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Abstract: Nonadiabatic Abelian geometric quantum computation has been extensively studied, due

to its fast manipulation and inherent noise resistance. However, to obtain the pure geometric phase,

the quantum state is required to evolve along some special paths to eliminate the dynamical phase.

This leads to increasing evolution time and weakened gate robustness. The unconventional geometric

quantum computation is an effective way to solve the above problems. Here, we propose a general

approach to realize the unconventional geometric computation. Then, we discuss the effect of the ratio

of geometric phase to dynamic phase on the performance of quantum gates. The results show that the

selection of ratio corresponds to different quantum gate robustness. Therefore, we can optimize the

ratio to get higher-fidelity quantum gates. At last, we construct the ratio-optimized quantum gates

in a superconducting circuit and test its robustness. The fidelities of the T-gate, Hadamard H-gate,

and controlled phase gate can be obtained as 99.98%, 99.95%, and 99.85%, respectively. Therefore,

our scheme provides a promising way to realize large-scale fault-tolerant quantum computation in

superconducting circuits.

Keywords: geometric quantum computation; unconventional geometric quantum computation;

high-fidelity quantum gates; superconducting circuits

1. Introduction

Quantum computers can solve some complex problems that the classical ones cannot
solve [1,2], because of the coherence and entanglement of the quantum process. Con-
structing quantum computers requires a set of universal quantum gates, including a set of
arbitrary one-qubit gates and a nontrivial two-qubit gate [3,4]. However, the decoherence
from the surrounding environment and the noise effects decrease the quantum gate fidelity.
Thus, it is essential and challenging to construct quantum gates that have a high enough
gate fidelity and a strong robustness against errors.

In 1984, Berry found the geometric phase in an adiabatic process, which was an
element of the holonomy group defined by the connection in the parameters space [5].
Meanwhile, the geometric phase only depends on the geometric properties of the curve
in the parameter space [6]. Hence, the quantum gates constructed by the geometric phase
have a strong robustness against certain local errors [7–9]. However, the adiabatic con-
dition requires the quantum system be exposed to the environment for a long time. In
1987, Aharonov and Anandan generalized the Berry phase by relaxing the adiabatic condi-
tion [10]. The nonadiabatic geometric quantum computation (NGQC) needed less evolution
time due to the nonadiabatic process. Since then, NGQC has been extensively studied
theoretically [11–14] and experimentally implemented in various quantum systems [15–17].
Furthermore, the Abelian NGQC can be promoted to the non-Abelian case [18], and has
also been widely used to generate a quantum computation [19–23].

The important task of geometric quantum computing is how to deal with dynamic
phases that are not protected by geometric properties. There are two common approaches.
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The first is to design a special evolutionary path to completely eliminate the dynamic
phase [24–26], which often requires a long evolutionary distance, thus exacerbating the de-
coherence effect caused by the external environment. For example, no matter how small the
rotating gate is, the evolution path required in the orange-slice-shape-path (OSSP) scheme
is formed by two lines of longitude.The second approach is unconventional geometric
quantum computing, which manages to convert dynamical phases into geometric features.
However, this method requires a complex system parameter design. Moreover, the ratio of
the kinetic phase to the geometric phase is difficult to adjust in the latter scheme [27,28].

Now, we ask two questions. Inspired by general methods for producing nonadiabatic
and holonomy quantum computations, whether we can also find a general approach to
realize an unconventional geometric quantum computation [29,30]. Here, the ratio of the
dynamical phase to the geometric phase is arbitrarily adjusted. Assuming such a method
exists, would different ratios affect the robustness of the quantum gates?

In this work, we derive a general approach to implement quantum computing with
unconventional geometries. This method can be understood as a mapping. As long as we
input a set of pendant states and path parameters, we can get an accurate Hamiltonian and
the ratio can be adjusted arbitrarily. Next, we optimized the ratio to improve the robustness
of the quantum gates. Finally, we construct our ratio-optimized single-qubit T-gate, H-gate,
and two-qubit controlled phase gate in superconducting circuits. We perform numerical
simulations of quantum gates. The results show that the fidelities of the T-gate, H-gate
and controlled phase gate reach 99.98%, 99.95%, and 99.85%, respectively. Therefore, our
scheme provides a promising way to realize large-scale fault-tolerant quantum computation
in superconducting circuits.

2. General Approach

2.1. Geometric Phase

Two states are said to be physically equivalent (|ψ〉 ∼ |φ〉) if |ψ〉 = eiα |φ〉 with a real
function α. Therefore, a proper space to describe the quantum dynamic evolution is the
projective Hilbert space P(H) [31]. Here, all states which are equivalent to |ψ〉 represent
an equivalence class in P(H). Consider an L-dimensional quantum system defined by
Hamiltonian H(t). {|ψi(t)〉} represent L orthonormal solutions of the Schrödinger equation
idt |ψi(t)〉 = H(t) |ψi(t)〉. If the trajectory of |ψi(t)〉 is projected to a closed curve C(t) in
P(H), this evolution is called a cycle. After a cyclic evolution, the state |ψi(T)〉 and |ψi(0)〉
project to the same point in the projective space. Hence, we have |ψi(T)〉 = eiφ |ψi(0)〉 [10].

To calculate the phase φ, we consider a set of auxiliary orthonormal states |ψ̃i(t)〉,
i = 1, ..., L, which satisfy two conditions, (1) the trajectory of the auxiliary state projects to
the same closed curve C(t) in P(H), i.e., |ψi(t)〉 is equivalent to |ψ̃i(t)〉; (2) the auxiliary
state satisfies |ψ̃i(T)〉 = |ψ̃i(0)〉. Then, we can obtain

|ψi(t)〉 = ei fi(t) |ψ̃i(t)〉 ,

fi(T)− fi(0) = φ. (1)

Substituting Equation (1) into the Schrödinger equation, we obtain

f− = i
∫ t

0
〈ψ̃i(t

′)|dt|ψ̃i(t
′)〉 dt′ −

∫ t

0
〈ψi(t

′)|H(t)|ψi(t
′)〉 dt′, (2)

where f− = fi(t)− fi(0). The first term above represents the geometric phase γgi(|ψ̃(t)〉),
and the other is the dynamic phase γdi(|ψ̃(t)〉).

The choice of auxiliary bases {|ψ̃i(t)〉} is not unique. We consider other states {|ψ′
i(t)〉}

which satisfy the above conditions (1) and (2). We can easily get |ψ′
i(t)〉 = eiξ(t) |ψ̃i(t)〉 =

ei[ξ(t)− fi(t)] |ψi(t)〉, and ξ(T) = ξ(0). Substituting |ψi(t)〉 in the Schrödinger equation
again, we can obtain the geometric phase γgi(|ψ′

i(T)〉) = γgi(|ψ̃i(T)〉)− [ξ(T)− ξ(0)] =
γgi(|ψ̃i(T)〉). Therefore, the geometric phase γgi(|ψ̃(t)〉) is U(1)-gauge-invariant. Note
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that the above derivation can be applied to arbitrary |ψi(t)〉 under cyclic evolution and any
|ψ̃i(t)〉 which satisfies conditions (1) and (2).

2.2. Constructing the General Approach

We start from the state |ψi(t)〉 = ei fi(t) |ψ̃i(t)〉 in Equation (1) with fi(0) = 0. Hence,
|ψi(t)〉 = ei fi(t) |ψ̃i(t)〉 is obtained. According to the unconventional geometric scheme,
the total phase can be written as

fi(t) = γgi(t) + γdi(t) = (1 + η)γgi(t), (3)

when γdi(t) = ηγgi(t) is satisfied. In this situation, |ψi(t)〉 = e(1+η)γgi(t) |ψ̃i(t)〉.
We now ask how to find a Hamiltonian which can make the quantum system evolve

from the initial |ψi(0)〉 to the final state |ψi(t)〉, such that Equations (1) and (3) are fulfilled. To
find such Hamiltonian, we can substitute Equation (1)–(3) into H(t) = i ∑

L
i=1 |ψ̇i(t)〉 〈ψi(t)|.

After the calculation given in appendix A, we can get

H(t) = i
L

∑
i 6=j

〈ψ̃i(t)| ˙̃ψj(t)〉 |ψ̃i(t)〉 〈ψ̃j(t)| − i
L

∑
i=1

η 〈ψ̃i(t)| ˙̃ψi(t)〉 |ψ̃i(t)〉 〈ψ̃i(t)| . (4)

The above derivation shows that starting from an arbitrary basis {|ψ̃i(t)〉}, i = 1, ..., L,
with |ψ̃i(0)〉 = |ψ̃i(T)〉, we can obtain the accurate Hamiltonian by using Equation (4) such
that the state |ψi(t)〉 defined by Equations (1) and (3) is the solution of the Schrödinger
equation. Consequently, the evolution operator at time T can be written as

U(T) =
L

∑
i=1

ei fi(T) |ψ̃i(0)〉 〈ψ̃i(0)| ; (5)

in summary, the general Hamiltonian Equation (4) is like a machine. When we input an
arbitrary set of auxiliary states |ψ̃i(t)〉, this machine will output a Hamiltonian such that
U(t) |ψ̃i(0)〉 = ei fi(t) |ψ̃i(t)〉 is filled.

3. Quantum Gates and Robustness

To realize an arbitrary unconventional geometric quantum gate, we consider a two-
level system consisting of qubit states {|0〉 , |1〉}. One choice of the auxiliary bases can be

|ψ̃1(t)〉 = cos
α(t)

2
|0〉+ sin

α(t)

2
eiβ(t) |1〉 ,

|ψ̃2(t)〉 = − sin
α(t)

2
e−iβ(t) |0〉+ cos

α(t)

2
|1〉 , (6)

and these states are required to fulfill the cyclic condition |ψ̃i(0)〉 = |ψ̃i(T)〉. Accordingly,
the geometric phase is obtained as

γg2(t
′) = −γg1(t

′) = i
∫ t

0
〈ψ̃2(t

′)|dt|ψ̃2(t
′)〉 dt′ =

1

2

∫ t′

0
[1 − cos α(t)]β̇(t) dt; (7)

when the cyclic evolution condition is satisfied, the above integral can be converted into
an area integral using Green’s formula. At this point the geometric phase is dependent
on the solid angle enclosed by the closed path. For brevity, we redefine γg2(t) = γg(t),
and f2(t) = − f1(t) = f (t) = (1 + η)γg(t). The evolution operator for the auxiliary states
above can be written as

U(T) = e−i f (T) |ψ̃1(0)〉 〈ψ̃1(0)|+ ei f (T) |ψ̃2(0)〉 〈ψ̃2(0)| = e−i f (T)n·σ , (8)
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where n = (sin α0 cos β0, sin α0 sin β0, cos α0) with α0 = α(0), β0 = β(0), and σ is the
Pauli vector. The evolution operator U(T) represents an arbitrary one-qubit gate with an
arbitrary rotating axis n and an arbitrary rotating angle 2 f (T).

Now, we start to construct the one-qubit T-gate and H-gate and discuss the effect of
the ratio on the robustness of the quantum gates. The parameters for constructing quantum
gates can be set as

T − gate : (α0, β0) = (0, 0), f (T) = π/8,

H − gate : (α0, β0) = (π/4, 0), f (T) = π/2. (9)

The exponential maps of the T-gate and H-gate are U(T) = exp (−iπσz/8) and
U(T) = exp (−iπ(σz + σx)/2

√
2), respectively. In order to make the phase f (T) positive,

we choose a counterclockwise evolution direction of the quantum state, i.e., the derivative
of the azimuth angle is β̇(t) > 0.

Figure 1. (a) Schematic diagram of quantum state evolution; the curve is composed of two longitude

lines and a section of latitude line, where α and β are the polar and azimuth angles, respectively. (b) A

single transmon is driven by a microwave; we can adjust the Rabi frequency through the xy control

line and adjust the detuning through the z control line.

The evolution path of the quantum state is shown in Figure 1a. First, we can take
the path parameters (α(t), β(t)) starting from the north pole (0, 0) to the point A (π/4, 0)
along the geodesic β(t) = 0 for [0, T1). For this path, the Hamiltonian can be obtained,
H(t) = 1

2 Ω(t)[ei(β(t)+π/2) |1〉 〈0|+ H.c], with the Rabi frequency being Ω(t) = α̇(t) > 0.

The Rabi frequency area is calculated as
∫ T1

0 Ω(t) dt = π/4.
Then, the quantum state evolves from point A (π/4, 0) to (π/4, π/[2(1 + η)(2 −√

2)]) along the latitude line α(t) = π/4, for (T1, T2], with η <

√
2

2−
√

2
(≈ 2.41). For this

path, the Hamiltonian reads H(t) = 1
2 ∆(t)(|1〉 〈1| − |0〉 〈0|)+ 1

2 Ω(t)[ei(β(t)+π) |1〉 〈0|+H.c],
where the Rabi frequency and the detuning are written as

Ω(t) =

√
2

2
[

√
2

2
(1 + η)− η]β̇(t),

∆(t) = −2[1 +

√
2

2
(1 + η)] sin2(

π

8
)β̇(t). (10)

Note that we took η <

√
2

2−
√

2
above just to make the Rabi frequency Ω(t) positive.

Accordingly, the Rabi frequency area is
∫ T2

T1
Ω(t) dt =

√
2

2 [−η +
√

2
2 (1 + η)](β(T2)− β(T1)).

Meanwhile, the ratio must be −1 < η to ensure that β̇(t) > 0. If η > 2.41, the Hamiltonian
reads H(t) = 1

2 ∆(t)(|1〉 〈1| − |0〉 〈0|) + 1
2 Ω(t)[eiβ(t) |1〉 〈0|+ H.c] and the Rabi frequency is

Ω(t) =
√

2
2 [η −

√
2

2 (1 + η)]β̇(t). If and only if η = 2.41, we have Ω(t) = 0.

Finally, the state returns back to the north pole (0, π/[2(1 + η)(2 −
√

2)]) along the
geodesic β(t) = π/[2(1 + η)(2 −

√
2)] for (T2, T3]. Accordingly, the Hamiltonian is ex-

pressed as H(t) = 1
2 Ω(t)[ei(β(t)− π

2 ) |1〉 〈0| + H.c] with Ω(t) = −α̇(t) > 0. The Rabi fre-



Appl. Sci. 2023, 13, 4041 5 of 16

quency area is also π/4 and the solid angle is calculated as 2γg(T) = π
4(1+η)

. Finally,

the total phase is f (T) = (1 + η)γg(T) =
π
8 .

The Hamiltonian along every piecewise path can be described as a two-level system
and is driven by the Rabi frequency and the detuning,

H(t) =
1

2

(

−∆(t) Ω(t)e−iµ(t)

Ω(t)eiµ(t) ∆(t)

)

. (11)

The process of constructing the H-gate is very similar to that of the T-gate. For simplic-
ity, the evolution parameters and the Rabi frequency are given directly below:

(1) (
π

4
, 0) → (0, 0),

(2) (0,
1

1 + η

2π√
2 − 2

) → (
π

4
,

1

1 + η

2π√
2 − 2

),

(3) (
π

4
,

1

1 + η

2π√
2 − 2

) → (
π

4
, 0).

The Rabi frequency reads Ω(t) = −α̇(t) in [0, T1], and Ω(t) = α̇(t) in (T1, T2]. Mean-

while, Ω(t) =
√

2
2 [

√
2

2 (1 + η)− η]β̇(t) when η < 2.41, and Ω(t) =
√

2
2 [η −

√
2

2 (1 + η)]β̇(t)
when η > 2.41 in (T2, T3].

We next take Ω(t) = ΩM sin( πt
Tij
) with ΩM = 20× 2π MHz and Tij = Tj − Ti being the

total time of every piecewise path, to evaluate the gate robustness of the implemented T-gate
and H-gate in our scheme under decoherence, using the Lindblad master equation [32]

ρ̇ = −i[H(t), ρ] +
1

2
κzL(Az) +

1

2
κ−L(A−), (12)

where ρ is the density matrix of the input state, L(A) = 2AρA† − A†Aρ − ρA†A is the
Lindblad operator for decay operator A− = ∑

+∞
k=1

√
k |k − 1〉 〈k| and dephasing operator

Az = ∑
+∞
k=1 k |k〉 〈k| [33]. To test the robustness of the T- and H-gate, we set the general input ini-

tial state as |ϕ(t)〉 = cos θ |0〉+ sin θ |1〉. After the action of the Lie group U(T), the final ideal
state |ϕ(T)〉 was cos θ |0〉+ exp(iπ/4) |1〉 and [(cos θ + sin θ) |0〉+ (cos θ − sin θ) |1〉]/

√
2,

respectively. The gate fidelity was defined as FG = 1
2π

∫ 2π
0 〈ϕ(T)|ρ|ϕ(T)〉 dθ [34], and the

integration was numerically done for the 1001 input states with θ being uniformly distributed
within [0, 2π]. In Figure 2, we obtained the fidelities of the T-gate and H-gate as a function
of the parameters η ∈ (−1, 2.41) ∪ (2.41, 10] and the decoherence rate κ− = κz = κ ∈
[0, 8]× 2πkHz. In the areas I, II, III, the fidelities of the quantum gates reached F ≤ 99.95%,
99.95% < F < 99.98%, and F > 99.98%, respectively. We can see that the white curve is an
increasing function as the ratio increases in (−1, 2.41) and is a decreasing function as the ratio
decreases (2.41, 10). This means that the fidelity of the quantum gate increased as the ratio
approached 2.41 and decreased away from 2.41. Because the Rabi frequency was a sinusoidal
pulse, the ratio could not be taken as 2.41. In this article, we mainly discuss the influence of
the ratio on the quantum gate. In fact, the polar angle does not necessarily have to be π/4.
For example, we took the polar angle as π/3 and π/6. The fidelities of the quantum gates had
the same trend as a function of the ratio, and their transition point was 2 and 6.5, respectively.

Here, we give the reason to explain this trend in fidelities versus ratio. As discussed
above, when the quantum state evolves along the meridian, the Rabi frequency area is
π/4. The ratio of phases has an effect on the evolution of quantum states along latitude
lines. Thus, we plotted the Rabi frequency area along the latitude line as a function of η
in Figure 3. Clearly, the area of the T-gate (red line) and H-gate (blue line) was reduced
when η approached 2.41 from the left or from the right. A smaller Rabi area with the same
positive Rabi frequency Ω(t) meant less time for the quantum system to interact with the
external environment. Therefore, the decoherence noise was suppressed.
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Figure 2. Gate fidelities of the T-gate and H-gate as a function of the parameters η and κ,

(a) η ∈ (−1, 2.41) and (b) η ∈ (2.41, 10] for the T-gate, (c) η ∈ (−1, 2.41) and (d) η ∈ (2.41, 10]

for the H-gate. In the areas I, II, and III, the fidelities of the quantum gates reached F ≤ 99.95%,

99.95% < F < 99.98%, and F > 99.98%, respectively.
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In the following, we take the ratios of η = 0, 1, 2, 3 as examples to test their robust-
ness against the control errors, i.e., the qubit-frequency drift δ and the deviation ǫ of the
driving amplitude, and compare their performance with the OSSP scheme and pure dy-
namical case. The detailed steps of constructing the quantum OSSP and dynamical gate
are in Appendices B and C. The Hamiltonian affected by these controlled errors is written
as [33,35]

H(t) =
1

2

(

−(∆(t) + δΩM) (1 + ǫ)Ω(t)e−iµ(t)

(1 + ǫ)Ω(t)eiµ(t) ∆(t) + δΩM

)

. (13)

The noise δ appears in the diagonal elements of the matrix, affecting the phase change of
the qubit, and ǫ appears in the off-diagonal elements of the matrix, affecting the flipping
between qubits. According to experimental papers [36], we set the decoherence and
dephasing ratio as κ− = κz = κ = 4 × 2π kHz. Moreover, we calculated the Rabi area of
different ratios. When the ratios were zero, one, two, and three, the areas of the T-gate were
1.34+ π

2 , 0.39+ π
2 , 0.077+ π

2 , and 0.0813+ π
2 , respectively, and the areas of the H-gate were

5.36 + π
2 , π, 0.3067 + π

2 , and 0.3253 + π
2 , respectively. For the dynamical gates, they were

5π/4 for the T-gate and 3π/2 for the H-gate. Moreover, for the OSSP scheme, the areas
were all 2π for the T- and H-gate. It was found that by adjusting the ratio reasonably,
the Rabi area could be made smaller than for the OSSP and the dynamic scheme. The
robustness comparison of all the above schemes is shown in Figure 4. The results show that
when the ratio was close to the phase transition point of 2.41, the robustness of the quantum
gate against control errors was indeed improved compared with the pure geometry η = 0
scheme, the dynamic gate scheme, and the OSSP scheme. The variation of the robustness
with the ratio was about the same as previously discussed. In Figure 4d, the fidelity of the
η = 1 H-gate was lower than that of the η = 2 and η = 3 gates in ǫ ∈ (−0.04, 0.04). It is
understandable that the η = 2 and η = 3 effects were not much different, because their
Rabi areas were not very different.

When constructing quantum gates, we hope that the Rabi area is small enough to
increase the robustness of the system against decoherence. Meanwhile, we hope that the
change of the azimuth angle cannot be too small, because a small control error in the
experiment would lead to a large error in this solution. The gain effect of η = 3 was not
significant, and continuing to increase the ratio would further weaken the performance
of the gates. In Figure 3, we calculated the change in azimuth as a function of the ratio.
The results showed that as the ratio increased, the change in azimuth angle decreased
continuously, where |βH,T−| = |β2 − β1|. All things considered, η = 2 was an appropriate
choice to construct quantum gates.
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Figure 4. Test of the robustness of the η = 0, 1, 2, 3 T-gate and H-gate against control errors and

comparison with the OSSP scheme and dynamical gates. The results show that we can improve the

fidelity of the gate by choosing a specific ratio. (a–c) δ and (b–d) ǫ errors.

4. Implementation on Superconducting Circuits

In this section, we present the implementation of our ratio-optimized conventional
geometric gates on superconducting quantum circuits. We first demonstrate the imple-
mentation of single-qubit gates in superconducting circuits and numerically calculate the
fidelity of quantum gates. Then, we set out to realize and numerically verify the two-qubit
gate on two capacitively coupled transmon qubits [37].

4.1. One-Qubit Gate

We started by constructing one-qubit gates in superconducting circuits. Because the
Josephson junction is a nonlinear inductor, the energy spectrum of the transmon qubit
can be equivalent to a two-level system, i.e., H = ω1σz/2, where ω1 is the transmon’s
resonance frequency. The two lowest levels were used as our logical qubit. Then, we added
a microwave field to drive a single transmon, as in Figure 1b. The Hamiltonian read

H(t) =
∞

∑
k=1

[

kω1 −
1

2
k(k − 1)α′ |k〉 〈k|

]

+ [
1

2
Ω(t)aei[

∫ t
0 ω(t′) dt′−µ(t)] + H.c] (14)

where ω1, α′, ω, and µ are the qubit frequency, transmon’s anharmonicity, microwave
frequency, and phase, respectively. Here, the annihilation operator was always associ-
ated with the emission of photons, because we ignored the process of absorbing pho-
tons using the rotation wave approximation. The second excited state |2〉 was our main
source of leakage, because of the anharmonicity of the transmon. Therefore, we trun-
cated the annihilation operator to a = |0〉 〈1| +

√
2 |1〉 〈2|. After rotating the Hamil-

tonian to the new framework with U = U2U1, where U1 = exp [−iω1at], and U2 =

exp [i
∫ t

0 ∆(t′) dt′(|1〉 〈1| − |0〉 〈0|+ 3 |2〉 〈2|)/2], the new Hamiltonian was obtained as

H(t) =
1

2
{∆(t)(|1〉 〈1| − |0〉 〈0|+ 3 |2〉 〈2|)} − α′ |2〉 〈2|

+
1

2
{Ω(t)e−iµ(t)(|0〉 〈1|+

√
2 |1〉 〈2|) + H.c} (15)

where ∆(t) = ω1 − ω(t). As in Figure 1b, the Rabi frequency could be adjusted by the xy
control line and arbitrary waveform generator. The Z control line modified the detuning by
changing the magnetic flux in the superconducting quantum interference device (SQUID).
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We used the derivative removal via adiabatic gate (DRAG) technology to suppress the
qubit leakage error caused by state |2〉 [38]. The corrected rabbi frequency was

ΩD(t) = Ω(t)− {iΩ̇(t) + [µ̇(t) + ∆(t)]Ω(t)}/2α′ (16)

The detailed derivation of the DRAG correction waveform is shown in Appendix D.
According to a current state-of-art experiment [39], we set the decoherence rate and an-
harmonicity of the transmon as κ = κ− = κz = 4 × 2πkHz and α′ = 2π × 220 MHz,
respectively. Generally speaking, a strong Rabi frequency Ω(t) corresponds to a fast ro-
tation speed. However, the coupling term |1〉 〈2| in the Hamiltonian did not allow us to
arbitrarily increase Ω(t). Therefore, it was necessary for us to further discuss the choice of
Rabbi frequency Ω(t). In the top subfigure of Figure 5, we plotted the fidelities of the T-gate
ans H-gate as a function of the amplitude ΩM. As expected, the relationship between quan-
tum gates fidelities and pulse strength was fluctuating. We calculated the peak of the curve,
which corresponded to the highest fidelity and optimized Rabbi frequency. When ΩM was
taken as ΩM = 31 × 2π MHz , the fidelity of the T-gate reached the highest FG

T
∼= 99.98%,

and the highest fidelity of the H-gate was FG
H

∼= 99.95% when ΩM = 12 × 2π MHz. Let

us consider a concrete example. Suppose the initial input state |ψ〉 = (|0〉 + |1〉)/
√

2,

and |ψ〉 = |0〉 for the T-gate and H-gate, the ideal final states were (|0〉+ ei π
4 |1〉)/

√
2 and

(|0〉+ |1〉)/
√

2, respectively. We evaluated the quantum gates by the state population and
fidelities defined by Fs = Tr[ρiρe], where ρi,e is the density operator of the final ideal state
and the actual final density operator. The state population and fidelity dynamics are shown
in the bottom of Figure 5. Both state fidelities Fs of the T-gate and H-gate reached 99.97%.
The green dotted line represents the population probability at state |2〉. We found that it was
a flat straight line about zero, which meant that information leakage was well suppressed.

Until now, we have successfully realized high-fidelity superconducting one-qubit
gates. However, for the convenience of experiments, we generally set the detuning as a
constant value. In Appendix E, we also calculate this case.
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Figure 5. (Top) Gate fidelity as a function of the pulse peak ΩM ∈ (0, 35] for the η = 2 T- and H-gate,

the optimal value of ΩM can be selected according to the highest gate fidelity. The state population

and the state-fidelity dynamics for (bottom and left) η = 2 T-gate with input state (|0〉+ |1〉)/
√

2

and (bottom and right) η = 2 H-gate with input state |0〉.
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4.2. Two-Qubit Gate

We next discuss the construction of the ratio-optimized two-qubit gate on two directly
capacitively coupled transmon qubits, labeled as T1 and T2, as in Figure 6. The Hamiltonian
of the coupled system was written as

H0(t) = ∑
i=1,2

+∞

∑
j=1

[

jωi −
j(j − 1)

2
α′i

]

|j〉i 〈j|+ g(a†
1 − a1)(a†

2 − a2), (17)

where ωj and αj are the transmon’s frequency and anharmonicity, respectively. In fact,
the above formula is the general Jaynes–Cummings model. g is the coupling strength, which

is written as g = Cg
√

ω1ω2/
√

(C1 + Cg)(C2 + Cg). Once the quantum chip is prepared,

the coupling strength and qubit frequency are fixed and not adjustable. Therefore, we
needed to add external degrees of freedom to achieve a tunable coupling and efficient
quantum control. Specifically, we added an external magnetic field ǫ(t) to modulate the
SQUID frequency [40]. The corresponding Hamiltonian was

H(t) = H0(t) + f (ǫ)(|1〉2 〈1|+ |2〉2 〈2|), (18)

where f (ǫ) is the frequency response of the external field. Here, f (ǫ) was set to f (ǫ) = Ḟ(t), where
F(t) = −β cos[νt + ϕ(t)] with β,ν, and ϕ the amplitude, frequency, and phase, respectively.

Figure 6. Schematic diagram of two directly capacitively coupled transmon qubits, labeled as T1 and

T2, where T2 is biased by an ac magnetic flux which periodically modulates its qubit frequency.

The modified qubit frequency was ω2(t) = ω2 + Ḟ(t). Then, we used

U1 = exp

[

−i ∑
i=1,2

+∞

∑
j=1

[

jωi −
j(j − 1)

2
α′i

]

|j〉i 〈j|
]

U2 = exp[−iF(t)(|1〉2 〈1|+ |2〉2 〈2|)] (19)

to rotate the Hamiltonian picture. The new Hamiltonian was obtained as

H(t) = g
[

|10〉 〈01| ei∆1t +
√

2 |20〉 〈11| ei(∆1−α′1)t +
√

2 |11〉 〈02| ei(∆1+α′2)t
]

eiβ cos(νt+ϕ(t)) + H.c, (20)

where ∆1 = ω1 − ω2. We next handled the exponent part with the Jacobi–Anger identity,

eiβ cos θ =
∞

∑
n=−∞

in Jn(β)einθ , (21)

in which J−m(β) = (−1)m Jm(β), and Jm(β) are Bessel functions of the first kind. Mean-
while, setting ν = ∆1 + α′2 + ∆′ to obtain an off-resonance coupling with detuning ∆′

between qubit |11〉 and |02〉 and neglecting the high-order oscillating terms by rotating-
wave approximation yielded the effective Hamiltonian as

H = −1

2
∆′(|11〉 〈11| − |02〉 〈02|) + 1

2
g′
[

e−iµ(t) |11〉 〈02|+ H.c
]

, (22)
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where g′ = 2
√

2gJ1(β) is the effective coupling strength that can be modified by β, and the
effective phase is µ(t) = ϕ(t) − π

2 . Obviously, the Hamiltonian in Equation (22) had
the same form as Equation (11). Hence, the two excited states |11〉 would accumulate
a total phase similarly to the one-qubit case, i.e., |11〉 → exp[−i f (T)] |11〉. The two-
qubit computation space was H = span{|11〉 , |01〉 , |10〉 , |11〉} and we could construct a
controlled phase gate (CP) from the Hamiltonian in Equation (22) as

U(τ) = |0〉 〈0| ⊗ Idim=2 + |1〉 〈1| ⊗ (|0〉 〈0|+ e−i f (T) |1〉 〈1|). (23)

Then, we tested the robustness of the CP gate by setting f (T) = π/8 and η = 2 as a
typical example. The master equation could be written as

ρ̇ = −i[H(t), ρ] +
1

2

2

∑
j=1

{

κ
j
zL(Aj

z) + κ
j
−L(A−

j
z)
}

, (24)

where Aj
− = |0〉j 〈1|+

√
2 |1〉j 〈2|, and Aj

z = |1〉j 〈1|+ 2 |2〉j 〈2|. For a general input state

|ψ2〉 = (cos θ1 |0〉1 + sin θ1 |1〉1)⊗ (cos θ2 |0〉2 + sin θ2 |1〉2), the ideal final state was |ψ f
2 〉 =

CP |ψ2〉. The two-qubit gate was defined as FG
2 = 1

4π2

∫ 2π
0

∫ 2π
0 〈ψ f

2 |ρ|ψ
f
2 〉 dθ1dθ2 [34],

and the integration was numerically performed for the 10001 initial states with θ1 and
θ2 uniformly distributed in [0, 2π] and setting the coupling strength g = 2π × 8 MHz,

α′2 = α′1 = 2π × 220 MHz, and the decay and dephasing rates as κ1,2
− = κ1,2

z = κ =
2π × 4 kHz [39]. In Figure 7 (Top), we plotted the gate fidelity as a function of ∆1 and
β. The gate fidelity was FG ≥ 99.8% in the parameter area surrounded by white lines.
For example, the gate fidelity reached 99.85% with β = 1.6, and ∆1 = 315 × 2π MHz.
Furthermore, we calculated the state population and the state fidelity dynamics with the
input state being (|01〉+ |11〉)/

√
2 in Figure 7 (Bottom). Finally, the state fidelity of the CP

gate reached 99.74%.
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Figure 7. (Top) Gate fidelity of the nontrivial controlled phase gate as a function of parameters

∆1 and β with η = 2. (Bottom) The state population and state-fidelity dynamics with initial state

(|01〉+ |11〉)/
√

2.

5. Conclusions

In this article, we proposed a general approach to realize an unconventional geometric
quantum computation. Based on our method, the Hamiltonian could be reversely designed,
thereby avoiding a complex parameter design in the forward direction. Moreover, the ratio
between the phases could be adjusted arbitrarily in our method. Through a robustness
test, we found that different ratios corresponded to different gate performances. Then, we
optimized the ratio value to improve the robustness of quantum gates. Finally, we discussed
the implementation of our ratio-optimized quantum gates in superconducting circuits. The
results showed that the fidelities of the T-gate, Hadamard H-gate, and controlled phase
gate in superconducting circuits were 99.98%, 99.95%, and 99.85%, respectively. The fidelity
of these gates was high enough. Therefore, our scheme provides a promising way to realize
large-scale fault-tolerant quantum computation in superconducting circuits.
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Appendix A. Derivation of the General Method

We give the specific steps of Equation (4)’s derivation in this appendix. We know
that the Schrödinger equation is i ∂

∂t U = H · U. Suppose the Hilbert space is spanned by

{ ˜|ψ1〉, ..., ˜|ψL〉}. Then, the evolution operator is written as U = ∑
L
i=1 |ψi(t)〉 〈ψ̃i(0)| with
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|ψi(t)〉 being the solution of the Schrödinger equation. Substituting the evolution operator
into the Schrödinger equation gives

H = i
L

∑
i=1

|ψ̇i〉 〈ψi| ; (A1)

we next substitute Equations (1) and (3) into Equation (A1) and we have

H = i
L

∑
i=1

[

i(1 + η) 〈ψ̃i| idt |ψ̃i〉 |ψ̃i〉 〈ψ̃i|+ | ˙̃ψi〉 〈ψ̃i|
]

= i
L

∑
i=1

[

−(1 + η) 〈ψ̃i| ˙̃ψi〉 |ψ̃i〉 〈ψ̃i|+
L

∑
l=1

〈ψ̃l | ˙̃ψi〉 |ψ̃l〉 〈ψ̃i|
]

= i
L

∑
i=1

[

−(1 + η) 〈ψ̃i| ˙̃ψi〉 |ψ̃i〉 〈ψ̃i|+
L

∑
k=i

〈ψ̃k| ˙̃ψi〉 |ψ̃k〉 〈ψ̃i|+
L

∑
i 6=l

〈ψ̃l |ψ̇i〉 |ψ̃l〉 〈ψ̃i|
]

= i
L

∑
i 6=l

〈ψ̃l | ˙̃ψi〉 |ψ̃l〉 〈ψ̃i| − iη
L

∑
i=1

〈ψ̃i| ˙̃ψi〉 |ψ̃i〉 〈ψ̃i| (A2)

In the derivation process, we did not make any constraints on the auxiliary state
|ψ̃i〉 and the space dimension. Therefore, the formula Equation (A2) gives the general
Hamiltonian for constructing control gates with any number of qubits. At the same time,
this Hamiltonian is not only applicable to quantum computing and quantum information
but also to general condensed matter problems. For example, the auxiliary state can be
taken as the wave function of the phonon.

Appendix B. OSSP Gate

The evolution path of OSSP can be designed as follows. In [0, T1], the state evolves
from the point (α0, β0) to the north pole along the geodesic β(t) = β0. For this path,
the Hamiltonian is written as H(t) = 1

2 Ω(t)[e−i(β−π/2) |0〉 〈1|+ H.c], where the Rabi fre-

quency Ω(t) = α̇(t). Accordingly, the pulse is
∫ T1

0 Ω(t) dt = α0. Then, the state evolves
form the north pole to the south pole along the geodesic β(t) = β1 in (T1, T2], the Hamilto-

nian is expressed as H(t) = 1
2 Ω(t)[e−i(β+π/2) |0〉 〈1|+ H.c]. The pulse is

∫ T2
T1

Ω(t) dt = π.

Finally, returning back to the point (α0, β0) along geodesic β(t) = β0 in (T2, T], the Hamil-
tonian is written as H(t) = 1

2 Ω(t)[e−i(β−π/2) |0〉 〈1| + H.c], and the pulse area is equal
to π − α0. The pure geometric phase of the OSSP can be calculated as γg = β0 − β1.
Accordingly, the evolution operator is

U(T) = cos γg − i sin γg

(

cos α0 sin α0e−iβ0

sin α0eiβ0 − cos α0

)

. (A3)

The dynamical phase is equal to zero when the evolution path is geodesic. When
α0 = 0, γg = π/8, the T-gate can be realized, and if (α0, β0) = (π/4, 0), and γg = π/2,
the H-gate can be realized.

Appendix C. Dynamical Gate

The Hamiltonian of the two-level quantum system resonantly driven by an external
field can be written as

H(t) =
1

2
Ω(t)[cos µ(t)σx + sin µ(t)σy]. (A4)
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Setting µ(t) = µd to make [H(t1), H(t2)] = 0 is fulfilled. Therefore, the evolution
operator is obtained as

U(θd, µd) = exp[−i
∫ T

0
H(t) dt]

=

(

cos(θd/2) −i sin(θd/2)e−iµd

−i sin(θd/2)eiµd cos(θd/2)

)

,

where θd =
∫ T

0 Ω(t) dt, and the constant µd can ensure the geometric phase is zero.
The arbitrary dynamical X, Y, and Z rotating gate can be realized by Rx(θx) = Ud(θx, 0),
Ry(θy) = Ud(θy, π/2), and Rz(θz) = Ud(π/2, π)Ud(θz,−π/2)Ud(π/2, 0), respectively.
In this way, the T gate and H gate can be realized as Rz(π/4) and Ud(π, π)Ud(π/2, π/2),
respectively.

Appendix D. DRAG Correction

We here give the details of the calculation of the DRAG correction waveform in
Equation (16). In fact, because the coupling of higher-excited states is not negligible, we
cannot get the ideal two-level model. Here, we consider the influence of the second excited
state, which is the main leakage source due to the anharmonicity. Therefore, we apply
the DRAG technology to suppress the information leakage. To this end the Hamiltonian
describing the three-level anharmonic oscillator is written as

H(t) =
1

2
B(t) · S + δ |2〉 〈2| (A5)

where δ is an anharmonic parameter. The vector operator S is given by

Sx = ∑
0,1

√
n + 1(|n + 1〉 〈n|+ h.c)

Sy = ∑
0,1

√
n + 1(i |n + 1〉 〈n|+ h.c)

Sz = ∑
0,1,2

(1 − 2n) |n〉 〈n| (A6)

The vector B = B0 +Bd is the total controlled microwave field, where B0 = (Bx, By, Bz)
and Bd = (Bd,x, Bd,y, Bd,z) are the initial microwave field and the DRAG correction term.
The correction term is written as

Bd,x =
1

2δ

[

Ḃy(t)− Bz(t)Bx(t)
]

Bd,y = − 1

2δ

[

Ḃx(t) + Bz(t)By(t)
]

Bd,z = 0 (A7)

According to the Hamiltonian Equation (15), we have B0 = (Ω(t) cos µ(t), Ω(t) sin µ(t),
− ∆) and δ = α′. We obtain that

Bd,x = − 1

2α′
[

Ω̇ sin µ + Ωµ̇ cos µ + ∆Ω cos µ
]

Bd,y =
1

2α′
[

Ω̇ cos µ − Ωµ̇ sin µ − ∆Ω sin µ
]

Bd,z = 0 (A8)



Appl. Sci. 2023, 13, 4041 15 of 16

Accordingly, the corrected Hamiltonian is

H(t) =
1

2
{∆(t)(|1〉 〈1| − |0〉 〈0|+ 3 |2〉 〈2|)} − α′ |2〉 〈2|

+
1

2
{ΩD(t)e

−iµ(t)(|0〉 〈1|+
√

2 |1〉 〈2|) + H.c} (A9)

and the corrected Rabi frequency is written as

ΩD(t) = Ω(t)− {iΩ̇(t) + [µ̇(t) + ∆(t)]Ω(t)}/2α′ (A10)

Appendix E. Constant Detuning

For the convenience of experiments, we often set the detuning amount as a constant.
In section three, we obtained ∆(t) = 0 and µ̇(t), when the quantum state evolved along the
longitude line. For the latitude line, the detuning and the Rabi frequency are written as

∆(t) = −2[1 +
√

2
2 (1 + η)] sin2 π

8 β̇(t), and Ω(t) =
√

2
2 [

√
2

2 (1 + η)− η]β̇(t), respectively. If
the Rabi frequency is a square pulse, then the β̇ and ∆ are both constants. However, we ob-
tain that the correct pulse under DRAG is ΩD(t) = Ω(t)−{iΩ̇(t)+ [µ̇(t)+∆(t)]Ω(t)}/2α′.
Meanwhile, when Ω(t) is a square pulse, i.e., Ω̇(t) = 0, the correct pulse becomes
ΩD(t) = Ω. In other words, the DRAG technology is invalid. Therefore, the Rabi fre-
quency was only set as square pulse ΩM along the latitude line. After calculation, when
ΩM = 32 × 2πMHz and η = 2, we obtained the fidelity of the T-gate as 99.96%, and when
ΩM = 13 × 2πMHz and η = 1.9, the fidelity of the H-gate reached 99.95%.
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