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1 Introduction

The celebrated Jordan-Wigner transformation establishes a correspondence between bosonic
spin chains and chains of spinless fermions [1]. Like that of other duality transformations,
this correspondence allows one to reinterpret features of one system in the framework of
another. In this paper, we investigate the ability of the Jordan-Wigner transformation and
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boson-to-fermion dualities in general to translate between key properties of collections of
bosonic and fermionic systems — namely, their behaviors under stacking.

The systems we consider are all one dimensional, gapped, interacting models of spins and
fermions with a finite global symmetry G. These systems are classified into various topological
phases characterized by their patterns of breaking and fractionalization of this symmetry. Of
particular interest to us are symmetry protected topological (SPT) phases — those which
would be topologically trivial if not for the symmetry. SPT phases of spins (called “bosonic
SPT phases”) and SPT phases of fermions are in one-to-one correspondence under the Jordan-
Wigner transformation [2, 3]. But while the classifications of phases are the same on either
side of the duality as sets, there is still a sense in which they may differ. Two SPT phases
may be “stacked” to produce another SPT phase, and this operation gives the collection of
SPT phases the structure of an abelian group. The bosonic stacking group law may differ
from the fermionic one. The failure of isomorphism of stacking rules is exemplified by systems
with G = ZT

2 × Z2 symmetry — a time-reversal symmetry and a unitary Z2 symmetry that
is regarded as fermion parity on the fermionic side of the transformation. The four bosonic
SPT phases with this symmetry form the group B = Z2 × Z2 under stacking, while the four
fermionic SPT phases (which are modelled by chains of even numbers of Majoranas) stack
according to F = Z4 [2]. Looking beyond SPT phases for a moment, stacking rules can differ
even more drastically: for example, the symmetry-breaking phase of the one dimensional
Ising model has no inverse under the stacking operation yet is transformed into an invertible
topological order by the Jordan-Wigner transformation.

The difference between bosonic and fermionic SPT classification groups has its origins
in the bosonic and fermionic commutation relations, so it may be surprising that they ever
agree beyond rare accidents. On the other hand, the Jordan-Wigner transformation which
relates them is nonlocal in a way that one might expect to compensate for the difference.
Our first task is to investigate for which symmetry groups the stacking rules agree and for
which they disagree. Our second task is to study whether the Jordan-Wigner transformation
or another boson-to-fermion duality can explain this agreement when it occurs. We find
that the stacking rules are often isomorphic: they always agree for SPT phases with unitary
symmetry (in agreement with a result of ref. [4]), and they may agree in the presence of
antiunitary symmetry when certain conditions are satisfied. In the cases where the stacking
rules agree, we state an explicit isomorphism between the classification groups and ask
whether it is implemented by the Jordan-Wigner transformation or another duality. Typically
the answer to this question is “no.”

The structure of the paper is as follows. In section 2 we review the classifications of
bosonic and fermionic SPT phases in terms of group cohomology and supercohomology
invariants for general symmetry groups, we define topological and G-pin partition functions
that capture the background-response of these SPT systems, we formulate the Jordan-
Wigner transformation in terms of these field theories, and we use them to rederive the SPT
stacking rules. In section 3 we derive conditions under which the bosonic and fermionic SPT
classifications are isomorphic as groups. These conditions are stated in section 3.3. The
idea is to understand the classifications as group extensions that become equivalent when a
certain extension class vanishes and then to relate the vanishing of this class to the vanishing
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of certain partition functions. In section 4, we study duality and stacking of SPT phases
from the point of view of topological holography in order to determine that the isomorphism
of classification groups typically cannot be implemented by a physical duality transformation.
This result suggests that the stacking rules reflect an essential difference between bosons and
fermions that cannot be transformed away by duality and leaves open the mystery of why —
from a physical perspective — the rules are often isomorphic in the abstract. To reach this
conclusion, we understand the action of dualities on the SPT invariants and state a procedure
for stacking the Lagrangian algebras that correspond to SPT phases. The appendices contain
several related results: we use topological partition functions to rederive the stacking rule
for invertible fermionic phases (including the invertible topological order) and review related
results in the literature; we use the equivariant state sum construction to evaluate the bosonic
partition function on all orientable and nonorientable surfaces, which yields a complete set
of gauge-invariant quantities characterizing the SPT invariants; we discuss some interesting
computations in twisted group cohomology; and we study how dualities can act on the group
of SPT phases, such as by transformations that are not automorphisms.

The authors are grateful for the hospitality of the Asia Pacific Center for Theoretical
Physics, the Yukawa Institute for Theoretical Physics, and the Perimeter Institute for
Theoretical Physics, where parts of this work were carried out. Research at the Perimeter
Institute is supported in part by the Government of Canada through the Department of
Innovation, Science and Economic Development and by the Province of Ontario through the
Ministry of Colleges and Universities. M.Y. is supported by Basic Science Research Institute
Fund, whose NRF grant number is 2021R1A6A1A10042944, the National Research Foundation
of Korea (NRF) grant funded by the Korean government (MSIT) (2023R1A2C1006542),
and by Grant No. RS-2023-00208291.

2 Bosonic and fermionic SPT phases

2.1 Group cohomology invariants

The group cohomology invariants of the symmetry group provide a characterization of bosonic
SPT phases and — via the Jordan-Wigner transformation — fermionic SPT phases as well [2].

Consider bosonic SPT phases. The symmetry class of a bosonic system is specified by
a group G and a homomorphism x : G → Z2 that encodes which elements are represented
unitarily versus antiunitarily. In this paper, we consider only finite symmetry groups. The
classification of bosonic SPT phases with symmetry (G, x) is given by classes in the twisted
cohomology group [5]

[ω] ∈ H2(G, U(1)x). (2.1)

These are group cochains ω : G × G → U(1) satisfying the twisted cocycle condition1

0 = (δω)(g, h, k) = (−1)x(g)ω(h, k) + ω(g, hk)− ω(g, h)− ω(gh, k) (2.2)
1The U(1) coefficients of ω and the Z2 coefficients of x are written in additive notation, as U(1) ≃ R/Z

and Z2 = {0, 1}.
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modulo twisted coboundaries (“gauge transformations”)

(δλ)(g, h) = (−1)x(g)λ(h) + λ(g)− λ(gh). (2.3)

The cohomology class [ω] may be interpreted physically as measuring the projectivity in the
representation of the symmetry on the boundary [3, 6]. In this paper, we use a partial gauge
fixing where ω(g, 1) = ω(1, g) = 1, a condition which is preserved by gauge transformations
with λ(1) = 0.

Meanwhile, the symmetry class of a fermionic system is specified by bosonic symme-
try data (G, x) and a distinguished unitary central involution p ∈ G called fermion parity.
Fermionic SPT phases with symmetry (G, p, x) are in one-to-one correspondence with bosonic
(G, x)-SPT phases;2 namely, they are also associated with classes [ω]. The explicit correspon-
dence between bosonic and fermionic SPT phases given by the Jordan-Wigner transformation
will be discussed in detail in section 2.5. To characterize certain physical features such as
their stacking rule (discussed in section 2.6), however, it is useful to reorganize the topological
data into pairs

(ω, ν) ∈ C2(G, U(1)x)× C1(G,Z2) (2.4)

subject to the constraints3

δω = 0 , (2.5)
1
2ν(g) = ω(g, p)− ω(p, g) + x(g)ω(p, p) (2.6)

modulo coboundaries. Since every closed ω satisfies the constraint for a unique ν, unchanged
by coboundary shift, classes [ω, ν] correspond one-to-one with [ω]’s. The invariant ν singles
out the distinguished fermionic parity element4 and encodes whether the boundary action
of a symmetry is parity-even or -odd [2].

2.2 Supercohomology invariants

The SPT invariants can be reformulated in the language of supercohomology. This perspective
is typically employed to characterize fermionic SPT phases, where the supercohomology
invariants describe how a phase arises from a decorated domain wall construction [7–9].
Similarly, in section 2.4 we find supercohomology useful for studying fermionic SPT phases,
as it lets us write their explicit partition functions in all symmetry classes. We emphasize,
however, that either formulation of the invariants can be used to characterize both bosonic
and fermionic SPT phases. As we discuss in section 3.1, supercohomology has the benefit
of putting the bosonic and fermionic SPT stacking rules on an equal footing, as two group
extensions of the invariants.

The choice of fermion parity p realizes G as a central extension

Zf
2 → G

b−→ Gb (2.7)
2We do not regard the invertible topological order modeled by the nontrivial Majorana chain as an SPT

phase, though it and its symmetry-enrichments are discussed in appendix A.
3The map 1

2 embeds Z2 = {0, 1} as the subgroup {0, 1/2} ⊂ U(1).
4The invariant ν is essentially the slant product of ω with respect to fermion parity p.
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of a group of bosonic symmetries Gb ≃ G/Zf
2 by Zf

2 = {1, p}. It is often useful to describe
the symmetry in terms of Gb and a class [ρ] ∈ H2(Gb,Z2) that captures the extension to
G.5 Given any function s : Gb → G with b ◦ s = 1, a cocycle ρ representing the extension
class measures the failure of Gb multiplication in G:

s(gb)s(hb) = ρ(gb, hb)s(gbhb) , (2.8)

and ρ shifts by a coboundary under change of section s. We are often interested in symmetries
with [ρ] = 0, in which case G splits as Gb × Z2. In this case, a section s with ρ = 0 is
called a splitting.

Using a section s, the cochain data on G can be pulled back to Gb:

α = s∗ω , β = s∗ν. (2.9)

The result is the following data, dubbed supercohomology classes: pairs

(α, β) ∈ C2(Gb, U(1)x)× C1(Gb,Z2) (2.10)

satisfying the conditions

δα = 1
2β ∪ ρ , (2.11)

δβ = 0 (2.12)

and modulo the relation6

α 7→ α + δλ1 +
1
2λ0 ∪ ρ (2.13)

for λ1 : Gb → U(1) and λ0 ∈ Z2.7 The map (2.9) from group cohomology invariants to
supercohomology invariants is bijective, with inverse given on the cochain level8 by

ω = b∗α + 1
2b∗β ∪ t , ν = b∗β , (2.14)

where t is the function t : G → Zf
2 such that t ◦ s = 0 [10]. Therefore, supercohomology

classes [α, β] provide a complete characterization of SPT phases. The set of SPT phases
may be expressed as

A× B , (2.15)
5The data x and ρ are sometimes denoted w1 and w2 to reflect that they are Stiefel-Whitney classes of a

certain bundle over BGb; however, we avoid this notation in order to distinguish them from the Stiefel-Whitney
classes of spacetime below.

6Ref. [10], Theorem A.4 states the relation as α 7→ α + δλ for λ : G → U(1) with λ(gp) = λ(g) + λ(p). To
get eq. (2.13), note that (δλ)(s(gb), s(hb)) = (−1)x(s(gb))λ(s(hb)) + λ(s(gb)) − λ(s(gbhb)) − λ(p)ρ(gb, hb) and
take λ1(gb) = λ(s(gb)) and λ0 = λ(p).

7In other words, fermionic SPT phases correspond to cohomology classes of the complex of pairs with
differential D(x, y) = (δx + 1

2 ρ ∪ y, δy), a.k.a. supercohomology classes. Note that δλ0 = 0, so β is not shifted
by a coboundary.

8Every class [ω] contains a cochain ω in the partial gauge (2.14). The remaining freedom in ω is the
relation (2.13) on α.
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where A is the quotient of H2(Gb, U(1)x) by the coarser equivalence relation (2.13), i.e. classes
[α] modulo [1

2ρ],9 and B is the subgroup of H1(Gb,Z2) consisting of valid β invariants —
that is, cocycles β for which there is a solution α to the condition (2.11), i.e. for which
[1
2β ∪ ρ] = 0.10 When G splits and s is a splitting, the condition (2.11) and relation (2.13)

reduce to the usual ones in cohomology, and so the set (2.15) becomes11

H2(Gb, U(1)x)×H1(Gb,Z2). (2.16)

The difference between two sections takes values in Zf
2 and so amounts to a 1-cochain

µ : Gb → Zf
2 . Under a change of section, ρ shifts by δµ and α by 1

2β ∪ µ while β remains
unchanged.12 The invariant α represents a Gb-symmetric SPT order, while β has to do with
the decoration of Gb domain walls by complex fermions [7–9]; the invariant β also appears
as the fermion parities of twisted sectors [12, 14].

2.3 Bosonic partition functions

Now we define topological partition functions parameterized by the group cohomology
and supercohomology invariants. These theories represent the responses of SPT phases to
background gauge fields for the symmetry and will prove useful later on in section 2.6 when
we discuss the stacking rule on SPT phases and in section 3.5 when we study the stacking
rule isomorphism. The bosonic theory associated to ω has partition function

Zb
ω[X,A] = exp

(
2πi

∫
X
A∗ω

)
(2.17)

on a closed two-dimensional spacetime X with G-valued background gauge field,13 which
is a map A : X → BG satisfying A∗x = [w1], where [wi] : X → BZ2 is the ith Stiefel-
Whitney class [15] of the tangent bundle of X [16, 17].14 The theory is topological due to
the condition (2.2) and is invariant under the relation (2.3).

The theory may be reformulated in the supercohomology variables by splitting the G
gauge field A into its Gb-valued and Z2-valued parts: a Gb gauge field Ab : X → BGb and
a lift of Ab to a G gauge field. Following the construction of Dijkgraaf and Witten [18],15

9Technically, due to the condition (2.11), classes of α belong not to the group A but rather to a torsor over
it. If one chooses a “zero” [α0], then each equivalence class [α] may be identified with the element [α − α0]
of A.

10The groups A and B are sometimes called H2
rigid and BH1, and the constraint defining B is the twisted

Gu-Wen-Freed equation for one spatial dimension. A and B are the cokernel and kernel of the spectral sequence
differential [ 1

2 ∪ ρ] [11].
11A third invariant γ ∈ C0(Gb,Z2) = Z2 is necessary to classify all invertible fermionic phases with split

symmetry group, including symmetry-enrichments of the nontrivial Majorana chain [2, 12, 13]. But for SPT
phases, γ does not appear. The full classification of invertible fermionic phases is discussed in appendix A.

12The choice of section is not physical, yet the classification of phases is also not reduced modulo this shift
in α; rather, it is only the interpretation of the abstract class [α, β] as a physical SPT phase (i.e. as a class
[ω]) that depends on the section.

13The map A defines a principal G-bundle on X. Since G is assumed to be finite, this bundle has a unique
(flat) connection.

14This constraint enforces that time-reversing holonomies of A appear around orientation-reversing cycles
of X.

15On a triangulation of X whose vertices map under A to the basepoint of BG, each edge is assigned an
element of π1(BG) = G. Continuity of A (mapping triangles to triangles) ensures that the corresponding
cochain is closed.
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the gauge field A is characterized (up to homotopy) by a G-valued 1-cochain of X (also
denoted by A) satisfying

δA = 0 , (2.18)
A∗x = w1. (2.19)

Meanwhile, the gauge field Ab is represented by a Gb-valued cochain satisfying

δAb = 0 , (2.20)
A∗

bx = w1 , (2.21)

while the lift is characterized by a Z2-valued cochain Ap satisfying16

δAp = A∗
bρ. (2.22)

These cochains are related by the correspondence

Ab = A∗b , Ap = A∗t ⇐⇒ A = A∗
bs + Ap , (2.23)

as can be seen from δt = b∗ρ. In terms of the pair (Ab, Ap), the bosonic theory (2.17) becomes17

Zb
α,β [X, Ab, Ap] = exp

(
2πi

∫
X
A∗(b∗α + 1

2b∗β ∪ t)
)
= exp

(
2πi

∫
X

A∗
bα + 1

2A∗
bβ ∪Ap

)
.

(2.24)
This partition function is section-independent by construction, but one can also verify that
the shift 1

2β ∪ µ in α under change of section is cancelled exactly by the shift A∗
bµ in Ap.

2.4 Fermionic partition functions

Fermionic partition functions are sensitive to G-pin structures rather than to G gauge fields.
A G-pin structure ηG can — like the gauge field A — be formulated as a G-valued 1-cochain,
this time satisfying18

δηG = w2
1 + w2 , (2.25)

ηG∗x = w1. (2.26)

It can be re-expressed as a Gb gauge field Ab satisfying (2.20) and (2.21) and a Z2-valued
cochain η satisfying

δη = w2
1 + w2 + A∗

bρ (2.27)

via the correspondence

Ab = ηG∗b , η = ηG∗t ⇐⇒ ηG = A∗
bs + η. (2.28)

16When t is not closed, it does not induce a map of classifying spaces. As a result, Ap has no corresponding
Z2 gauge field.

17Each of the two terms in this expression depends on a choice of triangulation of X, but their sum does not.
18The first condition means that the violation of the triple overlap condition by ηG is valued in Z2 and

coincides with that of a pin-minus structure. Compared to the treatment of G-spin structures in ref. [12], we
have absorbed the freedom ϕ. See ref. [11] for another perspective on G-pin structures, referred to as twisted
spin structures.
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G-pin structures generalize many familiar structures. A G-spin structure is realized when
all symmetries are unitary (x = 0), in which case the theory is defined only on orientable
surfaces (w1 = 0). When G splits and s is a splitting, the map η is a pin-minus structure
(trivialization of w2

1 + w2); in particular, for G = ZT
2 × Zf

2 , Ab is completely fixed by w1, and
so a G-pin structure is just the pin-minus structure η. A pin-plus structure (trivialization of
w2) is realized for G = ZT f

4 since Ab is completely fixed by w1 and ρ = x ∪ x means δη = w2.
To write the fermionic partition functions, we make use of the quadratic enhancement

of the cup pairing that is associated to every pin-minus structure e [19–21]. This is a map
qe : H1(X,Z2) → Z4 satisfying

qe(a) + qe(b)− qe(a + b) = 2
∫

X
a ∪ b , (2.29)

qe+b(a)− qe(a) = 2
∫

X
a ∪ b (2.30)

for Z2 gauge fields a and b. To work with G-pin structures, we introduce an auxiliary Z2-valued
cochain τ satisfying δτ = A∗

bρ, so that e = η+ τ is a pin-minus structure. Given the existence
of a G-pin structure on X, a solution τ always exists because every two-dimensional space
is pin-minus [19]. The partition function should not depend on the choice of τ . In terms
of the pair (Ab, η) and the auxiliary variable τ , the theory is

Zf
α,β [X, Ab, η] = exp

(
2πi

∫
X

A∗
bα + 1

2A∗
bβ ∪ τ

)
exp

(
πi

2 qη+τ (A∗
bβ)
)

, (2.31)

Note that our expression (2.31) reduces to the G-spin partition function of ref. [12] in the
case of unitary symmetries, where q/2 defines a quadratic refinement associated to a spin
structure since q is even on orientable manifolds. To see that the theory (2.31) is well-defined,
several properties must be checked. First, the theory is independent of the auxiliary variable
τ since shifting τ by a closed b changes each of the two τ -dependent terms by the same sign
A∗

bβ ∪ b, as follows from the relation (2.30). Second, the theory is independent of the section
s since α shifts by 1

2β ∪ µ and η shifts by A∗
bµ and so by the same rule (2.30) these variations

cancel. Third, the theory is topological since δ(A∗
bα+ 1

2A∗
bβ ∪ τ) = 0 by the conditions (2.11).

Fourth, the theory is invariant under the relation (2.13) since b∗(λ0 ∪ ρ) = δ(b∗λ0 ∪ t).
In the split case, the auxiliary variable may be eliminated by setting it to τ = 0. Then

the theory becomes

Zf
α,β [X, Ab, η] = exp

(
2πi

∫
X

A∗
bα

)
exp

(
πi

2 qη(A∗
bβ)
)

. (2.32)

2.5 The Jordan-Wigner transformation

Now we are ready to define the Jordan-Wigner transformation JW on partition functions.
It maps a bosonic partition function to the fermionic partition function defined as follows:

JW(Zb)[X, Ab, η] :=
∑
Ap

Arf(η + Ap)√
|H1(X,Z2)|

Zb[X, Ab, Ap]. (2.33)

Here we have used the Arf-Brown-Kervaire invariant [22]

Arf(e) := 1√
|H1(X,Z2)|

∑
a∈H1(X,Z2)

exp
(

πi

2 qe(a)
)

(2.34)
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of a pin-minus structure e. Some useful properties of the Arf invariant are collected in
appendix D. Using the property (D.9), we can introduce an auxiliary variable τ to rewrite
the transformation as

JW(Zb)[X, Ab, η] = Arf(η + τ)√
|H1(X,Z2)|

∑
Ap

Zb[X, Ab, Ap] exp
(−πi

2 qη+τ (Ap + τ)
)

. (2.35)

As demonstrated in appendix D, the inverse of the Jordan-Wigner transformation is given by

JW−1(Zf )[X, Ab, Ap] =
∑

η

Arf(η + Ap)−1√
|H1(X,Z2)|

Zf [X, Ab, η]. (2.36)

These forms of the Jordan-Wigner transformation were first stated in ref. [23] for split, unitary
symmetries and were generalized to include antiunitary symmetries in ref. [11].

The Jordan-Wigner transform of the bosonic theory associated with the invariant [α, β]
is the fermionic theory associated with the same invariant, as can be seen by computing

JW(Zb
α,β)[X, Ab, η]

= Arf(η + τ)√
|H1(X,Z2)|

∑
Ap

exp
(
2πi

∫
X

A∗
bα + 1

2A∗
bβ ∪Ap

)
exp

(−πi

2 qη+τ (Ap + τ)
)

= exp
(
2πi

∫
X

A∗
bα + 1

2A∗
bβ ∪ τ

)
exp

(
πi

2 qη+τ (A∗
bβ)
)

× Arf(η + τ)√
|H1(X,Z2)|

∑
Ap

exp
(−πi

2 qη+τ (A∗
bβ + Ap + τ)

)
= Zf

α,β [X, Ab, η] ,

(2.37)

where the second line follows from the relation (2.29) and the third from the expression (D.1).
This means that the Jordan-Wigner transformation defines a map from bosonic to fermionic
SPT phases given by

JW : [α, β] 7→ [α, β]. (2.38)

2.6 Stacking rules

As we have just observed, the sets of bosonic and fermionic SPT phases are equal, with the
Jordan-Wigner transformation defining a bijective correspondence between them. However,
there is a natural group operation defined on the two sets given by stacking, and the
classifications are not always isomorphic as groups. A simple example is given by SPT phases
with symmetry G = ZT

2 × Zf
2 : there are four SPT phases on each side of the correspondence;

however, the bosonic phases form the group B = Z2 × Z2 under stacking while the fermionic
phases form the group F = Z4 [2]. This and other examples are explored in section 3.2.

The stack of two theories is the theory whose partition function is the product.19 From
the expression (2.17) for the bosonic partition function in the group cohomology variable,
it follows that

Zb
ω1Z

b
ω2 = Zb

ω1+ω2 , (2.39)
19In the language of lattice models, the stack of two systems is the one defined on the tensor product Hilbert

space with tensor product time evolution UAB = UA ⊗ UB . This means that the stacked Hamiltonian is
HAB = HA ⊗ 1 + 1⊗ HB .
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so the invariants stack according to the usual group law on H2(G, U(1)x):

[ω1]⊗B [ω2] = [ω1 + ω2]. (2.40)

On the other hand, in the variables (2.4), the fermionic stacking rule is given by

[ω1]⊗F [ω2] = [ω1 + ω2 +
1
2ν1ν2]. (2.41)

In terms of the supercohomology invariants, these stacking rules read

[
α1
β1

]
⊗B

[
α2
β2

]
=
[

α1 + α2
β1 + β2

]
(2.42)

and [
α1
β1

]
⊗F

[
α2
β2

]
=
[

α1 + α2 + 1
2β1β2

β1 + β2

]
. (2.43)

The supercohomology formulation of the fermionic stacking rule was first stated in ref. [23]
in the case of a split, unitary symmetry group. It was generalized to arbitrary unitary
symmetries in refs. [12, 13] and to the most general setting in ref. [13]. The general rule
has been reproduced in refs. [10, 24, 25].

When the symmetry is unitary and split, the group of classes [α, β] ∈ H2(Gb, U(1)x)×
H1(Gb,Z2) under the fermionic stacking rule (2.43) is isomorphic to Ω̃2

spin(BGb), the reduced
spin cobordism group20 of BGb [17, 23, 26, 27]. More generally, the group of fermionic SPT
phases is given by twisted cobordism [11, 26]:

F(Gb, ρ, x) ≃ Ω̃2
spin(BGb, ρ, x). (2.44)

This is in contrast with bosonic SPT phases, whose group structure (2.42) is that of twisted
cohomology

B(Gb, ρ, x) ≃ H2(G, U(1)x). (2.45)

The bosonic and fermionic stacking rules can be recovered by multiplying partition
functions. From

Zb
α1,β1 [X, Ab, Ap]Zb

α2,β2 [X, Ab, Ap] = exp
(
2πi

∫
X

A∗
b(α1 + α2) +

1
2A∗

b(β1 + β2) ∪Ap

)
= Zb

α1+α2,β1+β2 [X, Ab, Ap] ,
(2.46)

20The “cobordism” group refers to the Pontryagin dual Hom( · , U(1)) of the bordism group. The bordism
group that appears is reduced because we have specialized to SPT phases among all invertible fermionic
phases.
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one sees the rule (2.42). And due to the quadratic relation (2.29), one sees the fermionic
rule (2.43) from

Zf
α1,β1

[X, Ab, η]Zf
α2,β2

[X, Ab, η]

= exp
(
2πi

∫
X

A∗
b(α1 + α2) +

1
2A∗

b(β1 + β2) ∪ τ

)
exp

(
πi

2 (qη+τ (A∗
bβ1) + qη+τ (A∗

bβ2))
)

= exp
(
2πi

∫
X

A∗
b

(
α1 + α2 +

1
2β1 ∪ β2

)
+ 1

2A∗
b(β1 + β2) ∪ τ

)
exp

(
πi

2 qη+τ (A∗
b(β1 + β2))

)
= Zf

α1+α2+ 1
2 β1∪β2,β1+β2

[X, Ab, η].

(2.47)

In appendix A, this approach of multiplying partition functions is used to extend the fermionic
stacking rule to all invertible phases, including those beyond SPT phases.

3 Isomorphic classifications

3.1 The classifications as group extensions

We now ask the following: when are the bosonic and fermionic SPT classifications isomorphic
as groups? We find that, despite their different looking forms (2.42) and (2.43) in the
supercohomology variables, the groups are often isomorphic, even when the Jordan-Wigner
transformation does not provide an isomorphism.

Each of the two stacking rules B and F can be realized as a group extension of B by A:

A −→ B −→ B , A −→ F −→ B , (3.1)

where A and B were first defined in section 2.2 as the following: A is the quotient of
H2(Gb, U(1)x) by Z2 = ⟨12ρ⟩, and B is the subgroup of H1(Gb,Z2) consisting of valid β,
i.e. those satisfying [1

2β ∪ ρ] = 0 (equivalently, those that pullback from ν (2.6) associated
with ω). Since the extensions are central (as B and F are abelian by construction), each is
characterized by an extension class in [ΩB,F ] ∈ H2(B,A) that appears as[

α1
β1

]
⊗B,F

[
α2
β2

]
=
[

α1 + α2 +ΩB,F (β1, β2)
β1 + β2

]
. (3.2)

The expressions (2.42) and (2.43) reveal that

ΩB = 0 , ΩF = 1
2 ∪ . (3.3)

The bosonic classification group is simply the direct product group21

B ≃ A× B , (3.4)

and we are interested in studying when F ≃ B ≃ A × B. Since the direct product group
can arise only from the trivial extension [28], this only happens when [ΩF ] = 0, i.e. when
there exists a Λ : B → A such that

ΩF = δΛ. (3.5)
21Since, due to the condition (2.11), a equivalence class of an α is not canonically identified with an element

of A (but rather to an element of a torsor over it), this isomorphism is also noncanonical.
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In this case, the map

X : [α, β] 7→ [α− Λ(β), β] (3.6)

gives an isomorphism of stacking group laws:

X [α1, β1]⊗F X [α2, β2] = [α1 − Λ(β1), β1]⊗F [α2 − Λ(β2), β2]
= [α1 + α2 − Λ(β1)− Λ(β2) + ΩF (β1, β2), β1 + β2]
= [α1 + α2 − Λ(β1 + β2), β1 + β2]
= X [α1 + α2, β1 + β2]
= X ([α1, β1]⊗B [α2, β2]).

(3.7)

When the isomorphism X exists, it is in general not unique, as Λ may be shifted by any
cocycle in Z1(B,A).

We emphasize that the condition (3.5) is weaker than asking when ΩF (β1, β2) vanishes in
A (that is, when 1

2β1 ∪ β2 is cohomologous to 1
2ρ) for all β1, β2 ∈ B. The vanishing of ΩF for

all inputs means that the Jordan-Wigner transformation (2.38) is an isomorphism, whereas
the condition (3.5) only means that there is some isomorphism X : B → F , not necessarily
given by JW . We illustrate this subtlety with some simple examples in section 3.2, and we
ask about the physical meaning of these other isomorphisms in section 4.

Let us briefly comment on the question of when JW is an isomorphism of stacking rules,
in the simple case where the symmetry G is finite abelian and unitary. The group G is a
product of cyclic groups Zni , and (up to isomorphism) p belongs to one of them, Zf

nf
, of order

nf a power of 2, as the element p = nf /2. Let nij denote gcd(ni, nj). We claim that JW is an
isomorphism precisely when there is at most one factor Zni , i ̸= f , with nif = nf , i.e. where
ni contains at least as many factors of 2 than nf .22 The group cohomology of G is generated
by cocycles ωij(g, h) = 1

nij
gihj . Valid β are generated by βi(g) = ωif (g, p) = nf

2nif
gi = 1

2gi for
i with nif = nf . If there is at most one factor with nif = nf , there is at most one nonzero
valid β, so ΩF vanishes and JW is an isomorphism. When there is more than one such
factor, there are valid βi, βj , each evaluating to 1 on distinct cyclic generators g, h and 0 on
the others. Then ΩF (βi, βj) = 1

2βi ∪ βj = nij

2 ωij , which is nontrivial in A, so JW is not an
isomorphism. Further examples are discussed in section 3.2.

3.2 Examples

Before answering the question in general, let us consider a few examples.
First is G = ZT

2 × Zf
2 , where there is no isomorphism. There are four SPT phases,

each characterized by a choice of supercohomology data — one of the two possible α and
one of the two possible β:

α0(t, t) = 0 , α1(t, t) = 1
2 , (3.8)

β0(t) = 0 , β1(t) = 1. (3.9)
22This notion is well-defined because factors of even order cannot be combined since their orders are not

coprime.

– 12 –



J
H
E
P
1
0
(
2
0
2
4
)
0
3
4

These cocycles add according to

α1 + α1 = α0 , β1 + β1 = β0 , (3.10)

so, denoting each cocycle by its subscript, we have the bosonic stacking rule[
i

j

]
⊗B

[
i′

j′

]
=
[

i + i′

j + j′

]
, (3.11)

which is the classification group B = Z2 × Z2. The only nontrivial cup product of β is

1
2β1 ∪ β1 = α1 , (3.12)

so the fermionic stacking rule is[
i

j

]
⊗F

[
i′

j′

]
=
[

i + i′ + jj′

j + j′

]
, (3.13)

which is the classification group F = Z4, generated by the phase [α0, β1]. Therefore B ̸≃ F .
A second example is G = ZT

4 × Zf
2 , where now t is of order four. Here, there is an

isomorphism given by the Jordan-Wigner transformation. Again there are two each of α and β:

α0(tm, tn) = 0 , α1(tm, tn) = 1
4[m]2n , (3.14)

β0(tm) = 0 , β1(tm) = [m]2, (3.15)

where [ · ]2 denotes reduction mod 2. The cochain α1 is indeed a twisted cocycle since

(δα)1(tl, tm, tn) = (−1)l 1
4[m]2n + 1

4[l]2(m + n)− 1
4[l]2m− 1

4[l + m]2n

= 1
4n([m]2 − 2[l]2[m]2 + [l]2 − [l + m]2)

= 0

(3.16)

and is nontrivial since

α1(t, t3)− α1(t3, t) = 1
2 (3.17)

is a nonzero gauge invariant quantity. The cocycles add as in the previous example (3.10),
so the bosonic classification is again B = Z2 × Z2. But this time, the cup products are
all trivial in cohomology:(1
2β1 ∪ β1

)
(tm, tn) = 1

2[m]2[n]2 = 1
4((m− [m]2) + (−1)m(n− [n]2)− (m + n− [m + n]2)) ,

(3.18)

=⇒ 1
2β1 ∪ β1 = δλ , λ(tm) = 1

4(m− [m]2) , (3.19)

so the fermionic stacking rule is also F = Z2 × Z2. In this example, the Jordan-Wigner
transformation is an isomorphism B → F since the bosonic and fermionic stacking rules
are identical in terms of αi, βi.
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Finally, consider the symmetry group G = Z2 × Z2 × Zf
2 , where there is an isomorphism

B ≃ F but it is not given by the Jordan-Wigner transformation. This group has two α

and four β:

α0((a, b), (a′, b′)) = 0 , α1((a, b), (a′, b′)) = 1
2a′b , (3.20)

β00(a, b) = 0 , β10(a, b) = a , β01(a, b) = b , β11(a, b) = [a + b]2 ,

(3.21)

written in terms of elements (a, b) ∈ Z2 × Z2 = Gb. These cocycles add according to

αi + αi′ = αi+i′ , βj,k + βj′,k′ = β(j+j′),(k+k′) , (3.22)

so the bosonic stacking rule is B = Z3
2: i

j

k

⊗B

 i′

j′

k′

 =

 i + i′

j + j′

k + k′

 , (3.23)

where the second and third rows represent β10 and β01. The cup products are(1
2βjk∪βj′k′

)
((a,b),(a′, b′))= 1

2(ja+kb)(j′a′+k′b′)= 1
2jj′aa′+1

2jk′ab′+1
2kj′ba′+1

2kk′bb′

(3.24)

=⇒ 1
2βjk∪βj′k′ ∼ (jk′+j′k)α1 (3.25)

since, in cohomology, 1
2aa′ and 1

2bb′ are trivial and 1
2ab′ ∼ 1

2a′b. Therefore the fermionic
stacking rule is  i

j

k

⊗F

 i′

j′

k′

 =

 i + i′ + jk′ + j′k

j + j′

k + k′

 . (3.26)

Because the bosonic and fermionic stacking rules are not identical, the Jordan-Wigner
transformation is not an isomorphism. However, a trivialization of the extension class is
given by

Λ(βjk) = jk α1 , i.e. Λ(β11) = α1 , Λ(else) = 0 , (3.27)

which has

(δΛ)(β, β′) = jk α1 + j′k′ α1 − (j + j′)(k + k′)α1 = −(jk′ + j′k)α1. (3.28)

This trivialization is a simple case of the more general form (3.43). Therefore the map

X :

 i

j

k

 7→
 i + jk

j

k

 (3.29)

from bosonic to fermionic SPT phases is an isomorphism, and the fermionic stacking rule
is F = Z3

2. We will return to this example in section 4.4 when we study whether the map
X can be implemented by a duality.
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3.3 Necessary and sufficient conditions for isomorphism

In order to state the necessary and sufficient conditions for the bosonic and fermionic SPT
classifications to be isomorphic, we first define several conditions. We call these conditions
“genus rules” in reference to the fact, explained in section 3.5, that the genus n rule is equivalent
to the vanishing of the bosonic partition function associated to the cocycles ω = 1

2b∗β ∪ b∗β,
for all valid β, on the nonorientable surface of genus n.

Genus n rule.
A fermionic symmetry group (Gb, ρ, x) is said to satisfy the genus n rule if

n∑
i

b∗β(gi) = 0 mod 2. (3.30)

for every β : Gb → Z2 with [1
2β ∪ ρ] = 0 and elements g1, . . . , gn ∈ G with

x(gi) = 1 and ∏n
i g2

i = 1.

In the split case,23 the genus n rule may be framed in terms of Gb elements as the condition that

n∑
i

β(gbi) = 0 mod 2 = 0 (3.31)

for every β : Gb → Z2 and any elements gb1, . . . , gbn ∈ Gb with x(gbi) = 1 and ∏n
i g2

bi = 1.
If the genus n rule is satisfied for some n > 2, then it is also satisfied for n− 2. To see

this, suppose that the genus n − 2 rule is violated, which means that there exists valid β

and antiunitary g1, . . . , gn−2 satisfying ∏n−2
i g2

i = 1 but with ∑n−2
i b∗β(gi) = 1. Then, for

any antiunitary g, taking gn−1 = g and gn = g−1 means that the sequence g1, . . . , gn satisfies∏n
i g2

i = 1 but has ∑n
i b∗β(gi) = 1, violating the genus n rule.

When the symmetry group G is abelian, the relation also goes the other way: satisfying
the genus n rule implies satisfying the genus n + 2 rule. To see this, suppose that the genus
n + 2 rule is violated, which means that there exists valid β and antiunitary g1, · · · , gn+2
with ∏n+2

i g2
i = 1 and ∑n+2

i b∗β(gi) = 1. Then define g = gngn+1gn+2, which is antiunitary,
has ∑n−1

i b∗β(gi) + b∗β(g) = 1, and, since the group is abelian, satisfies (∏n−1
i g2

i )g2 = 1.
Therefore G violates the genus n rule with the sequence g1, . . . , gn−1, g.

A group is said to satisfy the genus ∞ rule if it satisfies the genus n rule for every
n. For abelian groups, the genus ∞ rule is equivalent to the genus 1 and 2 rules together,
by the argument above.

In terms of these rules, the following necessary and sufficient conditions for an isomorphism
B ≃ F hold.

23If the group does not split, one must worry about Gb gauge fields Ab = {gb1, . . . , gbn} that do not extend
to G gauge fields. These have

∫
X

A∗
b ρ ̸= 0 (and no solution Ap), so they do not distinguish when a class is

trivial in A.
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General result.
For the groups of bosonic and fermionic SPT phases to be isomorphic

B(Gb, ρ, x) ≃ F(Gb, ρ, x) , (3.32)

• The genus 1 rule is a necessary condition.

• The genus ∞ rule is a sufficient condition.

The genus ∞ rule is not necessary (only sufficient) in general: in appendix C, we discuss
the example of G = (Z4 ⋊ ZT

4 ) × Zf
2 , which has isomorphic SPT classifications despite

violating the condition.
The genus 1 rule, which demands that every valid β and g with x(g) = 1 and g2 = 1

satisfy b∗β(g) = 0, has a simple meaning in the split case. There, every β — including β = x

— is valid, so the rule says that there is no antiunitary symmetry that squares to one. When
the group does not split, interpretation of the genus 1 rule becomes difficult: for example,24

the group ZT
2 × Zf

4 has antiunitary element (1, 0) squaring to 1 yet satisfies the genus 1 rule
since no β that detects this element (in fact, no nonzero β at all) is valid.25

The general result will be proven in section 3.4 and section 3.5. First, let us discuss
several special cases. One case that we demonstrate in section 3.5 is the following:

Central antiunitary symmetry.
When Gb contains a central antiunitary symmetry, the genus ∞ rule is
necessary and sufficient.

Specializing to unitary symmetries, we have the following result, which reveals that the
isomorphism for symmetry G = Z2 × Z2 × Zf

2 considered in section 3.2 is not an accident
but rather an example of the general rule:

Unitary symmetries.
When the symmetry G is unitary, the groups of bosonic and fermionic SPT
phases are isomorphic:

B(Gb, ρ, 0) ≃ F(Gb, ρ, 0). (3.33)

This result is an immediate corollary of the general result since all of the genus rules are
vacuously satisfied when there are no suitable elements gi. It appeared previously in ref. [4],
where it was proven in an abstract setting. In the present paper, we reproduce this result
while also stating the isomorphisms explicitly (cf. section 3.4), demystifying its relation to the
Jordan-Wigner transformation (which we have seen does not typically give an isomorphism
even when the groups are isomorphic), studying its relation to more general dualities (cf.
section 4), and extending it to include antiunitary symmetries. The unitary result was also
stated previously, at least in the split case, in the context of the cobordism group [27]. The
argument is essentially the one we generalize below: checking that the half cup squares vanish.

24For another example, consider the nonabelian group ZT f
4 ⋊ Z2 and its antiunitary element g = (1, 1).

25That no nontrivial β are valid can be seen by writing the ω for this group and noting that their associated
ν vanish.
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Finally, we turn to abelian groups, where conditions directly about the group structure
are possible.

Abelian symmetries.
When the symmetry G is abelian,

• The genus 1 and 2 rules together are necessary and sufficient.

Moreover, when the symmetry G is finite abelian and split,

• It is necessary and sufficient that Gb is either unitary or has no Z2
factors.

If G is unitary, isomorphism of SPT classifications is automatic; if abelian G contains an
antiunitary symmetry, it is central, and so the genus ∞ rule is necessary and sufficient. We
observed above that this rule is equivalent to the genus 1 and 2 rule together; therefore, rules
1 and 2 are necessary and sufficient for abelian symmetries.

It is difficult to translate the genus n rules into statements directly about the group
structure — without reference to β — though we achieve this for finite abelian groups that
split. A basis of generators can always be chosen so at most one of them is antiunitary:

Gb =
∏

i

Zp
ni
i

, or Gb = ZT
2n ×

∏
i

Zp
ni
i

, (3.34)

where the pi are (not necessarily distinct) primes. The first case, where the symmetry is
unitary, is solved. Consider the second case, where one of the generators t is antiunitary.
The genus 1 rules demands there is no valid β and antiunitary g with g2 = 1 and β(g) = 1.
The group has an antiunitary g squaring to 1 if and only if t2 = 1. Moreover, the β that
evaluates to 1 on t and to 0 on the other generators is valid, since every β is valid in the
split case. Therefore, the genus 1 rule is equivalent to t2 ̸= 1, i.e. n > 1. Meanwhile, the
genus 2 rule demands that there is no β and antiunitary g1, g2 and such that g2

1g2
2 = 1 and

β(g1) ̸= β(g2). Suppose one of the unitary generators u is of order two, i.e. pi = 2, ni = 1.
Then g1 = t and g2 = ut−1 violate the genus 2 rule with the β that evaluates to 1 on u and to
0 on the other generators. On the other hand, suppose that none of the unitary generators is
of order two, which means that every order two unitary element has a square root. Arbitrary
antiunitary elements satisfying g2

1g2
2 = 1 are written as g1 = u1tm and g2 = u2t−m, which

means (u1u2)2 = 1. Then u1u2 has a square root, so 0 = β(u1u2) = β(g1) + β(g2) for any β.
Therefore, the genus 2 rule is equivalent to the lack of unitary Z2 factors. Together, the genus
1 and 2 rules means there are no Z2 factors in Gb. The assumption that the symmetry splits
is crucial to this conclusion, as demonstrated by the example of G = ZT

2 × Zf
4 mentioned

above. Similarly, the example of G = (Z4 ⋊ ZT
4 )× Zf

2 (cf. appendix C) shows the importance
of the assumption that the group is abelian.

We proceed by arguing for the general necessary and sufficient conditions in the fol-
lowing steps:

Lemma 1. The groups B and F are isomorphic if and only if the half cup product is
trivial:

[12∪] = 0 ∈ H2(B,A). (3.35)
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Lemma 2. This happens if and only if, for all β ∈ B, the half cup square has a square
root Rβ in A:

2Rβ ∼
1
2β ∪ β. (3.36)

Lemma 3. This happens if the genus ∞ rule is satisfied and only if the genus 1 rule is
satisfied.

Lemma 1 was argued in section 3.1. We turn to Lemma 2 in section 3.4 and then to Lemma
3 in section 3.5.

3.4 Square roots of the diagonal

Choose a basis βi of generators of B = ZN
2 . A general valid β can then be uniquely

decomposed as

β =
∑

i

aiβi , (3.37)

where ai are Z2-coefficients. In this basis, the half cup squares look like
1
2β ∪ β = 1

2
∑
ij

aiajβi ∪ βj ∼ 2 1
2
∑
i<j

aiajβi ∪ βj +
1
2
∑

i

aiaiβi ∪ βi =
1
2
∑

i

aiβi ∪ βi. (3.38)

For every valid β, fix a square root Rβi
of 1

2βi ∪ βi in A. A square root of 1
2β ∪ β is given by

Rβ =
∑

i

aiRβi
(3.39)

since
2Rβ =

∑
i

ai2Rβi
∼ 1

2
∑

i

aiβi ∪ βi ∼
1
2β ∪ β. (3.40)

These choices of square roots satisfy

Rβ+β′ =
∑

i

(ai + a′
i mod 2)Rβi

(3.41)

and therefore

Rβ+Rβ′−Rβ+β′ =
∑

i

(ai+a′
i−(ai+a′

i mod 2))Rβi
=
∑

i

aia
′
i2Rβi

∼ 1
2
∑

i

aia
′
iβi∪βi. (3.42)

Define Λ : B → A as

Λ(β) = 1
2
∑
i<j

aiajβi ∪ βj + Rβ . (3.43)

It has coboundary
(δΛ)(β, β′) = Λ(β) + Λ(β′)− Λ(β + β′)

= 1
2
∑
i<j

(
aiaj + a′

ia
′
j − (ai + a′

i)(aj + a′
j)
)

βi ∪ βj + Rβ + Rβ′ −Rβ+β′

∼ 1
2
∑
i<j

(
aia

′
j + a′

iaj

)
βi ∪ βj +

1
2
∑

i

aia
′
iβi ∪ βi

= 1
2
∑
i,j

aia
′
jβi ∪ βj

= ΩF (β, β′).

(3.44)
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This means that, given the existence of square roots Rβ, the extension class [ΩF ] = [ 1
2∪]

is trivial. Conversely, suppose ΩF = δΛ for some Λ, not necessarily of the form (3.43).
The diagonal terms are[1

2β ∪ β

]
= ΩF (β, β) = (δΛ)(β, β) = 2Λ(β) (3.45)

since Λ(0) = ΩF (β, 0) = 0, so Λ(β) is a square root of 1
2β ∪ β in A. This proves Lemma 2.

3.5 Derivation of the genus rules

Next is Lemma 3, which states a property of the symmetry group that guarantees that
its valid half cup squares have square roots (and therefore, by the previous lemmas, that
the SPT classification groups are isomorphic). A special case occurs when these half cup
squares vanish in A — if they vanish, they have zero as a square root. We argue in the
following that the genus ∞ rule is equivalent to them vanishing. While this condition is
sufficient for the existence of square roots (namely, zero), it isn’t necessary, as a nonvanishing
valid half cup square may still have a square root (see the example of Gb = Z4 ⋊ ZT

4 in
appendix C). The genus 1 condition, on the other hand, must be satisfied for the valid half
cup squares to have square roots.

In turns out that when there is an antiunitary symmetry in the center of Gb, all classes
in A are of order two, which means they only have square roots if they vanish. In this
case, the genus ∞ rule is necessary as well as sufficient. We prove the claim about classes
of order two in appendix C.

We proceed by studying when the valid half cup squares vanish in A. Since [1
2ρ]

generates the kernel of b∗ : H2(Gb, U(1)x) → H2(G, U(1)x), the vanishing of a class in
A = H2(Gb, U(1)x)/⟨12ρ⟩ is equivalent to the vanishing of its pullback by b in H2(G, U(1)x).
Therefore, we wish to know when

ω = 1
2b∗β ∪ b∗β (3.46)

is trivial as a G cocycle, for every valid β. To study this, we employ the bosonic partition
functions (2.17) associated with this cocycle. Partition functions are gauge invariant quantities,
which makes them useful for studying the cohomology class of a cocycle. Moreover, partition
functions of unitary, invertible theories like ours completely determine26 their topological
invariants in the sense that two invariants [ω] and [ω′] are equal if and only if their partition
functions Zb

ω and Zb
ω′ agree on every space (X,A) [30, 31]. Therefore, asking when an

invariant is trivial amounts to asking when its partition functions are all trivial.
The bosonic partition function associated with a cocycle ω is stated abstractly in eq. (2.17).

Now we evaluate this expression explicitly for each input (X,A). The surface X is either
orientable — in which case it is the connected sum of n tori — or nonorientable — in which
case it is the connected sum of n real projective planes; in either case, n is referred to as
the “genus.” The genus n orientable surface has fundamental group

π1((T 2)#n) = { ai, bi , i = 1, . . . , n :
n∏
i

aibia
−1
i b−1

i = 1 } (3.47)

26The complete list of partition functions is redundant. See e.g. relations between tori, Klein bottles, and
RP 2 in ref. [29].
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generated by orientation-preserving loops ai, bi, whereas the genus n nonorientable surface has

π1((RP 2)#n) = { ci , i = 1, . . . , n :
n∏
i

c2
i = 1 } (3.48)

generated by orientation-reversing loops ci [32]. The gauge field A is determined by the
map π1(X) → G induced on fundamental groups; that is, by specifying group elements
(“holonomies”) {gi, hi} or {gi} that satisfy the relation (3.47) or (3.48) and the constraint
A∗x = w1, which means x(gi) = x(hi) = 0 or x(gi) = 1.

Next we provide two independent arguments that the partition functions associated with
the class (3.46) automatically vanish on orientable surfaces

Zb
1
2 b∗β∪b∗β

[(T 2)#n, {gi, hi}] = 1 (3.49)

and evaluate to

Zb
1
2 b∗β∪b∗β

[(RP 2)#n, {gi}] = (−1)
∑

i
b∗β(gi). (3.50)

on the nonorientable surface with holonomies {gi}. The condition that the nonorientable
genus n partition function vanishes for all valid β is precisely the genus n rule and the
vanishing for all n is the genus ∞ rule. Therefore the genus ∞ rule is a sufficient condition
for the existence of square roots Rβ to the valid half cup squares and thus to the isomorphism
of bosonic and fermionic SPT classifications.

Our first argument uses the special form of the class (3.46), which lets us write

Zb
1
2 b∗β∪b∗β

[X,A] = exp
(
2πi

∫
X

1
2A∗

bβ ∪A∗
bβ

)
= (−1)⟨P D(A∗

b β),P D(A∗
b β)⟩ , (3.51)

where PD(A∗
bβ) denotes the cycle Poincaré dual to A∗

bβ ∈ H1(X,Z2) and ⟨·, ·⟩ is the
intersection form on cycles. On an orientable surface, no cycle has even self-intersection [32],
so the partition function is trivial. On the other hand, the orientation-reversing loops ci in the
presentation (3.48) form a basis of cycles of the nonorientable surface and have intersection
⟨ci, cj⟩ = δij [32]; therefore, the self-intersection of any cycle is the number of basis elements
ci along which the cycle has a component. The Poincaré dual cycle PD(A∗

bβ) is, by definition,
the cycle that intersects precisely the cycles c on which A∗

bβ(c) = 1; since the basis ci is
orthogonal with respect to the intersection form, the Poincaré dual therefore has components
precisely where it has A∗

bβ(ci) = 1, i.e. in the basis cycles labeled by holonomies gi ∈ G such
that b∗β(gi) = 1. We conclude that the self-intersection of PD(A∗

bβ) is a sum of b∗β(gi),
which gives the claimed result (3.50).

Our second argument uses the general expression for the partition function associated
to ω evaluated on a space (X,A). In appendix B, we derive these expressions from the
state sum construction and compare them to partial results in the literature. We find that
the orientable partition function is

Zb
ω[(T 2)#n, {gi, hi}] = exp

(
2πi

n∑
i=1

ω(xi, gi) + ω(xigi, hi) + ω(xigihi, g−1
i )

+ ω(xigihig
−1
i , h−1

i )− ω(g−1
i , gi)− ω(h−1

i , hi)
)

,

(3.52)
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for {gi, hi} satisfying x(gi)=x(hi)=0 and ∏i gihig
−1
i h−1

i =1, and where xi=
∏

j<i gjhjg−1
j h−1

j .
And for {gi} satisfying x(gi)=1 and ∏i g2

i =1, with yi=
∏

j<i g2
j , the nonorientable partition

function is

Zb
ω[(RP 2)#n, {gi}] = exp

(
2πi

n∑
i=1

ω(gi, gi) + ω(yi, g2
i )
)

. (3.53)

Gauge invariance of these expressions can be verified by plugging in ω = δλ to obtain

Zb
δλ[(T 2)#n, {gi, hi}] = exp

(
2πi

n∑
i=1

λ(xi) + λ(xi+1)
)

= 1 , (3.54)

Zb
δλ[(RP 2)#n, {gi}] = exp

(
2πi

n∑
i=1

λ(yi) + λ(yi+1)
)

= 1 , (3.55)

using the facts that x1 = 1, xngnhng−1
n h−1

n = 1, y1 = 1, and yng2
n = 1. Plugging the class (3.46)

into the general evaluations (3.52) and (3.53) and noting that b∗β(xi) = b∗β(yi) = 0, we see
that the orientable expression becomes trivial while the nonorientable expression matches
the claimed result (3.50).

To see the partial converse, note that the partition function on RP 2 for an arbitrary
class [ω] is of order two since

Zb
ω[RP 2

g ]2 = exp(2πi 2ω(g, g)) = exp(2πi (δω)(g, g, g)) = 1 , (3.56)

due to the fundamental group relation g2 = 1. For this reason, a class with nontrivial RP 2

partition function cannot have a square root. We conclude that a square root Rβ exists only
if the partition function (3.50) vanishes at n = 1; that is, if the genus 1 rule is satisfied.

4 Dualities of SPT phases

4.1 Topological holography

Duality is a tool for relating two systems via a nontrivial transformation such that there is a
correspondence between the key physical observables on either side. Such transformations
allow for solving problems about one system in terms of its dual. For example, the Jordan-
Wigner transformation [1], which maps nonlocal strings of bosonic spin operators to local
fermion operators, has proven useful for solving spin chains such as the Ising and XY models
by translating them into fermionic Hamiltonians that can be diagonalized [33, 34]. The
Jordan-Wigner transformation has also been used to study fermionic SPT phases by mapping
them into bosonic SPT phases [2, 3]. Other examples are Kennedy-Tasaki duality [35] and its
generalizations [36, 37], which interpret the nontriviality of SPT phases as “hidden” symmetry-
breaking by mapping SPT phases to spontaneously symmetry-broken phases. Dualities can
also be used to locate critical points as points where a duality between two phases becomes
a self-duality, as was done by Kramers and Wannier [38].

While the specific duality transformations mentioned above have appeared in separate
contexts, they can be understood as instances of a general notion of duality [37, 39, 40].
Recent years have shown progress in understanding duality from within a unified framework
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known as topological holography, where symmetric gapped phases are realized as gapped
boundary conditions of higher dimensional symmetry topological field theories (TFT). This
idea has proven especially fruitful in one dimension, where systems with finite symmetry27

and their dualities have been classified in the language of two dimensional symmetry TFT [39,
41–45]. The symmetries of one dimensional systems form a fusion category A (for the
nonanomalous grouplike symmetries considered in the present paper, A = VecG) [46, 47], and
the symmetry TFT is the two dimensional theory characterized by the Drinfeld center Z(A).
One dimensional A-symmetric phases (including both symmetry-protected and symmetry-
breaking phases) appear as gapped boundary conditions for Z(A), which are mathematically
described by Lagrangian algebra objects of Z(A), consisting of the anyons that condense
on the boundary [48, 49]. Dualities of one dimensional systems (including operations like
gauging a subgroup and stacking with SPT phases) appear in this framework as braided
autoequivalences of the modular tensor category Z(A) — that is, as permutations of the
anyons that preserve their braiding and fusion rules — which act on the Lagrangian algebras
representing the phases [50, 51]. These autoequivalences may be physically interpreted as
invertible surface operators (also called gapped domain walls or gapped interfaces) of the
two dimensional symmetry TFT [41, 52].

It is expected that the dualities formulated in the symmetry TFT language are related
to duality transformations of lattice Hamiltonians. For example, the electric-magnetic duality
of the toric code TFT, which exchanges the e and m anyons, is known appear as gauging
and Kramers-Wannier duality on the one dimensional lattice. Dualities of systems with
nonanomalous abelian symmetry groups are extensively studied in ref. [43], where dual pairs
of lattice Hamiltonians are constructed for a given autoequivalence. See refs. [53, 54] for a
construction of dual pairs of lattice models for more general symmetries. The Jordan-Wigner
transformation has also been discussed as a duality in the framework of symmetry TFT,
though a general formalism for boson-to-fermion dualities has yet to be fully developed [41, 53].

In section 3 it was found that the stacking rules of bosonic and fermionic SPT phases
are often isomorphic; this happens when the symmetry is unitary as well as when there
are antiunitary symmetries as long as certain conditions are satisfied (cf. section 3.3). In
these cases, an explicit isomorphism X (3.6) between the groups of bosonic and fermionic
SPT phases was constructed. In this section we ask whether the transformation X — like
the Jordan-Wigner transformation — can be thought of as a duality, in the sense of being
implemented by an autoequivalence of the symmetry TFT. If true, this would mean that
boson-to-fermion dualities are capable of preserving stacking rules, which are properties of
entire collections of SPT phases, similarly to how they preserve key features of individual
phases when mapping from one system to another. We show however that X is not a duality,
except in the special case where the Jordan-Wigner transformation is an isomorphism of
stacking rules (δΛ = ΩF = 0). We will focus on the case where G is finite abelian and unitary,
but we expect the spirit of the arguments to apply more broadly. In order to make use
of the symmetry TFT framework, which is typically formulated only for bosonic systems,

27The approach applies not only to the grouplike symmetries considered here but also to their noninvertible
generalizations.
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we consider the transformation

JW−1X : B → B (4.1)

between bosonic SPT phases. Since JW may be regarded as a duality, asking whether X is
a duality between bosonic and fermionic systems is equivalent to asking whether JW−1X
is a duality. We emphasize that, while X is by construction an isomorphism B → F , the
composite transformation JW−1X is typically not an automorphism of the group of bosonic
SPT phases since JW is not typically an isomorphism.

4.2 Actions of dualities on SPT invariants

Anyons of abelian Z(VecG) take the form (a, χ), where a ∈ G represents a magnetic flux
and χ ∈ Rep(G) ≃ G an electric charge, with the topological spin of (a, χ) given by the
evaluation θ(a,χ) = χ(a). Anyons of the form (1, χ) are pure electric charges and form the
subcategory Rep(G) ⊂ Z(VecG).

Gapped phases with G symmetry correspond to Lagrangian algebras of Z(VecG). These
are classified by pairs (H, ω), where H is a subgroup of G representing the unbroken symmetry
and ω ∈ H2(H, U(1)) encodes the SPT order. The Lagrangian algebra labeled by (H, ω)
is, as an object,28 the direct sum of anyons

LH,ω =
⊕

a∈H , χ∈Rep(G)
χ|H=(iaω)|H

(a, χ) , (4.2)

where |H denotes restriction to H and iaω denotes the representation given by the slant product

(iaω)(g) = exp(2πi(ω(a, g)− ω(g, a))) (4.3)

of ω with respect to a ∈ H. SPT phases correspond to the case H = G and are classified
by ω ∈ H2(G, U(1)). The corresponding Lagrangian algebras

LG,ω =
⊕
a∈G

(a, iaω) (4.4)

involve no pure electric charges (1, χ) since i1ω = 1 on G; they are thus referred to as
“magnetic” [55]. The Lagrangian algebra of the trivial SPT phase involves only pure magnetic
fluxes since ia0 = 1:

LG,0 =
⊕
a∈G

(a, 1). (4.5)

A physical picture of the correspondence between SPT invariants and Lagrangian algebras
may be given in terms of order parameters [42, 56, 57].

Let us illustrate this story with a simple example: G = Zx
2 × Zy

2. Let x and y denote the
generators of the Z2 factors. In this basis, the anyons generating Z(VecG) are

mx = ((1, 0), (0, 0)), my = ((0, 1), (0, 0)), ex = ((0, 0), (1, 0)), ey = ((0, 0), (0, 1)).
(4.6)

28In general the Lagrangian algebra structure on such an object may not be unique, so the object alone may
not determine the class ω; for abelian groups, however, the underlying object fixes the class completely.

– 23 –



J
H
E
P
1
0
(
2
0
2
4
)
0
3
4

The trivial SPT phase corresponds to ω = 0 and involves only pure magnetic fluxes:

LG,0 = 1⊕mx ⊕my ⊕mxmy. (4.7)

The nontrivial SPT phase corresponds to ω = ωxy, the nontrivial class in H2(Z2 × Z2, U(1)).
This class has

ixωxy = ey , iyωxy = ex. (4.8)

Therefore the corresponding Lagrangian algebra is

LG,ωxy = 1⊕mxey ⊕myex ⊕mxmyexey, (4.9)

reproducing the well-known expression for the Z2 × Z2 SPT-phase, for example in ref. [43].
The correspondence between SPT invariants ω and Lagrangian algebras allows us to

compute the action of braided autoequivalences D ∈ Aut(Z(VecG)) on SPT phases and
address the question of whether the map

JW−1X : [α, β] 7→ [α− Λ(β), β] , (4.10)

coming from eq. (3.6), can be implemented by such an autoequivalence.
Before getting to the general result, consider the special case of dualities which map pure

electric charges to pure electric charges; that is, which stabilize Rep(G). For symmetries such
as G = Zn

2 , where every non-charge boson appears in some SPT phase, every duality that
maps SPT phases to SPT phases (and so stabilizes the set of non-charge bosons) stabilizes
Rep(G). These dualities are known to act on SPT phases by stacking with an SPT phase ζ,
then acting by the map a∗ induced by an automorphism a ∈ Out(G):29

ω 7→ a∗ω + ζ. (4.11)

This fact appears in ref. [58] (Cor. 6.9, Prop 7.11),30 and we give a self-contained proof of
it in appendix E. Now let us ask when JW−1X is of this form. It fixes the trivial phase,
so the stacked SPT ζ must be trivial. The induced action a∗ on the SPT classification is
an automorphism, a∗(ω + ω′) = a∗ω + a∗ω′, so JW−1X is only of this form when it is an
automorphism. Since X is an isomorphism, JW must be an isomorphism as well, which it
typically is not. This means there is no duality transformation implementing X in general.

It turns out that the full theory of dualities that map SPT phases to SPT phases is more
complicated, as not all of them stabilize Rep(G) or even act on SPT phases like those that
stabilize Rep(G); in fact, there are LG,0-fixing, SPT-stabilizing dualities whose actions on
SPT phases are not automorphisms. Nevertheless, the conclusion of the previous paragraph
holds. In appendix E, we demonstrate through examples how dualities can induce exotic
actions on SPT phases and we prove the following theorem:

29For the abelian groups considered here, every automorphism is of course outer. More generally, the fact
that the automorphism a is outer is reflected in eq. (C.2), which says that inner automorphisms act trivially
on the SPT invariants.

30Ref. [58] considers the action on Lagrangian subcategories, but Lagrangian subcategories and Lagrangian
algebras coincide on the level of anyons when G is abelian — Lagrangian subcategories are fusion categories
generated by some subset of anyons of Z(VecG), while Lagrangian algebras correspond to direct sums of the
same anyons [59].
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Theorem: if the transformation JW−1X of SPT phases is implemented
by a duality, then JW is an isomorphism of the bosonic and fermionic
stacking groups, i.e. ΩF = δΛ = 0.

4.3 Stacking of magnetic Lagrangian algebras

In section 4.2 we studied the interplay of stacking and duality by expressing both in terms
of the SPT invariant ω. In this picture, stacking is straightforward, while the action of
autoequivalences is not. Here we consider an alternative approach, where the action of
autoequivalences is immediate but stacking needs to be carefully defined. The idea is to
express everything in terms of anyons and Lagrangian algebras. In this section we define the
operation of stacking Lagrangian algebras and see how it plays out in the case of G = Z2×Z2.

Given two Lagrangian algebras L1,L2 of Z(VecG), thought of as gapped boundaries
of the bulk symmetry TFT, we can stack the whole bulk-boundary systems to obtain a
Lagrangian algebra L1 ⊠ L2 of the bulk Z(VecG)⊠ Z(VecG), where ⊠ denotes the Deligne
product. The bulk is now a symmetry TFT for G × G symmetry, which we must break into
the diagonal subgroup G by identifying the Rep(G) subcategories of the two factors. This
is achieved by condensing the algebra object

E =
⊕

α∈Rep(G)
α ⊠ α (4.12)

in Z(VecG)⊠ Z(VecG) [60]. The result of this condensation, denoted (Z(VecG)⊠ Z(VecG))E ,
is equivalent to and identified with Z(VecG) [60, 61]. The stacked Lagrangian algebra31 is
defined as the result of forming the product of the Lagrangian algebras, then condensing
E , and finally identifying the result with an object of Z(VecG):

L1 · L2 := (L1 ⊠ L2)E . (4.13)

Let us illustrate this procedure concretely by returning to the example of G = Zx
2 × Zy

2.
The 16 anyons in Z(VecG) are generated by ex, ey, mx, my (4.6), and the 162 anyons of
Z(VecG)⊠Z(VecG) are generated by the Deligne products of ex, ey, mx, my. The condensable
algebra (4.12) is given by

E = (1⊠ 1)⊕ (ex ⊠ ex)⊕ (ey ⊠ ey)⊕ (exey ⊠ exey). (4.14)

The identification (Z(VecG)⊠ Z(VecG))E ≃ Z(VecG) can be made as follows. After condensing
E , we have relations ei ⊠ 1 ∼ 1⊠ ei ∼ eiej ⊠ ej , and so forth. Let [ei] be the class to which
ei ⊠ 1 belongs. This way, we obtain four classes with trivial magnetic flux, [1], [ex], [ey], [exey].
As for the anyons involving nontrivial magnetic fluxes, mi ⊠ mj has nontrivial braiding
with at least one of the condensed anyons if i ̸= j, and are confined. Hence deconfined
magnetic anyons take the diagonal form mi ⊠ mi. These are then identified via condensation

31This procedure defines the stacking of two general Lagrangian algebras, not necessarily magnetic. Non-
magnetic Lagrangian algebras correspond to (partially) symmetry-breaking phases, and the stacking of these
phases is indeed well-defined; they simply will not form a group under stacking, but a commutative monoid
with some noninvertible elements.
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as mi ⊠ mi ∼ miex ⊠ miex, etc. Let [mi] denote the equivalence class to which mi ⊠ mi

belongs. Equivalence classes of deconfined anyons of Z(VecG)⊠ Z(VecG) are generated by
the equivalence classes [ei] and [mi]. We then identify [ei] and [mi] with the anyons ei and
mi, respectively, of Z(VecG).

Now consider the stacking of SPT phases in this example. The Lagrangian algebras
corresponding to the trivial and nontrivial G = Z2 × Z2 SPT phases were stated in eqs. (4.7)
and (4.9). We wish to compute the result of stacking the algebra LG,ωxy with itself. Consider
the 16 anyons of LG,ωxy ⊠ LG,ωxy . The anyon mxey ⊠ mxey belongs to the class [mx], and
thus maps to the anyon mx of Z(VecG) after condensation. Similarly, myex ⊠ myex maps
to my. Anyons such as mxey ⊠ myex are confined. Thus we see that

LG,ωxy · LG,ωxy =
(
LG,ωxy ⊠ LG,ωxy

)
E = 1⊕mx ⊕my ⊕mxmy = LG,0 , (4.15)

the Lagrangian algebra corresponding to the trivial phase. Thus, we see that the stacking
rule of Z2 × Z2 SPT phases is recovered from the Lagrangian algebra perspective.

Now that we have made sense of stacking in the language of anyons, it is simple to study
dualities. For example, consider the autoequivalence

D : mx ←→ my , ex ←→ ey. (4.16)

This autoequivalence is induced from an automorphism of G (as pure magnetic fluxes
correspond to group elements) and leaves each of LG,0 and LG,ωxy invariant, as can be seen
from the expressions (4.7) and (4.9). Or consider the autoequivalence

D : mi ←→ miej , j ̸= i , (4.17)

which exchanges LG,0 and LG,ωxy and thus corresponds to stacking with the nontrivial SPT
phase. To study how an autoequivalence D ∈ Aut(Z(VecG)) interacts with the stacking
of Lagrangian algebras, one should compare two objects: first, the result of stacking then
dualizing

D(L1 · L2) = D ((L1 ⊠ L2)E) , (4.18)

and second, the result of dualizing then stacking

D(L1) · D(L2) = (D(L1)⊠D(L2))D(E) . (4.19)

Note that the condensable algebra E becomes the dualized object D(E) in this second
procedure.

4.4 An example, revisited

Finally we return to the example of SPT phases with symmetry group G = Z2×Z2×Zf
2 , first

examined in section 3.2. Recall that here the stacking rules of bosonic and fermionic SPT
phases are isomorphic despite the Jordan-Wigner transformation not being an isomorphism.
It was natural before to wonder whether the isomorphism X could, like JW , be implemented
by a duality transformation. We have since seen in this section that the answer is no. Here
we recover this result by working explicitly with the action of dualities on the 64 anyons and
on the 8 magnetic Lagrangian algebras corresponding to the 8 SPT phases.
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α , β ω generating set of anyons
α0 , β00 0 mx my mp

α0 , β10 ωxp mxep my mpex

α0 , β01 ωyp mx myep mpey

α0 , β11 ωxp + ωyp mxep myep mpexey

α1 , β00 ωxy mxey myex mp

α1 , β10 ωxy + ωxp mxeyep myex mpex

α1 , β01 ωxy + ωyp mxey myexep mpey

α1 , β11 ωxy + ωxp + ωyp mxeyep myexep mpexey

Table 1. The 8 SPT phases with symmetry G = Z2 × Z2 × Zf
2 .

As discussed in section 3.2, the 8 SPT phases are given by a choice of α between α0 and α1
and a choice of β among β00, β10, β01, and β11. The map JW−1X exchanges the two phases

JW−1X : [α0, β11]←→ [α1, β11] , (4.20)

while leaving the other six phases the same. We will see that no duality can implement
this transformation.

The relevant symmetry TFT is the rank 64 abelian MTC Z(VecZ2×Z2×Z2) = TC⊠TC⊠
TC, where TC denotes the Toric Code MTC. This MTC has Z6

2 fusion rules generated by the
anyons ex, ey, ep, mx, my, mp and has 8 magnetic Lagrangian algebras. The correspondence
between these algebras and the 8 SPT phases is computed following the procedure discussed
in section 4.2. The results appear in table 1, where each Lagrangian algebra is denoted by its
set of generating anyons. These algebras also appear in ref. [43] (cf. table 6).

Suppose the transformation JW−1X (4.20) were implemented by a duality. The invari-
ance of the trivial phase (α0, β00) under this mapping means that the pure magnetic fluxes
must map to other pure magnetic fluxes. Then, by looking at the table, we see that the
invariance of the phase (α0, β10) means the anyon my must be invariant since it is the only
pure magnetic flux for this phase. Likewise, the invariance of the phase (α0, β01) implies
the invariance of mx. Therefore the anyon mxmy is invariant. However the phase (α0, β11)
has the anyon mxmy = (mxep)(myep) while the phase (α1, β11) does not, so they cannot
be mapped into each other by the transformation, a contradiction. We conclude that the
transformation JW−1X — and thus also the stacking rule isomorphism X : B → F — is
not implemented by a duality.

5 Discussion

We have investigated the conditions under which one dimensional bosonic and fermionic SPT
phases have isomorphic stacking rules, finding that this occurs when the symmetry group
is purely unitary and extending this result to antiunitary symmetries, where it happens in
certain circumstances. By thinking of the bosonic and fermionic SPT classifications as group
extensions that are sometimes equivalent, we have found several necessary and sufficient
conditions for an isomorphism to hold; these results are gathered in section 3.3. A natural
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question is whether an isomorphism between the groups of bosonic and fermionic SPT phases
might exist in higher dimensions. There, the situation is complicated by the fact that gauging
the fermion parity symmetry of a fermionic system gives rise to an anomalous higher form Z2
symmetry of the resulting bosonic theory [23, 62], rather than to the nonanomalous ordinary
Z2 symmetry of one dimension, so we do not expect the invertibility of phases to be preserved
by this operation. Indeed, it is known that in two dimensions the standard bosonization
procedure maps an invertible fermionic phase to a bosonic topologically-ordered phase, and
this fact has been exploited to classify invertible fermionic phases with symmetry in terms of
bosonic symmetry-enriched topological orders [62, 63]. Moreover, the results of computing
the higher dimensional classifications of bosonic and fermionic SPT protected by ordinary
symmetries do not bear any obvious relation [8, 9], suggesting that a correspondence — if
it exists at all — is fairly subtle. The existence (under certain conditions) of a stacking-
compatible correspondence between bosonic and fermionic SPT phases may be a special
property of bosonization in one dimension.

Where the isomorphism of SPT phases exists, we have written an explicit form of its
action on supercohomology invariants, which we contrasted with that of the Jordan-Wigner
transformation. We have then asked whether this new transformation could be thought of
as a generalized “stacking-compatible” Jordan-Wigner transformation. In short, the answer
is no, the reason being that the isomorphism acts on the set of SPT phases in a way that
a true duality cannot. This result highlights that, even when the bosonic and fermionic
classifications are isomorphic, there are fundamental differences between bosonic and fermionic
systems that cannot be compensated for by duality. While we treated duality in the abstract
language of symmetry TFT, we expect this answer means there is no transformation from
spins to fermions on the lattice (like the Jordan-Wigner transformation) that is compatible
with the bosonic and fermionic SPT stacking rules. It would be interesting to test this
expectation by working directly with lattice Hamiltonian models of SPT phases. It would
also be interesting to generalize this study to bosonic and fermionic phases protected by
generalized symmetries and their stacking structures. We note that, while dualities between
two given one dimensional systems had been extensively studied from the symmetry TFT
perspective in prior work, our investigation has been concerned with the action of dualities on
the entire collection of phases and the relation of dualities to the stacking structure on this
collection. There remains the question of how to physically interpret this nonduality — the
isomorphism of stacking rules that is not a consequence of duality — and it is curious that
antiunitary symmetry is capable of spoiling the isomorphism while unitary symmetry is not.

Along the way, we have generated several smaller results which readers may find interesting
independently of the main results. We have written explicit G-pin partition functions for
fermionic SPT phases, in terms of which we have rederived the stacking rule of invertible
fermionic phases and defined a nonsplit version of the Jordan-Wigner transformation; we have
given a complete gauge-invariant characterization of degree two twisted cohomology classes
in terms of bosonic partition functions on genus n orientable and nonorientable surfaces; we
have studied when twisted cohomology classes are of order two and have found examples
where they are not; we have discovered dualities that act on the group of SPT phases but
not by automorphisms. Many of these results are contained in the following appendices.
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A Invertible fermionic phases

The SPT phases discussed so far are examples of invertible phases, i.e. phases with an inverse
under stacking. When the symmetry group splits as G = Gb × Zf

2 , there are invertible phases
beyond SPT phases. Rather than becoming trivial upon forgetting the symmetry (as SPT
phases do), these additional invertible phases reduce to the nontrivial invertible topological
order. This topological order is realized on the lattice as a phase of Majorana chains [2, 64]
and has the Arf invariant as its topological partition function [26]; the full Arf topological
field theory has also been described [65–67]. In total, invertible fermionic phases are classified
by three invariants:32 the usual α and β, and a new invariant

γ ∈ H0(Gb,Z2) = Z2 (A.1)

that encodes whether the phase is SPT (γ = 0) or not (γ = 1). The most general invertible
fermionic theory with split symmetry has partition function

Zf
α,β,γ [X, Ab, η] = exp

(
2πi

∫
X

A∗
bα

)
exp

(
πi

2 qη(A∗
bβ)
)

Arf(η)γ , (A.2)

which comes from stacking the theory (2.32) with the invertible topological order Arf(η)γ .
As before, the stacking rule is obtained by multiplying partition functions:

Zf
α1,β1,γ1

[X, Ab, η]Zf
α2,β2,γ2

[X, Ab, η]

= exp
(
2πi

∫
X

A∗
b(α1 + α2)

)
exp

(
πi

2 (qη(A∗
bβ1) + qη(A∗

bβ2))
)

Arf(η)γ1+γ2

= exp
(
2πi

∫
X

A∗
b(α1 + α2 +

1
2β1 ∪ β2)

)
× exp

(
πi

2 (qη(A∗
b(β1 + β2)) + γ1γ2qη(A∗

bx))
)

Arf(η)γ1+γ2 mod 2

= exp
(
2πi

∫
X

A∗
b

(
α1 + α2 +

1
2β1 ∪ β2 +

1
2γ1γ2(β1 + β2) ∪ x

))
× exp

(
πi

2 qη(A∗
b(β1 + β2 + x))

)
Arf(η)γ1+γ2 mod 2

= Zf

α1+α2+ 1
2 β1∪β2+ 1

2 γ1γ2(β1+β2)∪x,β1+β2+x,β1+β2
[X, Ab, η] ,

(A.3)

where in the second equality we used the relation (D.4) and the constraint A∗
bx = w1 to absorb

Arf(η)2 into the middle term. From this calculation, the full stacking rule may be read off asα1
β1
γ1

⊗F

α2
β2
γ2

 =

α1 + α2 + 1
2β1β2 + 1

2γ1γ2(β1 + β2)x
β1 + β2 + γ1γ2x

γ1 + γ2

 . (A.4)

If restricted to SPT phases (γ = 0), this expression matches the SPT stacking rule (2.43).
Also note that if the symmetry is unitary (x = 0), the stacking rule splits as SPTs× Z2.

32When γ = 1, the invariant ν is defined differently from eq. (2.6) and satisfies ν(p) = 1 instead of
ν(p) = 0 [2]; therefore, the pullback β = s∗ν (2.9) satisfies δβ = γρ. Upon choosing a splitting, the usual
δβ = 0 is recovered. But if the group does not split, no β is compatible with γ = 1 (i.e. γ = 1 is invalid), so no
additional phases beyond SPT phases are possible [2].
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The stacking rule was first stated for split, unitary symmetry groups in ref. [23] and
derived for arbitrary unitary symmetries in refs. [12, 13], where it takes the form (A.4) with
x = 0. The stacking rule for invertible fermionic phases with general symmetry first appeared
in ref. [13], where it takes the form33 (in our notation) α̃1

β̃1
γ1

⊗F

 α̃2
β̃2
γ2

 =

 α̃1 + α̃2 + 1
2 β̃1β̃2 + 1

2γ1γ2(β̃1 + β̃2 + x)x
β̃1 + β̃2 + γ1γ2x

γ1 + γ2

 . (A.5)

The extra factor of 1
2γ1γ2x2 relative to the rule (A.4) can be absorbed by the following

redefinition:

α̃ = α + 1
2γβx (A.6)

β̃ = β + γx , (A.7)

which shifts the α stacking rule by 1
2γ1γ2x2, precisely the difference between the expressions.

Also note that, under the redefinition (A.7) of β alone, the α rule shifts by 1
2γ1β2x+ 1

2γ2β1x+
1
2γ1γ2x2, resulting in a rule α̃1

β1
γ1

⊗F

 α̃2
β2
γ2

 =

 α̃1 + α̃2 + 1
2β1β2 + 1

2(1− γ1)γ2β1x + 1
2(1− γ2)γ1β2x

β1 + β2 + γ1γ2x

γ1 + γ2

 . (A.8)

This form of the rule was first derived in ref. [10] and reproduced in refs. [24, 25]. It is in
these variables that the Z8 stacking rule for time-reversal symmetric Majorana chains was
first expressed [2]. A further redefinition (A.6) in α shifts the α rule by 1

2γ1β1x + 1
2γ2β2x−

1
2(γ1 + γ2)(β1 + β2 + γ1γ2x)x = 1

2γ1β2x + 1
2γ2β1x, bringing it into the form (A.4) derived

by stacking partition functions.
This differences between the formulations (A.4), (A.5), and (A.8) of the stacking rule

have the following interpretations. In a system with γ = 1, the symmetry Gb × Z2 acts on an
algebra of local operators End(Ub)⊗Cℓ(1) in a manner specified by the invariants [α, β]. The
invariant β measures whether a symmetry commutes or anticommutes with the generator Γ of
Cℓ(1) squaring to +1 [2, 10], whereas β̃ measures commutation with iΓ [13]; for this reason,
β and β̃ differ by x. The difference between α and α̃ has to do with a choice in boundary
condition. Following ref. [68] (see arXiv v2), a boundary condition amounts to a choice
δ ∈ H1(Gb,Z2) of compatible symmetry action on the module Ub ⊗ C1|1 over the algebra:

gb 7→ Q(gb)⊗Xδ(gb)Zβ(gb) , (A.9)

where Q is a projective representation of Gb of class [α̃]. In total, the projectivity class
of this action is

α̃ + 1
2β ∪ δ. (A.10)

33In the stacking rule for γ1 = γ2 = 1 (eq. 132) of ref. [13], the factor of 1
2 β̃1(g)(β̃2(h) + x(h)) + 1

4 (β̃2(g) +
x(g) + β̃2(h) + x(h) − β̃2(gh) − x(gh)) can be rewritten as 1

2 β̃1 ∪ (β̃2 + x) + 1
2 (β̃2 + x)2, which is equal to

1
2 β̃1β̃2 + (β̃1 + β̃2 + x)x.
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The choice δ = 0 is often made implicitly and realizes α̃ as the projectivity in the boundary
symmetry action. On the other hand, the choice δ = x corresponds to α. The formulas (A.4)
and (A.8) are the stacking rule written in variables where the 2-cocycle is the one measuring
the boundary projectivity — either α or α̃. For example, in the case of symmetry G = ZT

2 ×Z
f
2 ,

the three invariants [α], [β], [γ] ∈ Z2 form the classification group Z8 according to the binary
expansion [69], whereas [α̃], [β], [γ] form the Z8 a different way [2, 10]. This difference appears
in whether, for phase 3 ∈ Z8, the boundary action of time-reversal symmetry squares to
+1 (binary) or −1 (usual), which is a choice of boundary condition independent of the
topological invariants.

Finally, we remark that passing an odd (γ = 1) fermionic phase through the inverse
transformation yields

JW−1(Zf
α,β,1)[X, Ab, Ap]

=
∑

η

exp
(
2πi

∫
X

A∗
bα

)
exp

(
πi

2 qη(A∗
bβ)
)

Arf(η) exp
(

πi

2 qη+τ (Ap)
) Arf(η)−1√
|H1(X,Z2)|

= 1√
|H1(X,Z2)|

exp
(
2πi

∫
X

A∗
bα + 1

2A∗
bβ ∪Ap

)∑
η

exp
(

πi

2 qη(A∗
bβ + Ap)

)
=
√
|H1(X,Z2)| δ(A∗

bβ + Ap)Zb
α,β [X, Ab, Ap] ,

(A.11)

where the rule (2.29) was used in the second line and the relation (D.7) in the third. The
δ-function constraint on the Zf

2 background gauge field Ap indicates that the Zf
2 symmetry is

broken, with the pattern of symmetry breaking depending on the topological invariant β.

B State sum evaluation of bosonic partition functions

To compute the evaluations (3.52) and (3.53) of partition functions Zb
ω[X,A] stated in

section 3.5, we use the state sum construction [18, 29, 70–72]. The idea is to define the
partition function on a discretization of the space (X,A) and then check that the result is
independent of the choice of discretization.

For theories with no antiunitary symmetries, x = 0 — where only orientable X appear due
to the constraint A∗x = w1 — a discretization consists of a triangulation of X, a branching
structure on the edges of the triangulation (i.e. an assignment of edge directions such that
there are no closed loops), group labels g ∈ G on the edges such that the product of group
labels (with labels inverted when the edge directions point against the path direction) around
each cycle in the edges of X equals the holonomy of A along that cycle, and an orientation.
The partition function is defined on such a discretization as the product of contributions

Zb
ω(∆±

g,h) = exp(±2πi ω(g, h)) (B.1)

for each triangle whose two legs pointing in the same direction are labeled by g and h,
as depicted in figure 1; the triangle enters with a + sign (− sign) if its local orientation
defined by the branching structure agrees (disagrees) with the global orientation. One can
check that independence of this partition function on the discretization — that is, invariance
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Figure 1. (left) A triangle that makes a contribution (B.1) to the state sum. (center) A discretization
of the orientable surface of genus n = 2. (right) A discretization of the nonorientable surface of genus
n = 4.

under retriangulation by Pachner moves, change of the branching structure, and homotopy
of the group labels — is all guaranteed by the cocycle condition on ω. The generalization
of this construction to general symmetries (G, x) has some subtleties, which we will not
explore here; nevertheless, the partition functions on nonorientable surfaces can be recovered
from the discretizations of figure 1, where the triangles of the nonorientable surfaces all
enter with + signs.

First consider the orientable surface of genus n labeled by holonomies {gi, hi} satisfying
x(gi) = x(hi) = 0 and ∏i gihig

−1
i h−1

i = 1. A discretization of this space by 4n− 2 triangles
is depicted in figure 1. On this discretization, the state sum evaluates to

Zb
ω[(T 2)#n, {gi, hi}]

= exp
(
2πi

n∑
i=1

ω(xi, gi) + ω(xigi, hi)− ω(xigihig
−1
i , gi)− ω(xigihig

−1
i h−1

i , hi)
)

,
(B.2)

where again xi =
∏

j<i gjhjg−1
j h−1

j . Since x1 = xngnhng−1
n h−1

n = 1, the expression contains
only 4n − 2 terms. Using the cocycle conditions

−ω(xigihig
−1
i , gi) = ω(xigihi, g−1

i )− ω(g−1
i , gi) , (B.3)

−ω(xigihig
−1
i h−1

i , hi) = ω(xigihig
−1
i , h−1

i )− ω(h−1
i , hi) , (B.4)

we obtain the form (3.52) stated in section 3.5. The check of gauge invariance performed
in section 3.5 suggests that this answer is correct. But as one extra reality check, one can
compute the torus (n = 1, ghg−1 = h)

Zb
ω[T 2

g,h] = exp(2πi (ω(g, h)− ω(h, g))) (B.5)

and see that it matches the known result [29, 72].
Next consider the nonorientable surface of genus n labeled by holonomies {gi} satisfying

x(gi) = 1 and ∏i g2
i = 1. A discretization of this space is depicted in figure 1. We obtain

the expression

Zb
ω[(RP 2)#n, {gi}] = exp

(
2πi

n∑
i=1

ω(yi, gi) + ω(yigi, gi)
)

, (B.6)
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where again yi =
∏

j<i g2
j . This form is related to the expression (3.53) stated in section 3.5

by the cocycle condition

ω(yi, gi) + ω(yigi, gi) = ω(gi, gi) + ω(yi, g2
i ). (B.7)

Computing RP 2 (n = 1, g2 = 1)

Zb
ω[RP 2

g ] = exp(2πi ω(g, g)) , (B.8)

the known result is recovered [29]. Now test it on the Klein bottle (n = 2, g2h = h−1):

Zb
ω[Kg,h] = exp(2πi (ω(g, g) + ω(g2, h) + ω(h−1, h))). (B.9)

To compare to ref. [29], substitute h 7→ g−1k−1 in the expression. The new k has x(k) = 0
and gk−1 = kg, and the expression becomes

Zb
ω[Kg,g−1k−1 ] = exp(2πi (ω(g, g) + ω(g2, g−1k−1) + ω(kg, g−1k−1))). (B.10)

Use the twisted cocycle conditions

ω(g, g) + ω(g2, g−1k−1) = ω(g, k−1)− ω(g, g−1k−1) , (B.11)
ω(kg, g−1k−1) = ω(k, k−1)− ω(k, g) + ω(g, g−1k−1) (B.12)

to obtain

Zb
ω[Kg,g−1k−1 ] = exp(2πi (ω(g, k−1) + ω(k, k−1)− ω(k, g))) , (B.13)

which matches the expression of ref. [29].

C Twisted cohomology not of order two

In this section, we argue that the presence of an antiunitary symmetry in the center of G
implies that the twisted cohomology classes of G are all of order two:

2[ω] = 0 , [ω] ∈ H2(G, U(1)x). (C.1)

We also provide examples of classes not of order two that arise when no antiunitary symmetry
lies in the center, and we discuss how they spoil the converse to Lemma 3. These examples
are surprising, as the groups with antiunitary symmetry that are common in the physics
literature have classes only of order two (see for example the table in ref. [5]) and one might
have expected this to be a general rule [73].

Conjugating the arguments of a cocycle is a gauge transformation up to a sign, as we
can see by applying the cocycle conditions on the triplets (k, k−1gk, k−1hk), (g, k, k−1hk),
and (g, h, k) to obtain

(−1)x(k)ω(k−1gk, k−1hk) = ω(k, k−1gk)− ω(k, k−1ghk) + ω(gk, k−1hk)
= ω(k, k−1gk)− ω(k, k−1ghk) + (−1)x(g)ω(k, k−1hk)− ω(g, k)
+ ω(g, hk)

= ω(k, k−1gk)− ω(k, k−1ghk) + (−1)x(g)ω(k, k−1hk)− ω(g, k)
+ ω(gh, k)− (−1)x(g)ω(h, k) + ω(g, h)

= ω(g, h) + (δλ)(g, h) ,

(C.2)
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where λ(g) = (igω)(k) = ω(k, k−1gk) − ω(g, k). If k is antiunitary and commutes with g

and h, this reads

2ω(g, h) = (δλ)(g, h). (C.3)

Therefore, when this holds for all g, h (i.e. when k is central), we have 2[ω] = 0, as claimed.
Now we give examples where [ω] is not of order two, despite G having a (noncentral)

antiunitary symmetry. As noted previously, the partition function of RP 2 is always of order
two; however, the higher order of the class shows up in other partition functions — both
orientable and nonorientable — that do not square to one.

A first example is the group

G = Z3 ×DT
6 , (C.4)

where x is 1 on reflections in the dihedral group DT
6 = Z3 ⋊ ZT

2 . The group law is

(a, b, c) · (a′, b′, c′) = (a + a′, b + (−1)cb′, c + c′). (C.5)

A projective representation of the group is given by

Q(a, b, c) = XaZbKc , (C.6)

where X and Z denote the “shift matrix” and “clock matrix” [74]

X =

0 0 1
1 0 0
0 1 0

 , Z =

1 0 0
0 ω3 0
0 0 ω2

3

 , (C.7)

where ω3 is a third root of unity, and K denotes complex conjugation in this basis. These
operations satisfy

X3 = Z3 = K2 = 1 , ZX = ω3XZ , KX = XK , KZ = Z−1K. (C.8)

Therefore

Q(a, b, c)Q(a′, b′, c′) = XaZbKcXa′
Zb′Kc′

= XaZbXa′
Z(−1)cb′Kc+c′

= ωa′b
3 Xa+a′

Zb+(−1)cb′Kc+c′

= ωa′b
3 Q((a, b, c) · (a′, b′, c′)).

(C.9)

The values

exp(2πi ω((a, b, c), (a′, b′, c′))) = ωa′b
3 (C.10)

are guaranteed to satisfy the twisted cocycle condition by the associativity of multiplication in
the projective representation, and they are of order three, not two. This cocycle defines torus
partition functions that can be nontrivial third roots of unity, as the formula (B.5) shows:

Zb
ω[T 2, {(a, b, 0), (a′, b′, 0)}]=exp(2πi (ω((a, b, 0), (a′, b′, 0))−ω((a′, b′, 0), (a, b, 0))))=ωa′b−ab′

3 ,

(C.11)
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noting that arbitrary unitary symmetries commute and so respect the torus fundamental
group. Klein bottle partition functions (B.9) are defined for any a + a′ ∈ {0, 2} since
1 = g2h2 = (2a + 2a′, 0, 0):

Zb
ω[K, {(a, b, 1), (a′, b′, 1)}]
= exp(2πi (ω((a, b, 1), (a, b, 1)) + ω((2a, 0, 0), (a′, b′, 1)) + ω((−a′, b′, 1), (a′, b′, 1))))
= ωab+a′b′

3 ,

(C.12)

using (a, b, c)−1 = (−a, (−1)c+1b, c). We see they can also be nontrivial third roots of unity.
This example generalizes straightforwardly to the symmetry G = Zn × DT

2n, which has a
twisted cohomology class of order n that gives a torus and Klein bottle partition functions
in nth roots of unity.

A second example is the group

G = Z4 ⋊ ZT
4 , (C.13)

where x : ZT
4 7→ ZT

2 is the nontrivial map. The group law is

(a, b) · (a′, b′) = (a + (−1)ba′, b + b′). (C.14)

A projective representation of the group is given by

Q(a, b) = Za(XK)b , (C.15)

where X and Z are the obvious rank 4 generalizations of the shift and clock matrices above.
Then observe

Q(a, b)Q(a′, b′) = ZaXbKbZa′
Xb′Kb′

= ZaXbZ(−1)ba′
Xb′Kb+b′

= ω
(−1)ba′b
4 Za+(−1)ba′

Xb+b′Kb+b′

= ω
(−1)ba′b
4 Q((a, b) · (a′, b′))

(C.16)

The cocycle

exp(2πi ω((a, b), (a′, b′))) = ω
(−1)ba′b
4 (C.17)

has torus

Zb
ω[T 2, {(a, b), (a′, b′)}] = exp(2πi (ω((a, b), (a′, b′))− ω((a′, b′), (a, b)))) = ωa′b−ab′

4 , (C.18)

defined for b, b′ = 0, 2, and Klein bottle

Zb
ω[K, {(a, b), (a′, b′)}] = exp(2πi (ω((a, b), (a, b)) + ω((0, 2b), (a′, b′)) + ω((a′,−b′), (a′, b′))))

= ω−ab+2a′b+a′b′

4

= ω−ab−a′b′

4 ,

(C.19)
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defined for b, b′ = 1, 3, where we used (a, b)−1 = ((−1)b+1a,−b), then 2(b + b′) = 0 in the
last line. As in the other example, the Klein bottle can be any fourth root of unity; but this
time, the torus takes values in ±1 due to b, b′ = 0, 2. In fact, for any orientable surface, the
partition function for ω is the same as that for the pullback of ω to kerx. In this example,
kerx = Z4 × Z2 has cohomology group Z2, which means that all of its orientable partition
functions will be of order two. The nonorientable partition functions are

Zb
ω[(RP 2)#n, {(ai, bi)}] = exp

(
2πi

n∑
i=1

(ω((ai, bi), (ai, bi)) + ω((0, 2(i− 1)), (0, 2bi)))
)

= ω
−
∑n

i=1 aibi

4 ,

(C.20)

for bi = 1, 3. Now we claim that this ω is a square root

2[ω] =
[1
2ν ∪ ν

]
(C.21)

of the half cup square34 of

ν(a, b) = a mod 2. (C.22)

This is equivalent to the partition functions associated with 2ω and 1
2ν ∪ ν agreeing on every

space. Since ω is order two on orientable surfaces, its square vanishes on them, consistent with
the result for 1

2ν ∪ ν (3.49). On nonorientable surfaces, the square of the expression (C.20) is

Zb
ω[(RP 2)#n, {(ai, bi)}]2 = (−1)−

∑n

i=1 aibi = (−1)
∑n

i=1 ai = (−1)
∑n

i=1 β(ai,bi) , (C.23)

also consistent with the result for 1
2ν ∪ ν (3.50). A counterexample to the full converse of

Lemma 3 is therefore obtained from the fermionic symmetry group

G = (Z4 ⋊ ZT
4 )× Zf

2 (C.24)

by taking β to be the ν (C.22) defined above and the square root Rβ to be the ω (C.17).
The half cup square of this β has a square root, despite failing the genus n rule for n even,
and — since the other choices of β for this group also have square roots (namely, vanishing
ones)35 — the SPT classifications are isomorphic.

D The Arf invariant

In this appendix, we review some basic properties of the Arf invariant.
The inverse is given by

Arf(e)−1 = 1√
|H1(X,Z2)|

∑
a

exp
(−πi

2 qe(a)
)

, (D.1)

34A projective representation with this cocycle is given by Q(a, b) = Za
2 Xa

2 Kb with X2 and Z2 the Pauli
matrices.

35The half cup square of β(a, b) = b mod 2 is trivial and unrelated to the nontrivial degree two cohomology
class of ZT

4 .
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as we can verify by computing

Arf(e)Arf(e)−1 = 1
|H1(X,Z2)|

∑
a,a′

exp
(

πi

2 (qe(a)− qe(a′))
)

= 1
|H1(X,Z2)|

∑
a′′=a+a′

exp
(

πi

2 qe(a′′)
)∑

a

exp(πi

∫
X

a ∪ a′′)

=
∑
a′′

exp
(

πi

2 qe(a′′)
)

δ(a′′)

= 1 ,

(D.2)

where we have used the relation∑
a

exp
(

πi

∫
X

a ∪ b

)
= |H1(X,Z2)| δ(b). (D.3)

The square is given by

Arf(e)2 = 1
|H1(X,Z2)|

∑
a,a′

exp
(

πi

2 (qe(a) + qe(a′))
)

= 1
|H1(X,Z2)|

∑
a′′=a+a′

exp
(

πi

2 qe(a′′)
)∑

a

exp(πi

∫
X

a ∪ (a + a′′))

=
∑
a′′

exp
(

πi

2 qe(a′′)
)

δ(a′′ + w1)

= exp
(

πi

2 qe(w1)
)

,

(D.4)

where we have used the relation∑
a

exp
(

πi

∫
X

a ∪ (a + b)
)
= |H1(X,Z2)| δ(b + w1) , (D.5)

which in turn comes from the Wu relation w1∪a = a∪a [15]. It follows that the Arf invariant
is an eighth root of unitary and that its fourth power is independent of the pin structure since

Arf(e)4 = exp
(

πi

2 (qe(w1) + qe(w1))
)
= exp

(
πi

∫
X

w2
1

)
∈ ±1. (D.6)

Summing over pin structures yields∑
e

exp
(

πi

2 qe(a)
)
=
∑

b

exp
(

πi

2 qe0+b(a)
)

= exp
(

πi

2 qe0(a)
)∑

b

exp
(

πi

∫
X

a ∪ b

)
= exp

(
πi

2 qe0(a)
)
|H1(X,Z2)| δ(a)

= |H1(X,Z2)| δ(a) ,

(D.7)

using rule (2.30). Therefore
1√

|H1(X,Z2)|
∑

e

Arf(e) = 1
|H1(X,Z2)|

∑
a,e

exp
(

πi

2 qe(a)
)
= 1. (D.8)
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Finally, we have the relation

exp
(

πi

2 qe(a)
)

Arf(e + a) = 1√
|H1(X,Z2)|

∑
b

exp
(

πi

2 (qe(a) + qe+a(b))
)

= 1√
|H1(X,Z2)|

∑
b

exp
(

πi

2 (qe(a) + qe(b))
)
exp

(
πi

∫
X

a ∪ b

)
= 1√

|H1(X,Z2)|
∑

b

exp
(

πi

2 qe(a + b)
)

= Arf(e).
(D.9)

We now return to the Jordan-Wigner transformation (2.33). The expression (2.36) is
indeed the inverse:

JW−1JW(Zb)[X, Ab, A′
p] =

∑
Ap,η

Arf(η + Ap)Arf(η + A′
p)−1

|H1(X,Z2)|
Zb[X, Ab, Ap]

= 1
|H1(X,Z2)|

∑
Ap,η

exp
(

πi

2 qη+Ap(Ap + A′
p)
)
Zb[X, Ab, Ap]

=
∑
Ap

δ(Ap + A′
p)Zb[X, Ab, Ap]

= Zb[X, Ab, A′
p] ,

(D.10)

by the rules (D.9) and (D.7). Alternatively, write the inverse as

JW−1(Zf )[X, Ab, Ap] =
∑

η

Zf [X, Ab, η] exp
(

πi

2 qη+τ (Ap + τ)
) Arf(η + τ)−1√
|H1(X,Z2)|

. (D.11)

and check

JW−1(Zf
α,β)[X,Ab,Ap]

=
∑

η

exp
(
2πi

∫
X

A∗
bα+1

2A∗
bβ∪τ

)
exp

(
πi

2 qη+τ (A∗
bβ)
)
exp

(
πi

2 qη+τ (Ap+τ)
) Arf(η+τ)−1√
|H1(X,Z2)|

=exp
(
2πi

∫
X

A∗
bα+1

2A∗
bβ∪Ap

)∑
η

exp
(

πi

2 qη+τ (A∗
bβ+Ap+τ)

) Arf(η+τ)−1√
|H1(X,Z2)|

=exp
(
2πi

∫
X

A∗
bα+1

2A∗
bβ∪Ap

)∑
η

Arf(η+A∗
bβ+Ap)−1√

|H1(X,Z2)|

=Zb
α,β [X,Ab,Ap].

(D.12)

Here we used the freedom in the auxiliary variables to set the τ of Zf
α,β equal to that of

JW−1, used the relation (D.9) in the third line, and used the relation (D.8) in the last.
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E Dualities of SPT phases: examples and a theorem

The goal of this appendix is to prove the theorem stated in section 4.2. We first build
intuition by analyzing several examples of dualities that map SPT phases to SPT phases,
i.e. that do not induce symmetry-breaking in any SPT phase.36 Then we ask when such
dualities can implement a stacking isomorphism.

First consider G = Z2. The fusion ring has an automorphism that fixes 1, m and
exchanges e, em; this preserves SPT phases (the trivial phase consisting of 1, m) but not
pure charges. But this map is not induced by a braided autoequivalence of Z(VecG), as
it exchanges a boson with a fermion.

Second, consider G = Z2 × Z4. In addition to the eight pure fluxes, the bosons m1e2
2

and m2e1 appear in an SPT phase: the phase represented by the cocycle ω(g, h) = 1
2g1h2

realizes m1e2
2 as the slant product (g, igω) (4.4) for g = (1, 0) and m2e1 for g = (0, 1). The

non-charge bosons m1e2, m1e3
2 and m2

1e2, on the other hand, do not appear in any SPT
phase and so have the potential to be exchanged with charges under an SPT-stabilizing
duality. In fact the “dual stacking” duality — given by EM duality ei ↔ mi, composed
with SPT stacking by ω (m1e → m1e2

2e and m2e → m2e1e, for any charge e), composed
with EM duality again — does exactly this: it exchanges m1e2 with e2, m1e3

2 with e3
2, and

m2
1e2 with e1. But despite not stabilizing Rep(G), this duality acts on SPT phases like one

that does (4.11); namely, by fixing the pure fluxes and exchanging the bosons m1e2
2 and

m2e1, it acts trivially on the set of SPT phases.37

Third, consider G = Z8 ×Z8. This time, dual stacking by the generating phase ω(g, h) =
1
8g1h2 is not a duality of SPT phases, as it takes mei

1ej
2, for any flux m, to mm−j

1 mi
2ei

1ej
2, so

in particular m2e−1
1 (a boson of the SPT phase ω) maps to the pure charge e−1

1 (a boson in
no SPT phase). Dual stacking by 2ω, on the other hand, does map between SPT phases: the
generating bosons m1ek

2 and m2e−k
1 of the SPT phase kω map to the bosons m1−2k

1 ek
2 and

m1−2k
2 e−k

1 , which taken to the power 1 − 2k (and using (1 − 2k)(1 − 2k) ≡ 1mod 8) yields
m1e

k(1−2k)
2 and m2e

−k(1−2k)
1 ; thus, this duality acts on the Z8 group of SPT phases according to

k 7→ k(1− 2k) =
{

k , k even
k + 6 , k odd . (E.1)

Notably, this duality fixes the trivial phase yet does not act the SPT classification by a group
automorphism; it is not of the form (4.11). This exotic action raises the question of whether the
action JW−1X (4.10) related to the stacking isomorphism can be implemented by a duality.

Let us continue to consider G = Z8 × Z8. Dual stacking by 4ω performs twice the
action of dual stacking by 2ω, so it shifts odd phases by 4. This is equivalent to multiplying
all phases by 5, which is an automorphism. Realize the group as a fermionic symmetry
G = Z8 × Zf

8 by taking p = (0, 4) to be fermionic parity. The phase kω corresponds to
supercohomology variables (kα0, (k mod 2)β0). In these terms, dual stacking by 4ω takes the

36If one only wishes to map some SPT phase to some other SPT phase while not necessarily stabilizing the
set of SPT phases, more general autoequivalence are allowed; these will induce symmetry breaking in other
SPT phases.

37For an example of a duality that acts nontrivially on the set of SPT phases (but still according to the
rule (4.11)), consider dual stacking by ω composed with regular stacking by ω.
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form JW−1X : [α, β] 7→ [α− Λ(β), β] (4.10) with Λ(β0) = 4α0. Note that δΛ = 0, which is
forced by JW−1X being an automorphism and JW (Λ = 0) being an isomorphism B → F .
(For a simpler example, consider dual stacking by 2ω on Z4 × Z4, which has Λ(β0) = 2α0.)

Fourth, consider G = Z4 × Z4 × Zf
4 . Since β1, β2 ∈ B (on the first two factors) have

nonvanishing half cup product in A, JW is not an isomorphism here. But there exist
stacking group isomorphisms given by the Λ that trivialize ΩF , and we can ask whether
these are implemented by dualities. Since JW−1X is not an automorphism, we might
try to cook up a dual stacking duality similar to the previous example. For Z4 factors
i ̸= j = 1, 2, f , write ωij(g, h) = 1

4gihj . By using calculations like the above, one can show
that dual stacking by 2ω12 maps ω12 to 3ω12 while fixing ω1f and ω2f ; it also maps ω12 +ω1f

to 3ω12 + 3ω1f , which means it fails to be an automorphism, as desired. To get a map of
the form JW−1X : [α, β] 7→ [α − Λ(β), β], we need to fix phases of the form [α, 0]; that is,
phases generated by ω12, 2ω1f , and 2ω2f . This is accomplished by the duality given by dual
stacking with 2ω1f + 2ω2f , which acts on aω12 + bω1f + cω2f as

(a, b, c) 7→ ((−1)b+ca, (−1)c+1b, (−1)b+1c). (E.2)

But this transformation does not have the correct form, as the shift it performs on α is not a
function Λ(β) but rather depends on α as well. As we will see in the general proof below, it
turns out to be impossible to realize any of this group’s stacking isomorphisms by a duality.

Fifth, consider G = Z2 × Z2 × Zf
2 . The automorphism of G that maps the cyclic

generators to (1, 0, 0), (0, 1, 1), and (0, 0, 1) induces a duality between SPT phases. The
fluxes m1, m2, mf map to m1, m2mf , mf ; the charges e1, e2, ef must map to e1, e2, e2ef to
preserve braiding. Consider the action on the phase ω1f : its anyons m1ef , m2, mf e1 map
to m1e2ef , m2mf , mf e1, which generate the same algebra as m1e2ef , m2e1, mf e1, which
correspond to the phase ω12+ω1f . Similarly, one can compute how the other phases transform:
for example, ω12 and ω2f are fixed, while ω1f + ω2f maps to ω12 + ω1f + ω2f . It turns out
that this duality has the form [α, β] 7→ [α−Λ(β), β] with Λ(β1) = ω12 = 1

2β1 ∪ β2, Λ(β2) = 0,
and Λ(β1 + β2) = ω12. Note, however, that even though the desired ω12 shift appears in Λ,
we still have δΛ = 0 ̸= ΩF , so this is not a stacking isomorphism. (This is no surprise, as we
found in section 4.4 that no duality implements the stacking isomorphism for this symmetry.)
In general, an automorphism a of G induces a duality that takes the SPT phase ω to the
phase a∗ω since each (g, igω) maps to (a−1(g), a∗igω) = (a−1(g), ia−1(g)(a∗ω)). The action a∗

is an automorphism of SPT phases, so it can only ever be a stacking isomorphism if δΛ = 0.
With these examples in mind, we are ready to prove the theorem of section 4.2.
First, let us see that every duality that fixes the trivial SPT phase consists of a dual

stacking and an automorphism of G (the order is irrelevant since the inverse duality also fixes
the trivial SPT phase). Fixing the trivial phase means mapping pure magnetic fluxes to pure
magnetic fluxes, so this statement is equivalent to the dual statement (4.11) (due to ref. [58])
about the charges Rep(G). For completeness, let us present a self-contained proof of this fact.
Suppose a duality D maps charges to charges: D(1, χ) = (1, χ′). Since D is compatible with
fusion, χ′ = a∗χ for some automorphism a : G → G. On fluxes, write D(g, 1) = (g′, f(g′)).
Then D(g, χ) = D(g, 1) · D(1, χ) = (g′, f(g′)) · (1, a∗χ) = (g′, f(g′)a∗χ). Since D is braided, it
preserves topological spins, so f(g′)(g′) = 1(g) = 1 and so χ(g) = (f(g′)a∗χ)(g′) = (a∗χ)(g′);

– 40 –



J
H
E
P
1
0
(
2
0
2
4
)
0
3
4

thus, g′ = a−1(g). Since D is compatible with fusion, f : G → G∗ is a homomorphism.
By evaluating its image on G, f defines a bicharacter G × G → U(1). This bicharacter is
antisymmmetric in its arguments since f(g)(g) = θ(g, f(g)) = θ(D(a(g), 1)) = θ(a(g), 1) = 1,
where θ denotes topological spin. All antisymmetric bicharacters arise from slant products of
cocycles ζ as f(g) = igζ (cf. ref. [75], Def. VI.6.1 and Theorem VI.6.3). Thus we conclude
that D(g, χ) = (a−1(g), ia−1(g)ζ · a∗χ). The bosons of the SPT phase ω are mapped to
D(g, igω) = (a−1(g), ia−1(g)ζ ·a∗(igω)) = (a−1(g), ia−1(g)(ζ +a∗ω)), which belong to the phase
ζ + a∗ω. This completes the proof of eq. (4.11). Note that, in the dual version, not all dual
stackings map SPT phases to SPT phases; the point is that any duality of SPT phases that
fixes the trivial phase is realized this way.

Next, we prove the theorem by arguing that dual stackings and G automophorisms
cannot act on SPT phases as JW−1X : [α, β] 7→ [α−Λ(β), β] for δΛ = ΩF , unless JW is an
isomorphism (ΩF = 0). Suppose JW is not an isomorphism, which according to the discussion
in section 3.1 means G is of the form G = H × Zn1 × Zn2 × Zf

nf
for nif := gcd(ni, nf ) = nf

for i = 1, 2. Consider the valid βi that evaluate to 1 on the generators of Zni and zero on
the others. Their half cup product is ΩF (β1, β2) = n12

2 ω12. It will turn out that any dual
stacking between SPT phases acts on ω1f , ω2f , and ω1f + ω2f as

ωif 7→ kiωif , ω1f + ω2f 7→ k3(ω1f + ω2f ) , (E.3)

for k1, k2, k3 odd. We will prove this below. For now, let us use it to prove the theorem.
Suppose the duality D acts on SPT phases like [α, β] 7→ [α− Λ(β), β] for some Λ. Then

δΛ is given by

δΛ(β1, β2) = D(ω1f ) +D(ω2f )−D(ω1f + ω2f )
= a∗(k1ω1f ) + a∗(k2ω2f )− a∗(k3(ω1f + ω2f ))
= xa∗(ω1f ) + ya∗(ω2f ) ,

(E.4)

for x = k1 − k3, y = k2 − k3, using the lemma (E.3) and the fact that a∗ is an automorphism.
Let us see that δΛ(β1, β2) = n12

2 ω12 is impossible. Since this class is of order 2, we must have
x, y ∈ {0,

nf

2 }. The rule (E.3) means the dual stacking does not alter the β part of a phase;
thus, since D does not alter β, then a∗ must not either. Therefore a∗ must map ωif to an
odd multiple of itself plus other terms not involving any ωjf . Therefore, the right-hand side
nf

2 a∗(ω1f ) + nf

2 a∗(ω2f ) either vanishes or still contains a multiple of ω1f or ω2f . We conclude
that it cannot equal ΩF (β1, β2) = n12

2 ω12, thus proving the theorem.
It remains to show that dual stackings between SPT phases act according to the rule (E.3).

Consider the phase ω1f . It has dyons m1ef and mf er
1 (where r = −n1/nf ) as well as pure

fluxes mi for i ̸= 1, f . Dual stacking fixes pure fluxes, so, assuming it maps ω1f to some
other SPT phase, it must map it to a phase with the same fluxes, i.e. to a multiple k1ω1f .
A dual stacking takes the dyon m1ef of ω1f to one of the form mz+1

1 (mi · · · )ef . This dyon
belongs to k1ω1f , so ef = imz+1

1 (mi··· )(k1ω1f ) = (im1ω1f )(z+1)k1 = e
(z+1)k1
f . Thus k1 is odd.

A similar argument about the phase ω2f shows that k2 is odd.
Now we turn to ω1f +ω2f , which has dyons m1ef , m2ef , and mf er

1es
2 and pure fluxes mi

for i ̸= 1, 2, f . Since pure fluxes are fixed by dual stackings, the resulting phase has the form
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qω12 + xω1f + yω2f . First we will show that q = 0. Dual stacking takes the pure charge e1 to
the dyon mz

f (mi · · · )e1. If z is odd, it has a modulo nf multiplicative inverse z̄, and taking
the dyon to this power is mf (mi · · · )ez̄

1, which appears in the SPT phase ωz̄
1f . Since a duality

between SPT phases never maps a pure charge (contained in no SPT phase) to a boson
belonging to an SPT phase, z must be even. The dual stacking acts on the dyons of ω1f +ω2f

by taking m1ef to mz+1
1 (mi · · · )ef , m2ef to mz′+1

2 (mi · · · )ef , and mf er
1es

2 to mu
f (mi · · · )er

1es
2,

where u = 1− zr − z′s. Since z and z′ are even, u is odd, which means that all nonvanishing
powers of mu

f (mi · · · )er
1es

2 contain a factor of mf . Therefore, the only dyons of the resulting
phase involving an e1 or e2 charge involve a multiple of mf , so there is no ω12 term, i.e. q = 0.
Finally, let us show that x and y are odd. The dual stacking takes m1ef to mz+1

1 mz′
2 (mi · · · )ef ,

so ef = i
mz+1

1 mz′
2 (mi··· )(xω1f + yω2f ) = (im1ω1f )(z+1)x(im2ω2f )z′y = e

(z+1)x+z′y
f , so (z + 1)x +

z′y = 1. Similarly, m2ef maps to mz
1mz′+1

2 (mi · · · )ef , so zx + (z′ + 1)y = 1. Together,
these imply x = y. Then 1 = (z + 1)x + z′y = (z + z′ + 1)x implies that x = y is odd.
This proves the lemma (E.3).

Open Access. This article is distributed under the terms of the Creative Commons Attri-
bution License (CC-BY4.0), which permits any use, distribution and reproduction in any
medium, provided the original author(s) and source are credited.
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