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Résumé en francais

Dans cette these, j’ai étudié les propriétés de transport des systemes hors équili-
bre. Nous avons réalisé cet objectif en employant une combinaison de techniques
analytiques et numériques pour examiner les systemes fermioniques influencés par
des interactions unitaires ou dissipation. Cette derniere peut étre décrite exactement
grice a une solution exacte de toutes les fonctions de corrélation a deux points, que
nous explorons pour trouver des expressions exactes non-perturbatives des courants
de particules et de chaleur. Ces expressions nous permettent de décrire de nouvelles
méthodes pour extraire du travail et de la chaleur des dispositifs quantiques bruités,
de formuler une nouvelle théorie effective pour les systemes diffusifs, et de proposer
une interprétation semi-classique de ces systemes. Dans le domaine des interac-
tions unitaires, nous découvrons de nouveaux régimes de transport qui précedent
I’apparition de la diffusion dans les modeles ol I’intégrabilité est rompue.






Abstract

In this thesis, I study the transport properties of driven out-of-equilibrium systems.
This goal is achieved by employing a combination of analytic and numerical tech-
niques to investigate low-dimensional fermionic chains affected by unitary interac-
tions or dissipation. The latter allows for an exact solution of any two-point cor-
relation functions, which we explore to find exact non-perturbative expressions for
the driven particle and heat currents. These expressions enable us to describe novel
ways to extract work and heat from noisy quantum devices, formulate a new effec-
tive theory for diffusive systems and propose a semi-classical interpretation of these
systems. Within the realm of unitary interactions, we discover new transport regimes
that precede the onset of diffusion in integrability-broken models.
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CHAPTER 1

Introduction

Out-of-equilibrium systems are ubiquitous across a wide range of scales and scien-
tific disciplines. They encompass a diversity of phenomena ranging from the sub-
atomic scale [1], to human behavior [2], all the way up to the very fate of the universe
itself [3,4]. Condensed matter is no exception. Yet, for a long time, the field of solid-
state physics was dominated by equilibrium and quasi-equilibrium descriptions. The
reason why thermal ensembles suffice to describe structural and electronic properties
of most materials in nature [5, 6] is simple. The typical time resolution of traditional
electronic probes such as STM, ARPES, XPS, or n-terminal probes [7] is much
larger than the typical thermalization time of electrons, i.e. for most experimental
purposes electrons are in thermal equilibrium.

However, recent developments in femtosecond lasers allow now for direct ob-
servation of electronic relaxation processes [8, 9], opening up new venues for ultra-
fast pump-and-probe experiments [10]. In parallel, new quantum simulation plat-
forms such as trapped ions [11] or ultra-cold atoms [12—14] open the possibility of
simulating almost isolated systems whose relaxation dynamics are orders of magni-
tude slower than solid-state setups [15]. We can now probe long-lived pre-thermal
states [16], new relaxation dynamics [17], or even the absence of thermalization [18].
These new tools have reinvigorated interest in out-of-equilibrium dynamics, particu-
larly in the field of quantum many-body physics.

While the precise dynamics of quantum many-body systems are often intractable,
local observables in chaotic quantum systems follow a universal behaviour [19,20].
From a typical initial state, they quickly reach an expectation value consistent with
a local equilibrium ensemble characterized by spatial-varying thermodynamic vari-
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1. INTRODUCTION

ables. Over extended periods, hydrodynamic processes, such as diffusion, relax the
system to a global equilibrium state with vanishing spatial fluctuations. Diffusion
is characterized by the spread of globally conserved quantities like energy, charge,
spin, or mass, as dictated by Fick’s law [21,22]

J, = -D,Vq, (L.D)

where the diffusion constant D, relates the charge current density J, to a superim-
posed charge gradient Vgq.

In this thesis, we utilize out-of-equilibrium techniques to tackle a longstanding
issue in quantum many-body physics: understanding how diffusion emerges in
quantum systems. The intuition is that interactions among components or external
degrees of freedom induce elastic and inelastic scattering processes responsible for
the aforementioned relaxation and emergence of diffusion. In principle, the exchange
of momentum and energy is responsible for Eq. (1.1), but a rigorous derivation in
quantum systems is still lacking.

One significant challenge is the apparent incongruity between a classical equa-
tion (1.1), often derived in the context of irreversible processes [23], and the re-
versible dynamics obtained from a unitary theory such as quantum mechanics. Mul-
tiple reasons contribute to this conundrum. First, not all interactions necessarily lead
to the emergence of diffusive behavior, a notion formalized in the field of quantum
integrability [24]. Second, most available analytic tools can only study transport
in limiting cases, e.g. weak/strong couplings [25, 26], close to equilibrium [27], or
weak quantum fluctuations [28], making it complicated to acquire a complete view
of how emergent phenomena like diffusion can come to be.

To overcome this challenge, it is beneficial to find diffusive models that support
a fully analytic treatment. Coupling the system to incoherent baths offers a promis-
ing avenue, for which some transport results are already available. The quantum
symmetric simple exclusion process model [29] or the dephasing model [30,31] are
such cases, with the latter solved by Bethe ansatz upon mapping to the imaginary
Hubbard model [32]. However, these solutions are on a case-by-case basis and often
complex, making it difficult to acquire a broader picture.

In this work, we explore a manifestation of dissipative transport generated by
Quantum Stochastic Hamiltonians (QSHs) of the form

Hy= 7Y (Q&+QT¢r) (1.2)
{Q}

where {Q = >, chijcj} is a set of quadratic operators composed of a single-
particle creation and an annihilation operator, {£/} a set of complex Gaussian
white noises with strength -y, zero average E [¢;] = 0, and variance E {ﬁfﬁf, *] =

dq,40(t —t'). The time-averaged dynamics of Eq. (1.2) mimics the presence of an
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1.1 Structure of the thesis

external environment interacting with a free system, as shown in Sec. 2.4. Akin to the
difficulties introduced by spatial disorder in Anderson localization, the randomness
(disorder) in time also makes QSHs challenging models. For each noise configu-
ration, the time evolution is quadratic and Gaussian but the averaged evolution has
non-Gaussian correlations [33,34]. However, unlike unitary interactions in many-
body systems, the QSHs encode an exact, non-perturbative solution for all two-point
correlation functions, even in out-of-equilibrium scenarios. The existence of such a
solution is demonstrated in full generality in this thesis, and used to analytically ob-
tain closed expressions for the currents, without the limitations of previous methods.
It provides a clear interpretation of elastic and inelastic scattering processes present
in QSHs and motivates us to devise new theoretical frameworks for diffusion, which
may extend to interacting Hamiltonians. The thesis is organized as follows.

1.1 Structure of the thesis

This work is divided into 4 chapters, with Chapter 1 devoted to the Introduction. In
Chapter 2, we introduce the technical framework and all the concepts necessary to
understand the work developed in this thesis. We begin with Sections 2.1 and 2.2, in-
troducing the Lindblad equation and driven open systems. Section 2.3 is dedicated to
the introduction of Keldysh formalism in the context of open systems. Subsequently,
we discuss QSHs and derive the expression of the associated self-energy in Sec. 2.4.
Sec. 2.5 discusses the inclusion of reservoirs in our driving protocol and Sec. 2.6 de-
rives the generic expression for the current when coupling to thermal reservoirs. The
chapter concludes with an introduction to tensor network concepts and time-evolved
block decimation in Sec. 2.7.

Chapter 3 encompasses the contributions I made during my Ph.D. to answer the
overarching question of this thesis: how do scattering processes trigger the emer-
gence of diffusion in quantum systems? A full answer remains out of reach, but each
section presents an incremental step toward that direction. The sections are inten-
tionally arranged out of chronological sequence. Instead, they are reorganized from
the simplest to the most intricate setup, mirroring the progression a novice reader
would follow when learning about the topic. We start from local QSHs (Sec. 3.1),
progressing to extensive QSHs (Sec. 3.2 and 3.3) and, finally, studying extensive
unitary interactions (Sec. 3.4). Each section focuses on a different work published
during my Ph.D. with an introduction to frame it within the thesis and standardize
notations.

Section 3.1 is based on Ref. [P1] and discusses driven quantum systems in the pres-
ence of a local QSH. We identify non-reciprocal effects in the particle and heat
current and exploit them to create quantum machines operating as engines or
refrigerators.

Section 3.2 is based on Ref. [P2] and discusses the emergence of diffusive transport

3
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in extensive QSHs. We formulate a new effective theory of diffusive transport,
the 1/N expansion, that successfully predicts the emergence of Fick’s law and
some bulk properties, such as the diffusion constant.

Section 3.3 is based on Ref. [P3] and presents a simple, semi-classical interpreta-
tion of the scattering processes present in QSHs. This picture is capable of
qualitatively predicting the behavior of some transport quantities not captured
by the 1/N expansion, such as the conductance.

Section 3.4 is based on Ref. [P4] and discusses transport in models with nearest and
next-to-nearest neighbor interactions. We find evidence of a parametrically
large quasi-ballistic regime that presets the onset of diffusion.

Chapter 4 is dedicated to the discussion of the work presented, focusing on po-
tential future research directions and unexplored territories. The Appendices provide
additional technical details to Chapter 2 and 3.



CHAPTER 2

Methods and Techniques

Intuition suggests that interactions play a pivotal role in the emergence of diffusion
in quantum many-body systems, primarily because they often lead to inelastic scat-
tering processes. As highlighted in the introductory section, the interactions between
the system and external degrees of freedom can be of special interest. Unlike unitary
interactions among the components of the system, we are going to show that they
support an analytical treatment of transport phenomena. This consideration goes be-
yond mere practicality; in experiments the presence of an environment is ubiquitous.

2.1 Lindblad master equation

Howeyver, in most situations, we are not interested in the state of the environment and
only wish to study the effective dynamics of the system without having to keep track
of its environment. In other words, we wish to focus on the reduced density matrix of
the system p. It can be obtained from the total density matrix of the environment plus
system, p,y, by tracing out the degrees of freedom associated with the environment
E:

p(t) = trg [pan(t)] - 2.1)

The time-evolution of the reduced matrix should be generated by a linear super-
operator, £, that maps a reduced density matrix to another reduced density matrix.
We employ the prefix super- to denote a linear operator that acts in the vector space
of operators similarly to how typical operators act on the Hilbert space of quantum
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2. METHODS AND TECHNIQUES

states. £ should be a linear operator but does not need to be unitary since the system
exchanges information with the environment. If the information transferred to the
environment returns and influences the state of the system at a later time, the time-
evolution becomes non-local in time, i.e. there exists memory effects. Handling
memory effects is extremely challenging and most methods that exist to treat non-
local time evolutions often sacrifice some key property of density matrices [35],
such as positive-semidefiniteness, p > 0, unitarity of the trace, tr[p(t)] = 1, or
hermiticity, p = p'. However, in the limit where the characteristic decay time of
bath correlations is much shorter than the typical relaxation time of the system, the
time evolution becomes approximately local, and memory effects vanish. This is
called the Markovian limit and the most general Markovian evolution is given by the
Gorini-Kossakowski-Sudarshan-Lindblad quantum master equation, also called the
Lindblad equation [36,37] (h=e=c=kp = 1)

1
Oip = L(p) = —ilH, p] + Eajwa <LapLL = 5 {LiLa, p}) . Q2

The Liouvillian or Lindbladian super-operator £ is composed of two terms, the uni-
tary evolution determined by the Hamiltonian operator H and the term responsible
for the non-unitary dynamics composed of jump operators L, acting with a positive
rate 7y,. The time evolution of Eq. (2.2) is local in time and the density matrix always
remains hermitian, semi-positive definitive, and of trace one at all times.

The Lindblad equation is widely employed to describe the dynamics of open
quantum systems. It arises naturally in various contexts, most notably in scenarios
involving weak coupling with external reservoirs where the absence of memory ef-
fects is ensured by the Born, Markov, and secular approximation [38]. This is the
case for optical systems, where a clear separation of time scales between the bath
and the system is present and memory effects can be safely discarded. Relevant
to this thesis, the Lindblad equation can also characterize the average evolution of
stochastic processes in the Hilbert space of the system, in which case we say that the
process represents a possible unraveling of Eq. (2.2). In Sec. 2.4.1, we prove how
the average evolution of the QSHs in Eq. (1.2) evolves according to the Lindblad
equation (2.2).

Formal solution of the Lindblad equation

The formal solution of Eq. (2.2) is given by

p(t) = Telo £ p(0) | (2.3)

where T is the time-order operator. For the case of time-independent Lindbladians,
the solution (2.3) reduces to p(t) = e“*p(0). In the presence of generic relaxation
processes, the density matrix is expected to converge to a non-equilibrium steady-
state (NESS) in the infinite time limit, lim;_,~ p(t) = pnEss. In this work, we only
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2.2 Boundary-driven systems

work with systems with a unique NESS for any initial condition, p(0). In general,
the NESS does not have to be unique, in which case the final state is determined by
the initial density matrix.

To compute expectation values of a given operator X, (X (¢)) = tr(Xp(t)), it is
useful to introduce the adjoint Lindblad super-operator £ defined from £ as

r[XL(Y)] =t [LH(Y)X] ,

where X, Y are arbitrary operators. It follows from the cyclic properties of the trace
that for time-independent Liouvillians:

: 1
LX) =i[H,X]+ > Ya <LLXLa -3 {LLLQ,X}> . (2.4)

In line with the unitary case, the adjoint Lindbladian serves as the generator of the
time evolution of the operator X within the Heisenberg picture:

XX (t) =LY X(t)). (2.5)

To evaluate the product of two operators in Heisenberg’s picture, as in Sec. 2.3, it is
essential to carefully evolve the density matrix to the time at which the operator acts

tr [ Xet=L (p(tY)| t>t

X OpY (] = tr | =D (Xpt) Y| ' >t .

(2.6)

2.2 Boundary-driven systems

In this work, we leverage out-of-equilibrium techniques to better understand the
transport properties of diffusive systems described by Eq. (2.2). Various methods can
be employed to probe the nature of charge or heat transport in quasi-one-dimensional
setups, among which boundary-driving [26]. The idea behind boundary-driving is to
drive the system away from equilibrium by coupling it to biased reservoirs at each
end [39,40], as schematically depicted in Fig. 2.1.

The nature of the bias depends on the properties being studied, and in this work,
we primarily focus on biases in chemical potential, temperature, or spin (denoted as
a generic charge q). When a bias is present, the system experiences a directional
flow of charges as it attempts to compensate for the imbalance between left and
right, g, — qgr. By fixing the thermodynamic state of the reservoirs, and assuming
them to be infinite, the system will inevitably relax to a NESS where the charge flow
has been stabilized. Steady-states generated by such boundary-driven protocols are
particularly useful for studying the transport properties of the system, as they can be
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2. METHODS AND TECHNIQUES

fr(w)

Figure 2.1: Illustrative scheme of a 1-dimensional fermionic chain undergoing a quan-
tum stochastic evolution controlled by the rate « and coupled to two non-interacting
reservoirs at each end through the coupling matrices ¢;, and ¢ g. The reservoirs are taken
in equilibrium with a fixed chemical potential ;1 and temperature 7" and impose a charge
imbalance from left (q1,) to right (¢r). For diffusive systems, the bias generates an uni-
form charge gradient Vg, depicted as a dashed line, and a diffusive charge current to the
right, J,. The distance between reservoirs is always V.

tuned to target specific transport phenomena. We focus on the transport of locally
conserved charges that satisfy the continuity equation

O =—VJg+ 54, 2.7

where, J, is the local current operator associated with the charge g, and s, is a source
term, possibly describing the influence of reservoirs but not limited to it.

The expectation value of the current operator evaluated in the NESS, J,, pro-
vides key insights into the transport properties of the system. Consider Drude’s
semi-classical interpretation of transport [41,42] of a local charge propagating bal-
listically with a well-defined velocity v, until, after a mean scattering length N*,
it scatters and changes velocity. When the scattering length is much larger than
the distance between reservoirs, N < IN*, charges exiting a reservoir will always
propagate coherently into the opposite reservoir (regardless of the distance) and so
the current must be independent of the distance, J, < (g1, — ¢ R)qu 0. However,
when the scattering length becomes comparable to or smaller than the system length,
charges will scatter multiple times leading to a finite resistivity of the material. In
such cases, the system exhibits diffusive behavior with a uniform charge gradient
Vq x (qr — qr)/N, see Fig. 7 of Ref. [P4] for an example of diffusive gradients
in magnetization transport. The current satisfies Fick’s law (1.1), J, « D,/N, with
the diffusion constant proportional to the mean free path D, ~ N*. Is it now known
that quantum systems display different universal classes of dynamical behavior at
long length and time scales [43], each characterized by a distinct scaling exponent of
N. The dependence of the current with the system size is thus an excellent indicator
of different transport regimes and one that we can explore easily in boundary-driven
setups [26,44]. In fact, there is a whole zoo of transport regimes characterized by
different scalings of the current with the system size, e.g. localized J; o eV [45]



2.2 Boundary-driven systems

and sub-diffusive or super-diffusive J; o< 1/NV (v > L orv < 1) [24].
Boundary-driven protocols are not the only possible way to extract the relevant
transport coefficients, particularly in the weak driving/bias limit. Within the context
of linear response theory, the Kubo formula [27] is widely used to compute the con-
ductivity o, which relates the current J; to the gradient in potential energy U, as

Jq = —04VU,. In frequency space, the conductivity is given by
t’ B piwt
oq(w) = t'h—I};o ]\}E)noo | dt/o dAT (JqJq(t + Z)\)>B , (2.8)

where the current-current correlation function is evaluated on a thermal ensemble
with an inverse temperature [ in the infinite size limit. Because Eq. (2.8) is evalu-
ated in equilibrium, it circumvents the need to attach external reservoirs which mod-
ify the current in a non-universal way. However, calculating current-current correla-
tions at different times or frequencies requires substantial numerical and analytical
efforts. Numerical evaluation of Eq. (2.8) requires simulating large systems for long-
times [46], while analytic calculations with field theory can diverge and may need
to be renormalized [47]. Moreover, the Kubo formula is limited to linear response,
making it unsuitable for studying systems far from equilibrium, as discussed in this
thesis.

For diffusive systems close to equilibrium, the current driven by an imposed bias
at the boundary Jyisrusion = —D¢ V¢ is exactly compensated by an opposite drift cur-
rent Jyire = —04(0) VU, such that the diffusion constant is directly related to the DC
conductivity via the Einstein relation o,(0) = —D,0,U,. In other words, inducing
a bias at the boundaries (boundary driving protocol) mimics the presence of a po-
tential gradient (Kubo formula) up to finite system sizes corrections [48,49]. These
two techniques are the most common but not the only possibility to study transport,
with notable mentions including memory function formalism [50,51], semi-classical
Boltzmann equations [52], local quench protocols [53] or the more recent influence
matrix [54].

2.2.1 Limitations of Lindblad driving

There are different ways to simulate the biased reservoirs used in boundary-driving,
a possibility is to employ jump operators. In Sec. 3.4, we use a combination of
injection and loss jump operators to impose a spin imbalance at the boundaries of a
one-dimensional spin-chain. However, as we now motivate, this procedure has some
limitations.

Consider as an example the set of jump operators, L, = \/ﬁcT and L_ =
V/—¢, acting on a single site with the Hamiltonian H = ecte, where cf, ¢ are
the creation and anihilation fermionic operators with anti-commutation relations
{cf, e} = 1, see Fig. 2.2. The steady-state occupation of the site, n = c'c can
be determined from the adjoint equation (2.4)

9



2. METHODS AND TECHNIQUES

Figure 2.2: Schematic representation of a single dot coupled to an external reservoir
described by an injection and loss jump operators with rate v+ and y_, respectively.
The steady-state occupation of the dot is determined by the ratio y— /4 which can be
tuned to impose a local thermal state.

on =0=1i[H,n|+ v+ (67chr — % {CCT,TL}> + 7= (cTnc — % {cTc,n}) ,
(2.9)

Y+
TH+Y-T

accordingly, y_ /vy = e T , the reached steady-state satisfies the Fermi distribution
with a given chemical potential i and temperature 7'. Reaching a thermal state with
Lindblad injectors on a single-site system is somewhat trivial since there is only
one degree of freedom. However, simulating the presence of thermal continuum
reservoirs in extensive interacting systems using Lindblad injectors is a complicated
task. Obtaining the Lindblad injectors whose steady-state is the Gibbs ensemble of
the full system requires diagonalizing the full Hamiltonian which is as hard as the
problem itself. There have been proposals to use local injectors at the edges that
are optimized to target a local Gibbs state [44,55]. Unfortunately, because they do
not target the exact Gibbs state of the full system, they always inject some residual
heat into the system. This is not a problem if we are interested in high-temperature
transport, such as in Sec. 3.4, but to study dynamics at lower temperatures we need
something else.

An ideal formalism should be capable of fully including the presence of generic
thermal reservoirs as well as any bulk inelastic processes that may be described by
Lindblad jump operators. Fortunately, Keldysh’s field theory is well-suited to handle
out-of-equilibrium dynamics generated by Lindblad jump operators while simulta-
neously incorporating the presence of non-interacting reservoirs.

whose solution is simply n =

By choosing the injection and loss rates

2.3 Keldysh field theory

In equilibrium systems, quantum field theory (QFT) offers one of the most powerful
tools to compute correlations in the ground state of interacting Hamiltonians. The
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2.3 Keldysh field theory

fundamental assumption is that the ground state |GS) of an interacting theory can
be obtained from the ground state of its free theory |0) by adiabatically switching
on interactions. Furthermore, after measuring any quantity of interest, one assumes
that adiabatically turning off the interactions will recover the ground state of the free
theory [52].

However, the fundamental assumptions of equilibrium QFT may not hold in non-
equilibrium scenarios where some form of driving is present. Generally, it is not
guaranteed that adiabatically turning off any driving will return the system to its
initial state. As a result, a non-equilibrium formulation of the theory becomes neces-
sary. The history of non-equilibrium field theory features parallel contributions from
Schwinger, Konstantinov, Perel and Kadanoff [56-58], but Keldysh was the one who
devised the modern formulation [59], thus we often refer to out-of-equilibrium field
theory as Keldysh formalism.

In the subsequent discussion, we will not adhere to the conventional introduction
of the Keldysh formalism [60], as it is formulated in terms of the unitary evolution
operator, rendering it unpractical for describing dynamics governed by a Lindblad
equation (2.2). Instead, we formulate the Keldysh action directly in the context of
quantum master equations [61,62]. As we only deal with fermionic systems in Ch. 3,
we only introduce the field theory for fermionic systems but extensions to bosonic
setups can be found in Ref. [61].

2.3.1 Derivation of Keldysh path integral

Keldysh field theory re-writes the out-of-equilibrium partition function of the system,
Z = tr[p(t)], as a path integral over the possible evolutions weighted by the Keldysh
action S

Z =tfp(t)] = /D[@,zp]eis : (2.10)

Since we are working with fermionic systems, the fields {¢, 1)} satisfy the Grass-
mann algebra, which we review in App. A. In the following derivation, we first note
that the trace of the density matrix must be preserved by the time evolution and so
Eqg. (2.10) is nothing but a very complicated formulation of identity, i.e. Z = 1 at all
times. However, similarly to equilibrium field theory, the path integral formulation
allows easy computation of expectation values through functional derivatives of the
partition function with respect to source fields, F,

(X) = u[Xp] = lim % / Dlih, ple S +X Wl (2.11)

To derive the Keldysh action, we first recall that the time evolution of p is gen-
erated by the Liouvillian super-operator p(t) = e(*=t)£p(t4) (2.3). By discretizing
the time evolution into M small intervals of size At = (¢t — to)/M, we can apply
the Trotter decomposition [63,64] to obtain
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2. METHODS AND TECHNIQUES

p(t) = 1)L p(tg) = Jim I+ AtL)M p(to) . (2.12)
—00

Our goal is to recast tr[p(t)] as a functional integral, so we express the density matrix
at each time step ¢,, = nAt in terms of the fermionic coherent basis by inserting
identity closure relations, I = [ dibdpe™%¥ [1)) (1], to the left and right of the den-
sity matrix (see App. A)

plt) = / A A s PRI ) (| plta) |~ )~

Dlpn,Pn]

(2.13)
with v, the eigenvalues of fermionic creation and annihilation operators and
|1}, (1| the corresponding eigenvectors, see App. A. Since the Lindblad super-
operator acts differently on the left and right of the density matrix p, the field vari-
ables to the left and right are distinct and denoted by superscripts + and —, respec-
tively. The arbitrary minus sign in the — contour aligns with the functional definition
of the trace in Eq. (A.7) and aids in verifying that the time evolution preserves the
trace.

Next, we observe that the density matrix at time ¢,,4; satisfies the recursive rela-
tion:

(W] pltnsn) |[=vimer) = / Dby, e VA 0n Vb (gt | p(ty) |—4y, ) x
(| L+ AL) [|o) (= |] [=nga) » (2.14)

up to a correction of order At? that we discard. The matrix elements in Eq. (2.14)
can be evaluated using Eqgs. (A.5) and (A.8) of Appendix A to obtain

Wk [0 (0 |~} = ePma¥a t 0t (2.15)

and

(Vg | £ [|¢$><*¢5|]| Ya) = =i [ H [$0) (—¥n [~¥nia)
< n+1 |¢ < |H| n+1>
‘*‘Z%é[ wn+1’LaW+><_ ;|L£ _1/};+1>
*7< n+1|LTL |7/’+>< (o *¢;+1>

= 5t [ (v | EiLa |=via) | @16)

12



2.3 Keldysh field theory

where all the operators are assumed to have previously been individually normal
ordered '. The meaning of the expectation value (1| L], L, [1) will be clarified later
but for now we can define the field representation of L as

T ¢ D L e e N )
E[ n-‘rlawn' ’(/}n> wn-&-l} — e‘fjiﬂwi"r&;w;JA . (217)

Replacing back the final expression into Eq. (2.14), we can write the trotterized ver-
sion of the action

<7/’:+1| p(tns1) |*1/’;+1>
— / Dlipn, Dp]eDt Ot Ier+00 0 [V T+ LI0 L T =00 —4010))

(f | p(tn) |=0n ) (2.18)

where we introduced the continuous notation 9;v,, = M Finally, we con-

struct the action by iterating Eq. (2.18) from the initial time ¢, to the final time ¢ and
take the continuous limit M — oo while ignoring all terms of order A¢? and higher.
The expression of the partition function reads

Z= / D, e’ (¥ (to)] p(to) |[-v~ (t0)) (2.19)

where D[, ¢] = limas o0 [T, dib; i di;; dip; and the action

S= [ dt[pT()id™ (t) — @ (1)idyp~ (t) —iLllYT, 7], (2.20)

0

where we take the continuum v, — () and field representation of £ reads

L™ 7] = =i (7 - [H]))
_ 1 1 _
+ g’ya ([Ll]t [La];r - Q[LLLa]j - §[LLLa]t ) : (2.21)
For a single generic operator X = c;rc; ---¢yrcjr - - -, the notation [X]ti is ob-

tained by replacing the creation and annihilation operators with the field variables,
(X]f = wz»i(t)d)ji(t) . ~1/)?,E(t)1/)ji,(t) -+-. We point out the exchange in the term

Normal ordering is the re-organization of creation and annihilation operators such that all creation
operators are left of the annihilation ones. Individually each H, L, and LL must be normal ordered but
not the product LQLL, see discussion following Eq. (2.20).
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2. METHODS AND TECHNIQUES

[LI]; [Lali, done to account for the minus sign that emerges in the case of linear
jump operators. Unfortunately, the product [LLLQ]tﬂE is an ill-defined operation in
QFT and must be handled with care.

Let us illustrate this problem with the action of a single dot undergoing dephas-
ing, represented by a single jump operator L = cfc. The naive but incorrect way to

write part of the action (2.20) associated with the dephasing, S, would be

87:—47[;dtW”(ﬂw*@ﬁﬁiﬂw’@)—&*@ﬁ%%ﬂ—wﬂ1ﬂ¢’ﬁﬂ,
(2.22)

where we assumed [LTL)E = [cfecte)E — [c¢fd]f = ¢*(t)Y®(t). The action
(2.22) is unphysical because it does not respect the Z = 1 condition. An easy way to
see this is to check that the action does not vanish if the indices + are dropped [60],
ie. S(t — ,9~ — ) — 0 such that in this limit Z = ¢ = 1. The reason
is that the partition function is a functional representation of the trace, and as such it
must satisfy the cyclic property

tr[Xp] = tr[pX] . (2.23)

The two sides of Eq. (2.23) have different but equivalent functional representations
mapping to X and X ~, for left and right respectively. Therefore, any action that
respects this cyclic property must vanish when =+ superscripts are dropped.

A solution to correctly evaluate [LTL];JE is to introduce a time-ordering ordering
of the jump operators. In Sec. 2.4.1, we explicitly compute the action associated
with the QSHs (one of the possible unravelings of the Lindblad equation) and find
that the correct ordering is given by

S =1lim | dt[dHiow 6y - & (i () - [HIf + [H];

=0 Jo

— i 3 B (L7 [Laliys + (LR [Lalfs — LA (Lol = (L7 [Lalis) | -

[e3

(2.24)

where § is an infinitesimal time step and all the operator’s time indexes can be
dropped for the case of time-independent Liouvillians. Equation (2.24) is also valid
for the bosonic case, as used in App. (B). With this prescription, the corrected action
of the dephasing reads

S, =i [ de [5 Ou O (O () + 5 (06 (05 @ 0]

iy / dt (£ (P () (1) (2.25)
0
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2.3 Keldysh field theory

< Ck
( pY ) p(to)) —oo

Figure 2.3: Sketch of Keldysh’s contour and the functional representations of different
super-operators that act left and right of the density matrix. The + branch is time-ordered
while the — branch is anti-time ordered.

which correctly vanishes when 1)* — ).

To obtain the steady-state limit, we consider that the evolution occurs be-
tween t = —oo and ¢ = +oo and, assuming the NESS to be unique, the final
state cannot depend on the initial condition and so (™ (¢9)| p(to) |[—¢~ (to)) can
safely be dropped. As discussed in the next chapter, the type of Liouvillians we
are interested in are time-independent so we will often work in frequency space

f dw 7uut )

2.3.2 Keldysh contour

The time-ordered integral in the action is a closed integral over the Keldysh contour,
Ck, which is composed of two branches connecting the initial density matrix p(¢o)
to the density matrix at time ¢. In the steady-state limit, the contour can be seen as
connecting t = —oo to t = 0o as shown in Fig. 2.3. The notation + used to label the
field variables anticipates the time-ordering of the contour Tx. Along Cg, operators
acting on the + or forward branch are ordered along the real time-direction (they are
time-ordered) and occur before the operators acting on the — or backward branch
which goes opposite to the time direction (they are anti-time ordered).

The expectation value of any arbitrary correlation function can now be computed
by evaluating its operators in the Keldysh contour and recalling Eq. (2.13). As an
example, consider we wish to evaluate the expectation (£;(¢1)Ey (o)) corresponding
to performing two quantum maps £y(o) = Lg o LJ(S and £1(o) = Ly o LJ{ at time
to and t1 > tg respectively. In Keldysh field theory, one of the possible functional
representations of this expectation value would be the 4-point correlation function

<Li~_yt1 La:toLg)y_to LJ{:H >

2.3.3 Green’s functions

In this work, we are mostly interested in single-particle observables evaluated on the
steady-state, such as the current. They can always be written as combinations of the
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2. METHODS AND TECHNIQUES

four possible single-particle Green’s functions:

G (t) = —i(Try; (9] (0)) = 0()G; " (t) + 0(=t)G5 ™ (¢) .

Gi;~(t) = —i(Tryy ()95 (0)) = 0(=1)G;; " (1) +0()G;~ (1),

G (1) = i (Twewif (w5 (0)) =i (}(O)es(1))

Gy (1) = =i (Trty (VY] (0)) = —i <ci(t)c}(0)> : (2.26)

where the Heisenberg representation should be understood in the sense of Eq. (2.6),
and we made use of the fact that only the time difference matters when the product of
operators at different times is evaluated in the NESS. We use g to denote the Green’s
functions of non-interacting systems in which case the action reads

S:/dtdt’( ot 9T ) (@) ( zi gj )1 (t—t) ( z; )(t’). (2.27)

While natural, the representation in terms of & contours carries redundant infor-
mation since

G +G Tt)=GT"T#t)+G (1) (2.28)

To fix this redundancy, we can perform a change of basis introduced by Larkin and
Ovchinnikov [65]

()5 (%),
(f)z\}g(ll})(fﬁ) (2.29)

where fields and barred fields rotate differently. In this new basis the Keldysh ac-
tion (2.27) can be re-written as

S = / dtdt’ (' 92 ) (1) ( g; Zf )1 (t—t) ( z: )(t’), (2.30)

where R stands for retarded, A for advanced and K for Keldysh component of the
non-interacting Green’s matrix g. In general, the full Green’s matrix reads

(9T G oy (ROBE) )
o= (G G )enr=-i( [ @%w%wzﬁn

The lower-left corner of Eq. (2.31) vanishes identically in the Larkin-
Ovchinnikov rotation, a consequence of the cyclic property of the trace as discussed
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2.3 Keldysh field theory

in Sec. 2.3.1. The previous rule stated that the action must vanish when Pt =
1, T — ) which, in the rotated basis, corresponds to setting 1)> — 0,74' — 0.
In this case, only the lower-left corner of Eq. (2.31) remains and must be identically
Zero.

Retarded and Advanced component

The retarded and advanced components are related to the single-particle response
functions of the system

Gl (t) = —io(t) ({e:(t). {0 }) . (232)
GA(t) = ib(—t) <{ci(t),c;(0)}> . (2.33)

They probe the response of the system to a single-particle excitation at later (re-
tarded) or earlier (advanced) times. Evaluated at time ¢ = 0 the fermionic anti-
commutation relations {c¢;, c;r} = §,;; and §(0) = 1/2 impose that the retarded and
advanced components satisfy

GRt=0)+G4(t=0)=0, GEt=0-G2t=0=—i. (234

The retarded and advanced components are related via hermitian conjugation in fre-
quency space as:

G (w) = M (w), (2.35)

and for free systems, they take the simple form G*/4(w) = (Wl — H + iO*)_l. We
introduced the prescription 0T to preserve the causality of the functions. From now
on, we will drop the w argument whenever possible.

Keldysh component
On the other hand, the Keldysh component

GE(t) = —i([ei(t), ch(0))), (2.36)

determines the connection between occupation and fluctuations (both thermal and
quantum). It also measures how much the evolution on the + contour differs from the
— contour. In equilibrium physics, the Keldysh component is fixed by the retarded
and advanced components of Green’s function via the fluctuation-dissipation relation

G = (1= 2fuq) (G = G?) = —27mi (1 — 2feq) A, (2.37)
where A = 5 (G — G4) is the spectral function. f(w) is the equilibrium distribu-

tion function, which for fermionic systems is feq(w) = (exp (“7%) + 1)71, where
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2. METHODS AND TECHNIQUES

w and T are the chemical potential and temperature of the system. We note that
Eq. (2.37) is a matrix equation and that, in thermal equilibrium, it must be valid for
all the degrees of freedom on any basis. Out-of-equilibrium, the Keldysh component
is independent of the retarded and advanced components, but Eq. (2.37) is still of-
ten used to define local equilibrium properties [60]. The idea is to define the local
distribution function

1 K
fl}oca] — (gRg” gA — 1> R (2.38)

which, even for out-of-equilibrium setups, can resemble a thermal distribution func-

tion with an effective temperature and chemical potential, e.g. see Ref. [66] or

Ref. [P3]. In general, the Keldysh function is anti-hermitian GK = —GgKt and
—igK .

the diagonal components relate to the occupation number, n; = ! ;g“ , while the

off-diagonal terms pertain to the system’s currents.

2.4 Quantum Stochastic Hamiltonians

Keldysh field theory provides the natural language to discuss out-of-equilibrium phe-
nomena, in particular, to investigate the different transport regimes in driven setups.
In this work, our end goal is to comprehend the emergence of diffusive transport in
interacting quantum systems. However, at the field theory level, interactions enter as
quartic operators in the action

Hing = nynj — Sine < Pithinhah; (2.39)

whose integrals cannot be easily computed. Fortunately, there exists a large class of
quadratic time-dependent Hamiltonians that may also display diffusion while allow-
ing for analytic tractability [34]. They take the form of quadratic quantum stochastic
Hamiltonians (QSH)

Hy=7Y_ (Q+ Q1) , (2.40)
{Q}

where the sum is over the list {Q)} of quadratic operators, @ = >_,. c clqije;. The
variables &/ are complex Gaussian white noises with zero average, E [¢;] = 0, and
delta-correlated in time, E [gg f//*} = 0g40(t —t') and E { fo,/} = 0. v is the
noise rate and the average E [o] is taken over all the noise configurations.

The class of Hamiltonians represented in equation (2.40) is connected to a variety
of well-studied stochastic models, such as dephasing and symmetric simple exclu-
sion processes. These models have been the subject of extensive research in both
classical and quantum regimes [67-70] and some serve as prototypical models for
diffusive physics. At random instants in time, () connects site ¢ and j via the ma-
trix element ¢;;. Intuitively, if ) is a sufficiently spatially local matrix, Hy couples
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2.4 Quantum Stochastic Hamiltonians

and mixes different momentum and energy sectors, inducing an inelastic scattering
process that leads to diffusion.

2.4.1 Connection to Lindblad dynamics

In fact, the link to dissipative processes is deeper. For each random realization of the
noise, the evolution under the QSH remains unitary albeit stochastic, but the average
evolution over different noise configurations is described by a non-unitary Lindblad
equation. To prove this, we write down the quadratic action of the QSH

T 0 1
S, = WZ / dt (4 (qé} +Oq & g€+ g 55*) @2) . (241
{Q}

and average it over all the disorder realizations using Gaussian integrals to obtain the
quartic action

E [eisﬂ} = /D[f?aft]eisﬁe*fdtz{@}gg e

—exp |~ [ dt S qsayi (G0} + URE) () (Fhuh + 3203 (0
{Q}
(2.42)

Notice that each pair of field variables is evaluated at a time ¢, obeying the pre-
scription of Eq. (2.25). The action (2.42) is the same action originating from the
time-evolution

Oip = —i [H,pl +7) (Qp@T +QTpQ - % {QQ" + QT@P})
(@

- VZ (0. Q1] + [QT, [0, Q1)) (2.43)
Q)

generated by two jump terms L; = @ and L, = Q' (acting with the same strength )
when following the procedure outlined in Sec. 2.3.1.

In other words, the QSH is one of the possible unravelings of the Lindblad equa-
tion (2.43), see Fig. 2.4. In this work, we will consider two other possible unrav-
ellings: coupling to infinite temperature baths discussed in App. B and continuous
measurement processes discussed in App. C. Each unraveling provides a unique in-
sight into the problem and will be used accordingly?. One ought to note that QSHs

2For this reason, in the rest of this work we use the words noise rate, measurement rate, monitoring
rate, and dissipation strength as synonyms.
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Stochastic models Bath models
Contlnuous # Thermal
measurements I'eSeI'VOII'S
. o onli o 1 T =00
¢ ‘ag ave P
averaging ):\ unraveling . limit

Lindblad  9,p— — ) Qg -1 'f*.)
[e(lflllatlgn p = —i[H, p] + /{%:}(QﬂQ +Q70 -5 {e@ +QQP}J

Figure 2.4: Schematic representation of the three different unravelings discussed in the
thesis. The stochastic models recover the Lindblad equation when averaging over the
noisy degrees of freedom whereas the unraveling with thermal reservoirs becomes valid
only in the 7" = oo limit, see App. C and B.

of the type (2.40) only map to symmetric dissipative processes, and cannot describe
asymmetric models such as asymmetric quantum simple exclusion processes [71].

From the second line of Eq. (2.43), the commutator structure implies that the
equations of motion for quadratic operators close:

atclzcn =7 ([ Q}n[qTC]n’ + [CTqT]n[qC]n’)
(chla*acln + cllagtcln + [cTaq]nen + [T qlnen) o (2.44)

b |2

where we assumed H = 0 and used the vector notation ¢ = (c1,...,c,) 7, el =
(cl{, ...,cl). This statement underpins previous analytic solutions [31,66] that rely
on Lindblad injectors to drive a steady-state current but cannot easily be extended to
thermal reservoirs in the continuum limit. Considering the continuum limit requires
solving an infinite number of equations of motion which is a difficult task. This
is why we chose to work in Keldysh formalism using the QSH unraveling instead
of the Lindblad equation. The former is explicitly quadratic and it allows a closed
expression for any averaged two-point correlation functions even in the presence of
continuum reservoirs, as we will now discuss.

2.4.2 Self-energy of QSHs

The goal of this section is to find an analytic expression for the Green function of a
generic non-interacting system, described by a quadratic action Sy, in the presence
of a QSH. The QSH of Eq. (2.40) enters in the Green’s function as a contribution to
the irreducible self-energy 3. The self-energy matrix has the same tridiagonal and
causal structure as G

nR K
2:( 0 wa ) (2.45)
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and it is related to the Green’s matrix via the Dyson equation
G'l=g'-3%, (2.46)

where g is the Green’s matrix of the non-interacting theory. In the diagrammatic
representation, Eq. (2.46) reads

¢:|+|+ :gR+gR2RgR
l::¢::|:|--.(..|_|.|...(.==¢::I :gA +gAZAgA

=21 = G|+ D)zl + (T} =1 + e oW EEEE

:gk + gRERgK + gREKgA + gKEAgA ,

(2.47)

where we represent Green’s function of the unperturbed theory g as single-line ar-
rows going from ¢’ to ¢,

gi3(t,t") 975 (£, 1) g1y (£, 1) . (2.48)

and delegate double lines for the full Green’s functions. The time direction is from
right to left. Note that a full line can never become dashed since the term (¢)?)")
is forbidden in the action. To find the Green’s matrix, we start by considering the
retarded component and then proceed to the solution of the Keldysh component.

Retarded component

To find the expression of G, we first expand the retarded Green’s function as a
perturbation in the QSH

Gh(t 1) = —i (v} ()P (1))
= / D, Pl ()9} ()€ 5ot 5)

=iy o [P OBOSEe . e

Since the unperturbed action .Sy is quadratic, we can use Wick’s theorem to pairwise
contract the fields and evaluate Eq. (2.49). To do these contractions, it is practical
to resort to the diagrammatic representation. The action associated with the QSH is
composed of four vertices,
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é o ¢
Sse = ﬁZ/dt[ + + I+ A<
it gt it 5Lttt i,t "% gt

{Qt
(2.50)
labeled as retarded and advanced vertices, respectively for the full and dashed circles
and squares. The noise is represented by a wiggly line with indexes ¢ and ¢. Note
that the retarded vertices only connect full lines to full lines (related to the fields ¢!
and 9)') and the advanced vertices connect dashed lines to dashed lines (related to
% and 9?).

Since all the diagrams that contribute to G* must begin and end with a full line,
any connected diagram in the expansion (2.49) that includes dashed vertices will
forcibly include a dashed-to-full line, (1#21/71), and thus be zero. Still, the expan-
sion (2.49) includes many non-zero diagrams such as

e Sl e 2, B2

disconnected diagrams . (2.51)

In the Keldysh formalism, the sum of all disconnected diagrams cancels exactly
and can be safely ignored. This leaves only the class of diagrams where the noise en-
ters sequentially, e.g. the first three diagrams in Eq. (2.51). So far the diagrammatic
expansion includes the full stochastic evolution, but we are only interested in the av-
erage evolution E [QR] In diagrammatic language, taking the average corresponds
to the contraction rules

B [edeti< J- e 2= B Eleb eic] -0

and so, in Eq. (2.51), only the diagrams with an equal number of noise terms &9
and conjugates £9* remain, e.g. the third diagram in (2.51). The expansion of the
retarded component then reads

E [+ eGSR+ IO
7 GBI d ¢ e T Co¢r + -

(2.53.)

" (2.52)
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The prefactor n! vanishes since, at the n'" order in the expansion, n! diagrams con-
tribute and give the same expression upon swapping dummy indices. For diagrams
with an even number of vertices, the sign is always positive since an even number of
exchanges of fermionic fields is required.

The next step to obtain the Green’s function is to prove that all the diagrams with
crossing wiggly lines, e.g. the last diagram in Eq. (2.53), violate causality and must
vanish. To do so, it is enough to explicitly contract any two crossing lines

*&mﬂ*@«

dtldtQ Oty —t1)0(t; —ta)--=0
. (2.54)

where ¢; 5 are integration variables. We note that even if each retarded propagator
is dressed by other noise vertices, the proof still holds. The causal structure of the
retarded propagators implies that t > ¢; > ¢, > t/. After the contraction, the
retarded propagator in Eq. (2.54) is proportional to 6(t5 — t;) whereas the others
are proportional to 6(t; — t2). The only possibility left is t; = to, which has an
integration measure of zero, and the proof is complete.

Now that we have all the non-zero diagrams of the retarded and advanced * com-
ponents at any order in the expansion, we must re-sum them to find the expression
for the irreducible self-energy of the noise 25 /4 Without the crossing diagrams, the
series is only composed of the so-called rainbow diagrams, which can be re-summed
to obtain

sli= |G B | 1 =7 |G+ D

(2.55)

Keldysh component

At any arbitrary order in the expansion of the Keldysh Green’s function, G¥, there
can only be a single bare Keldysh propagator. Having two or more Keldysh propa-
gators would again imply the existence of a null propagator (¢?y!) = 0, e.g. the
red propagator in the expansion

3The proof for the retarded component extends directly to the advanced component with the only
difference that now the causality relations are inverted.
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=l = -1 — ﬁ[l-(-é.‘-(wl-(-é)-(-l}w {l-<-<.s:v<-=.s:-<-l

+|-<-<,S}-<-é-<-i+l-(-é-(-i.s.‘-<"+ "98'(—6'("}+ T (2.56)

There are three different types of crossing diagrams, depending on the position of
the Keldysh component

Yet, after contractions, there are always two propagators with opposite causal struc-
tures (highlighted in red) leading to the vanishing of the crossing diagrams.
Similar to the retarded case, all the rainbow diagrams can be resumed to find

»i= V{Cﬁ\’thljévb}

(2.58)

Final expression

The formal expression for the retarded, advanced, and Keldysh component of the
self-energy of the noise is

AT (1) = 30t =) Y 0GR Kt g + TG (1, 1)) . 259)
{Q}

The time locality of 33, is a direct consequence of the noise being delta-correlated in
time. Note that the expression of X, is non-perturbative as it involves the resumma-
tion of an infinite number of diagrams. This resummation scheme is often known as
the self-consistent Born approximation [7], which, in the case of this class of QSH,
1s exact.
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2.4.3 Evaluation of the Green’s matrix

Once the analytic, albeit self-consistent, solution of the self-energy is available, we
can find a closed expression for the Green’s matrix by solving the Dyson equation,

R (K -11R _2R\"l R ([a-11K _ 2K) gA
(go o ):< R g([.rg[—gl}f“]—z“)_)lg ) e

in parallel with Eq. (2.59). The retarded and advanced components are particularly
simple to solve since, at the same time, G*/4(t, ) = Fif(0)I = F41 and so
i
SEA (W) = HF% (ag" +q'q) . 2.61)

On the other hand, the self-consistent equation for the Keldysh component can be
solved by integrating over all frequencies | g—ﬁ such that, in both sides of the equa-
tion, the Keldysh component evaluated at the same time G* (¢,t) emerges

0¥ (t.0) =~ [ 520" (1971 ~ 7Y [46(t.00a" + 46" (.00 | 97
{Q}
(2.62)
In the worst-case scenario, this requires computing the order of N? integrals but,
if only the diagonal terms are concerned, it can be sufficient to compute only N
integrals.

2.5 Thermal reservoirs in Keldysh formalism

So far, we have discussed how to incorporate the presence of QSH in the action but,
to characterize their driven properties, we need to also incorporate the presence of
non-interacting reservoirs at the boundaries, see Sec. 2.2.

Consider a non-interacting fermionic reservoir, r, with the Hamiltonian H, =
Yok erykaiy 0 % already in the diagonal basis labeled by k. The reservoir is coupled

to the system through the generic coupling H., = > i tr?kiai xCi + h.c. which
does not commute with the reservoir’s total particle number or enefgy [72]. t, is the
coupling matrix which connects the last sites of the system to the eigenstates of the
reservoir 7, see Fig. 2.5. We assume the reservoirs to be in thermal equilibrium (2.37)
with a chemical potential p, and a temperature 7). such that the Green’s functions
read

gR/A (@) = Okk
L w— e £i0F
95 (W) = —2mid(w — €) tanh (WZ_T“T> ‘ (2.63)
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Figure 2.5: Schematic representation of the coupling matrix ¢ of the boundary driving
protocol used in this thesis. In real space (left) only the reservoir’s final sites connect to
the system’s edge. For practical reasons, in the calculations, we use the rotated eigenba-
sis (right) where the edge sites may connect to all eigenstates.

Since the reservoir is non-interacting, we can integrate at the level of the ac-

tion the fields ¢, x, én % associated with a,. , a: ;. to find its contribution to the self-
energy X,

_ _ _ _ 1
2= [pivsdenfiss-i [E@ @ (5 ) (%)
. - i 1 . 1
@ (5 ) (G) @ @e ()]
— d _ _ 1 1
= [ oo fise-i [52 00 @ (5 e (5 0) ()]

(2.64)

where we use the vector notation ¢, = (., dri, )y ¥ = (o, o)y bp =
(coos Brgey )T and o = (o1, )T

The self-energy associated with the reservoir r thus reads
SRATK — iigRIAIKy, (2.65)
and, as long as multiple reservoirs do not couple to each other, the total contribution
to the self-energy is the sum of each reservoir’s contribution ¥ = 3 ..
The self-energy ¥, encodes all the information about excitations that enter the

reservoir and may re-enter the system at an arbitrarily later time. The retarded com-
ponent X is related to the hybridization matrix T',.(w) via

t*k'tnkj
i) =) —=
k

w— € + 90T

. /
v
w—w' +10*

- / dop Lt @ p ) (2.66)

w—w
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with P the principal part, and

Tpij(w) =7 thitno(w — erg) - (2.67)
k

Since the baths are assumed in thermal equilibrium, the Keldysh component of X
also satisfies the equilibrium relation XX (w) = —i (1 — 2feq(w)) ['y(w).

2.5.1 Wide-band limit

The hybridization matrix is closely related to the density of states v, (w) = >, 6(w—
€r1) of the bath and, as it depends on ¢, x, it encodes information about the band
structure of the reservoir. However, to simplify calculations, e.g. Sec. 3.2, it is
common to take the wide-band limit where I',.(w) becomes frequency-independent.
In this limit, the couplings are assumed to couple uniformly to the bath ¢, x; — ¢, ;
and the density of states to be constant v(w) — v

Fm'j(w) — 7Ttr7itr)j Z (5(w — Ek) — ﬂtitjl/ = Fr,ij s (268)
k
such that the real part of the self-energy vanishes and X% = —iT',.. In experiments,

taking the wide-band limit is justified when, in the energy window where the trans-
port processes occur, the dispersion of the bath is approximately linear as in the case
of optical systems or metals.

Having a frequency-independent hybridization implies that the hybridization is
delta-correlated in time. However, note that the wide-band limit is not equivalent to
using a Lindblad injector, e.g. Eq. (2.9), since the self-energy still has non-trivial fre-
quency dependence entering in the Keldysh component via the distribution function

feq(w).

2.5.2 Markovian limit

In this section, we show how to take the Markovian limit of reservoirs and recover
a Lindblad driving without explicitly taking the weak coupling limit or the Born ap-
proximation (which assumes that the system does not modify the structure of the
bath). It is enough to consider an infinite chemical potential ;2 and infinite temper-
ature T with a constant ratio /7T [73], provided that the spectrum of the system
is bounded. In this case, the Fermi function flattens and the self-energy no longer
depends on the frequency

L
s i (Fo 2tanh (;T) F") . (2.69)
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If the reservoirs are coupled to the system via a single site, then Eq. (2.69) is equiv-
alent to the particle injection and loss discussed in Eq. (2.9). The connection can be
seen at the level of the action

d _ _ —
S = ﬁg % (20, 0 — bt — v o)

_-'Y; dﬂ ot ot t o —
‘ 2 2 (21/}7" wr wr w?' wT wr )

:/%( ") ( S —g(&iﬁ{)) ) ( iﬁ; )
(2.70)

€—

By identifying v = 2T,.(e T +1)~! = 2I', —~_, thus establishing the y1, T — oo
limit as equivalent to the Markovian limit of thermal reservoirs [73]. A more generic
equivalence between the Markovian limit and the p, 7" — oo limit is established in
App. B for bosonic baths.

2.6 Currents in interacting regions

The key objects of this thesis are the currents induced by the presence of reservoirs,
which we use to probe different transport regimes. To compute them, one cannot re-
sort to standard scattering theory as it implies that all the scattering processes present
in the system are elastic, which is not true for the noise discussed in Sec. 2.4. Time-
dependent scattering theory could present a viable alternative, but analytic insight is
only available in the limit of a large number of scattering channels [74,75]. A useful
formalism to compute currents through interacting regions was introduced in parallel
by Meir and Wingreen in their seminal paper [76] and Pastawski [77]. It is formu-
lated in terms of Green’s functions of the system and can easily be adapted to the case
of noise-induced interactions since it only assumes the baths to be non-interacting.

2.6.1 Derivation of the particle and heat currents

The expression for the steady-state particle current, N">, and heat current,

AN
d{H,—p, N o
%‘“T), flowing from the system into a reservoir r is given by:
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Je =iy (erp—p) <[H aiyka’“’kb

k

=iy (e —p) <t7‘7kiai,kci - t;k-,kiczar,k>

ki

1
= 5 Z(GT,/C - :U)C (tT klgr zk(t t) - tr kzgr k:z(t’t)) )

where ( = 0 corresponds to the particle current and ¢ = 1 to the heat current.
The same-time Keldysh Green’s function between reservoir and system satisfies

gr zk( ) - 2Z< kcl>

Performmg the diagrammatic expansion of the cross correlation functions,
gr .. = —GX* in the tunnel amplitudes ¢, 1;, one finds that they can be exactly
factorized as

Grin(w) = = (G (W)tlgf (W) + G (W)tlg' (W) ;. -
Grj (@) = = (g7 (@)t G (@) + g (W)t G5 (W), - (2.71)

J

which, introducing back into the current, gives
dw
- / 1 (e = ) [t (G (@)t (@) + G5 (@)tTg) (),
k,i

— (gF @t G (W) + gRWItGE (W), th ] - @)

Recalling the definition of the self-energy >, RIAIK thg R/ AIK

the current can be manipulated to obtain

t, the expression of

s=- [ Pw-wol@t- gz —gh st -] @y

where we used Eq. (2.63) to replace [ dweygfy, (w) = [ dwwgfy, (w). The final
expression can be obtained by replacing % — ¥4 = —2iT",, G — G4 = GR(XF —
$4)G4 and K = GRYKGA, 1o find

JE = i / % )t [1,65 — (1= 2,0 (67 — G

_ —i/ ;li;(w C WS [0 (5K (1 - 2£)(5F —£4) 64 . @74
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Equation (2.74) is the Meir-Wingreen equation for any interacting system coupled to
an arbitrary number of reservoirs. In the absence of interactions, ¥ = ZT 3, and
assuming only two reservoirs,  and 7, Equation (2.74) immediately reduces to the
Landauer-Biittiker [78] expression for the current

Jip = / 7(&) — ) (fr = f)T (2.75)

where T (w) = tr[4T,(w)GT(w)'r(w)GA(w)] is the transmission probability of a
scattering state with energy w.

2.6.2 Application to QSHs

For the case of QSHs coupled to only two reservoirs, r and 7, the self-energy has 3
contributions ¥ = X,. 4 X5 + 3, as discussed previously. Substituting the explicit
expression of 3 in Eq. (2.74), we find:

JE=J% + % /dw (w—pr)* tr 0,67 [q¢(D = D) ¢ + ¢" (D — £,1) ] 6],

elastic : .
inelastic

(2.76)

t 1—iG 5 (t,t)
2

where D;; = <c -ci> = is the same-time correlation matrix. The elastic

J
term matches Landauer-Biittiker expression (2.75) with the key difference that G is

the full Green’s function in the presence of the noise, and so 7 does not necessarily
integrate to one as in the non-interacting case. The inelastic term underpins most of
the new physics explored in the following chapters.

The self-consistent nature of the self-energy is now encoded into D, which needs
to be found self-consistently through

dw
b= / 79 @) [2 > frl@)Th(w) +v(qPg" + ¢'Dg) | G4 (w),  (2.77)
which can be obtained directly from Eq. (2.62).

Example of a single dot coupled to a reservoir

We finish this section by discussing an application of Eq. (2.76) to a single level
coupled to a single reservoir in the wide-band limit. This is a specific but solvable
case of the generic impurity model discussed in Sec. 3.1. The level evolves under
the stochastic evolution of Q = cfc = Q' which, in average, corresponds to the

30



2.7 Tensor networks

single-site dephasing model. The retarded self-energy is simply L% = —i(T,. + 7)
and the solution for the occupation of the level reads

1 ImyF
D=/{(cte\=— [ dw= (W), 2.78
(e'e) / Y (w—¢€)?2+ (ImER)Qf @) 2.78)
A(w)
where A = —7'ImG" is the spectral function of the level and ¢ the energy of

the level. This is the only non-trivial example where the expression for D re-
sembles the equilibrium expression, D = [ dwA(w)f,(w), with the small mod-
ification that the rate broadens the spectral function of the level. In this exam-
ple, the particle current flowing to the reservoir is identically zero as expected,
J =~ [dwA(D — f.) = (D — [ dwAf.) = 0. Since, in the wide-band limit,
the integrand in the heat current diverges, it is practical to introduce a large cut-off
energy [ dw = ffA dw. In this case, there is always heat flowing from the dot to
the reservoir, J} = —y [ dw (w — €) Af,- o< log A > 0, just as if the QSH acted as
an additional infinite temperature reservoir. This is in agreement with the unraveling
in App. B where the QSH can be understood as coupling the system to two infinite
temperature reservoirs. The logarithmic divergence is an artifact of the wide-band
limit. Because the hybridization matrix does not decay for large energies, the noise
is capable of coupling the system to arbitrarily energetic eigenmodes of the reservoir
and the energy flow diverges.

2.7 Tensor networks

For most systems, a closed non-perturbative expression for the self-energy is not
known, and perturbative methods can fail at characterizing the thermodynamic prop-
erties of diffusive systems. This is the case for integrable Hamiltonians in 1-
dimension such as those explored in Ref. [P4], e.g. truncating the self-energy at any
order in the Kubo formula predicts a finite resistivity despite transport being ballis-
tic [79]. In such cases, one must resort to tensor-based numerical methods [80-82].
Before we proceed, it is useful to switch to the language of spins which in 1D can be
mapped to fermions via the Jordan-Wigner transformation [83]:

. 1 f
T = g% — oY = Tk CiCh

o; =0] —iof =e ¢,
z _ ot

o; = 2cjcj 1. (2.79)

The main reason is that numerically implementing the fermionic anticommutation
relations requires keeping track of the order of operations and signs, which leads to
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an overhead in the code. The transformation allows us to work directly with spin
systems that satisfy the local commutation relations [0?,07] = 2ie;;,0" and are
faster to implement.

In 1D and quasi-1D setups, a powerful concept to compute steady-state prop-
erties is matrix product states (MPSs) which we now discuss briefly. For a deeper
review of the subject, I recommend Ref. [84-86].

2.7.1 Matrix Product States

Consider a Hilbert space composed of IV degrees of freedom with dimension h,
such that the Hilbert space has dimension h". The basic idea behind an MPS is to
rewrite a vector |¢) of the Hilbert space in the computational basis |s1ss...s5) With
s; = {1,...,h} as a product of N tensors:

W) = > (A1); (A2)52%, . (AN);Y ] [s1sa.8n) - (2.80)
{is}

Each tensor (An); i, has 3 indexes with dimensions dim(3, j, k) = (x, h, x) where d
the physical dimension and  is called the bond dimension *. The bond dimension
caps the maximum bi-partite entanglement entropy

S = —trp [prlog pr] = —trg [prlog pr] < 2log x (2.81)

which encodes how correlated the sites left (L) of a cut in the chain are correlated to
the sites to the right (R). The reduced density matrix of a pure quantum state |¢) is
the density matrix of a mixed state defined on the subsystem, pr,/p = trg,/1[[¢) (¢]].
A bond dimension y = 1 defines the class of product states that has zero entangle-
ment, while a larger bond dimension allows capturing increasingly more entangled
states. In the limit y = A"V, the MPS can describe any state in the Hilbert space. For
a fixed bond dimension, the number of parameters of an MPS scales polynomially
with the degrees of freedom, in opposition to the exponential scaling of quantum
states, making them very attractive for numerical simulations.

The underlying hope of using an MPS, and extensions thereafter, is that the states
we are interested in describing are well captured by an MPS with a low bond dimen-
sion. This is the case for states that satisfy the area law [87] characterized by a
scaling S o log N4~! where d in the number of physical dimensions of the sys-
tem, e.g. ground states of gapped Hamiltonians [88] or even excited states of many-
body localized Hamiltonians [89]. In the realm of out-of-equilibrium physics, matrix
product ansatzes can also capture a variety of important steady-states of driven high-
temperature systems. In this case, it is common to represent density matrices as

4The tensors at the left and right edge have dimensions 1 x h X x and x x h x 1 respectively.
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matrix product density operators (MPDO) [90]

p= Z (M) (M) 7202 (M );N"N [s180..5n) (s)sh..siy| . (2.82)

1182 iN—1
{i,s,8"}

where now M are 4-dimensional tensors. Such MPDO representation does not allow
us to directly implement some of the tensorial algorithms widely available to quan-
tum states. However, we can always use the vectorization map to represent a density
matrix as an MPS

p=>_pijli) (3l = o) = pij 1) @ 13) , (2.83)
which re-organizes column-by-column the elements of p into a vector, ||p). The dou-
ble bracket notation is used to represent vectorized matrices. The vectorized space
has dimension h2Y, and for the case of h = 2, a suitable basis choice is the set of
Pauli matrices with the identity {||c® =1),[|o®),|lo¥),||0c%)}. Diagrammatically,
it is useful to represent the MPS of the density matrix as

n—1in . (2.84)

where the double lines indicate the squaring of the physical dimension due to the
vectorization. The choice of the A tensors has a gauge freedom which we can see by
introducing an identity closure relation between any A tensors and redefining them
accordingly, A1 A — (A1 X)(X71Ay) — Ay As,. Tt is always possible to define an
orthogonality center of the MPS where the all the tensors to the left of the center are
left-orthogonalized Aj; A}% = d;;, and those to the right are right-orthogonalized
A3 A% = diiv, in which we say the MPS is in a mixed canonical form represented

as

TR

The canonical form can be easily obtained from sequential singular value decom-
positions (SVD). A generic tensor with indices Mg, ...5, = My ) can always be
factorized in the SVD form

[0 3 [0} ‘B
_ v P |
Mas) = <J]\_-/Iy =UajAjiVigy = (UHAHVT .56
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where U and V' are unitary tensors, i.e., UU' =Tand VVT =L and Aisa diagonal
matrix with non-negative components. Consecutive application of SVD to a MPS,
e.g. from the leftmost to the rightmost site, provides an efficient way to orthogonalize
any state. We point to Ref. [84,91] for an excellent and more in-depth discussion
about MPS and how to orthogonalize them.

In the case of quantum states, the entries of A are related to Schmidt coefficients
and can be used to compute the entanglement entropy. For states with low entangle-
ment, the values of A follow an exponential distribution, so truncating the SVD to
only the x largest values of A provides a natural way to minimize errors. A similar
situation occurs with the density matrix except that the quantity of interest is now the
operator entanglement entropy (OE) > which can also be low for certain steady-states
of simple models [92]. The infinite temperature state is a trivial example p = 1/2%,
which has an exact bond dimension x = 1 in the vectorized space. Another example
is the steady-state of a boundary-driven X X chain [31] that can be written as an MPS
with x = 4. In general, the time dependence of the OE when driving the system out
of equilibrium is an ongoing research effort. However, results [93] suggest that, in
diffusive systems, the OE is characterized by fast growth and decay (entanglement
barrier) followed by slow logarithmic growth for later times. Capturing the precise
dynamics during the initial entanglement barrier is a complicated task for numeric
methods which often limit the maximum possible bond dimension. However, if we
are only interested in the NESS, any deviation from the exact dynamics at short times
is expected to become irrelevant at long times, provided that the NESS is unique and
well approximated by an MPS with a computationally accessible bond dimension.

2.7.2 Time-Evolved Block Decimation

In recent years, a variety of methods have emerged that explore the tensorial na-
ture of MPSs to compute non-equilibrium time evolution or steady-state properties.
Among the methods adapted from ground-state physics, there is time-evolved block
decimation (TEBD) [82, 88,94]. It performs real-time dynamics efficiently by de-
composing the evolution in M small time steps and ensuring that, at every time step
in the evolution, the density matrix keeps a fixed, maximum, bond dimension.

The first step in the algorithm is to perform a Suzuki-Trotter splitting [95] of the
Liouvillian operator for a small time step At. There exists an infinity of possible
splitting schemes with distinct advantages and disadvantages. A good scheme has
to have the appropriate balance between computational time and scaling of errors
and may depend on the application. In the work [P4], we introduce a new scheme
that combined the fast symmetric-conjugate third-order scheme [96] with an extra
second-order composition to further increase precision

5The expression for the OE is obtained from the entanglement entropy S by replacing the quantum
state |1)) with the vectorized density matrix ||p).
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p(t + 6t)

L 1L IL ]
M * R R
o NV Q0T ALL eam? RNAG

Figure 2.6: A single time step evolution in the splitting scheme of Eq. (2.87) where
each term L,, is a 3-site gate. The last half of the gates (blue) are weighted by a factor
« and the first half (purple) by the conjugate ™. The gates are applied in sequence to
always preserve the orthogonality center of the MPS

oLt A (eﬁAt)M ~ (eaAtfeaAtfea*Atfea*Atf) M : (2.87)
where o« = i — @g is a complex increment and t = M At. In Eq. (2.87), we de-

compose the Liouvillian in a sum of IV local terms in real space £ = Zﬁf L, where

the arrows indicate the order to which apply those terms, eLAL _ oLnAL_oL1dt for

©
a right sweep, and e £ 2t = e£18% | £NAY for a left sweep. In Fig. 2.6, we depict

diagrammatically a time step in this scheme, where 3-site gates act in sequence to
evolve the state from ¢ to ¢ + At. The use of a sweeping protocol ensures that at all
times, the orthogonality center of the MPS remains well-defined even when e“~ 4t
is not unitary [91]. In the vectorized space, a super-operator acting left and right of
the density matrix has a simple matrix representation

L(p) = LpR = L& R" |p) , (2.88)

which can easily be exponentiated to obtain the gate e~%t.
The next step in the algorithm is to apply each gate efficiently while keeping the
bond dimension fixed. For a 3-site gate, the steps schematically follow

After applying the gate to the affected MPS tensors, we contract all the internal
indices to create a new tensor with three indices. Then, we perform two SVD de-
compositions to return the state to its MPS form, indicated by the dashed lines in
Eq. (2.89). The direction of the SVDs follows the direction of the sweep, in this case
from left to right. The SVDs only require a fixed number of operations, of order

. (2.89)
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h* x x3 for 2-site gates and h'0 x x> for 3-site gates and so the full algorithm scales
polynomial as Nh* x x? or Nh'9 x y3, respectively for 2 and 3 sites gates.

We can use TEBD to find the steady-state by evolving any initial state for a suf-
ficiently long time such that the observables of interest are sufficiently converged,
provided that the NESS is unique. Empirically, we found that the fastest conver-
gence times occur for states close to identity, which we typically take as the initial
state. There exists a panoply of open-source libraries to implement tensor methods,
but at the time, there was no openly available code to perform TEBD on open sys-
tems that implemented a 3-site gate needed in [P4]. For this reason, we created an
extra library [97] for the well-known ITensor code [98] that included these features.
Below, we showcase a snippet of the code that performs the double SVD step of
Eq. (2.89).

#psi is the MPS representing the density matrix

#AA is the tensor obtained after applying a 3-site gate
auto AA=psi(il) *psi(i2) *psi(i3) *g->gate();

[...]

#First SVD starting from the leftmost site il
auto [U,S,V] = svd(AA,inds (psi(il)),args);
if (args.getBool ("DoNormalize", false))

S x= 1./itensor::norm(S);

auto ulink=commonIndex (U, S) ;
auto iset=IndexSet (ulink, sitelIndex(psi,i2));

#Second SVD

auto [U2,S52,V2] = svd(S*V,iset,args);

if (args.getBool ("DoNormalize", false))
S2 %= 1./itensor::norm(S2);

#Re—index of the tensor’s indexes
psi.set (i1,0);

psi.set (1i2,U02);
psi.set (i3, 852%V2);

TEBD is particularly useful in boundary-driving protocols that use Lindblad in-
jectors as reservoirs, as in the case of Sec. 3.4. There are different reasons for this.
First, the time-local nature of the Lindblad equation makes it easier to implement nu-
merically because each time-step only depends on the state at that time and no mem-
ory about the past is required. Then, as discussed in Sec. 2.2.1, Lindblad injectors
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tend to heat the system close to an infinite temperature state which has a low operator
entanglement entropy, making it easier to describe with a low bond-dimension MPS.
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CHAPTER 3

Published works

After establishing the foundational theoretical framework for this thesis in Chapter 2,
we now advance towards our primary goal: understanding the role of inelastic scat-
tering in quantum transport and how it can lead to diffusion. To this end, we structure
this chapter in incremental steps, each based on a published paper presented along-
side an extensive introduction to situate the work within the context of this thesis.
The terminology used in these introductions aligns with the rest of the thesis but
may differ slightly from the published work. We use the notation [o] to reference
equations and figures from the published paper that follows each introduction.

We start by exploring quantum stochastic Hamiltonians (QSHs) which we have
proven capable of supporting an analytic solution for two-point correlation functions.
It is critical to recognize within the formal solution (2.76), which transport processes
are driven by noise and how they can lead to diffusive behavior. As a first step, we
study in Sec. 3.1 the impact of continuously measuring a finite, non-extensive re-
gion of the system with an observable O, which is equivalent to considering a single
noise term {Q} = {O = O}, recall App. C. Specifically, we confine our explo-
ration to QSHs acting on a maximum of two sites since they support interpretable,
closed-form formulas for the currents. We are capable of identifying step-by-step
how the energy fluctuations provided by the QSH induce elastic and inelastic scat-
tering processes. Consequently, we establish the conditions where these systems
can be utilized to build quantum machines capable of providing electrical work or
extracting heat.

The local nature of the noise, while analytically tractable, does not lead to the
emergence of diffusion and Fick’s law. So, in Sec. 3.2, we investigate extensive
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QSHs as prototypical models for quantum diffusion. We examine different types of
QSHs, all of which display emergent diffusive behavior for large systems, prompting
the nomenclature of Quantum Stochastic Resistors. In the large system size limit, at
a coarse-grain level, we find that the action becomes almost Gaussian, up to correc-
tions in the inverse system size, N. We use this discovery to propose a new theory to
describe quantum diffusive systems: the 1/N expansion. This enables us to success-
fully capture key transport quantities, including diffusive constants and even some
ballistic-to-diffusive transitions in the presence of long-range noise

Similarly to local noises, we would also like to have an intuitive picture of dif-
fusive processes and how it emerges step-by-step in extensive QSHs. Diffusion,
being an inherently classical phenomenon, hints at the existence of a semi-classical
interpretation of transport, which we offer in Sec. 3.3. This semi-classical picture
involves a single particle propagating ballistically amid random reset events, provid-
ing a qualitative explanation for the conductance profile when the system is driven
at low temperatures.

The concluding Sec. 3.4 focuses on a different mechanism for diffusion induced
by unitary interaction terms in the Hamiltonian. We examine the relationship be-
tween integrable and non-integrable interactions, with only the latter leading to the
onset of diffusion. The competition between these two terms gives rise to an interme-
diate transport regime where ballistic transport is renormalized due to the influence
of the interactions.
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3.1 Non-reciprocal effects in the stochastic impurity
problem

In this first work, we explore the role of QSHs in the context of quantum impurity
problems. Akin to the better-known interacting counterparts [99, 100], we focus on
geometries where a local region is in contact with a continuum of states (left and
right reservoirs) and is undergoing a stochastic evolution, see examples in Fig. 3.1a
and 3.1b. Due to the mapping established in App. C, these setups equally describe
the average evolution of a continuous measurement process, which is non-unitary
and difficult to solve analytically. There has been a growing interest in better under-
standing the thermodynamic aspects of measurements [101-104] and their capacity
of extracting work/heat to create efficient quantum machines [40, 105-108]. This
excitement is shared by Professor Mannhart who is currently exploring such realiza-
tions in solid-state setups [109, 110] and challenged us to understand how the elastic
and inelastic processes in QSHs can be used toward this goal.

The main result of the paper concerns the derivation of a generic expression for
the particle and heat current, under continuous measurement of a single quadratic
observable O = O,

JE - % /dw (w - Mr)c (ff - f’f) tr [FTgRFFgA}

elastic

+ 2%/(1&) (W - /'I”I“)C tr []_—‘TgRO (D _ f'r'H) OQA] ) 3.1)

inelastic

This expression is a specific example of Eq. (2.76) when we consider only a single
operator {@} = {O}. To avoid memory effects and simplify calculations, traditional
investigations of similar setups are restricted to limiting regimes, such as weak cou-
pling to the reservoirs [105, 111] or assuming local Markovian reservoirs [112, 113].
Our solution for the average currents goes beyond those approximations as it is non-
perturbative in both the measurement rate -y and the coupling to the reservoirs. This
allows us to explore previously unattainable parameter regimes, where all the rele-
vant energy scales in the system are comparable.

The expression (3.1) reveals an elastic and inelastic contribution, with the former
already discussed in Sec. 2.6.2. The inelastic component has a non-monotonous de-
pendence on the measurement rate y: growing linearly in v for weak measurements
(note the prefactor ) before decaying slowly as the inverse rate 1/~ for fast mea-
surements (in this limit [G7/4]~! = wI— X, — %, +4v¢® ~ ~). This implies that the
current peaks at the typical energy scale of the setup, see Fig. 3.1c. While the exis-
tence of a peak has been observed in similar setups [114—116], our solution allows its
non-perturbative characterization in the presence of generic thermal reservoirs and
any parameters of the system.
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C) Unbiased current J° d) Extracted heat J*

Peak

Cooling

Measurement rate v Measurement rate y

Figure 3.1: Adaptation from Figs. [1,2] of the paper. a) Schematic view of a single-
site quantum engine powered by local measurements of the occupation number. b)
Schematic view of a two-site quantum refrigerator powered by measurements of the
cross-correlations between sites. In a) and b), the inelastic processes providing energy
to the particles are depicted by arrows. c¢) Characteristic increase and decrease of the
unbiased particle current with the measurement rate. Different curves represent different
parameters of the model with an increasing typical energy (from dark to light blue). d)
In the pink region, the heat is extracted from the cold reservoir to the hot through a quan-
tum measurement cooling mechanism. Different curves represent different parameters
of the model.

Unlike the elastic component, we find that the inelastic contribution of the par-
ticle current does not vanish in the case of unbiased reservoirs, p; = pgr and
Ty, = Ty, provided that the setup breaks particle-hole and mirror symmetry. These
conditions for a finite unbiased current are the same found for thermoelectric cur-
rents [117] where, instead of the noise, the current is driven by a third reservoir at a
higher temperature. This follows the understanding that QSHs can be recast as the
coupling to infinite temperature reservoirs, see unraveling in App. B. The fact that a
finite unbiased current exists implies that we can always drive a current opposite to
a bias, thus creating a quantum machine capable of extracting work or heat [118]. In
the second part of the paper, we discuss two examples of such machines.

The first case study addresses a single dot undergoing the continuous measure-
ment of its occupation number. The measurement drives a particle flow between
reservoirs, see Fig. 3.1a. The setup is simple enough that the inelastic processes
driving the current [7]] can be understood step-by-step:

* A particle from the Fermi-sea of a reservoir tunnels into the dot,
* The noise then induces random fluctuation in the energy of the particle,

» The particle escapes to the opposite reservoir when the energy is above the
Fermi energy of the reservoir.

If a load is placed between the two reservoirs, the current generated by the inelastic
processes can be used to power a quantum engine, with the extracted work given
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3.1 Non-reciprocal effects in the stochastic impurity problem

by P = (pr — pr)J%. In Fig. [1d]] we test this operating regime and find that
the optimal performances occur when the rate v is comparable to the typical energy
scale of the system, a regime not available to most perturbative methods.

The second application aims to create a quantum refrigerator using quantum
measurement cooling [119], where the measurement is used to transfer heat from
the cold to the hot reservoir, see Fig. 3.1b. The minimal requirement to operate as a
refrigerator is to have a finite heat flow when both reservoirs share the same tempera-
ture and chemical potential. Despite performing numerical tests on different param-
eters of the single-site setup in Fig. 3.1a, we were unable to identify a regime where
a single dot could operate as a refrigerator; in all instances, heat persistently flowed
toward both reservoirs. Inspired by the cooling-by-heating setups [120, 121], we
consider the minimal example of two uncoupled dots undergoing continuous mea-
surement of the cross-correlations. From the QSH perspective, it corresponds to a
fluctuating hopping term that drives an inelastic heat current between reservoirs, see
Eq. [9]. Again, we are capable of identifying all the steps present in the inelastic heat
current, which now include the contribution of particles exiting and re-entering the
same reservoir with a different energy. We identify and characterize the conditions
for this system to operate as a refrigerator and once again find optimal performances
in previously unattainable parameter regimes. An exciting application of these re-
sults would be to use measurements to cool cold-atom setups with minimal particle
loss.

This work provides an intuitive understanding of the inelastic processes present
in local QSHs, which we will employ in the next sections. As an open question, we
would like to better understand how our results extend to the case of other impurity
problems out of equilibrium, especially in the presence of interactions.
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‘We study non-interacting fermionic systems undergoing continuous monitoring and driven by

biased reservoirs.

Averaging over the measurement outcomes, we derive exact formulas for the

particle and heat flows in the system. We show that these currents feature competing elastic and
inelastic components, which depend non-trivially on the monitoring strength . We highlight that
monitor-induced inelastic processes lead to non-reciprocal currents, allowing to extract work from
measurements without active feedback control. We illustrate our formalism with two distinct mon-
itoring schemes providing measurement-induced power or cooling. Optimal performances are found
for values of the monitoring strength v which are hard to address with perturbative approaches.

Introduction — Non-unitary dynamics in quantum sys-
tems stems from interactions with the environment [1-
4], which induce dissipation and usually suppress quan-
tum coherence [5, 6]. Nonetheless, non-unitary evolu-
tion caused by engineered dissipation [7-11] or measure-
ments [12, 13] can stabilize target quantum states, many-
body correlations [14-23] and exotic entanglement dy-
namics [24-31].

Of particular interest are the effects of non-unitarity on
quantum transport. Environment-assisted processes can
drive currents in coherent systems [32-42] and the impact
of losses [41, 43-51] is investigated in quantum simula-
tors [22, 23, 37, 40]. Work extraction from dissipative
environments [52, 53] or active monitoring [54-61] may
use quantum effects at the nanoscale to break the oper-
ational limits imposed by classical thermodynamics [62].

Quantum devices are usually driven by thermody-
namic baths, whose large number of degrees of freedom
challenges exact numerical [63] and analytical [64-67] ap-
proaches, especially to capture the long-time or station-
ary dynamics of monitored or open settings. Local mas-
ter equation approaches, based on weak coupling assump-
tions, may miss interesting effects [68] or imply apparent
violations of the second law of thermodynamics [69-72].

In this work, we derive exact formulas for the parti-
cle and heat currents driven by continuous monitoring
of a single-particle observable O and biased reservoirs in
free fermion systems. We exploit an exact self-consistent
Born scheme for 2-point correlation functions [73, 74] and
rely on a generalized Meir-Wingreen’s approach [49, 75]
to account for biased reservoirs. Our main result is for-
mula (5), which offers a simple and exact tool to address
novel quantum transport phenomena in coherent systems
under continuous monitoring.

We provide two illustrations of our approach show-
ing monitor-assisted non-reciprocal effects in quantum
systems. We consider first the continuous monitor-
ing of a single level (Fig. 1). Under generic assump-
tions, we find that monitoring triggers a non-reciprocal
current between reservoirs without external bias, and

thus generates power. We then show that monitor-
ing cross-correlations between two sites (Fig. 2) enables
quantum measurement cooling [76]. For both cases,
we highlight non-trivial dependencies on the measure-
ment strength v, showcased by peaks of performances
in regimes which are not encompassed by perturbative
approaches. We also stress that the measurement-based
engines described here do not rely on feedback-loops or
Maxwell’s demons [54-61].

Derivation of monitored currents — For simplicity, we
consider 2-terminal setups [77] described by Hamiltoni-
ans of form H = Hyes + Hr + Hgys. Left and right (r =
L/R) reservoirs are ruled by Hres = >, Ervkcivkcrk,
where ¢y, annihilates fermions of the reservoir r in
mode k of energy e,j. Both reservoirs are in ther-
mal equilibrium, with chemical potential yu,, tempera-
ture T, and mode occupation obeying Fermi’s distribu-

tion f.(e) = [e~#)/Tr 4 1]71. Free fermions in the
system are described by Heys = 2:1.’$7.¢ijhljdJ , where

hij is a single-particle Hamiltonian with labels i, j re-
ferring to internal degrees of freedom (orbitals, spin. .. ).
The coupling between system and reservoirs reads Hp =
ZT_,“ tr,kici,kdi +H.c., where t, j; are tunnel amplitudes.

When an observable of the system © is continuously
monitored with strength v, the averaged dynamics of the
system density matrix p obeys Lindblad’s equation d,p =
—i[H, p] + D[p], where (h =e = kg = 1) [78-80]

Dlp] = v (20p0 — {O*,p}) . (1)

We are interested in the particle (¢ = 0) and heat ({ = 1)
currents flowing into a reservoir r, which read

IE =i e — ) [traildle, ) = trnalelid)] . (@)
ki

When single-particle observables O = Zi] dl()ijd] are
monitored, calculating Eq. (2) becomes a difficult task,
since Eq. (1) is non-quadratic. Even though, for quadratic
Hamiltonians, correlation functions obey closed systems
of equations [81-83], efficient numerical calculations can



be performed only for finite systems [74, 84, 85]. We show
now that analytical solutions can be obtained with infi-
nite reservoirs thanks to the validity of the self-consistent
Born scheme for 2-point correlation functions, exten-
sively discussed in Refs. [73, 74] and in the Supplemental
Material (SM) [86].

We consider the retarded, advanced, and Keldysh
Green’s functions: GFH(t,¢') = —if(t — t')({d, (t), d;(t’)}),
GALY) = [GRW, 0] and GE (¢, ¢) = —i([d, (1), d}(+")]),
that we collect in the matrix G = (QOR gg’i ) [87]. The ma-
trix G obeys Dyson’s equation g*l = ggl —3, where G
is the Green’s function of the isolated system (¢, x; = v =
0) and X is the self-energy, encoding the effects of reser-
voirs and monitoring. The contribution of the reservoir
r to X is obtained by integration of the modes ¢, . In
frequency space, X, j(w) = >, t:.kztr.kjcnk(w)v where
C, i is the Green’s functions of the reservoir. Particle ex-
change with the system is described by the hybridization
matrix T (w) = [Z24(w) — 2F(w)]/2 [88]. The Keldysh
component S5 (w) = —2iT, (w) tanh[(w—p,) /2T;] carries
information about the equilibrium state of the reservoirs.

Monitoring contributes to the self-energy following the
self-consistent Born scheme [73, 74], which involves the
full Green’s matrix G, including baths and monitoring:

(w) = Q»YZ OipGpq(t,1)O0q; 3)

Pq

To derive the retarded and advanced components of X7,
we exploit the prescription gﬁ/A(t.t) = TFid;;/2 (87,
and obtain [QH/A];]l(w) = w—hy -, Ef{;‘(w) +
iy Zp 0;pOypj. In this expression, monitoring appears as
a frequency-independent life-time v O;,Op;, in anal-
ogy with single-particle gains or losses [%7, 40, 41, 47-51].

The difference between monitoring and losses ap-
pears in the Keldysh component of Eq. (3). Inserting
Qg(t,t) = 21?((1;111) — id;; [89] and inverting the Dyson
equation, one finds a self-consistent equation for the cor-
relation matrix D;; = <d};d{>

D=/%wwﬂzﬂwnw+wmﬁww»

(1)

The solution of Eq. (4) completes the full derivation of
the Green’s function G. The knowledge of G is sufficient
to derive currents [49, 75]. After straightforward alge-
bra, detailed in the SM [86], we find closed, exact and
non-perturbative expressions for the particle and heat
currents:

5 =2 o= m)(h - Fer[r,6"r,64)

elastic

+ "/% / d (@ — i) tr [T, 670 (D — £,1)064] . (5)

inelastic

with 7 = R if r = L and viceversa. This expression
is the main result of our work. It allows us to draw
general conclusions on monitor-assisted transport and,
combined with Eq. (4), can be directly applied to all
settings described by Lindbladians of the form (1).

Equation (5) appears as a sum of two distinct terms.
The first term reproduces the Landauer-Biittiker for-
mula for currents in non-interacting systems [88, 90]. It
describes the energy-preserving transfer of particles be-
tween reservoirs at energy w with transmission proba-
bility T(w) = 4tr [[,GFT:G4]. As T(w) depends on
GR/A | where measurements only contribute to reducing
life-times, monitoring affects elastic transport exactly as
single-particle gains or losses [37, 40, 41, 47-51].

The second term in Eq. (5) is controlled by monitor-
ing. The implicit dependence of the correlation matrix D
on additional energy integrals, see Eq. (4), indicates that
measurements inelastically add or subtract energy to par-
ticles in the system. A rough inspection of Eq. (5) shows
that the inelastic contribution has a peak as function
of the observation rate v, interpolating between a linear
growth for small v and a 4~ decay in the strong measure-
ment limit, as G4 « v~ for ¥ — oo, see Figs. 1b-2c.
Position and strength of this maximum depend on the de-
tails of the problem, but it is generally expected for values
of v comparable to the spectral width of the system and
its coupling strength to the baths. These maxima are out
of reach in perturbative approaches. Importantly, the in-
elastic current is not directly proportional to fr,— fg, and
can thus be finite even without a bias. This mechanism
describes the generation of non-reciprocal currents from
measurement and can be exploited for work generation.

We provide below explicit illustrations of these consid-
erations on two different monitor-assisted devices.

Monitored density engine — We first consider a mon-
itored setting, sketched in Fig. 1, where a single level of
energy €4, described by the Hamiltonian Hyys = €4 did,
evolves under the continuous measurement of its occupa-
tion, associated with the operator © = n = dfd. Solving
Eq. (4) gives the occupation of the level

_ Jdw AW)[fL(w)Pr(w) + fr(w) Pr(w)]

(m J dw A(w)[Pr(w) + Pr(w)] @
where A(w) = —Im[GF(w)]/7 = %@%@’Tw is

the spectral function of the level. We have introduced
the quantity P,(w) = T',/[Tr, +T'r +7], which highlights
the non-equilibrium effects of monitoring. For instance,
in the unbiased case (f,r = f), the absence of dephasing
(y = 0) is needed to recover Pr + P, = 1 and the stan-
dard equilibrium expression (n),, = [ dw A(w) f(w) [91].
Injecting Eq. (6) in Eq. (5), we obtain the particle current
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Figure 1. a) Monitored level of energy 4, coupled to left and right reservoirs with asymmetric hybridization functions I'p (w) #
T'r(w). The level occupation is measured with strength +, providing the inelastic mechanism promoting particles from energy
w1 to w2 and inducing a current against the bias (arrows). The blue-shaded areas correspond to the finite-temperature Fermi

distributions of the reservoirs. For all plots, we use the two-filter model discussed in the main text, with eg = 1.48t =

—ep, A=

0.55¢, which we found to maximize the unbiased particle current at pr,r = Tr,r = 0. b) Peaked structure of the unbiased
particle current as a function of the measurement strength ~ for varying e4. Inset: The unbiased current decays monotonously

for increasing temperatures (y = 1).

c¢) Differential conductance G' as a function of the chemical potential y at 7" = 0 for

increasing 7. The measurement suppresses the resonance associated to the single level and favors those from the filters, as

highlighted by arrows.
Dashed lines correspond to linear response calculations.

JO = J% = —J? flowing through the system

=2 oA (- f) g

m/dwdw.AAPLPR (fL fR) ,

where we omit all frequency dependency for compactness
and use the shorthand notation f' = f(w').

The first term reproduces the well-known expression
of the current flowing through a Breit-Wigner reso-
nance [92, 93], with an additional suppression controlled
by the monitoring rate ~.

The inspection of the inelastic term in Eq. (7) directly
shows that even without bias (up,.r = p, T = T),
monitoring can trigger the flow of a finite, non-reciprocal
current through the system. This non-reciprocal current
is finite provided that at least one of the hybridization
functions I', /g depends on energy, and that mirror and
particle-hole symmetry are simultaneously broken [94-
96]. Such conditions are satisfied when I', # ' and at
least one function among A or I'y/p is not symmetric
around the chemical potential y. The mechanism gen-
erating this current is sketched in Fig. la: electrons at
energy wp are emitted from one reservoir onto the level
and the measurement provides the energy for the elec-
tron to exit into an empty state of the other reservoir
at energy ws. The fact that the injection and emission
rates depend asymmetrically on energy allows the gener-
ation of the current. The emergence of a non-reciprocal
current can be also understood based on the fact that
averaging over the measurement outcomes is equivalent,
in this specific case, to coupling the system to an infinite-
temperature bosonic bath (see SM [86]), which induces a

d) Electric power as function of a symmetric bias pur — pr around p = 0, for different values of .

thermoelectric flow in the system if mirror and particle-
hole symmetry are broken [97-99].

Figure 1b shows that the inelastic current displays
the aforementioned peak as a function of the measure-
ment strength ~ at zero bias ou = pur — pur = 0.
For all numerical applications, we consider a minimal
model where the level is coupled to two metallic reser-
voirs via two energy filters of energy €,/5. In this case,
S (w) = #2/(w — &, +iA), where ¢ is the level-filter tun-
nel coupling and A the hybridization constant of the filter
with the reservoirs, see SM [86]. The resulting hybridiza-
tion function I', (w) = —Im¥F(w) is peaked around ¢, as
sketched in Fig. la. We have found the maximum non-
reciprocal current for iy ~ ¢ — that is out of weak coupling
(y > t) — when g4 = 0 and when mirror and particle-
hole symmetry are broken by antisymmetric reservoirs
with e, = —ep. The peak roughly follows 4 and is sup-
pressed by finite temperatures, see inset of Fig. 1b. Sim-
ilar non-reciprocal effects and peaks were also discussed,
from a real-time perspective, in Refs. [38, 39].

Figure 1lc shows the differential conductance G =
0.J°/961|s,=0 for the same system. G also features elas-
tic and inelastic contributions [100, 101], scaling differ-
ently with 4. For small rates, the elastic term dominates,
showing as many peaks as resonances in the system
three in the application of Fig. 1. Because of the fact that
only the central level is monitored, increasing v strongly
suppresses its associated resonance, while spectral weight
is transferred to the filters (arrows in Fig. 1c). Conse-
quently, for intermediate monitoring strengths v ~ ¢, the
conductance actually increases out of resonance (p # 0),
before being also suppressed in the 7 > ¢ limit.

The fact that monitoring generates currents at zero
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The range of

parameters for which quantum measurement cooling is possible reduces by increasing . The black dot corresponds to e, = 10t
and er = 3t, where panels (c) and (d) are derived. ¢) Heat flowing into the right reservoirs for increasing temperature bias
Ty > Tr. Quantum measurement cooling (QmC) occurs in the colored region and below some critical temperature bias. d)
Parametric plot of the coefficient of performance (COP) of QmC. Curves are obtained by varying the measurement strength .

bias, implies that they can flow against externally im-
posed biases to generate work. We consider here the
generated power P = du - JO and show the importance
of non-perturbative and out-of-equilibrium effects on this
quantity. In linear response, J° =~ J0\5,1,=0 —op G, and
the power has a parabolic dependence on dy, with a max-
imum Ppax = J"|§”=O /2G and a change of sign at the
stopping voltage Sistop = J°|s5=0/G. Figure 1d shows
that the maximum power generation is found for moni-
toring of strength v > ¢, that is out of the weak coupling
regime. Moreover, we find that non-equilibrium effects
associated to strongly biased reservoirs cannot be ne-
glected. They can be exactly derived via Eq. (7), and the
dashed lines in Fig. 1d clearly show that linear-response
greatly overestimates Prax and dpisop When y ~ t.
Quantum measurement cooling — We consider two in-
dependent sites Hgys = aLdzdL + epdhdy that are cou-
pled via the monitoring process, O;j = 6;1.0;r + dird;L,
see Fig. 2a. This process can be in principle realized
by adding an interferometer measuring cross-correlations
between the two sites [102, 103]. Also in this case,
we rely on Eq. (4) to find the occupation of the levels

(ny) = (dfd, )

fdw[f,PA +(1—fdw’P’A’)f,PA]
S JdaPo Ay — 11, [ dwPr Ay

(n,) = ®)

with modified notation P. = T', / (T + ’y) and spectral
functions A, (w) = —ImG~: /7 = ): e

Because of the absence of coherent hopping between
sites, gf',/{‘ = 0 and only the inelastic component of the
currents in Eq. (5) is finite, for which the knowledge of
Eq. (8) is needed. We are interested in exact expressions
for quantum measurement cooling (QmC) [76], we thus
consider the heat current flowing in the right reservoir

T Jw—er—

Jh = ZN‘Y / dwdw' (w — pr)ArPr [Alei (f. = fr)
(1= [ ag ) Aupi = )] 0)

where N is the denominator appearing in Eq. (8). To get
physical insight on the physical requirements for QmC
and the multiple processes described by Eq. (9), we first
inspect the 4 — 0 limit. To leading order in v, one can
approximate P, = 1 and only the first term in Eq. (9)
remains. It can be cast in the compact form

Th=2y / d (@ — pr) Ap(@)[ (1) — fr(@)] . (10)

If we further approximate the spectral function by
Ap(w) = 6(w — eg), we get Jh = 2y(er — pr)((nL) —
(ng)). This expression makes explicit that the heat flow
in the right reservoir is controlled by the position of the
right level with respect to the chemical potential and the
difference of occupation with respect to the left level.
The condition for cooling the right reservoir is J} < 0.
In the absence of bias, such condition requires up < eg
and €7, S €p, as sketched in Fig. 2a. Analogous condi-
tions were found to achieve cooling by heating [104, 105],
where the role of measurement is played by a third hot
reservoir. The second term in Eq. (9) acts at order 2
and describes the reinjection of heat in the right reservoir
by particles hopping back and forth to the left level via
the monitoring process.

In Figure 2, we explore QmC and its performances also
for strong temperature biases and large values of . For
numerical applications, we consider p/r = 0 and take
the same hybridization functions I, (w) than in the previ-
ous section, with peaks aligned with e,.. Figure 2b shows



the regions where QmC occurs, in the absence of bias and
for increasing monitoring strength 7. QmC indeed occurs
when €, < eg < 0. Nonetheless, the parameter region
for QmC shrinks the larger the monitoring strength -, re-
flecting the fact that more heat is injected in both reser-
voirs the stronger the measurement process is. Fig. 2¢
shows the behavior of J4 for increasing temperature bi-
ases as function of 4. Exactly as the non-reciprocal cur-
rent discussed in the previous section (Fig. 1b), the heat
current shows a peak for v ~ t. However, increasing the
temperature bias leads to a change of sign of the heat
current, signaling that the left reservoir is hot enough to
heat the right one.

We conclude this study by discussing the efficiency of
this process, which is characterized by the coefficient of
performance, COP = |JL/(J% + J1)|, which measures
how much heat can be extracted from monitoring [106].
We depict the COP in Fig. 2d as a parametric plot on
the rate 7. For fixed temperatures in the reservoirs, the
maximum COP is found near the critical measurement
strength v at which the heat flow changes sign in Fig. 2c.
This monitoring strength is also of order ¢ and is not
encompassed by the weak coupling limit.

Conclusions — We have derived exact and analytic ex-
pressions for the particle and heat currents flowing in a
large class of monitored systems. These formulas were
applied to investigate power harvesting and cooling as-
sisted by measurements. In particular, we have found
current peaks as a function of the measurement strength
~ out of the weak-coupling limit (Figs. 1b-2c). These
peaks are clear features that could favor their observation
in experiments. Our results can be readily generalized to
different monitored setups and pave the way to the inves-
tigation of unexplored regimes which are not captured by
standard, perturbative approaches. We have shown that
these regimes are important, as they manifest the best
performances in terms of power generation and quantum
measurement cooling.

On a more fundamental level, we have provided ex-
act expressions for quantum transport in the presence
of non-elastic effects caused by monitoring. It would be
of great interest to establish in the future whether for-
mulas like Eq. (5) also apply for interacting quantum
impurity models driven out of equilibrium, and/or for
systems coupled to bosonic baths at finite or even zero
temperature [42, 107-110].
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Supplemental Material of “Exact description of transport and
non-reciprocity in monitored quantum devices”

In this Supplemental Material, we recall how averaging over the results of weak measurements of an operator O leads to
the Lindblad dynamics described by Eq. (1) in the main text. We then derive explicitly the contributions to the self-energy
coming from non-interacting reservoirs with energy filters, used for numerical applications in the main text, and, in particular,
from monitoring — Eq. (3) in the main text. We provide details about the derivation of the self-consistent formula for the
correlation matrix D — Eq. (4) in the main text — and the exact expressions for the particle and heat currents — Eq. (5) in
the main text. We then establish the equivalence between the Lindblad dynamics induced by averaged measurements of the
operator O and the coupling of the operator O to a bosonic bath at infinite temperature and large chemical potential.

LINDBLAD DYNAMICS INDUCED IN AVERAGE BY CONTINUOUS MONITORING
Continuous weak monitoring

In this section, we briefly discuss how the Lindbladian in Eq. (1) of the main text originates from an evolution
under continuous measurement of the operator O = Z dl Ou d; with O;; = Oj;. The associated monitored dynamics
of the quantum state is described by a stochastic Schrodlnger equation. Taklng the Ito prescription, the infinitesimal

increment of the wave-function d|y;) = [¢iar) — [1¢) obeys [79]

dlin) = [=iH =7 (0 = (0),)*] [va) dt + /27 (O = (O),) ) dB: | (s1)

where H is the Hamiltonian of the system, (O); = (¢;|O|¢) and v is the measurement strength. The quantity dB; is
the increment of a stochastic Wiener process By, which, according to Ito rules [111], behaves in average as E[dB;] = 0
and dB? = dt. The equation ruling the dynamics of the mean density matrix p; = E[|¢;) (¢¢|] is then obtained by
averaging over all measurement outcomes and over the noise realizations By. It satisfies the differential equation

dpy = E((d ) (el + 160} (d (al) + (d [))(d (n])] (82)
= E [=il#, 1) (willdt =110, [0, 1) (Wellldt + V2O = (O),14) (]} B ($3)
= —ilH, pdt = (0, [0, pi]Jdt, (84)

where we have neglected all terms of order dB;dt and dt? and used the Ito rules dB? = dt and E[dB;] = 0.
Importantly, we see that the second term in Equation S4 involves a double commutator, which reproduces the
Lindblad form D[p] = v(20p0 — {O?, p}), see also Eq. (1) in the main text. Since we consider observables O and
Hamiltonians A that are quadratic in the creation and annihilation operators, on average, the contribution of the
measurements to the evolution equation of n-point correlators close on themselves.
We illustrate this last point on the two-point function Gy (t) = (ddei = tr[ptdkd}\]. If we suppose a quadratic
Hamiltonian of the form H = Z “d'h,.d., thanks to the cyclic properties of the trace, one finds that the time

i1 %y
evolution of the correlation functlon G is ruled by the differential equation

L 6rat) = i), = 1M, dyf)), ~ (0, [0, dyd]), (85)

Since both the operators H and O are quadratic in the creation and annihilation operators d and df, the commutators
also generate quadratic operators. As a consequence, one can write down a closed system of equations for the elements
of the correlation matrix G:

(%G(t) = —ilh, G()] = +(0, [0, G®)]]- (56)

Such considerations extend to any n-point correlation function.



Equivalence to averaged evolution of a quantum stochastic Hamiltonian

Alternatively, the averaged evolution equation (S4) can also be generated by the quantum stochastic Hamiltonian

(QSH):
dH; = \/270dB;, (87)
where By is the same Wiener process as above. The infinitesimal evolution of the wave-function is unitary and reads
[eyar) = e~ Hdt—idH: [1pe) = d|ve) = —i(H + dHy)dt|yy) — ’YozdtWO s (S8)

where we have again discarded terms of order dB;dt and dt?> and applied dB? = dt. The infinitesimal evolution
generated by this term on the density matrix p; = E [|¢¢) (¢]] reads

dpr = —i[H, pi)dt — %[d?im [dH1, pi]] = —i[H, pu]dt =[O, [O, pi]]dt, (89)

where we have again made use of the fact that E[dB,] = 0 and which coincides with Eq. (S4).

If we are only interested in the average evolution of the density matrix, it is advantageous to use the unraveling
in terms of QSHs. Indeed, for this procedure, the evolution at the stochastic level is both unitary and quadratic in
fermionic creation and annihilation operators, meaning that Gaussian states are preserved under evolution. Addition-
ally, the equations of motion remain linear at the stochastic level - differently from the monitored case.

Note however that, despite these advantages, the inclusion of thermal baths with finite memory time is still chal-
lenging, as it will render the equations of motion non-local in time. An additional powerful property of QSHs for that
matter is that, at the field theory level, the self-consistent Born approximate (SCBA) is ezact for QSHs [49, 73]. This
allows to express all observables of interest in a closed-form even in the presence of thermal baths as we will discuss
in Section .

SELF-ENERGY OF THE SYSTEM: RESERVOIRS AND MONITORING CONTRIBUTIONS

We recall that we consider density matrices p evolving according to the Lindblad equation
Op = —i[H, pl+7 (20p0 —{O%p}) . (s10)

where O = E” dIOU dj is the monitored single particle operator. The Hamiltonian describes a system tunnel coupled

to reservoirs in the generic form H = H,es + Hr + Heys, with

He Y cuchient D0 [tmchads + 5 dle, ] + D dingd; (s11)
kor=L.R kyisr=L/R i

Reservoir Tunnel Coupling System

where ¢, destroys electrons in the mode k of the left (r = L) or right (r = R) reservoir and {d!,d; } forms a complete,
ortho-normal set of single-electron creation and annihilation operators acting on the system.

To derive the self-energies associated to reservoirs and monitoring, we rely on the Keldysh path-integral formal-
ism [87], which can be extended to dissipative systems [66]. In this formalism, the partition function of the system
Z = tr[p(t)] is expressed in the form

Z= / D [¢,¢,d, d] &SlFebd (S12)

where [E, c,d, d} is a set of Grassmann variables on the Keldysh contour corresponding to the creation and annihilation
operators in Eq. (S11). The action S corresponding to Eq. (S10) has a unitary and a dissipative component & =
Sy + Sp. We adopt Larkin-Ovchinnikov’s convention [112] for generic Grassman variables v

LUt LU= i o U

| / 1 2
¢ ; PP= =, ¥
NG v V=T

= = ($13)



In this convention, the unitary action corresponding to the Hamiltonian (S11) reads, in frequency space,

Sy = /g—: > e n@)Crp@)enp(w) = > [12 pi Crge (@) - di (@) + 87 35 d; (@) - ¢, A(w)] +Zd w)Gg i (w)d;(w)
o

ki

(S14)

where we used the shorthand vector notation & = (¢' &), ¢ = (¢! ¢?)” and analogous for d and d. The Green’s
functions have a retarded, advanced and Keldysh component

ght g« -
G- ( L) (s15)
In the case of the action (S14), the inverse of the Green’s function of the reservoirs and system read, respectively,
Z1 o Jw—eng +i0F 20 tanh [%] S [w— Ry a0t 0
cr.k(“") - |: 0 W g — i0+ ) gO i (w> - 0 w— h”, _ i0+ ’ (Slﬁ)

where the infinitesimal Keldysh component of G can be safely ignored, being regularized by the integration of the
reservoirs, see Section .
The dissipative contribution of the action is instead diagonal in time and reads

Sp =i / 'Y 040u (@ 0d (a0} () + 24 (O (OE () + EOEOROFD] . ($17)
ijkl

This action can be derived by averaging over the quantum stochastic unitary dynamics, see Section .

Both the presence of reservoirs and monitoring modify the Green’s functions of the system G through a self-energy
3, according to the Dyson equation

g=g;' - 2]71 : (S18)

We proceed with the calculation of such contributions below.

Self-energy with generic reservoirs and explicit expression with energy filters

The contribution to the self-energy due to the presence of reservoirs, ¥y /g, can be obtained by Gaussian integration
of the reservoirs, namely of the fields ¢, and &, in the action (S14). Completing the square in Eq. (S14), one finds
the self-energy associated to generic reservoirs reported in the main text

. —L — —2inf(w — &, ) tanh (—L)
2 i(w) = Ztrm ki Cre (W) = Ztnkitr.kj [“’ E"'6+1(]+ B 21 . (S19)
k

w—ep —i0F

We derive an explicit expression of this self-energy for the numerical applications used in the main text. The
simplest way to obtain an explicit form of a frequency-dependent hybridization function I, (w) consists in considering
the reservoirs as a lead with a constant density of states vp, which is coupled to the system via an energy filter of
energy ¢, see sketches in Fig. S1. We also neglect all energy dependence of the tunnel amplitudes. The Hamiltonians
describing this situation, and which are used for the two numerical applications in the main text, read

Hi= Z [ghk‘fik‘fr,k + 7'(cT kCr (,(T,C)} ZE che, + tz { fd+die } +eqd'd, (S20)
rk
Ho = ; [Sﬂkel,kcr,k + T(Ci7kc,. + Ckr,k)} + t; [cf.d,, + df.c,,} + ;57' [cf.c,. + dl\.d,} , (S21)

where the operators ¢, and ¢l act on the filters and where we have also made explicit, in Hz, that filters and levels
have the same energy e,. This is the assumption used in the numerical applications of the main text in the context
of quantum measurement cooling, but it is not necessary at all for the following discussion.
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Figure S1. Schematic representation of the systems described by the Hamiltonians (520) and (S21), used for numerical
applications concerning a) Monitored density engine and b) Quantum measurement cooling in the main text, respectively.
Each reservoir is tunnel coupled to a single level through a constant tunnel coupling 7. These levels act as energy filters, which
are in turn coupled to the system via a tunneling strength ¢.

Switching back to the field theory language, we proceed now with the integration of all the fields (¢, ¢), associated
with the reservoirs. We start with those with labels (r, k), corresponding to a metallic lead with a constant density
of states vy. Focusing on the case of H; in Eq. (S20), their integration leads to a self-energy contribution of the
form (S19) to the energy-filters (¢, ¢, ), which leads to a Keldysh action of the form

S :/d_w {ZET(W [w—a(r)-&-iA 2iAtanh<%)

cr(w
2 w— g, —iA )

r

<ty [E,.(w)-d(w) +J(w)-c,,(w)} +d(w) [“554 0 ](1@;)} . (S22)

W —E&q

where A = 77?2 is the standard expression of the hybridization constant for a single level coupled to a metallic
reservoir with a constant density of states in the wide-band limit. The action corresponding to Hs in Eq. (S21) is
analogous. Notice also that the Keldysh component of the inverse Green’s function in the first term of Eq. (S22) is
now finite and we can send the infinitesimal term in the Keldysh component of the last term of Eq. (522) safely to
zero. The Gaussian integration of the filters (¢, ¢,) leads to the final form of the self-energy used for the numerical
applications in the main text, namely

t? : W=y
£ il (w)tanh (-L)
3p(w) = w—g,HiA il (w) in 2T, :l , (S23)
w—s;.—iA
where we have also introduced the hybridization function
S (w) — 2E(w) t2A
r =2 T - IR w) = —— 24
() 5 ) = (s24)

which has the Lorentzian shape sketched in Figs. la and 2a of the main text.

Validity of the self-consistent Born scheme for the monitoring contribution to the self-energy

The action (S17), associated to the monitoring of the observable O averaged over the measurement outcomes, is a
quartic action in the Grassmann fields and thus cannot be integrated using Gaussian integrals. However, it is possible
to derive an exact expression of the self-energy according to the self-consistent Born scheme, Eq. (3) in the main text.
The idea is to rely on the unraveling procedure corresponding to Eq. (S7). The corresponding action reads

Sasu = — Z / dt\/240y; [d?-(t)d}-(t) + zi?(t)d_?(t)]é(t) 4 (825)

One can readily verify that performing the Gaussian noise average with moments E[£(¢)] = 0 and E[(¢)¢(t)] = d(t—t')
directly leads to the dissipative action (S17)

E[ezSﬂu] — /D[f]eisﬂ,.,,‘/-dty(t)/z — ¢iSD | (526)
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Figure S2. a) Diagrammatic representation of the bare retarded, advanced and Keldysh Green functions and of the vertex
associated to the quantum stochastic action (S25). Full lines represent the retarded propagator, dashed lines the advanced
one, and mixed lines the Keldysh propagator. b) Diagrammatic expansion of the retarded, advanced and Keldysh propagators.
At a given order n in the expansion, only one diagram contributes to the retarded/advanced self-energy, whereas the Keldysh
component has n + 1 diagrammatic contributions, corresponding to the insertion of the Keldysh bare component at different
times.

B T

Figure S3. a) Diagrammatic representation of the averaging over the noise realizations. The fact that the noise is Gaussian
and d-correlated in time is represented by connecting two wiggly lines, which are then contracted to a single point in time.
b) Example of a crossing diagram for the Keldysh component. The red lines highlight the part of the diagram violating the
causality structure, as it features two retarded components with opposite directions in time. This diagram thus vanishes and
can be discarded.

The unraveling corresponding to Eq. (S25) thus corresponds to a Hubbard-Stratonovich transformation, where the
action becomes quadratic in terms of the Grassmann variables at the price of introducing the time-dependent noise £(t).
However, the fact that the averaged noise is o-correlated in time allows a dramatic simplification of the diagrammatic
expansion of the single-particle correlation functions in terms of the measurement strength .

Consider the diagrammatic representation of the Green’s function in Fig. S2a. The vertex corresponding to Eq. (525)
only connects solid lines with solid ones and dashed lines with dashed ones. As a consequence, in the diagrammatic
expansion of the retarded (advanced) propagators only retarded (advanced) propagators appear. For the Keldysh
component, one can switch only once from dashed to solid lines through the insertion of a Keldysh propagator, see
Fig. S2b.

Averaging over noise realizations corresponds diagrammatically to imposing an equal time index when connecting
wiggly lines, see Fig. S3a. The key insight is that after noise-averaging the diagrams, those with crossing wiggly lines
do not contribute to the action. In Fig. S3b, we show an example of a diagram with crossing wiggly lines arising from
the diagrammatic expansion of the Keldysh component. In that example, after averaging, two retarded propagators
run in opposite time directions. As a consequence, this diagram involves the multiplication of two retarded functions
with opposite time-dependence, which equals zero. Similar considerations apply for all crossing diagrams, and we
redirect the interested reader to Refs. [73, 74] for the complete demonstration. Since the crossing diagrams vanish, the
Born non-crossing approximation is exact, and all the remaining non-crossing diagrams can be exactly re-summed,
leading to the self-consistent equation for the self-energy

7 (1) = 290(t — ) D> OipGpg(t,1)Oy; (827)

Pa

which corresponds to Eq. (3) in the main text.

DERIVATION OF THE SELF-CONSISTENT EQ. (4) IN THE MAIN TEXT

The way to solve the self-consistent equation (S27) for its retarded and advanced components is given in the main
text. We provide here additional details concerning the solution of its Keldysh component leading to Eq. (4) in the
main text. We first recall that the total self-energy includes the contributions from the reservoirs. It has thus the



form £K = 2K 4+ 9K + 290G 0, with EL/R given in Eq. (S23). We then rely on the fact that GK = GERXG4 to
derive, in time representation,

) d d
GE(t 1) = —2i ﬁg’*(w) r:;m(l — 2, (W) (w) | GAW) + 27 %gR(w)og"(t,wog*‘(w) . (s28)

Relying on the identities

bij — iGHK (t,1)

Gf — g =gR(sf — uMg" = —2iG" (T + Tr +~0?)G", Dij = (did;) = 5 (S29)
we can apply the property
i [ 316" - gAwl =1, (830)
T
to derive a self-consistent equation for the correlation matrix D, namely
dt
D= [%6Mw) | 3 1@ +10P0| G4 ), (s31)

r=L/R
which corresponds to Eq. (4) in the main text. Equations of this type can be solved by vectorization or by direct

substitution, for a few site systems.

FORMULA FOR CURRENTS IN MONITORED SYSTEMS - EQ. (5) OF THE MAIN TEXT

In the presence of interactions or dissipation, the Landauer-Biittiker expressions [88, 90] for elastic transport are
no longer applicable and several extensions have been derived [75, 101]. We follow here the approach of Meir and
Wingreen [49, 75] and show how it can be used to derive Eq. (5) of the main text. We start by considering the
particle (¢ = 0) and heat (¢ = 1) currents flowing into the reservoir r — Eq. (2) in the main text

JE = iZ(fr.k — ) [t:-.ki<dzcr,k> - t?‘,M(Ci,kd Z/ (erk — 10)° [5G i (W) — trkiGlp(@)] . (S32)
ki

where we have introduced the Keldysh correlation functions g@(t, t) = —i([d;(t),c;, k(t )]) and g,{f () =
—i([c, (), d!(#)]). By performing the diagrammatic expansion of these correlation functions in the tunnel amplitudes
tr ki, one finds that they can be factorized as

Gl () th 1 +ka(w)2tr,k]gﬁi(w), (S33)

Krw) = 1-,1((“ Ztr,k:jg:i[,(j +ck (WZMJQZ(W (S34)
J

where the correlation functions C, j(w) are the correlation functions of the isolated reservoirs given in Eq. (S16),
whereas the correlation functions G are the full Green’s functions of the system including both reservoirs and moni-
toring. By inserting Eqgs. (S33-S34) into Eq. (S32), we then derive the expression

I = [ ) it [ (CR0) - CA()) G ) + ) ()~ G @)]- (s3m)
kij

Exploiting the fact that ka(w) -C/ CA (w) = —2mid(w — &,.x) and that Cl(w) = —2mid(w — &) tanh[(w — p,)/2T5]
we obtain:

st = =i [ G = ) all @%@+ (1= 2, @) ) (616 - 67)) (36)



where we have introduced the generalized hybridization function I'vij(w) = 732, ¢, 1ty ;0(w — €rx). Note that
although Eq. (S24) corresponds to the particular case of a reservoir composed of a metallic lead tunnel coupled to an
energy filter the relation I',(w) = [S2(w) — ZF(w)]/2 is always valid.

The formula (S36) also applies to the monitored systems described by the Liouvillian dynamics (S10). Injecting
the exact expressions Eqgs. (S28-S29), we derive Eq. (5) in the main text, namely

JS = /dw(w 1) (fr = fo) tr [D,GRTRGA] 442 /dw(w ) tr [D,670 (D - £,1) 0G4 . (S37)

elastic inelastic

LINDBLAD DYNAMICS INDUCED BY A BOSONIC BATH AT LARGE TEMPERATURE AND
CHEMICAL POTENTIAL

In this section, we show how the Lindblad dynamics of Eq. (1) in the main text can also describe the situation where
a bosonic bath of large temperature and chemical potential is coupled to the monitored operator O. This situation
is described by a Hamiltonian of the form, H =3, EkbLbk, +73,(b, +b},)O, with the operator O being hermitian
and quadatic O = E dtOUdl, and where the operators b, and bL annihilate and create bosons of energy ¢j in the
bath. To derive the Keldy sh action associated to this Hamiltonian, we follow the standard convention defining rotated
classical and quantum bosonic fields in the Keldysh action [87]
bt + b~ bt — b~
e — , = ————! (S38)
V2 V2
which also applies for the complex counterparts, at variance from the Grassman fermionic variables, see Eq. (S13).
The resulting action reads

: o s
Shoson bath = Y / dtdt’ [ B, bi ], [Br(t— )]~ [zﬂ -
k 1

Ty 0i /dt [b*}b* (d}d} + d2d?) + b*}b* (d}d? +J2dl)} . (S39)

ki
where By, is the Green’s matrix of the isolated (7 = 0) bosonic bath, which in frequency space reads
_ [BE(w) BE(w)]  |—2imd(w — ex) coth ( HE m
Bi(w) = [Bf‘(w) 0 = " . ( ) kO s (S40)
R

where pp and T are the chemical potential and the temperature of the bosonic bath respectively. The bosonic
degrees of freedom of the action (S39) can be integrated using a Gaussian integral to obtain

72 - = - = did} + did?
St =~ O Oy0u [aat (84} + & d+ @], m-0) [ B4 T4
kyigik,l
) .
:7% > OijOkl/dtdt/{Qi}d}+(ifd§)'8,§(t7t/)(&,lcd}+Jf5dl2>!,+ (841)
ki kel ’

(d‘}d} + dﬁfdf)t [B}f(t — )+ B — t)} (d‘,ﬁdf + Jﬁd})t,} .

We want to find the conditions for which this action maps onto the action (S17), corresponding to the Lindbladian in
Eq. (S10). For this, the last term in Eq. (S41) must vanish and 3, BE (t —¢') is proportional to a é-function in time,
or, equivalently, its Fourier transform does not depend on frequency. The last term in Eq. (S41) is proportional to

> [BEC )+ BAE — )] = —ib( — )3 [emiortm) — eienti=)]
k k (S42)
= —if(t — t/)/ dw v(w) [e’i“’(t’i’) — ei“’("t,)] ,



where we have introduced the density of states of the bosonic bath v(w). If this density of states is constant, the
contribution (S42) vanishes as well as the last term in Eq. (S41).
The k-integration of the Keldysh component gives instead

;BK(Q - / duwv(w) coth (W;T;‘H) et ($13)

which would equal 3=, BX (t) ~ 2mi coth(up /2Tg)5(t), if we can neglect the energy dependence of the density of states
v(w) and of the cotangent in the integration. Assuming negative chemical potential, one finds the action (S17) by
making the identification

~ =772 coth (%) . (S44)

The above approximations can be justified in the limit where the density of states of the bosonic bath is constant for
energies comparable to the spectral width of the fermionic system to which the bosonic bath is coupled to, and in
the limit where pp and T are much larger than the spectral width of the fermionic system. Similar arguments were
used to derive loss and gain terms in the Lindblad form by allowing the system to exchange particles with a fermionic
reservoir with a much larger temperature and chemical potential [49].



3.2 Hydrodynamic description of diffusive QSHs

3.2 Hydrodynamic description of diffusive QSHs

As motivated in the introduction, the question of diffusion revolves around the ap-
pearance of Fick’s law (1.1), a classical hydrodynamic equation appearing in a quan-
tum context. It suggests that diffusive systems support an effective hydrodynamic
description characterized by a single transport parameter, the diffusion constant D.
Such an effective theory describes the dynamics at a coarse-grain length scale (hy-
drodynamic length), whose unit cell encodes a large number of microscopic degrees
of freedom. This concept forms the rationale behind quantum generalized hydro-
dynamics which, with significant success [28, 122, 123], presumes such a scale’s
existence. However, finding a procedure capable of predicting the effective hydro-
dynamic theory starting from the microscopic model remains an open question.

In this work, we propose the 1/N expansion as a (potentially generic) procedure
to establish such an effective hydrodynamic theory for diffusive systems. The main
idea is to find the effective action, 5’, that captures all relevant properties of the
system in the N — oo limit, and then compute transport quantities perturbatively as
1/N corrections to it.

To obtain the effective action is not enough to expand it in the system’s parame-
ters, e.g. hopping or coupling. Instead, one must first scale the system to the thermo-
dynamic limit and then perform a coarse-graining scheme to extract .S, see Fig. 3.2a.
In Eq. [8]], we propose a real-space coarse-graining procedure that groups together
a sites to form a single cell of the new coarse-grained lattice. Both the scaling and
coarse-grain are done at a fixed interaction/noise strength which requires evaluating
the Green’s function in non-perturbative regimes, a difficult task for generic interact-
ing models. However, the exact solution of the QSHs allows us to benchmark this
procedure against our class of QSHs with excellent results.

At a coarse-grain level and for infinite systems N = oo, we expect the action to
be exactly Gaussian and composed of uncoupled cells in local thermal equilibrium.
Each cell is characterized by a local chemical potential /i, temperature 7', and self-
energy 3, see Eq. [9,10]], with the latter encoding the relaxation processes inside
the cell. This ansatz aligns with the intuition that in this limit the current vanishes,
J% ~ N~=1 — 0, and the expectation that quantum diffusive systems support a finite
correlation length where thermalization occurs (similar to classical systems [68, 124,
125]). Since the effective action S predicts zero particle flow, the diffusive transport
must originate from the finite size corrections to the action, which scale as 1/N. We
conjecture that these 1/N corrections include all the action components that do not
commute with the local particle number, such as, but not limited, to hopping terms.
Consequently, the diffusive particle current can be calculated as a perturbation in
these terms, Eq. [11]]. indices are nice.

It is our hope that the 1/N expansion can be shown to work in the context of in-
teracting systems, but doing so requires performing the coarse-grain procedure in an
already notoriously difficult problem. Extensive QSHs offer an ideal testing ground
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Figure 3.2: Adaptation from Fig. [[2,10]] of the paper. a) Schematic view of the coarse-
graining procedure where « sites in the microscopic model are grouped to create a new
cell in the coarse-grained lattice. In the thermodynamic limit, the cells become uncou-
pled and in local thermal equilibrium. b) Example of the coarse-grain scheme in the
dephasing model. As more sites are included in the coarse-grain cell (light to dark col-
ors), the effective Green’s functions converge to the ansatz of Eq. [8,9] plotted as full
and dashed lines.

for our theory, as they exhibit diffusive physics while allowing for a simple numer-
ical solution to the Green’s functions, see App. D for numerical considerations. In
this work, we test the 1/N expansion against three extensive QSHs with different
spacial noise correlations, dedicating the bulk of our efforts to the dephasing model.
In this thesis’s notation, the dephasing model corresponds to the QSH composed of
N local occupation operators acting with the same rate, {Q} = {clci, ..., cjch}.
We consider symmetric reservoirs in the wide-band limit (2.68) but at finite temper-
ature, where the inelastic current does not have the unbiased contribution discussed
in Sec. 3.1.

The driven dephasing model is a prototypical model of diffusion, even support-
ing an analytic solution in terms of MPS [31] when assuming Lindblad reservoirs.
Moreover, through the unravellings already introduced in App. B and C, it can also
be understood as coupling the chain to either N independent bosonic reservoirs or
N independent measurement apparatus [69, 126], as explored in Sec. 3.3. We wish
to use the 1/N expansion to predict the emergence of Fick’s law in QSHs and ob-
tain an expression for the diffusion constant from the microscopic parameters. To
obtain the effective action S, we directly carry out the coarse-graining procedure for
increasingly larger coarse-graining cells, observing how the Green’s function in the
effective lattice evolves, see Fig. 3.2b. At some point, the off-diagonal elements of G
converge to zero, while the diagonal terms converge towards Eq. [[9,10]], indicating
that we reached the hydrodynamic scale. Afterward, we can extract the parameters
of effective theory parameters via a direct fit. For all QSHs under study, see Fig. [7]],
we find that ¥(w) = —27 4 4 and /i, T = oo with a finite ratio /T determined
by the local occupancy of the chain. The system is thus locally in an infinite temper-
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3.2 Hydrodynamic description of diffusive QSHs

ature state [66], as expected from the unraveling of Sec. B. Having obtained S, the
effective parameters can be inserted into the perturbative calculation of the current.
We find that, at the coarse-grain level, the current satisfies Fick’s law with the cor-
rect diffusion constant for all the model’s parameters, see Eq. [51]. We replicated
the same procedure for other QSHs and once again found Fick’s law with the cor-
rect diffusion constant for every parameter, motivating the nomenclature of quantum
stochastic resistors.

Surprisingly, the 1/N expansion’s applicability extends beyond diffusive sys-
tems. Another model under consideration is the long-range noise

T N
C,Cj
Q) ox { , 3.2

i=1,j>i

which, by changing the power-law exponent «, exhibits a unconventional ballistic-
to-diffusive transition in the thermodynamic limit at a critical value «,. which de-
pends on v (o, < 3 for v > 0). Across the transition, Fick’s law still holds but the
diffusion constant diverges with the system size for & < a.. In the Lindblad driving
limit, the 1/N expansion is capable of predicting the correct diffusion constant (and
divergence thereafter) for any «, as well as the correct scaling coefficients. It is not
clear why the 1/N expansion can predict the existence of a ballistic regime. It might
relate to the fact that the system is never coherent, and the ballistic nature is a con-
sequence that, in the o — 0 limit, every site in the chain is equally but incoherently
coupled to every other site.

The 1/N expansion is naturally suitable to compute bulk properties, e.g. the
diffusion constant, but cannot compute contact properties, e.g. the conductance
G = lim,, _,,—0J°/(pr — pr), which depend on the details of the reservoirs,
see Fig. [[9]]. In Sec. 3.3, we address this deficiency by introducing a semi-classical
description of diffusive transport.

Lastly, we hope that the 1/N expansion can be extended to interacting systems
with minimal modifications to the coarse-graining procedure. If this is the case, we
might be able to find a procedure to compute the effective self-energy directly from
the microscopic theory.
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We study the transport properties of generic out-of-equilibrium quantum systems connected to fermionic
reservoirs. We develop a perturbation scheme in the inverse system size, named 1/N expansion, to study a
large class of out of equilibrium diffusive/ohmic systems. The bare theory is described by a Gaussian action
corresponding to a set of independent two level systems at equilibrium. This allows a simple and compact
derivation of the diffusive current as a first-order pertubative term. In addition, we obtain exact solutions for
a large class of quantum stochastic Hamiltonians (QSHs) with time and space dependent noise, using a self-
consistent Born diagrammatic method in the Keldysh representation. We show that these QSHs exhibit diffusive
regimes, which are encoded in the Keldysh component of the single particle Green’s function. The exact solution
for these QSHs models confirms the validity of our system size expansion ansatz, and its efficiency in capturing
the transport properties. We consider in particular three fermionic models: (i) a model with local dephasing, (ii)
the quantum simple symmetric exclusion process model, and (iii) a model with long-range stochastic hopping.
For (i) and (ii) we compute the full temperature and dephasing dependence of the conductance of the system,
both for two- and four-points measurements. Our solution gives access to the regime of finite temperature of
the reservoirs, which could not be obtained by previous approaches. For (iii), we unveil a ballistic-to-diffusive
transition governed by the range and the nature (quantum or classical) of the hopping. As a byproduct, our
approach equally describes the mean behavior of quantum systems under continuous measurement.

DOI: 10.1103/PhysRevResearch.4.013109

1. INTRODUCTION discoveries have motivated the generalized hydrodynamical
descriptions of integrable systems [15,16], providing an el-
egant path to the question of diffusion at finite temperature
[17], and paving the way to the description of diffusive phe-
nomena based on perturbative approaches [18-23].

The out-of-equilibrium driving protocol illustrated in
Fig. 1, where a system is coupled to external dissipative baths,
has been crucial to unveil and characterize such exotic trans-
port phenomena [6,7,24,25]. It allows to study disordered
systems [26-28], uncover novel integrable structures [6,29],
and show diffusive transport [30-35]. These open quantum
systems [36-38], are described within the Lindblad formal-
ism [39,40], which is actively employed to investigate the
exotic dynamics induced by nontrivial interactions with ex-
ternal degrees of freedom, such as lattice vibrations, quantum
measurements [41—46], dephasing [47-52], losses [53-57],
coupling to a lightfield [58—60], and environmental engineer-
ing [61].

This research activity is also motivating ongoing exper-
iments, where recent progress in space- and time-resolved
techniques is applied to directly observe emergent diffusive
and exotic dynamics in various quantum systems, including
cold atoms [58,62-65], spin chains [66-71], and solid-
state [72-74]. In this context, theoretical predictions are
usually made case-by-case, with strong constraints on ge-
ometries and driving protocols [75]. Thus, devising versatile

Diffusion is the transport phenomenon most commonly
encountered in nature. It implies that globally conserved quan-
tities such as energy, charge, spin, or mass spread uniformly
all over the system according to Fick/Ohm’s law

J =-DVn, (¢))

where the diffusion constant D relates the current density J to
a superimposed density gradient V.

Despite its ubiquity, understanding the emergence of
classical diffusive phenomena from underlying quantum me-
chanical principles is highly nontrivial. Early works based
on field theory and perturbative methods [1,2] pointed out
the possibility that interactions do not necessarily lead to
diffusion at finite temperature, a question addressed then more
rigorously by using the concepts of integrability [3]. These
questions have then fueled many exciting discoveries in low-
dimensional interacting systems [4]. A notable example is
the ballistic-to-diffusive transition in quantum integrable XXZ
spin chains [5—10], which also exhibit a superdiffusive point
in the Kardar-Parisi-Zhang universality class [9,11-14]. These
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tools to solve generic quantum models that show diffusion
becomes crucial to understand emerging classical Ohmic
transport.
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In this paper, we develop a novel approach to characterize
the bulk transport properties of quantum resistors, which we
show to be exact and systematic for a wide class of quantum
stochastic Hamiltonians (QSHs). Our starting point is the
Meir-Wingreen’s formula [76,77] (MW), which expresses the
current J of a system driven at its boundaries, see Fig. 1,
in terms of single-particle Green’s functions. We show that,
for Ohmic systems, the MW formula supports an expansion
of the current in terms of the inverse of the system size
N. We illustrate how to perform practically this 1/N expan-
sion, which reveals efficient to derive the diffusive current
and the diffusion constant: we assume that, in the N — oo
limit, diffusive lattices admit a simple description in terms
of independently equilibrated sites and demonstrate that a
well-chosen perturbation theory over this trivial state leads to
the desired 1/N expansion.

We provide a comprehensive demonstration of the va-
lidity of our approach in the context of QSHs. Relying on
diagrammatic methods and out-of-equilibrium field theory
[78], we show that single-particle Green’s functions of QSHs
can be exactly and systematically derived relying on the
self-consistent Born approximation (SCBA)—a generaliza-
tion of previous results derived for a dephasing impurity in
a thermal bath [49]. Equipped with this exact solution, and
relying on MW formula, we explicitly derive the dissipative
current flowing in the system and show that the Keldysh
component of the single particle Green’s function encodes the
Ohmic suppression of the current. Then, we explicitly derive
the asymptotically equilibrated state by “coarse-graining” of
single-particle Green’s functions and validate our procedure
to perform the 1/N expansion.

We illustrate the effectiveness and versatility of our ap-
proach for three different QSHs of current interest: (i) the
dephasing model [29-31,79,80]; (ii) the quantum symmet-
ric simple exclusion process (QSSEP) [34,81-85]; and (iii)
models with stochastic long range hopping [45,86]. The case
studies (i) and (ii) illustrate the effectiveness of our ap-
proach, providing simple derivations of the current J and of
the diffusion constant D, in alternative to approaches rely-
ing on matrix-product state [30,31,79], integrability [29], or
other case-by-case solutions [32,34]. Additionally, we address
previously unexplored regimes, by exactly solving the out-
of-equilibrium problem with fermion reservoirs at arbitrary
temperatures and chemical potentials. Our approach also al-
lows to access two-times correlators in the stationary state,
which were not described by previous studies. For case (iii),
we show instead the ability of our approach to predict novel
and nontrivial transport phenomena, namely a displacement
of the ballistic-to-diffusive transition induced by coherent
nearest-neighbor tunneling in one-dimensional chains. A
byproduct of our analysis is that all the results presented
here apply also for system under continuous measurement,
which are currently attracting a lot of interest in the context
of measurement induced phase transition [41,43,45,86].

Our paper is structured as follows. Section II describes how
the MW formula is a good starting point to build a systematic
expansion of the current in terms of the inverse system size
N. Section III presents QSH and shows the exactitude of
SCBA for the computation of single-particle self-energies.
Section IV shows how our formalism allows to fully compute

J x1/N

FIG. 1. A stationary current J flows in a one-dimensional lattice
when connected to left (L) and right (R) fermionic reservoirs, de-
scribed by Fermi distributions f(e) with different temperatures 7' or
chemical potentials p. The wiggly lines denote dissipative degrees
of freedom acting on the system with rate y. For a fixed difference
of chemical potential §;u = 1, — g, dissipative terms are normally
responsible for the Ohmic suppression of the current, J oc 1/N.

the transport properties of the dephasing model, the QSSEP,
and the long-range model. Section V is dedicated to our con-
clusions and the discussion of the future research perspectives
opened by our work.

II. RESISTIVE SCALING IN FINITE-SIZE BOUNDARY
DRIVEN SYSTEMS AND PERTURBATIVE APPROACH

In this section, we introduce generic tools aimed at study-
ing diffusive transport in boundary-driven setups like those
of Fig. 1. For these setups, the current is given by the MW
formula [76]. In the simplified (yet rather general) situation,
where the reservoirs have a constant density of states and the
tunnel exchange of particles does not depend on energy, the
MW formula reads (we assume e = i = kg = 1):

do, (1
J :i/ iTr[E(FL —TR)GE+

A R

where fig)(w) = [e@H®)/Tuw 4 117! are the Fermi distri-
butions associated to the left and right reservoir with chemical
potentials pzz) and temperatures 7). GR/AIK are the re-
tarded (R), advanced (A), and Keldysh () components of
the single-particle Green’s functions of the system. They
are defined in time representation as Gfk(t —t')=—if(t —
){{e;@), el G — 1) = [GR,(" — D] and GX, —
1) = —i([c; (), cZ(r’)]), where the (curly)square brackets in-
dicate (anti)commutation [87]. ¢; is the annihilation operator
of a spinless fermion at site j. The I'y ), matrices describe
system-reservoirs couplings.

Our aim is to establish a systematic procedure to com-
pute diffusive current for large systems. The starting point
will be the state of the system in the thermodynamic limit
(N — 00). By identifying in the MW formula (2) the terms
leading to Fick’s law (1), we motivate the simple structure of
the problem for an infinite system size. In resistive systems,
a fixed difference of density An :=n; —ny at the edges of
the system enforces the 1/N suppression of the current (J o
Vn o< An/N). It is thus natural to perform a perturbative 1/N
expansion of the current on the N — oo state. We conjecture
a possible perturbation scheme and show its validity in the
context of QSHs.

013109-2



EXACT DESCRIPTION OF QUANTUM STOCHASTIC ...

PHYSICAL REVIEW RESEARCH 4, 013109 (2022)

Without loss of generality, we focus on discrete 1D
lattice systems of size N [88]. In this case, the ') ma-
trices in Eq. (2) acquire a simple form in position space:
[Trw)ljx = I'81v)8,.- We also express the local densities
in terms of Green’s functions, namely, 2n; = 2(5;0,) =1-
i[do ij(u))/(Zn), which also implies 2iAn = Gf,(t =
0) — GN y(t = 0) = AG*. The MW formula then acquires
the more compact form:

J=r / dolfu(@)AL(@) — fe(@) Ax@)] — TAn, (3

where we have introduced the local spectral densities
Apry(@) = — iIm[GﬁI (v.v)(@)] and made use of the fact that
JdoALr) () = 1.

The local spectral densities Ay g)(w) exponentially con-
verge in the thermodynamic limit N — oco. This feature is
generally expected and is illustrated in Fig. 8 for different
classes of QSHs. This observation allows to establish that the
1/N scaling, proper to diffusive currents, must entirely arise
from An in (3). The possibility to ignore the size-dependence
of the first term of (3) imposes strong constraints on the 1/N
expansion of the difference of density An in diffusive systems.
If we write this expansion as

1
2iAn = AGF = AG™ + NAG/ +..., “)

one notices immediately that the leading term AG®® has to
compensate the first one in (3), implying

AG©®)
2i
A sufficient but not necessary condition fulfilling this relation
is obtained by imposing at each boundary:

dw w—
[EGLK(%Q)(&)) = —i/dwtanh (72TZ:>(R>>AL(R)(CU)»

©6)

which will turn out to be satisfied for QSHs. These relations

have a simple and interesting interpretation. In the infinite

size limit, the flowing current is zero and thus the stationary

value of the densities at the boundary can be computed by

supposing that they fulfill a fluctuation-dissipation relation

or equivalently, that these sites are at equilibrium with the

neighboring reservoirs.

Reinjecting (4) in the MW formula gives the current

- f dolfi@) A1 (@) — fe@Aun(@)].  5)

J=i " AG 7
=isy )
and as expected, we get the 1/N diffusive scaling. This rela-
tion tells us that the information about the diffusion constant is
hidden in the 1/N correction to the density profile, which can
be in general a nontrivial quantity to compute. However, we
will see in the following that there is a shorter path to access
it via the use of an infinite system size perturbation theory.
The main idea of the 1/N perturbation is to find an effec-
tive simple theory that captures the relevant properties of the
system in the N — oo limit. From there, transport quantities
are computed perturbatively on top of this limit theory. To
determine this effective theory, we conjecture that there is a
typical length a beyond which two points of the systems can

coarse

FIG. 2. Cartoon picture of the coarse-graining procedure. On the
left, spacial correlations in the infinite size limit are depicted. These
decay exponentially as a function of the distance and are nonzero
only within a finite length a. By coarse-graining the theory over this
typical length, we obtain an effective theory (right) consisting of an
ensemble of uncoupled sites with a finite self-energy at equilibrium.

be considered to be statistically independent. Thus, by coarse-
graining the theory over cells of size a, each cell becomes
uncoupled and in local equilibrium, see Fig. 2.

The reasons motivating such factorization are twofold.
First, the current is suppressed as 1/N in the large system size
limit, so the infinite size theory should predict a null stationary
current. Second, factorization of stationary correlations has
actually been demonstrated for a certain number of diffusive
toy models, most notably in the context of large deviations and
macroscopic fluctuation theory [34,81,89,90]. For instance,
it is known that the nth connected correlation functions of
physical observables, such as density, generically behaves as
N~("=D_ Thus, it is natural to assume that for N — oo, cor-
relations must be exponentially decaying over a length a. We
will show explicitly that in all of the examples studied, this
factorization in the coarse-grained theory will turn out to be
true and provide an analytic estimation for a in Appendix F.

We now put these assumptions on formal grounds. Let j
and k be the spatial indices of the coarse-grained theory

a
Grrak._ L RIAIK ®)
jk T a Jat+m.ka+n"
mn=0
The relation between the different components R, A, and K
of the single particle Green’s functions are assumed to de-
scribe uncoupled sites at equilibrium with a local self-energy
%5 [78]. These conditions require then local fluctuation-
dissipation relations of the form

: ©—
GE ) = 55, tanh( "

)[G}?;@) - GH@)].

with retarded and advanced Green’s functions, which are di-
agonal in the coarse-grained space representation

(3]-1,;

wfa)?:lz Z;(w)' ao

G =
These relations fix entirely the stationary property of the sys-
tem in the infinite size limit. The specification of the free
parameters uj, Tj, w‘; and X; have to be done accordingly to
the model under consideration. We will see that they take a
simple form for QSHs, namely the self-energy X5 is frequency
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independent and the 3, 75 3> w limit can be taken taken in
Eq. (9), as expected in the Markovian limit of the dissipative
process [77].

To get the current, one needs to go one step further and
understand which terms have to be expanded. The thermo-
dynamic equilibrated theory does not exhibit transport, thus
should be left invariant by the part of the Hamiltonian that
commutes with the conserved quantity, for us the local particle
density. It is then natural to conjecture that the perturbative
term for the current is given by the dynamical part of the
theory, that is, the part of the Hamiltonian de“, which does
not commute with the local density. Thus, we conjecture that,
at order 1/N, the current is given by

J = (/Hggn)oor (11

where the (), means the expectation value must be taken with
respect to the infinite system size theory. This formula has
the remarkable advantage that its computational complexity
is very low since the coarse-grained theory is Gaussian. We
remark that the 1 /N expansion presented here is not a standard
expansion in the hopping amplitude 7, since the latter has an
exponentially large degenerate manifold of states at 7 = 0.

In Sec. IV, we show explicitly how these ideas unfold for
QSHs, by comparing computations done from the 1/N theory
with the one obtained from the exact solution that we present
in the following Section Sec. III. Understanding to which
extent and under which conditions Egs. (9,10) and (11) can
be applied is one of the very challenging direction of study,
in particular in the context of interacting quantum systems
without bulk dissipative terms.

III. VALIDITY OF THE SELF-CONSISTENT BORN
APPROXIMATION FOR QUANTUM
STOCHASTIC HAMILTONIANS

In this section, we present a class of quantum stochastic
models and associated Liouvillians (12), that describe either
stochastic local dephasing or stochastic jumps of fermionic
particles on a graph. The random processes are defined by a
quantum Markov equation also known as a Lindblad equation.
We will show explicitly two ways, exemplified by Eqs. (15)
and (Al), to associate an underlying quantum stochastic
model to such Lindblad equation, a process known as un-
raveling or dilatation [91-93]. Of particular interest for us is
the description in terms of quantum stochastic Hamiltonians
(QSHs) (15). It provides a way to resum exactly the perturba-
tive series associated to the stochastic noise, which coincides
with the self-consistent Born approximation (SCBA) for sin-
gle particle Green’s functions. This method was originally
devised for the particular case of a single-site dephaser in
Ref. [49] and we extend it here to more general situations. We
will show in Section IV that, relying on SCBA, we can derive
the diffusive transport properties of these models and show the
validity of the assumptions underpinning the perturbative 1/N
expansion presented in Sec. II.

Consider a graph made of discrete points, each correspond-
ing to a site. To such graph we associate a Markovian process
where spinless fermions on a given site can jump to any other
site only if the target site is empty, see Fig. 3. We define
vij = 0 as the probability rate associated to the process of a

Stochastic Models

Continuous ?é
Measurement

(o)

2}

s
\

iunraveling H

Yy A YA

i averaging| i

Lindblad Vr,k j. %
CEquation kQ ﬂ )

FIG. 3. Schematic representation of our random process. The
orange box represents the Lindblad equation (12), which describes
random quantum jumps between sites connected by an arrow. An ar-
row leaving and arriving at the same site represents a local dephasing.
To a given Lindblad equation, we can associate multiple stochastic
process (blue and green boxes), a process called unraveling (orange
dashed lines). The Lindblad equation is recovered by averaging over
the noisy degrees of freedom (full blue lines). We show that the
unraveling in terms of quantum stochastic Hamiltonian (QSH) is
particularly useful for the diagrammatic expansion of the theory.

fermion jumping from i to j and y;; = y;; the reverse process.
The generator of such process is given by the Liouvillian,
which acts on the density matrix p of the system:

Lip) =Y yij@clepcle; — (clejcie ph). (12)

iJj

The total evolution of the density matrix p is in general given
by

d
o0 =Lop) + L(p). 13)

where £ generates what we call the free evolution, in the
sense that £ is quadratic in the fermion operators ¢; and the
related spectrum and propagators can be efficiently computed
with Wick’s theorem [94,95]. Such Liouvillians can generally
describe single-particle Hamiltonians or dissipative processes
(coherent hopping, losses,...). We will consider L(p) as a
perturbation on top of this theory.

There exists a general procedure to see L(p) as the
emergent averaged dynamics of an underlying microscopic
stochastic, yet Hamiltonian, process. Lifting L(p) to this
stochastic process is known as unraveling and there is not a
unique way of doing so, see Fig. 3. The stochastic Hamilto-
nian can be treated as a perturbation in field theory, which
requires the summation of an infinite series. Our strategy is
to pick the relevant stochastic theory for which there exists
a simple way to reorganize the summation and then take the
average in order to get the mean evolution.

We now proceed to present the unraveled theory. Let dH,
be the stochastic Hamiltonian increment, generating the evo-
lution, which is defined by

[Vrar) = e ]yn). (14)
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‘We work in the Itd prescription and consider stochastic Hamil-
tonians of the form

dH, =Y \/2y; jeleidW,. (15)
ij

W,i‘j describes a complex noise and we adopt the convention
that W;”* = W,”"". The corresponding It5 rules are summed up
by

AW AWr = 518 jdt. (16)

Using the Ito rules to average over the noise degrees of free-
dom one recovers the Liouvillian (12).

Finally, an other point we would like to emphasize con-
cerns the connection to systems evolving under continuous
measurements. Indeed, another way to unravel (12) is to see
it as the average evolution with respect to the measurement
outcomes of a system for which the variables c;c, + cfc j and
,'(L.jc/ — c;c,-) are continuously monitored and independently
measured with rate y; ; [91]. Although the physics is radically
different at the level of a single realisation of the noise, on
average it gives the same result than the prescription (15).
Hence, all the results that will be presented for the mean
behavior of our class of stochastic Hamiltonians also describe
the mean behavior of systems subject to continuous measure-
ments. The unraveling procedure corresponding to continuous
measurements is described in detail in Appendix A.

A. Self-energy

‘We show now that the perturbation theory in the stochastic
Hamiltonian (15) can be fully resummed, leading to exact
results for single particle Green’s functions. To perform this
task, we rely on the Keldysh path-integral formalism [78],
which describes the dynamics of the system through its action
S. The presence of dissipative effects can be naturally included
in S using Lindblad formalism [96]. The action gives the
Keldysh partition function Z = tr(p;)

Z= wa/i, PESW T a7

where ¥ = (¥, ) are Grassmann variables defined re-
spectively on the positive and negative Keldysh time contours
C+. We follow the Larkin-Ovchinnikov’s convention [97],
in which the Keldysh action Sy corresponding to the free-
evolution £ is expressed in terms of the inverse Green’s
function G™'. namely,

d _ _ 1
Sozszw, x/fZ),.[G*']f,,(ﬁz)f. (18)
ij J

All variables in the integral (18) are implicitly assumed to
depend on a single frequency w, which coincides with the
assumption of stationary behavior, valid for our class of prob-
lems. The inverse Green’s function G~! is itself expressed in
terms of the retarded, advanced and Keldysh green functions
GR/AIK  defined in Sec. II:

L, (GR G\!
G 1—(0 GA) 9

(GFlus' )= —i O} 0) = | —e—i,
(Gt 1) = =i (WF(E)F(t) = F--<=-=A
i, 7yt
[GEig(t' 1) = =i {wi ()07 () = <-4,
it 75
0= —i <wf(tl)l+T)1] (t )> time ¢=————

FIG. 4. Diagrammatic representation of the retarded (R), ad-
vanced (A) and Keldysh (K) Green’s function. Time flows from right
to left.

and whose diagrammatic representations in the time domain
are given in Fig. 4. The causality structure of the Keldysh
Green functions is enforced by the suppression of correlators
(¥24') = 0. This means that a retarded propagator can never
become advanced, which pictorially translates into the fact
that a solid line cannot switch to a dashed one.

The action corresponding to the Liouvillian term (12) reads
[96]

Sﬁ = 7/.‘1[ ZVI‘,/(‘/}_,!‘H//,'IA,‘/;,‘ZJ /2,/ + 1/;1111///11\51211//121)
Ly

(20)

which is a quartic action in the Grassmann fields. At the
level of single particle Green’s functions, the action S is
incorporated through the self-energy X, defined as the sum of
all one-particle irreducible diagrams. As in equilibrium field
theory, the Dyson equation relates the full propagator to the
bare propagator and the self-energies X:

G=[G;'-z]"". @
To compute the diffusive current from MW formula, £ must
be know to any order; an a priori difficult task given the quar-
tic nature of the action (20). Instead, rewriting the action at
the stochastic level allows us to exactly derive the self-energy
¥ and solve this problem. In the field-theory language, the
unraveling procedure exemplified by Eq. (15) leads to the
equivalent action

S=-3" / VI + R )aw, @)
ij

where Sy, is related to S by the average E[] over the noise
degrees of freedom:

E[e’S] = <. (23)

In formal terms, this transformation is reminiscent of a
Hubbard-Stratonovich transformation where the action be-
comes quadratic in terms of the Grassmann variables. Note
that the complexity encoded in Eq. (20) is preserved by
the consequent introduction of the space and time depen-
dent noise dW,"’. However, the noise correlations imposed
by Ito’s rules (16) allow a dramatic simplification of the di-
agrammatic expansion in y; ; of the Green functions within
the stochastic formulation. Such simplified structure does
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GR ==t = < + } % b % % |

GA = f=z { = bl +

g
G)C == = <l H---%—-é--l + )—(§—<---I +

FIG. 5. Perturbative series in the Keldysh formalism for our class
of stochastic models. Average quantities are obtained by contracting
pairs of wiggly lines together. Here a wiggly line represents either
dW;"/ or its complex conjugated pair for simplicity. The formulation
of the theory in terms of QSH allows for a simple writing of the
perturbative expansion.

not manifestly appear when working with the Lindbladian
(averaged) formulation of the problem (20) (see Fig. 14 in
Appendix B).

The resummation works as follows. In Fig. 5, we show
the diagrammatic expansion of (21) up to second order in the
stochastic noise y; ;. The wiggly lines represent dW,"’. Since
we are interested in the mean behavior, we have to take the
average over the noise degrees of freedom. This amounts to
contract wiggly lines pair by pair. From the Ito rules (16), we
see that upon contraction, a wiggly line forces the two vertices
it connects to have the same time and position, as illustrated
in Fig. 5.

The important consequence is that all the diagrams, which
present a crossing of the wiggly lines vanish because of the
causal structure of the Keldysh’s Green function, namely that
GR(t,1) is nonzero only for ¢t > ' and conversely for G.
For a detailed proof of this statement, see Appendix B. In
particular, the constraints of avoided wiggly lines establishes
the validity of the self-consistent Born approximation (SCBA)
for the self-energy of single particle Green’s function and
generalize the approach presented in Ref. [49]. SCBA allows
a simple and compact derivation of all components as exem-
plified by the diagrammatic representation in Fig. 6. Namely,
we have that in position space

B 1) = 880,00 ) yikGralt, D). (24)

k
For the retarded and advanced components, this relation
takes a particularly simple form since G?k("‘)(t, 1) = ¥%8j_k

R 0 -5
(b) et =0

t 1
FIG. 6. (a) Noncrossing rule for the contraction of wiggly lines.
(b) Self-energies for the different Keldysh components.

in position space. Note that this simple expression is only
valid when the two time indices are taken to be equal and
comes entirely from the causal structure of the Green’s func-
tions in the Keldysh formalism. One way to see this is to
evaluate the step function 6(t — ) for the retarded and ad-
vanced Green’s functions from the discrete version of the
path integral presented in 9.2 of [80]. To get the Keldysh
component G*, one has to solve the self-consistent Dyson
equation:

G* = —GR([G5']* - =F)6, ©5)

which is a problem whose complexity only scales polynomi-
ally with the number of degrees of freedom in the system
(such as the system size N of the setup in Fig. 1). This
solves the problem entirely at the level of single-particle
correlation functions. Remark that this applies to any model
as long as the bare theory respects a Wick’s theorem and
its propagators are known. It allows a systematic study of
quantum systems in the presence of external noisy degrees of
freedom.

This ability to calculate the Keldysh Green’s function is
crucial to give an exact description of out-of-equilibrium
transport in dissipative systems, as we are going to show in
the next section.

IV. APPLICATIONS

We now proceed to employ the self-consistent approach to
showcase our 1/N expansion, presented in Sec. II, against a
large class of QSHs that display diffusive transport.

The action describing the out-of-equilibrium setting repre-
sented in Fig. 1 has the form

S = Spa + So + Sso- (26)

The first term in the action, Spq, describes the exchange
coupling with gapless noninteracting fermionic reservoirs of
chemical potential ;g and temperature 77 g. The corre-
sponding action, under the assumptions discussed in Sec. II,
was derived for instance in Ref. [77]:

su=ir Y [g2nfy 2 e

a=L.R N

where v, is a shorthand notation for (!, ¥2), L designates
site 1 and R designates site N. The action Sy is the quadratic
action related to the intrinsic dynamics of the system, which
can describe various situations from coherent dynamics to
single-particle dissipative gains and losses [77]. In this paper,
we will focus on one-dimensional nearest-neighbour coherent
bulk hopping, which is described by the standard Hamilto-
nian,

N—1
He =1y (cjejsn+ ), 28)

j=1

with 7 the hopping amplitude. The corresponding action reads

do - )
So= =it 3 [ S+ v+ ed). (29)
J
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The free propagators are directly derived from the previous
expressions of the action and read

(G515 (@) = 800 % TG;1 + 8]

+ TSt +8k-1)s (30)

[Gy']5 (@) =28, 3 5;,tanh (“’;T"”). @1)

a=L,R

Notice that the reservoirs act, through the hybridization con-
stant I, as natural regulators of the imaginary components of
the noninteracting problem [78].

Finally Sy, is the action corresponding to the QSH (22).
As explained in the previous section, the demonstrated va-
lidity of SCBA for the Dyson equation (25) allows to derive
exact expressions for the self-energies (24), and thus for the
propagators of the full theory. Such solution allows to fully
determine the transport properties of the system through MW
formula (3). As shown in Sec. III, Eq. (24) implies a particu-
larly simple form for the advanced and retarded components
of the self-energy:

. ’ Vil
RW = Fis 8,1 o (32)
[
Importantly, in the geometry of Fig. 1, we can derive a com-

pact and explicit expression of (25) for the diagonal terms
GR(t, 1)

GF=a-m".v (33)
where we introduced the N-dimensional vectors
GF =Gla,n, (34)
5 20 do 4 W — [y
V== Z}fgcj_ncﬂ‘jtanh( 7 ) 69

ae{L,R

and M is an N x N matrix with elements
dw
Mix=Y v f EG?,Gﬁr (36)
[

Notice that only G carries information about the biased
reservoirs, as can be seen from (35). The first term in (3)
depends exclusively on spectral functions, which are readily
derived from Egs. (30) and (32), while Eq. (33) sets, through
Eq. (4), the expression of the density differences at the edges
An.

Note that our analysis shows that the matrix M (36) is
the key object encoding information about diffusion and
it appears exclusively in the Keldysh component of the
single-particle Green’s function (33). A convenient way to
understand this is to consider systems with single-particle
gains and losses that do not display Ohmic 1/N suppres-
sion of the current. It was shown in Ref. [77] that, while
(32) remains valid in those systems, the matrix M in (33)
becomes 0 for these systems and the current saturates to
a size-independent value. Thus, having a finite-lifetime in
the retarded and advanced Green’s function is not sufficient
to get diffusive transport. The imaginary contribution to the
retarded/advanced self-energy, such as the one in (32), has
the interpretation of a lifetime for the free single-particle

Long-range : ; :; Ve Y

FIG. 7. Particular 1D discrete cases that will be of interest. Only
the noise contribution is presented in this figure. In the dephasing
model, all the sites are paired with themselves. For the QSSEP, the
pairs are between nearest neighbours. In the long-range model, a
given point is linked to all the rest of the lattice with a coupling
decaying as power law.

excitations of the system, yet it is the Keldysh component of
the self-energy that describes the consequences of dissipative
scattering on the transport properties of the system. When
M # 0, Eq. (36) gives us a linear profile for the density profile,
which eventually leads to a 1/N diffusive contribution for the
current as discussed in the Sec. II.

These considerations are those underpinning our general
discussion about diffusive transport in Sec. II. We now turn to
the case-by-case study of the specific QSHs depicted in Fig. 7.
As said in Sec. I, we will focus on three one-dimensional
models: the dephasing model, the quantum symmetric sim-
ple exclusion process (QSSEP), and models with stochastic
long-range hopping. For the dephasing model, every single
point on the lattice is coupled with itself by the noise. For the
QSSEP, the noise couples each point with its neighbours. For
the long-range, a given point is paired to all the rest of the
lattice with a power-law decay as a function of the distance.
These processes are illustrated for all three models in Fig. 7
and we will give more details about their physical motivations
in the related sections.

Without loss of generality, in the oncoming analysis of
the current J, we focus on a linear response regime in the
chemical potential bias. We set an identical temperature for
both reservoirs 7, =T =T and u;, — pn+8p, g —>
1 — 8. We expand Eq. (3) in §¢. One thus obtains, to linear
order in §u:

S 1 r
J=T— [ do—5—~| Alw) — — A W)|. (37
2T cosh? (%74) [ @) = gg A7 ¢ )] @7
where A(w) is the edge spectral function, which coincides
with Az /r(), because of the mirror symmetry of the class of
QSHs that we will consider. The second term can be expressed
in the form

1 - 1 -
AR ):[—-vw )] —[—-W( >] D)
S VAR ol R Sy v ]

in which Vi/ is an N dimensional vector whose components are
given by Wj(w) = G (0)G{;(0) — GTy(@)Gy ().
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A. Dephasing model

The dephasing model describes fermions hopping on a 1D
lattice while subject to a random on-site dephasing coming
from dissipative interactions with external degrees of free-
dom. In the language of Sec. III, this model corresponds to
the case where all the points are paired with themselves, which
results in substituting the rates

Yi.j = VYpphij» 39)

in Egs. (12) and (15) (see also Fig. 7). There are various
limits in which this model can be derived. For instance,
it can be thought as describing the effective dynamics of
fermions interacting weakly with external bosonic degrees
of freedom within the Born-Markov approximation [37]. In
Refs. [30,31,79] it was shown, relying on matrix product op-
erator techniques, that the dephasing model exhibits diffusive
transport. Two-times correlators in the XXZ under dephasing
was also studied in [51] and were shown to exhibit a complex
relaxation scheme. For bosonic interacting systems, it was
shown that the addition of an external dephasing could lead
to anomalous transport [98,99]. Additionally, as discussed in
Sec. III, the mean dynamics of this model coincides with the
one where the occupation numbers of fermions on each site
are independently and continuously monitored [44,100]. For
this reason, the dephasing model has recently attracted a lot
of interest as a prototypical model exhibiting a measurement
rate-induced transition in the entanglement dynamics [42,43].
Finally, we note that in Ref. [29] a mapping between the de-
phasing model and the Fermi-Hubbard model was established.
Although we will not discuss this mapping here, we stress
that it implies that our method also provides the computation
of exact quantities valid for equivalent systems governed by
Hubbard Hamiltonians.

The stochastic Hamiltonian for the dephasing model is
readily obtained from the substitution (39), namely

dH, = \/2yopm Y #;dB],
i

(40)

where B; denotes a real Brownian motion with Ito rule
dB! dBf‘ = J;xdt. The retarded and advanced self-energies are
obtained from Eq. (32) and read
i
RN ) = F 5 Yomd 8t = 1), )]
while G® are obtained by inversion of Eq. (30) with inclu-
sion of the self-energy (41). These functions are symmetric
and given by, for i < j [77,101]:
i+j j—i pRIARR/A
(—1y+igi IBH/I BNf/j
[0+ i(T + 222)|BY/A — 2283

G M) = 42)

where BIY* = [(ry + i)l — (r_ +iT)rl1/(ry —r_) and
re=(+il+ J(0 i) —472)/2.

The related spectral functions at the system edges A(w) =
Aj1(w) = Ayn(w) is represented in Fig. 8 for different sys-
tem sizes N. It displays N peaks corresponding to the
eigenspectrum of the system without dissipation. The width
of the peaks is controlled nontrivially by the hybridization
constant I" and the bulk dissipation rate yppy. Plots for closely

o
10 Ay - A
==Ax(w)

D= =017

-2 -1 0 1 2
w

FIG. 8. Edge spectral function A(w) for the dephasing model
(40) in the configuration of Fig. 1 for difference systems sizes
N. Darker blue-solid lines correspond to larger systems sizes N =
11,21, 51, 101, 201, 501, 1001. We consider only odd values of N,
as they ensure the presence of a resonance at w = 0. The inset shows
the exponential convergence of the spectral function at a fixed (odd)
system size Ay = A(w = 0) towards its asymptotic value Ay (@),
obtained from Eq. (43) and corresponding to the dashed-black line in
the main plot [for N 2 100 and the parameters reported in the plot,
numerical curves overlap with Ay (w)].

related quantities in the ypyn — O limit can be found in
Ref. [77]. In this nondissipative limit, the height of the peaks
does not decay with the system size N. On the contrary,
for yppn > 0, the peaks vanish in the N — oo limit, and the
spectral function converges exponentially towards a smooth
function Ay (w) as shown in the inset of Fig. 8. One can
analytically derive A (w), as the retarded Green function
(42) at the edges Gf, = Gﬁ v converges to

1
o+i(0+ 2y - =

Tsgn()

Jim Gy () = “3)

The exponential convergence of the edge spectral function
is reproduced by all the other QSHs discussed below and
verifies one of the preliminary assumptions exposed in Sec. II,
identifying the density difference An as the term entirely
responsible for the 1/N suppression of the dissipative current
in (3).

Our approach provides an efficient way to compute the
second term in (37), through an explicit derivation of the
matrix M:

do
Mi = yopn f EG}iG{_‘j. (44)

As we detail in Appendix D, the expressions (38), (42),
and (44) allow the efficient derivation of the current (37) up to
system sizes N ~ 10°~*. As a consequence, we can systemati-
cally study the expected crossover from a ballistic-to-diffusive
regime expected at length scales N* =~ D'p'h [30]. See also
Appendix E for additional details.

Two main technical advances of our approach
compared to previous studies [25,30,31,79,95,102,103]
consist in  its  ability to  naturally  address
reservoirs with finite temperatures T < oo,
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FIG. 9. Fitted parameters («, 8, v) of the rescaled conductance
of the dephasing model as defined in Eq. (45). These values define
different regions in the temperature - dephasing plane with different
behaviors for the conductance, see Eq. (46). The dashed lines are
a guide for the eyes to delimit the regions. The bottom right plot
summarizes the characteristic values of each region.

accessing transport regimes left unexplored by previous
studies and to access two-times correlators in the stationary
state. An important consequence of our analysis is that
the rescaled conductance of the system, that we define as
G = NJ/8, has a nontrivial dependence on the temperature
T and the dephasing rate yppn, namely,
a+s

G=tim N -1 43)
TYppn
In Fig. 9, we plot the coefficients («, 8, ) across the pa-
rameter space (7, ypph). From the plot, we identify three
main diffusive transport regimes R; 7, in which these coef-
ficients are different. Note that the regions are not connected
by sharp phase transitions but instead by crossovers, which
appear sharp in logarithmic scale. Deep in the three regions,
the rescaled conductance takes the approximate values

T;;ph T > yppn, T

G= Zy-é* yopn > T, 7. (46)
137
Yom T > Vophs T

In previous studies carried in the 7 — oo limit for the
reservoirs, where they can be described as Lindblad injectors
[77], the conductance G is assumed to be proportional to the
bulk diffusion constant D [4,20]. The density profiles in the
system (see Appendix E) clearly show that such interpretation
cannot be extended to lower temperatures. The emergence of
coherent effects between the system and its baths leads to
finite-sized boundary effects, which do not allow the deter-
mination of the bulk diffusion constant through Eq. (46). To

obtain the bulk diffusion constant we can use our approach
to derive the density profiles inside the system and far away
from its boundaries. We numerically verify Fick’s law (1) in
the bulk and find the diffusion constant to be
2
- @7
¥YDph

which is double the conductance in the 7 > YDph limit, as
expected. At variance with the rescaled conductances (46),
this quantity is not affected by any boundary effect and it is
in agreement with previous analytical ansatzes, valid in the
infinite temperature limit [30]. The independence of the dif-
fusion constant (47) from the temperature at the boundaries is
a consequence of the stochastic dephasing (40), which locally
brings the system back to an infinite temperature equilibrium
state regardless of boundary conditions. We thus see on this
example that our approach allows to compute both the two-
and four-points measurements of the resistance. Even for dif-
fusive systems, the distinction between the two processes can
be important.

To conclude our analysis of the transport in the dephasing
model, we note that the different transport regimes in (46) ex-
plicitly depend on the stationary bias n; — ny, which suffers
from boundary effects in some regions of the (T, ypph) pa-
rameter space. We confirm with our exact numerical solution
that this is indeed the case. This interesting bias dependence
is beyond the scope of the present paper and left for future
studies.

1. 1/N expansion

Let us now show how the diffusion constant (47), that we
obtained from our exact solution, can also be easily derived
from the novel 1/N perturbative theory we introduced in
Sec. II.

The first step is to fix the action of the infinite size the-
ory So with the aid of the coarse graining procedure. We
start by disposing the elements of G,?j/ A/K 45 a matrix and
subdivide it in square cells of width a. We take the average
over all the terms in the cell to obtain the effective Green

function G;Rl,/ Al describing the correlations between the 7

and jth cell. This procedure is illustrated in Fig. 10-(right) for
the retarded Green'’s function and increasing cell size (¢ = 1
corresponds to no coarse graining). As the cell size increases,
G?i/ A becomes a diagonal matrix with the off-diagonal
terms vanishing as 1/a and exponentially suppressed with the
distance [ — j|.

This explicit calculation confirms the diagonal structure of
G™/A/K and the reduction of the action to a sum of local com-
muting terms Se = Z; S;, where S]- is the action associated
to the jth cell. To simplify the notations, we drop the tilde
indices from now on and implicitly assume that the calcu-
lations are done in the effective coarse-grained theory. The
diagonal terms of G™(w = 0) are depicted in Fig. 10-(left)
as function of frequency with GX shown in the inset. As a
increases, the symmetry center of the functions changes to
w = —2t converging to the black curves depicting Eqgs. (9)
and (10). As mentioned before, the only free parameters that
need to be fixed in the local theory are u;, T}, and X ;(w).
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167w = 1)
a=1 a=2
a=4 a=20
FIG. 10. Coarse-graining procedure in the dephasing model, ypp, = 1 for increasing size of the cell, a. Left: Real and imaginary part of

the diagonal terms of G™ (w) for increasing cell size, a = 1,2, 3,4, 5,7, 12, 20, 40, 50, respectively from light to dark. Inset: G< component
measured at one-third of the chain and 7 = 0.1. Black lines depict the 1/N predictions obtained by inverting the matrix in Eq. (48). The
symmetry around w = 0 is broken as a increases. Right: Color plot of the absolute value of GX(w = 0) for the first 20 x 20 coarse grained
cells of a system with N = 2000 sites, darker colors represent higher values.

For the dephasing model, we find that the self-energy is
simply given by iyppn/2. For a single site such an imaginary
term was shown [77] to coincide with the effective action
of a reservoir within the limit u;, T; — oo while keeping
the ratio u;/7T; fixed. Let n; be the local density at site
j. nj =31 —iGX@,1). Using [GT']* = —GR-1GFGA!
and GX(w) = — tanh & (GR(w) GA(w)). Interestmgly, at
leading order in 1/N, thls relation turns out to be verified
even at the microscopic level, i.e., for a = 1. This tells us
that the local equilibration condition of the infinite size theory
is always true in our case. We furthermore suppose that in
the coarse-grained theory, the expression of the retarded and
advanced components will be given by a single-site two-level
system, i.e., we suppose the following expression for S;:

me _
5= / (wl, 7z (w +01 l(i,ni, 12))/Dph) (zf)
(48)

Where we absorbed the —27 shift of frequencies in the inte-
gral. Expression (48) is valid in the bulk, independently from
any value of u, T at the boundaries. We check explicitly that
the coarse-grained theory indeed converges towards S; as a is
increased as shown in Fig. 10.

In the path integral formalism, the 1/N corrections to the
current (11) is given by

J=ilFi ", v 1Sugm)eo 49)

where J is the current operator, J [¥*, ¥+]is the evaluation of
this operator in lhe fermionic coherent basis on the + Keldysh
contour, (8) := [ D[YE, *]e’~e and Sy, is the Keldysh
action (29) associated to the contour integral of de,, defined in

(11). Here we have explicitly that den =1 Z cjcjr1 +He.
The current operator is in this case :
J; = rr(cIJrl j C‘.]/.Cj+] )- (50)

A straightforward calculation reported in Appendix C then
leads to an explicit derivation of Fick’s law:
272
J=—""Vn, 1)
YDph

where V is the discrete gradient Vn; = n;;; — n;. Equation
(51), derived from the 1/N expansion, coincides with the exact
result (47) in the whole parameter space. Such agreement
validates the 1/N expansion as a systematic and efficient
procedure to compute diffusion constants. From the compu-
tational point-of-view, note that the 1/N expansion did not
resort to any numerical schemes and provided an exact expres-
sion of the diffusive constant, which could not be extracted
explicitly from the Dyson equation (25).

B. QSSEP

In this section, we illustrate how our method can also be
applied to the study of the quantum symmetric simple exclu-
sion process (QSSEP) [34].

The QSSEP is a model of fermionic particles that hop on
the lattice with random amplitudes, which can be thought
as the quantum generalization of classical exclusion pro-
cesses [90]. Classical exclusion processes have attracted a
widespread interest over the last decades as they consti-
tute statistical models with simple rules but a rich behavior
that is thought to be representative of generic properties
of non-equilibrium transport. It has been particularly im-
pactful in the formulation of the macroscopic fluctuation
theory (MFT) [89], which aims at understanding in a generic,
thermodynamic sense, macroscopic systems driven far from
equilibrium. It is hoped that the QSSEP will play a similar
role in a quantum version of MFT, which is for now largely
unknown.

We are interested in a model of QSSEP plus the coherent
jump Hamiltonian (28) that was first studied in Ref. [32]. The
case of pure QSSEP can be retrieved in the limit 7 — 0. As
for the dephasing model discussed in Sec. IV A, we will see
that the 1/N expansion formalism again offers a simple route
to derive the diffusive current.

As pictured in Fig. 7, the QSSEP couples nearest neighbor
sites. It is derived from Eqgs. (12) and (15) by taking the
prescription

i jr1 4 8ij-1

5 (52)

Yij = YQs
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FIG. 11. Diffusion constant of the QSSEP model as a function
of the noise strength y for different hopping amplitudes 7 and tem-
peratures 7. The results are independent of the latter. The dots are
obtained from the MW formula (3) while dashed lines depict the
results of the 1/N expansion (56).

The associated QSH is

dH, = J7gs Y _ [clejndW/™ + ¢l e aw? ). (53)
J

From Eq. (24), we get the advanced and retarded components
of the self-energies:

, i , 81, +8;,
2R A1) = Fvasdjadlt, ¢ >[1 - %} (54)

The retarded and advanced Green functions are given by in-
serting the bare propagators (30) and the self-energy (54) into
the Dyson equation (25). These propagators can be directly
derived from the ones of the dephasing model by making the
substitutions yppn — Yos and I' — I' — ys/2. As a conse-
quence, all the considerations made for the spectral function
and Fig. 8, in the dephasing model, equally apply to the
QSSEP.

This is not the case for the Keldysh component, where the
M matrix has the different expression [104]

ves [ do

M =
I 2

(GRcr Gty + Gl Gt y)- - (59)
Combining the above equation with (33) allows to obtain GX
and allows to compute the current from (3), or its linearized

version (37). For all values of the parameter space (7', yqs)
the current follows the relation (see Fig. 11)

Yos | 2t
Ji=— ( 2t S)Vn, (56)

which tells us that the diffusion constant is % + % in
agreement with the result presented in [32]. For 7 =0,
this generalizes the result from [34], which was restricted to

boundaries with infinite temperature and chemical potential.

1. 1/N expansion

The expression (56) for the current can also be obtained
easily in the 1/N perturbative approach illustrated in Sec. II.
The action in the infinite size limit is again of the form (48).
From (54) we see that the expression of the self-energy is
similar to the one of the dephasing model by simply replacing
¥pph by ¥os up to differences that tend to O in the infinite size
limit. The current operator from site j to j + 1 in the bulk is
given here by

j= %(ﬁ, — ) it e — clep. (57)
The first part is easily evaluated to be —yqs Vn;/2 to first order
in 1/N in the diffusive limit. For the second part, we simply
need to redo the previous derivation by replacing Ypph bY ¥qs-
The term lr(c”lc, - cjcj+]) then becomes — m; 2 (njyy — nj),
which yields (56).

C. Long-range Hopping

Finally we turn to the model with long-range hopping from
the noise (see Fig. 7). In this model each particle can jump to
any unoccupied site with a probability rate that decays with
the distance as a power law of exponent . Power laws appear
naturally for instance in quantum simulation with Rydberg
atoms [105-107] where they emerge because of the dipole-
dipole interactions. Depending on the order of the interactions
between atoms, different power laws can be reached. In the
limit o — oo, we get an “all-to-all” model, i.e there are ran-
dom quantum jumps between all sites. These types of models
have recently attracted interest as toy models to understand the
interplay between quantum chaos and quantum information
notably in the context of random unitary circuits [86,108].

For the long-range QSH we have

vij=(1- 1,) ‘ X (58)

and the corresponding Hamiltonian is

dH, =y . ‘ I“ —— i dw (59
J#k

where N, =2 ZN/ 2 k™ is a suitable normalization condition
such that MV, =2 dl"ld Ny = N. The limiting cases of this
model are the QSSEP and “all-to-all” model, respectively
a=0and o — oo.

For the long-range hopping the expression of the re-
tarded(advanced) self-energy is

I}

As before, injecting the bare propagators (30), (31), and (60)
in (25) yields G*™. As illustrated in Fig. 15 in Appendix
C3, this form of the self-energy is equivalent to the one
derived for the dephasing model (41), with the only difference
that the effective dephasing rate y becomes site-dependent
because of the presence of boundaries connected to reservoirs.
We verified that the exponential convergence of the spectral
function illustrated in Fig. 8, equally applies, as expected, for
this model as well.

SR = F0 — 103 Y e (60)
17 Nal/ =
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FIG. 12. Scaling of the linear response current as a function
of the system size N, for varying power-law coefficients « in the
long-range hopping Hamiltonian (59). The saturation of Ji gy to finite
values, for o« < 1, signals a ballistic regime of transport, which
contrasts with the diffusive regime observed for « >> 1, where Jirn
vanishes as N, as highlighted by the black-dashed line.

The M matrix is

dw YLR
M = —GR(0)G (), 61
i ;fzﬂ J@)GT @) T (61)

which combined to (33) yields GX.

In the absence of coherent hopping, there is a simple
argument to conjecture a phase transition in the transport
properties of the system at « = 3. If one considers the stochas-
tic process (59) alone, its average has a simple interpretation
as a classical Markov process, where the probability for a
fermion at site O to jump to site j during a timestep Az, given
that the target site j is empty, is p; := A}:"ﬁm. For a single
particle, this defines a random walk whose variance is given
byv:= Zj p,vjz, which is related to the diffusion constant via
D = v/At. This diverges at least logarithmically for o < 3.
However, note that there is no simple reasoning to understand
what happens if one were to study the model with the coherent
hopping term as, a priori, a purely classical analysis does not
hold anymore.

For the numerical computations, we fix yyg = 1 and T =
1000 but the results are independent of the latter. In Fig. 12,
we show the dependence of the linear response current with
the system size for different values of @. When « is small, the
current saturates in the N — oo limit, while for large values
of & it decays as N~!, as depicted in dashed gray line. This a
signature of a ballistic-to-diffusive transition that occurs at a
finite value of a.

To characterize this transition further, we look at the order
parameter D~' = —limy_, o, Vn/J. For diffusive systems,
D~ is the inverse of the diffusion constant and should be zero
for ballistic systems. In Appendix E, we discuss the numer-
ical fitting required to obtain D~' from a finite-size scaling
analysis. D~! undergoes a second-order phase transition at a
critical power a, ~ 2.87 (see the dark-blue dots in Fig. 13).
When approaching the transition from the diffusive region,
the diffusion constant diverges as D ~ (@ — )" (see the

_ 076
= la—281

FIG. 13. Second-order phase transition in the long-range hop-
ping of D~! = —limy_.o, Vn/Jigy as a function of « and yi = 1.
Dots represent the numerical solution of (37) while full lines depict
the 1/N expansion’s predictions; both results overlap. The N — oo
limit is obtained via the fitting procedure detailed in Appendix E. The
gray-dashed line highlights the divergence of the diffusion constant
asD ~ (a —a.)'?.

gray-dashed line in Fig. 13). It is quite remarkable and coun-
terintuitive that setting t # 0 pushes the diffusive regime to
values of « < 3 instead of the opposite. A naive reasoning
would suggest that the addition of a coherent hopping term
would push the ballistic phase to values of « larger than
the classical estimate (¢ = 3), as a finite 7 would favor the
coherent propagation of single particles across the system. We
observe that the opposite is surprisingly true, and we leave the
exploration of this effect to future investigations.

1. 1/N expansion

For o > «, the 1/N expansion is valid and we can com-
pute D~ in the limit of infinite temperature. The action in the
infinite system size is again of the form (48) and the lifetime
is fixed by (60).

Unlike the previous models, there is no simple analytic ex-
pression for the diffusion constant since its derivation depends
on the system size. We provide a detailed derivation of the
diffusive current in Appendix C. In Fig. 13, we depict the
results of the 1/N expansion for various system sizes (full
lines) and overlap them with the numeric solution of (37)
(dots). Both methods agree up to machine precision, which
may be an indication that the 1/N perturbative approach is
surprisingly exact even in the ballistic regime, o < or,.

As already highlighted above, the interplay between trans-
port and coherence gives rise to a rich physics in the
long-range hopping model, but understanding it in depth is
beyond the goals of this paper and will be addressed in a
subsequent work.

V. CONCLUSION

In this paper, we provided a comprehensive analysis of
the large system size properties of diffusive quantum sys-
tems driven out-of-equilibrium by boundary reservoirs. In
particular, we showed that diffusive quantum systems can be
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described by an effective and simple equilibrated Gaussian
theory, which allows a systematic way to compute their dif-
fusive transport properties via an expansion in the inverse
system size. We illustrated the correctness of our 1/N ex-
pansion by comparing to exact results we obtained, using
a self-consistent Born method, for a large class of quantum
stochastic Hamiltonians, which show diffusive behavior. In
particular, the self-consistent approach allowed us to explic-
itly derive the structure of the effective Gaussian theory, which
consists of decoupled sites with a finite lifetime and where the
effective equilibration and diffusivity is entirely encoded in
the Keldysh component of local correlations.

As an illustration of the effectiveness of our approach,
we computed the current in three models that have been
of interest in the recent literature: the dephasing model, the
QSSEP, and a model with stochastic long-range hopping.
For the dephasing model and the QSSEP, we illustrated the
ability of our approach to extend the study of transport to
situations with boundaries at finite temperatures and arbitrary
chemical potentials. This allowed us to show how dissipative
processes restore effective infinite temperature behavior in
the bulk and explicitly derive the effective Gaussian theory
via a coarse-graining procedure. For the long-range hopping
model, our analysis unveiled that coherent hopping processes
trigger diffusive behavior in regimes where transport would
be ballistic in the exclusive presence of stochastic long-range
hopping. This counter-intuitive phenomenon is a remarkable
example of the nontrivial interplay between coherent and dis-
sipative dynamics in open quantum systems, which could be
efficiently addressed based on the self-consistent approach.

The validity of the self-consistent Born approximation for
our class of stochastic Hamiltonians provides in principle the
solution to the noisy version of any model whose bare action is
Gaussian. Our proof is not limited by stationary behavior or by
the one-dimensional geometry of the problems addressed in
this paper, but can be extended to time-dependent and higher
dimensional problems as well. This possibility opens interest-
ing perspectives for the investigation of phenomena in a large
class of problems. Extension of our approach could be devised
to study quantum asymmetric exclusion processes [109-111],
spin and heat transport, the dynamics after a quench, fluc-
tuations on top and relaxation to stationary states and their
extensions to ladder geometries or with nontrivial topological
structure. These settings have been for the moment largely
untractable, or were solved by case by case methods, for
which we provided here an unified framework.

An important issue raised by our work consists in showing
whether our description equally holds and provides technical
advantage for studying the emergence of resistive behavior
triggered by intrinsic many-body interactions with unitary dy-
namics, where the breaking of integrability leads to diffusive
transport [1-4,18-23]. A priori, the arguments presented in
Section II apply for any quantum systems, which follows a
local Fick’s law and, as such, they have the potential for very
broad applications. Additionally, it is commonly accepted that
the phenomenology of diffusion is associated with integrabil-
ity breaking and subsequent approach to thermal equilibrium
[112-116]. Understanding if and how our approach can help
make this link clearer is an exciting open question. In this
respect, we also note that, because of the existing mapping

between the Fermi-Hubbard and the dephasing model [29],
the self-consistent Born approximation allows to compute
exact quantities in the Fermi-Hubbard model. As far as we
know, exact solutions for this model were only obtained in
the framework of the Bethe ansatz and it is thus interesting
that a seemingly unrelated approach allows to obtain exact
quantities as well. Whether a connection exists between the
two approaches and whether the exact summation allows to
compute quantities out of reach of the Bethe ansatz are inter-
esting open questions.

Note added. We also thank X. Turkeshi and M. Schir for
making us aware of their work [103] before publication, where
a study of the dephasing model from the point of view of
Green’s function has also been performed.
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APPENDIX A: UNRAVELING TO CONTINUOUS
MEASUREMENT

In this Appendix, we discuss the unraveling of Eq. (12) to
a quantum stochastic differential equation describing a sys-
tem under continuous monitoring. In the Itd prescription the
stochastic equation of motion of a quantum system subject to
continuous measurement of an observable O + O at rate y is
given by [93]

dp = Lo(p) + gLo(P) + \/gDo(,O)dBr (A

where Ly describes the dynamics in absence of measure-
ment, Lo(p) = (0pO' — 5(070p + p0OT0)) and Do(p) =
Op + pO' — ptr(Op + pO™). If we assume that at each link
we have two independent measurement processes 1 and 2
with the same rate 2y; ; and Oy, ; := C}Ci and Oy = ic}c,v.
The corresponding measured observables are O ; ; + OJ{_‘.‘/ =
Cj:(:[ + c?'cj and O, ; + O;A,_j = i(c'l/ic,- - c?'cj), namely the
so-called bond density and the current. It is straightforward
to see that averaging out (A1), we get (12) again.

APPENDIX B: PROOF OF THE NONCROSSING RULE

We want to prove that for all stochastic Hamiltonians of
the form given by (15), the only nonvanishing diagrams in
the averaged perturbative expansion of the retarded, advanced
and Keldysh Green functions are those for which there is no
crossing.

This statement only relies on the causality structure of the
retarded and advanced Green functions, i.e.,

GR(@t,t)=0ifr <1, (B1)

GA(r, 1) = Oift > t'. (B2)

Let (e)o denote the average with respect to a quadratic theory.
First, we remark that the causality structure of a given propa-
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FIG. 14. All possible crossings for the Keldysh component of
the Green’s function with the contracted versions on the right. The
red lines highlight the part of the diagram violating the causality
structure and are responsible for making the diagram vanish.

gator depends only on its incoming edge and outgoing edge,
and thus

VAU ())o =0fort <7,

(B3)
WOfY P w2 PP = Ofort > 1.
(B4)

G@t.t) = (W' Ofw'. ¥ v,

G(t,t):=

where f[y!, %', ¥2, ¥?] is an arbitrary polynomial in the
Grassman variables coming from the expansion of the
stochastic action. This is straightforward to show starting from
the action (22): starting from an incoming full (dashed) line,
one cannot switch at any point to a dashed (full) line. Hence,
the causality structure is preserved for each line and thus for
the whole propagator. Direct inspection of these diagrams
show that there cannot be any crossing when contracting
the noise terms, as it would lead to a contradiction in the
time-orderings. There is only a single one particle irreducible
diagram made of a single loop. This establishes the noncross-
ing result for the retarded and advanced components.

For the Keldysh components, a case by case examination
of all possible crossings that are depicted on Fig. 14 where the
labels A, B, C, D denote generic product of free propagators is
needed. For each one of these diagrams, there is always a sub-
part that shows an incompatibility (shown in red in Fig. 14) in
the time orderings causing the whole diagram to vanish. This
establishes the noncrossing result for the Keldysh propagator.

APPENDIX C: COMPUTATION OF THE CURRENT IN THE
1/N EXPANSION

In this Appendix, we compute the current in the dephasing,
QSSEP, and long-range model using the perturbative theory in
inverse system size presented in Sec. II.

1. Dephasing model

For the dephasing model, the definition of the current in the
bulk from site j to j 4 1 is given by

Ji= iz(cjﬂcj - c;cH]). (C1
The expectation value of J; in the stationary state is given by
Ji) :=wlip) = it Op] @O — 3 Ov L, 0)
—’*<( PN R e Ay
= (W + VP ¥ 0))) €2

where we used the Larkin rotation and removed the terms
2! as they are always 0 for causality reasons.
Using the action associated to the coherent jump S,

So= = [ar S (01} + 03,
J

+ ‘/;IIH‘/’,I + ‘/},2+1‘/f/2)f' (C3)

we get, from (49), to leading order in %:
72 , _ ~ _
Jj(t) = 7/““ ((‘/';H‘/'j] + ‘//j!ﬂl//f + ‘/']2+|‘/'12

= WP+ VYD),

X (T} + T70F 0+ V] ),
(c4)

where ()~ means the average with respect to the bare action
in the infinite size limit, where all the sites are uncorrelated.

Using Wick’s theorem and that (v %, Voo = 0, the previ-
ous equation greatly simplifies:

IZ/dw
.]j:—f —_—

+ G @GR, ()
- GR (“’)G/+l jr1(@) —

b
J+1

Gl i1 (@Gl (@)

Gy 1 (@)GF (@) (C5)

‘We can now use the bare action of individual sites (in presence
of the dephasing noise):

—i(2n; —

VDph . ]
5= [ Szaan(vTy T ()
C6)

to obtain the explicit expression of the current

dw ¥Dph L¥YDph
_ 2 p p
=t /E(mﬂ(@)%» @il =)
2 2
=—= v, ©n
VDph

from which we immediately read the diffusion constant D =
20
Yo

2. QSSEP

For the QSSEP, the self-energy for an individual site is
Tj(@) = yos — %2(8;.1 + 8,n). The current in the bulk is
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FIG. 15. Dependence on the site index j of the self-energy in
the long-range model for a chain of N = 100 sites and different
values of the exponent « of the noise, see (C13). The @ — oo limit
corresponds to the QSSEP.

given by

> Y
Jy= B — hje) +it(ciei = cle) (©8)

The first part of the current already scales like 1/N at order O
in the S; expansion. The second term is evaluated in the same
fashion as for the dephasing model. This leads to

2
<@+L)Vn,+0( )
2 s

I = (©9)

and D =2 + 2t
VQs

8 -
\ ey=01T=01
\ 7 =100T=0.1
Y ¥=0.1T=10.0
6 \ e~y =10.0 T =10.0
0 -
10! 108

10?
N

FIG. 17. Diffusion constant of the dephasing model at different
(T, y) values. In general, the diffusion constant decays with the
inverse system size, which we exploit to extract the N — oo limit
from a nonlinear fit, dashed lines.

Zle

— )+ ir(c;c,url — L';ch).

— jla
(C12)
Recall the expression of the self—energy at site j (60):
i (C13)
%= 2Nu Z |k — J|°‘

which is depicted in Fig. 15.

To get the current with the 1/N expansion, we take, as for
the previous model, the Oth order term in the first term in the
expression of the current and the first-order term in the second
part. We obtain

3. Long-range hopping Jine _ Z YLR (% —n;)
nc L — ;
For the long-range hopping model, the local current is ! k< Nalk = jI
defined from the local conservation equation of the particle g2
. T .
number : +m(n,,l —nj)forje2,Nl, (Cl4)
J
~ ._ finc _ fout
E”/ =Jj J3 (C10) Jouz Z o u — )
with k>j ! 71‘
it(nj —njy) for j e [1,N —1]. C15
]mc Zle n,)+zr(c1 e —cl L/ D “Flf(nj n]+]) orjel 1 ( )
k<j For simplicity, we give in this paper only the expressions
(C11) for the infinite temperature and chemical potential boundary
T
1072, s mcne oo s | som e 1070 - 10
2 e cesmemmencccece oom|o c--....,.::.:. - :::: 3 . ig;{ : %33
10 TR el PO
SR,
o0l =107" y=10" ~ = 10" =108 Tisg
ot 102 10 100 102 10° 100 102 10° 100 102 10°
N I N N

FIG. 16. Scaling of the current as a function of the system size in the dephasing model. From left to right: y = 1073, 107", 10", 10%. As
the dephasing increases, diffusion sets in at smaller system sizes. The vanishing dependence of J with the temperature indicates the crossover

into the R, region (46).
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conditions, which amount to take Lindblad injecting and ex-
tracting terms (see [77]). The current at the boundaries is then
given by

= e (1—ny) — By, (C16)

IV = —ar(l — ny) + Brny. (C17)

In the stationary state we have that Vj € [1, N], J‘“ = J"“‘
which leads to the following system of linear equauon to solve
in order to get the density profile:

Mii=% (C18)

where 7i and ¥ are N-dimensional vectors with elements 7;
and M is an N x N matrix such that

YLR

= s,
Mo = R g 7 )
272
+ ﬁ(smﬂ = 8jx(1—=38n))
j j
272
+ ﬁ(‘sk,j—l —8jx(1 —=38;1))
J j=1

Z:./\/’\k

—8jx81(ar + Br) — 88N (g + Br)

—_ jltx
(C19)
and

v = 78]-‘10[L - 5/‘NOZR. (C20)

APPENDIX D: NUMERICAL IMPLEMENTATION

In this Appendix, we present some important elements
of the numerical implementation. The first step to compute
any presented result is to stabilize and efficiently evaluate
GRA)(w) at any w. For the case of a uniform stochastic
noise (e.g., free system, dephasing), a naive use of (42)
would require evaluating the ratio of two polynomials of order
O(N), a notoriously difficult task for large N using floating
point arithmetics. A possible solution would be to resort to
arbitrary-precision arithmetic but this would entail a heavy
speed cost.

We used for the results of the present paper the fact that
GR(A(w) can be written as a ratio of polynomials and there-
fore, decomposed into a product of monomials G™(w) ~
[1;(@ = 2))/ [T(@ = pi). To efficiently find the zeros and
poles of G™ [117], we note that the inverse of G® is a simple
tridiagonal matrix with a generic form

w+a; by 0 0
T () = by w+a . 0 o1)
0 by-1
0 0 by_, wo+ay
whose inverse is given by [118]
(_1)i+]bi~~~bj—10i—l¢j+l/0L i<j
T j(w) = {0i- 1¢;+1/91 i=j (D2
(=1)Hb5.bt 6, 11 /00 P> ]

where 6, = (04 a)6i_y — |bi_1|*6;.2 and ¢ = (0 +
a;)pis1 — |bi|*@ir2. Therefore, computing the poles and
zeros of G requires computing all the zeros of the sequences
{i, 0,}?:01, a task that can be done efficiently. If the matrix
is invariant under a reflection along the anti-diagonal, it is
enough to compute a single sequence instead, ¢; = 611—;.
This is always the case in the models studied in the present
paper. Since a; does not depend on w, ¢; is a polynomial
of degree i with the initial conditions defined as ¢p = 1 and
¢1 = @+ a;. One can efficiently find all the roots {zk};;zl of
¢; using a Weierstrass-like recursive method [119,120], see
Eqgs. (D3) and (D4) for a second and fourth-order scheme

17
) k (2)
g =u—=—"—"—=u—-0 (D3)
k nk#ﬁ;k -z k
k
Zi‘“ e T C,i‘”
V=3 s
Wi = ¢i(z) (D4)

where W; is the Weierstrass weight. We chose these
derivative-free schemes to avoid computing explicit deriva-
tives that would slow down the computation. Choosing the
correct initial condition is critical to the success of the scheme.
To find the roots of ¢;, we initialize the scheme with the
roots of ¢;—; plus an extra root. We empirically found that
the extra root should have a random position close to the
middle root (after sorting by the real part) to guarantee the
best convergence. This initial choice can still fail when some
roots are located very far way from the others, which oc-
curs for example for the model QSSEP. This happens when,
at some step in the iteration, two roots coalesce and Ci‘)
diverges strongly. In order to stabilize this divergence, we
introduce a damping factor « that suppresses large corrections
N =z —cPe ~maxICOl/k ke is a purely empirically value,
Wthh we typlcally take as « = max(|b|). The role of « is to
slow down the algorithm and allow the coalescing roots to
separate. Our root-searching algorithm has thus two parts: a
quick search using a second-order damped scheme, followed
by a fourth-order damped scheme to precisely locate the roots.
Once all the roots are recovered, we generate the new matrix
T obtained from the estimates of the roots. We consider that 7'
is a good estimate only when max |7~!(0) - 7-'(0)| < 10710
With the exception of the QSSEP, we find a typical value
max [T~'(0) - T~1(0)| ~ 10~" for any system size.

Once the poles and zeros of GR(w) are computed, we
proceed to compute G* using (33). To evaluate the M matrix,
we resort to the residue theorem. If the poles of GR are sim-
ple poles, the sum over residues can be computed in parallel
only requiring the evaluation of the monomials {(w — zx)}. We
note that while each monomial (w — z) is of order unity, a se-
quential multiplication can lead to overflown errors in the limit
of large N. To avoid this problem, we multiply the monomials
at random. If the algorithm fails to, within machine precision,
separate two roots, the residue is computed from the contour
integral instead.

The last step to compute G* and the current J, is to perform
the frequency i ~2(%5F%). This is
done by evaluating the integral using a discrete integration
scheme instead of residue theorem. Since the thermal de-
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FIG. 18. Density profiles of a chain of size N =2000 in the
diffusive regime for the different regions R; , 7 shown in Fig. 9. The
breaking of Fick’s law is limited to a nonextensive number of sites
near the edge.

pendence is only encoded in the cosh’z(“’z’“), discretizing
the integral allows us deal with different (7', u) values at
no significant cost. We carefully verify that the mesh is fine

enough to guarantee convergence of the integral at any (7, ).

APPENDIX E: FINITE-SIZE SCALING

In this section, we detail the finite-size scaling analysis
necessary to plot Figs. 9, 11, 13.

The presence of a dephasing term is not enough to ensure
that the system behaves diffusely at any system size. Signa-
tures of diffusive transport such as J ~ 1/N, only emerge at a
characteristic dephasing length, N* ~ 1/y. At short system
sizes, or short time-scales, the system behaves as if it was
ballistic. In Fig. 16 we highlight this ballistic-to-diffusive tran-
sition for different values of the dephasing and temperature
in the baths. At small dephasing values, one cannot reliably
extract the diffusion constant by fitting a a straight line to
Fig. 16. Instead, to extract the relevant information in the
N — oo, we use the fact that the diffusion constant has itself a
1/N scaling [20] when measured in the middle of the chain. In
the QSSEP and dephasing model, we use this result to perform
nonlinear fits to D as shown in Fig. 17.

In this figure we plot the diffusion constant of the de-
phasing model as measured in the middle of the chain for
increasing system sizes and different (7, u) values. The
dashed lines depict the nonlinear fit of the function a +
b/(N + c) with a, b, c fitting parameters. We find that most
observables in these models exhibit 1/N corrections as dis-
cussed in [20]. The speed of convergence however depends on
the point in the phase space (T, i), with region R, (see Fig. 9)
showing the slowest convergence. This is a consequence of
the effects of the bath discussed in the main text. Deep in the
7-dominated regime, we observe the breaking of Fick’s law
near the edges as shown in Fig. 18.

Since this effect only occurs in a finite portion of the system
close to the edges, the convergence is only slowed down. We
thus evaluate D in the middle of the chain to mitigate its effects
and get a better accuracy.

For the long-range model, one needs a different approach
to obtain the N — oo limit correctly, especially when close

A :AA.*-.-o-.o-o-.--o-o-o-o--o-c ---------
107 e
1072
—~ «a
151073 - e 5.0
101475 <40
107,60 D " 25
\, 2.0
107 \\.// \\ .\\ L5
Yo, e 10
0 1 2 3 4 5a > 05
10t 102 108
N

FIG. 19. Inverse of the diffusion constant in the long-range
model for different powers of «. Dashed lines are fits to D™! =
(aHf,'i‘b‘*”)"A The results of the fitting are depicted in the inset.

to the ballistic-diffusive transition described in the main text.
A tentative form for the finite size extrapolation is provided
by the solution of the diffusion equation for single parti-
cle under a random walk with long-range hopping dlscussed
in Sec. IV C, which gives a diffusion constant D = H -
where H" is the generalized Harmonic number. We ﬁnd that
afitD! = (aHlf,ﬁlf"“)) !, correctly captures the finite-size
dependence of D~! for all & values. The fitting parameters
a, b, ¢ respectively describe the amplitude, critical exponent
and possible finite-size corrections. In Fig. 19, we depict D™
against the result of the fit, respectively dots and dashed lines.
The best fitting parameters are plotted in the inset. The quality
of the fit allows us to conjecture that, at the transition point, the
diffusion constant diverges logarithmically Dg(er = ctc) ~
H — log(N).

APPENDIX F: COARSE-GRAIN LENGTH a

In this section, we analytically estimate the coarse-grain
length a from the correlation length of the dephasing model.
Due to Eq. (9), it is enough to estimate a from a single Green
function, in this case the retarded component. The starting
point is the analytic expression of the elements Gf ; in the
bulk of the chain. For large systems, the boundaries become
irrelevant and the good basis of the problem is the momenta
basis. In k space, the self-energy takes a diagonal form

e = (- % )sue 1)
For the QSSEP, there are cross-diagonal terms in momentum
that vanish as 1/L and can be safely ignored. Since both self-
energy and Hamiltonian are diagonal in the momenta basis,
one has

1
GR, =8 p——, F2
e (F2)

where €, = 27 cos(k) is the eigenenergy of the bulk Hamilto-
nian. To find the retarded function in position space, we take
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the Fourier transform with the continuum limit for &
dk E—ik(r—r')

K=
nr 27 w — 2t cosk + iy /2

(F3)

The integral can be solved using the residue theorem and,
after some lengthy yet simple manipulations, we find a com-
pact formula

iir=r1-1

Gfr’ Il (F4)

T2 cosy

where y = arcsin “’Jrz‘f/ 2 is a complex variable with
Im(y(w)) > 0. Therefore, in the dephasing model an estimate
for the correlation length is given by

1

" min (Im(arcsin %TV/Z)) = arcsinh 2’

(F5)

In the limit of small dephasing y, we have & = 4t /y, which
serves as an estimate for the coarse-grain length a ~ v/y. As
expected, a should be of the order of the dephasing length
N*~1/y.
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3.3 Semi-classical picture of transport in QSHs

The success of the 1/N expansion suggests that, at least on a hydrodynamic scale,
QSHs support a classical interpretation of transport. This inspired us to look for
an effective classical model capable of explaining the emergence of diffusion and
completing some of the gaps left by the 1/N expansion. Semi-classical models
such as Boltzmann’s equation [52, 127] or generalized hydrodynamics [128], are
not expected to precisely capture all the correlations present in quantum many-body
systems. Nevertheless, they are capable of qualitatively capturing the main trans-
port properties. In Sec. 3.1, we already explored a semi-classical interpretation of
inelastic processes in local QSHs: an incoming particle when affected by a QSH
may return to the initial reservoir or be transmitted with a new energy. In this work,
we extend and formalize the semi-classical picture to extensive systems undergoing
dephasing. The key insight is that the dephasing model can also be unraveled as a
continuous projective measurement process [129], where the densities at each site
are independently measured at a rate vy, see App. C.

We propose the following semi-classical model of transport in dephased chains,
see scheme in Fig. 3.3. A single particle from the Fermi sea of a reservoir enters
the system and starts to propagate ballistically. Its initial velocity is determined from
its initial momentum in the reservoir and the role of dephasing is to measure the
occupancy at each site independently with a rate . After propagating for a time
t, the particle is eventually found with a probability determined by the Poissonian
distribution p(t) = ye~7%. Once found, the velocity of the particle is randomly reset
according to the local dispersion relation, see Eq. [21]], and the particle resumes its
ballistic propagation. This cycle continues until the particle either exits through the
initial reservoir or the opposite one. The current, and consequently the conductance,
is determined by the probability that a particle entering a reservoir exits from the
opposite one, see Eqs. [15] and [[22]. This semi-classical transmission probability
T can be computed numerically, and in the infinite size limit even analytically, using
the self-consistent equation [24].

The semi-classical predictions were tested against the exact solution of the de-
phasing model and found to be surprisingly accurate' in some regimes, see a com-
parison of the conductance G for different parameters in Fig. 3.3a. In the thermody-
namic limit and for small measurement rates, the semi-classical model not only cor-

rectly predicts a diffusive scaling of the current but also the correct dependence on the

7_2

parameters of the model, J% ~ S5 (1 — pg) for T >> 7 and JO ~ 7w (WL — KR)
for T' < 7 with 7 the hopping strength. Regrettably, the success of the semi-classical
picture does not extend to the strong measurement regime where the average distance
between measurements is much smaller than the lattice spacing. This is expected

1During subsequent work, we found a mistake of a factor of 2 unaccounted for in Ref. [P3], which
makes the semi-classical picture almost match with the exact results despite being twice as big. We did
not consider the possibility of not measuring the particle, which could explain why the measurement rate
used in the semi-classical model should be half of the dephasing strength.
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Figure 3.3: Adaptation from Figs. [[1,2]] of the paper. a) Semi-classical depiction of
diffusive transport in a chain coupled to reservoirs with a cosine band dispersion. A
particle exits the reservoir with a predetermined velocity and propagates ballistically
until a reset event alters its velocity. This sequence repeats until the particle exits into
one of the reservoirs. b) Dependence of the conductance with chemical potentials for
different sizes and parameters. The semi-classical model (lines) agrees well with the
exact solutions (dots).

since the semi-classical model assumes the chain to be in the continuum limit. The
semi-classical picture is also capable of qualitatively explaining why the conductance
tends to zero when the chemical potential is closer to the band edges, as depicted in
Fig. 3.3b. A particle near the band’s edge enters the system with a lower velocity
and, as a consequence, it has a higher chance that a reset event will occur closer to
the edge, sending it back to the initial reservoir.

The second half of this work is devoted to extending the semi-classical model
beyond 1D geometries. We examine how different types of noise, possibly corre-
lated along the transverse direction but uncorrelated longitudinally could influence
transport. This was motivated by experiments investigating quantum transport in
synthetic lattices [130, 131]. In these setups, the constituents of the experiment (e.g.
ultracold atoms [132] or ring cavities [133, 134]) encode the longitudinal degrees
of freedom, whilst the transverse ones are encapsulated in the non-spatial degrees
of freedom of each constituent (e.g. internal spin or frequency state). As such, a
noise acting on the physical dimension would influence all the synthetic degrees of
freedom at once.

Our investigations reveal that different noises can lead to identical conductance
profiles, despite resulting in markedly different steady states, see Fig. [3]. A formal
condition for two noises to exhibit identical conductance is provided in Eq. [36]],
but the motivation for this observation can be found in the semi-classical picture.
A particle propagating from a reservoir, upon measurement, might change its trans-
verse momentum or gain correlations in the transverse direction, but its longitudinal
momentum will always be reset uniformly. If the reset rate remains consistent across
all transverse modes, so will the longitudinal current.
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3.3 Semi-classical picture of transport in QSHs

We showcase how a semi-classical interpretation can be a powerful tool to un-
derstand transport in stochastic setups and perhaps other phenomena. Similar quasi-
particle models have already been proposed to explain entanglement growth within
the dephasing model [126, 135], but the connection with our semi-classical picture
remains an open research direction.
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We devise a semiclassical model to describe the transport properties of low-dimensional fermionic lattices
under the influence of external quantum stochastic noise. These systems behave as quantum stochastic resistors,
where the bulk particle transport is diffusive and obeys the Ohm/Fick’s law. Here, we extend previous exact
studies beyond the one-dimensional limit to ladder geometries and explore different dephasing mechanisms
that are relevant to different physical systems, from solid-state to cold atoms. We show how the semiclassical
description is useful to explain the nontrivial dependence of the conductance of these systems on the chemical
potential of the reservoirs. This description provides an intuitive and simpler interpretation of transport in
quantum stochastic resistors in good quantitative agreement with the exact numerical solution. Moreover, we
find that the conductance of quantum ladders is insensitive to the coherence of the dephasing process along the
direction transverse to transport, despite the fact that the system reaches different stationary states.

DOI: 10.1103/PhysRevResearch.5.013033

L. INTRODUCTION

Diffusion is the most common type of transport encoun-
tered in many-body systems, both in the classical and in the
quantum world. In condensed matter setups, it is observed
whenever the resistance of a metallic conductor is measured.
The emergence of resistive behavior is commonly attributed
to the diffusive propagation of charge carriers caused by scat-
tering with disorder, impurities or particles of the same or
different nature (electrons, holes, phonons, magnons, etc.) [1].
Despite the clarity of these physical mechanisms, describing
the emergence of diffusive transport from a full quantum
perspective remains an open issue in theoretical physics [2-8].

In recent years, the study of open quantum systems has
opened new exciting venues to understand the emergence of
diffusion. The Markovian description of leads [9-16], losses
[17-20] or external time-dependent noises [15,21-31] has
provided valuable numerical and analytic insight into the
problem. In this context, dephasing has been in the spotlight
for being an analytically tractable process of physical impor-
tance. It is capable of describing the emergence of diffusion
in quantum coherent systems [15,32-34], which behave as
quantum stochastic resistors [35].

Despite these exact derivations of classical diffusive trans-
port in the quantum realm, it remains an open question to
which extent a classical description can account for the co-

Published by the American Physical Society under the terms of the
Creative Commons Attribution 4.0 International license. Further
distribution of this work must maintain attribution to the author(s)
and the published article’s title, journal citation, and DOI.
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herent transport properties and with which accuracy [36-38].
If successful, a classical description could provide additional
insight on transport phenomena outside the framework of
open quantum systems.

Moreover, most of the studies mentioned above are
restricted to one dimension, often exploiting integrable struc-
tures in some fine tuned cases [8,22,32,39]. It is thus important
to investigate the extension of exact solutions to higher dimen-
sions and their richer behavior [40]. This understanding is also
relevant to open new perspectives in the context of quantum
matter simulators, where controlled dissipative dynamics is
under study in both bosonic [41-43] and fermionic systems
[44,45].

In this paper, we devise a semiclassical model, which ac-
curately describes the transport properties of one-dimensional
quantum stochastic resistors. We then derive a set of condi-
tions under which the result for the 1D conductance can be
extended to 2D systems. We focus on the quantum ladders
geometries sketched in Fig. 1 (top), where a current is driven
by a difference of chemical potential §;u between thermal
leads. The lattice is under the influence of dephasing pro-
cesses and the working principle of the semiclassical model
is illustrated in Fig. 1 (bottom), in the one-dimensional limit.
Semiclassically, dephasing is conceived as a stochastic reset
of single particle velocities, which mimics a series of random
quantum measurements of the particle position.

To characterize the transport properties of a dephased
chain, we consider their conductance at a weak bias u. We
show that, in the presence of dephasing, the conductance is
suppressed with the longitudinal extent of the system—the
number of sites N in Fig. 1 (top)—revealing the emergence
of bulk resistivity. We also observe that dephasing triggers
a nontrivial dependence of the conductance on the chemical

Published by the American Physical Society
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FIG. 1. (Top) Schematic representation of the system under
study. An M-leg square ladder is attached at the edges to two leads
prepared at the same temperature with distinct chemical potentials
i r- The bias §u in the chemical potential drives a particle current
J that can depend on the noise. Noises differ on the spatial corre-
lation along the y direction ranging from uniformly correlated dH,
to uncorrelated dH,”A (Bottom) Semiclassical interpretation of a 1D
diffusive channel. A particle leaves a lead with a velocity determined
by the band dispersion. A reset of a particle’s velocity occurs at
random times until it escapes to one of the leads. The distance
between leads is £ = Na with a the lattice spacing.

potential p of the reservoirs. In particular, the conductance
vanishes when the chemical potential approaches the band
edges, reflecting a suppression with the velocity of particles
injected by the reservoirs. This dependence is absent in the
ballistic case and is particularly intriguing as it is also absent
in the bulk diffusion constant of the system. We show then
how the semiclassical model is able to accurately reproduce
the emergent  dependence of the conductance, providing at
the same time a simple physical picture connecting boundary
and bulk diffusive effects.

We then extend these considerations to ladder systems.
The presence of an additional degree of freedom along the
y direction, transverse to the current flow along x, allows
different dephasing processes. These processes can be either
coherent or incoherent along the y direction, see Fig. 1 (top).
The coherent case is for instance relevant to cold atom systems
with a synthetic y dimension [46—49]. Even though these
different noises drive the system towards totally different sta-
tionary states, we find that they carry exactly the same current.
‘We explain this remarkable coincidence as a manifestation of
the fact that the correlations of these different noises obey
identical isotropy conditions, that we derive and discuss in
detail.

This paper is structured as follows. In Sec. II, we discuss
the Keldysh approach for the exact self-consistent derivation
of currents in quantum stochastic ladder resistors. Sec-
tion III introduces the semiclassical approach and illustrates
its ability to reproduce exact results. Section IV discusses
the extension to ladders and Sec. V discusses results and
conclusions.

II. MODEL AND METHODS

We study the transport properties of spinless fermions on
the discrete square lattice geometry sketched in Fig. 1 (top).
We consider an infinite lattice along the longitudinal direction

(x axis), with M sites in the transverse direction (y axis). The
corresponding Hamiltonian reads

H == [ty Cim + 1)y iCim + Hel, (D)
jom

where the sum over j runs between +o0o and the second index
between 1 and M. The operators ¢}, annihilate fermions on
site (j, m) and t,, control the hopping amplitude along the
x/y directions. We further divide the sum over the longitudinal
direction into three regions: the system (S) for j € [1, N],
the left (L) lead for j < 1 and the right (R) lead for j > N,
see Fig. 1 (top). It is useful to introduce the basis diago-
nalizing the transverse hopping term in Eq. (1), given by

; Y : o NWM 2 ocmmpy
the unitary transformation a;, = Y, _| w1 SINGET )¢ jm-
This transformation uncouples the M transverse modes and

the corresponding Hamiltonian reads

H = [-tdal,, a,+Hc)+epal a;,], ()
jp

with €, = —2t, cos(pm /(M + 1)) and p € [1, M]. If the sys-
tem is translational invariant along the x direction, the
transverse modes have nondegenerate dispersion relations
€px = —2t,cos(k) + €,, with k € [, ] the quasimomen-
tum in the first Brillouin zone, see sketches in Fig. 3 for an
illustration in the M = 2 case. We reserve the indexes j, m for
the physical sites in the x and y direction, and the indexes k, p
label respectively longitudinal quasi-momenta and transverse
modes.

In addition to the coherent Hamiltonian dynamics, we
introduce a noise term modelled by a quantum stochastic
Hamiltonian (QSH) that leads to various dephasing mecha-
nisms that we are going to detail. The QSH is defined by the
infinitesimal generator d H; such that the total unitary operator
U (t) is evolved as

U(t +dt) = e " Ha+dHiDy 1) | 3)

In this paper, we are interested in QSHs, which conserve
the total particle number and lead to dephasing. They are
described by

dH, =2y Y a} a; pdW T @)

Jp.p

where y controls the overall dephasing rate and the dW, are
increments of stochastic processes defined within the It6 pre-
scription [50]. The noise have a 0 mean, E[dW, = 0] and their
1t6 rules are defined to be

Jupuph J2p2py =1
AW aw? =81 Coippppdt fore =1’

dml‘lvmv[’/yd‘/vt{évl’zv[’/z =0 forr#1. )

By construction, the noise is thus uncorrelated in time and in
the longitudinal x direction, j index, but not necessarily on
the transverse y direction, p index. Correlations of the noise
in the y direction are taken into account by the function C,
which can be adapted to describe different physical scenarios,
as we are going to illustrate in the context of ladder geometries
in Sec. IV. Since the dW, commute with one another, we
have Cp, pi ps.p, pa.py.pr.p; - Hermiticity also imposes that
AW/ PP = (dW/PPy* . Qualitatively speaking, each term in

013033-2



SEMICLASSICAL THEORY OF QUANTUM STOCHASTIC ...

PHYSICAL REVIEW RESEARCH 5, 013033 (2023)

the sum of Eq. (4) describes transitions from a state indexed
by p' to a state indexed by p with a random complex amplitude
given by dW,P?. Since the Cs are arbitrary, Eq. (4) consti-
tutes the most general way of writing noisy quadratic jump
processes between different transverse propagation modes. In
one dimension, discussed in Sec. III, Eq. (4) reduces to an
on-site stochastic fluctuation of potential, leading to standard
dephasing, see also Eqgs. (13) and (14). In Sec. IV, we will
specify different noise-correlations on ladders and discuss
their implication on transport.

The mean evolution generated by the stochastic Hamilto-
nian (4), with the prescription (5), is described by the Lindblad
generator acting on the reduced density matrix of the system
0>

_ ; B
Lp)=y Z Corpp2up) (za/:/uajﬁ pa; ,.aj.p,

JiP1.p2. Py Py
+ i
- {uiwzaf-l"zaj-maf»l’} .}) (6)

where {, } denotes anticommutation; see Appendix B.

A. Keldysh approach and exact self-consistent solution
of transport in quantum stochastic resistors

As we will be dealing with systems under the effect of
dephasing noise and biased leads, the dynamics of the sys-
tem is intrinsically out of equilibrium. The natural language
to describe these systems is the Keldysh formalism [51],
detailed in Appendix A. The central objects of the theory
are the retarded (R), advanced (A), and Keldysh (K) compo-
nents of the single-particle Green’s functions G*/4/X, They are
defined in time representation as GF,. (1 —1') = —i0(r —
(). €] (@) Gt — 1) =GR, (&' — D] and
G inlt — 1) = =i{lc;m(®), c],,(1")]) [52]. By adopting the
notation by Larkin and Ovchinnikov [53], these three compo-
nents are collected in a unique matrix, which obeys the Dyson
equation

R K
o-(9 ) o=t 0

where g corresponds to the Green’s function of the system
disconnected from the leads and unaffected by noise. The
matrix X corresponds to the self-energy, which has the same
matrix structure as G.

In the path integral formalism, the fermionic degrees of
freedom of the leads can be integrated out. Their integration
gives a contribution to the self-energy of the system X,
which has nonzero components only at the system edges
Jj =1, N. The general procedure of this integration is detailed
in Appendix A. To give a more explicit idea of the result
of this procedure, we report here the result for the simplest
one-dimensional case (M = 1). The edge contributions then
read in frequency space

R/A _ 2 R/A
ZL.A,j = 1,800 %i,j0i.1

R/A _ 2 _R/A s
Rl = L 8Nr1N41008iN

=, = 2iFIm(gg )8 801,

El’{l,j = 2it3FRIm(g§+LN+I)61»181»1‘1’ ®)

where Im(-) gives the imaginary part. The retarded and ad-
vanced components of the self-energy are renormalized by the
corresponding reservoir Green functions, which are calculated
at the site closest to the system. See Eq. (A7) for the explicit
expression of gﬁf?(w) and gf\’/il,N+l(w) in the case of leads
identical to the system. The Keldysh components describe
the tendency of the edges of the system to equilibrate to
the attached reservoirs. The functions Fi g(w) describe the
state of the leads, and the self-energies obey a local equilib-
rium fluctuation-dissipation relation [51]. In the absence of
noise, the leads are considered in thermal equilibrium with a
well-defined chemical potential p; g and shared temperature
T. In frequency representation, this situation is described by
F_r(w) = tanh[(w — 1 r)/2T]. The fact that the system is
out of equilibrium can be read in Eq. (8) via the fact that
different functions F affect the self-energy of the system at
its borders.

The Keldysh formulation of the problem is advantageous
because it allows to deal exactly with the dephasing dynamics
caused by the presence of the noise described by Eq. (4). De-
spite the quartic nature of Eq. (6), the stochastic formulation
of the dephasing (4) allows for a closed exact solution of the
self-energy [24,34,35]. Indeed, the latter can be expressed in
terms of the Green’s function via the relation

,
) Gopoph)

=y8@t —1)8;; ZCl)u,p’.,/b/”zg(j,r)’.>(.fv/1z)(tv’)v ©))

rp2

which, inserted in Eq. (7), has to be solved self-consistently,
see Appendix B. To summarize, we derive an explicit expres-
sion of the self-energies in the Dyson equation (7), which
reads

Gl=g'-Z -%-3,, (10)

where the expression of G is obtained numerically.

Equipped with the formal expression of the single-particle
Green’s functions, we can directly and exactly inspect the
transport properties of quantum systems under the influence
of dephasing noise. By imposing a finite bias, pupr = p + ‘Szi,
between the right and left leads, a uniform longitudinal current
J flows through the system. By construction, the noise (4) pre-
serves the total density 7oy = ZP a}‘pa“, at a fixed position
Jj on the x axis, i.e., [dH;, nj ] = 0. Thus, the definition of
the total longitudinal current operator is unchanged by the
noise term, and the current can be evaluated at any site j,
namely

M
; R i
J =it E (CiptmCim = €} uCittm)

m=1

M
=1y Re[GK,, 1\, =0)]. an

m=1

In the following, we will explicitly derive this expression from
the exact self-consistent solution of Dyson’s equation (9).
Additionally, we rely on the linear expansion of Eq. (11) in
the chemical potential difference § to study the conductance
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of the system, which is defined as

G = lim ZnL. (12)
ou—0 S

Notice that we rescaled the conductance by 27 in order to
have the quantum of conductance equal to 1 and adopt the
convention e = kg =7 = 1. In the following sections, we
devise a semiclassical model, which can capture the results
from Eqs. (10), (11), and (12) in the presence of dephasing. In
particular, we will inspect the conductance dependence on the
chemical potential of the leads .

III. CONDUCTANCE OF A 1D QUANTUM
STOCHASTIC RESISTOR

In this section, we focus on a strictly one-dimensional
geometry to showcase the effectiveness of the semiclassical
approach in describing the emergent diffusive transport prop-
erties of quantum stochastic resistors.

A. Exact derivation

We begin by deriving the dependence of the conductance G
on the chemical potential of the leads p, via the exact solution
of a single chain subjected to on-site dephasing noise. In one
dimension, the noise term in Eq. (4) reduces to

dH, = /2y Y cle;dW;! (13)
J

with the corresponding Lindblad operator

L(p) =y Yy _@njpn; — {n;, p}). (14)
i

For a QSH described by Eq. (4), the conductance of the
system can be written
Ty (w)

G = |do————~.
v (k) f w4Tcosh2(%)

Two equivalent expressions of 7,(w) are derived in
Appendix B, one relying on the expansion in §xx of Eq. (11),
and the other on the expansion of the Meir-Wingreen for-
mula as devised in Refs. [14,35]. The expression (15) for the
conductance reproduces Landauer-Biittiker’s formula, valid
for noninteracting ballistic systems [54]. As such, 7, () is
interpreted as the transmittance of the channel at energy w
for a fixed y, a quantity independent of the temperature 7'
and chemical potential p of the leads. An explicit expression
of T, (w) was computed in Ref. [35] in similar settings. We
stress that the extension of Landauer-Biittiker’s formula (15)
to dephased systems is highly nontrivial, given the fact that
dephasing triggers inelastic scattering events in the conduct-
ing region.

If we consider leads, which are identical to the system, see
Eq. (1), no reflection occurs at the interface and 7, —(w) = 1
for @ € [—2t,,2t;] and O elsewhere. At zero temperature,
this implies the usual quantized conductance G = 1 when the
chemical potential of the leads lies within the dispersion rela-
tion of the reservoirs, € [—2t, 2t,] [1,55-57]; see Fig. 2.

The presence of any finite dephasing rate leads to diffusive
transport in the thermodynamic limit [15,33-35,58]. In these

s)

N8N

H
N

1071
Va

\310—3

Gy(p=T=0)

100 10! 102
W'JV/t:c

FIG. 2. (Top) Conductance as a function of chemical potential
for increasing dephasing rates y at T =0 (left) and increasing
temperature (right) at a fixed system size N = 50. The dots are
derived relying on the exact quantum calculation (Sec. III A), while
the dashed lines correspond to the semiclassical approximation
(Sec. ITI B). (Bottom) Scaling of the conductance with the parameter
yN when T =0, u = 0. (Inset) Relative error of the semiclassical
conductance at u = 0, €, = |G, — G,|/G,.

studies, it was shown that the bulk transport properties are
described by Fick’s law

J=-DVn, (16)

where D is the diffusion constant and Vn the particle density
gradient along the chain. In particular, for fixed boundary
conditions, Fick’s law implies the 1/N suppression of the
current with the system size and
212
v

This suppression reveals the emergence of a resistive behav-
ior, compatible with Ohm’s law. This relation holds in the bulk
regardless of the average chemical potential p« and temper-
ature T of the biased leads. This fact can be understood as
follows: at equilibrium, the effect of the noise term is to drive
the system towards an infinite temperature state with a fixed
number of particle [59]. Here the situation is more intricate
since we are out-of-equilibrium. Nevertheless, we show nu-
merically in Appendix D that, deep in the bulk, there exist
a well-defined notion of local equilibrium, where the system
does reach an infinite temperature state. Thus, in the bulk, the
information about the energy scales of the leads is erased,
and one expects that bulk transport properties, such as the
diffusion constant, will be independent of the temperature and
the chemical potentials of the boundaries. This point will be
further emphasized in Sec. IV.

In contrast to the diffusion constant D, the conductance
strongly depends on the temperature and chemical poten-
tial of the attached leads; see Fig. 2 (top) [60]. For a finite

an

013033-4



SEMICLASSICAL THEORY OF QUANTUM STOCHASTIC ...

PHYSICAL REVIEW RESEARCH 5, 013033 (2023)

dephasing rate y, G, develops a clear dome-like dependence
on the chemical potential [61] This shape persists even in the
diffusive regime N >> t,/y where the conductance vanishes
as 1/N; see Fig. 2 (bottom) and Fig. 7 in Appendix C. At
T = 0, the dome is restricted to energies within the bandwidth
[—2t,,2t] and the differential conductance 9,G diverges
whenever the chemical potential touches the edges of the
band, even when y > 0. This behavior is reminiscent of the
“staircase” behavior of the conductance for noninteracting
systems and y = 0. The main difference is that for y > 0 the
conductance G is not quantized and acquires a & dependence
in the [—2¢,, 2t,] interval. As expected, increasing the temper-
ature of the leads smears the dependence of the conductance
with respect to the chemical potential, as illustrated in Fig. 2
(top).

The dome-like dependence of the conductance ultimately
originates from its connection to the leads but it is independent
of the microscopic details of the latter. Reservoirs with a linear
band dispersion (i.e., not a cosine dispersion) would equally
lead to a maximum of the conductance near the band center.
Despite its usefulness, the numerical exact solution relies on
relatively involved technical tools (Keldysh field theory and
full diagrammatic ressummation), which somehow prevent a
transparent interpretation of the phenomenology at work (e.g.,
the dome-shaped dependence of the conductance on ). It is
thus important to have a simpler description of transport that
can simultaneously explain a constant diffusion constant, as
well as the quantitative dependence of the conductance with
the chemical potential.

In the next section, we show that a semiclassical model
allows to build an intuitive physical explanation of the depen-
dence of G, on the chemical potential and to connect it with
the bulk behavior of transport.

B. Semiclassical approach

The Lindblad operator (14) can actually describe the aver-
age evolution of a system under different stochastic processes,
which differ from the stochastic fluctuations of potential
considered in Eq. (13). Indeed, the most natural way to de-
vise a semiclassical description of the Lindblad dynamics of
Eq. (14) is to “unravel” it to a projective measurement process,
where the densities at each site are measured independently
with rate y [62,63]. Notice that for single realizations of
the stochastic process, the projective dynamics fundamentally
differs from the quantum stochastic dynamics described by
Eq. (13). For instance, a density measurement on site j would
project the system in a state with 1 or O particles on that site
in a nonunitary fashion. On the contrary, the random potential
fluctuations described by Eq. (13) are always unitary at the
level of a single realization. Nevertheless, the projective and
QSH dynamics coincide in average and are described by the
same effective Lindblad operator (14).

In the projective case, at each time step A, a measurement
at site j occurs with probability y Ar. After a measurement,
depending on whether the local particle number is measured
to be zero or one, the density matrix is updated as follows:

(1 =np(l = n))
Trlp(1 = n))]

nipn;
= —, 1
s B

o= po=

with respective probabilities

Py, =Tr[p(l —nj)l, P, =Tr[pn,]. (19)

Averaging over the possible outcomes for a small time step
dt yields the average evolution of the density matrix dp, =
Pr+dt = Prs

dp =ydty_Qnjpm; — {nj, p}), (20)
j

which is equivalent to the Lindblad evolution described by
Eq. (14).

This alternative point of view is the natural one to devise
a semiclassical description of transport in systems affected by
dephasing. If we consider a single-particle traveling through
the chain, the effect of a measurement is to localize it at a
given site j. When the particle is localized, it is in a superpo-
sition of all possible momentum states.

We thus propose the analogous classical model in the
continuum limit: consider a single particle of initial velocity
vo(w) coming from the left lead into the system of length
£ = Na, where a is the lattice spacing. Its velocity is set by
its energy o, vo(w) = d€;/dk|,, where €, is the dispersion
relation of the lead, see Fig. 1 (bottom). At a random time ¢,
determined by the Poissonian probability distribution p(r) =
ye ", its velocity is reinitialized by drawing a momentum k
sampled from a uniform probability distribution on the inter-
val [—m, ]. For a dispersion relation ¢, = —2t, cos(k), the
probability distribution of the velocity v reads

pv) = v e [—2t,2t,]. 21)

Once the velocity has been reset, the process is restarted.
‘Whenever the particle reaches one boundary located at x = 0
or x = £, it exits the system. The problem of computing the
semiclassical transmittance 7 can be reduced to compute
the probability of exiting the system by touching the right
boundary. Note that this problem differs from a usual random
walk, as in this case the length of the steps are not uniform in
time.

Once a measurement occurs, the velocity of a particle in-
jected by a reservoir gets totally randomized according to the
probability distribution (21). Thus the object of interest be-
comes the probability P(x) of exiting the system once a given
measurement has taken place at some position x € [0, £]. The
first measurement takes place at position x and time ¢ =
x/vo(w) with Poissonian probability distribution ye~*". Thus,
the semiclassical transmittance 7, for a particle injected from
the left lead with velocity vo(w), is given by

)4
vo(w)

We recall that, because of the specific dispersion of the leads
under consideration, 7¢(Jw| > 2t,) = 0.

It remains to determine P(x). It is useful to introduce the
probability P,(x) for a particle to exit on the right when it
starts at x with velocity v. The probability P(x) is thus the
integral of this probability over all possible velocities, P(x) =
[ dv p(v)P,(x). As we assume that no measurement process

Ta(w) =f P(x) PRETIS (22)
0
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occurs in the leads, P(x) has to fulfill the boundary conditions
Px<0)=0, Px>¢)=1. (23)

In the system, where the measurement processes occur, P, (x)
is expressed in the closed form

Py(x) = e(v){ﬂ% + /T dtye ™ P(x + vt)i|
0

+6(<v) / Cdtye P+ vi) 4)
0

where 6 (v) is the usual Heaviside step function. The first term
corresponds to the probability that the particle goes through
the system without the occurrence of any measurement. The
second term is the probability that a right mover resets at time
t multiplied by the probability to exit if the particle starts
again from this position. The last term corresponds to the
same process but for a left mover. By integrating over the
distribution of velocities (21), we get an implicit equation for
P(x) forx € [0, €],

t—x
P(x) =t —x) - /( dy¢' () P(x +y)
)

- fn dy g/ () P — ) 25)

where we have introduced the function
1

w<y>:fwdvp<v>e*V%: dx .6
0 0

b4

and ¢'(y) = d¢/dy. From Eq. (25), the probability P(x)
can be in principle derived iteratively in the number of
measurement-induced resets of velocity. This solution would
consist in writing

P)=Y P, @7
n=0
where P,(x) is the probability of exiting on the left after n
resets starting from x. This leads to

Po(x) =@(€ —x), (28)
l—x
Pri(x) =— fo dy¢'(y) Pi(x + )

- fo dy g ()P — ). 29)

Nevertheless, we have found empirically that solving Eq. (25)
self-consistently provides faster convergence and numerical
stability [64] in comparison to the recursive solution (27). We
use the derived solution in Eq. (22), to obtain the semiclassical
expression of the transmittance.

Using the newly found transmittance in formula (15), we
compute the associated semiclassical conductance G. In
Fig. 2, we compare G (solid lines) with the exact quantum
calculation G, (dots) and find an excellent agreement for all
chemical potentials and temperatures.

Deep in the diffusive region, N > t./y, the semiclassical
model has some deviations with respect to the quantum solu-
tion. In the inset of Fig. 2 (bottom), we depict the relative error

€ = |Gy — G,|/G, in the middle of the spectrum and verify
it does not increase above 10%. One possible explanation
for this discrepancy could be that the semiclassical model
assumes that at each reset event the new momentum is drawn
uniformly in the interval [—s, ] and the particle has ballistic
propagation at the corresponding velocity. In principle, we
have to take into account the mode occupation of the fermions
in the system. Indeed, the exclusion principle should prevent
the particle to acquire a momentum corresponding to an al-
ready occupied mode. Taking these effects into account is,
however, beyond the scope of this paper. We also stress that
within this approach, we have considered leads and systems
described by the same Hamiltonian in absence of dephasing.
This assumption ensures that we do not need to take into
account any additional reflection phenomena that might occur
when the particle is transferred from the leads to the system.

The semiclassical picture provides an intuitive explanation
of the conductance drop observed close to the band edges,
edge = E2t,. Close to these points, the velocity of incoming
particles is the lowest. It is then more likely that a measure-
ment process will occur and reset its speed, increasing its
chance to backscatter into the original lead, and thus reducing
the conductance. Additionally, the first measurement process
resets the single-particle velocity, leading to a uniform distri-
bution of the particle over all the accessible states. Thus, after
the measurement the particle attains an infinite temperature
state, which is reservoir-independent and is the one related to
the bulk transport properties described by the diffusion con-
stant (17). Remark that this picture is consistent with the fact
that the diffusion constant evaluated in the bulk is independent
of the boundary chemical potentials and temperatures. In con-
clusion, this simple semiclassical physical picture connects
bulk and boundary effects on the transport properties of this
system, which are revealed by the diffusion constant and the
conductance respectively.

IV. DEPHASED LADDER

We now extend the result for the conductivity of a 1D
system to a ladder made of M legs in the transverse direction,
as described by the Hamiltonian (1), see also Fig. 1. In this
section, we consider noises that are site-to-site independent
along the x axis, but without a fixed structure in the y di-
rection. Even though a natural choice is to consider noise
processes, which are uncorrelated along the y direction (as we
will do), considering also correlated structures is motivated
from synthetic dimensions setups. These setups make use of
coupling between nonspatial degrees of freedom to simulate
motion along additional dimensions [46—49]. In our setup,
the x direction would correspond to the physical dimension
while the synthetic dimension is mapped to the transverse y
direction. With this mapping, the QSH studied here could be
realized from randomly oscillating potentials that are spatially
resolved in the physical direction; see also Sec. V.

We recall the generic expression for the QSH Eq. (4),

dH, =2y Y a} a; ydW/ 7 (30)

J.p.p
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with the covariance of the noise de"p"p" alW”‘pz'p'2 =
8j1.2Cp1.p).pr.p,dt . Each term of the sum descrlbes a transition
from a state indexed by p’ to a state indexed by p with a
random complex amplitude given by dW,***” It is the most
general way of writing noisy quadratic jump processes be-
tween different states in the y direction.

In what follows, we will investigate the transport for dif-
ferent geometries of the noise by specifying the covariance
tensor C.

A. Noise I

We start with the simplest case, that we label Noise I. It
involves a single uniform noise acting on a given vertical
section of the system, see also Fig. 1 (top). It is described by

=8, 08y S 31

P1.P2.P) D) P1.p29p2, 0 Opyph 0

which corresponds to a QSH of the form

dH! =2y ) ¢} ,cimdBl = V27 Y d] a;,dB], (32)

jm i.p

with {B/} independent Brownian processes (recall that m in-
dexes the spatial degrees of freedom in the y direction while
p indexes the transverse modes). This kind of noise can be
naturally implemented in synthetic ladders generated from
internal spin degrees of freedoms of ultracold atoms [46—49].
Equation (31) would correspond to a randomly fluctuating
potential that acts independently on each atom and uniformly
shifts the energy levels of each spin state by /2y.

The noise dH;' commutes at fixed j with the occupation
number operator of every mode p, a}. p4ips and therefore does
not couple different modes. As a consequence, all the results
that we have derived for the conductance of a 1D system can
be trivially extended to the present case since the system is
then equivalent to a collection of uncoupled 1D bands. The
dispersion associated to each band €,(k) is the same than for
the 1D case with an overall energy shift given by €,(m/2).
Thus, the total conductance is the sum of the contribution of
each mode, namely,

G =36, [M—ep(%)], (33)
p

where G, is given by Eq. (15), extensively studied in the
purely 1D case.

In the absence of dephasing and at zero temperature (y =
T = 0), the conductance shows the usual staircase quantiza-
tion with respect to the chemical potential. As it is shown in
Fig. 3 for a two-leg ladder, the jumps in conductance take
place whenever the number of bands crossed by the chem-
ical potential changes. For a finite rate y, the action of the
dephasing noise is the same for each individual band and, as
a consequence, the total conductance decays as 1/N for larger
systems.

We stress that since Noise I does not mix the different
modes, it cannot change the value of their occupation number,
which is set by the chemical potential in the reservoirs. For
instance, if a given mode was initially empty, it will remain
so in the steady state. However, at fixed p, within a single
band, the dephasing noise (13) drives the density matrix to

A
\,W/ e(k)

Giu

2
<)
1
0
-3 0 3
w/ts

FIG. 3. Conductance profiles for different correlations of the
noise (30) and increasing values of yN. For increasing shades
of blue: y=0; y=0.14,,N=5;, y =054, N=10 and y =
0.5t,, N =50 and t, = t,. Noise I and II share the same conduc-
tance profile, while Noise III features the coexistence of ballistic
and diffusive transport, see main text. The sketches on top of the
conductance plots depict the stationary state reached in the bulk.
These states may or may not depend on the position of the chemical
potential y in the reservoirs (horizontal-grey lines), with respect to
the dispersion relations of the different conduction modes in the
system (black lines). The red halo on top of the dispersion relations
indicates the occupation probability of the modes. Noise I distributes
particle uniformly within each band separately, while Noise II dis-
tributes the states in all bands isotropically. Noise III is a special
case, which preserves the shape of the zero temperature distribution
of the reservoirs in the bulk only in the upper band.

a state proportional to the identity [59], which is reminiscent
of the infinite temperature state discussed in the 1D case, see
also Appendix D. We therefore say that Noise I is maximally
mixing the modes k in the x direction but not mixing at all
the modes p in the y direction. As a consequence, it does not
drive the system to a genuine infinite temperature state, this
only happens within each individual band. A picture of this
stationary state for increasing chemical potentials is sketched
in Fig. 3.

We now show that the conductance profile illustrated in
Fig. 3 is not unique to the uncorrelated Noise I (31), and also
describes other types of geometries.

B. Noise II

In this section, we consider an isotropic case, where the
noise is uncorrelated both in the x and y directions. In this
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case, that we label Noise II, the QSH in position basis reads

dH" =2y Y "¢l c;mdB" (34)

jom

with dB/"™ dB]*"™ =§;, ;,8m mdt. After performing the
unitary transformation that diagonalizes the nonstochastic
problem (1) in the form (2), we find the noise correlation
function

2 2 M Tam
o _ .
Cou, *(MH) mz U S"’(MH)' (33)

)
2oty =1 o=
Py

Contrary to the previous case, Noise II is maximally mixing
for the modes k in the x direction and for the modes p in the
y direction. As a consequence, this noise drives the system
to a genuine infinite temperature state in the bulk; see also
sketches in Fig. 3. The mixing of the modes in the transverse
direction renders the task of computing the conductance an a
priori nontrivial one.

Nevertheless, as we show in Appendix E, for any noise
satisfying the condition

ZCPI-PvP-I’I = N‘Sm,pz ’ (36)

P

the equations of motion of the total current J coincide to
those generated by Noise I up to a renormalization of y by
a constant /. As shown in the Appendix E, this condition
corresponds Vp to (aj»,,, aj ) being eigenvectors of the dual
Lindbladian £* with the same eigenvalue A. The fact that £*
act the same way on the transverse modes can be seen as an
isotropy condition for the noise term, i.e., this term cannot
discriminate between longitudinal modes and hence, cannot
change the value of the total current.

Using that 8, ., = MLHZJ sin(%)sin(lf‘%fl), one can
verify that C"" satisfies condition (36) with A" = 1. Thus we
find that

Gi(p) = Gu(w). (37

This result may sound surprising as, even though Noise II
drives the system towards the maximally mixed, infinite tem-
perature state, the staircase behavior of G is preserved, i.e.,
there is a discontinuity of 9, G every time the chemical poten-
tial touches a band.

The remarkable equality (37) can be intuitively understood
within the semiclassical picture. All that matters for the con-
ductance is the number of modes that can contribute to the
current. This number is fixed by the chemical potential, which
in turn controls the staircase behavior of the conductance.
Once a particle has entered the system, different scattering
events may switch it from one channel to the other isotrop-
ically, as expressed mathematically by the condition (36).
Nevertheless, all the channels carry the current in the same
fashion, since the dispersion relations of all the transverse
modes coincide in quasi-momentum k, except for an irrele-
vant energy shift. As a consequence, the total conductance is
insensitive to whether the noise is coherent (or not) along the
transverse direction.

C. Noise III
Finally, we illustrate how breaking the condition (36) may
lead to exotic transport. We introduce the case of Noise III,
where the correlations C™" of Noise III are designed such that
they only couple pairs of transverse modes,
i

PLpL Py Fp1.p26p1,p, 0o » (38)
for which
> s =8m D forp- (39)
P »

This qualitatively corresponds to the case where, for any noisy
process that transfers a particle from the band p; to p,, there
is the reverse process that transfers a particle from p, to p;
with the same rate f},, ,,.

The isotropy condition (36) is fulfilled if, for example, we
impose f}, ,, to be equal to a constant ¢ for every (py, p2) in
which case we have that N’ = Mc.

Breaking the isotropy condition can lead to a hybrid type
of transport. For instance, let us consider the case where

fm.pz = Sm.ng(}’ —Ppo), (40)

with the convention 6(0) = 0 for the Heaviside step function.
This noise imposes diffusive transport to the lowest transverse
modes (p < po) while the highest modes (p > pp) remain
ballistic. Since this noise does not couple the different trans-
verse modes, the conductance has both ballistic and diffusive
contributions,

Gu(w) =Y Gy(—6,)+ D Gyoolit —€p). (41

P<Po P>po

We plot an example of such situation on Fig. 3 (bottom) for
a two-leg ladder and po = 1. The overall current has diffusive
behavior until the chemical potential reaches the bottom of the
upper band at pg = —21, — 21, cos(&”fl ). For i > 19 the bal-
listic mode starts contributing and dominates the conductance
in the thermodynamic limit N — oo

V. CONCLUSIONS AND PERSPECTIVES

In this paper, we have studied the current flowing through
M-leg ladders subject to external dephasing noises with differ-
ent correlations along the direction y transverse to transport.
Starting from the purely one-dimensional case, M = 1, we
have devised a semiclassical model to compute the con-
ductance as a function of the chemical potential and found
excellent agreement with numerical solutions obtained from
exact self-consistent calculations of Dyson’s equation.

Showing the effectiveness of this semiclassical model is
important as it allows to build a simple and intuitive physical
picture of the emergence of bulk resistive behavior in quantum
stochastic resistors. As extensively discussed in the core of
this paper, the bulk transport properties of these systems, such
as the diffusion constant or the resistivity, are insensitive to
the temperature and chemical potential of the connected reser-
voirs. We showed that this is not the case for their conductance
and that we could rely on the semiclassical approach to bridge
between boundary and bulk effects. It could be interesting to
understand the deeper connections between our semiclassical
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model and the quasiparticle picture recently introduced to
describe entanglement growth [65,66].

The effectiveness of the semiclassical approach may also
hint to a potential connection to Drude models of impurity
scattering. As in Drude models, the dependence of the conduc-
tance on the chemical potential shown in Fig. 2 is somehow
directly related to the inverse of the density of states of the
system. Even though the semiclassical approach in our case
strongly relies on the unraveling of the Lindblad operator
to a measurement process, we can also understand the lo-
cal dephasing as induced by a local phonon bath at infinite
temperature. Whether such unraveling is possible /relevant for
more generic scattering problems, also in higher dimensions,
remains to be understood.

We have also shown that these nontrivial results in one
dimension could be also extended to M-leg ladder systems.
In particular, we have shown that the results valid in 1D
could be immediately applied to the case where the noise
term preserves the coherence in the vertical direction, this
case being particularly relevant to systems featuring synthetic
dimensions [46—49]. In this case, the total conductance is just
the sum of the contributions of independent 1D channels and
its diffusion constant remains unchanged.

We then demonstrated that the coherence properties of the
noise along the y direction do not play a role on the conduc-
tance of a ladder system when the noise fulfills the condition
(36). We also showed that breaking this condition for the
correlations of the noise allows to engineer exotic transport.
‘We gave an example (Noise IIT) where the longitudinal current
switches between a diffusive or ballistic behavior depending
on the chemical potential.

The isotropy condition (36) can be understood as the con-
dition under which each transverse mode contributes to the
total longitudinal current in the same manner. This raises
the natural question of understanding what would happen if
this degeneracy were to be lifted. A particularly interesting
problem would be to understand the effect of density-density
interactions in the transverse direction to the transport. In
the two-leg ladder, numerical studies relying on DMRG
techniques could be supported by the infinite system size
perturbation technique recently introduced in Ref. [35].

We briefly comment on the prospect of experimental re-
alizations. The noise discussed here is specially suitable for
implementation in synthetic dimensions setups such as ul-
tracold atoms in shaken constricted optical channels [67] or
with synthetic spin dimension [46—49,68], or even photonic
systems with ring resonator arrays [69,70]. In these systems,
the synthetic dimension plays the role of transverse direction
in our model while the physical dimension encodes the longi-
tudinal direction. A dephasing noise in the physical dimension
would thus affect in the same manner all the synthetic sites,
giving a natural realization of Noise I described by Eq. (31).
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APPENDIX A: GREEN’S FUNCTION
OF THE FREE SYSTEM

To compute the current operator (11), one first needs to
compute the Green’s function of the lead alone and of the
system in presence of the leads. For simplicity, we treat here
the 1D channel but generalization to M legs will be straight-
forward. For a single left lead, the Hamiltonian (1) can be
divided as

H = Hs + Hy — t,(c}e1 + cjco). (A1)

We suppose the lead (L) and the system (S) to be noninter-
acting so that Hy_ g is a quadratic Hamiltonian. The associated
action in the Keldysh formalism, using Larkin notation [53]
for the fermionic fields,

do -
§=8s+ / 5 (WLler 'y
2
+e(ovi + VUi + I + 97 v;)
where Ss is the action of the system, [y/] is a vector contain-
ing all Grassman variables associated to the left lead and g is
the Green’s function before coupling, with the same matrix

structure as G in Eq. (7), g := (f iﬁ). Integrating out the
lead’s degrees of freedom, one finds

do - -, (SR 3K\ (Y]
s=ssff£(wl' 1//12)<0 ZA)<W%),

R/AJK _ 2 _R/A/K
nR/AL =18 -

(A2)

(A3)

For an infinite-size lead made of n discrete sites with
a tight-binding Hamiltonian coinciding with Eq. (1), the
spectrum is given by € = —2t, cos(n’%), k € [1,n]. The
associated retarded Green’s function in momentum space is
given by (the tilde designates momentum space)

Sk

 + 2t, cos (”’%) +i0t

pl) = (A4)

In position space, this yields
2 (kG DY (kG + D
g‘;j,=n+125m< PE )Sm( n+ 1

[
1
X ————— .
 + 2t, cos ("’%) +i0+

(A5)

We are interested in the j = j = 0 term in the semi-infinite

limit, i.e., we take n — oo. Introducing p = "’% we get
2 (7 sin? p
=— dp——F——, A6
gg_o rr/o p(a)+2t}cosp+i0+) (A8)

which can be computed by contour integral in the complex
plane to be

o ! (@ + 10" — i/ (212 — (w + i0F)?).

0= 33 (A7)

The advanced component is just the complex conjugate of
the retarded one. To obtain the Keldysh component, we will
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suppose that the lead is at thermal equilibrium so that

& (@) = tanh (u)ZiIm(ggo)
V 7 .
= — 00t - |w\>ti; tanh (%)ﬂzmz —,

(A3)

which is enough to compute the Green’s function of the sys-
tem in presence of the leads [71]. In the absence of noise,
the Green’s function of the system is easily computed by
noticing that the system with both leads constitutes a discrete
tight-binding chain of infinite size. In this case, the Green’s
function in momentum space is given by

dp—p)

_ A9
w + 2t cos p + i0+ (A9

G*p. )=

By doing the inverse Fourier transform we get it in position
space

R T dp e=inli—H)
ko= - Al0
ik ,/,7, 27 w + 2t cos p + i0F (ALO)
which can be again computed by contour integral to be
o
R +
=—= All
P ez —20) A1

for j <k with zo = —(252) i /1 — (232 2. Using the
symmetry property ng = gﬁj we have the full Green’s func-

. L. )
tion in position space.

APPENDIX B: DERIVATION OF THE EXACT
SELF-CONSISTENT EQUATION AND OF THE
TRANSMITTANCE OF QUANTUM
STOCHASTIC RESISTORS

In this section, we summarize the derivation of the
self-consistent condition (9) as obtained in previous papers
[24,35]. We also explain the factorization of the current in
the form of Eq. (15). We also derive the Linbdlad equa-
tion describing the dynamics of QHS averaged over the noise
realizations.

1. Self-consistent equation

In full generality and to improve readability, we consider
a more compact formulation of the noise than in Eq. (4),
where dH, = 3, ; V2yee;dW, and i, j are indices labeling
generic lattice sites on an arbitrary lattice and dW,"/dW}! =
Cijudt whent =t" and 0 elsewhere.

The action associated to this noise reads

Sy = *Z/@(@W},t FUL AW B
ij

We consider the diagrammatic representation of the Green’s
function in Fig. 4. Full lines represent the retarded propagator,
dashed lines the advanced one and mixed lines the Keldysh
propagator. We represent with wiggly lines the two vertex
associated to the noise action (B1), one connecting only solid
lines and the other only dashed ones. The first contributions

gf{,](t’:t) - <z/)}(t/)u3]1(t N= f"_<_j|t
i s

——~—-—d

gt t) = =i (WFEWF(E)) = A

7, t'

) =~ OFO) = | p—emd
Ty ’

0= —i ()0} (t)) time 4
V2w (|_<_%_<_| + k=< é— <- -|>
Jit it gyt it

FIG. 4. Diagrammatic representation of the retarded (R), ad-
vanced (A), and Keldysh (K) Green’s function. Time flows from right
to left. On the bottom, we add the diagrammatic representation of the
vertex provided by the action (B1), which preserves dashed and solid
lines.

to the diagrams of GR4-K are depicted in Fig. 5. One readily

realizes that in the diagrammatic expansion of the retarded
(advanced) propagators only retarded (advanced) propagators
appear. For the Keldysh component, one can switch only once
from dashed to solid lines through the insertion of a Keldysh
propagator.

The average over different noise realizations is computed
using the It6 rules, which impose an equal time index when
connecting wiggly lines, dW,dW, # 0 = ¢’ =t. Diagram-
matically, wiggly lines merge as shown in Fig. 6. The key
insight is that after noise-averaging the diagrams, those with
crossing wiggly lines do not contribute to the action. In
Fig. 5, we show a diagram with crossing wiggly lines arising
from the diagrammatic expansion of the Keldysh component.
In that example, after averaging, two retarded propagators
(labeled A and B) have opposite directions. In our rep-
resentation, this implies the multiplication of two retarded
functions with opposite time dependence, which equals 0.
Similar considerations apply for all crossing diagrams, and we
direct the interested reader to Refs. [24,35] for the complete
demonstration. Since the crossing diagrams vanish, the Born
noncrossing approximation is exact, and all the remaining
rainbow diagrams can be exactly resummed, leading to the

gR:I=<=|=|—<—|+>—<—%—<—|+>—£<—%—<—< + .

gA = = 2 = bl r»-(—-%—-e--l —+ r--<—--%=-<--§r--<---| + ...

GF = =g = < + n—<%<| + )—(i<l +
L DS DU
T IS DU

FIG. 5. Diagrammatic expansion of the retarded, advanced, and
Keldysh propagators in the quantum stochastic action (BI). At a
given order n in the expansion, the retarded/advanced component
of the self energy only has one diagram whereas the Keldysh com-
ponent has n + 1 diagrams, corresponding to the insertion of the
Keldysh bare component at different times.

T T +
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FIG. 6. Example of a crossing diagram for the Keldysh com-
ponent. The red lines highlight the part of the diagram violating
the causality structure and are responsible for making the diagram
vanish.

following self-consistent equation for the self-energy

Tyt 1) =y8¢ — 1)y CujGut,1),  (B2)
Kl
which is equivalent to Eq. (9) in the main text.

2. Transmittance of a quantum stochastic resistor

We derive now two explicit and equivalent expressions
of the transmittance 7, (w) used to derive the conductance
in Eq. (15). To do this, we rely first on the Meir-Wingreen
expression of the current flowing from the reservoirs to the
system [14,72],

i [d
J= %/ 2i’Tr[[rL(w) — TR(@)IG" (@)
JT

— [A(0)TL() — FR(@)Tr@]GF (@) — G (@)},
(B3)

where the trace is performed over spatial indices, Fi /r (w) =
tanh[B(w — ur/r)/2] gives the equilibrium state of the right
(R) and left (L) reservoirs, and I't /g (w) = —Im(Zr)/7 are
the frequency-dependent hybridization functions describing
the coupling of the system with its left and right reservoirs.
In the idealized case of Sec. III, where system and reservoirs
are identical, the explicit expression of these hybridization
functions can be derived from Eq. (8) and (A7), so that
[ijLr(@) =8 ;6 1nT(w) in the interval o € [-21,,2t,],
with T'(w) = (/42 — ?)/2m. Outside of the interval w €
[—2t, 2], T'(w) = 0. Remind that we take j = 1 and N as the
leftmost and rightmost sites of the one-dimensional system.

We focus on the case of identical reservoirs exchanging
particles with the system only at one site and that the Meir-
Wingreen formula (B3) thus simplifies to

_ i Gf (@) — G¥ (@)
J= /dwl"(w)[iT
Fr(w) — FL(w)

3 A(w)] , (B4)

where we have introduced the shorthand notation QI.R/A/ K _

QS/A/ £ and assumed a mirror symmetric system, so that the
spectral functions at the system edges, A(w) = Ajy(w) =
7lm[gf/N(w)]/7r, is the same at both edges. The above
expression requires the derivation of the Keldysh Green’s

functions g{‘ (w), which are derived by solving the self-
consistent equation

G5 (@) = ~G5 g " (@) - =X )], G ,@).  (BS)

Im

where we use the convention of the summation of repeated
indices and where Ef is given by the Keldysh component of
Eq. (B2).

For the specific case of the on-site dephasing of Sec. III,
Ciju = 8ij0ixdx and the self-consistent equation (B2) can be
cast in the form

[6i —Mi]]gj[-((fvt) =D, (B6)
where we have introduced the matrix and vector notations

2
s

d
My=y [ 2 M), Myy(@) = |5 (@)

®7)
d
Dy = [ S2ah @ @@, Di=Di. ®9)

where we also exploited the property g;_*,.(w) = [gﬁ(w)]*.

Generalized forms of Eqs. (A3) and (A8) lead to
& (@) = 27l FL(0)TL(®) + Fr(@)R(@)], (B9)
which, in the specific case of Sec. III, reads

&' ¥ (@) = 2718, T (@) FL(@)8;1 + Fr(@)8in].  (B10)

Given the explicit dependence of the above expression on
the distribution functions of the reservoirs F{ jr, we can now
perform the expansion in linear order in the chemical potential
difference 0 = 1. — wr to obtain the transmittance. We first
show the linear expansion of the Keldysh component from
Eq. (BS), whose diagonal terms read

GKw) 1
= —l"(w)Ui(w)erMf;(w)[m]/k
do' ,
X /*T‘(w Wi (@), (B11)
2
o W), ®12)

Uilw) = F()Vi(®) = ——5 =~

4T cosh® (%)
where we introduced the N dimensional vectors V;(w) =
IGR (@) + 1GR (@), Wi(w) = |GR(@)* = |GK (@) and
F(w) = tanh[(w — p)/2T]. Thanks to the mirror symmetry
of the problem in Sec. III, the first term in Eq. (B12),
proportional to the equilibrium distribution function F,
does not contribute to the current given by the MW
formula in Eq. (B4) and can be discarded. Assuming also
A(w) = Apjr(w), we thus find the following compact form
for the transmittance in Eq. (15)

Ty (@) = 27T () A) — A¥ ()] (B13)
with
A (@) = [P(@)W (@)]i = [P(@)W ()]y, (B14)
and
M) |y fdo o1
P(w) = - + E/;F(w IM(w )]I sy (B15)
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with the matrix M defined in Eq. (B7). In the case of a reser-
voir with a constant density of state, I'(w) = I" and expression
Eq. (B13) coincides with the one derived in Ref. [35].

Despite the general character of Eq. (B13), we note that,
in purely one-dimensional systems, the current in the system
equals the one flowing from the reservoirs to the system.
As a consequence, we can extract a different, but equivalent,
expression of the transmittance from performing similar ma-
nipulations as the ones described to derive Eq. (B13), but
taking the local current expression Eq. (11) as a starting point.
For this, the off-diagonal elements of Q[’j(t = 0) are needed,
that can be readily obtained by injecting the solution (B6)
for the diagonal elements into the Dyson equation (B5). Once
taking the Fourier transform one finds

. A d 1
Gh(t=0)=iDy; +iy / %gff(w)[mlmnmgf,(m
(B16)

And the expression for the transmittance can be found from
expanding D in the bias. The zeroth-order term in S does not
contribute to the current, since without the bias the system is
mirror symmetric and the current must be zero. Replacing the
linear-order term of Eq. (B16) in Eq. (11) gives

T, (@) = 27rtxl“(w)lm|: K@)t 111 (@) — GR(@)GY 111 (@)

1 do’ ,
+y{m]mwm<w) f EC >9f§,-+,<w’)].
(B17)
The index i originates from computing the local current at site

i but since the latter does not depend on the position, neither
does the transmittance.

3. Average Lindblad description of the QSH dynamics

Lastly, we show how averaging a QSH over different noise
realizations maps to a Lindblad evolution. Under the quantum
stochastic evolution, the density matrix evolves as follows:

Drvay = €~ AT o p=i(HdirdHy)

=p, — i[Hdt + dH;, p;]
1
+ dHpdH, — S{dH. pi} + OW@r™?),
~ p, — i[Hdt + dH;, p]
+ v Y Qclejpcicr — lejeic]es, pCijudt,
ijki
(B18)
where we used the Ito rules and discarded terms of higher
order than dt. The Lindblad equation is obtained by taking the

noise-average of Eq. (B18), which sets the term proportional
to dH, to 0 in the It6 convention,

d .
SpPr=—iH, P14y D CuuQelejpejer — {cjac]e;, p)).
ijkl

(B19)

7]\7/ 2
200
1.0 —a,
150
05 100
50
0.0 0
—4 -2 0 2 !
H/te
FIG. 7. Rescaled conductance profiles Gf/(u, N):=

G, (1, N)/G, (0, N) for different values of y N with y = [0, 2]t, and
N =[5, 200]. The rescaled conductance converges in the diffusive
limit y N/t >> 1 to a curve qualitatively similar to the semiclassical
expectations in the same limit.

APPENDIX C: RESCALED CONDUCTANCE PROFILES

In this section, we present further numerical data on the
conductance profiles in the diffusive regime. In this regime,
the conductance decays with the inverse system size G o
1/N thus, to focus on the chemical potential dependence,
we depict in Fig. 7 the rescaled conductance G’y (u,N) =
G, (1, N)/G,(0, N) profiles for different values of yN and
compare with the semiclassical rescaled value G, (1, N) =
Gy (i, N)/G, (0, N). The dependence of G, (u = 0) on the
system size N is plotted in Fig. 2. As we transition to the diffu-
sive limit, the rescaled curves converge to a dome-like shape,
which follows the qualitative dependence of the semiclassical
approach, see black line for G);(N — o00). The deviations
between the exact and semiclassical approach are more sig-
nificant in the center of the band but never exceed 10%.

We note that such strong dependence on the ther-
modynamic properties of the leads is not present in
the diffusion constant and is a unique property of the
conductance.

APPENDIX D: MIXING EFFECTS
WITH DEPHASING NOISE

In this Appendix, we discuss the stationary state induced
by dephasing noise on a one-dimensional tight-binding chain.
We will qualitatively describe the out-of-equilibrium state
reached by the dephased chain and show numerically on Fig. 8
that this qualitative intuition is correct. In the absence of
dephasing, the whole chain will be in thermal equilibrium
with a chemical potential and temperature matching the lead.
Locally, it implies that the Green’s functions satisfy the fluc-
tuation dissipation relation

G (@) = (1 — 2m(@)(GF (@) — G(w))

with n;(w) the local Fermi distribution with parameters u, 7.
Beyond thermal equilibrium, we can still use Eq. (D1) as
an ad hoc definition of n;(w) to characterize local deviations
from equilibrium.
The presence of any dephasing rate drives the system out
of equilibrium. As explained in the main text, the dephasing
maximally mixes the longitudinal momentum states. Since

(DD
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FIG. 8. Nonequilibrium local occupation distribution extracted
from Eq. (D1) at different positions in a chain of N =200 sites
with on-site dephasing rate y = 0.05z,. The chain is coupled on
the first and last site i = 1, 200 to a thermal lead with p = ¢, and
T = 0.5t,. The black line corresponds to the Fermi distribution of
the attached reservoirs. (Inset) Same plot but the temperature of the
leads is T = 0.01¢,.

these, in 1D, label all the eigenstates of the system the action
of dephasing corresponds to heat the system to infinite tem-
perature. However, since the dephasing terms commute with
the local particle number operator, the attained steady-state
preserves a well defined particle number. In other words, the
local density matrix deep into a dephasing region resembles
a thermal distribution with an effective u* and T* such that
w*, T* — oo and p*/T* tuned in such a way to have in the
system the same spatial averaged particle density than the one
in the attached leads.

This is clear in Fig. 8 where we plot n;(w) for different
points in a dephasing chain coupled to a thermal lead on
the left and right. By definition, the lead is in local thermal
equilibrium and np g(w) is given by the Fermi distribution,
see black line. Near the lead, n;(w) deviates strongly from
a thermal distribution indicating that the system is far from
equilibrium. Deep into the chain, that is at distances from the
leads larger than the scattering length (i > #,/y, in Fig. 8),
n(w) becomes flat as expected from a state with infinite
1, T. The exact ratio u*/T* is uniquely determined from the
density of the reservoirs but its exact value depends on the
distribution of the system near the edges.

APPENDIX E: PROOF OF THE CONDITION (36)

In this Appendix, we give a proof of the condition Eq. (36)
in the main text. The strategy is to write down the equations of
motion for the total current of different noises and derive a
condition under which they are equivalent (up to a factor) for
different types of noise.

The action of the deterministic part H for the total current
(11) evaluated at site j, is given for any site by

O = ilH,J] =it Y (41, — 1jp)
P

¥ T
tajy a41p — a5 ,842,p
+ T
— @iy ,8p taj -1l (ED)

Since H is quadratic, and since it doesn’t mix the different
modes by construction, its further action on quadratic oper-
ators will only generate terms of the type a'j’: ko pitkp- BY
construction, the QSH (4) conserves the total number of par-
ticles at a given position on the x axis, i.e., [dH;, nj] = 0.
Then, one sufficient but not necessary condition for the equa-
tions of motion to have the same form for all protocols is that
the dual action on operators £* for the averaged noise does
not produce any new terms, i.e., we must have for j # j’

L*(a}_pajg,,) = —/\/a;pa,‘gp s (E2)

where N is a constant, which depends on the type of noise we
are interested in. Invoking the locality of the noise operator
with respect to the longitudinal direction we have that

K*(a;pajr‘p) = £*(a;p)a,vg,, + a;pl:*(a,v,,,). (E3)
So the sufficient condition (E2) can be cast into an even

more restrictive one where we impose that Vp, @ ,a j.p) are

h P
eigenvectors of the operator L£*.
Recall the explicit expression of L*

LOY =y Y Cpppp(2],,0,,00] 0,

J.p12.P) 5
T + A
- {a/.p,a/dﬁ“j,pga.fvl)'y 0}). (E4)
Using that Gy, ) ., = Cpj.p1.ph. o We have that

L@, ==y Y Copppp - (ES)

i
L¥(ajp) = -y Z Cp piprQjip: » (E6)

PP

and a sufficient condition for ('

. @j,p) to be eigenvectors of
L* is then

Z Coppps = Nbp s s (E7)
p

which is Eq. (36) of the main text.

For the coherent Noise I, one has A/ = 1 and the transport
properties of a given protocol model can be deduced from
those of Noise I by rescaling the coefficient y — Ay
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3.4 Emergence of diffusion in integrability-broken Hamiltonians

3.4 Emergence of diffusion in integrability-broken
Hamiltonians

In this last work, we continue to focus on inelastic processes and the emergence
of diffusion, whilst shifting attention to interacting Hamiltonians. Unlike QSHs, a
closed solution for self-energy with interactions is not known which adds a layer of
complexity. To simplify, we resort to reservoirs in the Markovian limit that drive the
system to an infinite temperature state, see Sec. 2.5.2.

We explore the effects of nearest-neighbor (NN) and next-to-nearest-neighbor
(NNN) density-density interactions on a non-interacting chain. In the context of
spins, these correspond to the XXZ model [2] with NNN magnetic interactions [[3]],
with the mapping provided by the Jordan-Wigner transformation (2.79). At char-
acteristic scales determined by Fermi’s golden rule [136, 137], generic interactions
(such as NNN interactions) are responsible for inelastic scattering processes that in-
duce diffusion, lead to thermalization [138], and promote the emergence of quantum
chaos [139]. This intuition breaks down for integrable models where the presence of
an extensive number of conservation laws can prevent thermalization [140], and may
suppress the emergence of diffusion [141]. The XXZ model is such a case, where
the existence of quasi-particles that only scatter elastically [142] can lead to ballistic
transport in the infinite size limit. All physical realizations of integrable models are,
at best, almost integrable, posing the question of understanding transport in weak
integrability-breaking setups.

The first model we investigate is a free chain in the presence of NNN interac-
tions, a prototypical model of diffusion. Prior to our work, it had been suggested that
the model supported an almost universal scaling of the ballistic-to-diffusive transi-
tion [143], see Fig. [2]]b where the curves for the current almost collapse with the
scaling factor N/N* (N* ~ V=2 is the scattering length estimated from Fermi’s
golden rule and V' is the NNN interaction’s strength). Our first result confirms that
there is a true universal scaling, see Fig. [3]], but the scaling factor must be modified
to account for small system size deviations, see Eq. [8]. The corrected scaling factor
can be found by computing the particle current perturbatively in orders of the inter-
action [[6]. At the time, we employed the formalism of third-quantization [ 144, 145]
to perform this perturbative expansion, but the same results could have been obtained
from Keldysh field theory [55]. Third-quantization is a systematic procedure to di-
agonalize the Liouvillian in terms of creation and annihilation super-operators, akin
to the diagonalization of Hamiltonian in second quantization, see Eq. [5]]. Obtaining
the correct scaling factor is important since it allows for a more accurate determina-
tion of the system’s diffusion constant from scaling arguments.

The majority of the work focuses on the role of weak NNN interactions on top of
the XXZ chain in the ballistic regime, i.e. when the NN interactions are small A with
respect to the hopping. Despite the current being ballistic for large systems, there is
still a crossover length scale where the current decays from the non-interacting value
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Figure 3.4: Adaptation from Figs. [[5,6]] of the paper. a) Current as a function of
system size for weak NNN interactions, V. After a transition length, the current saturates
to a quasi-ballistic regime with a renormalized current that depends linearly on V. b)
Current as a function of NNN interactions. For small interactions, the current is fitted to
a parabola with a linear term (dashed lines).

to the interacting one. The decay is expected since interactions tend to increase
scattering and reduce the current. The presence of any NNN interaction is always
expected to lead to diffusive physics after the scattering length N*, and, in Fig. [5]a,
we found some evidence that diffusive scaling J° ~ N~! does emerge for large
systems. However, the presence of NNN terms modifies the current long before the
onset of diffusion, see Fig. 3.4a. For weak NNN interactions and intermediate system
sizes, the current may counter-intuitively increase upon adding NNN interactions,
and depending on the sign, see Fig. 3.4b and Eq. [10]]. In this limit, the current
closely follows the current of the XXZ model (V' = 0) up to a small correction
linear in V/, as if renormalized. This motivated us to coin a new transport regime,
quasi-ballisticity.

The quasi-ballistic regime only exists in the limit of weak integrability breaking,
V' — 0, and is characterized by a constant ballistic current, up to corrections of order
V2. It is important to estimate at which length scale, Nog, the quadratic corrections
destroy the quasi-ballistic regime. Expanding the current in orders of V/

J% = (po(N) + pr(N)V + pa(N)V? + ..)ou+ O(6p%) (3.3)

the coefficients p; (V) can be obtained by a polynomial fit to each curve in Fig. 3.4b,
with the results presented in Fig. [6]]. Only the second-order term diverges with
the size, p2(N) ~ N, while the others saturate at different values depending on
the strength of the interaction. An estimate for Ngg is then given by the system
size at which the second-order dominates over the first-order term, pa(Ngp)V? ~
p1(Nos)V = Nos ~ |V|~L, which is much smaller than the scattering length
N* ~ V=2 but still parametrically large.

In the work, we focus on characteristic length scales, but it’s natural to hy-
pothesize that there is also an associated time scale controlling this quasi-ballistic
regime, tqp, whose signatures should be present in the light-cone dynamics of quan-

102



3.4 Emergence of diffusion in integrability-broken Hamiltonians

tum quench protocols. Intriguingly, generalized hydrodynamics is not capable of
capturing this regime since, being a coarse-grained approach, they always assume
N — oo before V- — 0.
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We study the ballistic-to-diffusive transition induced by the weak breaking of integrability in a boundary-
driven XXZ spin chain. Studying the evolution of the spin current density [7* as a function of the system size L,
we show that, accounting for boundary effects, the transition has a nontrivial universal behavior close to the XX
limit. It is controlled by the scattering length L* oc V2, where V is the strength of the integrability-breaking term.
In the XXZ model, the interplay of interactions controls the emergence of a transient “quasiballistic” regime at
length scales much shorter than L*. This parametrically large regime is characterized by a strong renormalization
of the current which forbids a universal scaling, unlike the XX model. Our results are based on matrix product
operator numerical simulations and agree with perturbative analytical calculations.

DOI: 10.1103/PhysRevB.102.184304

L. INTRODUCTION

A central assumption of statistical mechanics is that
many-body interactions bring isolated out-of-equilibrium sys-
tems toward thermal equilibrium [1-4]. The phenomenon of
thermalization in normal—metallic—conductors is generally
associated with diffusion. Globally conserved quantities such
as energy, charge, spin, or mass spread uniformly all over the
system according to Fick’s law,

J =-DVn, 1

in which the diffusion constant D relates the current density
J to the application of a density gradient Vn. Recently, it
has been observed that in one dimension, quantum integrable
systems defy thermalization [5]. This discovery has triggered
an intense effort to understand the nontrivial dynamics of such
systems under the recently developed framework of general-
ized hydrodynamics [6,7]. In particular, the presence of an
extensive amount of conservation laws in integrable systems
[8] generically leads to ballistic transport of conserved quanti-
ties [9]. An important case is spin transport in the XXZ model,
which can show, for some choice of the model parameters,
(super)diffusive behavior [10-18].

Unavoidable deviations from the realization of a perfect,
fine-tuned integrable system lead to integrability breaking
(IB). In that case, one typically expects the slow establishment
of a chaotic-diffusive regime on timescales given by Fermi’s
golden rule (FGR) [19,20]. Nevertheless, the investigation on
how IB triggers proper diffusive regimes for transport remains
at a preliminary stage. Even though recent works [21-23]
derived a generalized expression of FGR to describe diffusive
hydrodynamics caused by integrability breaking, the onset of
diffusion may still unveil highly nontrivial behavior [24,25].
Additionally, the onset of chaotic/diffusive behavior for fixed
weak interactions is not controlled by Fermi’s golden rule at
small system sizes [26-28]. Recent works have also pointed
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out that the emergence of chaotic/diffusive behavior may not
be fully related to the usual measurements of quantum chaos,
such as level repulsion [29-31] or the eigenstate thermaliza-
tion hypothesis [32].

Quantum quenches are a very efficient and widespread
protocol used to study the relaxation dynamics of such many-
body systems [17,33—40]. They are regularly performed in
state-of-the-art cold-atom experiments [41—44] and can be
efficiently simulated by numerical approaches [45-49]. Nev-
ertheless, the description of the long-time dynamics driven by
weak IB remains challenging for the available analytical and
numerical studies.

We choose to address this issue from a different but com-
plementary point of view. We investigate at which system
sizes do weak IB interactions of strength V' lead to a ballistic-
to-diffusive transition in one-dimensional spin chains. V' is
compared to the spin-exchange strength J. We study the ef-
fect of next-nearest-neighbor interactions on the stationary
current carried by a ballistic XXZ spin chain driven at its
boundaries; see Fig. 1. The boundary terms induce a bias in
the magnetization that in turn generates a spin current density,
J*. This approach has the advantage of directly probing the
stationary properties of highly excited many-body systems
with large system sizes [13,50] and it has been recently for-
mulated in terms of the local properties of the interacting
region [51]. Different transport regimes are characterized by a
unique scaling of current density with the system size L, J* o<
L~*. Here, we focus on the crossover from ballistic (¢« =
0) to diffusive (e = 1) as we approach the thermodynamic
limit.

The presence of nonintegrable interactions in the Hamil-
tonian introduces a natural length scale to the problem: the
scattering length L* oc V=2, as suggested from perturbation
theory and FGR. One could thus expect that the current scales
as a universal function of L/L*.

In this work, we show that the observation of such scaling
is not trivial in the case of the XX chain in the presence of IB

©2020 American Physical Society
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FIG. 1. Top: System under study: a spin current is induced via
biased Lindblad jump operators at the edge of an XXZ spin chain
described by Eqs. (2) and (3). Bottom: Schematic behavior of the
steady-state current as a function of the system size L. The ballistic
(size-independent) regime in the XXZ model sets in after the length
scale L, . Breaking integrability triggers diffusion beyond the scatter-
ing length L*, given by Fermi’s golden rule. The ballistic-to-diffusive
crossover regime is controlled by the emerging length scale Lyy <
L*, which defines a parametrically large “quasiballistic” regime.

perturbations. Our numerical calculations show that boundary
effects strongly affect the ballistic-to-diffusive transition at
short length scales, which are not controlled by the scattering
length L*. Nevertheless, relying on perturbation theory, we
derive a nontrivial universal scaling of the current on the
system size L. This scaling accounts for boundary corrections
and it allows an accurate extrapolation of the results to the
thermodynamic and V — 0 limit. Our results are consistent
with the establishment of a universal scaling as a function
of L/L* in this limit and also allow a good estimate of the
diffusion constant D.

We then extend our work to the study of the integrable
ballistic case in the presence of interactions (JA| < 1). In
this case, we show the emergence of linear corrections to
the current in the IB strength V. These corrections control
the emergence of a mesoscopic “quasiballistic” regime, in
which the ballistic current is strongly renormalized before the
onset of diffusion; see Fig. 1. More specifically, we show that,
up to parametrically large systems L < Lay o V™' < L*, IB
does not lead to current suppression. Instead the ballistic cur-
rent is strongly renormalized and, for repulsive interactions
(V > 0), it may even increase with respect to the integrable
case.

The results in this paper are expected to manifest them-
selves in real experiments probing the transport [52-54] and
relaxation properties of isolated interacting systems, close to
integrable points.

Our paper is structured as follows. In Sec. 11, we present the
system, the Lindblad formalism, which allows us to describe a
stationary state carrying a current and the numerical approach
based on the time-dependent density matrix renormalization
group (tDMRG) method. In Sec. III, we discuss the universal
scaling induced by IB when perturbing the XX limit. Sec-
tion IV discusses the effect of IB in the XXZ model. Section V
is devoted to the discussion of our results and conclusions.
The appendices incorporate details about the tDMRG imple-
mentation, perturbation theory, and complementary plots to
our numerical analysis.

II. MODEL AND METHODS

We consider the anisotropic Heisenberg (XXZ) chain in
one dimension [55],
-1 L1
Hxxz =J Z (ofof1 +olal,) + A Zaﬁﬂip @
i=1 i=1
in which o** are the standard Pauli matrices and L the
number of spins in the system. We set J = 1. The model (2)
is integrable and its ground state is gapless for A € [—1, 1]
and gapped otherwise. Remarkably, it supports ballistic spin
transport at finite energy density in the gapless phase [12],
superdiffusion at the isotropic point |[A| = 1, and normal dif-
fusion otherwise [11,13].

Transition to a diffusive regime is expected when breaking
integrability. For the remainder of the paper, we explicitly
break integrability by adding global next-nearest-neighbor
(NNN) interactions,

L2
Haww =V Y 0fof,,. 3)
i=1
We recall that V has units of the J coupling and, for the
remainder of the paper, we consider weak (V « 1) and mod-
erate (V ~ 0.5) interactions.

To study transport, we numerically mimic the experimen-
tally relevant situation [52—54] in which the system is coupled
at its two ends to a left (L) and a right (R) magnetization
reservoir. If there is a small magnetization bias, it induces a
nonequilibrium steady state (NESS) carrying spin current; see
Fig. 1. Coupling to external (Markovian) reservoirs results
in a nonunitary evolution of the system’s density matrix p.
We simulate this evolution with the Lindblad master equation
dp/dt = L(p) [56,57], where L is the Liouvillian superoper-
ator which describes the nonunitary dynamics of the system,

L(p)=—ilH, pl+ Y 2Warpll, = (p, TiTur). (4
a=LR
T=%
The dissipative dynamics induced by the reservoirs
is expressed in terms of the jump operators [y, =
Vy(I + tug)o,, where y is the injection/loss rate and
UL = —UR = %“, with Su being the bias in magnetization;
see also Fig. 1. To simplify the expressions, we fix y = 1.
Equation (4) effectively describes a system attached to weakly
magnetized reservoirs which have a temperature much larger
than the energy spectrum of the system [58,59]. This notion
has been recently put on solid grounds in Ref. [51].

For small magnetization bias, |64 < 1, the NESS induced
by Eq. (4) is close to py = I®F/2L [60]. It describes the
infinite-temperature situation in which, irrespective of the
system Hamiltonian, each spin is in a classical mixed state
with the same 1/2 probability of being up or down. The
stationary state carries a nonzero average spin current density
J=2 ZAL (o0 — o7 0y)/L.

The biased jump operators I'y, enforce different spin den-
sities at the two ends of the chain [61] and allow for a direct
investigation of the spin current. In particular, the dependence
of the spin current J* as a function of system size L allows
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us to distinguish between ballistic and diffusive transport
regimes. Ballistic regimes are not described by Fick’s law (1)
and they are characterized by a steady-state current that does
not decay with system size L, whereas diffusive regimes are
signaled by a current which decays inversely with L.

A. Numerical methods

To find the steady state of the master equation (4), we em-
ploy a time-dependent density matrix renormalization-group
(tDMRG) method [45], implemented with the ITensor library
[62]. For §u = 0, the steady state of Eq. (4) is the infinite-
temperature state. We thus perform a real-time evolution of
an initial density matrix p( = 0) = pn = 1®/2F, which is
written in a matrix product operator (MPO) form. Since the
nonequilibrium steady state, pngss = lim;—.o p(2), i unique,
it is well approximated by p(¢) for very large times and
increasing bond dimensions. By numerically verifying con-
vergence both in time and bond dimension, we are able to
compute the NESS for system sizes up to 100 sites (L = 100).
Our numerical simulations were carried out for a magnetiza-
tion bias 6 = 0.1, for which we verified that the current’s
response is linear in Su. The bond dimension is limited to
x = 160 and the time step of the Trotter decomposition ranges
from dt = 0.05 to dt = 0.2. The interested reader is directed
to Appendix A, where we provide all the necessary details
concerning our numerical simulations.

B. Analytical methods

To gain insight in the numerical results, we also rely on per-
turbation theory to compute the corrections to the spin current
caused by weak interactions V, A < J in finite-sized systems.
Similarly to conventional perturbation theory in the Hamil-
tonian language, the starting point is a fully diagonalized
model. In our case, the reference model is the XX chain with
boundary driving, which is a quadratic model and has been an-
alytically solved relying on the third-quantization formalism
[63,64]. The description of this formalism is rather technical
and does not provide special physical insight. We give thus
in Appendix B all the necessary details and describe here
only the main steps. The procedure requires first to map the
XX chain onto noninteracting fermions via the Jordan-Wigner
transformation. In the absence of interactions (A =V = 0),
the generator of the dynamics, Lxx, is quadratic in terms of
L fermionic annihilation and creation operators. Nevertheless,
the fact that the Liouvillian is a non-Hermitian superoperator
acting on the density matrix requires working on an extended
“third-quantization” basis of 2L x 2L superoperators {¢;, &;},
which allows us to cast the Liouvillian in the diagonal form

2L
Lxx(0) = ) aijéi(o), @)
in which the spectrum {o;} can be calculated numerically,
as detailed in Appendix B. In such basis, the NESS is ex-
pressed as a “vacuum” state pg, for which ¢;(po) = 0, and the
eigenstates of Lxx can be constructed from excitations on the
vacuum state, o, = D1 €111 ... & " (po).
The goal is to find a perturbative solution to the NESS
of Eq. (4), in the form pg = Y o —_o V" A" pyy,n. We plug the

m,n

A=0
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FIG. 2. Dependence of J* in the XX model for different
strengths V' of the next-nearest-neighbor interaction (3) as a function
of (a) system size L and (b) the scaling variable L/L*. In the inset,
the deviations from the value of the current in the ballistic limit are
shown. Deviations from a universal scaling are observed in (b) for
L <10 at all strengths V.

perturbative ansatz in the steady-state condition, LA(pm) =0,
and solve it order by order to find [65]

VA o = L3k ((Hxw 01+ [Hig. 0™ 0)),
©)

where we introduced the Moore-Penrose pseudoinverse of
the Liouvillian of the boundary-driven XX chain, [Ixx(o) =
D0 % 1¢/¢;(0). Using the third-quantization formalism we
thus find semianalytic expressions of p, and J* up to sec-
ond order in the interactions V and A, which are given in
Appendix B.

III. IB AND XX MODEL (A = 0): THE UNIVERSAL
CROSSOVER TO DIFFUSION

For the XX chain (A =V = 0), the MPO expression of
the steady state of Eq. (4) has been derived in Refs. [66,67],
and found to carry a ballistic spin current J° = §u [68].
Interactions such as Eq. (3) induce inelastic scattering among
free particles, which leads to a decay of the spin current and
the onset of diffusion in the thermodynamic limit.

For finite but large systems, the ballistic-to-diffusive tran-
sition is marked by a sizable deviation from J* =45u at a
crossover length scale L*. According to FGR, this scattering
length is expected to scale as L* ~ V=2 in the V — 0 limit.

‘We numerically compute the current, as a function of the
system size L, for different strengths V < J of the NNN
interaction, Eq. (3); see Fig. 2(a). As expected, with increas-
ing strength of the IB parameter V, the current decreases
monotonically for a fixed length L and diffusion sets in at
smaller L.
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FIG. 3. Universal scaling dependence of [7* in the XX model for
different strengths V of the next-nearest-neighbor interaction (3) as
a function V2 f,2(L). The dashed gray line corresponds to the ansatz
(8), valid for the diffusive regime. In the inset, the deviations from
the value of the current in the ballistic limit are shown.

Assuming that the only characteristic length (beyond
lattice spacing) is the scattering length, it is natural to ex-
pect a scaling hypothesis controlled by L*, i.e., J*/épu =
F(L/L*) = F(LV?). However, such scaling ansatz does not
allow a perfect collapse of all the numerical curves onto a
unique function; see Fig. 2(b) and inset. We observe that
for small systems, typically up to L ~ 10 sites, the current
deviates significantly from the scaling for any value of V. The
absence of a universal scaling is intriguing and also hinders
the possibility to extrapolate numerical data to arbitrarily large
system sizes. It is thus important to understand the deviations
and possibly correct them.

Thus, we rely on perturbation theory, described in Sec. II B,
to derive the correction to the current at finite sizes L. We find
that the leading corrections to the current read

T ==V fin(L) + OV . @)

Remarkably, the leading corrections to the current have a
nontrivial dependence on the system size L, through the func-
tion fy2(L), which is plotted in Fig. 8 in Appendix D. Apart
from irrelevant corrections for short system sizes, fy: is as a
linear function with a nonzero offset with respect to the origin,
Sfv2(L) ~ 0.40(L — 3.38). The divergence of the correction
of order V2 in Eq. (7) signals the transition to the diffusive
regime in which the current is expected to scale as L™!.
Surprisingly, a universal scaling of the numerical data is
obtained when plotting the current as a function of the non-
trivial parameter V2 fi,»(L); see Fig. 3 and inset. The collapse
of the curves is excellent up to large system sizes and up to
moderate IB strengths, V = 0.5. This shows the importance
of boundary effects in the ballistic-to-diffusive transition trig-
gered by generic interaction on the XX model. The boundary
corrections are encoded in the fact that the function fy2(L)
has an offset with respect to a straight line crossing the origin.
Such offset becomes negligible for systems sizes L > 10.
The expression (7) is only valid as long as V2,2 (L) < 1
and, unluckily, we could not find a good expression fitting
the whole curve in Fig. 3. Nevertheless, when approaching
the diffusive regime, the numerics are consistent with the

expression
1.45
= T2z 0
V2fya(L)

corresponding to the gray dashed lines in Fig. 3. For asymp-
totically large L, Eq. (8) acquires the form J* = D} _61./2L,
in which D%_, ~ 7.3/V? is the spin diffusion constant. This
value of the diffusion constant is derived by considering the
equivalent of Fick’s law (1) in the spin formulation of the
problem, namely J* = —D*Vs® = D* §u /2L, in which s° =
(0?)/2 is the spin expectation value. We have verified numer-
ically that Vs* = —8u /2L gives the correct estimate of the
spin-density gradient in diffusive regimes; see Appendix C.
One should notice that a precise evaluation of D}, _, for weak
V would hardly be possible without considering the correct
scaling parameter, as shown in Fig. 2.

This discussion concludes our analysis of the ballistic-
to-diffusive transition induced by IB on the XX model. We
showed that corrections caused by boundary effects affect the
scaling of the current for short system sizes. Nevertheless,
perturbation theory allows us to account for such finite-
size corrections and derive a universal ballistic-to-diffusive
crossover induced by IB on ballistic, noninteracting regimes.
Our analytical calculation shows that boundary effects be-
come negligible beyond systems of L ~ 10 sites, for which
the ballistic-to-diffusive crossover is indeed nicely described
by a universal function of L/L*. It is important to stress that
our analytical calculations are crucial to account for boundary
corrections and thus allow an accurate extrapolation of the
numerics to the thermodynamic and V — 0 limit. Without
perturbation theory, the universal nature of the scaling would
have been difficult to establish based exclusively on numerical
data.

‘We now extend our work to the interacting and integrable
case, showing how nearest-neighbor interactions, of strength
0 < A < 1, strongly modify the effects of IB on the ballistic
regime.

J* ®)

IV. IB AND XXZ MODEL WITH [A| <1
A. The ballistic, integrable regime

The sole presence of nearest-neighbor interactions does
not hinder ballistic transport in the thermodynamic limit for
|A] < 1 [12,69,70]. For finite systems, the current depends
nontrivially on the system size. For increasing L, the current
decreases monotonically until it saturates to its ballistic (ther-
modynamic) value. This saturation occurs beyond a typical
length scale L, which depends on the strength A of the
integrable nearest-neighbor interaction.

The behavior of J* as a function of L is shown in Fig. 4,
which reproduces the findings of Ref. [71] and that we display
here for clarity. To our knowledge, the exact size dependence
of the current is unknown. It is possible to obtain perturba-
tively the finite-size behavior of the current for A — 0:

TS =11 — A’ faa(L) + O(AY)b, ©)

where f: is a linear function similar to fy:; see Appendix D.
In analogy to the discussion of the previous section, Eq. (9)
is only valid for system sizes L < L, in which, for A <« 1,
La o< 1/A%. Beyond Ly, the perturbative corrections diverge
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FIG. 4. Finite-size scaling of J* in the ballistic regime of the
XXZ model (2), for different 0 < A < 1. For A < 1, the current
always saturates to a constant value signaling the ballistic regime.

linearly in L and miss the saturation of the current which, to
be derived, would require the resummation of the perturbation
theory in A to all orders. It should be stressed that even
though the expansions (7) and (9) look almost identical, their
linear divergences do not signal analogous behaviors in the
thermodynamic limit. In particular, in the nonintegrable case,
one would find the diffusive current suppression described by
Eq. (8).

B. Strong linear effects induced by IB

We now study the transition to the diffusive regime induced
by the IB term (3) for |A| < 1. In Fig. 5, we present the
size dependence of the spin current for A = 0.3 and different
IB parameters. Figure 5(a) highlights the suppression of the
current density for large systems and strong IB. The suppres-
sion is compatible with a diffusive scaling, marked by the
dashed gray lines. However, the observation of a clear diffu-
sive behavior lays beyond the available system sizes. Thus we
cannot reach any conclusions about the A dependence of the
diffusion constant [72].

Nevertheless, the most striking and visible effect in Fig. 5
is not the current suppression, but rather the strong sensitivity
of J* to the sign of the coupling constant V. This dependence
is visible for any system size and any IB strength and it is
absent in the noninteracting limit (A = 0). Two features of
such phenomenon deserve particular attention:

(i) The value of the current can even increase with respect
to the integrable case after breaking integrability. This relative
increase is more pronounced for small V < 1, see Fig. 5(b),
but persists up to system sizes of the order of 50 sites for non-
perturbative values of the IB strength V ~ 0.1; see Fig. 5(a).
This is surprising, given the expectation that IB is supposed to
trigger diffusion, and thus suppress the current as a function
of the system size.

(ii) In the limit of V — 0, the effects of IB appear to just
renormalize the relaxation toward the ballistic regime and the
saturation value of the current; see Fig. 5(b). Breaking of inte-
grability marks a correction to the ballistic regime, long before
the scattering length L* and the related onset of diffusion. The
curves for [V| < 0.02 also suggest that this effect reduces as

A=0.3

= )

™ 0.851 5001 « 001 S 2 o
-0.02 0.02
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FIG. 5. System-size dependence of the XXZ current in the pres-
ence of nonintegrable interactions (3) and for different IB strengths
V. In all cases, we compare to the integrable ballistic case for A =
0.3 (solid black line). (a) For moderately strong IB (V| > 0.1), at
short system sizes, the stationary current is strongly sensitive to sign
of the IB term V before the onset of diffusion, which is signaled by
the dashed gray lines at larger system sizes. (b) Illustration of the
quasiballistic regime in the V — 0 limit. For weak IB, the ballistic
regimes appears to be just renormalized by linear (sign-dependent)
corrections in V.

V — 0, while simultaneously persisting for larger systems.
This effect has nothing to do with the boundary corrections
discussed in Sec. ITI.

This strong sensitivity of the current to the sign of the IB
term V hints at the existence of linear effects in V whose fate
in the thermodynamic limit is intriguing—in particular, con-
cerning the renormalization of the ballistic regime observed in
Fig. 5(b). In the next section, we argue how linear corrections
control the IB crossover to the diffusive regime, giving rise to
an emergent mesoscopic “quasiballistic” regime.

C. The quasiballistic regime

The perturbation theory carried out in the previous sections
provides some insight into the nature of the linear correction
in V. It arises as a second-order term in AV when perturbing
the current close to the XX limit:

T ==V firll) = A2 far(L) + VA fya(D)Isp.  (10)

Similarly to the A% and V? corrections, fy, also diverges
linearly with the system size L; see Appendix D. The second-
order nature (AV) of the linear corrections indicates that the
effects discussed here only pertain the interplay between inte-
grable and IB interactions. In the absence of nearest-neighbor
interactions (A = 0), the effects are trivially absent, as shown
in Sec. III.

To understand the fate of the linear correction in the
thermodynamic limit, we rely on a systematic study of the
finite-size scaling of the current at finite A. We numerically

184304-5



JOAO S. FERREIRA AND MICHELE FILIPPONE

PHYSICAL REVIEW B 102, 184304 (2020)

A=0.3

1.0
(a)
P e S ) .
= U] Sa %
=081 = o
& oot L ’
s 10 « 45
e 20 « 70
0.6 30 e 100
—0.10  =0.05  0.00 0.05 0.10

(d) ——
101, /‘é?"’//
N - A
1004 / f) 0.2
0.05 +0.3
01 05
10! 10°
L

FIG. 6. (a) Dependence of [J7* for A = 0.3 and different system
sizes, as a function of small IB parameters. Dashed lines represent the
fitting functions of Eq. (11). (b)—(d) System-size dependence of the
fitting parameters for different A parameters. The dashed gray lines
correspond to the predictions from second-order perturbation theory.
For small A, the results approach the perturbative predictions.

probe the V. — 0 limit by assuming a polynomial expansion
of the current:

L (A L)+ Ver(A L) — Vies(A, L) + OV,

S
an

which extends Eq. (10) beyond the perturbative regime.

In Fig. 6(a), we depict the dependence of the spin current
J* on the IB perturbation strength V for finite A = 0.3 and
increasing system sizes L. For V <« A, all curves can be
nicely fitted with expression (11), with ¢; as free parameters.
The asymmetry of the parabolic dependence on V is a clear

indicator of the presence of linear corrections for A # 0. In
Figs. 6(b)-6(d), we show the obtained finite-size scaling of the
coefficients c¢; for different values of A. The dashed lines cor-
respond to the analytic predictions derived with perturbation
theory in Eq. (10). They show an excellent agreement with the
numerics in the A — 0 limit [73].

Figure 6(c) clearly shows that the coefficient ¢;, which
controls the linear corrections in V, behaves analogously to
co, and thus saturates to finite values at systems sizes of the
order of L. The finite value of ¢; contributes to the strong
sign dependence at moderately strong V' in Fig. 5(a).

On the other hand, ¢,, which controls the second-order
corrections to J* in V, increases linearly with L. Its diver-
gence is only weakly affected by the presence of a finite A.
The fact that only the terms of order O(V?) diverge suggests
that the diffusive regime is established at the scattering length
L* ~ 1/V?[21-23].

The different size dependence of the coefficients c¢; and ¢,
corresponds to strong quantitative effects of IB on integrable
systems. First of all, the nonzero linear corrections in V' signal
that IB has prominent effects at system sizes much shorter
than L*. In contrast to the XX case, IB does not primarily
lead to the inelastic scattering of quasiparticles and the onset
of diffusion. Instead, IB leads to a transient and mesoscopic
“quasiballistic” regime, in which the value of the ballistic
current in the XXZ model is just renormalized by IB. Whether
such corrections can be interpreted as a renormalization of the
quasiparticle velocity is left for future investigation.

Additionally, such quasiballistic regime persists up to a
novel and parametrically large length scale Lay, which con-
trols the onset of diffusion and is much shorter than L*. An
estimate of Lay can be obtained from Eq. (11). It is defined
as the length scale at which the diverging term of order O(V?)
dominates the linear correction of order O(V). For |[V| < A,
we can define such length scale as

1
~ - L*"\/i. ]2
[VIei(A, L — o0) < V2 12

Lay
This emergent length scale marks the system sizes up to which
IB acts as a renormalization of the ballistic current of the inte-
grable XXZ model with |A| < 1. For system sizes L =~ Lay,
the deviations from the ballistic regime become sizable, and
the crossover to diffusion starts. Remarkably, such transient
length scale does not emerge from generalized hydrodynamics
approaches [21-23]. The reason is that generalized hydrody-
namics is a “coarse-grained” approach, which considers the
limit L — oo before V — 0. Our numerical and analytical
predictions rely on the opposite order of limits, which will be
relevant to study IB in real experiments. We expect our effects
to appear on the transient timescales controlling the quantum
evolution after quenches.
‘We conclude this section by stressing that the existence of
such linear effects compromises the possibility to collapse the
crossover to diffusion onto a unique, universal curve.

V. CONCLUSIONS

In this work, we studied and characterized the effects of
integrability breaking on the spin current of a boundary-driven
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chain. We have first considered integrability breaking of the
noninteracting XX chain. We showed that the crossover to
diffusion is indeed universal and controlled by a novel scaling
parameter, V2 f,,2(L), which we computed using perturbation
theory and which accounts for boundary effects. The universal
scaling found here allows us to show that the ballistic-to-
diffusive crossover is controlled by the scattering length L* ~
V=2, consistently with FGR. Accounting for boundary effects
was important to verify the universality of such transition
based on numerical calculations.

Nevertheless, the fact that deviations from ballisticity in
the XX model are controlled by second-order corrections in
the IB strength V is not trivial. In Ref. [27], the evolution of
eigenstates in the presence of IB terms was studied exactly for
the same model. In that work, it was pointed out that, for fixed
system sizes L, perturbation theory is expected to fail for sys-
tems sizes L o< V172, Such an estimate is readily derived by
noticing that NNN interactions have typical matrix elements
of order V/L which couple p o 1/L*InL states, because of
total momentum conservation. Now, it is remarkable that the
length scale L does not appear at all in the finite-size scaling of
the current during the onset of diffusion. The physical effects
of such length scales pave the way to stimulating investiga-
tions concerning other effects of integrability breaking. It is
also an interesting line of investigation to extend our approach
to the regimes in which V is of the order of the spin exchange
J, or larger.

We have then addressed the effects of IB in the ballistic
regime of the XXZ model. Our observations are consistent
with a diffusive regime in the thermodynamic limit, even
though the precise determination of the diffusion constant in
the presence of a finite A < 1 and V — 0 remains an inter-
esting (and challenging) line of investigation [72]. Our main
result, is that IB controls the ballistic-to-diffusive transition in
a nontrivial way for interacting models at mesoscopic length
scales. Unlike the noninteracting XX case, we showed that
linear corrections in V influence transport long before the
onset of diffusion. This is surprising given the expectation that
IB would simply suppress the current as a function of size.
The fact that the opposite may happen in the mesoscopic qua-
siballistic regime is a qualitatively new effect of interactions.
As mentioned above, the physical meaning of such effect has
to be clarified.

An interesting direction would be to compare and make
the connection of our findings with the timescales de-
scribing the relaxation of nonintegrable quantum systems
[29,30]—for instance, by studying the unitary evolution of
a weakly polarized domain-wall state [6,7,13,39]. It would
be important to understand the role of IB terms different
from Eq. (3), such as disorder, single impurities [29,30,74],
stochastic quantum noise [75-77], and also dephasing
[78].

Future research directions could address the propagation
of energy and spin [79] in the presence of IB—in partic-
ular, whether the Wiedemann-Franz law [80] is restored in
the presence of IB terms, since it is notoriously violated in
such systems at low temperatures [25,81-83]. An additional
perspective is the investigation of different integrability per-
turbations and their effect on quantum ladder systems attached
to reservoirs [84-86].
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APPENDIX A: NUMERICAL DETAILS

Except for the large coupling limit, V — oo, the mod-
els presented in the main text have a unique nonequilibrium
steady state (NESS) in the thermodynamic limit. This con-
dition ensures that we can reach the NESS via a real time
evolution p = lim,—, o0 exp(ﬁt)p(O) of any initial state p(0).
We initialize the state in the product state p(t = 0) = [®%/2".

For small systems, L < 8, we use exact diagonalization
as baseline for other time-evolution methods. Beyond L = 8,
we employ time-evolving block decimation (TEBD), which
allows us to efficiently find the NESS of large spin chains,
L < 100. The algorithm was first explored in Ref. [60] and
consists of applying a Suzuki-Trotter decomposition of the
Lindblad superoperator to the state p. In our case, we use a
4th-order decomposition introduced in Ref. [87]. At any time
during the time evolution, the density matrix can be written in
a matrix product operator form

p= MMy M (o] ®0p ®...®0Y).  (AD

{i}

where we choose the local basis to be the Pauli matrices
%12 = g*»? and 6° = I and dim(M}) = x x x.In general,
the application of nonunitary two-site gates leads to nonphys-
ical states as it breaks the orthogonality condition assumed
in TEBD. To avoid reorthogonalizing the MPO at every time
step, we apply the gates sequentially instead [88]. We simulate
the next-nearest interaction using the SWAP gate technique.

In the presence of interactions, the necessary bond dimen-
sion x to simulate the NESS is expected to grow with the
system size. We consider that the time-evolved state p(t) cor-
rectly approximates the NESS if it satisfies three criteria: the
current is homogeneous across the chain, the average current
does not evolve in time, and the current converges as the bond
dimension increases. Next, we present the algorithm used in
this paper. The quantity J represents the spatial average of
the spin current

(1) Initialize with the product state p(t = 0) = [®/2"
(Xo=1.

(2) Increase the bond dimension by x; = 8x + xi—1.

(3) Time-evolve the state until the current has saturated in
time.

(a) Compute the time variance in the last 7 = 10, 30

time units (of hopping) o7 = Y"1 [T (t — i) — u]?/T.

(b) Repeat step 3 until |03 — o7y |/0% < 1%.
(4) Check convergence

(a) Compute the spacial variance 02(J) = Z,(;z] (J: —
IP/L—2).

184304-7



JOAO S. FERREIRA AND MICHELE FILIPPONE

PHYSICAL REVIEW B 102, 184304 (2020)

(b) Compute the change with the bond dimension €, =

T — T xim). .

(c) Repeat steps 2, 3, and 4 until |0 (J)/J| < 1% and

lex /T < 0.5%.

(5) Compute the final current and associated error €; =
max (0 (J), €)-

In most situations, we require a much stricter bond on the
homogeneity condition, often requiring |o(7)/J| < 0.1%.
The time step of the Trotter decomposition is variable along
the algorithm. For small bond dimensions, we use a large
time step, df = 0.2, to quickly advance the simulation and
reduce it when closer to convergence, up to dt = 0.05. Due
to the convergence criterion employed, simulations can take
weeks to converge or reach inaccessible bond dimensions.
For this reason, if the criteria are not satisfied for x < 160,
we consider that the system has not converged and do not
show it.

The algorithm was implemented using the open-source
ITensor library [62].

APPENDIX B: DIAGONALIZATION OF THE XX CHAIN

In this section, we provide a summary on how to diago-
nalize the noninteracting XX limit, V = A = 0. We follow
the protocol of Ref. [64] which reduces the diagonalization
problem to finding the eigenbasis of a 2L x 2L matrix. It is
useful to work in the fermionic representation via the Jordan-
Wigner transformation:

+ _ —inz”lnk T
o =e a;,
_ i -1
";’ — emz ”‘aj,
o]
In the fermionic representation, the Hamiltonian becomes

2a%a;— 1. B

L
Hxx = Z h,»ja;'aj (B2)

ij=1

with h; j = 2J8;_j.1. Since the {a;, a:} operators act left and
right of the density matrix, it is useful to work in the Liou-
ville space of superoperators. In the superoperator formalism,
density matrices are mapped onto vectors in a vector space of
dimensions C* x C* according to the mapping |[|[MpN) =
M ®NT|p), where |p) is the row-vectorized form of the
matrix p. We can now define a new set of 2L superoperators
B = {b;, l;f, brii, I;L,.}L which act on || p) according to

=1

billp) = llaip),

billp) = llalp).
R (B3)
brsillp) = IP(pal)),

by llp) = IP(p)ai),

where P = ¢ Zn@ltlon! jg 5 superoperator string which im-
poses the necessary anticommutations relations {b b i} = 8ij.

In practice, the B basis acts as a complete set of creation
and destruction operators in the occupation number basis of
a lattice of size 2L. Physically, P is a parity operator with
eigenvalues =1 and counts the number of excitations in the

new fermionic system with 2L states. For reasons clear bellow,
we will only be interested in P = 1. In the new B basis, the
Lindblad superoperator reads

L
Lxx =—i Y (hi;blb;
ij=1
+ Y DU+ p)@bjb P — buyibl,; — bib)
i=1,L
+ ) T = i) (=2bibp P = b bryi — By
i=1,L

— hjib}ibu))

(B4)

Similarly to the diagonalization procedure of quadratic
Hamiltonians, we are interested in finding a basis of 2L
creation and annihilation superoperators C = {¢;, 6;}?L] that

diagonalizes the unperturbed problem, fxx = ZZLI ;¢ If
such basis exists, the eigenstates of /jxx can be constructed
from excitations on the vacuum state of the c¢’s opera-
15, (o) = 3 11852 |0) and A, = YF (e +
firyie)). Trivially, the NESS is the vacuum state of the C
basis.

Due to particle-hole symmetry, the values of «; must come
in conjugate pairs {o, *} with Re(or) < 0. We fix o] = oz
in our notation. In general, the Lindblad superoperator is
not Hermitian and neither are the ¢’s superoperators; how-
ever, 1hey still respect the fermionic anticommutation relations
{¢i, ¢ } =& j and {¢;, ¢} = (¢}, &'} = 0. The ¢, &' operators
represent a linear superposition of particle and hole excita-
tions acting both left and right of the density matrix and should
be understood as the “normal modes” of the open system. The
exact mapping between {¢;, &} and (b, b } operators can be
found in Ref. [64] and is shown here for Completeness

Bl—>L Clor
b‘L+f1~>2L _ |:W 0 i ] 5/Lj;1—>2L (B5)
b, 0 -Y,W*Y, &y
briioaL Cri1-aL
where Y, = _i[f(l]h ]LL] and the columns of W are the right

eigenvectors of a matrix M. In our work, M acquires a simple
form

lel:fthrA*'fA‘ 2A°F

2 27~ —ih— A+ A‘i| (B6)

with diagonal matrices A} =
A7 =i + 8,0 — wy).

To our knowledge, there is no analytical solution for W
as a function of L and so we resort to exact diagonalization.
Once the mapping of Eq. (BS) is found, we can express any
superoperator in the C basis.

(i1 +8;,)T'(1 + p;) and

APPENDIX C: UNIVERSAL SCALING

In this Appendix, we provide further details on the univer-
sality of the scaling discussed in Sec. III.

It follows from Fick’s law that, when imposing a fixed
bias, the magnetization profile interpolates linearly between
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FIG. 7. Top: Magnetization profile close to the diffusive regime
for different system sizes. Bottom: Rescaled slope of the magnetiza-
tion for different IB parameters as a function of V2f,2(L). System
sizes range from L = 15 to L = 100. Analytic predictions close to
the ballistic regime are depicted as dashed lines. In the diffusive
regime [V2f,2(L) ~ 1], the magnetization slope approaches 8/L
as expected.

the borders. However, this is only true in the thermodynamic
limit, and finite systems present small deviations up to four
sites into the chain’s bulk. In Fig. 7 (top), we depict the
magnetization profile of the XX model close to the diffusive
regime for different system sizes. The effects of the border are
visible up to very large systems, L = 100.

For consistency, we verify that the magnetization’s gra-
dient converges to V(0%) = —§u/L in the diffusive regime,
V2fy2(L) > 1, see Fig. 7 (bottom). There, we depict the
rescaled gradient of o° obtained by a linear fit of the mag-
netization close to the middle of the chain. We find an overall
scaling with V2 fy2(L) but, in contrast to Fig. 2, the finite-size
effects in the magnetization profile lead to non-negligible
deviations. Close to the ballistic regime, we find a moderate
agreement with V(o%) = 757”V2fvz(L), depicted as dashed
gray line.

APPENDIX D: PERTURBATION THEORY

As mentioned in the main text, perturbation theory (PT)
provides a benchmark and helpful insights on the numerical
data in the limit of small interactions. In this section, we
provide further details on the method.

20

o fiz(L)
faz(L)
o fra(L)

FIG. 8. System size dependence of the functions f; in Eq. (D3).
Dashed lines depict the linear fitting performed beyond L = 6. Inset:
Highlight for very short systems, in which the deviations from perfect
linear scaling can be appreciated.

The object of interest is the NESS of the system. It cor-
responds to the unique (in our case) zero eigenvalue of the
nonunitary master equation (4). This equation can be written
in terms of the Liouvillian super-operator d, p = L(p). Super-
operators are denoted by a hat.

The first step in PT is to find the eigendecomposition
of the unperturbed problem, i.e., the superoperator of the
noninteracting boundary-driven XX model, Lxx. As a di-
rect consequence of the nonunitarity of general Lindblad
evolutions, the Lindblad superoperator is described by a
non-Hermitian matrix and thus has different left and right
eigenvectors, p, and p,, respectively. They respect the nor-
malization condition Tr(p,p,) = 8,, and share the same
eigenvalue A,, whose real part corresponds to the physical
relaxation rate of p,.

The eigenstates of Lxx serve as the basis to perturba-
tively construct the eigenstates of the full problem. Since
Lxx is a quadratic superoperator, it is useful to rely on the
third-quantization formalism [63,64] to find its eigendecom-
position. In Appendix B, we construct the 4% eigenstates p,
by consecutively acting with annihilation (creation) operators,
€0, on a vacuum state of 2L particles, po. This approach
allows us to diagonalize the Lindblad superoperator, which
can be written as

4t

2L
Lxx(0) =Y aiti&i(0) = Y hupuTr(puo),

n

(D1)

where p, = 30, E1" ... &5 " (po) and A, = 32 e, All
the models discussed here have a unique NESS that satisfies

TABLE I. Fitting parameters of the second-order corrections to
the current.

a b
f2 0.3992 —1.348
faz 0.2124 ~0.5307
fra 0.3015 —0.4946
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FIG. 9. Deviations from the ballistic current for small (next-to-)nearest-neighbor interactions. System sizes range from L = 5 to L = 100.
The numerical data closely follow the analytic predictions of (D3) depicted as dashed lines.

Xo = 0and py = I. The NESS of the XX model carries a finite
current proportional to the bias, Tr[jspo] =§u. js is the spin
current density superoperator.

In the second step of PT, we look for a perturbative solution
to the NESS of Eq. (4), in the form p,, = Zf:_nzo VA ptmm
where p©0 = p, is the NESS of the XX model. Assuming
orthonormality of left and right eigenvectors, the expansion
terms can be computed order by order [65]:

VA o = L5k (. p 11+ [Hig, 07 V]).
(D2)

where we introduced the Moore-Penrose pseudoinverse of
the superoperator fxx(o), f;x(o) = Zp.>0 )\;IpuTr(,b#o).
The above perturbation scheme ensures that at any trunca-
tion order, the density matrix remains Hermitian, positive-
semidefinite, and with trace equal to 1 [89]. Equation (D2)
leads to the same results of the variational approach in
Ref. [71].

‘We analytically compute corrections to the bulk’s spin cur-
rent up to second order in perturbation theory. All the results
are valid only in the linear response regime, |[u| < 1, and we
discard higher-order corrections O(112). Assuming y = J = 1
in Eq. (4), we obtain

o)
T = 3 VAT e )

m,n=0
~ [ =V fa(L) — A fpr (L) + VAfyaL)Idp.  (D3)

The system size dependence of the functions fiy2 a2y is
shown in Fig. 8. Beyond L ~ 5, the scaling for all f; is linear
in L and the fitting functions f; = a;L + b; are depicted in
corresponding dashed lines and reported in Table I.

Notice the linearity in V of the third term in Eq. (D3),
which is responsible for the current enhancement. It is clear
from Eq. (D3) that the large-L limit and the small-interaction
limit do not commute. For instance, both the integral and
nonintegrable corrections to the XX model lead to divergent
contributions which do not capture the enforcement of ballis-
tic or diffusive behavior at large system sizes.

We illustrate now the agreement with PT and our tDMRG
simulations. In the main text, we compared the PT results
against a polynomial fit of the current; see Fig. 6. We argued
that Eq. (D3) correctly predicted the current in the limit of
A — 0 but some small deviations were observed in the order
O(V?) term. In Fig. 9, we present a complementary analysis of
the data which does not rely on fitting polynomials. Figure 9
depicts the correction to the current, §7°, upon turning on
interactions, respectively V, A, and V, for the left, center, and
right plots. The x axis is rescaled according to (D3) and dashed
gray lines depict the perturbation theory predictions.

We can observe that for small interactions (A and V), the
current is indeed well described by Eq. (D3). As noted in
the main text, the presence of a single next-nearest-neighbor
interaction is characterized by a strong scaling of the current
with the variable V2 f,2(L); Fig. 9 (left). This is qualitatively
different from the nearest-neighbor interactions where the
current converges to a value independent of L and a scaling
with A% f2(L) is never possible; see Fig. 9 (center). Neverthe-
less, we can observe that for small A < 0.3 an approximate
scaling with A2f,2(L) might be possible. In that situation,
the current would saturate after a length of order Ly ~ 1/A.
For stronger interactions, L appears to diverge close to
A = 1butfor 0.8 > A > 0.3 the current still saturates before
A%fx2(L) < 10. Figure 9 (right) shows that, for small A,
perturbation theory becomes exact and that the derivations
seen in Fig. 6 are indeed an artifact of the fitting.
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cHAPTER 4

Conclusions and Perspectives

This thesis reviews my work done over the past years directed at understanding trans-
port in open systems. In particular, the role of interactions in the emergence of diffu-
sion. Among the many possible tools available to tackle these problems, we chose to
focus on the steady-state properties of boundary-driven systems. Such steady-states
do not encompass a complete picture of out-of-equilibrium phenomena but, as ex-
plored in this thesis, they allow us to use a diversity of methods - numerical, analytic,
or even empirical - to provide a comprehensive understanding from different angles.
These methods are introduced in Chapter 2 with a special focus on Keldysh field the-
ory applied to solving quantum stochastic Hamiltonians. We proved that a generic
quadratic QSH supports an exact self-consistent expression for the self-energy. This
extends the previously known solution of the dephasing model [34] to any spatially
correlated noise. A closed expression for the self-energy allows us to compute any
two-point correlation functions, which we explore in Chapter 3 to study the transport
properties of QSHs.

The proposed solution allows explicit analytic expressions for the currents in
small systems, enabling us to determine the operating limits of various quantum
machines, as discussed in Sec. 3.1. This work stands out as one of the few com-
prehensive descriptions of quantum machines that does not require assumptions of
weak coupling to the baths, weak driving, Lindblad reservoirs, or relies on other
approximation schemes. Consequently, we are able to study the typically elusive
intermediate regimes, signaled by peaks of the current when all energy scales are
equivalent, and pinpoint the optimal operating regimes.

Some QSHs behave as quantum stochastic resistors and display emergent dif-
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4. CONCLUSIONS AND PERSPECTIVES

fusive behavior in the thermodynamic limit, which motivated us to develop a new
theory of diffusive systems in Sec. 3.2. The 1/N expansion formalizes the intuitive
idea that systems satisfying Fick’s law ought to have a hydrodynamic length scale
beyond which the microscopic details do not matter. At this scale, the hydrodynamic
theory is governed by a single parameter, the diffusion constant, determined from the
microscopic parameters. We relied on the exact solution of QSHs to design a real-
space coarse-grain scheme to find the hydrodynamic theory and validate the 1/N
expansion. We used it to successfully predict the emergence of Fick’s law and the
correct diffusion constant for different models.

In Sec. 3.3, we propose a semi-classical interpretation of the emergence of dif-
fusion in quantum stochastic resistors. It re-interprets the stochastic noise as a semi-
classical process where measurements randomly reset a particle’s speed while fixing
its position. This simple picture allows us to understand why, at low temperatures
and in the diffusive regime, the conductance G is suppressed when the chemical po-
tential is close to the band edges. It is also capable of predicting how the temperature
in the baths modifies the conductance but not the diffusion constant.

In the concluding Sec. 3.4, we discuss the manifestation of diffusion arising from
an integrability-breaking term in the Hamiltonian. Of particular interest, a new quasi-
ballistic transport regime emerges at intermediate length scales. In this regime, the
next-to-nearest neighbor interactions renormalize the ballistic current according to
the relative sign between the interactions. As a consequence, the current may be
increased with respect to the integrable current, which contradicts the intuition that
interactions increase the scattering of particles and always decrease the current.

I would now like to analyze some of the possible future research directions
spawned from each work and how they fit in the current research field.

Sec. 3.1 The use of measurements as a quantum resource for creating quantum en-
gines/refrigerators is a relatively modern but very exciting idea [111]. A possi-
ble research direction would be to introduce unitary interactions, in particular
studying the role of 3-body terms in the Hamiltonian and how to use them in
our favor [146, 147]. 1 suggest starting from the measurement-induced cool-
ing setup introduced in Sec. 3.1 and perturbatively adding a density-density
interaction. Another possibility follows the research direction of Ref. [148].
The goal is to create a quantum machine that uses a thermal environment and
non-reciprocity conditions as a resource to generate a current. The density
measurement process already maps to a coupling of a bosonic infinite temper-
ature bath. We would like to study the coupling to a finite-temperature bath.
We expect that a high but finite temperature would retain much of the phe-
nomena discussed in Sec. 3.1, but the question arises on how much lower in
temperature can the extra bath go until no work can be extracted from it.

Sec. 3.2 In Sec. 3.2, we proposed the 1/N expansion to describe diffusive systems
and successfully applied it to our class of QSHs. The success largely comes
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from the fact that in these models our coarse-grain procedure exactly provides
the correct effective action. However, for a generic interacting system, it’s not
so clear if our coarse grain gives the good action, and even if it does, how
can we in practice compute it. Added to the difficulty, unitary interactions
do not heat up the system to local infinite temperature state so it is not guar-
anteed that the effective action will remain diagonal. We would like to test
the 1/N expansion in interacting systems, in particular, compare its predic-
tions for the next-to-nearest neighbor interacting model of Sec. 3.4. Another
important research direction stemming from the work is to better understand
the ballistic-to-diffusive transition that occurs in the presence of long-range
noise [149]. The first step would be to study how the transition changes with
the rate -, verify its critical exponents, and establish a link with similar tran-
sitions in Hamiltonian systems [150, 151]. It is unclear at this point if the
transition belongs to some out-of-equilibrium universal class or even if it still
exists below some critical vy value.

Sec. 3.3 In Sec. 3.3, we discussed noises that share the same current but correlate
sites along the transverse direction differently. The natural question arises if
there are other observables that can differentiate between these noises. We ini-
tiated a study program to understand the role of these noises in the Hall imbal-
ance of fermionic ladders [152]. The Hall imbalance is the predecessor of Hall
resistance for ladder setups and measures how the imbalance of occupancy in
the transverse direction changes after applying an infinitesimal magnetic field.
We already found promising results but we still need to understand better the
topological aspects of the problem.

Sec. 3.4 Lastly, I would like to explore the dressed quasi-particle picture put for-
ward to explain the quasi-ballistic regime in Sec. 3.4. The first step would
be to numerically simulate a magnetization quench [53] and study the light
cone at small times to find indications of a velocity that changes linearly with
the integrability-breaking term. Then, it would be interesting to understand
how to include this renormalization of velocity in the framework of quantum
generalized hydrodynamics [28]. Part of this work was already developed in
Ref. [153, 154].

The work developed during this thesis showcases the importance of studying
models that allow for complete analytic tractability. We leverage the exact solution
of the self-energy to first understand inelastic effects on transport through a single
site and then extend this knowledge to motivate an effective transport description of
diffusive systems. The insights and results merit by themselves further investiga-
tion from theory and from experiments alike, as discussed above. But most impor-
tantly, they provide a stepping stone to tackle two fundamental problems in quantum
physics: the quantum impurity problem and the emergence of diffusion from unitary
dynamics.
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4. CONCLUSIONS AND PERSPECTIVES

In parallel to the scientific work of this thesis, I have dedicated countless hours
to demystifying the quantum world and bringing free educational content to students
worldwide. I created, developed, designed, and distributed a new board game |Hop)
that explores quantum transport without the complex math found in this thesis, see
Ref. [P5]. With the help of educational partners, |Hop) is now used in Europe, the
Americas, and Asia as a fun tool to spark students’ interest in physics. As scientists,
we bear an ethical responsibility to disseminate our knowledge to both professional
peers and the broader public.

I hope the success of |Hop) inspires you to disseminate science
in your own unique way.

120



APPENDIX A

Grassmann numbers

Fermionic operators satisfy an anti-commuting algebra, {¢;, c;r} = §;5, which is best
described in field theory by the use of Grassmann variables. In this notation, we
denote two independent Grassmann variables that anti-commute with each other as

1; and 1;
(i, 05} = {0i, b} = {15} =0, (A.1)

where 1/2 = 0 = 2. An integration measure in the space of Grassmann variables
can be constructed by requiring the primitive operator to be linear, which yields

/dwzo /dwwzl. (A.2)
It is important to note that the order of the variables is crucial when evaluating in-

tegrals of multiple Grassmann numbers. Before using Eq. (A.2), the integration
variables must be in the reverse order of those in the integrand. For example,

/ dipy / dptpriy = — / dipy / di/m/)z = - / Qi = 1. (A3)

Grassmann numbers play a crucial role in defining fermionic coherent states,
which are eigenstates of fermionic creation and annihilation operators. These opera-
tors can be expressed as follows:
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A. GRASSMANN NUMBERS

clp)y =), (W) ct = (| . (A.4)

For ease of reference, we use the barred variable to denote the eigenvalue of ¢t
but 1/ and ¢ remain independent Grassmann numbers. Employing the empty state
|0) and occupied state |1) as basis vectors, the coherent states can be written as
|9) = ]0) — ) |1) and (¢)| = (0| — (1] % and the overlap between these states can be
expressed as

(Wi [og) = ((0] = (1[s) (|0) = 5 [1)) = 1 + it = V¥ . (A.5)
The completeness relation can be derived from this overlap as follows:
1= [ didve ) w (A6)
Considering the relation
tr [[s) (1| X] = (0 [hi) (5] X |0) 4 (1 [abs) (5] X [1)

il X [0) + (1| X |1) 4

=
= (U5 X [0) — i (| X |1)
=
= (V5] X =)

we can define the Grassmann integral representation of the trace operator:

trfo] = / dpdipeP (1] o | ) . (A7)

This minus sign is the reason why, in Sec. 2.3.2, the filed variables in the — contour
also have a minus sign. By combining this with the coherent state representation of
a normal operator X,

W] X[e!, ] |[=) = e?¥ X [1h, —)] (A.8)

we are set to develop a path integral formalism of fermionic systems.
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APPENDIX B

Coupling to thermal baths

In this section, we discuss how a generic Lindblad master equation

dip=—i[H,p+7Y (Q,OQT +QTpQ — % {QQ" + QTQ»/}}> ,  (B.D
@

with quadratic operators () and the associated action

s, =ivy [a@l* - @@ -an. (B2)
{Q}

emerges from the coupling to two thermal bosonic baths. This will justify why the
action (B.2) is computed using the time-ordering procedure introduced in Sec. 2.3
where each individual operator Q and Q' is evaluated at a time ¢ and not their prod-
uct.

Consider a single bosonic reservoir with the quadratic Hamiltonian H, =
>k ekbzbk and [b, b,t,] = 01, coupled to the system via H, = >, (bpQ + b;QT).
The Keldysh action is obtained in a similar fashion to the fermionic counterpart but
the standard rotation of the bosonic fields now introduces the classical, ¢, and quan-
tum, ¢4, components

ot
V2

pr= 0 (B.3)

¢° NG
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B. COUPLING TO THERMAL BATHS

whose conjugate fields rotate in the same way. The action of the bath and coupling
reads

-1
deth—Z/dtdt (¢ o1), (gbkk gl%kk) (t— )@:)

gbkk
b dt (& ¢q)( g I)
V2 LR el
1 C
—ﬁ/dtmf—czz QHQt)(ig ) (B.4)

where @ and Q' and not the product QTQ is evaluated at a given time. g, is the
Green’s function of the isolated bath whose components read

ot (=) = —i0(t — ) Gjopreiex(E=1)

g}i(kk./ (t - t/) == _Z(Skk/ Coth ( Tb'ub> eiiek(tit/) 5 (BS)

where p;, and 7T are the chemical potential and temperature of the bath respectively.
The coth appears instead of the tanh since bosons follow the Bose-Einstein statis-
tics. The integration of the bath’s degrees of freedom can be done with the help of
the Gaussian integral and yields

_1 P RN (gbkk gbkk) _ ( I#_QI')
so=y [ @ o ar+en T (G M) o= (G Tor)
(B.6)

The action (B.6) does not reduce to the Lindblad action (B.2) in any limit due
to the retarded and advanced components. To recover Eq. (B.1) is it necessary to
couple the system to a second bath with the exact same structure H; = >, €, T

via the conjugate coupling operator H., = >, (bj,Q" + ¥’ LQ) The total action is
thus the sum of the two baths

1 _
Sprp = 2;/dtdt/(@j - Qt_)glf,(kk(t —t')( I'Jr - QI' )

+ QI = QMg t =)@ — Qp)
H(QF — Q) (gl —t) + g — QLT + Q1)

+ QI = QI (gt =) + gt (' =)@ + Qp)
(B.7)
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where we swapped the dummy time variables in the advanced components. The last
two terms are proportional to

> gl t — 1) + gt (' — 1) = —ib(t —t') / dwv(w)(e” (71 — glelt=t))
k
(B.8)

and so they vanish when we take the limit of constant density of states v(w) — v.
The Keldysh term however remains constant in the same limit

> it —t) = —ilf/dw coth <W2Tm’> e~ w(t=t) (B.9)
k b

and taking the limit where both s, and T}, diverge with a fixed ratio, /T = ¢,
we can neglect the frequency dependence in the coth to obtain ), g,ffk p(t—1t) =

2miv coth (2“%) 0(t — t'), which is exactly the Markovian limit. If we identify
b

~ = 27w coth (2“1’1&) , (B.10)

the final action reads
Y — — — _
S =13 3 [atQr @@ - Qi)+ @F - Q)@ - ),
k
(B.11)
which is exactly the action associated with two jump operators, L = Q and L = QT,
when we follow the prescription discussed in Sec. 2.3. Notice we did not have to ex-

plicitly take the Born and Markov approximations to obtain the Lindblad dynamics,
a constant density of states of infinite reservoirs suffices.
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APPENDIX C

Continuous measurement processes

We would now like to discuss the link between continuous measurement processes
and the QSHs presented in Sec. 2.4. Consider we perform a positive-operator-valued
measurement (POVM) on the system of interest as now detailed. In particular, we
consider the class of POVMs characterized by its set of Kraus operators L, which
are positive semi-definite matrices that satisfy the closure relation Y Li,L, = Iin
the Hilbert space [155]. Upon carrying out POVM, a given state p is updated with
probability p, = tr (L}, Lap) to the new state po, = -~ LapLf,.

As a result, the final density matrix describing all possible measurement out-
comes is given by

P =E(p) = Papa=Y LapLl, (C.1)

where £ is a linear, trace-preserving, and completely positive map. It is worth noting
that by averaging over all possible measurement outcomes, we effectively discard
all information acquired during the measurement process, while still modifying the
system’s dynamics.

To investigate the effect of multiple consecutive measurements at a given rate v,
we assume each measurement to be independent and instantaneous. The number of
measurement events in a given time interval ¢ follows a Poisson distribution p, =
~te~7t. In between each pair of measurements, the system evolves according to the
unitary operator

p(t) =U(t,5)p(s) = e T p(s)et =) (C2)
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C. CONTINUOUS MEASUREMENT PROCESSES

such that the full evolution is given by the time-ordered integral

p(t) — ;67V ’yn/o dtn/o dtlu(t,tn)gu(tn,tn—l)--~£u(t17t0)p(0)
= M(t,0)p(0)
= (ue0) 44 [ arute gm0 oo, (€3
0

where £ > t,, > ... >ty = 0. To obtain the final Lindblad form it is enough to take
the derivative with respect to ¢ to show that

Oep(t) = —ilH, p(t)] — vp(t) + UL, )EMI(E, to)p(to)
= —i[H, p(t)] — vp(t) +vEp(t)
= it 0]+ 7 Y (LapLL ~ 5 {ZhLarp0}) . €

which is a specific case of Eq. (2.2), where the rate ~y is the same for all the jump
operators. This proof establishes continuous measurement processes as a possible
unraveling of the Lindblad equation, a link we explore in Sec. 3.1 and Sec. 3.3. The
evolution under continuous measurement is not only non-unitary but encodes non-
gaussian correlations, making the QSH the preferred unraveling.
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APPENDIX D

Numerical considerations of QSHs

In Sec. 3.2, we discuss extensive systems where analytically solving Eq. (2.76) is be-
yond reach and must be done numerically. While a numerical solution only requires
the evaluation of a polynomial number of integrals, they can suffer from numerical
instabilities. In this section, we discuss some of the numerical techniques employed
to find a solution to Eq. (2.76) when reservoirs are taken in the wide-band limit, i.e.
Y (w) = Bk,

The main objects of interest are the Green’s functions. It is advantageous to
work on the eigenbasis of the retarded/advanced Green’s function. Diagonalizing
G resorts to finding the left and right eigenvalues of M = H — %%, respectively
|Ix) and {ry|. In the eigenbasis, one has

R _ -1 _ |Ix) (ral _ A +
Gl (w) = (Wl — M) _EA: el A (D.1)
where ) are the eigenvalues and always ImA < 0. Recall that we assume the wide-
band limit where $% does not depend on frequency. Since G* is not a Hermitian
matrix, its left and right eigenvectors are distinct but must remain orthonormal at all
times, (r |Ix’) = dxn. The matrix of left L and right R eigenvectors satisfy the
normal eigenequations LM = AL and M R = RA with A the diagonal matrix of
eigenvalues. These can be computed with standard linalg libraries ! but the resulting
vectors are not orthonormal LR = C # 1. To orthonormalize them we can do the

"Most linalg libraries order the eigenvalues by norm or the real/imaginary part which might be shared
by different eigenvalues. We recommend using a non-linear ordering function, e.g. tanh(tanh(Re\) +
tanh(wImM\)).
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D. NUMERICAL CONSIDERATIONS OF QSHS

rotation L' = (PC) 'L and R’ = RCy;! where C = PC,Cy is the lower-upper
decomposition with partial pivoting P of the matrix C. In the rotated basis, the
eigenvectors are now orthonormal L' R’ = 1.

Having found the eigenvectors, we must perform the resulting energy integrals
in the eigenbasis. All the integrals in Eq. (2.76) and (2.77) take the generic form

¢

R A * * f (w)

[ derplg™ )B4 w) = >l Blrich 3 1) e
(D.2)

with B a generic matrix, { = {0,1} and f the Fermi function. The integral with

¢ = 1 can be computed using the following derivation

/dw tanh(“Z5) Z/ X

21 (w /\)(w - )\/* - (1— 2k) 7T2 TR (o~ Ay )
ZRes 1

Tide o T R = R e

__ (L id=p) ol _iX—n
()\/*—)\)71'2(1/} <2+7r T >+¢ <2 T T ’
(D.3)

where the sum Zmp is performed over the poles in the upper half of the complex

plane and (1) is the trigamma function.
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