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SU(3) gauge theory in the nonlinear gauge of the Curci—Ferrari type is studied. In the low-
energy region, ghost condensation and subsequent gauge field condensation can happen.
The latter condensation makes classical gauge fields massive. If the color electric potential
with a string is chosen as the classical gauge field, it produces the static potential with the
linear potential. We apply this static potential to the three-quark system, and show, differ-
ently from the Y-type potential, that infrared divergence remains in the A-type potential.
The color electric flux is also studied, showing that a current which plays the role of the
magnetic current appears

Subject Index BO03

1. Introduction

In the dual superconductor picture of quark confinement, it is expected that monopole con-
densation appears in the low-energy region. This condensation produces a mass of gauge fields,
and confinement happens. To describe this scenario, the dual Ginzburg-Landau model has been
considered (see, e.g., Ref. [1]).

Based on the SU(2) gauge theory in a nonlinear gauge, we considered another possibility to
give a mass for gauge fields [2]. In the low-energy region below Aqcp, which is the QCD scale
parameter, ghost condensation happens. Although this condensation gives rise to a tachyonic
gluon mass, a gauge field condensate (4 4) can remove the tachyonic mass. If there is a
classical U(1) gauge field, this classical field becomes massive by this condensate.

In Ref. [3], referring to Zwanziger’s formalism [4], the electric potential and its dual potential
were introduced as a classical field. Due to the string structure of these classical fields, the linear
potential was obtained.

In this paper we extend the previous approach to the SU(3) case. In the next section, ghost
condensation is studied at the one-loop level. In Sect. 3, under ghost condensation, tachyonic
gluon masses and the gluon condensates (4*A4) are calculated in the low-momentum limit.
The Lagrangian of the massive classical gauge fields is also presented. In Sect. 4, the color
electric potential and its dual potential are introduced as classical fields, and the static poten-
tial between two charges is calculated. Using the result of Sect. 4, the mesonic potential and
the baryonic potential are discussed in Sect. 5. Differently from the dual Ginzburg-Landau
model, there is no magnetic current originally. Maxwell’s equations in the present model are
studied in Sect. 6. The behavior of the color flux tube is also considered. Section 7 is devoted
to summary and comment. In Appendix A, the relation between the ghost condensation and
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Aqcp is derived. Tachyonic gluon masses are calculated in Appendix B. To make the article
self-contained, an example of the electric potential and its dual potential for a color charge is
presented in Appendix C. In Appendix D, the static potential between two charges is calculated
in detail. Based on a phenomenological Lagrangian for order parameters, the type of the dual
superconductivity in the present model is considered in Appendix E.

2. Ghost condensation

2.1 Notation

We consider the SU(3) gauge theory with structure constants f,. in the Minkowski space. The
Lagrangian in the nonlinear gauge of the Curci—Ferrari type [5] is given by [6]

1
L = Einv + »CNL, Einv = _ZF;vaan’

LaL = B9, A™ + id*(3, D" )" + %IB“B“ n %B“B“ —BWw  (a=1,...,8),

where B? is the Nakanishi-Lautrup field, ¢ (¢) is the ghost (antighost), BY = —B® + igf.».c"c,
a1 and o are gauge parameters, and w* is a constant to keep the Becchi—-Rouet—Stora symmetry.
The Lagrangian Ly is rewritten as

a d
L, = 5 BB+ B(0,A% + ¢ =) + i [(0, D) + gfunce”] o = 5.
o)
where the auxiliary field ¢ represents —a, B°.
Let us expand the gauge field 4, as
A >
Au ZAZ? - M'H+Z(WM_QE“+W:E—“)’ (1)
a=1
where the diagonal components are
- _ 23 a8
AM=(A3’A§L)’ H=(H3’H8):(?’7)a
and A, -H =3, 4 AfH* = 43 H* 4+ A% H®. The off-diagonal components are given by
IS N B R £2 L (g4 £ 45 £3 L (46 4 47
Wit = 55 (4, £i4}), W= 5 (4, Fid}), W = (A5, £id]),
Eq = 50 £22), Ep = 504 Fidd), Exy= 5 £id)).

Using the root vectors of the SU(3) group

& =(1,0), 52:<_71%§> é,:(%l?) (2)

the above matrices satisfy

= . . . :FI
[H, Eiy] = &€, Eq, [Eo, E_4] =€, - H, [Eie, Eiﬂ] = EgaﬂyE$y
and
(SAB 501/3
tr (HAHB) = T, tr (EO(E—,B) = T

In the same way, ¢ and ¢ are expressed as
3 3
c=¢ H+) (C°E,+CE.,), ¢=C¢ H+)Y (CE,+C"E,). (3)
a=I
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where
1
C:I:l =—(Cl:|:iC2), C:|:2=

V2
and C** (« = 1, 2, 3) are defined as well.

(c4 Fic’), Cc* = (06 + ic7) ,

N
Sl -

2.2 Ghost condensation

To obtain the one-loop effective potential of ¢, we diagonalize (p”%“ as ¢- H. Then, using
the expressions in Egs. (1) and (3), the Lagrangian i¢*Clc? 4 ic“g fupeg’c® = 2tr(iclc + &[ge, c])
becomes

3
Y iOct + ) U0 + g6 - PO + € (i — géy - §)C 4)
A=3,8 a=1

Next, as in the SU(2) case [7], we integrate out C** and C¥ with the momentum p < k < A.
After the Wick rotation, we obtain the potential

; N @k
Yhe-p=-3 [ S [P+ 26 7]
a=1 a=1"YH

1 3
=5 LA+ 2E @) A + £ 97
a=1

32
W+ gE i {nt + FE - 9rY].

Since we can rewrite p?p?/(2a») as

the one-loop effective potential of ¢ becomes [§]

3
(& - @) L
V(sﬂ)ZZ[ G, )
a=1 @2
To study minimum points of V(¢), we consider
W ¢S 3 L IRNVE] L .
— = — L& @)+ L& - §)) — - L9 (L& - §) — L(& - @)},
dp a2 2
vV @

1 3
5w — ZP2L(E - @) + = (L(& - @) + L(&; - §)}] — —fgzwg{L(gz @) — L(& - )},
(@ o) 2 2

A* + (g6, - §)? }
p 4 (gé - 9)* |
The explicit forms of g€, - ¢ (@ =1, 2, 3) are

g€ - @ =go’, g€2'§0=—§< 3+~/§<p8), g63-<p=§(—<p3+\/3<p8),

L 1
L& -¢) = 972 ln{

and ¢® = 0leads to & - ¢ = & - @. So, the equation 3 V/d¢® = 0 has the solution ¢® = 0. Now
we assume that (gg) = (v, 0) is a minimum point. Since the potential V{(¢) is invariant under
the interchange €, - ¢ <— €5 - ¢ (¢ # B), and has the symmetry €, - ¢ — —¢, - @, there are six

3/25

Zz0z Aseniged z uo Jesn ayjolqiqenusz-AS3a Aq L Z061¥9/809€ L 0/L/220z/elonle/ds)d/woo dnoolwepeoe//:sdiy woly pepeojumoq



PTEP 2022, 013B08 H. Sawayanagi

minimum points:'

v _ 3 v A3
(v 0), (—j, _TV) ) <—§, 7V> ) )
v V3 v V3
(=»0.  (5.4), (3.-%v).
To determine the value of v, we consider the case (v, 0). The condition 9 V/d¢? = 0 with g¢?
= v = () becomes
3272 v+ A4 e +4A4
=In . (7)
arg v2 + pt V2 4 4pt

If we set v =0 at u = o, o = Aexp[ — 872/3a2g7] is obtained. When the cut-off A is large
enough, Eq. (7) gives v ~ 21/3 42 in the limit u — 0.
In Appendix A, we show that 3« = By is the ultraviolet fixed point of «;, where Bg = 11N/3

with N = 3 is the first coefficient of the 8 function. Substituting this value into wo, we find
2

T
o = A exp [——} = Aqcp,
Bog® ©

where Aqcp is the QCD scale parameter. Thus, we obtain the ghost condensate v that behaves
as

v=0 (x> Aqcp), v#0 (1 < Aqcep), v 2P AGep  (n— 0).

3. Gluon mass

3.1 Tachyonic gluon mass

In the SU(2) gauge theory, ghost loops with v # 0 produce the tachyonic gluon mass terms [6,9].
To study the SU(3) case, we choose the vacuum (v, 0) in Eq. (6), and write gp® = v8°? 4 g@“,
where ¢“ is the quantum part. Neglecting ¢¢, the Lagrangian in Eq. (4) becomes

3
> ietOet + ) {iC* (O — iegy) C* +iC* (O + iejv) C*}
A=38 a=1

and it leads to the ghost propagators

() =—=  (4=3.8)

- i i
Gy =——— ' | _
< ) O+ ielv O—ielv
Using Egs. (1) and (3), the vertex —id,, &g fype A" ¢¢ in i¢4(3, D" ) cP is rewritten as

3
3 |:—gAA“ Y el {(aﬂé“))c—“ - (aué—“)ca}

A=38

(C™C%) = — (@ =1,2,3). ®)

a=1

3 3
+8(3,6") Y ed(WHCT — WTHCY) —g Y e {WH(3,C7) — W (9, L)} CA}

a=1 a=1

g o
+ > sgn(y)ﬁeaﬂy(a#c YCEw i, 9)
(o, 8,7)

where sgn(y) is the sign of y, and ) (. 4, implies the sum for the permutations of (1,2,3) and
(—=1,-2,-3).

'These minimum points were found in Ref. [8], which also contains a three-dimensional figure of ¥(¢).
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Ar M2 b
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=Gup(z,2)

c® et

Fig. 1. The diagrams that contribute to the inverse propagator for 47 ; (b) gives rise to the tachyonic mass
in the limit p — 0, and (c) yields the condensate Gf?)c (x, Xx).

Now we consider the two-point function

(45, (0)40)) = Gy (x. ) (10)
at the one-loop level. As in the SU(2) case, using the ghost propagators in Eq. (8) and the
interactions in Eq. (9), the ghost loop in Fig. 1(b) gives rise to tachyonic masses in the low-
momentum limit p — 0. The details are presented in Appendix B. From Egs. (B3) and (B7), we
find that the tachyonic mass terms are

3
175 2 3 43 173 2 8 48 5 2 ap g —o 2 __ gzv

a=1

3.2 Condensate (A" A5))

To remove the tachyonic masses, we consider the condensate (4% A7) [2,3]. Let us introduce
the source terms

3
D KA AL+ KWW

A4=3,8 a=1
Although the sources may depend on the momentum scale, for simplicity, the constant sources
Ke=KP+K+..., KV =o0om), KY=1IM} (4=339),
Ko = KO 4K KM — o, KO = Mf, (@=1,2,3)

are considered. The interaction —(g /A5 A5)? /4 in —(F )* /4 contains the terms

fZWWW W, “—g22WWW WP W P
a=l a#p

R () ) e &

So, at O(h), the diagram in Fig. 1(c) gives the condensate (4% A4%)") = 2 G (x, x), where
(O)“b(x y) is the free propagator with mass M, or M,,. If the other divergent diagrams of
O(h) are subtracted by the terms with Kfll) or KV, the condensate (4" A44)©) is determined to
remove the tachyonic masses in Eq. (11).
As an example, we consider the self-energy of WM1 in the limit p — 0. The diagram in Fig. 1(c)
with the first interaction in Eq. (12) gives —g*(W W, 1) Similarly, from the second term in

Eq. (12), we obtain —g> [(W W, 2)© + (W3 W, 3)©] /2. Since € - A, = A3, the third term
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in Eq. (12) gives —g*(4*43)©. So, Fig. 1(c) for W, leads to —¢* {G' + 5 (G* + G°) + G*},
where G* = (W W, ) (@ =1, 2, 3) and G* = (44 4;})® (4 = 3, 8). The condition that
these condensates remove the tachyonic mass of Wl} becomes

_§m2—gz{g1 +%(gz+g3)+G3} -0,

4
In the same way, we find the conditions
5 1 1
—Zmz—gz{gz+§(g3+gl)+Z(G3+3Gg)}=o, (13)
22 ~g {g3 41 (G'+3G%) + ! (G*+ 3G8)} =0,
4 2 4
1
—gmz—gz{gl+z(g2+g3)} =0, (14)
3 3¢
_Zm2—T(gz+g3) =0, (15)

for W2, W7, 4}, and A, respectively.
The solutions of these five equations are
2 . . .
—, == G=-—=. 16
24> 4g2 12g% (16)
We note that, although the diagonal component (4% 43 ) vanishes in the SU(2) case [2,3], the
diagonal components (44" A4%)(®) (4 = 3, 8) do not vanish in SU(3).

m

¢'=—"% ¢=¢=-

3.3 Inclusion of classical solutions

To incorporate U(1); and U(1)g classical solutions into the above scheme, we divide Aﬁ into

the classical part bﬁ and the quantum fluctuation aﬁ as

4 A4, A
A, =b, +a, (4=3,8),
and divide the gauge transformation 64, = D, (A)e as
8a, = D,(a, W)e, (8b,)" = gfupcb’e”, SW,, = D,(a, W)e, (17)

where D, (4) = 8,6" + gfuevAS,, and D, (a, W) is obtained by removing b, from D,,(A), i.e.
D,(a, W)= D, (A)|p,=0. Using the gauge-fixing function G(a, W) = 9, 4*|p,—0 + ¢ — w, the
transformation in Eq. (17) gives the ghost Lagrangian
i [(8,D"(A))™ + gfurc”] | o = i [(8.D"(a, W) + gfunc®”] ¢

So, after the ghost condensation, the tachyonic mass terms are obtained by replacing Aj, with
A [ 2
a, and W7 as

3
1/5 1/3 5
~3 (Emz) a”‘ai ~3 (§m2> ag“ai — Z (Zm2> werw e (18)

a=1

We can use the background covariant gauge. In this case, as the ghost Lagrangian is
ic* [(D(b), D*"(A))“ + gfusee”] ¢, ¢ and ¢ couple with b,,. However, this ghost Lagrangian has the U(1)s
x U(l)g symmetry 8,b, = —93,& - H/g, 8,a, =0, and §, W = Fig- €W . Therefore, as in the SU(2)
case [2], this symmetry prevents bﬁ from getting tachyonic mass terms, and Eq. (18) is obtained.

6/25

Zz0z Aseniged z uo Jesn ayjolqiqenusz-AS3a Aq L Z061¥9/809€ L 0/L/220z/elonle/ds)d/woo dnoolwepeoe//:sdiy woly pepeojumoq



PTEP 2022, 013B08 H. Sawayanagi

The above tachyonic mass terms are removed by the condensates G¢ = (W “* WM_“)(O) (=1,
2,3)and G* = (a*"a})® (4 = 3, 8) in Eq. (16). When G* # 0, the interaction

= i (& @+by) (&-@+by)wew
a=1

in Eq. (12) leads to the mass terms

3
A R ! 3¢’
€6 B B0 =26+ (@4 )| 0 - K (@ gy,

a=1
Since the classical part bﬁ has no tachyonic mass, Egs. (14) and (15) imply that these mass terms

become

2 2 2
A Ap A 2 5 2 3
Riptupt, =20 2= 20 19
A_Z38 2 I 3 2 8 2 ( )

Thus, after integrating out ¢ and ¢, we obtain the low-energy effective Lagrangian

1 M
Lo =Lg+ Z {—Z(B Aat )" (D A aA)M,, + TAaA“aﬁ}
A=38

3
1
+ ) {—Z(a AWEY (@AWY, +M§WWW5} SR
a=1

2
La=)" {—}1(8 DY@ A B+ ”%b/*“bﬁ} , (20)
4=338
where (0 A A%),, = 9, A7 — 9,4}
We ignored the momentum dependence of the sources K, and K, and applied the # expan-
sion. Because it is difficult to modify this treatment, we use L as the first approximation of the
low-energy Lagrangian.

4. Classical fields and static potential

4.1 The classical electric potential Bﬁ and its dual potential Bﬁ

It is expected that the Abelian component of the gauge field dominates in confinement [10].
Based on Refs. [3,11], we choose the dual electric potential Blj‘ as the classical field bﬁ (4=3,8).
This describes the electric monopole solution [3]. The color electric current j,f is incorporated
by the replacement

(0 ABYW — dFAR — (9 A B 4 P (. 8)_lnaj,§4a
where the space-like vector n* [4] is chosen as n* = (0, n) with |[n| =1, and n - 9 = n*d,. We
note that this is Zwanziger’s dual field strength F/ = (9AB) + (n - 3)~'(nAj,)? in Ref. [4]. Then,
the Lagrangian in Eq. (20) becomes
1 Ay var RV R I
La= 3 [ l@nBtm et oy n )+ 5 07| e
A=3,8
The equation of motion for Bﬁ is
(D, ) B) = =€ (n-8) " nyduji. (D) = @+ mipgt -k, (22)

nmy nmy
and Bﬁ is solved as
g — 8M3U/D 0,0y

[]+mi1 miD'

Bﬁ = _(DmA)uvevpaﬁ(n : 3)_1”paaj,§l’ (DmA)MV = (23)
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If we use Eq. (23), Eq. (21) becomes

1 1 1 m> n-n n n’
L. = 14 Ap LA A _ A . 24
H AZ_38[ ZJ”D—}—mﬁ‘] 2]“D+mA (n-9)? g Iy @4

Although we used the dual electric potential ij above, we can use the electric potential Bﬁ.
The relation between E’[L’ and B;‘ is [3]
—e" P9, B) = (0 A BN + AL,

v

" ~0,(0 A B (25)

Apv n’ nA\ov
Ae == —mag(a AN B ) +

The dual potential Bﬁ has the electric correspondent of the Dirac string, which we call the
electric string. The term Adw represents this string.’ The field Eﬁ satisfies the equation of
motion

(DmA )/LVBAV - j/l — O’
and the Lagrangian that is equivalent to Eq. (21) is [3]

2
L. = _ a /\BA ABABAM, BA <A %BAM n-n ( - nu”v) .Av .

The last term comes from the electric string. Substituting BAr = (D ) s i into Ly, We can
obtain £;; in Eq. (24).

4.2 Potential between static charges
We consider the static charges Q4 at a and Qf at b. Substituting the static current

Ju () = gu0 { QF8(x — @) + Qjf8(x — b)) (26)
into L;;, we get the potential

v =Y WO+ 7o),

A=3.8
d3 AN2 AN2 ) 1
Vi = (an)3 <(Qa) ;(Qb) +QfQZ‘e’q'r> i (27)
Pq (O + (0} -
Apn a b A, iq T 4
W= | Gy ( 7 e )(q2+mi>qn’ 29

where r = a — b, g = |q|, and g, = q - n. The first (second) term in £;; leads to V! (V). His-
torically, these potentials were obtained by using the dual Ginzburg-Landau model [12-15].
These potentials are calculated in Appendix D. Assuming that m,4 disappears above the scale
A, Eq. (27) gives [16]

m? (A singr 1 oot 1 aA(r)
A L my / d _ %Y (_ ’
v ()= Q Qb (4nr 272 J, 1 qr ¢*+ mi) s r

g2 gzmA / Cd singr 1
q —-—.
22 ), qr ¢*+nm?

The first term in V;‘ (r) is the usual Coulomb potential, which is the main term for small r.

a(r) =

(29)

3In Appendix C, as an example, we present the massless fields B;‘ and ij for a point charge, and show

that AZ*" describes the electric string. The relation in Eq. (25) is also used to consider the color electric
flux in Sect. 6.
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z z z
A A A
e S 7 e
Tn
T A A A
bz TAt bz """" r Qb bz """ |Qb - T Wa
b X¢ X¢ H Xt
b, ag a;|= by a; i+ by
+
x 4
h

(a) (b) ()

Fig. 2. The relation between the conditions in Eq. (34) and the length of the electric string. Case (a), with
r, # 0, and case (b), with (r, = 0, Q2 + Q; # 0), have the string with infinite length. The length of the
string in case (c), which satisfies Eq. (34), is finite.

Under the same assumption that m, = 0 above A, Eq. (28) gives

A
VAW = Vi) — 2 Qb QO g mare, Ay + - (30)
my [0 +(08)° | A
I/Iﬁ(rl) = 27'[28 )2mA b) t ! }’}’Z_A + QﬁQ;{H(mAv AC7 r[) ) (31)

where the functions Ko(mur;, A.) and H(my, A, r;) are defined in Eq. (D10). We have chosen
nasr,=r-n>0,and r = (r,, r,). The vector r, satisfies r, Ln, and r, = |r,|. The term Vlﬁ has
infrared divergence 1/¢, where the infrared cut-off ¢ satisfies 0 < ¢ <« 1. To remove this diver-
gence, since the direction n of the electric string is arbitrary, we choose r || n [3,15,16]. In this
case, as (r,, r;) = (r, 0), Eq. (30) becomes

QAQb 4 gzmi1 A%+ mi
VA®r) = Vi . = 1 ¢ , 32
1 (r)=VRr— 2 r+- o . n mi (32)
ny 2 1 A¢
Vi = —— () + 0f) tan™" —= 33
R = 35 (Qa + Qb) an s (33)

where Ky(0, A.) and H(my4, A, 0) are presented in Eq. (D11). Equation (33) shows that Vlﬁ
vanishes if Q¢ + Q7! = 0. Therefore, the conditions to remove the infrared divergence are

1, =0, o1+ ol =o. (34)

When Eq. (34) holds, the leading term of Eq. (32) is the linear potential —(Q4 Q! /g*)o'r, which
is the main term for large r.

We note the infrared divergence implies the existence of the electric string with infinite length
and mass m,4. The relation between the conditions in Eq. (34) and the length of the electric
string are depicted in Fig. 2.

In the SU(2) case, comparing the ¢gg potential with Vy(r) and V. (r), we tried to determine the
values of parameters, and reproduce the Coulomb plus linear type potential [16]. However, in
the SU(3) case, there are many parameters like M4 (4 = 3, 8) and M,, (¢ =1, 2, 3). In addition,
since m3 # mg, we are not sure whether a single cut-off A, is usable or not. So we do not try
to determine the parameters in this paper. Instead, below we study the consequences derived
from the Lagrangian in Eq. (21) and the potentials in Egs. (29) and (32).
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ry ry

S

rs
ro r3 ro / r3
Py P

(a) (b)
Fig. 3. The color flux between the charges. (a) is the A-type baryon and (b) is the Y-type baryon.

5. Mesonic and baryonic potentials

5.1 Notation

Corresponding to the three types of color charge, red, blue, and green, we use C;, Cs, and Cj,
respectively. The quark field is W = (¢, ¥¢, ¥c,), and the current j# = gWy, H4W (4 = 3, 8)
1s written as

3
‘]l/j = ZgwflﬁC,‘yll«l//Cp
i=1
where the weight vectors are
1 1 -1 1 1

i-(3z5) m(Fzs) m-l-p) o

When we use the static potentials in Egs. (29)—(33), the static charges are given by
Ol =gl =-0¢ (4=3,8 j=12,3) (36)

5.2 Mesonic potential
If a static quark (an antiquark) exists at a (b), a meson is expressed by

1 3
5 |C[ i(a)q_ ,(b»
ﬁ; c(@)ic

Weset QF = 02, 0)f = 0% = —0Q¢, and r = (a — b) || n. Then the two conditions in Eq. (34)
are satisfied, and Vi vanishes. Using the relation
3 A4 A4 3
1 _QCi G 1 A2 1
§ZT=§Z(W,-)=8 (4=3,38),
i=1 i=1
Egs. (29) and (32) give the mesonic potential

1 al(r agq(r)
qu(r)ZEZ{_T()+GAr+...}:_ flﬂll/ +oggr (37)
A=38

where ag3(r) = Y43 ga?(r)/6 and o5 = )" 4 3507 /6.

5.3 A-type 3q potential

Let us study the potential for the configuration in Fig. 3(a), which is called the A-ansatz [17].
To apply Egs. (29) and (32), we replace r with ri; = |riy| = |1 — 1] (k # [) and n with ny;, which
satisfies ny; || ri;. When static quarks are placed at r; (k = 1, 2, 3), a baryonic state is

1
7 > eiiklgc,(r)gc, (r)ge, (r3)).

ijk
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If we set Q4 = Qc and Qf = Qc with 7 # j, and use the relation

A
—Z QCQ ——Zw — (4=3,9),
i#] i#]
Egs. (29) and (32) give

Vi, m )= Y Vig+ Z > { = (”")+o’4rk1+---}. (38)

A=338 k>l A=38
We make two comments. First, from Egs. (37) and (38), we obtain the relation [19]

1
V3§(V1, r2,r3) — Z Vlﬂ =3 Z Vi (ria)- (39)

A=338 k1
Second, by the choice ny; || 1, the first condition (), = 0 is satisfied. However, except for
Q3C1 + Q3C2 = 0, the second condition Q/clf + Qéi = 0 (i # j) does not hold. So, using

62( o) = (wtew) = a=3)

i#j i#]
we find the infrared divergent term,
Ac
> Vik= T st ae @0
Py i 2471 & my

remains. In the A-ansatz, there are electric strlngs with infinite length. When m 4 # 0, they give
rise to the infrared divergence.

5.4 Y-type 3q potential

For large ry, the potential ¥/ (r) in Vﬁ(m, ry, r3) has the infrared divergence. On the other
hand, based on the strong coupling argument, the Y-shaped baryon depicted in Fig. 3(b) was
proposed [18]. The point S at rg, where the sum of the length Ly = 213(:1 Frs = 213(:1 |ri — rs]|
becomes a minimum, is the Steiner point. The color electric flux lines emanating from the three
quarks meet and disappear there. Since the state at this point is a color singlet, corresponding

to the state |qc, (r1)qc, (r2)qc; (r3)), the state at rs is |Gc, (rs)qc, (rs)gc, (rs)). So, when ryg is large,
the potential is the sum of the three ¢4 potentials for large r. Thus, we obtain

3 3
1
Va1, 1) = 3~ Var (res) = 3 > (0frs+)=0ovLy 4+, (41)

k=1 k=1 A=3,8
where oy =Y 43 35/6.
We note that when ry; is large, Eq. (38) gives
V32L(V1,V2,V3)— Z VIﬁ=UALA+"' , (42)
A4=38

where Ly = Y -y and op = Y 4—3 504/12. From Egs. (37), (41), and (42), the relations
on = 045/2, 0y = 045, and

1
Vigr(ri, 12, 13) — Z ViR = Vayr(r1,12,13) — 04 (LY - ELA) (43)
A=338

are obtained at this level [19]. As Ly > La/2, the inequality V3!, > Vi, — 3" ,_5 ¢ Vi holds.
However, differently from Vﬁ s V3Z ; 1s free from the infrared divergence.
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Py
12 13 2 Pro,
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P3
(a) (b)

Fig. 4. The cases where the maximum inner angle 6, satisfies 120° < 0,x < 180°.

5.5 Comparison with lattice results

In the present model, the classical Abelian potentials B;’ (A = 3, 8) lead to the linear potential.
The Y-type potential is preferable to the A-type potential, because the former has no infrared
divergence. The string tension of the Y-type potential satisfies oy = 0,4.

In the lattice simulation, the 3¢ baryon has been studied, and the Y-type potential is obtained
[20-22]. In Ref. [21], using the maximal Abelian gauge, it was shown that the three-quark string
tension 3, satisfies o3, = 0. In addition, the string tensions o3> and 64", which are ob-
tained from the Abelian part, satisfy o3, = 03> and a5 = 0,3°" within a few percent deviation.
These results show that the potential is Y-type, and the Abelian dominance is realized.

In Ref. [22], using the Polyakov loop correlation function, the cases with 60° < 6y,,x < 120°
and 120° < Onyax < 180° were simulated, where 60,,,x represents the maximum inner angle of a
triangle. In the latter case, the Steiner point S is the point P; in Fig. 4. As ;s = 0 in this case,
the length Ly is reduced to Ly = ri» + r13 = La — r23. When 120° < 0. < 180°, they found
that the long-range potential satisfies V3, >~ o43Ly, and 03, >~ 0,3 holds. On the other hand,
when 0ax = 180°, they obtained the A-type relation V3, = 33, Vya(ru).

In our approach, when 120° < 6,,x < 180°, the Y-type potential is calculable by setting ;g

=0, g = 112, and r3s = rq3. The result is
Vs)(;L =oyLy = oLy, Ly =rpp+rps. (44)
When 6,,x = 180°, Fig. 4(b) shows that ro3 =rjp + ri3and Ly = LA/2. Asop = %Uy, we find
that Eq. (44) becomes
1
oalp = EquLA’ Ln ==rp+ri3+r3=2Ly. (45)

Namely, if 0. = 180°, the Y-type relation in Eq. (44) coincides with the A-type relation in
Eq. (45), which is expected from Eq. (43). Therefore, we can say that the long-range potential
is Y-type for 6.« < 180°.

6. Color electric flux
6.1 Extended Maxwell equations
In Sect. 4 we introduced the electric potential Bﬁ and its dual potential Blj‘ that are related by
Eq. (25). We also used Zwanziger’s dual field strength ¢F4*" [4] in the presence of the current
j;f. In this subsection, we study Maxwell’s equations.

Using B! and B/, the dual field strength is expressed by

1 ~ 1 ~
dpApy _ A vaB, A _ _pvafa BA B ) A\ oA
F’“’—(B/\B)‘“’—I——niae‘“"no[]ﬂ—e’”‘(‘JO,B/8 —n.ae“”“na{a (0 A BY) ]}ﬁ,
and the field strength is
1 ~ 1 ~ v
FA = —evP 3, B4 + —a(n A JH = (3 A B — — [nAfd-@nBY— 1",
n- n-

The electric field E4(j) = FA° and the magnetic field H(j) = “F4" are
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. . I’li
EAZ(]') — —GllkajBAk + — aJ-A()

i

= 0B — B~ (o (0 A B - 1), (46)

HA(j) = —3,B40 — 3,84 — €l/k n’ Ak
n-o
— citky pAk o ik n’ 9.9 A BY — AV 47
= €k, —i—ena{-(/\)]}, (47)

where n° = 0 has been used. From these expressions, it is easy to show the two Maxwell equa-
tions

V-ENj) =7 V xHY(j)— %E'()) = j". (48)

Next, we consider the remaining two Maxwell equations. Using B4*, Eq. (47) gives

) . B J
GHY () = ; (—aiBAO — 9B — elfkn—ajAk> =9-(ABYH — T4,
n .

1 .
T = — 86“”“/381,11&]/’34.

Since the classical fields B4# satisfy the equation of motion

3 (0 ABY +mi B = g, (49)
the above equation becomes
V.- HA(j) = —m’BY. (50)
In the same way, we obtain
—V x E*(j) = dH"(j) = —m’B". (51)
In other words, because of the term —milBA“ = —mﬁ(BAO, B4), the remaining two Maxwell

equations are modified.

If we consider a model with the magnetic current jiah, = (Pfhags Tinag)» Pimag a0d jito, will ap-
pear in the right-hand sides of Egs. (50) and (51), respectively. In the dual superconductor
model there is the monopole field, and the static equation —V x E4(j) = jfmg is often dis-
cussed [1,23]. In the present model there is no monopole field and no magnetic current orig-
inally. However, like the London equation in superconductivity, the relation j;‘lag = —miBA
appears.

6.2 Color flux tube
Itis expected that the color flux tube connects color charges. In Ref. [23], the color flux is studied
using the dual superconductor model. From this flux and the equation —V x E4(j) = Jmag> the
magnetic current is also investigated. In this subsection we consider the color flux tube.

Let us consider the electric flux between the charges Q/cl,- at a=(0,0,a) and Qéi at b=
(0,0, b). We set n= (0,0, 1), and assume that the mass m* is approximately constant for p

> 1/A., where (p, 8, z) are the cylindrical coordinates. To study the static flux tube solution we
set B4 = 0 and

B4(p,0,2) ~ B(p)f(2)es, (52)
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where the unit vectors are
e, = (cosf,sinb, 0), ¢g = (—sinb, cosb, 0), e.=1(0,0,1).
Substituting Eq. (52) into Eq. (49), we obtain

2 1 1 1
(355 + 735~ 5 = 7)) B @)+ B@)f @) = 5L (53)

> pop  p? a.0p"

Since jg‘ = 0 holds for p > 0, if we assume /() & 0 in the interval b < z < a, Eq. (53) reduces

to
? 13 1 )
T B ~ (0
(apz - pdp P mA) )

in the region (p > 1/A¢, b < z < a). The solution of this equation with lim, _, .o B(p) = 0 is
B(p) = LK (m4p) [24], where A is a constant and K, (X) is the modified Bessel function. So, we
obtain

B ~ LK (map)f(2)es. (54)
Using Eq. (54) and the equality XK (X) + nK,(X) = XK,_1(X), the color electric field be-
comes

E*(j) = =V x B = myrKo(m” p) f (2)e- + K1 (map) f' (2)e,. (55)
In the same way, if we apply the relations X K/ (X') — nK,(X) = =X K, 11(X) and K)(X) =
—Kj(X), we get
]
mA)\%KO(mAp)f(z)(ep X e,) = —miAKl(mAp)f(z)eg = —mﬂBA.

From this equation and Eq. (55), we obtain
—V x EA(j) = —miB" + 1K (m"p) /" (2)eq. (56)
In the interval b < z < a, f (z) &~ 0 is assumed, and Eq. (56) becomes Eq. (51) with doH* = 0.

6.3  Flux tube represented by B4*
Next, we restudy the flux tube by using the electric potential B4*. In the static case, Eq. (46)
becomes

mﬁA:—Vﬁm—#%DFW (57)

From the equation of motion § - (3 A BY)* 4+ m? BA* = j4, B0 satisfies V2BA? — m? B1° =
— j40_If we can write B4° ~ D(p)h(z) approximately, this equation becomes
? 19
5 + = —my ) D(p)h(z) + D(p)l'(z) = —j*°. (58)
dp=  pap
As in the previous subsection, we set j4° = 0 for p > 0, and assume /'(z) & 0 in the interval b <
z < a. Then, Eq. (58) becomes
2 19 5
—+ —— = D(p) ~ 0.
(3,02 NPYY mA) ()
Using the constant «, the solution of this equation is D(p) = x Ky(m4p). Since we choose n =
(0,0, 1), B4 ~ k Ky(mp)h(z) gives
—VBY = m kK, (map)h(z)e, — kKo(myp)h'(2)e-,
n

N 1
— OB" = KWIiKo(mAp)a—h(Z)ez + & Ko(map)h'(2)e-, (39)
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and Eq. (57) becomes
E()* = km?’ Ko(my p)éh(z)ez + m i Ki(myp)h(z)e,. (60)
Comparing Egs. (55) and (60), we can idcan‘:ify4
o= —h —hG =G, —hE) =G
So, f(z) and A(z) can be approximated by
f(z)=0(a—z)—0(b—2), h(z) = 8(z—a)— 8(z—b),

where 6(z) is the unit step function.
Thus, the electric potential

o A
BY ~ ——Ky(map){8(z — a) — 8(z — b)} (61)
my
produces the color electric flux
E*(j) ~ mgdKo(map){6(a—z) —6(b—z)}e- (62)

in the region (p > 1/A., b < z < a). The string part in Eq. (59) is responsible for this flux tube.
The corresponding dual potential is

B ~ 1Ki(map){6(a —z) — 6(b— 2)} ey, (63)
which also gives the flux in Eq. (62). This flux satisfies the extended Maxwell equation
—V x EA(j) ~ —m* B4, (64)
where the magnetic current is jfmg = —m’ B

We make a comment here. The lattice simulation shows that the 3¢ baryon is Y-shaped [20—
22], and the solenoidal magnetic current exists [20]. In the present approach, the Y-type bary-
onic potential is free from infrared divergence, and it consists of three ¢¢ potentials. So, al-
though the flux tube of ¢g is considered here, we can apply it to the Y-type 3¢ baryon. The flux
tube of ¢g can exist between rg and r; (k =1, 2, 3). The current j;’lag = —mi B4 with Eq. (63),
which has the solenoidal form, also appears.

7. Summary and comment
In the dual superconductor picture of quark confinement, monopole condensation produces
the gluon mass. To realize this scenario, the dual Ginzburg-Landau model introduces the
monopole field; its condensation, the gluon mass, and the static potential have been studied.
In Ref. [3], we considered another possibility to make the Abelian component of the gluon
massive in the SU(2) gauge theory. The static potential was also studied [16]. In this paper, we
extended this approach to the SU(3) gauge theory. In the nonlinear gauge of the Curci—Ferrari
type, the quartic ghost interaction generates the ghost condensate v/ = g(¢?) below the scale
Aqcp. The ghost loop with v gives rise to the tachyonic mass for the quantum part of the
gluon. This tachyonic mass is removable by the gluon condensate (47, 4“"). Since the classical
part bﬁ of the gluon has no tachyonic mass, the condensate (47 A“*) gives the mass n to this
part. To study color confinement, the dual color electric potential Bf}, which is equivalent to
the color electric potential Bﬁ with the string part AZ™ was chosen as bﬁ. Thus, the classical
Lagrangian we used is L in Eq. (21).

4The minus sign comes from the choice that the electric string is in the negative z-direction; see Eq. (C4).

15/25

Zz0z Aseniged z uo Jesn ayjolqiqenusz-AS3a Aq L Z061¥9/809€ L 0/L/220z/elonle/ds)d/woo dnoolwepeoe//:sdiy woly pepeojumoq



PTEP 2022, 013B08 H. Sawayanagi

This Lagrangian becomes £;; in Eq. (24), and it gives the static potential between the charges
Q7 and Qff with distance r. When r is small, the leading term is V;(r) in Eq. (29). For large r,
V(r) in Eq. (30) is the main term. However, V/!(r) contains the infrared divergence Vi (r,),
which comes from the mass 7,4 and the electric string with infinite length. If the conditions r,
=0and Q7 4+ 0/ = 0in Eq. (34) are fulfilled, V4 (r,) vanishes. In this case, V'/!(r) becomes the
linear potential in Eq. (32).

We stress that the derivation of the Lagrangian L is based on the one-loop calculation.
In addition, the constant sources K4 and K, are assumed. The mass m, in Eq. (21) was also
assumed to be constant below the cut-off A, and to vanish above A.. These quantities must
be determined. However, differently from the SU(2) case, there are many parameters in SU(3).
We skipped the determination in this paper, and studied the consequences of the Lagrangian
L and the potential V/(r).

In the ¢4 case, the two conditions in Eq. (34) are satisfied, and the static potential V;(r)
in Eq. (37) is obtained. In the 3¢ case, if the A-ansatz holds, the potential Vﬁ is given by
Eq. (38). However, since the second condition of Eq. (34) is not fulfilled, the infrared diver-
gence in Eq. (40) remains. Contrary to the A-ansatz, the Y-ansatz satisfies the two condi-
tions. The potential V;;L in Eq. (41), which is free from the infrared divergence, is expected for
large r.

Using the color electric potential Bﬁ and its dual potential Bﬁ, the color electric field E/
and the magnetic field H* were investigated. Although they satisfy the two Maxwell equations
in Eq. (48), because of the mass m,, the remaining two equations are modified as Egs. (50)
and (51). In the static case, Eq. (51) becomes —V x E4(j) = —mﬁBA. In the dual Ginzburg—
Landau model, which contains the monopole field, the equation —V x E4(j) = Jmag has been
discussed. In our model, although there is no monopole field, the current —m? B plays the role
of the magnetic current j,,,.

It is expected that the color flux tube exists between color charges. The dual electric potential
B in Eq. (63) produces the electric flux E(/) in Eq. (62), and they satisfy Eq. (64). Namely,
without the monopole field, the flux tube B# leads to the magnetic current Jimag = —mf,BA.
The corresponding electric potential B4 is presented in Eq. (61). The string part, Eq. (59), is
the origin of the flux tube in Eq. (62).

Comparing the SU(3) case with the SU(2) case in Ref. [3], there are some differences. For
example, as stated in Sect. 3, although the condensate of the diagonal component (AMA?L)
vanishes in SU(2), the condensates (AA“A;‘) (4 = 3, 8) exist in SU(3). Equation (18) shows
there are two different mass scales, ~/5m/2 and +/3m/2, and the classical electric poten-
tials B’i and Bﬁ have different masses, whereas the tachyonic mass term in SU(2) has one
scale, m.

Since we have not determined the parameters yet, it is difficult to study the differences be-
tween SU(2) and SU(3) concretely. In Ref. [25], the differences are discussed. One of the is-
sues is the type of the dual superconductivity. Investigating the electric flux, it was concluded
that the SU(3) theory is type-I, whereas the SU(2) theory is weak type-I or on the border be-
tween type-I and type-II. In Appendix E, assuming the phenomenological Lagrangian for the
order parameters G* and G*, we consider the type of dual superconductivity in the present
model. Because of the condensate (ASMAi) and the two mass scales +/5m/2 and ~/3m/2,
the value of the Ginzburg-Landau parameter for SU(3) may become smaller than that for
SU(2).
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Appendix A. Aqcp and o
In the momentum region u > Aqcp, as the effective potential V(¢) in Eq. (5) gives v = 0, we
consider the Wilsonian effective action

4 (g€ - ‘P)Z A dk 2\2 )
Heal /d {_1< 3and /M Gyt LK) (e ) ]>

(s (g6 9 [ d'k (g6 9)?
_/dx{az<w_ u ww*“)

=1

:fd“x{i( : —LlnA>(gg.@)2+---] (A1)
— 3ng? 872 * )

If g and &, represent the quantities at the scale u, Eq. (A1) implies

1 1 3 A 3 82
_—_2:—2——211'1—:——2111@, MO:AGXP(- nz). (A2)
g g 8t 8 2 3arg
From Eq. (A2), we obtain
—azg2 = - (@& (A3)
Since g satisfies
d 11
—g =—N A4
ha &= (4pl)283 Po= 3 (A4)
at the one-loop level, Egs. (A3) and (A4) lead to
J _ o
hm—0n = 2g2 <5 (Bo — 3@2).
ou
Namely, oy = Bo/3 is the ultraviolet fixed point [7,8], i.e
lm & Bo
m oy = oy = —.
n—A 3

Substituting this «,, we find o = Aexp ( — 87%/Bog?) = Aqcp [7,8)-

Appendix B. Tachyonic gluon masses

B (At 4)"

We consider the diagrams in Fig. Bl(a) in the limit p — 0, where p is the external momentum.
The ghost propagators in Eq. (8) and the interaction

3
) [—gA/“‘ > el {@uCe - (aué—ﬂca}}

A=38 a=1

in Eq. (9) give the integral

i geten; [ 4k [k, (—k2 + iedv)’
e W A G URG
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Fig. B1. The diagrams that contribute to the tachyonic gluon masses.

Performing the Wick rotation and neglecting v-independent terms, we obtain

d*k [k (—=k* + inv)k,(—k> + iEv)
+O— -
@yt | K+ ()PK* + (Ev)?]
o dk kuke (K = ng?) v P+ E 4 g+ g
=2i el s === v ) (B2)
)t [k + (qv)°IIk* + (§v)°] 647 Inl + 151
If we apply this formula, we find that Eq. (B1) becomes
g A_B| 3
_Egﬂvea €y |605 ‘ .
Using the values of €2 in Eq. (2), we obtain
—Zg,, A=B=23), —~g. A= B=238), == B
zgu m~ ( 3) 2gu m~ ( 8) m 64 (B3)

B2 (Wew, )™
The diagrams in Fig. BI1(b), which come from the interaction

3 3
> |:g(8MEA) doedwerc =Wt — g Y el AW (0,C) — W (3,8} CA:|,
A=3,8 a=1 a=1

give the integral

d*ke | kuko(—k%) (=% + ielv) v 2
Z(ed)i - Ao == ) g (€) el
A;;s (@m)? ket [k4 + (e V)z] A;;s 64"
Using the values of € in Eq. (2), we obtain
1
—gom* (a=1), —ngmz (@ =2,3). (B4)

In the same way, the interaction

g ~o
> sgn(y)~=€upy (9,C )Crwrr
(. 8,¥)
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in Eq. (9) produces the diagram in Fig. B1(c). Applying the formula in Eq. (B2), this diagram
gives

ey a4k | ko <—k2 + ieév) ( —k* — lEVV)

S T () e+ 0]

& (8) + -6 +lgel

+(—=—v)

= ~cap S IR B<y.a#B.y) (B3)
From the values of € in Eq. (2), we find that Eq. (B5) becomes
—% g’ (a=1), —‘—?:g,wmz (@ =2,3). (B6)
Thus, by summing Egs. (B4) and (B6), we obtain
—ggwmz (@=1,2,3). (B7)

Appendix C. Example of the electric potential and its dual potential
In this appendix we present an example of the massless electric potential E’ﬁ and its dual po-
tential B! for a color electric charge Q. The color electric current is j4* = Q48(x)8(y)8(2)g"",
and the electric potential
o L e ) (C1)
4 ¥
satisfies the equation of motion 8,,(3 A BA)*” — j4* = 0.
The dual electric potential that corresponds to Eq. (C1) is
g = L0 x,0),  p=+y/"2+2 (C2)
4 rp?
This field fulfills the equation of motion

B =

d
A pMaOu .4
0, (0 A BAY "t —n.a]ﬂ =0,

and gives the color electric field

A
Ox L 50100 (—2). (C3)
where 0(z) is the unit step function, and (32 + 8y2) In p = 278(x)5(») has been used.

From Eq. (C1), we get

EAi — leka Bk —

QA X
ey

in Eq. (25). To choose the electric string in the

(3 ABY° =

The string part in Eq. (C3) comes from A7

negative z-direction, we use
&8(2) = —0(—2). (C4)
Then, Eq. (C1) gives 4
(ad)" = —ééalaj(a A B = 85018(x)8 ()0 (—2),

where V2(1/r) = —478(r) has been used. The sum (3 A B4)? + (A4)? reproduces Eq. (C3).
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Appendix D. The potentials V{!(r) and V! (r)

D.1V{(r)

By subtracting r-independent terms, which contain ultraviolet divergence, V! in Eq. (27) be-
comes

/ d3q Qla‘1 Qf eiq.y'
27)3 ¢* + m?,

If the mass m, disappears above some scale A, this potential can be written as

Ac 00 o0
/ dgW(q,m,r)+ / dgW(q,0,r) = / dgW(q,0,r)
0 Ae 0

A
+ / dq (W (g m,r) — W(g,0,r)}.
0

The first term on the right-hand side gives the Coulomb potential, which contributes mainly in
the small-r region. When r becomes large, the second term weakens the effect of the first term.
After performing the integration, we obtain [16]

1 m? [ singr 1
Var) =010t — — 4 / d — . D1
y(}") QaQb <47Tl" 27_[2 0 q qr q2+m%4 ( )
We note that this potential satisfies
. QA le e—m"r
lim Vi) = ==% ) D2
m Vi) == —— (D2)

In the usual approach [2,12-14], the cut-off is not taken into account, and V{!(r) becomes the
Yukawa potential, Eq. (D2).

D2 Vi(r)
When m? = 0, the potential V//(r) in Eq. (28) vanishes. So, differently from V;!(r), the mo-
mentum region ¢ = |q| < A. contributes to VLA(V). Let us write ¥ = (r,, r;), and choose n as
r, =r-n> 0. The vector r; satisfies r; - n =0, and r; = |r;|. Similarly, we write ¢ = (g,, q,),
and use the spherical coordinates ¢, = ¢gcos 8, ¢;; = gsinfcos ¢, gn = gsinfsing (¢ < A, 0 <
0 <m,0 < ¢ < 2m), where g, is chosen to satisfy ¢, - r, = gsin 6 cos ¢r;.

Now we consider the integral

d3 iq-r

RN e (D3)

(27)* ¢2 (¢* + m3)

in V1. It becomes
A d b4 2 iqry cos @ ,igr, sin 6 cos ¢
q . e e

— do sin 0 d . D4
/o r)? /o fo Y o526 (42 + m?) (D4

By changing the variable 6 to u = cos 8, we get

du
1 u? '

b4 eiqr,, cosf eiqr, sinf cos ¢ 1 eiqrnueiqr, V1-u?cosg
d6 sinf 5
0 cos= 6 _

which diverges at u = 0. If we choose the path Cin Fig. D1, the integral

o124 piari v/ 1-z2cos¢p
/ dz
C

22
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v Y
C Iy
I,
T
-1 —€ 0| ¢ 1
Fig. D1. The path C on the complex plane.
leading to
tqr u zqr, V1= cosg ez'qr,,zeiqr,«/l—z2 cos ¢
Pf —I]"S—i-lrl, IFEZ—/ dz 3 s
I, Z
ol piqriN/ 1—z%cosg
I, = — / dz . : (D5)
r VA
1

where P means the Cauchy principal value. To calculate I, we use the variable z = g¢, and
take the limit ¢ — +0. Then it becomes

2
Ir, = lim {— —qr, + 0(5)} igricosy. (D6)

e—>+0

Similarly, by setting z = ¢ in Ir,, we find

1

Iy, = —i /(; d¢€_i¢ e,iqr,,e’*’> T cos o/ 1—e2i¢ ) (D7)
We note that Eq. (D7) satisfies

T
|Il"] | < / d¢e—qr,, sinqbe—qr, cos @4/ 2sin p{sin(2¢p—m)/4} < 7_[eqr,/z‘ (DS)
0

If we substitute Egs. (DY), (D6), and (D7) into Eq. (D4), we find

dq e1r 1 1
)’ g3 (¢* +m3) - 2n28H(mA’ Ao re) = EKO(mAr” A+ L4, Aes Ty 11),
n

’ s 'no )
‘”A cy ! It (2 )3 2 1

where, using the Bessel function Jy(gr,), H(my, A, r;) and Ky(m47;, A.) are defined by
A¢ 1
H(my, A, 1) = / dQWJO(qu),
Ko(myry, Ae) = / dq 2 -Ii] Jo(qre),

1 2 )
Jolare) = 5 0 del®ricosy (D10)
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These functions satisfy

1 A

H(my, A, 0) = —tan™' —=,

ny my

) 1 AZ 2
lim Ko(mgr, Ad) = = In <%> ,
ri—>+0 2 WlA
Ko(myr) = lim Ko(mare, Ac), (D11)
c—>00

where Ky(mr;) is the modified Bessel function. The term Z in Eq. (D9) has the properties

1 1 A
T(my, Ae,0,0) = ——— —tan~! —, (D12)
22 my my
|I( A )| _ 1 /-Acd 1 /2nd ’I ‘ - 1 /Acd 1 a2
my, A, 1n, 1) < —= - < — ——el"
A
— tan~! == (r, > 0). (D13)
drmy my
Thus, using Egs. (D9), (D11), and (D12), the potential ;! in Eq. (28) becomes
A YA, 2
Vi = Vi — Z 2 K, Ao,
T

2 2m2my

A\2 A\2
+m124 {_(Qa) +(Qb) 1 tan_I%'i‘Q:jQle(mAaACa rn’rl)}’ (D14)
A

Vﬁ%(”t) =

2m2¢ 2 my

A)2 A)2
m {(Qa) +(27) Ltan_I%-i-QZl fH(mAvAc’Vt)]' (D15)
y

We note that the first term has the infrared divergence 1/e, and the second term leads to the
linear potential. When r; — 0, as Eq. (D13) shows, the last term does not depend on r, so
much. Therefore, in Sect. 4 we study the potential V'/!(r) based on the first and second terms in
Eq. (D14).

Here, we add a comment. Usually, the ultraviolet cut-off A. is introduced as |¢;] < A¢ [3,12—
14]. The domain of integration is |¢,| < co and |¢;| < A.. The infrared divergence and the linear
potential come from the region with |¢,| = ¢, (¢, < 1). In this article, as m,4 = 0 above A, the
domain of integration is ¢ = |q| < A.. The infrared divergence and the linear potential result
from cosf = ¢ (¢ < 1). Although the linear potential in these references coincides with that
in this article, the coefficient of the infrared divergent term is different. From ¢, = gcos @, we
find that ¢, is related to ¢ as ¢, = ge. By using this relation, the infrared divergence in Ref. [3]
becomes Eq. (D15).

Appendix E. Type of dual superconductivity
In the Ginzburg-Landau (GL) theory of superconductivity, the space dependence of an order
parameter @ is considered (see, e.g., Ref. [26]). To see the coherence length, the x-dependence
is introduced as ®(x) = ®f(x) with f(0) = 0 and lim, _, of(x) = 1. From the phenomenological
Lagrangian for ®(x), the function f(x) satisfies

2d2f(x) .
2

£ = = [ 1= 0P| (). (ED)
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The solution is f(x) = tanh %g, with & the coherence length. The penetration depth A is deter-
mined by the mass of the magnetic field, and the parameter « = A/¢ is called the GL parameter.
When « < 1/+/2 (k > 1/+/2), the superconductor is called type-I (type-II).

In the following subsections, under some assumptions, we consider the coherence length and
the GL parameter in the present model.

E1SU(2) case
First, we consider the SU(2) case. In Refs. [2,3], we showed that the tachyonic mass term for the
off-diagonal component A% = (4], + A2)/~/2 is —m? A} A™", and the interaction in —F_, /4
contains the term —gz(A;A 1)2)2. From these terms, we obtaln the gauge field condensate
G = (4147 = —m? /g at the one-loop level. This condensate makes the classical U(1) field
b, massive. As its mass term becomes ni°h, b*, the penetration depth of b, is A = 1/+/2m.
Now we consider the spatial behavior of the condensate G. Since G has mass dimension 2, we
assume its x-dependence is expressed by G(x) = {\/E f (x)}2 with f(0) = 0 and lim, _, oof(x) =
1. As G(x) depends on x, we introduce the kinetic energy in the form { VGf ’(x)}z. Thus, using
this kinetic term, the above tachyonic mass term, and the interaction, we assume the following
phenomenological Lagrangian for G(x):
2 2
[N g (o - £ [g ]
where 7 is a parameter to adjust the effect of the assumed kinetic term. This Lagrangian leads
to

£2ph = 7729

d2
P -2 0 - 26 (0 = [1 = ] £,

where G = —m?/g* has been used. This equation implies & = n/m. From » = 1/+/2m and & =
nim, we find k = 1/4/2n. If n ~ 1, it implies the border between type-I and type-1I.

E2 SU(3) case

As in the SU(2) case, we assume the x-dependent order parameters G*(x) = {+/G% a(x)}z (o
=1,2,3)and G4(x) = {x/@m(x)}z (4 = 3, 8). Using the tachyonic mass terms in Eq.(11),
the interaction terms in Eq. (12), and the assumed kinetic terms with the same parameter 1, we
consider the phenomenological Lagrangian

Lipn = Zg“{ <df“) >0 (1) }+ZGA{ ( )z—m?zwm)z}

A=38

3
SEY @R U - Y e )
a=1

a#p

- g {GSQ (@3)°(1)* + {G3(¢3)2 +3G%(¢s)’} Z g% (fa) } :
a=2
From L3, we obtain the equations for f>(x) and ¢g(x):

d’ f> 5m?
2— = ——
T de 4 /2

—gz[gz(fz)z L+ o) + {G3(¢3)2+368<¢8>2}]fz, (E2)
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2d s 3m 3g2

i ¢s - =G + G ()] ¢s. (E3)
If we assume the relation f,(x) >~ ¢ A(x) (x = 1 2,3, A =3, 8), these equations become
d’f- Sm
g == (1= ) (E4)
d*¢ 3m?
nzﬁf =T {1—(¢8)°} #s. (ES)

where Egs. (13) and (15) have been used. In the same way, we find that /1, /3, and ¢3 also satisfy
Eq. (E4). Therefore, comparing these equations with Eq. (E1), we find
2n 2n
Ja(x) = ¢3(x) = tanh ——, &3 = ——, g = ——.
«/_ £ V5m \/— £ V3m
Equation (E6) shows that we have to modify Egs. (E4) and (ES5) to satisfy the relation f, =~
¢3 # ¢g. If we use this relation, Eqs (E2) and (E3) become

¢s(x) =~ tanh —— (E6)

d? 5

nzﬁj;z = " {1 — ()} fo - EGS {(48)" = (12} fo, (E7)
d2

nzﬁ(ng = _3% {1—(¢8)} ¢s — g292 {(/2)* = (#3)} ¢, (E8)

where Egs. (13) and (15) have been used again. Now we use Eq. (16), and rewrite the second
terms on the right-hand side as

2 2 2
6 02 - () i = —”iazoc) (L= (P oy 8a() = (fz)_—("’i)
3g2 ! 2 (f 2
G — @R} by = s {1 - @GP} b ) = LL
Then, Eqs. (E7) and (E8) become
d’fy _ Sm? 82(x)
e L {1+ 2 }{1—(f2>2}f2, (E9)
2
n2% ~ —3& {1 =850} {1 — (¢3)°} ¢s. (E10)

We note that, as |[f>]| < 1, |¢s] < 1, and Vzl > |¢gl, 82 and 8g satisfy 0 < §, < 1 (a =2, 8).

Since 8, and 83 depend on x, it is difficult to solve Egs. (E9) and (E10). However, Eq. (ES)
becomes Eq. (E10) if we replace 3m?/4 with 3m?*(1 — 8,)/4. Therefore, it is expected that the
coherence length &, obtained from Eq. (E10) is longer than & = 2n/+/3m. From the masses
for the classical fields in Eq. (19), the corresponding penetration depth is Ag = +/2/+/3m. If we
can use &,y and Ag, the GL parameter becomes k = Ag/Emax < Ag/Eg = 1/«/577. If n>~1, we
can expect type-I.
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