is a sharp realization of
the AdS/CFT correspondence [6].

Now return to the RS-II model describing a single codimension-1 brane sitting inside
of an asymptotically AdS5 bulk spacetime. There are two comments worth mentioning
here. First, Gubser observed when the bulk is the AdS5–Schwarzschild black hole, the
induced geometry on the brane is that of radiation-dominated FRW cosmology [331]. Via
AdS/CFT, the thermal nature of the bulk black hole has a dual description in terms of a
thermal CFT at strong coupling with temperature given by the Hawking temperature of the
bulk black hole. This CFT can be viewed as living on the brane, giving rise to the (‘dark’)
radiation cosmology. Second, in taking the near-horizon limit of the stack of D3-branes,
the RS model may be viewed as effectively cutting off the spacetime outside of the stack of
D-branes, such that the RS-brane serves as an end-of-the-world brane.

The precise connection to AdS/CFT is different for the Karch–Randall construction [15].
This is because in such a set-up, one is no longer in a near-horizon limit of a stack of D3-
branes. Rather, one realization is that of a D5-probe brane intersecting a stack of D3
branes [16,327], leading to a doubly holographic interpretation.

Appendix D. Geometric Elements of the C-Metric

The C-metric, as noted in the main text, can be interpreted as an accelerating black
hole or a pair of accelerating black holes78. In this Appendix, we briefly review the origins
of the C-metric and then describe some of its geometric features relevant for the main text.
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Appendix D.1. C-Metric from Plebanski–Demianski

In order to better understand the origins of the C-metric, it is useful to analyze its
parent metric first, the Plebanski–Demianski (PD) geometry [89]79. The PD metric describes
the most general algebraic type-D spacetime solving Einstein–Maxwell theory in vacuum
with an aligned, non-zero electromagnetic field and a cosmological constant Λ. The line
element is

ds2 =
1

(p + q)2

{

− Q(q)
1 + (pq)2

(dτ + p2dσ)2 +
1 + (pq)2

Q(q)
dq2 +

1 + (pq)2

P(p)
dp2

+
P(p)

1 + (pq)2
(dσ − q2dτ)2

}

,

(A86)

with metric functions

Q = −Λ

6
+ g2 − γ − 2nq + ϵq2 − 2mq3 +

(

−Λ

6
+ e2 + γ

)

q4,

P = −Λ

6
− g2 + γ − 2np − ϵp2 − 2mp3 +

(

−Λ

6
− e2 + γ

)

p4.

(A87)

The solution is completely characterized by seven parameters: namely, the cosmological
constant Λ, and the real parameters g, e, n, m, ϵ, γ. Of these, only e and g have a clear physi-
cal interpretation, corresponding to electric and magnetic charge, respectively. Parameters
m, n, ϵ and γ have a less clear interpretation in general; however, often, m and n play the
role of the mass and NUT parameters, respectively, while in certain instances, γ and ϵ are
interpreted as angular momentum and acceleration. For convenience, one typically shifts
γ → γ + g2 + Λ

6 , such that the metric functions (A87) become

Q = −Λ

3
− γ − 2nq + ϵq2 − 2mq3 + (γ + e2 + g2)q4,

P = γ − 2np − ϵp2 − 2mp3 −
(

γ + e2 + g2 +
Λ

3

)

p4.
(A88)

Further, while Λ here is generic, we will be primarily interested in the AdS4 C-metric,
where Λ = −3/L2

4, with L4 being the AdS4 curvature scale.
By appropriate coordinate and parameter rescalings, the C-metric emerges from the PD

metric. To see this, first introduce two real parameters a and A and perform the following
coordinate rescalings

p →
√

aAp, q →
√

aAq, τ →
√

a
A3

τ, σ →
√

a
A3

σ. (A89)

Additionally, rescale the parameters as

m →
(

A
a

)3/2

m, n →
(

A
a

)1/2

n, e → A
a

e, g → A
a

g,

ϵ → A
a

ϵ, γ → A2γ, P → A2P, Q → A2Q.

(A90)

The resulting metric is the AdS4 (spinning) C-metric

ds2 =
1

A2(p + q)2

{

− Q(q)
1 + (aApq)2

(dτ + aAp2dσ)2 +
1 + (aApq)2

Q(q)
dq2

+
1 + (aApq)2

P(p)
dp2 +

P(p)
1 + (aApq)2

(dσ − aAq2dτ)2

}

,

(A91)
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together with

Q =
1

A2L2
4

− γ − 2nq
A

+ ϵq2 − 2mAq3 + A2(γa2 + e2 + g2)q4,

P = γ − 2np
A

− ϵp2 − 2mAp3 +

(

a2

L2
4

− A2(γa2 + e2 + g2)

)

p4.

(A92)

Notably, the parameters ϵ and γ do not affect the geometry of the solution, as they do
not appear in any curvature invariants [89], and they are sometimes dubbed ‘kinematical
parameters’. Consequently, these parameters are gauge choices and can be chosen to take
specific values without affecting the local geometry. Alternatively, m, n, e, and g are said
to be ‘dynamical parameters’ in that they generate curvature; setting m = n = e = g = 0
results in a maximally symmetric background with cosmological constant Λ.

Appendix D.2. C-Metric Used for Braneworld Black Hole

As written, the C-metric line element in (A90) is cosmetically quite different from the
one used for studying braneworld black holes in [23,24]. To clarify the relation, first rename
coordinates and metric functions as q → −y, p → x, Q → −H, P → G, τ → t, σ → ϕ, and
ϵ → −k. Then, the metric functions (A92) become

H = − 1

A2L2
4

+ γ − 2n
A

y + ky2 − 2mAy3 − A2(γa2 + e2 + g2)y4,

G = γ − 2n
A

x + kx2 − 2mAx3 +

[

a2

L2
4

− A2(γa2 + e2 + g2)

]

x4.

(A93)

Now, making use of the aforementioned gauge freedom, we set γ = 1 and further rescale
A2a2 ≡ a2 and A2(e2 + g2) = q2. Then,

H = − 1

A2L2
4

+ 1 − 2n
A

y + ky2 − 2mAy3 − (a2 + q2)y4,

G = 1 − 2n
A

x + kx2 − 2mAx3 +

[(

1

A2L2
4

− 1

)

a2 − q2

]

x4.

(A94)

Further, introduce λ ≡ 1
A2L2

4

− 1, yielding

H = −λ − 2n
A

y + ky2 − 2mAy3 − (a2 + q2)y4,

G = 1 − 2n
A

x + kx2 − 2mAx3 + (λa2 − q2)x4.

(A95)

The line element, meanwhile, is

ds2 =
1

A2(x − y)2

[

H(y)
Σ(x, y)

(dt + ax2dϕ)2 − Σ(x, y)
H(y)

dy2

+
Σ(x, y)
G(x)

dx2 +
G(x)

Σ(x, y)
(dϕ − ay2dt)2

]

,

(A96)

with
Σ(x, y) = 1 + a2x2y2. (A97)

In this context, q represents both electric and magnetic charge, A is the ‘acceleration’
parameter, a is the angular rotation, and n is the NUT parameter. Setting n = q = 0 in the
metric functions (A95) recovers the form of the C-metric used in [23,24] (cf. Equation (5.1)
of [24]). We will explore further details of this metric momentarily.
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Rindler form. It is easiest to see the accelerating nature of the C-metric by setting a = n =
q = m = 0, k = −1 and L4 → ∞ such that λ = −1. Further rescale t → At. Then, the line
element (A96) with metric functions (A95) becomes

ds2 =
1

A2(x − y)2

[

−(y2 − 1)A2dt2 +
dy2

(y2 − 1)
+

dx2

(1 − x2)
+ (1 − x2)dϕ2

]

. (A98)

Next, introduce the coordinate transformations

ξ =

√

y2 − 1

(x − y)
, ρ =

1

A

√
1 − x2

(x − y)
, (A99)

resulting in
ds2 = −ξ2dt2 + A−2dξ2 + dρ2 + ρ2dϕ2, (A100)

which we recognize as the four-dimensional Rindler metric in cylindrical coordinates. An
acceleration horizon with acceleration A occurs at ξ = 0, or, equivalently, y = 1.
Boyer–Lindquist form. It is also useful to express the metric in a Boyer–Lindquist-like
form. Specifically, to describe an AdS3 Karch–Randall brane, make the identifications

λ =
ℓ2

ℓ2
3

, A =
1

ℓ
, k = −κ, 2mA = µ, a → a√

λℓ3

, (A101)

together with the coordinate rescaling and change

t → t
ℓ

, y = − ℓ

r
. (A102)

Then, the metric (A96) becomes

ds2 =
ℓ2

(ℓ+ xr)2

{

− H(r)
Σ(x, r)

(dt + ax2dϕ)2 +
Σ(x, r)
H(r)

dr2

+ r2

[

Σ(x, r)
G(x)

dx2 +
G(x)

Σ(x, r)

(

dϕ − a
r2

dt
)2
]}

(A103)

with metric functions

H(r) ≡ − r2

ℓ2
H(−ℓ/r) =

r2

ℓ2
3

+ κ − 2nr − µℓ

r
+

(a2 + q2ℓ2)

r2
,

G(x) = 1 − 2nℓx − κx2 − µx3 +

(

a2

ℓ2
3

− q2

)

x4,

Σ(x, r) = 1 +
a2x2

r2
.

(A104)

Note that the n parameter may always be rescaled by ℓ or ℓ−1. Setting n = 0 and taking
the zero acceleration limit ℓ → ∞ (upon setting κ = +1, and rescaling µℓ → 2M and
similarly for charge q2), we recover the Kerr–Newman–AdS black hole in Boyer–Lindquist
coordinates, with x = cos θ.

Alternatively, the parameter space giving positive curvature on the brane is easily
reached from the above AdS solution. Indeed, simply replace ℓ3 → iR3 and set a → −a
and κ = +1.

Appendix D.3. Factorized C-Metric

Thus far, the metric factors P, Q or H, G are quadratic functions of a single coordinate
and are not readily factorizable. This makes finding the roots of the metric functions
complicated. Further, for the rotating C-metric, even when n = 0, the solution still has a
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non-zero NUT charge. In 2003 and 2004, Hong and Teo [339,340] found a way to express
the C-metric in a factorized form, which not only simplified some calculations but also
showed the factorized version of the rotating C-metric is physically distinct from its original
non-factorized form.

To arrive at a factorized form of the rotating C-metric, recall AdS4 spinning C-metric
(A91) with metric functions Q and P (A92). Then, following Hong and Teo [340], use gauge
freedom to set the kinematical parameters γ and ϵ to

γ = 1, ϵ = 1 +
a2

L2
4

− A2(a2 + e2 + g2). (A105)

Then, in order to place the metric functions (A92) in a factorized form, further set n =
−mA2, leading to the C-metric (A91), now with factorized metric functions,

Q = (q2 − 1)
(

1 − 2mAq + A2(a2 + e2 + g2)q2
)

+
1

A2L2
4

(1 + a2 A2q2),

P = (1 − p2)

(

1 + 2mAp + p2

[

A2(a2 + e2 + g2)− a2

L2
4

])

.

(A106)

Incidentally, the choice n = −mA2 which ultimately factorizes the metric functions leads
to a solution with vanishing NUT charge. Consequently, the factorized and non-factorized
forms of the C-metric are physically distinct, and they are not related by a coordinate
transformation. Note, however, in the non-rotating case (a = 0) with Λ = 0, the factorized
and non-factorized C-metrics are related by a coordinate transformation and are thus
physically equivalent [339] (in the limit a = 0, n acts as a kinematical parameter). The
difference between factorized and non-factorized rotating C-metrics arises because the latter
has ‘torsion singularities’, conical singularities which have a non-zero angular velocity,
while the former does not have torsion singularities. The effect is that the non-factorized
rotating C-metric will possess closed timelike curves in a neighborhood of the torsion
singularities [341]80.

Further, the factorized C-metric, line element (A91) with functions (A106), can be
brought to a more standard Boyer–Lindquist form (cf. Equation (2.31) of [121]). The (ex-
tended) thermodynamics of this form of the factorized C-metric was analyzed in [118–120].

We can similarly bring the C-metric used to study braneworld black holes, line element
(A95) with metric functions (A96), into a factorized form. All that is required is to use
gauge freedom to set

k = −1 − a2

A2L2
4

+ (a2 + q2), (A107)

and remove the NUT charge via n = −mA2. The result is the rotating C-metric (A95), now
with metric functions

H = −(λ + 1)(1 + a2y2) + (1 − y2)
(

1 + 2mAy + (a2 + q2)y2
)

,

G = (1 − x2)
(

1 + 2Amx − (λa2 − q2)x2
)

,
(A108)

with λ + 1 = (A2L2
4)

−1. We see the metric function H is completely factorized when Λ = 0.
Making identifications λ = ℓ2/ℓ2

3, A = ℓ−1, a → a/ℓ, 2mA = µ, and using the coordinate
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change (A102), puts the factorized C-metric in a more Boyer–Lindquist form (A103), with
metric functions

H(r) = (r2 + a2)

(

1

ℓ2
3

+
1

ℓ2

)

+

(

1 − r2

ℓ2

)(

1 − µℓ

r
+

(a2 + q2ℓ2)

r2

)

,

G(x) = (1 − x2)

(

1 + µx −
(

a2

ℓ2
3

− q2

)

x2

)

, Σ(x, r) = 1 +
a2x2

r2
.

(A109)

Appendix D.4. Some Properties of the C-Metric

Let us now detail some of the properties of the C-metric used in the main text. Follow-
ing the conventions of [24], begin with the uncharged, non-rotating AdS4 C-metric

ds2 =
1

A2(x − y)2

[

H(y)dt2 − dy2

H(y)
+

dx2

G(x)
+ G(x)dϕ2

]

, (A110)

with
H(y) = −λ + ky2 − 2mAy3, G(x) = 1 + kx2 − 2mAx3, (A111)

obeying H(χ) = G(χ) − (1 + λ). Here, k = +1, 0,−1, which will determine the black
hole horizon topology. The bulk Ricci tensor satisfies R̂AB = −(3/L2

4)ĝAB where L4 ≡
(A

√
λ + 1)−1 sets the scale for the bulk cosmological constant. Maintaining a negative

cosmological constant in the bulk thus requires λ > −1, while G(x) ≥ 0 to maintain a
Lorentzian signature. The overall factor (x − y)−2 in (A110) implies the point y = x is
infinitely far away from points y ̸= x (the point y = x corresponds to the asymptotic AdS4

boundary). The curvature invariants

R̂ABCDR̂ABCD = 24A4[2A2m2(x − y)6 + (1 + λ)2],

ĈABCDĈABCD = 48A6m2(x − y)2,
(A112)

reveal curvature singularities at y ± ∞ and x = ±∞, while the Weyl tensor vanishes
asymptotically at y = x. To avoid naked singularities, one must restrict coordinate ranges
for a given set of parameters. To maintain a ‘mostly plus’ Lorentzian signature requires
G(x) ≥ 0, restricting the range of x.

To gain further intuition for the C-metric, it is instructive to consider the simplifying
case when mA = 0. Then, consider performing the coordinate transformation

r̃ =

√

y2 + λx2

A(x − y)
, ρ =

√

1 + kx2

y2 + λx2
, (A113)

such that the metric (A110) becomes

ds2 =
dr̃2

r̃2

ℓ2
4

− λ
+ r̃2

[

−(λρ2 − k)dt2 +
dρ2

λρ2 − k
+ ρ2dϕ2

]

. (A114)

Locally, the geometry is AdS4, where surfaces of constant r̃ have constant Riemann curva-
ture with a three-dimensional cosmological constant Λ3 = −λ. Thus, the sign of λ denotes
different constant curvature slicings of AdS4. There are three distinct cases: (1) λ = 0, a
flat slicing. In this case, one must choose k = ±1, where for k = −1, the coordinate t is
timelike everywhere; (2) −1 < λ < 0 leads to a three-dimensional de Sitter slicing. One
must select k = −1 to have dS3 in static patch coordinates and cosmological horizons, and
(3) λ > 0, an AdS3 slicing where the three different values of k distinguish three slicings of
AdS3: global coordinates (k = −1), the massive BTZ black hole (k = +1), and the massless
BTZ black hole (k = 0).
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Conical singularities. Each zero of H(y) corresponds to a Killing horizon associated with
the time translation Killing vector ∂t. Meanwhile, the zeros of G(x) correspond to an axis
for the rotation symmetry ∂ϕ, i.e., for ξa = ∂a

ϕ, then ξ2 ∼ G(x), vanishing at a zero of

G(x). For a range of values of mA and k, there will be three distinct real zeros81 to G(x),
{x0, x1, x2}, with each zero leading to a distinct conical singularity. One singularity can be
removed via82

ϕ ∼ ϕ + ∆ϕ(xi), ∆ϕ(xi) =
4π

|G′(xi)|
, (A115)

where xi is one of the zeros. Once the period of ϕ has been fixed in this way (say at x = x1),
the coordinate ϕ cannot be readjusted to eliminate the remaining conical singularities at
x = x0, x2. Thus, in general, there will be a conical singularity along the axis x = xi ̸= x1

with angular deficit δ = ∆ϕ(x1)− 4π
G′(xi)

83. This may be interpreted as a cosmic string with

tension τcs = δ/8π. It is this feature which leads one to interpret the C-metric as a a single
or pair of accelerating black holes. In the case of a single black hole, a cosmic string attaches
at one pole in the background and the black hole, suspending it away from the center of
the spacetime, thus inducing its acceleration. When the cosmic string hits the boundary, it
produces a conical defect in the boundary geometry, which may or may not be hidden by a
horizon on the boundary.

It is possible that the metric function G(x) has degenerate roots. For example, when
k = −1 and mA = 1/3

√
3, G(x) has a double root xd. Near x = xd, the (x, ϕ)-sector of the

line element takes the form of a Euclidean hyperboloid

ds2
xd

=
dx2

(x − xd)2
+ (x − xd)

2dϕ2, (A116)

with a spatial divergence at x = xd.

Boundary geometry. The asymptotic AdS4 boundary is located at y = x. Stripping off the
conformal factor via an appropriate conformal transformation, the boundary metric is

ds2
bdry = H(x)dt2 − dx2

H(x)G(x)
+ G(x)dϕ2. (A117)

This line element describes a black hole with a Killing horizon located at values of x
which coincide with the zeros yi of H(y), i.e., x = yi. Proper distances between points on
the boundary are given using this boundary metric, e.g., xproper =

∫

dx(−H(x)G(x))1/2.
While beyond the scope of this review, it is worth highlighting that in the context of the
AdS/CFT correspondence, specific limits of the AdS4 C-metric are dual to holographic
CFTs living on fixed three-dimensional black hole backgrounds [9,342]. Namely, two
classes of asymptotically AdS4 solutions include (i) black funnels, i.e., solutions that have a
single connected but non-compact horizon, and (ii) black droplets, i.e., solutions with two
disconnected horizons. In either case, the AdS4 solution is attached to the boundary black
hole horizon, where in (ii), the (compact) horizon connected to the boundary horizon is
the ‘droplet’ and is suspended above a (deformed) planar black hole. Note that the A → ∞

limit of the C-metric with a de Sitter slicing on the x = 0 hypersurface is a double-Wick
rotation of the hyperbolic AdS4 metric (see Appendix C of [26] for details).
Umbilic surfaces. The C-metric has the nice property that its x = 0 and y = 0 hypersurfaces
are umbilic, i.e., when the extrinsic curvature of the hypersurface is proportional to the
induced metric. To see this, the outward pointing unit normal to the x = 0 hypersurface is
ni

x = −Aϵ(x − y)
√

G(x)∂i
x, where ϵ = ±1 (we will take ϵ = +1 since x = 0 is a timelike

hypersurface). The non-vanishing components of the extrinsic curvature Kij = ∇inj obey

K(x)
ij = Aϵh(x)

ij , (A118)
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with h(x)
ij being the induced metric along the x = 0 surface. Similarly, the y = 0 hypersurface

is umbilic: with outward pointing unit normal ni
y = −Aϵ(x − y)

√

H(y)∂i
y, then

K(y)
ij = Aϵ

√
−λh(y)ij . (A119)

where now h(y)ij is the induced metric along y = 0.

With Rotation

Now, consider the neutral rotating AdS4 C-metric, following the conventions of [24],

ds2 =
1

A2(x − y)2

[

H(y)
Σ(x, y)

(dt + ax2dϕ)2 − Σ(x, y)
H(y)

dy2 +
Σ(x, y)
G(x)

dx2 +
G(x)

Σ(x, y)
(dϕ − ay2dt)2

]

, (A120)

with metric functions

H(y) = −λ + ky2 − 2mAy3 − a2y4, Σ(x, y) = 1 + a2x2y2

G(x) = 1 + kx2 − 2mAx3 + a2λx4.
(A121)

When m ̸= 0, there is a curvature singularity when 1/y2Σ(x, y) = 0, i.e., when both
y → −∞ and x = 0, which may be understood as a ring singularity familiar to Kerr
black holes.

The zeros xi of G(x) now correspond to fixed orbits of the rotational Killing vector

ξ = ∂ϕ − ax2
i ∂t, (A122)

instead of the Killing vector ∂
µ
ϕ (which no longer has a vanishing norm at x = xi). Avoiding

a conical defect at x = x1 requires one identify points along the integral curves of ξ with an
appropriate period, amounting to a coordinate transformation t̃ = t + ax2

1ϕ, where ϕ has
the same period (A115). To see this, expand the metric (A120) near a zero of G(x). Without
loss of generality, the y = 0 slice is, up to the conformal factor,

ds2
y=0 ≈ −λ(dt + ax2

i dϕ)2 +
dx2

G′(xi)(x − xi)
+ G′(xi)(x − xi)dϕ2. (A123)

Aside from the first term, the (x, ϕ) sector has the same form as in the non-rotating case,
from which the periodicity of ϕ is (A115). Including rotation, however, this would not be
the correct periodicity for ϕ. The situation is remedied via the coordinate transformation
t̃ = t + ax2

i ϕ, such that, at x = xi, dt̃ = (dt + ax2
i dϕ). Similarly, at the roots yi of H(y),

the Killing vector ζ = ∂t + ay2
i ∂ϕ becomes null, defining horizons with angular velocity

Ω = ay2
i .

The asymptotic AdS4 boundary is again at x = y and again gives rise to boundary
black holes. Notably, the A → ∞ limit of the rotating C-metric (see below), with k = +1, is
a double-Wick rotation of the Kerr–AdS4 metric considered in [9] (see Appendix B of [25]).

Lastly, as in the static case, the x = 0 and y = 0 hypersurfaces are umbilic. Indeed,
for spacelike unit normal ni

x = A(x − y)
√

G(x)/Σ(x, y)∂i
x, the extrinsic curvature satisfies

Kij = −Ah(x)
ij at x = 0. Similarly, the y = 0 hypersurface, with unit normal ni

y = Aϵ(x −
y)
√

H(y)/Σ(x, y)∂i
y, obeys Kij = (−Aϵ

√
−λ)h(y)ij .

Appendix D.5. AdS C-Metric on the Poincaré Disk

Here, we review how to project the C-metric on the two-dimensional Poincaré disk of
the unit radius to produce the plots shown in Figures 5, 9 and 10.
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Appendix D.5.1. Hyperbolic Disk

First, recall that the two-dimensional hyperbolic space H
2 can be embedded in three-

dimensional Minkowski space coordinatized by xµ = {x0, x1, x2} and obeying ηµνxµxν =

−1. Different choices of coordinates yi on H2 correspond to different ways of embedding
H

2. Particularly relevant for our purposes include (see, e.g., [343]) the following:

• Hyperbolic: Let ρ ∈ [0, ∞) be a radial coordinate and ω ∈ (−∞, ∞) a hyperbolic
angle. Then, the coordinate parametrization











x0 = cosh ρ cosh ω

x1 = sinh ρ

x2 = cosh ρ sinh ω

(A124)

leads to the induced two-dimensional geometry for H2

ds2 = ηµνdxµdxν = dρ2 + cosh2(ρ)dω2. (A125)

• Polar: Let χ ∈ (−∞, ∞) be a radial coordinate and φ ∈ [0, 2π) a polar angle. Then











x0 = cosh χ

x1 = sinh χ cos φ

x2 = sinh χ sin φ

(A126)

yields the two-dimensional induced geometry

ds2 = dχ2 + sinh2(χ)dφ2. (A127)

• Exponential: Let ζ ∈ (−∞, ∞) be a radial coordinate and Ψ ∈ (−∞, ∞) a hyperbolic
angle. With coordinates











x0 = cosh(ζ) + e−ζΨ2/2

x1 = e−ζ Ψ

x2 = sinh(ζ) + e−ζ Ψ2/2

(A128)

the induced two-dimensional metric is

ds2 = dζ2 + e−2ζ dΨ2 . (A129)

Moreover, note it is possible to project the infiniteHd hyperbolic space onto the d-dimensional
unit disk using the Poincaré projection

xi
P ≡ xi

1 + x0
. (A130)

Appendix D.5.2. AdS3 Foliations

As discussed in Section 4.1, it is possible to bring the static AdS4 C-metric with
vanishing mass parameter µ = 0 into the form of empty AdS4 (43), which is foliated by
slices of AdS3 using the coordinate transformation (42).

cosh(σ) =
ℓ3

L4

1

|1 + rx
ℓ
|

√

1 +
r2x2

ℓ2
3

, r̂ = r

√

√

√

√

1 − κx2

1 + r2x2

ℓ2
3

. (A131)
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Constant t and ϕ slices of empty AdS4 (43) have the induced geometry

ds2 = L2
4dσ2 +

L2
4

ℓ2
3

cosh2(σ)

(

κ +
r̂2

ℓ2
3

)−1

dr̂2. (A132)

This line element is reminiscent of two-dimensional H2 geometry (A125), where σ plays
the role of ρ and r̂ is the hyperbolic angle. Indeed, the coordinate transformation

ψ = ℓ3 arcsinh
r̂
ℓ3

, (A133)

brings the metric on the constant t and ϕ slice to

ds2 = L2
4

(

dσ2 + cosh2(σ)dψ2
)

, (A134)

which is conformally equivalent to (A125). One can subsequently use coordinates (A124)
and the Poincaré projection (A130) to represent lines of constant x and r on the two-
dimensional disk, as depicted in Figure 5.

A word of caution on coordinate ranges. To cover the whole disk, σ should range over
all R. In fact, for constant t and ϕ, the C-metric only covers half of the disk (here, we have
chosen the σ > 0 range). Nonetheless, the rest of the disk is recovered by rotation of the ϕ
coordinate. Moreover, the coordinate transformation (A131) is not one-to-one across the
whole range of (x, r) coordinates. To make it so, we restrict the range of x for a given r to

{

−ℓ/r < x ≤ 1 r > 0

x > 1 r < 0.
(A135)

for inverse acceleration ℓ.

Appendix D.5.3. dS3 Foliations

The coordinate transformation (141)

sinh(σ) =
R3

L4

1

|1 + rx
ℓ
|

√

1 − x2r2

R2
3

, r̂ = r

√

√

√

√

1 − x2

1 − x2r2

R2
3

, (A136)

brings the C-metric (with µ = 0) into empty AdS4 form (142) foliated by dS3 slices (after
the ℓ3 → iR3 Wick rotation). At constant t and ϕ slices, the two-dimensional metric is

ds2 = L2
4dσ2 +

L2
4

R2
3

sinh2(σ)

(

1 − r̂2

R2
3

)−1

dr̂2, (A137)

having the form of (A125) where σ plays the role of χ and r̂ is related to the angle φ, with
r̂ ∈ [0, R3). The coordinate transformation

ψ = 2R3 arctan





r̂

−R3 +
√

R2
3 − r̂2



 , (A138)

brings the spatial metric to

ds2 = L2
4

(

dσ2 + sinh2 (σ)dψ2
)

, (A139)

which is conformally equivalent to (A126).



Universe 2024, 10, 358 102 of 119

Note that σ is always positive in the coordinate transformation (A136). Consequently,
the parametrization only covers the σ ≥ 0 region of the disk, and it cannot be recovered
by a simple rotation by the ϕ coordinate (as in the AdS case). The other half of the disk is
covered by analytic continuation of the coordinate system, yielding Figure 9.

Appendix D.5.4. Flat Foliations

Empty AdS4 can also be foliated by Mink3 and can be understood as a limiting case of
either the AdS3 and dS3 foliations as, respectively, ℓ3 and R3 tend to infinity. In particular,
the coordinate transformation

eσ = ℓ+ xr, r̂ = r
√

1 − x2, (A140)

produces the constant t-ϕ geometry

ds2 = ℓ
2
(

dσ2 + e−2σdr̂2
)

, (A141)

coinciding with line element (A129). Contrary to the previous examples, here, r̂ plays the
role of the hyperbolic angle. For the coordinate transformation to be meaningful, we restrict
the values of x such that

−ℓ/r ≤ x < 1 , (A142)

where, recall, r ≥ 0. In principle, these coordinates cover only half of the disk, while the
other half is recovered by a rotation of the angle ϕ, leading to Figure 10.

Appendix E. On-Shell Euclidean Action of AdS C-Metric

Here, we review the derivation of the thermodynamics of the bulk system of a regular
(non-rotating) AdS4 C-metric with a Karch–Randall or Randall–Sundrum brane using the
on-shell Euclidean gravitational action [124].

Appendix E.1. Geometry

In Lorentzian signature, we work with the AdS4 C-metric in the form

ds2 =
ℓ2

(x − y)2

(

−H(y)dt2 +
dy2

H(y)
+

dx2

G(x)
+ G(x)dϕ2

)

, (A143)

where
H(y) = λ − ky2 + µy3, G(x) = 1 + kx2 − µx3, (A144)

with λ ≡ ℓ2/ℓ2
3 and µ = 2mA. To avoid a conical singularity at the zero x = x1 of G(x), the

period of angular variable ϕ is fixed to be ∆ϕ = 4π
|G(x1)| , and for a black hole localized on the

brane at x = 0, the x, y coordinate ranges are restricted to be 0 ≤ x ≤ x1 and −∞ ≤ y ≤ x,
where y = −∞ corresponds to a curvature singularity hidden behind the bulk horizon,
located at y = y+, which is the smallest root of H(y). The region x, y → 0 corresponds to
an asymptotic region far from the black hole (this is apparent in Boyer–Lindquist form).

Recall that the surfaces x = 0 and y = 0 are umbilic, satisfying K(x)
ij = −Aϵh(x)

ij

(A118) and K(y)
ij = Aϵ

√
λh(y)ij (A119), respectively84. Boundary conditions on the x = 0 and

y = 0 hypersurfaces are governed by Israel’s junction conditions [53]. For purely tensional
branes, the junction conditions fix the tensions τx and τy by relating the discontinuity in
the extrinsic curvature across the x = 0 and y = 0 surfaces to their respective brane stress

tensors S(x)
ij and S(y)

ij . Specifically, for a Z2-symmetric brane configuration as utilized in the

main text, the junction conditions give

2[K(x,y)
ij − h(x,y)

ij K(x,y)] = 8πG4S(x,y)
ij = −8πG4τx,yh(x,y)

ij , (A145)
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giving tensions

τx = − ϵA
2πG4

, τy = − ϵA
√

λ

2πG4
. (A146)

The Euclidean AdS4 C-metric is found by Wick rotating tE = it, for Euclidean time tE,

ds2 =
ℓ2

(x − y)2

(

H(y)dt2
E +

dy2

H(y)
+

dx2

G(x)
+ G(x)dϕ2

)

, (A147)

using A = ℓ−1. In Euclidean signature, there will be a conical singularity at the location of
the black hole horizon, y = y+. To have a regular Euclidean section, the Euclidean time
tE ∼ tE + ∆tE is periodicially identified with period

∆tE =
4π

|H′(y+)|
. (A148)

In Euclidean signature, the brane and boundary satisfy the same umbilic conditions as
before, however, ϵ = −1 in the tensions (A146).

Appendix E.2. On-Shell Euclidean Action

We now follow Gibbons and Hawking [123] to evaluate the quantum gravitational
canonical partition function Z(β) in the semi-classical limit via the on-shell Euclidean
action. Before we evaluate the on-shell action, two comments are in order. First, as an
accelerating black hole, the AdS4 C-metric has at least two horizons, a black hole horizon
and an acceleration horizon. Due to the system having two horizons, generally with
different surface gravities, the two-horizon system is not generically in thermodynamic
equilibrium. One way to circumvent this problem is to work in a regime in which the
black hole is slowly accelerating, where A < L−1

4 [90]. This translates to A < A
√

1 + λ,
i.e., λ > 0, or an AdS3 slicing on the brane. Below, we work in this regime such that
we effectively have a single black hole with a single unique temperature given by β−1.
Meanwhile, a dS3 slicing, where −1 < λ < 0, obeys A > L−1

4 , such that the bulk solution is
interpreted as two black holes separated by an acceleration horizon [344], and the system
is not in thermal equilibrium. This is consistent with the fact this scenario describes a de
Sitter black hole localized on the brane, for which the black hole and cosmological horizons
are not generally in equilibrium.

Second, in the evaluation of the on-shell action, it is common to encounter infrared
divergences as a boundary is approached, requiring some regularization scheme. Tradi-
tionally, this is accomplished either by the method of background subtraction or in the case
of asymptotically AdS spacetimes including a local counterterm action [18,345]. The key
insight of [124] is that to recover the thermodynamics of the bulk black hole and, hence,
the black hole localized on the brane, no background subtraction or local counterterms
are needed. Rather, the potential IR divergences in the total on-shell action are exactly
cancelled when branes at x = 0 and y = 0 are included.

To this end, the total action I characterizing the bulk Riemannian spacetime M
endowed with Euclidean metric g, and branes Bx and Bx embedded at x, y = 0 is

I = IEH + I(x)
GHY + I(y)GHY + IBx + IBy , (A149)

where the bulk Einstein–Hilbert action

IEH = − 1

16πG4

∫

M
d4x

√
g(R − 2Λ), (A150)
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with Λ = −3/L2
4. To have a well-posed variational problem, Gibbons–Hawking–York

boundary (GHY) terms are needed for each brane,

I(x)
GHY =

1

8πG4

∫

Bx

d3x
√

h(x)K
(x), I(y)GHY = − 1

8πG4

∫

By

d3x
√

h(y)K
(y). (A151)

The brane actions are purely tensional and take the form

IBx = −τx

∫

Bx

d3x
√

h(x), IBy = τy

∫

By

d3x
√

h(y). (A152)

Each action has IR divergences at x, y = 0. To remedy this, introduce cutoffs at x = ϵx and
y = ϵy, and at the end of the computation take the limit ϵx,y → 0.

Let us now evaluate actions (A150)–(A152) in the Euclidean background (A147). The
Einstein–Hilbert term evaluates to

IEH =
6ℓ4

16πG4L2
4

∫ ∆tE

0
dtE

∫ ∆ϕ

0
dϕ
∫ x1

ϵx

dx
∫ ϵy

y+
dy

1

(x − y)4

=
6ℓ4

16πG4L2
4

∆tE∆ϕ

3

∫ x1

ϵx

dx
(

1

(x − ϵy)3
− 1

(x − y+)3

)

=
ℓ4

16πG4L2
4

∆tE∆ϕ

[

1

(x1 − ϵy)2
− 1

(x1 − y+)2
+

1

(y+ − ϵx)2
− 1

(ϵx − ϵy)2

]

.

(A153)

where we used R = −12/L2
4, and Λ = −3/L2

4. The GHY term (A151) at x = ϵx is

I(x)
GHY =

1

8πG4

∫

Bx

d3x
√

h(x)K
(x) = − 3ℓ2

8πG4

∫

Bx

dtEdϕdy
1

(ϵx − y)3

= − 3ℓ2

16πG4
∆tE∆ϕ

[

1

(ϵx − y+)2
− 1

(ϵx − ϵy)2

]

,

(A154)

where we used K(x) = − 3
ℓ

and
√

G(ϵx) ≈ 1 for ϵx ≪ 1. Similarly, at y = ϵy ≪ 1,

I(y)GHY = − 1

8πG4

∫

By

d3x
√

h(y)K
(y) = − 3λℓ2

8πG4

∫

By

dtEdϕdx
1

(x − ϵy)3

= − 3λℓ2

16πG4
∆tE∆ϕ

[

1

(ϵx − ϵy)2
− 1

(x1 − ϵy)2

]

,

(A155)

where we used K(y) = 3
√

λ
ℓ

and
√

H(ϵy) ≈
√

λ. Lastly, the brane actions (A152) give

IBx = −τx

∫

Bx

d3x
√

h(x) =
ℓ2∆tE∆ϕ

4πG4

[

1

(ϵx − ϵy)2
− 1

(y+ − ϵx)2

]

, (A156)

IBy = τy

∫

By

d3x
√

h(y) =
λℓ2∆tE∆ϕ

4πG4

[

1

(ϵx − ϵy)2
− 1

(x1 − ϵy)2

]

, (A157)

with tensions τx = 1
2πG4ℓ

and τy =
√

λ
2πG4ℓ

. Observe that IGHY = − 3
4 IB for either brane.

Adding together the Einstein–Hilbert, GHY, and brane actions, and accounting for the Z2

symmetry, the total on-shell Euclidean action is [124]

Ion-shell =
ℓ2

8πG4
∆tE∆ϕ

[

(1 + λ)

(x1 − y+)2
− 1

x2
1

− λ

y2
+

]

, (A158)

where we implemented L−2
4 = ℓ−2(1 + λ), and since all IR divergences cancel, we safely

take the limit ϵx, ϵy → 0.
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It proves useful to introduce parameter z = −y+/x1, from which we find

x2
1 =

1

z2

ν2 − z3

k(1 + z)
,

y2
+ =

(ν2 − z3)

k(1 + z)
,

µ = z(z2 + ν2)
√

1 + z
∣

∣

∣

∣

k
(ν2 − z3)

∣

∣

∣

∣

3/2

,

(A159)

where we used G(x1) = H(y+) = 0 to solve x2
1 and y2

+ and µ = (1 + kx2
1)/x3

1. Further, we
set λ = ν2. Given the range of coordinates x, y, the parameter z ranges between 0 and ∞,
depending on the value of k85. With the parameters (A159), note

∆tE∆ϕ =
16π2x2

1z3(1 + z)2

[z3 + 2ν2 + 3zν2][2z3 + ν2 + 3z2]
, (A160)

where we used H′(y+) = −2ky+ + 3µy2
+ = 2kx1z + 3µx2

1z2, and µx1 =
1+kx2

1

x2
1

. Then,

Ion-shell = − ℓ2

8πG4

∆tE∆ϕ

x2
1

[

ν2(1 + 2z) + z3(2 + z)
z2(1 + z)2

]

= −16π2ℓ2

8πG4

z(ν2 + 2zν2 + 2z3 + z4)

[z3 + 2ν2 + 3zν2][2z3 + ν2 + 3z2]

= −8π2ℓ2z
8πG4

(

1

(2z3 + ν2 + 3z2)
+

z
(z3 + 2ν2 + 3ν2z)

)

.

(A161)

where in the first equality, we replaced y+ = −zx1, and in the second, we substituted in
(A160). Notice the parameter k has dropped out of the final expression.

Appendix E.3. Thermodynamics in the Canonical Ensemble

Following Gibbons and Hawking [123], the gravitational canonical partition func-
tion is given by a Euclidean path integral, which to leading order in a stationary phase
approximation is

Z(β) = tr(e−βH) ≈ e−Ion-shell , (A162)

where β is the (inverse) temperature T of the system. Unlike, say, the Schwarzschild black
hole, the period of Euclidean time ∆tE is not equal to β. This is because the coordinates
(tE, ϕ, y) are not canonically normalized in that ϕ ∼ ϕ + ∆ϕ instead of ϕ ∼ ϕ + 2π. Thus,
one should instead consider rescaled coordinates ϕ̄ = η−1ϕ, t̄E = η−1ℓtE, and ȳ = η−1y
with η ≡ ∆/2π. In these canonically normalized coordinates, the periodicity of t̄E is such
that

t̄E ∼ t̄E + β, β = 2πℓ
∆tE

∆ϕ
. (A163)

Using the parameters (A159), the inverse temperature may be cast as86

β =
2πℓ

z

(

ν2 + 3z2 + 2z3

2ν2 + 3zν2 + z3

)

. (A164)

Since log Z(β) = −βF, for free energy F, then

F = β−1 Ion-shell = − ℓz2

G4

(z3(2 + z) + ν2(1 + 2z))
(ν2 + 3z2 + 2z3)2

. (A165)
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Further, the canonical energy E and entropy S are defined via

E ≡ −∂β log Z, S = βE + log Z, (A166)

yielding (where we keep ν, ℓ and G4 fixed)

E =
ℓz2

G4

(1 + z)(ν2 − z3)

(ν2 + 3z2 + 2z3)2
, (A167)

S =
2πℓ2z

G4(ν2 + 3z2 + 2z3)
. (A168)

From here, it is easy to verify F = E − β−1S.
To recover the thermodynamic relations of the static qBTZ black hole stated in the

main text, simply rescale z → νz in the above quantities:

Ion-shell = −2πℓ2z
G4ν

[1 + 2νz + νz3(2 + νz)]
(2 + 3νz + νz3)(1 + 3z2 + 2νz3)

,

β =
2πℓ

νz
(1 + 3z2 + 2νz3)

(2 + 3νz + 2νz3)
,

F = − ℓz2

G4

[1 + 2νz + νz3(2 + νz)]
(1 + 3z2 + 2νz3)2

,

E =
ℓz2

G4

(1 + νz)(1 − νz3)

(1 + 3z2 + 2νz3)2
,

S =
2πℓ2

3

G4

νz
(1 + 3z2 + 2νz3)

,

(A169)

and subsequently use G3 = G4/2ℓ with G3 = G3

√
1 + ν2.

Notes

1 In two-dimensional dilaton gravity, the analog of the semi-classical Einstein equations can be solved exactly. This is because

the quantum effective Polyakov action [4] capturing the two-dimensional conformal anomaly encodes nearly all backreaction

effects [5].
2 There exist a set of AdS boundary conditions for which the boundary metric becomes dynamical [10].
3 Going beyond the planar limit corresponds to including bulk quantum effects.
4 We will always work in units where the speed of light c = 1.
5 Since we have set c = 1, mass has dimensions of inverse length while G3 has dimensions of length.
6 Unlike the higher-dimensional black holes, the BTZ black hole does not possess a curvature singularity at r = 0; indeed, the

curvature is constant everywhere. Rather, r = 0 describes a timelike/causal singularity.
7 Here, we are considering vacuum general relativity. Black holes in dS3 can arise in pure modified theories of gravity, e.g., ‘new

massive gravity’ [36] or topological massive gravity [37,38].

8 The coordinate transformation (13) is now t̃ = γt − αL3ϕ, ϕ̃ = γϕ + αt/L3 and r̃/L3 =

√

(r/L3)2+α2

γ2−α2 .

9 See, e.g., [27,40,45] for rotating backgrounds.
10 For conical (A)dS3, the attractive gravitational effect is a by-product of a negative Casimir energy density from (18), ρCas =

−⟨Tt
t⟩ = −h̄F(M)/8πr3. This follows because a region of localized negative energy has a repulsive effect on its exterior; however,

the further one enters the region, the repulsive effect is lessened. Thus, at finite r, there is an effective attraction from the Casimir

energy [26].
11 A concrete realization of AdS/CFT duality is that of N = 4 super Yang–Mills theory, a superconformal field theory, which is

dual to type IIB string theory on AdS5 × S5, where the ’t Hooft coupling λ controls the curvature scale of AdS5 whilst the string

coupling is gs ∼ N−1. In the large-N limit, stringy interactions are thus suppressed and λ ≫ 1 forces curvatures to be small, such

that the string theory may be replaced by an effectively classical gravity.
12 In this section, we have set h̄ = 1.
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13 For bulk AdSd+1 M with conformal boundary ∂M, the d-dimensional field theory lives on a d-dimensional manifold that

belongs to the conformal class of ∂M. By choosing an appropriate conformal, the field theory may be placed on ∂M. The

choice of boundary metric fixes the boundary condition the bulk saddle-point geometry must obey and amounts to fixing the

non-normalizable mode of the bulk graviton.
14 In principle, one would like to integrate ϵ < ρ < ∞, where ρ = ∞ is the other side of the asymptotic boundary. However, for

d > 2, the entire analysis takes place near the ρ = 0 region and breaks down far into the bulk to the ρ = ∞ region. Indeed, the

expansion (24) is valid near the ρ = 0 boundary. When d = 2, however, the three-dimensional Weyl tensor is identically zero

everywhere, such that the perturbative expansion truncates and the ρ-integration can be carried out explicitly, e.g., [19,50].
15 A notion of double holography was proposed in a Randall–Sundrum set-up [26], where the analog of defect CFTd−1 is given by

two Euclidean CFTs, which is disconnected from the boundary viewpoint.
16 Concerns that double holography leads to superluminal signaling [60] are ameliorated when the brane description is treated as

an effective theory, such that ETW brane models are consistent with causality [61].
17 Equally, L2

d+1/L2
d ∼ ϵ, and thus the gravitational brane action is recognized as an expansion in small ϵ. Moreover, from the brane

perspective, the short-distance UV cutoff of the CFTd goes like Ld+1 such that the higher-derivative terms also correspond to an

expansion in the UV cutoff.
18 Historically, regarding the exact three-dimensional braneworld black holes [23,24], while interpreted as holographic quantum

black holes in [22], the higher-derivative corrections in the induced gravity action on the brane were not explicitly accounted for

until [22,25–27].
19 Alternatively, one can study topological black holes on the brane, e.g., [54,65]. In this context, the bulk is d + 1-dimensional

AdS-Rindler, for which the Rindler horizon induces a Rindler horizon on the brane. Since the bulk geometry is simply vacuum

AdS, it evades the no-go theorem of [66].
20 There are other mechanisms to induce two-dimensional dilaton gravity on the brane without explicitly introducing a DGP term.

These include, for example, using ‘wedge holography’ to uncover AdS- or dS-JT gravity [79–82], or via the holography of a

deformed braneworld [83], which yields a host of dilaton-gravity models on a two-dimensional brane.
21 Indeed, a black hole will grow if Tijkikj > 0 in the background for a null generator of the horizon ki. A black hole thus remains

static when Tijkikj = 0. Since the brane stress tensor is proportional to the induced metric, the static condition translates to

kiki = 0, i.e., the ki lies entirely on the brane, which occurs when the radial direction orthogonal to the black hole is tangent to the

brane.
22 To see this, rearrange the bulk length scale (41) to find ℓ

−2
3 = 1

L2
4

− 1
ℓ2 and H(r) = κ + r2

L2
4

− r2

ℓ2 − µℓ
r . It follows that the only

positive real root to the cubic H(r) = 0 occurs when ℓ > L4. Moreover, cast in this way, it is clear the acceleration and negative

curvature of AdS4 counteract one another such that the restriction ℓ > L4 effectively removes the acceleration horizon.
23 Our conventions for the sign of the normal vector and junction conditions match with [23]. These differ from [25], where the unit

normal is ni =
(

x
ℓ
+ 1

r

)

√

G(x)∂i
x such that Kij = −ℓ−1hij, and where the junction conditions are 2(Kij − hijK) = −8πG4Sij =

8πG4τhij, resulting in the same tension (50).

24 Note taking c3 large is consistent with keeping ν small. Indeed, the large central charge limit has c3 ∼ ℓ

h̄G3
≫ 1 (equivalently, the

semi-classical bulk limit L(4)
P /L4 ≪ 1 for four-dimensional Planck length L(4)

P ), which is consistent for solutions with ν ≪ 1 and

when four-dimensional bulk quantum effects are neglected.
25 Evidence of the G3 identification in (65) is that the relation can be derived exactly by integrating the bulk volume in the action

with a bulk IR cutoff as r → ∞ [23].
26 Perturbative corrections to black hole solutions in semi-classical new massive gravity give rise to logarithmic terms in the

blackening factor [93]. This suggests a resummation of the infinite tower of higher-derivative terms in the induced action (the

O(ℓ2) term being that of new massive gravity) eliminates the logarithmic dependence.
27 This can be easily seen by performing the coordinate transformation t → t̃ − ax2

1ϕ̃ and ϕ → ϕ̃ in the brane geometry (80). For

large r, the ht̃ϕ̃ component of the geometry diverges as r2.

28 In addition to the local counterterms in pure gravity, p-form fields Fp (where p = 2 corresponds to Maxwell) may require

a local counterterm subtraction. As reported in [97], for a d + 1-dimensional bulk, when d < 2p, there are no divergences,

while a logarithmic divergence appears for d = 2p, and there will be divergences for d > 2p. Further, for d = 2p + 2n with

n ∈ Z
+, derivatives of Fp and its coupling to curvature appear in the conformal anomaly such that counterterms are needed

for d > 2p + 2n. Thus, the four-dimensional Maxwell action has no divergences as the IR cutoff ϵ → 0. Such terms, however,

contribute to the brane because the brane effective action keeps the cutoff finite and non-zero.
29 The rotating qBTZ metric (91) follows from the double replacement ℓ3 → iR3 and aAdS3

→ −adS3
such that ãAdS3

→ iãdS3
.

30 By AdS ‘horizon’, we mean the null hypersurface infinitely far from the brane in spacelike directions, but it can nonetheless be

reached by an observer in finite proper time.
31 In [22,23], only the naive brane metric is analyzed. While our analysis is qualitatively similar, some of the precise expressions differ.
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32 A first law for the charged C-metric with vanishing cosmological constant was derived in [122] using covariant phase space

methods, where, moreover, ‘boost time’ was treated as canonical time.
33 More carefully, the projection of the bulk Killing vector ζµ = ∂

µ
t is ka = ha

µζµ for projector ha
µ. Consequently, the surface

gravity κ on the brane coincides with the bulk surface gravity: kaDakb = κkb, for projected covariant derivative Da, implies

ha
ν(ζ

µ∇µζν) = ha
ν(κζν).

34 It is not obvious that Equation (205) is geometrically equal to the BTZ black hole entropy. Indeed, substituting z = ℓ3/x1r+ into

(205) does not yield the usual SBTZ = 2πr+/4G3. This is because the qBTZ represents a family of black hole solutions and a

specific x1 must be chosen to match the classical black hole. Nonetheless, for any z, the relation (205) holds.
35 Strictly speaking, the entropy (207) follows from an application of the field redefinition method for computing entropy of

higher-curvature theories [129]; see their Equation (20) with a1 = −1, a2 = 3
8 and 16πG3λ = ℓ2.

36 Note qij = hij + ninj − uiuj for spacelike and timelike unit normals ni and ui, respectively. The binormal ϵij = (niuj − njui)

satisfies ϵ2 = −2, and ϵk
jϵkl = (ujul − nlnj) ≡ g⊥jl = gjl − qjl for bulk metric gij.

37 If we replace S(3)
BH by SBTZ in the Iyer–Wald entropy (211), the leading contribution in S(3)

CFT is precisely the second term in (204).
38 The parametrization depends on κ = sign(νz3 − 1), such that the range of the three branches is covered by imposing 0 ≤ ν, z ≤ ∞.
39 Start with H(r+) = 0, replace r+ = ℓ3/zx1, qx2

1 = γ, and µ = (1 − κx2
1 − γ2)/x3

1, and then rearrange.
40 The thermodynamics of the rotating qBTZ solution follows from the reassignments ℓ2

3 → −R2
3 and a → −a, such that z2 → −z2,

ν2 → −ν2 and νz → νz.
41 Note the mass (259) and temperature (261) differ from those reported in [22,23], which is a consequence of us working in

canonically normalized coordinates. Moreover, the mass in [23] is identified as the result of explicitly integrating TdS(4)
BH =

T∂x̂S(4)
BHdx̂.

42 For µ ≪ 1, the real positive root x1 to G(x) = 0 is x1 ≈ 1 − µ, such that x̂ = µx1 ≈ µ. Meanwhile, the real positive root x1 for

µ ≫ 1 is x1 ≈ µ−1/3.
43 The interpretation of the thermodynamic volume remains fairly mysterious. In simple cases, e.g., static black holes in d + 1 ≥ 4, v

coincides with the geometric volume occupied by the black hole, i.e., the amount of spacetime volume excluded by the black hole

horizon. Generally, however, the thermodynamic volume (270) differs from the geometric volume [142–144].
44 This is not to say the thermodynamic volume does not have a geometric character. Indeed, in classical gravity, the thermodynamic

volume has a geometric definition in terms of Komar integrals. In this sense, moreover, the definition of the thermodynamic

volume is independent of treating the cosmological constant as a thermodynamic variable.
45 In D ≥ 4, ‘ultraspinning’ black holes [160–162] were initially thought to obey R < 1, thus violating (276); however, this has been

called into question [163]. In D = 3, only the electrically charged BTZ black hole violates the reverse isoperimetric inequality [164].
46 Other ensembles are equally intriguing. For a discussion on the constant c and V ensemble, characterized by the Gibbs free

energy G = M + PV − TS, see for example [170,171].
47 Notably, the three branches described here do not coincide with branches 1a, 1b, and 2 characterizing the mass of the qBTZ [25].

A more detailed study of these phases, including a stability analysis and their critical behavior, was given in [124,170,171].

Interestingly, in a fixed c and V ensemble, phase transitions between cold and hot black holes occur, demonstrating continuous

critical phenomena along the coexistence curve, with critical exponents that deviate from those observed in mean-field Van der

Waals fluids [171].
48 Even in a fixed background, explicit computations of ⟨Tij⟩ are complicated and limited, cf. [1,177].

49 In [185], it was argued that one can construct exact analytic static, spherically symmetric solutions (see [186] for a stationary

generalization) if one imposes an equation of state on the quantum stress tensor such that the type-B trace anomaly vanishes.
50 There are, however, accelerating black holes in AdS3, cf. [187–191].
51 To arrive at the second equality, use that in d-spacetime dimensions h̄Gd = (L(d)

P )d−2 and the relation between the brane and bulk

Newton’s constants (35). Then, for d = 4, (L(5)
P )3 = L5(L(4)

P )2.
52 Roughly, the argument of [69] is as follows. Consider N = 4 SU(N) super Yang–Mills theory on a sphere of radius R. There

are weakly interacting states (‘glueballs’) with energies ER ≪ N2 and strongly coupled states with energies ER ≫ N2. At

large ’t Hooft coupling λ, AdS/CFT says the field theory is dual to closed string theory, where the glueball states correspond to

perturbative string excitations in the ambient spacetime. Further, in this limit, the energy separation for weakly interacting states

goes like ∆E ∼ λ1/4/R. Hence, the glueball spectrum is lifted to infinite energy apart from the O(1) massless states dual to the

supergravity modes of the string and gravitational perturbations dual to O(1) of the O(N2) states. A caveat to this reasoning,

however, is that in the flat space limit R → ∞, the mass gap might disappear.
53 Fitzpatrick, Randall, and Wiseman also argue that the dynamical instability dual to semi-classical evaporation is unlikely

to occur [69]. Even if it did, the timescales of the bulk Gregory–Laflamme instability and thermodynamic instability of the

Schwarzschild black hole via Hawking radiation are different [209].
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54 A detailed comparison of holographic versus non-holographic stress tensors was made in [202] using an approach developed

by Page [211] to compute the renormalized stress tensor of a (non-holographiic) conformally coupled scalar field in AdS4-

Schwarzschild.
55 The appeal of the large-D limit is that the effective dynamics of the (bulk) black hole horizon is encoded in a set of two partial

differential equations which can be solved numerically and quickly. A large-D expansion of the Israel junction conditions is

then used to determine the location of the brane intersecting the bulk black hole, and it amounts to imposing a simple pair of

Neumann boundary conditions. Note, however, a limitation of the large-D effective theory is that the induced brane theory is not

well characterized by a (D − 1)-dimensional gravity. This is because with these limits, the induced theory has large corrections

on the brane from the higher-derivative terms such that the brane gravity behaves more like a D-dimensional theory. A possible

interpretation is that the induced theory describes a semi-classical theory where backreaction effects are large.
56 The RT formula can be directly derived from the gravitational Rényi entropy [228] (see also [229–232]).
57 See also [239] for a similar treatment in the context of braneworlds.
58 Explicit realizations of the equivalence between gravitational and entanglement entropies in two-dimensional braneworld models

pre-date the Ryu-Takayanagi prescription [249,250].
59 The island rule has been derived in two-dimensional Jackiw–Teitelboim gravity using the Euclidean gravitational path integral to

compute the Rényi entropy [256–258] or the microcanonical action [134,259].
60 The homology constraint for the RT surfaces depends on which perspective in double holography is being employed [262].
61 The argument of [54,260] requires DGP couplings be turned on, which can affect the growth rate of entanglement entropy of

subregions of the dual CFT [263]. Alternatively, the intersection term naturally arises using deformed braneworlds [83].
62 Semi-classical extensions of CV complexity have been proposed and explored with [288,291] and without [276] holographic

braneworlds.
63 Alternatively, leading-order perturbative backreaction was found to yield singular inner horizons in [44,45].
64 A notion of weak quantum cosmic censorship may directly follow from ‘cryptographic censorship’ [313]: a theorem that states

when the time evolution operator of a holographic CFT is approximately pseudorandom on a code subspace, there must be an

event horizon in the corresponding bulk dual. Incidentally, certain types of singularities are compatible with approximately

pseudorandom time evolution, and thus, by cryptographic censorship, are hidden behind event horizons.
65 The connection between hydrodynamics and chaos in 2+1 dimensional Einstein gravity is subtle, because metric fluctuations are

pure gauge. This issue is alleviated in braneworld models as they typically contain a massive graviton. Furthermore, a general

hydrodynamic framework for chaotic dynamics in 1+1 CFTs has been established [320], linking it to the field theory of soft modes

associated with holomorphic and antiholomorphic parameterizations. For further discussion in the context of classical BTZ black

holes, see [321].
66 The asymptotic boundary also lives at ρ → ∞; however, we restrict ourselves to the region near ρ = 0.
67 We work in the convention where the Riemann curvature tensor is Rρ

σµν = ∂µΓ
ρ
νσ + Γ

ρ
µλΓλ

νσ − (µ ↔ ν). Equivalently, Rρ
σµν =

−[∇µ,∇ν]Vν and Rρ
σµνVσ = [∇µ,∇ν]Vρ for vectors V. This convention differs from the one used in [19] by an overall minus

sign. In our convention, AdS curvature is negative, while in [19], AdS curvature is positive.
68 Note that Equation (7) of [50] differs by an overall sign and a factor of L2 from our expression (A19). The difference in sign comes

from a different convention for the Riemann tensor, one where the cosmological constant for AdS is ‘positive’, and the L2 comes

from the form of the metric where hthere
ij = L−2hhere

ij .

69 To aid the reader, here, for example, gjkg′jk = Tr(g−1g′). Further, to find the first expression in (A22), contract the first expression

in (A21) by gjk. Then, add zero to the term proportional to ρ as (gikg′jkg′il − gikg′jkg′il) and use the second expression in (A21) to

recast gikg′jkg′il = 2g′′jl .
70 Recall that for general dimension d, the analysis only applies near ρ = 0, where the Weyl tensor of the bulk spacetime vanishes.

Consequently, ρ-integration is performed around ρ = ϵ. Alternatively, when d = 2, since the three-dimensional Weyl tensor is

identically zero everywhere, the perturbative expansion gij(ρ, x) truncates and the ρ-integration can be carried out explicitly (see,

e.g., [19,50]).
71 Note that naively, a(2) is not valid when d = 2. The correct term can be found by performing the analysis explicitly when d = 2,

yielding ad=2
(2)

= Trg(2). Similarly, a(4) (which we did not explicitly compute; see [19]) has the coefficient in front replaced with

1/2 when d = 4.
72 To see this, write ∇a∇iRa

j = ∇i∇aRa
j + gab[∇a,∇i]Rbj, and then use the contracted Bianchi identity ∇aRa

j = 1
2∇jR and

[∇a,∇i]Rbj = −Rk
baiRkj − Rk

jaiRbk.

73 Historically, the RS models assumed a five-dimensional bulk and four-dimensional brane. More generally, the bulk need not be

restricted to five dimensions, e.g., in this review, we consider a four-dimensional bulk AdS spacetime and three-dimensional

branes.
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74 Simply, KK excitations are light, have non-vanishing momentum along the extra dimension, and become suppressed near the

brane, essentially decoupling from matter fields on the brane. Gravitational interactions between the matter fields are mediated

by the ‘zero mode’.
75 Garriga and Tanaka [324] applied a similar perturbative analysis to the RS-I scenario and found the effective linearized gravity on

either brane to be Brans–Dicke theory (with different Brans–Dicke parameters), where the Brans–Dicke scalar, i.e,. the ‘radion’

captures the displacement between the branes.
76 Stringy realizations of the KR construction were uncovered in [16,326–328] (and more recently, [59]).
77 A coordinate rescaling brings us to the L5 = L(10)

P (gs N)1/4 in Section 6.
78 Historically, the original C-metric belonged to a classification of types of black hole solutions to Einstein–Maxwell theory owed

to Levi–Civita in 1918 [332]. These solutions we rediscovered in the 1960s and further classified, particularly by Ehlers and

Kundt [333], giving the naming scheme of black holes of A,B and C-type metrics. It was not until 1970 that Kinnersley and Walker

understood the C-metric as an accelerated black hole [334]. In 1976, Plebanski and Demianski [89] showed how the C-metric is

embedded in a larger family of algebraic type-D solutions. For more on the history and aspects of the C-metric, see [121].
79 Refer to Equation (2.1) [89] with metric functions in Equation (3.25). Here, however, we take p, q and σ to have opposite signs.

For further details of the PD spacetimes and its various limits, see, e.g., [335–338].
80 Hong and Teo note that the only way to remove the closed timelike curves is when the angular velocity of the conical singularities

have the same constant value along the entire axis of symmetry [340].
81 The cubic G(x) = −2mAx3 + kx2 + 1 = 0 can be solved by introducing x = z − k

3 and expressed in depressed form, z3 + pz + q =

0, with p = − k2

12(mA)2 , q = − [2k3+27(4mA)2]
27(2mA)3 , and discriminant ∆ ≡ −(4p3 + 27q2) = − k3+27(mA)2

4(mA)4 . For ∆ > 0, G(x) has three

distinct real roots. For example, for k = −1, three real roots x0 < x2 < 0 < x1 exist when 0 < mA <
1

3
√

3
[23]. For ∆ < 0, G(x)

will have one real and two complex roots.
82 To see this, introduce x̃2 = 4(x − xi)/G′(xi). Expand the (x, ϕ) sector of (A110) about a zero of G(x),

G−1(x)dx2 + G(x)dϕ2 ≈ [G′(xi)(x − xi)]
−1dx2 + G′(xi)(x − xi)dϕ2 = x̃2(G′(xi)/2)2dϕ2 + dx̃2.

Periodicity (A115) then follows from imposing regularity at x̃ = 0.
83 This relation follows from having set the periodicity (A115), such that the coordinate range for ϕ is to 0 ≤ ϕ ≤ ∆ϕ(x1)− δ, where

δ is the angular deficit associated with the other conical singularities at xi ̸= x1.
84 Since here we work with metric (A143), which differs from metric (A110) by H(y) → −H(y), the

√
−λ coefficient in (A119) is

replaced with −
√

λ.
85 In particular, for k = +1, then 0 ≤ z < ν2/3, while for k = −1, then ν2/3 < z ≤ ∞. Meanwhile, for k = 0, one has µ = 1/x1/3

1 ,

and y+ = (ν2/µ)1/3, such that z = ν2/3.
86 It is also useful to ∆ϕ = 4πx1/(3 + kx2

1) and ∆tE = 4πx1/z(2kx2
1 + 3z(1 + kx2

1)).
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