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SU(3) gauge theory in the nonlinear gauge of the Curci–Ferrari type is studied. In the low-
energy region, ghost condensation and subsequent gauge field condensation can happen.
The latter condensation makes classical gauge fields massive. If the color electric potential
with a string is chosen as the classical gauge field, it produces the static potential with the
linear potential. We apply this static potential to the three-quark system, and show, differ-
ently from the Y-type potential, that infrared divergence remains in the �-type potential.
The color electric flux is also studied, showing that a current which plays the role of the
magnetic current appears
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1. Introduction
In the dual superconductor picture of quark confinement, it is expected that monopole con-
densation appears in the low-energy region. This condensation produces a mass of gauge fields,
and confinement happens. To describe this scenario, the dual Ginzburg–Landau model has been
considered (see, e.g., Ref. [1]).

Based on the SU(2) gauge theory in a nonlinear gauge, we considered another possibility to
give a mass for gauge fields [2]. In the low-energy region below �QCD, which is the QCD scale
parameter, ghost condensation happens. Although this condensation gives rise to a tachyonic
gluon mass, a gauge field condensate 〈A+μA−

μ 〉 can remove the tachyonic mass. If there is a
classical U(1) gauge field, this classical field becomes massive by this condensate.

In Ref. [3], referring to Zwanziger’s formalism [4], the electric potential and its dual potential
were introduced as a classical field. Due to the string structure of these classical fields, the linear
potential was obtained.

In this paper we extend the previous approach to the SU(3) case. In the next section, ghost
condensation is studied at the one-loop level. In Sect. 3, under ghost condensation, tachyonic
gluon masses and the gluon condensates 〈AaμAa

μ〉 are calculated in the low-momentum limit.
The Lagrangian of the massive classical gauge fields is also presented. In Sect. 4, the color
electric potential and its dual potential are introduced as classical fields, and the static poten-
tial between two charges is calculated. Using the result of Sect. 4, the mesonic potential and
the baryonic potential are discussed in Sect. 5. Differently from the dual Ginzburg–Landau
model, there is no magnetic current originally. Maxwell’s equations in the present model are
studied in Sect. 6. The behavior of the color flux tube is also considered. Section 7 is devoted
to summary and comment. In Appendix A, the relation between the ghost condensation and
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�QCD is derived. Tachyonic gluon masses are calculated in Appendix B. To make the article
self-contained, an example of the electric potential and its dual potential for a color charge is
presented in Appendix C. In Appendix D, the static potential between two charges is calculated
in detail. Based on a phenomenological Lagrangian for order parameters, the type of the dual
superconductivity in the present model is considered in Appendix E.

2. Ghost condensation
2.1 Notation
We consider the SU(3) gauge theory with structure constants fabc in the Minkowski space. The
Lagrangian in the nonlinear gauge of the Curci–Ferrari type [5] is given by [6]

L = Linv + LNL, Linv = −1
4

F a
μνF aμν,

LNL = Ba∂μAaμ + ic̄a(∂μDμc)a + α1

2
BaBa + α2

2
B̄aB̄a − Bawa (a = 1, . . . , 8),

where Ba is the Nakanishi–Lautrup field, c (c̄) is the ghost (antighost), B̄a = −Ba + ig fabcc̄bcc,
α1 and α2 are gauge parameters, and wa is a constant to keep the Becchi–Rouet–Stora symmetry.
The Lagrangian LNL is rewritten as

Lϕ = α1

2
BaBa + Ba(∂μAaμ + ϕa − wa) + ic̄a [(∂μDμ)ac + gfabcϕ

b] cc − ϕaϕa

2α2
,

where the auxiliary field ϕa represents −α2B̄a.
Let us expand the gauge field Aμ as

Aμ = Aa
μ

λa

2
= �Aμ · �H +

3∑
α=1

(
W −α

μ Eα + W α
μ E−α

)
, (1)

where the diagonal components are

�Aμ = (A3
μ, A8

μ), �H = (H3, H8) =
(

λ3

2
,
λ8

2

)
,

and �Aμ · �H =∑A=3,8 AA
μHA = A3

μH3 + A8
μH8. The off-diagonal components are given by

W ±1
μ = 1√

2

(
A1

μ ± iA2
μ

)
, W ±2

μ = 1√
2

(
A4

μ ∓ iA5
μ

)
, W ±3

μ = 1√
2

(
A6

μ ± iA7
μ

)
,

E±1 = 1
2
√

2
(λ1 ± iλ2), E±2 = 1

2
√

2
(λ4 ∓ iλ5), E±3 = 1

2
√

2
(λ6 ± iλ7).

Using the root vectors of the SU(3) group

�ε1 = (1, 0), �ε2 =
(

−1
2

,
−√

3
2

)
, �ε3 =

(
−1
2

,

√
3

2

)
, (2)

the above matrices satisfy

[ �H, E±α] = ±�εαE±α, [Eα, E−α] = �εα · �H, [E±α, E±β ] = ∓1√
2
εαβγ E∓γ

and

tr
(
HAHB) = δAB

2
, tr

(
EαE−β

) = δαβ

2
.

In the same way, c and c̄ are expressed as

c = �c · �H +
3∑

α=1

(
C−αEα + CαE−α

)
, c̄ = �̄c · �H +

3∑
α=1

(
C̄−αEα + C̄αE−α

)
, (3)
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where

C±1 = 1√
2

(
c1 ± ic2) , C±2 = 1√

2

(
c4 ∓ ic5) , C±3 = 1√

2

(
c6 ± ic7) ,

and C̄±α (α = 1, 2, 3) are defined as well.

2.2 Ghost condensation
To obtain the one-loop effective potential of ϕA, we diagonalize ϕa λa

2 as �ϕ · �H . Then, using
the expressions in Eqs. (1) and (3), the Lagrangian ic̄a�ca + ic̄ag fabcϕ

bcc = 2tr(ic̄�c + c̄[gϕ, c])
becomes

∑
A=3,8

c̄Ai�cA +
3∑

α=1

{
C̄α(i� + g�εα · �ϕ)C−α + C̄−α(i� − g�εα · �ϕ)Cα

}
. (4)

Next, as in the SU(2) case [7], we integrate out C±α and C̄∓α with the momentum μ ≤ k ≤ �.
After the Wick rotation, we obtain the potential

3∑
α=1

V1 (�εα · �ϕ) = −
3∑

α=1

∫ �

μ

d4k
(2π )4

ln
[
(−k2)2 + g2(�εα · �ϕ)2]

= − 1
32π2

3∑
α=1

[{
�4 + g2(�εα · �ϕ)2} ln

{
�4 + g2(�εα · �ϕ)2}

− {μ4 + g2(�εα · �ϕ)2} ln
{
μ4 + g2(�εα · �ϕ)2}] .

Since we can rewrite ϕaϕa/(2α2) as

1
2α2

ϕaϕa = 1
2α2

�ϕ · �ϕ = 1
3α2

3∑
α=1

(�εα · �ϕ)2,

the one-loop effective potential of ϕ becomes [8]

V (ϕ) =
3∑

α=1

[
(�εα · �ϕ)2

3α2
+ V1 (�εα · �ϕ)

]
. (5)

To study minimum points of V(ϕ), we consider

∂V
∂ϕ8

= ϕ8

α2
− 3

2
g2ϕ8{L(�ε2 · �ϕ) + L(�ε3 · �ϕ)} −

√
3

2
g2ϕ3{L(�ε2 · �ϕ) − L(�ε3 · �ϕ)},

∂V
∂ϕ3

= ϕ3

α2
− g2ϕ3[2L(�ε1 · �ϕ) + 1

2
{L(�ε2 · �ϕ) + L(�ε3 · �ϕ)}] −

√
3

2
g2ϕ8{L(�ε2 · �ϕ) − L(�ε3 · �ϕ)},

L(�εα · �ϕ) = 1
32π2

ln
{

�4 + (g�εα · �ϕ)2

μ4 + (g�εα · �ϕ)2

}
.

The explicit forms of g�εα · �ϕ (α = 1, 2, 3) are

g�ε1 · �ϕ = gϕ3, g�ε2 · �ϕ = −g
2

(
ϕ3 +

√
3ϕ8
)

, g�ε3 · �ϕ = g
2

(
−ϕ3 +

√
3ϕ8
)

,

and ϕ8 = 0 leads to �ε2 · �ϕ = �ε3 · �ϕ. So, the equation ∂V/∂ϕ8 = 0 has the solution ϕ8 = 0. Now
we assume that 〈g�ϕ〉 = (v, 0) is a minimum point. Since the potential V(ϕ) is invariant under
the interchange �εα · �ϕ ←→ �εβ · �ϕ (α 
= β), and has the symmetry �εα · �ϕ → −�εα · �ϕ, there are six
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minimum points:1

(v, 0),
(
− v

2 , −
√

3
2 v
)

,
(
− v

2 ,
√

3
2 v
)

,

(−v, 0),
(

v
2 ,

√
3

2 v
)

,
(

v
2 , −

√
3

2 v
)

.
(6)

To determine the value of v, we consider the case (v, 0). The condition ∂V/∂ϕ3 = 0 with gϕ3

= v 
= 0 becomes

32π2

α2g2
= ln

{(
v2 + �4

v2 + μ4

)2 (
v2 + 4�4

v2 + 4μ4

)}
. (7)

If we set v = 0 at μ = μ0, μ0 = �exp [ − 8π2/3α2g2] is obtained. When the cut-off � is large
enough, Eq. (7) gives v � 21/3μ2

0 in the limit μ → 0.
In Appendix A, we show that 3α2 = β0 is the ultraviolet fixed point of α2, where β0 = 11N/3

with N = 3 is the first coefficient of the β function. Substituting this value into μ0, we find

μ0 = � exp
[
− 8π2

β0g2

]
= �QCD,

where �QCD is the QCD scale parameter. Thus, we obtain the ghost condensate v that behaves
as

v = 0 (μ ≥ �QCD), v 
= 0 (μ < �QCD), v � 21/3�2
QCD (μ → 0).

3. Gluon mass
3.1 Tachyonic gluon mass
In the SU(2) gauge theory, ghost loops with v 
= 0 produce the tachyonic gluon mass terms [6,9].
To study the SU(3) case, we choose the vacuum (v, 0) in Eq. (6), and write gϕa = vδ3a + gϕ̃a,
where ϕ̃a is the quantum part. Neglecting ϕ̃a, the Lagrangian in Eq. (4) becomes

∑
A=3,8

ic̄A�cA +
3∑

α=1

{
iC̄α

(
� − iε3

αv
)

C−α + iC̄−α
(
� + iε3

αv
)

Cα
}
,

and it leads to the ghost propagators

〈cAc̄A〉 = − i
� (A = 3, 8),

〈CαC̄−α〉 = − i
� + iε3

αv
, 〈C−αC̄α〉 = − i

� − iε3
αv

(α = 1, 2, 3). (8)

Using Eqs. (1) and (3), the vertex −i∂μc̄ag fabcAbμcc in ic̄a(∂μDμ)abcb is rewritten as

∑
A=3,8

[
−gAAμ

3∑
α=1

εA
α

{
(∂μC̄α) )C−α − (∂μC̄−α )Cα

}

+ g(∂μc̄A)
3∑

α=1

εA
α (W αμC−α − W −αμCα ) −g

3∑
α=1

εA
α

{
W αμ(∂μC̄−α ) − W −αμ(∂μC̄α )

}
cA

]

+
∑

(α,β,γ )

sgn(γ )
g√
2
εαβγ (∂μC̄α )CβW γμ, (9)

where sgn(γ ) is the sign of γ , and
∑

(α, β, γ ) implies the sum for the permutations of (1,2,3) and
( − 1, −2, −3).

1These minimum points were found in Ref. [8], which also contains a three-dimensional figure of V(ϕ).
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Fig. 1. The diagrams that contribute to the inverse propagator for Aa
μ; (b) gives rise to the tachyonic mass

in the limit p → 0, and (c) yields the condensate G(0)
μμ(x, x).

Now we consider the two-point function〈
Aa

μ(x)Ab
ν (y)

〉 = Gab
μν (x, y) (10)

at the one-loop level. As in the SU(2) case, using the ghost propagators in Eq. (8) and the
interactions in Eq. (9), the ghost loop in Fig. 1(b) gives rise to tachyonic masses in the low-
momentum limit p → 0. The details are presented in Appendix B. From Eqs. (B3) and (B7), we
find that the tachyonic mass terms are

−1
2

(
5
2

m2
)

A3μA3
μ − 1

2

(
3
2

m2
)

A8μA8
μ −

3∑
α=1

(
5
4

m2
)

W αμW −α
μ , m2 = g2v

64π
. (11)

3.2 Condensate 〈AaμAa
μ〉

To remove the tachyonic masses, we consider the condensate 〈AaμAa
μ〉 [2,3]. Let us introduce

the source terms ∑
A=3,8

KAAAμAA
μ +

3∑
α=1

KαW αμW α
μ .

Although the sources may depend on the momentum scale, for simplicity, the constant sources

KA = K (0)
A + K (1)

A + · · · , K (n)
A = O(�n), K (0)

A = 1
2 M2

A (A = 3, 8),
Kα = K(0)

α + K(1)
α + · · · , K(n)

α = O(�n), K(0)
α = M2

α (α = 1, 2, 3)

are considered. The interaction −(gfabcAb
μAc

ν )2/4 in −(F a
μν )2/4 contains the terms

− g2

2

3∑
α=1

W αμW −α
μ W ανW −α

ν − g2

4

∑
α 
=β

W αμW −α
μ W βνW −β

ν

− g2
3∑

α=1

(
�εα · �Aμ

) (
�εα · �Aμ

)
W ανW −α

ν . (12)

So, at O(�), the diagram in Fig. 1(c) gives the condensate 〈AaμAa
μ〉(0) = gμνG(0)aa

μν (x, x), where

G(0)ab
μν (x, y) is the free propagator with mass MA or Mα. If the other divergent diagrams of

O(�) are subtracted by the terms with K (1)
A or K(1)

α , the condensate 〈AaμAa
μ〉(0) is determined to

remove the tachyonic masses in Eq. (11).
As an example, we consider the self-energy of W 1

μ in the limit p → 0. The diagram in Fig. 1(c)
with the first interaction in Eq. (12) gives −g2〈W 1μW −1

μ 〉(0). Similarly, from the second term in
Eq. (12), we obtain −g2

[〈W 2μW −2
μ 〉(0) + 〈W 3μW −3

μ 〉(0)
]
/2. Since �ε1 · �Aμ = A3

μ, the third term
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in Eq. (12) gives −g2〈A3μA3
μ〉(0). So, Fig. 1(c) for W 1

μ leads to −g2
{
G1 + 1

2

(
G2 + G3

)+ G3
}
,

where Gα = 〈W αμW −α
μ 〉(0) (α = 1, 2, 3) and GA = 〈AAμAA

μ〉(0) (A = 3, 8). The condition that
these condensates remove the tachyonic mass of W 1

μ becomes

−5
4

m2 − g2
{
G1 + 1

2

(
G2 + G3)+ G3

}
= 0.

In the same way, we find the conditions

−5
4

m2 − g2
{
G2 + 1

2

(
G3 + G1)+ 1

4

(
G3 + 3G8)} = 0, (13)

−5
4

m2 − g2
{
G3 + 1

2

(
G1 + G2)+ 1

4

(
G3 + 3G8)} = 0,

−5
4

m2 − g2
{
G1 + 1

4

(
G2 + G3)} = 0, (14)

−3
4

m2 − 3g2

4

(
G2 + G3) = 0, (15)

for W 2
μ , W 3

μ , A3
μ, and A8

μ, respectively.
The solutions of these five equations are

G1 = −m2

g2
, G2 = G3 = − m2

2g2
, G3 = m2

4g2
, G8 = − m2

12g2
. (16)

We note that, although the diagonal component 〈A3μA3
μ〉(0) vanishes in the SU(2) case [2,3], the

diagonal components 〈AAμAA
μ〉(0) (A = 3, 8) do not vanish in SU(3).

3.3 Inclusion of classical solutions
To incorporate U(1)3 and U(1)8 classical solutions into the above scheme, we divide AA

μ into
the classical part bA

μ and the quantum fluctuation aA
μ as

AA
μ = bA

μ + aA
μ (A = 3, 8),

and divide the gauge transformation δAμ = Dμ(A)ε as

δaμ = Dμ(a,W )ε, (δbμ)a = gfabcbbεc, δWμ = Dμ(a,W )ε, (17)

where Dμ(A)ab = ∂μδab + gfacbAc
μ, and Dμ(a, W) is obtained by removing bμ from Dμ(A), i.e.

Dμ(a,W ) = Dμ(A)|bμ=0. Using the gauge-fixing function G(a,W ) = ∂μAμ|bν=0 + ϕ − w, the
transformation in Eq. (17) gives the ghost Lagrangian

ic̄a [(∂μDμ(A)
)ac + gfabcϕ

b] cc
∣∣
bμ=0 = ic̄a [(∂μDμ(a,W )

)ac + gfabcϕ
b] cc.

So, after the ghost condensation, the tachyonic mass terms are obtained by replacing Aa
μ with

aA
μ and W α

μ as2

−1
2

(
5
2

m2
)

a3μa3
μ − 1

2

(
3
2

m2
)

a8μa8
μ −

3∑
α=1

(
5
4

m2
)

W αμW −α
μ . (18)

2We can use the background covariant gauge. In this case, as the ghost Lagrangian is
ic̄a
[(

D(b)μDμ(A)
)ac + gfabcϕ

b
]

cc, c̄ and c couple with bμ. However, this ghost Lagrangian has the U(1)3

× U(1)8 symmetry δεbμ = −∂μ�ε · �H/g, δεaμ = 0, and δεW ±α
μ = ∓i�ε · �εαW ±α

μ . Therefore, as in the SU(2)
case [2], this symmetry prevents bA

μ from getting tachyonic mass terms, and Eq. (18) is obtained.
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The above tachyonic mass terms are removed by the condensates Gα = 〈W αμW −α
μ 〉(0) (α = 1,

2, 3) and GA = 〈aAμaA
μ〉(0) (A = 3, 8) in Eq. (16). When Gα 
= 0, the interaction

−g2
3∑

α=1

(
�εα · (�a +�b)μ

) (
�εα · (�a +�b)μ

)
W ανW −α

ν

in Eq. (12) leads to the mass terms

−g2
3∑

α=1

(�εα ·�bμ)(�εα ·�bμ)Gα = −g2
{
G1 + 1

4

(
G2 + G3)} b3μb3

μ − 3g2

4

(
G2 + G3) b8μb8

μ.

Since the classical part bA
μ has no tachyonic mass, Eqs. (14) and (15) imply that these mass terms

become ∑
A=3,8

m2
A

2
bAμbA

μ, m2
3 = 5m2

2
, m2

8 = 3m2

2
. (19)

Thus, after integrating out c and c̄, we obtain the low-energy effective Lagrangian

Le = Lcl +
∑

A=3,8

{
−1

4
(∂ ∧ aA)μν (∂ ∧ aA)μν + M2

A

2
aAμaA

μ

}

+
3∑

α=1

{
−1

4
(∂ ∧ W α )μν (∂ ∧ W α )μν + M2

αW αμW α
μ

}
+ · · · ,

Lcl =
∑

A=3,8

{
−1

4
(∂ ∧ bA)μν (∂ ∧ bA)μν + m2

A

2
bAμbA

μ

}
, (20)

where (∂ ∧ Aa)μν = ∂μAa
ν − ∂νAa

μ.
We ignored the momentum dependence of the sources KA and Kα, and applied the � expan-

sion. Because it is difficult to modify this treatment, we use Lcl as the first approximation of the
low-energy Lagrangian.

4. Classical fields and static potential
4.1 The classical electric potential B̃A

μ and its dual potential BA
μ

It is expected that the Abelian component of the gauge field dominates in confinement [10].
Based on Refs. [3,11], we choose the dual electric potential BA

μ as the classical field bA
μ (A = 3, 8).

This describes the electric monopole solution [3]. The color electric current jA
μ is incorporated

by the replacement

(∂ ∧ BA)μν → d F Aμν = (∂ ∧ BA)μν + εμναβ (n · ∂ )−1nα jA
β ,

where the space-like vector nμ [4] is chosen as nμ = (0, n) with |n| = 1, and n · ∂ = nμ∂μ. We
note that this is Zwanziger’s dual field strength Fd = (∂∧B) + (n · ∂)−1(n∧je)d in Ref. [4]. Then,
the Lagrangian in Eq. (20) becomes

Lcl =
∑

A=3,8

[
−1

4

{
(∂ ∧ BA)μν + εμναβ (n · ∂ )−1nα jA

β

}2 + m2
A

2

(
BA

μ

)2]
. (21)

The equation of motion for BA
μ is

(D−1
mA

)μνBA
ν = −εμραβ (n · ∂ )−1nρ∂α jA

β , (D−1
mA

)μν = (� + m2
A)gμν − ∂μ∂ν, (22)

and BA
μ is solved as

BA
μ = −(DmA )μνε

νραβ (n · ∂ )−1nρ∂α jA
β , (DmA )μν = gμν − ∂μ∂ν/�

� + m2
A

+ ∂μ∂ν

m2
A�

. (23)
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If we use Eq. (23), Eq. (21) becomes

L j j =
∑

A=3,8

[
−1

2
jA
μ

1
� + m2

A

jAμ − 1
2

jA
μ

m2
A

� + m2
A

n · n
(n · ∂ )2

(
gμν − nμnν

n · n

)
jA
ν

]
. (24)

Although we used the dual electric potential BA
μ above, we can use the electric potential B̃A

μ.
The relation between B̃A

μ and BA
μ is [3]

−εμναβ∂αBA
β = (∂ ∧ B̃A)μν + �Aμν

e ,

�Aμν
e = − nμ

n · ∂
∂σ (∂ ∧ B̃A)σν + nν

n · ∂
∂σ (∂ ∧ B̃A)σμ. (25)

The dual potential BA
μ has the electric correspondent of the Dirac string, which we call the

electric string. The term �
Aμν
e represents this string.3 The field B̃A

μ satisfies the equation of
motion

(D−1
mA

)μνB̃Aν − jA
μ = 0,

and the Lagrangian that is equivalent to Eq. (21) is [3]

Lecl =
∑

A=3,8

{
−1

4
(∂ ∧ B̃A)2 + m2

A

2
B̃A

μB̃Aμ − B̃A
μ jAμ − m2

A

2
B̃Aμ n · n

(n · ∂ )2

(
gμν − nμnν

n · n

)
jAν

}
.

The last term comes from the electric string. Substituting B̃Aμ = (DmA )μν jA
ν into Lecl, we can

obtain L j j in Eq. (24).

4.2 Potential between static charges
We consider the static charges QA

a at a and QA
b at b. Substituting the static current

jA
μ (x) = gμ0

{
QA

a δ(x − a) + QA
b δ(x − b)

}
(26)

into L j j , we get the potential

V (r) =
∑

A=3,8

{
V A

Y (r) + V A
L (r)

}
,

V A
Y (r) =

∫
d3q

(2π )3

(
(QA

a )2 + (QA
b )2

2
+ QA

a QA
b eiq·r

)
1

q2 + m2
A

, (27)

V A
L (r) =

∫
d3q

(2π )3

(
(QA

a )2 + (QA
b )2

2
+ QA

a QA
b eiq·r

)
m2

A

(q2 + m2
A)q2

n

, (28)

where r = a − b, q = |q|, and qn = q · n. The first (second) term in L j j leads to V A
Y (V A

L ). His-
torically, these potentials were obtained by using the dual Ginzburg–Landau model [12–15].
These potentials are calculated in Appendix D. Assuming that mA disappears above the scale
�c, Eq. (27) gives [16]

V A
Y (r) = QA

a QA
b

(
1

4πr
− m2

A

2π2

∫ �c

0
dq

sin qr
qr

1
q2 + m2

A

)
= −QA

a QA
b

g2

(
−αA(r)

r

)
,

αA(r) = g2

4π
− g2m2

Ar
2π2

∫ �c

0
dq

sin qr
qr

1
q2 + m2

A

. (29)

The first term in V A
Y (r) is the usual Coulomb potential, which is the main term for small r.

3In Appendix C, as an example, we present the massless fields B̃A
μ and BA

μ for a point charge, and show

that �
Aμν
e describes the electric string. The relation in Eq. (25) is also used to consider the color electric

flux in Sect. 6.
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Fig. 2. The relation between the conditions in Eq. (34) and the length of the electric string. Case (a), with
rt 
= 0, and case (b), with (rt = 0, QA

a + QA
b 
= 0), have the string with infinite length. The length of the

string in case (c), which satisfies Eq. (34), is finite.

Under the same assumption that mA = 0 above �c, Eq. (28) gives

V A
L (r) = V A

IR(rt ) − QA
a QA

b m2
A

4π
K0(mArt, �c)rn + · · · , (30)

V A
IR(rt ) = m2

A

2π2ε

{(
QA

a

)2 + (QA
b

)2
2mA

tan−1 �c

mA
+ QA

a QA
b H (mA, �c, rt )

}
, (31)

where the functions K0(mArt, �c) and H(mA, �c, rt) are defined in Eq. (D10). We have chosen
n as rn = r · n ≥ 0, and r = (rn, rt ). The vector rt satisfies rt⊥n, and rt = |rt|. The term V A

IR has
infrared divergence 1/ε, where the infrared cut-off ε satisfies 0 < ε � 1. To remove this diver-
gence, since the direction n of the electric string is arbitrary, we choose r ‖ n [3,15,16]. In this
case, as (rn, rt) = (r, 0), Eq. (30) becomes

V A
L (r) = V A

IR − QA
a QA

b

g2
σ Ar + · · · , σ A = g2m2

A

8π
ln
(

�2
c + m2

A

m2
A

)
, (32)

V A
IR = mA

4π2ε

(
QA

a + QA
b

)2
tan−1 �c

mA
, (33)

where K0(0, �c) and H(mA, �c, 0) are presented in Eq. (D11). Equation (33) shows that V A
IR

vanishes if QA
a + QA

b = 0. Therefore, the conditions to remove the infrared divergence are

rt = 0, QA
a + QA

b = 0. (34)

When Eq. (34) holds, the leading term of Eq. (32) is the linear potential −(QA
a QA

b /g2)σ Ar, which
is the main term for large r.

We note the infrared divergence implies the existence of the electric string with infinite length
and mass mA. The relation between the conditions in Eq. (34) and the length of the electric
string are depicted in Fig. 2.

In the SU(2) case, comparing the qq̄ potential with VY(r) and VL(r), we tried to determine the
values of parameters, and reproduce the Coulomb plus linear type potential [16]. However, in
the SU(3) case, there are many parameters like MA (A = 3, 8) and Mα (α = 1, 2, 3). In addition,
since m3 
= m8, we are not sure whether a single cut-off �c is usable or not. So we do not try
to determine the parameters in this paper. Instead, below we study the consequences derived
from the Lagrangian in Eq. (21) and the potentials in Eqs. (29) and (32).
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Fig. 3. The color flux between the charges. (a) is the �-type baryon and (b) is the Y-type baryon.

5. Mesonic and baryonic potentials
5.1 Notation
Corresponding to the three types of color charge, red, blue, and green, we use C1, C2, and C3,
respectively. The quark field is � = t (ψC1 ψC2 ψC3 ), and the current jA

μ = g�̄γμHA� (A = 3, 8)
is written as

jA
μ =

3∑
i=1

gwA
i ψ̄CiγμψCi ,

where the weight vectors are

�w1 =
(

1
2
,

1

2
√

3

)
, �w2 =

(−1
2

,
1

2
√

3

)
, �w3 =

(
0, − 1√

3

)
. (35)

When we use the static potentials in Eqs. (29)–(33), the static charges are given by

QA
Cj

= gwA
j = −Q̄A

Cj
(A = 3, 8; j = 1, 2, 3). (36)

5.2 Mesonic potential
If a static quark (an antiquark) exists at a (b), a meson is expressed by

1√
3

3∑
i=1

|qCi (a)q̄Ci (b)〉

We set QA
a = QA

Ci
, QA

b = Q̄A
Ci

= −QA
Ci

, and r = (a − b) ‖ n. Then the two conditions in Eq. (34)
are satisfied, and V A

IR vanishes. Using the relation

1
3

3∑
i=1

−QA
Ci

Q̄A
Ci

g2
= 1

3

3∑
i=1

(wA
i )2 = 1

6
(A = 3, 8),

Eqs. (29) and (32) give the mesonic potential

Vqq̄(r) = 1
6

∑
A=3,8

{
−αA(r)

r
+ σ Ar + · · ·

}
= −αqq̄(r)

r
+ σqq̄r + · · · , (37)

where αqq̄(r) =∑A=3,8 αA(r)/6 and σqq̄ =∑A=3,8 σ A/6.

5.3 �-type 3q potential
Let us study the potential for the configuration in Fig. 3(a), which is called the �-ansatz [17].
To apply Eqs. (29) and (32), we replace r with rkl = |rkl | = |rk − rl | (k 
= l) and n with nkl , which
satisfies nkl ‖ rkl . When static quarks are placed at rk (k = 1, 2, 3), a baryonic state is

1√
6

∑
i jk

εi jk|qCi (r1)qCj (r2)qCk (r3)〉.
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If we set QA
a = QA

Ci
and QA

b = QA
Cj

with i 
= j, and use the relation

1
6

∑
i 
= j

−QA
Ci

QA
Cj

g2
= −1

6

∑
i 
= j

wA
i wA

j = 1
12

(A = 3, 8),

Eqs. (29) and (32) give

V �
3q (r1, r2, r3) =

∑
A=3,8

V A
IR + 1

12

∑
k>l

∑
A=3,8

{
−αA(rkl )

rkl
+ σ Arkl + · · ·

}
. (38)

We make two comments. First, from Eqs. (37) and (38), we obtain the relation [19]

V �
3q (r1, r2, r3) −

∑
A=3,8

V A
IR = 1

2

∑
k>l

Vqq̄(rkl ). (39)

Second, by the choice nkl ‖ rkl , the first condition (rkl)t = 0 is satisfied. However, except for
Q3

C1
+ Q3

C2
= 0, the second condition QA

Ci
+ QA

Cj
= 0 (i 
= j) does not hold. So, using

1
6

∑
i 
= j

(
QA

Ci
+ QA

Cj

)2

g2
= 1

6

∑
i 
= j

(
wA

i + wA
j

)2
= 1

6
(A = 3, 8),

we find the infrared divergent term,∑
A=3,8

V A
IR =

∑
A=3,8

mA

24π2ε
tan−1 �c

mA
, (40)

remains. In the �-ansatz, there are electric strings with infinite length. When mA 
= 0, they give
rise to the infrared divergence.

5.4 Y-type 3q potential
For large rkl, the potential V A

L (rkl ) in V �
3q (r1, r2, r3) has the infrared divergence. On the other

hand, based on the strong coupling argument, the Y-shaped baryon depicted in Fig. 3(b) was
proposed [18]. The point S at rS, where the sum of the length LY =∑3

k=1 rkS =∑3
k=1 |rk − rS|

becomes a minimum, is the Steiner point. The color electric flux lines emanating from the three
quarks meet and disappear there. Since the state at this point is a color singlet, corresponding
to the state |qC1 (r1)qC2 (r2)qC3 (r3)〉, the state at rS is |q̄C1 (rS )q̄C2 (rS )q̄C3 (rS )〉. So, when rkS is large,
the potential is the sum of the three qq̄ potentials for large r. Thus, we obtain

V Y
3qL(r1, r2, r3) =

3∑
k=1

Vqq̄L(rkS ) = 1
6

3∑
k=1

∑
A=3,8

(σ ArkS + · · · ) = σY LY + · · · , (41)

where σ Y =∑A = 3, 8σ
A/6.

We note that when rkl is large, Eq. (38) gives

V �
3qL(r1, r2, r3) −

∑
A=3,8

V A
IR = σ�L� + · · · , (42)

where L� = ∑
k > lrkl and σ� = ∑

A = 3, 8σ
A/12. From Eqs. (37), (41), and (42), the relations

σ� = σqq̄/2, σY = σqq̄, and

V �
3qL(r1, r2, r3) −

∑
A=3,8

V A
IR = V Y

3qL(r1, r2, r3) − σqq̄

(
LY − 1

2
L�

)
(43)

are obtained at this level [19]. As LY > L�/2, the inequality V Y
3qL > V �

3qL −∑A=3,8 V A
IR holds.

However, differently from V �
3qL, V Y

3qL is free from the infrared divergence.
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Fig. 4. The cases where the maximum inner angle θmax satisfies 120◦ ≤ θmax ≤ 180◦.

5.5 Comparison with lattice results
In the present model, the classical Abelian potentials BA

μ (A = 3, 8) lead to the linear potential.
The Y-type potential is preferable to the �-type potential, because the former has no infrared
divergence. The string tension of the Y-type potential satisfies σY = σqq̄.

In the lattice simulation, the 3q baryon has been studied, and the Y-type potential is obtained
[20–22]. In Ref. [21], using the maximal Abelian gauge, it was shown that the three-quark string
tension σ 3q satisfies σ3q � σqq̄. In addition, the string tensions σ Abel

3q and σ Abel
qq̄ , which are ob-

tained from the Abelian part, satisfy σ3q � σ Abel
3q and σqq̄ � σ Abel

qq̄ within a few percent deviation.
These results show that the potential is Y-type, and the Abelian dominance is realized.

In Ref. [22], using the Polyakov loop correlation function, the cases with 60◦ ≤ θmax < 120◦

and 120◦ ≤ θmax ≤ 180◦ were simulated, where θmax represents the maximum inner angle of a
triangle. In the latter case, the Steiner point S is the point P1 in Fig. 4. As r1S = 0 in this case,
the length LY is reduced to LY = r12 + r13 = L� − r23. When 120◦ ≤ θmax < 180◦, they found
that the long-range potential satisfies V3qL � σqq̄LY , and σ3q � σqq̄ holds. On the other hand,
when θmax = 180◦, they obtained the �-type relation V3q = 1

2

∑
k>l Vqq̄(rkl ).

In our approach, when 120◦ ≤ θmax ≤ 180◦, the Y-type potential is calculable by setting r1S

= 0, r2S = r12, and r3S = r13. The result is

V Y
3qL = σY LY = σqq̄LY , LY = r12 + r13. (44)

When θmax = 180◦, Fig. 4(b) shows that r23 = r12 + r13 and LY = L�/2. As σ� = 1
2σY , we find

that Eq. (44) becomes

σ�L� = 1
2
σqq̄L�, L� == r12 + r13 + r23 = 2LY . (45)

Namely, if θmax = 180◦, the Y-type relation in Eq. (44) coincides with the �-type relation in
Eq. (45), which is expected from Eq. (43). Therefore, we can say that the long-range potential
is Y-type for θmax ≤ 180◦.

6. Color electric flux
6.1 Extended Maxwell equations
In Sect. 4 we introduced the electric potential B̃A

μ and its dual potential BA
μ that are related by

Eq. (25). We also used Zwanziger’s dual field strength dFAμν [4] in the presence of the current
jA
μ . In this subsection, we study Maxwell’s equations.
Using BA

μ and B̃A
μ, the dual field strength is expressed by

d F Aμν = (∂ ∧ BA)μν + 1
n · ∂

εμναβnα jA
β = εμναβ∂αB̃A

β − 1
n · ∂

εμναβnα

{
∂ · (∂ ∧ B̃A) − jA}

β
,

and the field strength is

F Aμν = −εμναβ∂αBA
β + 1

n · ∂
(n ∧ jA)μν = (∂ ∧ B̃A)μν − 1

n · ∂

[
n ∧ {∂ · (∂ ∧ B̃A) − jA}]μν

.

The electric field EAi(j) = FAi0 and the magnetic field HAi(j) = dFAi0 are
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EAi( j) = −εi jk∂ jBAk + ni

n · ∂
jA0

= −∂iB̃A0 − ∂0B̃Ai − ni

n · ∂

{
∂ · (∂ ∧ B̃A) − jA}0

, (46)

HAi( j) = −∂iBA0 − ∂0BAi − εi jk n j

n · ∂
jAk

= εi jk∂ j B̃Ak + εi jk n j

n · ∂

{
∂ · (∂ ∧ B̃A) − jA}k

, (47)

where n0 = 0 has been used. From these expressions, it is easy to show the two Maxwell equa-
tions

∇ · EA( j) = jA0, ∇ × HA( j) − ∂0EA( j) = jA. (48)

Next, we consider the remaining two Maxwell equations. Using BAμ, Eq. (47) gives

∂iHAi( j) = ∂i

(
−∂iBA0 − ∂0BAi − εi jk n j

n · ∂
jAk
)

= ∂ · (∂ ∧ BA)0 − J A0,

J Aμ = 1
n · ∂

εμναβ∂νnα jA
β .

Since the classical fields BAμ satisfy the equation of motion

∂ · (∂ ∧ BA)μ + m2
ABAμ = J Aμ, (49)

the above equation becomes

∇ · HA( j) = −m2
ABA0. (50)

In the same way, we obtain

−∇ × EA( j) − ∂0HA( j) = −m2
ABA. (51)

In other words, because of the term −m2
ABAμ = −m2

A(BA0,BA), the remaining two Maxwell
equations are modified.

If we consider a model with the magnetic current jAμ
mag = (ρA

mag, jA
mag), ρA

mag and jA
mag will ap-

pear in the right-hand sides of Eqs. (50) and (51), respectively. In the dual superconductor
model there is the monopole field, and the static equation −∇ × EA( j) = jA

mag is often dis-
cussed [1,23]. In the present model there is no monopole field and no magnetic current orig-
inally. However, like the London equation in superconductivity, the relation jA

mag = −m2
ABA

appears.

6.2 Color flux tube
It is expected that the color flux tube connects color charges. In Ref. [23], the color flux is studied
using the dual superconductor model. From this flux and the equation −∇ × EA( j) = jmag, the
magnetic current is also investigated. In this subsection we consider the color flux tube.

Let us consider the electric flux between the charges QA
Ci

at a = (0, 0, a) and Q̄A
Ci

at b =
(0, 0, b). We set n = (0, 0, 1), and assume that the mass mA is approximately constant for ρ

> 1/�c, where (ρ, θ , z) are the cylindrical coordinates. To study the static flux tube solution we
set BA0 = 0 and

BA(ρ, θ, z) ≈ B(ρ ) f (z)eθ , (52)
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where the unit vectors are

eρ = (cos θ, sin θ, 0), eθ = (− sin θ, cos θ, 0), ez = (0, 0, 1).

Substituting Eq. (52) into Eq. (49), we obtain(
∂2

∂ρ2
+ 1

ρ

∂

∂ρ
− 1

ρ2
− m2

A

)
B(ρ ) f (z) + B(ρ ) f ′′(z) = 1

∂z

∂

∂ρ
jA
0 . (53)

Since jA
0 = 0 holds for ρ > 0, if we assume f

′′
(z) ≈ 0 in the interval b < z < a, Eq. (53) reduces

to (
∂2

∂ρ2
+ 1

ρ

∂

∂ρ
− 1

ρ2
− m2

A

)
B(ρ ) ≈ 0

in the region (ρ > 1/�c, b < z < a). The solution of this equation with limρ → ∞B(ρ) = 0 is
B(ρ) = λK1(mAρ) [24], where λ is a constant and Kn(X) is the modified Bessel function. So, we
obtain

BA ≈ λK1(mAρ ) f (z)eθ . (54)

Using Eq. (54) and the equality X K ′
n(X ) + nKn(X ) = X Kn−1(X ), the color electric field be-

comes

EA( j) = −∇ × BA ≈ mAλK0(mAρ ) f (z)ez + λK1(mAρ ) f ′(z)eρ. (55)

In the same way, if we apply the relations X K ′
n(X ) − nKn(X ) = −X Kn+1(X ) and K ′

0(X ) =
−K1(X ), we get

mAλ
∂

∂ρ
K0(mAρ ) f (z)(eρ × ez) = −m2

AλK1(mAρ ) f (z)eθ = −m2
ABA.

From this equation and Eq. (55), we obtain

−∇ × EA( j) = −m2
ABA + λK1(mAρ ) f ′′(z)eθ . (56)

In the interval b < z < a, f
′′
(z) ≈ 0 is assumed, and Eq. (56) becomes Eq. (51) with ∂0HA = 0.

6.3 Flux tube represented by B̃Aμ

Next, we restudy the flux tube by using the electric potential B̃Aμ. In the static case, Eq. (46)
becomes

E ( j)A = −∇B̃A0 − n
n · ∂

�B̃A0. (57)

From the equation of motion ∂ · (∂ ∧ B̃A)μ + m2
AB̃Aμ = jAμ, B̃A0 satisfies ∇2B̃A0 − m2

AB̃A0 =
− jA0. If we can write B̃A0 ≈ D(ρ )h(z) approximately, this equation becomes(

∂2

∂ρ2
+ 1

ρ

∂

∂ρ
− m2

A

)
D(ρ )h(z) + D(ρ )h′(z) = − jA0. (58)

As in the previous subsection, we set jA0 = 0 for ρ > 0, and assume h
′
(z) ≈ 0 in the interval b <

z < a. Then, Eq. (58) becomes(
∂2

∂ρ2
+ 1

ρ

∂

∂ρ
− m2

A

)
D(ρ ) ≈ 0.

Using the constant κ, the solution of this equation is D(ρ) = κK0(mAρ). Since we choose n =
(0, 0, 1), B̃A0 ≈ κK0(mAρ )h(z) gives

−∇B̃A0 = mAκK1(mAρ )h(z)eρ − κK0(mAρ )h′(z)ez,

− n
n · ∂

�B̃A0 = κm2
AK0(mAρ )

1
∂z

h(z)ez + κK0(mAρ )h′(z)ez, (59)
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and Eq. (57) becomes

E ( j)A = κm2
AK0(mAρ )

1
∂z

h(z)ez + mAκK1(mAρ )h(z)eρ. (60)

Comparing Eqs. (55) and (60), we can identify4

κmA = −λ, − 1
∂z

h(z) = f (z), −h(z) = f ′(z).

So, f(z) and h(z) can be approximated by

f (z) ≈ θ (a − z) − θ (b − z), h(z) ≈ δ(z − a) − δ(z − b),

where θ (z) is the unit step function.
Thus, the electric potential

B̃A0 ≈ − λ

mA
K0(mAρ ) {δ(z − a) − δ(z − b)} (61)

produces the color electric flux

EA( j) ≈ mAλK0(mAρ ) {θ (a − z) − θ (b − z)} ez (62)

in the region (ρ > 1/�c, b < z < a). The string part in Eq. (59) is responsible for this flux tube.
The corresponding dual potential is

BA ≈ λK1(mAρ ) {θ (a − z) − θ (b − z)} eθ , (63)

which also gives the flux in Eq. (62). This flux satisfies the extended Maxwell equation

−∇ × EA( j) ≈ −m2
ABA, (64)

where the magnetic current is jA
mag = −m2

ABA.
We make a comment here. The lattice simulation shows that the 3q baryon is Y-shaped [20–

22], and the solenoidal magnetic current exists [20]. In the present approach, the Y-type bary-
onic potential is free from infrared divergence, and it consists of three qq̄ potentials. So, al-
though the flux tube of qq̄ is considered here, we can apply it to the Y-type 3q baryon. The flux
tube of qq̄ can exist between rS and rk (k = 1, 2, 3). The current jA

mag = −m2
ABA with Eq. (63),

which has the solenoidal form, also appears.

7. Summary and comment
In the dual superconductor picture of quark confinement, monopole condensation produces
the gluon mass. To realize this scenario, the dual Ginzburg–Landau model introduces the
monopole field; its condensation, the gluon mass, and the static potential have been studied.

In Ref. [3], we considered another possibility to make the Abelian component of the gluon
massive in the SU(2) gauge theory. The static potential was also studied [16]. In this paper, we
extended this approach to the SU(3) gauge theory. In the nonlinear gauge of the Curci–Ferrari
type, the quartic ghost interaction generates the ghost condensate vA = g〈ϕA〉 below the scale
�QCD. The ghost loop with vA gives rise to the tachyonic mass for the quantum part of the
gluon. This tachyonic mass is removable by the gluon condensate 〈Aa

μAaμ〉. Since the classical
part bA

μ of the gluon has no tachyonic mass, the condensate 〈Aa
μAaμ〉 gives the mass mA to this

part. To study color confinement, the dual color electric potential BA
μ , which is equivalent to

the color electric potential B̃A
μ with the string part �

Aμν
e , was chosen as bA

μ. Thus, the classical
Lagrangian we used is Lcl in Eq. (21).

4The minus sign comes from the choice that the electric string is in the negative z-direction; see Eq. (C4).

15/25

D
ow

nloaded from
 https://academ

ic.oup.com
/ptep/article/2022/1/013B08/6449021 by D

ESY-Zentralbibliothek user on 24 February 2022



PTEP 2022, 013B08 H. Sawayanagi

This Lagrangian becomes L j j in Eq. (24), and it gives the static potential between the charges
QA

a and QA
b with distance r. When r is small, the leading term is V A

Y (r) in Eq. (29). For large r,
V A

L (r) in Eq. (30) is the main term. However, V A
L (r) contains the infrared divergence V A

IR(rt ),
which comes from the mass mA and the electric string with infinite length. If the conditions rt

= 0 and QA
a + QA

b = 0 in Eq. (34) are fulfilled, V A
IR(rt ) vanishes. In this case, V A

L (r) becomes the
linear potential in Eq. (32).

We stress that the derivation of the Lagrangian Lcl is based on the one-loop calculation.
In addition, the constant sources KA and Kα are assumed. The mass mA in Eq. (21) was also
assumed to be constant below the cut-off �c and to vanish above �c. These quantities must
be determined. However, differently from the SU(2) case, there are many parameters in SU(3).
We skipped the determination in this paper, and studied the consequences of the Lagrangian
Lcl and the potential V A

L (r).
In the qq̄ case, the two conditions in Eq. (34) are satisfied, and the static potential Vqq̄(r)

in Eq. (37) is obtained. In the 3q case, if the �-ansatz holds, the potential V �
3q is given by

Eq. (38). However, since the second condition of Eq. (34) is not fulfilled, the infrared diver-
gence in Eq. (40) remains. Contrary to the �-ansatz, the Y-ansatz satisfies the two condi-
tions. The potential V Y

3qL in Eq. (41), which is free from the infrared divergence, is expected for
large r.

Using the color electric potential B̃A
μ and its dual potential BA

μ , the color electric field EA

and the magnetic field HA were investigated. Although they satisfy the two Maxwell equations
in Eq. (48), because of the mass mA, the remaining two equations are modified as Eqs. (50)
and (51). In the static case, Eq. (51) becomes −∇ × EA( j) = −m2

ABA. In the dual Ginzburg–
Landau model, which contains the monopole field, the equation −∇ × EA( j) = jmag has been
discussed. In our model, although there is no monopole field, the current −m2

ABA plays the role
of the magnetic current jmag.

It is expected that the color flux tube exists between color charges. The dual electric potential
BA in Eq. (63) produces the electric flux EA( j) in Eq. (62), and they satisfy Eq. (64). Namely,
without the monopole field, the flux tube BA leads to the magnetic current jmag = −m2

ABA.
The corresponding electric potential B̃A0 is presented in Eq. (61). The string part, Eq. (59), is
the origin of the flux tube in Eq. (62).

Comparing the SU(3) case with the SU(2) case in Ref. [3], there are some differences. For
example, as stated in Sect. 3, although the condensate of the diagonal component 〈A3μA3

μ〉
vanishes in SU(2), the condensates 〈AAμAA

μ〉 (A = 3, 8) exist in SU(3). Equation (18) shows
there are two different mass scales,

√
5m/2 and

√
3m/2, and the classical electric poten-

tials B̃3
μ and B̃8

μ have different masses, whereas the tachyonic mass term in SU(2) has one
scale, m.

Since we have not determined the parameters yet, it is difficult to study the differences be-
tween SU(2) and SU(3) concretely. In Ref. [25], the differences are discussed. One of the is-
sues is the type of the dual superconductivity. Investigating the electric flux, it was concluded
that the SU(3) theory is type-I, whereas the SU(2) theory is weak type-I or on the border be-
tween type-I and type-II. In Appendix E, assuming the phenomenological Lagrangian for the
order parameters Gα and GA, we consider the type of dual superconductivity in the present
model. Because of the condensate 〈A8μA8

μ〉 and the two mass scales
√

5m/2 and
√

3m/2,
the value of the Ginzburg–Landau parameter for SU(3) may become smaller than that for
SU(2).
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Appendix A. �QCD and α2

In the momentum region μ ≥ �QCD, as the effective potential V(ϕ) in Eq. (5) gives v = 0, we
consider the Wilsonian effective action

�[μ,�] =
∫

d4x

{
3∑

α=1

(
(g�εα · �ϕ)2

3α2g2
−
∫ �

μ

d4k
(2π )4

ln
[
(−k2)2 + (g�εα · �ϕ)2])}

=
∫

d4x

{
3∑

α=1

(
(g�εα · �ϕ)2

3α2g2
−
∫ �

μ

d4k
(2π )4

(g�εα · �ϕ)2

(−k2)2
+ · · ·

)}

=
∫

d4x

{
3∑

α=1

(
1

3α2g2
− 1

8π2
ln

�

μ

)
(g�εα · �ϕ)2 + · · ·

}
. (A1)

If ḡ and ᾱ2 represent the quantities at the scale μ, Eq. (A1) implies

1
ᾱ2ḡ2

= 1
α2g2

− 3
8π2

ln
�

μ
= − 3

8π2
ln

μ0

μ
, μ0 = � exp

(
− 8π2

3α2g2

)
. (A2)

From Eq. (A2), we obtain

μ
∂

∂μ
ᾱ2ḡ2 = − 3

8π2
(ᾱ2ḡ2)2. (A3)

Since ḡ satisfies

μ
∂

∂μ
ḡ = − β0

(4pi)2
ḡ3, β0 = 11

3
N (A4)

at the one-loop level, Eqs. (A3) and (A4) lead to

μ
∂

∂μ
ᾱ2 = ᾱ2ḡ2

8π2
(β0 − 3ᾱ2).

Namely, α2 = β0/3 is the ultraviolet fixed point [7,8], i.e.,

lim
μ→�

ᾱ2 = α2 = β0

3
.

Substituting this α2, we find μ0 = �exp ( − 8π2/β0g2) = �QCD [7,8].

Appendix B. Tachyonic gluon masses
B.1

〈
AA

μAB
ν

〉−1

We consider the diagrams in Fig. B1(a) in the limit p → 0, where p is the external momentum.
The ghost propagators in Eq. (8) and the interaction

∑
A=3,8

[
−gAAμ

3∑
α=1

εA
α

{
(∂μC̄α) )C−α − (∂μC̄−α )Cα

}]

in Eq. (9) give the integral

3∑
α=1

g2εA
α εB

α i
∫

d4k
(2π )4

{
kμkν

(−k2 + iε3
αv
)2

[k4 + (ε3
αv
)2

]2
+ (v → −v)

}
. (B1)
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Fig. B1. The diagrams that contribute to the tachyonic gluon masses.

Performing the Wick rotation and neglecting v-independent terms, we obtain

i
∫

d4k
(2π )4

{
kμ(−k2 + iηv)kν (−k2 + iξv)

[k4 + (ηv)2][k4 + (ξv)2]
+ (v → −v)

}

= 2i
∫

d4k
(2π )4

kμkν (k4 − ηξv2)
[k4 + (ηv)2][k4 + (ξv)2]

= − v
64π

gμν

η2 + ξ 2 + ηξ + |ηξ |
|η| + |ξ | . (B2)

If we apply this formula, we find that Eq. (B1) becomes

− g2v
32π

gμνε
A
α εB

α

∣∣ε3
α

∣∣.
Using the values of εA

α in Eq. (2), we obtain

−5
2

gμνm2 (A = B = 3), −3
2

gμνm2 (A = B = 8), m2 = g2v
64π

. (B3)

B.2 〈W α
μ W −α

ν 〉−1

The diagrams in Fig. B1(b), which come from the interaction

∑
A=3,8

[
g(∂μc̄A)

3∑
α=1

εA
α (W αμC−α − W −αμCα ) − g

3∑
α=1

εA
α

{
W αμ(∂μC̄−α ) − W −αμ(∂μC̄α )

}
cA

]
,

give the integral

∑
A=3,8

g2 (εA
α

)2
i
∫

d4k
(2π )4

⎧⎨
⎩kμkν (−k2)

(−k2 + iε3
αv
)

k4
[
k4 + (ε3

αv
)2] + (v → −v)

⎫⎬
⎭ = −

∑
A=3,8

g2v
64π

gμν

(
εA
α

)2 ∣∣ε3
α

∣∣.
Using the values of εA

α in Eq. (2), we obtain

−gμνm2 (α = 1), −1
2

gμνm2 (α = 2, 3). (B4)

In the same way, the interaction∑
(α,β,γ )

sgn(γ )
g√
2
εαβγ (∂μC̄α )CβW γμ
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in Eq. (9) produces the diagram in Fig. B1(c). Applying the formula in Eq. (B2), this diagram
gives

g2

2
i
∫

d4k
(2π )4

⎧⎪⎪⎨
⎪⎪⎩

kμkν

(
−k2 + iε3

βv
) (−k2 − iε3

γ v
)

[
k4 +

(
ε3
βv
)2
] [

k4 + (ε3
γ v
)2] + (v → −v)

⎫⎪⎪⎬
⎪⎪⎭

= − g2v
64π

gμν

(
ε3
β

)2
+ (ε3

γ

)2 − ε3
βε3

γ + ∣∣ε3
βε3

γ

∣∣∣∣ε3
β

∣∣+ ∣∣ε3
γ

∣∣ (β < γ , α 
= β, γ ). (B5)

From the values of εA
α in Eq. (2), we find that Eq. (B5) becomes

−1
4

gμνm2 (α = 1), −3
4

gμνm2 (α = 2, 3). (B6)

Thus, by summing Eqs. (B4) and (B6), we obtain

−5
4

gμνm2 (α = 1, 2, 3). (B7)

Appendix C. Example of the electric potential and its dual potential
In this appendix we present an example of the massless electric potential B̃A

μ and its dual po-
tential BA

μ for a color electric charge QA. The color electric current is jAμ = QAδ(x)δ(y)δ(z)gμ0,
and the electric potential

B̃Aμ = QA

4π

1
r

gμ0, r =
√

x2 + y2 + z2, (C1)

satisfies the equation of motion ∂μ(∂ ∧ B̃A)μν − jAν = 0.
The dual electric potential that corresponds to Eq. (C1) is

BAμ = QA

4π

z − r
rρ2

(0, −y, x, 0), ρ =
√

x2 + y2. (C2)

This field fulfills the equation of motion

∂μ(∂ ∧ BA)μν + εναμβ nα∂μ

n · ∂
jA
β = 0,

and gives the color electric field

EAi = −εi0 jk∂ jBA
k = QA

4π

xi

r3
+ δi

3QAδ(x)δ(y)θ (−z), (C3)

where θ (z) is the unit step function, and (∂2
x + ∂2

y ) ln ρ = 2πδ(x)δ(y) has been used.
From Eq. (C1), we get

(∂ ∧ B̃A)i0 = QA

4π

xi

r3
.

The string part in Eq. (C3) comes from �
Aμν
e in Eq. (25). To choose the electric string in the

negative z-direction, we use
1
∂z

δ(z) = −θ (−z). (C4)

Then, Eq. (C1) gives(
�A

e

)i0 = −δi
3

1
∂z

∂ j (∂ ∧ B̃A) j0 = δi
3QAδ(x)δ(y)θ (−z),

where ∇2(1/r) = −4πδ(r) has been used. The sum (∂ ∧ B̃A)i0 + (�A
e )i0 reproduces Eq. (C3).
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Appendix D. The potentials V A
Y (r) and V A

L (r)
D.1 V A

Y (r)
By subtracting r-independent terms, which contain ultraviolet divergence, V A

Y in Eq. (27) be-
comes ∫

d3q
(2π )3

QA
a QA

b

q2 + m2
A

eiq·r.

If the mass mA disappears above some scale �c, this potential can be written as∫ �c

0
dqW (q, m, r) +

∫ ∞

�c

dqW (q, 0, r) =
∫ ∞

0
dqW (q, 0, r)

+
∫ �c

0
dq {W (q, m, r) − W (q, 0, r)} .

The first term on the right-hand side gives the Coulomb potential, which contributes mainly in
the small-r region. When r becomes large, the second term weakens the effect of the first term.
After performing the integration, we obtain [16]

V A
Y (r) = QA

a QA
b

(
1

4πr
− m2

A

2π2

∫ �c

0
dq

sin qr
qr

1
q2 + m2

A

)
. (D1)

We note that this potential satisfies

lim
�c→∞

V A
Y (r) = QA

a QA
b

4π

e−mAr

r
. (D2)

In the usual approach [2,12–14], the cut-off is not taken into account, and V A
Y (r) becomes the

Yukawa potential, Eq. (D2).

D.2 V A
L (r)

When mA = 0, the potential V A
L (r) in Eq. (28) vanishes. So, differently from V A

Y (r), the mo-
mentum region q = |q| ≤ �c contributes to V A

L (r). Let us write r = (rn, rt ), and choose n as
rn = r · n ≥ 0. The vector rt satisfies rt · n = 0, and rt = |rt|. Similarly, we write q = (qn, qt ),
and use the spherical coordinates qn = qcos θ , qt1 = qsin θcos ϕ, qt2 = qsin θsin ϕ (q < �c, 0 ≤
θ ≤ π , 0 ≤ ϕ < 2π ), where qt1 is chosen to satisfy qt · rt = q sin θ cos ϕrt.

Now we consider the integral ∫
d3q

(2π )3

eiq·r

q2
n

(
q2 + m2

A

) (D3)

in V A
L . It becomes ∫ �c

0

dq
(2π )3

∫ π

0
dθ sin θ

∫ 2π

0
dϕ

eiqrn cos θeiqrt sin θ cos ϕ

cos2 θ
(
q2 + m2

A

) . (D4)

By changing the variable θ to u = cos θ , we get∫ π

0
dθ sin θ

eiqrn cos θeiqrt sin θ cos ϕ

cos2 θ
=
∫ 1

−1
du

eiqrnueiqrt
√

1−u2 cos ϕ

u2
,

which diverges at u = 0. If we choose the path C in Fig. D1, the integral∫
C

dz
eizqrneiqrt

√
1−z2 cos ϕ

z2
= 0,
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Fig. D1. The path C on the complex plane.

leading to

P
∫ 1

−1
du

eiqrnueiqrt
√

1−u2 cos ϕ

u2
= I�ε

+ I�1, I�ε
= −

∫
�ε

dz
eiqrnzeiqrt

√
1−z2 cos ϕ

z2
,

I�1 = −
∫

�1

dz
eiqrnzeiqrt

√
1−z2 cos ϕ

z2
, (D5)

where P means the Cauchy principal value. To calculate I�ε
we use the variable z = εeiφ, and

take the limit ε → +0. Then it becomes

I�ε
= lim

ε→+0

{
2
ε

− πqrn + O(ε)
}

eiqrt cos ϕ. (D6)

Similarly, by setting z = eiφ in I�1 , we find

I�1 = −i
∫ π

0
dφe−iφeiqrneiφ

eiqrt cos ϕ
√

1−e2iφ
. (D7)

We note that Eq. (D7) satisfies

∣∣I�1

∣∣ ≤ ∫ π

0
dφe−qrn sin φe−qrt cos ϕ

√
2 sin φ{sin(2φ−π )/4} ≤ πeqrt/2. (D8)

If we substitute Eqs. (D5), (D6), and (D7) into Eq. (D4), we find

∫
d3q

(2π )3

eiq·r

q2
n

(
q2 + m2

A

) = 1
2π2ε

H (mA, �c, rt ) − 1
4π

K0(mArt, �c)rn + I(mA, �c, rn, rt ),

I(mA, �c, rn, rt ) =
∫ �c

0

dq
(2π )3

1
q2 + m2

A

∫ 2π

0
dϕ I�1, (D9)

where, using the Bessel function J0(qrt), H(mA, �c, rt) and K0(mArt, �c) are defined by

H (mA, �c, rt ) =
∫ �c

0
dq

1
q2 + m2

A

J0(qrt ),

K0(mArt, �c) =
∫ �c

0
dq

q

q2 + m2
A

J0(qrt ),

J0(qrt ) = 1
2π

∫ 2π

0
dϕeiqrt cos ϕ. (D10)
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These functions satisfy

H (mA, �c, 0) = 1
mA

tan−1 �c

mA
,

lim
rt→+0

K0(mArt, �c) = 1
2

ln
(

�2
c + m2

A

m2
A

)
,

K0(mArt ) = lim
�c→∞

K0(mArt, �c), (D11)

where K0(mArt) is the modified Bessel function. The term I in Eq. (D9) has the properties

I(mA, �c, 0, 0) = − 1
2π2

1
mA

tan−1 �c

mA
, (D12)

|I(mA, �c, rn, rt )| ≤ 1
8π3

∫ �c

0
dq

1
q2 + m2

A

∫ 2π

0
dϕ
∣∣I�1

∣∣ ≤ 1
4π

∫ �c

0
dq

1
q2 + m2

A

eqrt/2

→ 1
4πmA

tan−1 �c

mA
(rt → 0). (D13)

Thus, using Eqs. (D9), (D11), and (D12), the potential V A
L in Eq. (28) becomes

V A
L (r) = V A

IR(rt ) − QA
a QA

b m2
A

4π
K0(mArt, �c)rn

+ m2
A

{
−
(
QA

a

)2 + (QA
b

)2
2

1
2π2mA

tan−1 �c

mA
+ QA

a QA
b I(mA, �c, rn, rt )

}
, (D14)

V A
IR(rt ) = m2

A

2π2ε

{(
QA

a

)2 + (QA
b

)2
2

1
mA

tan−1 �c

mA
+ QA

a QA
b H (mA, �c, rt )

}
. (D15)

We note that the first term has the infrared divergence 1/ε, and the second term leads to the
linear potential. When rt → 0, as Eq. (D13) shows, the last term does not depend on rn so
much. Therefore, in Sect. 4 we study the potential V A

L (r) based on the first and second terms in
Eq. (D14).

Here, we add a comment. Usually, the ultraviolet cut-off �c is introduced as |qt| < �c [3,12–
14]. The domain of integration is |qn| < ∞ and |qt| < �c. The infrared divergence and the linear
potential come from the region with |qn| = εn (εn � 1). In this article, as mA = 0 above �c, the
domain of integration is q = |q| < �c. The infrared divergence and the linear potential result
from cos θ = ε (ε � 1). Although the linear potential in these references coincides with that
in this article, the coefficient of the infrared divergent term is different. From qn = qcos θ , we
find that εn is related to ε as εn = qε. By using this relation, the infrared divergence in Ref. [3]
becomes Eq. (D15).

Appendix E. Type of dual superconductivity
In the Ginzburg–Landau (GL) theory of superconductivity, the space dependence of an order
parameter � is considered (see, e.g., Ref. [26]). To see the coherence length, the x-dependence
is introduced as �(x) = �f(x) with f(0) = 0 and limx → ∞f(x) = 1. From the phenomenological
Lagrangian for �(x), the function f(x) satisfies

ξ 2 d2 f (x)
dx2

= −
[
1 − { f (x)}2

]
f (x). (E1)
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The solution is f (x) = tanh x√
2ξ

, with ξ the coherence length. The penetration depth λ is deter-
mined by the mass of the magnetic field, and the parameter κ = λ/ξ is called the GL parameter.
When κ < 1/

√
2 (κ > 1/

√
2), the superconductor is called type-I (type-II).

In the following subsections, under some assumptions, we consider the coherence length and
the GL parameter in the present model.

E.1 SU(2) case
First, we consider the SU(2) case. In Refs. [2,3], we showed that the tachyonic mass term for the
off-diagonal component A±

μ = (A1
μ ± A2

μ)/
√

2 is −m2A+
μA−μ, and the interaction in −F 2

μν/4
contains the term −g2(A+

μA−μ)2/2. From these terms, we obtain the gauge field condensate
G = 〈A+

μA−μ〉(0) = −m2/g2 at the one-loop level. This condensate makes the classical U(1) field
bμ massive. As its mass term becomes m2bμbμ, the penetration depth of bμ is λ = 1/

√
2m.

Now we consider the spatial behavior of the condensate G. Since G has mass dimension 2, we
assume its x-dependence is expressed by G(x) = {√G f (x)

}2
with f(0) = 0 and limx → ∞f(x) =

1. As G(x) depends on x, we introduce the kinetic energy in the form
{√

G f ′(x)
}2

. Thus, using
this kinetic term, the above tachyonic mass term, and the interaction, we assume the following
phenomenological Lagrangian for G(x):

L2ph = η2G
{

df (x)
dx

}2

− m2G { f (x)}2 − g2

2

[
G { f (x)}2

]2
,

where η is a parameter to adjust the effect of the assumed kinetic term. This Lagrangian leads
to

η2 d2 f (x)
dx2

= −m2 f (x) − g2G { f (x)}3 = −m2
[
1 − { f (x)}2

]
f (x),

where G = −m2/g2 has been used. This equation implies ξ = η/m. From λ = 1/
√

2m and ξ =
η/m, we find κ = 1/

√
2η. If η � 1, it implies the border between type-I and type-II.

E.2 SU(3) case
As in the SU(2) case, we assume the x-dependent order parameters Gα(x) = {√Gα fα(x)

}2
(α

= 1, 2, 3) and GA(x) = {√GAφA(x)
}2

(A = 3, 8). Using the tachyonic mass terms in Eq.(11),
the interaction terms in Eq. (12), and the assumed kinetic terms with the same parameter η, we
consider the phenomenological Lagrangian

L3ph =
3∑

α=1

Gα

{
η2
(

dfα

dx

)2

− 5
4

m2 ( fα )2

]
+
∑

A=3,8

GA

{
η2
(

dφA

dx

)2

− m2
A

2
(φA)2

}

− g2

2

3∑
α=1

(Gα )2
{

( fα )2
}2

− g2

4

∑
α 
=β

GαGβ ( fα )2 ( fβ

)2

− g2

{
G3G1(φ3)2( f1)2 + 1

4

{
G3(φ3)2 + 3G8(φ8)2} 3∑

α=2

Gα ( fα )2

}
.

From L3ph, we obtain the equations for f2(x) and φ8(x):

η2 d2 f2

dx2
= −5m2

4
f2

− g2
[
G2( f2)2 + 1

2

{
G1( f1)2 + G3( f3)2}+ 1

4

{
G3(φ3)2 + 3G8(φ8)2}] f2, (E2)
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η2 d2φ8

dx2
= −3m2

4
φ8 − 3g2

4

{
G2( f2)2 + G3( f3)2}φ8. (E3)

If we assume the relation fα(x) � φA(x) (α = 1, 2, 3, A = 3, 8), these equations become

η2 d2 f2

dx2
� −5m2

4

{
1 − ( f2)2} f2, (E4)

η2 d2φ8

dx2
� −3m2

4

{
1 − (φ8)2}φ8, (E5)

where Eqs. (13) and (15) have been used. In the same way, we find that f1, f3, and φ3 also satisfy
Eq. (E4). Therefore, comparing these equations with Eq. (E1), we find

fα(x) � φ3(x) � tanh
x√
2ξ3

, ξ3 = 2η√
5m

, φ8(x) � tanh
x√
2ξ8

, ξ8 = 2η√
3m

. (E6)

Equation (E6) shows that we have to modify Eqs. (E4) and (E5) to satisfy the relation fα �
φ3 
= φ8. If we use this relation, Eqs. (E2) and (E3) become

η2 d2 f2

dx2
� −5m2

4

{
1 − ( f2)2} f2 − 3g2

4
G8 {(φ8)2 − ( f2)2} f2, (E7)

η2 d2φ8

dx2
� −3m2

4

{
1 − (φ8)2}φ8 − 3g2

2
G2 {( f2)2 − (φ8)2}φ8, (E8)

where Eqs. (13) and (15) have been used again. Now we use Eq. (16), and rewrite the second
terms on the right-hand side as

−3g2

4
G8 {(φ8)2 − ( f2)2} f2 = −m2

16
δ2(x)

{
1 − ( f2)2} f2, δ2(x) = ( f2)2 − (φ8)2

1 − ( f2)2
,

−3g2

2
G2 {( f2)2 − (φ8)2}φ8 = 3m2

4
δ8(x)

{
1 − (φ8)2}φ8, δ8(x) = ( f2)2 − (φ8)2

1 − (φ8)2
.

Then, Eqs. (E7) and (E8) become

η2 d2 f2

dx2
� −5m2

4

{
1 + δ2(x)

20

} {
1 − ( f2)2} f2, (E9)

η2 d2φ8

dx2
� −3m2

4
{1 − δ8(x)} {1 − (φ8)2}φ8. (E10)

We note that, as |f2| < 1, |φ8| < 1, and |f2| > |φ8|, δ2 and δ8 satisfy 0 < δa < 1 (a = 2, 8).
Since δ2 and δ8 depend on x, it is difficult to solve Eqs. (E9) and (E10). However, Eq. (E5)

becomes Eq. (E10) if we replace 3m2/4 with 3m2(1 − δ2)/4. Therefore, it is expected that the
coherence length ξmax obtained from Eq. (E10) is longer than ξ8 = 2η/

√
3m. From the masses

for the classical fields in Eq. (19), the corresponding penetration depth is λ8 = √
2/

√
3m. If we

can use ξmax and λ8, the GL parameter becomes κ = λ8/ξmax < λ8/ξ8 = 1/
√

2η. If η � 1, we
can expect type-I.
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