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Введение 

Термин спин-орбитальное взаимодействие света впервые был введен в 

1991 году в работе [1]. В работе [2] была предложена классификация спин-

орбитальных взаимодействий, согласно которой можно выделить шесть 

типов различных взаимодействий. Явления, возникающие вследствие спин-

орбитального взаимодействия, относятся к субволновым явлениям. Данные 

явления очень чувствительны к изменению физического состояния систем и 

перспективны для применения в высокоточной метрологии. Примерами 

таких явлений являются эффект Федорова, орбитальный эффект Холла для 

света, пучки Эйри и оптический эффект Магнуса. 

Оптический эффект Магнуса является результатом взаимодействия 

спинового углового момента и внешнего орбитального углового момента [1]. 

Данный эффект заключается в повороте спекл-картины циркулярно 

поляризованного света, прошедшего через оптическое волокно, при смене 

знака циркулярной поляризации. Исследования, проводимые в работах [3-5] 

показали, что периферийные области спекл-картины по сравнению с 

центральными областями должны смещаться на больший угол. При этом 

краевая область спекл-картины соответствует лучам, распространяющимися 

под предельно большим углом к оси волновода, в то время как центральная 

область спекл-картины соответствует световым лучам, 

распространяющимися вблизи оси волновода. Данное явление, которое 

называется неоднородностью оптического эффекта Магнуса, неоднократно 

наблюдалось в различных экспериментах [4, 5], однако численно не 

рассчитывалось.  

Помимо спин-орбитальных взаимодействий, в которых участвуют 

только два типа угловых моментов, в работе [2], были рассмотрены новые 

спин-орбитальные взаимодействия, а именно совместное влияние двух типов 

угловых моментов на какой-нибудь третий тип. В рамках данной теории 

предсказывается существование новых эффектов. Одним из них является 
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оптический эффект Магнуса в цилиндрическом волокне, скрученном в 

спираль. В той же работе [2] была экспериментально получена зависимость 

угла поворота спекл-картины от шага спирали, однако моделирование 

распространения сагиттальных лучей в оптическом волокне, скрученном в 

спираль, не проводилось. 

Целью данной работы является моделирование распространения 

сагиттальных лучей в прямолинейном цилиндрическом волокне и в 

цилиндрическом волокне, скрученном в спираль. 

Для достижения поставленной цели необходимо выполнить следующие 

задачи: 

• Расчет зависимости угла поворота спекл-картины от угла падения 

сагиттального луча в прямолинейном цилиндрическом волокне; 

• Расчет зависимости угла поворота спекл-картины от длины 

прямолинейного цилиндрического волокна; 

• Расчет зависимости угла поворота спекл-картины от телесного 

угла, вырезаемого касательной к траектории волокна,  

скрученного в спираль, на единичной сфере. 
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Заключение 

          Смоделировано распространение сагиттальных лучей в прямолинейном 

цилиндрическом волокне. 

           Показано:    

1. зависимость угла поворота спекл-картины от номера мод в                   

прямолинейном цилиндрическом волокне имеет нелинейный 

характер; 

 2. зависимость угла поворота спекл-картины от длины 

прямолинейного цилиндрического волокна имеет линейный 

характер; 

3. зависимость угла поворота спекл-картины от угла падения 

сагиттального луча цилиндрического волокна  имеет линейный 

характер. 

        Смоделировано распространение сагиттальных лучей в прямолинейном 

цилиндрическом волокне, скрученном в спираль. 

         Показано: 

               1. зависимость угла поворота спекл-картины от телесного угла,      

вырезаемого касательной к траектории волокна, скрученного в 

спираль, на единичной сфере имеет линейный характер; 

               2. результаты моделирования качественно соответствуют 

экспериментальным результатам, полученным в работе [2]. 
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