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We investigated the CMB bispectrum signal arising from the cross correlation between lensing
and the Integrated Sachs Wolfe/Rees Sciama effects. The ISW and RS effects arise because
of time varying gravitational potential due, respectively, to the linear and non-linear growth
of structure in the evolving universe. Both the lensing and the ISW-RS effects are related
to the matter gravitational potential and thus are correlated phenomcna, giving rise to a
non-vanishing three points correlation function. The LRS signal is expected to be detected at
high statistical significance from ongoing and future CMB experiments and, being a late time
effect, it can be a powerful probe of the late time universe. Moreover, we showed that this
bispectrum signal, if not accounted properly, can bias the estimation of the amplitude and
variance of the local primordial non-Gaussianity. Finally we built CMB simulations with the
LRS signal and we implecmented and tested the optimal estimator for this specific bispectrum.

1 Introduction

One of the most relevant mechanism that can generate non-Gaussianity from secondary Cosmic
Microwave Background (CMB) anisotropies is the coupling between weak lensing and the Inte-
grated Sachs Wolfe (ISW) ! Rees Sciama (RS) ? effects. This is in fact the leading contribution
to the CMB secondary bispectrum with a blackbody frequency dependence325. Weak lensing
of the CMB is caused by gradients in the matter gravitational potential that distorts the CMB
photon geodesics. The ISW and RS effects on the other hand arise because of time varying
gravitational potential due, respectively, to the linear and non-linear growth of structure in the
evolving universe. Both the lensing and the ISW-RS effect are then related to the matter grav-
itational potential and thus are correlated phenomena. This gives rise to a non-vanishing three
points correlation function or, analogously, a non-vanishing bispectrum, its Fourier counterpart.
Further, lensing and the RS effect are related to non-linear processes which are therefore highly
non-Gaussian. The CMB bispectrum signal arising from the cross correlation between lensing
and ISW/RS (from now on referred as LRS) is expected to have an high signal-to-noise from
ongoing and future CMB experiments so that it will be detectable in the near future with an
high statistical significance 4, 5, 8,7, 8. This will open the possibility to exploit the cosmological
information related to the late time evolution encoded in the LRS signal. Moreover the LRS
bispectrum can be a problem for the estimation of the primary local non-Gaussianity from future
data since it can be a scrious contaminant 7, 9.

Ongoing CMB expcriments like e.g. Planck and futurc experiments like CORE will then
require a detailed reconstruction of the Lensing-ISW RS bispectrum either to be able to separate
out correctly the LRS contribution when estimating the local primary non-Gaussian parameter
f L or to exploit the cosmological information encoded in the signal.
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Figurc 1: Expected statistical detection significance of the LRS bispectrum in the casc of a cosmic variance
limited full sky cxpcriment as a function of the maximum multipolc Zpnac. The red arrow indicates a miore
realistic statistical detection significance expected for Planck at £ni,; = 2000.

2 The Lensing-ISW-RS bispectrum signal

The CMB Lensing-ISW-Rees Sciama bispectrum takes the form %47
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and the reduced bispectrum is given by
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Here CZP is the primary angular CMB temperature power spectrum and g, are the coefficients
which express the statistical expectation of the correlation between the lensing and the ISW-RS
effect: Y
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Here Py is the gravitational potential power spectrum and the above equation accounts for both
the lincar ISW and the non-lincar Rees-Sciama effect.

Fig.1 shows the statistical detection significance S/N expected for the LRS bispectrum signal

as a function of the maximum multipole £, g4
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3 The bias to the primary local Non-Gaussianity

The LRS bias to primary local fy is given by:
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We find that a bispectrum estimator optimized for constraining primordial non-Gaussianity of
the local type would measure an effective fyr = 10 for ez = 1000 due to the presence of the
primary-lensing-Rees-Sciama correlation. If not accounted for, this introduces a contamination
in the constraints on primordial non-Gaussianity from the CMB bispectrum. For forthcoming
data this bias will be larger than the 1 — o error and thus non-negligible.

4 Optimal estimator and simulations

FEstimator

Herc we are interested in the L-RS case, for which the angular bispectrum, parametrized by the

amplitude parameter f ,%,IES , is:

mimaom3 rLRS; LRS
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where Q’Z‘l%;"l;ms is the Gaunt integral, bf‘f}ia is the LRS reduced bispectrum as defined in equa-

tion (2) and go = (@}1,a55) are the lensing-ISW/RS cross-correlation coefficients (which account

for both the linear ISW and the non-linear Rees-Sciama effect) of equation (3).
It is then possible to build an optimal estimator for f}{“,ILzS by maximizing the PDF with

respect to this parameter. So, by solving dln P/dflfff RS — 0, this is given by:

FEBS = (F7Y)SLrs, ]

where (F1) is the inverse of the L-RS Fisher matrix.
Assuming that the only NG contribution is coming from the L-RS term, Sr_ s is given by
the data as:
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Simulations: the separable mode expansion method

Following'® and!!, the non-Gaussian part of the CMB angular coefficients can be defined starting
from a given CMB power spectrum Cj and reduced bispectrum by,g,¢,. For the LRS bispectrum
these take the form:
G Y2 (§ G Yms o
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(9)

where, again, béf;i is the reduced bispectrum of eq.( 2). The angular coefficients containing the
wanted signal will then be: ap, = agn + [a?,’nG]LRs, where agn is the Gaussian part.

Results

I tested the estimator and the LRS coeflicients built with the separable modes expansion method
with 100 runs at full resolution (N4 = 2048) and up to e, = 1000. According to the
definition of fﬁILZS the expected value is 1 with 1-0° error predicted from theory for ¢4, = 1000
of ~ 0.25. The simulations give f{‘fgs = 1.11 with averaged 1-¢ error 0.36 as shown in Fig.2.
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Figure 2: f&%%5 (eq. 7) obtained by testing the LRS cstimator (cfr cq. 8) on 100 CMB maps (full sky and cosmic

variance limited, N.a. = 2048) containing the LRS signal simulated by using the separable mode expansion
method (cfr eq. 9).

5 Conclusions

In this work we studied the LRS bispcctrum signal. We showed that it can be a significant
contaminant to the bispectrum signal from primordial non-Gaussianity of the local type. In
particular both signals are frequency-independent and are maximized for nearly squeezed con-
figurations, which in fact are the configurations that contribute the most to the S/N. If not
included in the modeling, the primary-lensing-Rees-Sciama contribution yields an effective fyr,
of 10 when using a bispectrum estimator optimized for local non-Gaussianity. Considering that
expected 1-o errors on fnr are < 10 from forthcoming experiments, the contribution from this
signal must be included in future constraints on fyr from the Cosmic Microwave Background
bispectrum. Within this picture it is extremely important to be able to model the LRS bis-
pectrum either to be able to avoid contaminations either for exploiting it as a cosmological
observable in view of future data. I presented the formalism and the numerical implementation
for generating CMB non-gaussian maps which contain the LRS signal. I also implemented and
tested numerically the Non-gaussian estimator optimized for the LRS bispectrum.
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