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Nanes H.0. E2 - 11904

Mpuunanan A~ctatucruka, I, Obuwue ceoficTea

[Tokaaado, HTO AKCHOMLI BTOPHYHOrC KBAKRTOBAHHA MOLYT B NpHHLHNE
YAOBAETBOPATLCS ONepPATOPAME DOMAGHHS U YHHIUTOXEHHHA, (IOpOKAaEMY
anrebpy Jlu yrumoaynsipuoit rpynmu. [ipecrpalcTea doka WP, @) nynmepyor-
CH ABYMS NPCHIBOMLHBIME HEOTPHUATCALIEIMH WHciame p kg Cdopmyan-
popaH npunnun [laynm: B npoTpaHcTBe $oka Wp. qQ B OAHOM COCTOAUUY He
MOMET HAXOOUTECH Boaee P+ 4 acTui, 3apsi UPOHIBOALEOTO alncambns
YACTHI He MOXeT NpeBLlaTh P ¢ GuTh Melblie -G

w ‘ ®
Pafora purnonseda p JlaGopatopun TeopeTuueckoh $uankn OHSH, t. INTRODUCTION
- - In ref 2% i
. we have studied some possible
generalizations of the statistics of the
| spincr fields from a Lie algebraical point
| of view. The guiding idea for such investi-
; gations came from the observation that the
Mpenpuur O6belaHRHHOTO HHCTHTYTA sfepHEIX wccnenopatuit, OySua 1978 ordinary spinor field statistics, the Fermi
one, has a well defined Lie algebraical mean-
Eaior TD. E2 - 11904 ing. It turns out that any finite number
A Causal A-Statistics. 1. General FProperties t‘1 Yo fﬂ of Fermi creation and annihila-
It is shown that the second quantization axioms can, in prin- tion ?peratOrs generates one particular ir-
ciple, be satisfied with creation and annihilation operators denera- reducible representation, the spinor repre-
ting the Lie algebra of the unimodular group. The Fock spaces sentation of the al
¥p. 9 are labelled with two arbitrary non-negative numbers p anel gebraan °f the odd-
e T e e, boon formidatad, Tn o ook space _ orthogonal group S50(&n+ 1Y * Since the transi-
W, © there cannot be more than p+q particles in a single tion to an infinite set of Fermi
state, The charge of an arbitrary ensemble of particles cannot does not h i Cal epperarors
tate, The charge of an scoiira: change the algebraical structure,
. . one can say that Fermi quantization is actual-

Tl'.le invosti_g_z,ation has been performed at the Iaboratory of ; iz ieiizzz;iztiZE a;cordlr.lg t.:O . an il.-redUCib—
Theoretical Physics, JINR, ! of the infinite dimen-
sional simple Lie algebra of the odd-ortho-
gonal group. It turns out that the other
representations of the same algebra lead
to the introduced by Green paraFermi sta-
. tistics /9
Preprint of the Joint Institute for Nuclear Research. Dubna 1978 : : The group theoretical formulation of the
Fermi statistiecs rises in a natural way the
question whether one can define new kinds
of creation and annihilation operators that
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satisfy the second guantization axioms for
spinor fields but generate spme of the other
simple TLie algebhras. In ref!/Y we have answa-
red this guestion., We have associated a
guantization with every classical simpie
I.Lie algebra in such a way that the corres- ‘
ponding creation and annihilaticon operators ‘
belong to the algebra and generate the whole
algebra. Depending on the classical algebra |
the creation and annihilation operators ¥
generate, we call the corresponding gquanti-
zation A-, B-, G- or D-gquantization. In this
rerminology the Fermi statistics is included -
in the B-guantization. Some of the proper-
ties of A-, B- ﬁﬂﬁ D-statistics were men- i
tioned in ref.’ ™ ‘
Unfortunately, the Bose statistics does
not allow generalizations along a Lie
algekraical line. It is known that the second
order polyncmials of these operators are iso-
morphic tc the symplectic algebra/4ﬂThe Bose
operators themselves, however, are not ele-
ments of this algebra and cannot be consi-
dered as elements of any other simple Lie
algebra in such a way that they generatz the
whole algebra. Elsewhere we shall show that
an approach incorporating generalizations
of Bose and Fermi statistics can be develo-

tly this question is discussed in ref,

It is'important to point cut that even
within a given (A-, B- C- or D- ) statistics -
the quantization does nct determine uniquely
the creation and annihilation cperators as
elements of tha Lie algebra. One can as-
sociate the creation and annihilation opera-
tors with different generators and this in
general leads to different physical proper-
ties of the corresponding particles.
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In the present paper we continue the in-
vestigations (published in ref. 74 of the
properties of the A-statistics. In more de-
tail we shall consider the Fock space repre-
sentations of a new realization of the crea-
tion and annihilation operators, which turns
out to lead to local currents for the spinor
fields/#. Another realization of the A-
statistics, giving als?/local currents, will
be considered in ref. ‘Y.

2. A CAUSAL A—STATISTICS
Let $i(x) be a free spinor field and J(m

its Dirac conjugate field. Representing the
fields with their frequency parts, we write

+ —_—
VK = ¢ (X =) +¢ (% 4),

- + _ (1)
(X)) = ¢ (X D+ (X% =),
where *
1 . ifpx
lf'ff(x, n) = 7 fdp elép v”’g(p, n)aE (p. nh (2)
(20 ®

Instead of choosing the normal product form
for the coperators, we always assume that the
dynamical variables are antisymmetrized with
respect to the operatars a-(p, p. In this

notation the 4-momentum operator P" reads as

*Throughout the paper &=t or t1.



n oot _
P = 2 fd aup. 7, a,p, 9l
S lapp. M), 8,00, )] B

The translation invariance impoges the first
restrictions on the operators &Z@,ﬁL namely

ip" 35(9. = ép ai(v. 7). (4)

The gauge invariance gives another relation,

: ¢
[Q. 2 0. 9O = t: (0, 7é), (5)

where @ is the charge operator.

Remark that up to now almost nothing isg
known about the commutation relations betwe-
en the operators %KP’Ul The relativistic
and gauge invariance impose restrictions
only on the commutation relations between
certai& inteq;al combinations of the opera-
torslau@,nha”(maﬂ] and aﬂq nh Other-—
wise the commutation relations are quite
arbitrary. Whatever the structure relations
will be from (4) and (5), it follows that
a @, o) (resp. a,(p, 7)) is a creation
(annihilation) operator of a particle with
a momentum p and a charge ». ,In the ordi-
nary theory the requirement aé@,ﬂ) to be
Fermi operators actually means that the rest
of the commutation relations (apart from
thosgse fixed from (4) and (5)) are defined
in such a way that the creation and annihi-
lation operators are part of the generators
of the orthegonal algebra, generating thro-
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ugh ccmmutations the spinor representation
of the total algebra. If one allows another
representations of the same algebra, then
aﬁﬂhn) become paraFermi operators of a -
¢ertain order p, where p!=12.. 1is a label
for the different irreducible repregsentations
of the algebra of the orthogonal group.

In the presegt paper we wish to chocse
the coperators a”@,n) to be generators of
the algebra of the unimcdular group and teo
study the Fock space representations of these
operators. From a purely technical point
of view it is more convenient to pass to
discrete notation in momentum space, consi-
dering the field ¥(x}) with mass m to be locked
in a cube with edge L. For the eigenvalues
kw of the A-momentum P“Hn =0,1,2,3, one
obtains '

f
2 / 2 1,2 282 3.2
kg = e kg \/1112+(~[—:Ti)2{(n Pt eh o (e
where 0 =l n?, nd) « = 1,2,3 and n* runs
over all nonnegative integers. In momentun

space relation (4) reads as

o
[Pm’ a;;n] =ékrl1“a nn {7)

where afu is a creation (£=4) or annihila-
tion (£=-)} c¢perator of a particle with charge
n and other characteris%ic o, he index 1
replaces (p,p), 1.e., a(p q)»an‘“.

In order tc study the representations of
the creation and annihilation cperators in
a proper Lie-algebraical language, it is
convenient to approximate the momentum space

7



. with a finite number of points, i.e.g to For a covariant basis in H we choose the

consider a finite set of operators a%,i:lﬁﬂmm. vectors
This 1s only an intermediate step. The ,
final results are easily generalized to the h g b (11}

case NI - oo,

To proceed further we first introduce the The algebra g@n+1) is not semi-simple. Its
notation for the algebra A,y we shall make } Cartan-Xilling form is degenerate. Therefore
use of and recall some properties of it. We | it is convenient to introduce a metric in K

consider A, as a subalgebra of the algebra . with the relation
gli2n+ 1) of the general linear group GL(2n+1).
The algebra glign + 1) may be determined mamﬁ)=:a&1+1ﬁaﬁ“ (12)

as a linear envelope of the generators
' Restricted on { this metric coincides with
eaﬁ,a,ﬁGNE(ﬂh—n+IW”—L&Lu”n—l,m (8) the Cartan-Killing form of Ag,.
From (9} and (12) one obhtains
with commutation relations

N H |

(Ca ®y )= 80 ~ B © 1 (o) [h, e,gl = b -t)e, o heH ,afpeN, (13)
Let H and H be thne Cartan subalgebras of where h—m.u,hn is the contravariant (i.e.,
Ao, and gl(2n+ 1), resp. Dencte by envX the dual to h,, €N )} basis in K. Hence, the
linear envelope of an arbitrary set X. In generators eaﬁ,a¥ﬁH}N are the root vectors
terms of the gl(Zn+ 1) generators we have: of A, . The correspondence with their roots

is
21(2n + l)ﬁenv{eaﬁ[a, B = Ni, e« g .
€ =+ h -h, afpeN (14)
A2n=(mviqm —epg ,ew3\a¥13ENf, . . In the natural ordering of the basis (11} the

generators

s

H - envin h -e ., acNI, (10) .- et @<Bla>p, apeN (15)

are the ositive negative) root vectors of
K - envih ~hyla &N Ay : e

1 We are now ready to intrecduce the creation
! and annihilation operators. We define



ag = eg, 9 - 1= L2..m,

£

alg :eoréi , & =1, {16)

One can easily verify that the operators
(16} satisfy the initial quantization equa-
tion (7) with 4-momentum written in discrete
notation as

P % kMa',a l+lal ,a’ Il (17)
>0
£ ]
Moreover it is evident that'a';)i generate
the algebra A2n’ since any of the generators
(10) either coincide with one of the opera-
tors (16) . or it is a commutator of two such
operators.
Let us consider the operator
“+

= [a .,ani|+~qe

nh pi ~ "y

X ARE (18)

From (9) and (16) we have
£ ' £ o
(ghpi ,ag) | = ‘.fS:qBBij agj - : {19)

is the number .
operator of the particles in'a state (ﬂl

In terms of the Cartan elements the 4-momen-
tum operator P" and the charge operator @

can be written as

Hence the Cartan element nhm

10

P"= 3 K'hy-b) + e,
iz

Q@ =% (h, +h_dm+c
i>0

{20)
o

where €¢; and € are constants depending on
the representation. The operators i are
root vectors of Agn' The correspondence with

their roots is
+ i :
a; »-—h®+h , a; = h"~h,

i - - (21)
a:—j' a—h T e, a_, ~h

—ho°

and therefore the creation (annihilation)
cperators are negative (positive) root vectors.
The commutation relations of, Ayy can be
written alsc only in terms Ofaér
From (9) and (16) we cktain (,j, k= 1,....n,
L=ty

Hfai;i ,a_‘i-j I a—riqkjt"aéi,—nka;f,i ,

lag o bal l=o, ok <5 0", (22)
Uag . a1 o’ dmbg ol <o, all

(af .o 1=tal, 2" 10,
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The generalization of the above commu-
tation relations to the case of infinite and
even continuum set of operators is evident.
We have mentioned that for the spinor field
the creation and annihilation operators
(16 lead to local currents 8. Recause of
this and in order to distinguish them from
the operators we have 1ntroduced in/7&
call the operators satisfying the relations
(22) causal
ing quantization (statistics) - causal A-
quantization (statistics). Unless other-

we

a&-operators and the correspcond-

wise stated in this paper by a-cperators
we mean causal a-operators.

3. FOCK SPACES FOR THE 4-0QPERATORS

We now proceed to study those represen-
tations of the a-operators that possess
the main features of the Fock space repre-
sentations in the ordinary quantum mecha-
nics. We continue to consider a finite set
of operators. The extension of the results
to infinite number of a~operators will be
evident. The following definition was
already given in/g[

Definition. Let a

l,u.,a‘ be d—crea-
nm ]

tion (=4 and annihilationdé=-) operators.

The A, -module W is said to be a Fock

2n
space of the

the conditions:

d-operators if it fulfils

1. Hermiticity condition

tae o= L
(a.qi) =y i 1, ..,n. {23)
Here * denotes hermitian conjugation opera-
tion.

12
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2. Existence of vacuum. There exists a

vacuum vector [0>¢W such that
a;ilo:>::0, i=1,...n. (24

3. Irreducibility. The representation space
W is spanned over all possible vectors

aglila;2i2...a;lni[nio>, (25)
where m runs over all non-integers.

The Fock space of the &a-operators 1is
called also Ao, -module of Fock, Fock module
of the a-operators or simply Fock module.
The following thecrem is a straightforward
generalization of the one proved in ref/"
Theorem l. The Agn—module W is a Fock
gspace if and only if it 1is an irreducible
finjite-dimensicnal module such that

+ - . .
agianixA =0, i#j=1, ...,n. {26)

The vacuum is unique (up to a multiplicative
constant) and coincides with the highest
welght vector X 4. ’

In order to classify the Fock space repre-
sentationg of the causal a-operators it
remains to determine all irreducible Agy -
modules, satisfying the condition (26). For
this purpose it is more convenient to use
the irreducible gl{(en + 1) -modules since
they are A, -irreducible and give all A, -
irreducible modules,.

The finite-dimensional irreducible

glign + 1) . -module is completely characteri-
zed by its highest weight AcH .The co-
ordinates (L_, 'men""’Ln—l'Ln) of A

in the contravariant basis (11) can be chosen

13



Theorem 2. The irreducible A, -module W isa

. . 2n
to be integers. They always obey the inequa- a Fock space if and only if the co-ordinates
lities of its highest weight A fulfil the condi-
tions
> L 2o 2 e 2 .
Lzb_ o 2z..2L 2L 2.2l (27)
I_A_nfL._,rH,i— .—I4._.1 ’L,

The Agy -modules are labelled by all different
n ~tuples (L_,; .....,Lg....;,Lig) satisfying the ! Li=Lg=..=L;= 0, (30)
inequalities (27).

Consider a representation with highest

weight A=(L“n,“..Ln). The vector
‘ i.e., A is of the form
n a -
A=UF_ ,....0 ) =3[ h (283)
. " a—n® A=, L ..LL,0O ... 60), (31)
is a weight if and only if
where L > L, otherwise L and L, are arbitrary
non-negative integers.
Euo—f”.+?am S Lgtee + Ly m=0,12..20-1, Proof
(29) The operators 4a g being positive root
F_n+JH+Pn:[£n+“4+Lm,a0¢a1¥“1¥alneN, vectors always annihilate the highest weight
- vector, aFiXAzo. Using this, commutation

relations’

From (29) it follows that the co-ordinates

of an arbitrary weight are non-negative La.,afiz—e“,laf,mzlf J=e . . ,if£j=1,...,0(32)
integers. If a=(E_..0[ ) is a weight then b e - o
the vectors obtained from A by permuting and expressing [aii,&f ] in terms of the
the co-ordinates f_j,.., P are also weights. Ay, ~generators, ée can write (26) as
All such weights are said to be equivalent. - '
The equivalent weights have the same multi- e X,=0, e  x,=0,. i£j=1,...,n (33)
plicity. Another property we shall use is ) oA S A
that any weight A<A i.e., the first non- - The generatcrs € g g are root vectors
zZero covariant co~ordinate of the vector of Azm The correspoﬁ ence with their root is
A-Ais positive. ‘ , . -

We now pass to the main problem of this e“-e*hl—laJ,e, ) Hahﬂ_h_a i€ j=1,...0n. (34)
section, classification of the Fock spaces. ! . o
Unless otherwise stated, the roots and the ; For i<j e - and e _j are positive root
weights are represented by their orthogonal vectors and (33) holdsx It remains to deter-
iﬁgordifgtes ;Q the contravariant basis ; mine these As, -modules with highest weights

PR | B
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A=(L_ el L, Lo L) (35)

for which the sums

i i ‘
., 1>)=1,...0(36)

A - h'+h and A<h ' +h

are not weights.

As we know, for J<i Lj>L;. Suppose
Lj>L;. Then the vector
A=A -hiin' gy« (37)
has co-orxdinates
] i
A=(L_n"“,Lj—L L+t LY (38}

that satisfy all inequalities (29), and A
is a weight. Therefore ejjXj# 0 and the
corresponding Ag, -module is not a Fock

space.
If L_i > L__J., i>j then
No=A-h'+n’? (39)

is alsc a weight. Thus e_L_ixA# 0 and the
space is not a Fock space, :

It remains to consider the A, -medules
with

A=, ., L, L,0, .. 0. (40)

Cleary the vector A determined in (37) in
this case is not a weight since 1t has one
negative co-ordinate. Therefore € jjX A= {.
Suppose for i>] that

16

- -

i =)
AM=A-ho+h s (L Lot L L LL0,00,0) (41)

is a weight. Then

AT=(L+1,L-1 L, ..,LL,.0...0 (42)

should be alsc a weight. This however is
impossible since A"'> A Hence A’ is not a
weight and €_j-i 2A=0. We conclude that
every A:m -module with highest weight A of
the form (4+) is a Fock sgspace. This completes
the proof.

Consgider the Fock space Wp, ¢ with highest
weight

A=(p+aq.p+4q,...,p+qp 0,..0), (43)

Let X) € W(p. g be an arkitrary weight vector
with weight A For any he K

thz(h.MxA. (44)
Sinace

dfa a |=h -h (45

and {a_,a_ | = B, (45)

are elements from the Cartan subalgebra, we
have from {44)

+
aa;xpa= (h, —h; A)-

n -
=(hy-hy ., ph° +(p+ q % h J)xAszA,
=1 (46)

+ Lo
a_ja;xA=(h_, ~h ,ph”+(p+ q)jZ.= 1h JXA= Q% A.
17



From now on instead of Xp we shall often
write |0> Unifying (26) and (46) we obtain

-+
a;a,[0>=25;pl0>

i,j= 1.0 (47)

-+
a_.a

_i 210> =3;;40>

We obtain similar relations as for the pa-
rastatistics of order p There is however
one essential difference. PFor the parastatis-
ticg always p=¢ so that the Fock space
representations are labelled by one positive
integer. In our <¢ase we have two numbers

that determine the statisticg, one for the
particles and another for the antiparticles.
We call the pair (p,g an order of the A-
statistics. ’

The equations (47) together with the
commutation relations (22), the hermiticity
condition (23) and the regquirement the
metric in the Fock space to be positive
definite determine completely the represen-
tation space and the representations of the
creation and annihilation operators of order
{p, Q. The causal A-statistics can be
defined by the relations (22), (23) and (47)
only. In this case all calculations can bhe
performed without using any Line algebraical
properties of the A-pperators and even
without knowing them. This point cof view
is convenient for generalization to the case

18

of infinite number of operators. The knowled-
ge of the Lie algebraical properties however
helps a lot in all calculations. Therefore
we shall continue to consider a finite number
of creatfon and annihilation operators

’dU“ and later on we shall let noo.
Remark that the fixed charge causal
operators are -gperators in the sense
defined in ref. /17, They also satisfy the
same FPock space conditions, for instance
{(46a) for w=+. This allows us to draw some
immediate conclusions for the causal A-
statistics (see Lemma 4 in ref. 7,
Lemma 1. Given A, -module of Fock Wp, Q.
The vector

r ¢ /
i + 2 n
(a51) (2;9) (ags) (0> (48)

ql

is non-zero if and only 1if

g o+ P+ vl g p  for p=+

{49)
P o f,+ +f  <g for p=- .

Therefore there cannot be more than P (more
than 9 ) only posgitive (negative) charge
particles. This does not mean that the total
amount of particles is restricted from
above., An ensemble however with an arbitrary
big amount of particles should necessarily
contain-particles as well as antiparticles.
The exact statement 1s contained in

The Pauli principle. In the Fock space

Wp. g there cannot be more than p+q par-
ticles in a single state. The charge Z of

19



an arbitrary ensemble of particles cannot
be more than p and less than minus 4.
Proof
We have to find the conditions under which
the wvector

+ + +

does not vanish. For this purpose we calcula-
te the weight

n

A=3

n i
i=1

i
A.h +MA h®4+ % A h (51)
-1 0 i 1

1=1

of X. Suppose the state ¥ contains ti partic-
lfs in the state {ni), i.e., fm operators
api - The weight of ¥ is a sum of the highest
weight A and the roots of all creation
operators appearing in (50). Taking into ac-
count that the root of

+

. ni
apy 1s y(h" —h®) (52)

from {(43) we obtain

n . ‘
A=A+ S 10_, (b +h%) 40 (-ho+h )l =
i=1
n . " (53)
=X @+a-fJh +@-Dh°+ I L,
1:

i=1

where

n

Z "_*iél(ﬂi—ﬂ__i) (54)

ig the charge of the state (50). The vector
A is a weight only if

20

0 <A <p+q a=N. {55)
For «=0 this gives
-q<Zgp (56)

that is the total charge of an arbitrary
state (50) cannot exceed p and be less than
Vq' ‘

For the other co-ordinates (553) gives

Py pra fisp g =0, (57}
i.e., in the arbitrary state gi, n=1%, there
cannot be more than p+4q particles. This
proves the Pauli principle.

We should point out that the inegualities
(57) give only necessary conditions for X
to be different from zero. In order to be
sure that the vector (5¢) does not wvanish,
one has to show that for any 0<£]<k all vec-
tors in the sequence

+ + ,
Ujij"'a”111|0?’ i=18 ...k (58)

are different from zero.

Remark that the Paule principle depends
on the order of the statistics (p, 9. however
it is independent of the number of creation
and annihilation operators under considera-
tion (i.e., of the rank 2n of the algebra
Am1)' In fact the Pauli principle remains
valid in the case n-» w,

In order to study the physical properties
of the particles one has to fix the order
», of the statistics and within W(p, @

21



‘“to determine the basis in the representation
space and calculate the matrix elements of
the creation and annihilation operators. In
a forthcoming paper/uv we shall study the
lowest nontrivial representation W1, 00 of
the A-statistics, which is an analogue of
the Fermi statistics in the paraFermi quan-
tization.

In conclusion we should point out that
the charge n need not necessarily be inter-
preted as an electrical charge. If one consi-
than one field then % could be
any charge. In the weak interactions for
instance the Pauli principles put limitations
on the leptonic charge.

ders more
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