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Abstract It is quite believed that Universe has undergone
a smooth transition from a decelerated phase to its present
accelerated phase of expansion. There exists a wide con-
sensus, based on robust observational indicating transition
redshift ztr around the unity. However our analysis on com-
plete collection of reliable Hubble parameter H(z) data at
intermediate redshift 0.07 < z < 2.36, BAO, Pantheon data,
give some hints that the universe may be transit more than
one time from deceleration to acceleration phase in course of
its evolution. Although we are agree with the results claimed
by previous studies state the simplest cosmological models
such as �CDM and XCDM are consistent with Hubble
data, but we doubt that they will be the best. We show that
the chameleon cosmological model is more favored than the
simple models and very well fits with the full Hubble data.
Reconstructing the deceleration parameter based on best fit-
ted parameters of the model indicates a new dynamic for the
universe in which more than one transition occurs from decel-
eration to acceleration phase and the last transition occurs at
ztr � .43±0.04 which is close to that derived by the High-z
Supernovae Search (HZSNS) team, ztr = .43 ± 0.07 (Riess
et al. Astrophys. J. 659, 98–121, 2007).

1 Introduction

It is quite evident that the universe has undergone a smooth
transition from a decelerated phase to its present acceler-
ated phase of expansion [1,2]. Although there exists a wide
consensus, based on robust observational indicating tran-
sition redshift ztr around the unity [3–17]. However, until
very recently, this has not been possible to estimate the red-
shift of the deceleration–acceleration transition with high
precision because there has not been much high-quality
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data at high enough redshift above the transition redshift.
The authors of [14] compile and updated list of 38 mea-
surements of the Hubble parameter H(z) between redshifts
0.07 < z < 2.36 and use them to place constraints on model
parameters. They measured the redshift of the cosmologi-
cal deceleration–acceleration transition, ztr , from these H(z)
data. For H0 = 68 ± 2.8(73.24 ± 1.74) km s−1 Mpc−1, they
have derived ztr = 0.72 ± 0.05(0.84 ± 0.03). The author of
[3] have used list of 36 measurements of the Hubble param-
eter H(z) between redshifts 0.07 < z < 2.36 and find the
transition redshift varying over 0.33 < ztr < 1.

Previous studies have measured transition redshift from
these data using well known models such as �CDM, XCDM
and φCDM [3,14] and [17]. While the consistency of these
results are encouraging, our analysis show that chameleon
cosmological model is much more consistence with these
data. Reconstructing the redshift evolution of the decelera-
tion parameter q(z) in the best fitted model shows that there
is more than one transition from deceleration to acceleration
phase in course of the evolution of the universe. Interestingly,
our result show the last transition occurs at ztr � .43 ± 0.04
which is close to that derived by the High-z Supernovae
Search (HZSNS)team, ztr = .43 ± 0.07 [28] (Table 1).

We use Jacobin stability as a robustness tool to demon-
strate this behavior in phase space. More analysis show that
potential is responsible for the spiral behavior of the Uni-
verse. Our stability analyzing simultaneously best fitting the
model with observational data show that for the best-fitted
(α, β), the universe starts from unstable point in the past,
spirally moves towards a stable focus in future. This spiral
behavior of the universe in phase plane indicates that decel-
eration parameter has an oscillating behavior which tran-
sits from deceleration to acceleration phase for more than
one time. As it is believed dark energy dominates the cur-
rent cosmological energy budget and is responsible for the
currently accelerating cosmological expansion; Hence it is
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Table 1 Hubble parameter vs.
redshift data

z H(z) [km s−1 Mpc−1] σH [km s−1 Mpc−1] References

0.070 69 19.6 [22]

0.090 69 12 [18]

0.120 68.6 26.2 [22]

0.170 83 8 [18]

0.179 75 4 [20]

0.199 75 5 [20]

0.200 72.9 29.6 [22]

0.270 77 14 [18]

0.280 88.8 36.6 [22]

0.352 83 14 [20]

0.380 81.5 1.9 [27]

0.3802 83 13.5 [26]

0.400 95 17 [18]

0.4004 77 10.2 [26]

0.4247 87.1 11.2 [26]

0.440 82.6 7.8 [21]

0.4497 92.8 12.9 [26]

0.4783 80.9 9 [26]

0.480 97 62 [19]

0.510 90.4 1.9 [27]

0.593 104 13 [20]

0.600 87.9 6.1 [21]

0.610 97.3 2.1 [27]

0.680 92 8 [20]

0.730 97.3 7 [21]

0.781 105 12 [20]

0.875 125 17 [20]

0.880 90 40 [19]

0.900 117 23 [18]

1.037 154 20 [20]

1.300 168 17 [18]

1.363 160 33.6 [25]

1.430 177 18 [18]

1.530 140 14 [18]

1.750 202 40 [18]

1.965 186.5 50.4 [25]

2.340 222 7 [24]

speculated that the universe perhaps has experienced several
dark energy epoches in course of its evolution. This dynamic
behavior is profoundly different from the standard �CDM
evolution, and may alleviate some conflicts in reconciling the
idea of a dark energy-dominated universe with observable in
String/M-theory (see [29–32]).

The universe with two transition indicates that the accepted
scenario (inflation followed by radiation, dark matter and
dark energy dominated stages) in which only one transi-
tion is predicted, need to be improved by the (inflation fol-

lowed by radiation, dark matter, dark energy,dark mater and
dark energy) scenario in which the Universe already had two
accelerating stages.

The fact that most previous studies have obtained only one
transition redshift may be due to the fact that

1. Until very recently there has not been much high-quality
data at high enough redshift above the transition, hence
it has not been possible to estimate the redshift of the
deceleration–acceleration transition with high precision.
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Hence the recent high redshift data such as compilation of
38 measurements of the Hubble parameter H(z) between
redshifts 0.07 < z < 2.36 as well as the new “Pan-
theon” sample of [38], which include 1048 supernovae
spanning the redshift range 0.01 < z < 2.3 enable us
to estimate the redshift of the deceleration–acceleration
transition with high precision.

2. Most of the theoretical estimation of transition redshift
measurements have been done in�CDM model in which
the transition redshift is obtained as [14]

ztr =
(

2��

�m

) 1
3 − 1 (1)

Where, there is only one solution.The structure of the
paper is as follows. Section 2 introduces the chameleon
model, while Sect. 3 describes the stability analysis of
the model. Section 4 presents observational analysis and
results and we conclude the article in Sect. 5.

2 Chameleon field

Chameleon field has been suggested by [33–35]. The cosmo-
logical value of such a field evolves over Hubble time-scales
and could potentially cause the late-time acceleration of our
Universe [36]. The crucial feature that these models possess
are that the mass of the scalar field depends on the local
background matter density. The action of chameleon gravity
given by,

S =
∫ [

m2
pl

16π
R − 1

2
φμφμ + V (φ)

]
√−gdx4

+
∫

Lm(	(i), gi(μν))dx
4 (2)

where the matter fields 	(i) are coupled to scalar field φ

by the definition g(i)
μν = e

2βi φ
mpl gμν . The βi are dimension-

less coupling constants, one for each matter species. In the
following, we assume a single matter energy density com-
ponent ρm with coupling β. The variation of action (1) with
respect to the metric tensor components in a spatially flat
FRW cosmology yields the field equations,

3H2m2
pl = ρme

βφ
mpl + 1

2
φ̇2 + V (φ), (3)

(2Ḣ + 3H2)m2
pl = −γρme

βφ
mpl − 1

2
φ̇2 + V (φ), (4)

where in deriving the field equations we assumed a perfect
fluid for matter field with pm = γρm . Variation of the action
(1) with respect to scalar field φ provides the wave equation

for chameleon field as

φ̈ + 3H φ̇ = −dV

dφ
− β

mpl
ρme

βφ
mpl (5)

where prime indicated differentiation with respect to φ.

3 Stability

In this section, we study the structure of the dynamical system
via phase plane analysis. We assume that the universe is filled
with cold dark matter, i.e. γ = 0. We introduce the following
dimensionless variables,

�ch = ρme
βφ
mpl

3H2m2
p
,�φ = φ̇√

6Hmpl
,�V = V

3H2m2
pl

(6)

We consider the potential V (φ) = V0e
αφ
mpl where α is

dimensionless constants characterizing the slope of potential.
Then using Eqs. (3)–(5), the evolution equations of these
variables become,

�′
φ = −3�φ + 3

2
�φ�ch + 3�3

φ −
√

6

2
β�ch −

√
6

2
α�V

(7)

�′
ch = −3�ch + 3�2

ch + √
6β�φ�ch + 6�2

φ�ch (8)

�′
V = �V (

√
6α�φ + �ch + 6�2

ch) (9)

where prime from now on indicated differentiation with
respect to N = lna. The Friedmann constraint equation (3)
also becomes

�2
φ + �ch + �V = 1 (10)

In term of the new dynamical variable the deceleration
parameter will be

q = −
(

1 + Ḣ

H2

)
= −1 + 3�ch

2
+ 3�2

φ (11)

Using the constraint (10), the Eqs. (7)–(9) are converted
to

�
′
φ = −3�φ + 3

2
�φ�ch + 3�3

φ −
√

6

2
β�ch

−
√

6

2
α(1 − �2

φ − �ch), (12)

�
′
ch = −3�ch + 3�2

ch + √
6β�φ�ch + 6�2

φ�ch, (13)

It is more convenient to investigate the properties of the
dynamical system Eqs. (12) and (13) than Eqs. (7)–(9). We
obtain the fixed points (or critical points) and study the
stability of these points. Critical points are always exact
constant solutions in the context of autonomous dynami-
cal systems. These points are often the extreme points of
the orbits and therefore describe the asymptotic behavior. In
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Fig. 1 The constraints at the 68.3%, 95.4% and 99.7% confidence levels for parameters (α, β),from H(z)(CC), Pantheon, BAO and combination,
Pantheon +CC+ BAO data

the following we find fixed points by simultaneously solving
d�φ

dN = 0 and d�ch
dN = 0. Substituting linear perturbations

�′
φ → �′

φ + δ�′
φ , �′

ch → �′
ch + δ�′

ch about the critical
points into the two independent equations (12) and (13), to
the first orders in the perturbations, which yield two eigen-
values λi (i = 1, 2). Stability requires the real part of all
eigenvalues to be negative. Solving the above equations we
find five fixed points which some of them explicitly depend
on β and α, as illustrated in Table 2.

Critical points, A±, corresponding to two kinetic-dominated
solutions. These are equivalent to the stiff-fluid-dominated

evolution with a = t
1
3 , irrespective of the nature of the

potential. The kinetic-dominated solution for A+ has two
eigenvalues, λ+ = 3 + β

√
6, λ− = 6 + √

6α,

Critical point, B, corresponding to a potential-kinetic-
scaling solution. This solution exists for all kinds of poten-
tials, and has two eigenvalues depending on the slope of the
potential and coupling constant β: λ+ = −3+ α2

2 , λ− =
−βα + α2 − 3.

As, the solution is stable for{
β < −3+α2

α
, −√

6 < α < 0

β > −3+α2

α
, 0 < α <

√
6

which means that the potential-kinetic-dominated solution is
stable for a sufficiently flat potential (α2 < 6).

Critical point C , corresponds to the fluid-kinetic-scaling
solution. This solution depends on the coupling constant β

and exists for all potentials. It has two eigenvalues depending
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Table 2 Critical points
Points A+ A− B C D

�φ 1 − 1 −
√

6α
6 −

√
6

3 β
√

6
2β−2α

�ch 0 0 0 1 − 2β2

3
−βα+α2−3
(−β+α)2

on both α and β: λ+ = −3/2+β2 and λ− = 3+2β2 −2βα.
The solution is stable for⎧⎨
⎩

α <
3+2β2

2β
, −

√
3
2 < β < 0

α >
3+2β2

2β
, 0 < β <

√
3
2

Critical point, D corresponds to a fluid potential-kinetic-
scaling solution with eigenvalues

λ+ =
3
2β − 3

4α + √
A

−β + α
λ− =

3
2β − 3

4α − √
A

−β + α

where A = 180β2 − 108βα − 63α2 − 96β2α2 + 48β3α +
48βα3 + 216.

4 Analysis and results

In this section, we report the constraint results of cosmolog-
ical parameters for the model. The fitting results are listed in
Tables 3 and 4.
• Pantheon The use of type Ia supernovae (SNe) as standard
candles has been of critical importance to cosmology, leading
to the discovery of cosmic acceleration [37,39]. In this paper,
we use the new “Pantheon” sample of Scolnic et al. [38],
which adds 276 supernovae from the Pan-STARRS1 Medium
Deep Survey at 0.03 < z < 0.65 and various low-redshift
and HST samples to give a total of 1048 supernovae spanning
the redshift range 0.01 < z < 2.3

The luminosity distance dL can be calculated by

dL = (1 + z)
∫

dz

H(z)
(14)

In order to incorporate the Eq. (14) with the dynamical
system equations of (12)–(13), it can be rewritten in terms of
the following differential equations

ddL
dN

= −dL − e−2N

H
(15)

dH

dN
= H

(
Ḣ

H2

)
(16)

The distance modulus also can be obtained as μth(z) =
5 log(dL)+42.38. we can compute the χ2-statistics for each

case. Therefore, we proceed to define the following quanti-
ties:

χ2
Pantheon =

NPantheon∑
i

(μ(zi )obs − μ(zi )th)
2

σ(zi )2
obs, Pantheon

, (17)

where N is the number of data points, σi is the uncertainty
associated with each measurement.
• Baryon acoustic oscillations BAO data
We use the BAO measurements from 6dFGS at z = 0.106
[50], SDSS DR7 at z = 0.15 [51], BOSS DR12 at z =
0.38, 0.51 and 0.61 [52], and the joint constraints from
eBOSS DR14 Ly-a autocorrelation at z = 2.34 [53] and
cross-correlation at z = 2.35 [54] While acoustic oscillations
were already incorporated in early theoretical calculations of
CMB anisotropies [43]. interest in using the BAO feature as
a “standard ruler” in galaxy clustering grew after the dis-
covery of cosmic acceleration [44–46]. The physics of BAO
and contemporary methods of BAO analysis are reviewed at
length in Ch. 4 of [47].

In brief, pressure waves in the pre-recombination universe
imprint a characteristic scale on late-time matter clustering
at the radius of the sound horizon,

rd =
∫ ∞

zd

cs(z)

H(z)
dz, (18)

evaluated at the drag epoch zd , shortly after recombination,
when photons and baryons decouple (see [48] for more pre-
cise discussion). This scale appears as a localized peak in
the correlation function or a damped series of oscillations
in the power spectrum. Assuming standard matter and radi-
ation content, the Planck 2015 measurements of the matter
and baryon density determine the sound horizon to 0.2%.
An anisotropic BAO analysis that measures the BAO feature
in the line-of-sight and transverse directions can separately
measure H(z) and the comoving angular diameter distance
DM (z), which is related to the physical angular diameter dis-
tance by DM (z) = (1 + z)DA(z), [49] Adjustments in cos-
mological parameters or changes to the pre-recombination
energy density (e.g., from extra relativistic species) can alter
rd , so BAO measurements really constrain the combinations
DM (z)/rd , H(z)rd . An angle-averaged galaxy BAO mea-
surement constrains a combination that is approximately

DV (z) =
[
czD2

M (z)/H(z)
]1/3

. (19)
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Table 3 Mean values of free parameters of chameleon model with 1σ error bar for different data

Data H0 α β �ch �φ̇

CC 68.6 ± 1.7 −4.793 ± 0.15 6.92+1.1
−0.8 0.27+0.04

−0.05 0.405+0.025
−0.035

Pantheon 69.7 ± 1.7 −4.793 ± 0.15 6.92+1.1
−0.8 0.23+0.04

−0.05 0.305+0.025
−0.035

BAO 70 ± 1.7 −4.1+2
−4 23.513.1

13 0.14+0.04
−0.05 0.405+0.025

−0.035

CC+Pantheon +BAO 69.1 ± 1.7 −4.95 ± 0.15 6.1+0.4
−0.4 0.275+0.04

−0.05 0.405+0.025
−0.035

Table 4 Mean values of free parameters of various models with 1σ error bar for 33 Hubble data

Model H0 �m0 �� wX α β �ch �φ̇ χ2
min BIC AIC

� CDM 70.15 ± 3 0.26 ± 0.04 0.74 ± 0.04 – – – – – 16.24 26.74 22.24

X CDM 66.2 ± 6 0.26 ± 0.04 – −0.74 ± 0.4 – – – – 15.4 25.9 21.4

Chameleon (CC) 68.6 ± 1.7 – – – −4.793 ± 0.15 6.92+1.1
−0.8 0.27+0.04

−0.05 0.405+0.025
−0.035 11.15 28.65 21.15

• CC We use the compilation of 33 H(z) reliable data points,
31 data from Table 2 of [17] and two high redshift data from
table I of [3] as reproduced here in Table 1 to constrain the
model parameters under consideration by using the Markov
Chain Monte Carlo method by minimizing χ2

H ,

χ2
H (p) =

N∑
i=1

[H th(zi ; p) − Hobs(zi )]2

σ 2
H,i

, (20)

We also used the Bayes Information Criteria

BIC = χ2
min + klnN (21)

and the Akaike Information Criteria

AIC = χ2
min + 2k (22)

In these equations χ2
min is the minimum value of χ2, k

is the number of parameters of the given model, and N is
the number of data points. BIC and AIC provide means to
compare models with different numbers of parameters; they
penalize models with a higher k in favor of those with a lower
k , in effect enforcing Occam’s Razor in the model selection
process.

In order to obtain observational constraints on parameter
of the model and initial conditions, we perform a Monte Carlo
fitting using supernova data, involving the most recent H(z)
data data set. The best fitted values for parameters (α, β) and
initial conditions (�ch(0),�φ̇(0)) for different data set have
been listed in Table 3. For example for CC data , we find the
best value for parameters (α, β) as (α = −4.793, β = 6.92).
Figure 1 shows the confidence level for these parameters.
We find the best fitted for initial conditions as (�ch(0) =
0.275,�φ̇(0) = 0.4). We also performed the analysis for �

CDM and XCDM models

Our results are summarized in Tables 3, 4. As can be
seen from these models, chameleon model has the lowest
χ2
min and AIC as χ2

min = 11.15 and AIC = 21.15. For
the best fitted parameters (α, β), the nature of the critical
pints of system are determined. For example for best fit-
ted values of CC data, the eigenvalues for A± are (λ+ =
3 ± 6.92

√
6, λ− = 6 ∓ 4.793

√
6) which indicates that both

of them are saddle points. The eigenvalues for B and C are
(λ+ = 8.5, λ− = 53.1) and (λ+ = 165.1, λ− = 46.4)

respectively which both are unstable points. The eigenvalues
for D is (λ+ = −1.1 + 6.9I, λ− = −1.1 − 6.9I ) which
is stable focus. The phase space around critical point D for
best fitted parameters (α, β) have been shown in Fig. 2. The
best trajectory which is determined by the best fitted param-
eters and best fitted initial conditions have been shown in
top panel of Fig. 2. Since the elements of the eigenvalue are
imaginary with negative real parts, the nature of the critical
point is stable focus and the trajectories have spiral behavior
around it. Note that behavior of the system for the best fitted
parameters of all data set are the same. Figure 3 shows the
evolution of deceleration parameter for best fitted , +1σ and
−1σ of best fitted parameters for CC data and Fig. 4 show
the evolution of the deceleration parameter against redshift
for the best fitted parameters and initial conditions for differ-
ent data set. It shows that the model allows transition from a
decelerating phase (matter dominated era) to an accelerating
phase (dark energy epoch) for more than one time.

From stability analysis in the previous section, we found
that with some parameters in the model, the universe
approaches stable points or attractors in its journey. In partic-
ular, Figs. 2, 3 and 4 show that by perturbing the dynamical
variables in the model, the universe starts from an unstable
phase in the past, continue its journey to reach an stable phase
in the far future while currently is in an accelerating phase.
Figures 3, 4 show the reconstructed parameter q as for best
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Fig. 2 The behavior of the dynamical system in the �ch, �φ phase
plane for best fitted α = −4.793 and β = 6.92. Top panel shows the best
trajectory of the phase space for both best fitted parameters α = −4.793
and β = 6.92 and initial conditions (�ch(0) = 0.275, �φ̇(0) = 0.4)

Fig. 3 The plot of deceleration parameters for the best-fitted values of
(α, β),(α = −4.793, β = 6.92) and initial conditions

Fig. 4 The plot of deceleration parameters q for the best-fitted values
of parameters of (α, β) using different dataset

Fig. 5 The plot of parameters H for the best-fitted, upper line with
+1σ and a lower line with −1σ values of (α, β) and initial conditions
in chameleon model and redshift range 0.07 < z < 2.36

Fig. 6 The plot of parameters H for the best-fitted parameters and
initial conditions in chameleon model for different data set

123
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Fig. 7 The Histogram of parameters α, β and χ2
min for Bootstrap and

original sample

fitted parameters (α, β) and initial condition for different data
set. As can be seen from Figs. 3, 4, the deceleration parameter
q has an oscillating behavior which transits from decelera-
tion to acceleration phase for more than one time. Figures 5,
6 show the plot of H(z) for best fitted of parameters (α, β)
using different data set.

5 Bootstrap procedure

Bootstrapping methods are a numerical approach to gen-
erating confidence intervals that use either restamped data
or simulated data to estimate the sampling distribution of
the maximum likelihood parameter estimates. In particular,
bootstrapping can, in principle, generate an estimate of both

Fig. 8 The plot of H(z) and q(z) for Bootstrap sample

the bias and standard error for any statistical parameter of
interest. Bootstrapping involves drawing a series of random
samples from the original sample – with replacement – a
very large number of times. The statistic or relationship of
interest is then calculated for each of the bootstrap samples.
The resulting distribution of the calculated values then pro-
vides an estimate of the sampling distribution of the statistic
or relationship of interest.

We also use bootstrap procedure to test the validation of
our analysis. In this paper we use the Bootstrap method with
number of samples (Nb) and number of data (nb). Note that
the number of H(z) data are 32. However we can chose ran-
dom samples with more or less than 32 data. Here we have
generated (Nb) = 800 sample (nb = 32) data randomly
from the original sample (32H(z)data) and performed χ2

analysis for each sample such as what we performed for orig-
inal sample. The histogram for important parameter of the
model (α, β) have been plot and compared with the result
with original sample. For original data (32 H(z) data), we
have found the best values as α = −4.695,β = 7.52 with
χ2
min = 11.106.

For bootstrap sample, the most probability is for α = −4.7
and β = 9 and χ2

min = 11.11 which is close to our result.
Figures 7, 8 show, the plots of H(z) and q(z) for all bootstrap
sample. The plots indicates that the bootstrap are consistence
with our results.
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6 Conclusion

We have implemented the last list of 33 measurements of the
Hubble parameter H(z) in redshifts 0.7 < z < 2.36 [17],
Pantheon, BAO and combination of the data to examine tran-
sition redshift in chameleon cosmology. While the transition
redshift using simple models �CDM ,XCDM ,ωCDM and
φCDM model very well fits with these Hubble data, how-
ever more analysis show that more favorite than these sim-
ple models, chameleon cosmology is consistent with these
data. In this paper, we have analyzed chameleon cosmol-

ogy in presence of an exponential potential V = V0e
αφ
mpl .

The two parameters (α, β) which are important in chameleon
cosmology play also important role in dynamic of the uni-
verse and its stability. In order to find the best dynamic for
the universe based on the recent H(z) data, we have best
fitted these two parameters using χ2

min method. We have
found that the best values of (α, β) and initial condition as
(α = −4.793, β = 6.92) and (�ch(0) = 0.275,�φ̇(0) =
0.4), with χ2

min = 11.27. Visualization of dynamic of the
chameleon model in phase space using Jacobian stability
shows that for the best values of (α, β) and initial conditions
the chameleon cosmology has attractor behavior around an
critical point with nature of stable focus . Interestingly this
behavior is equivalent to oscillating behavior of deceleration
parameter as shown in Fig. 4. In spite of our expectation that
the universe must transits from deceleration to acceleration
only one time, the best fitted chameleon cosmology predicts
an oscillating behavior for the dynamic of the universe with
more than one transition from deceleration to acceleration
phase. The question which may arises is that is this behavior
related to chameleon model or it is intrinsic property of the
universe. Note that although this behavior has been derived
from chameleon cosmology, however, distribution of H(z)
data in H − z plane (Figs. 5, 6), hints that this behavior
is intrinsic property of the universe and a model such as
chameleon can interpret it well. The analysis showed that
the results of Pantheon, BAO and combination of the data
are also consistence with the result of CC data. By looking
at the distribution of H(z) data one can deduct that based on
the slope of the distribution, the H(z) data can be classified
to different slices as 0 < z < 0.5, 0.5 < z < 1, 1 < z < 2
and the two last H(z) data. These slices have different slope.
Hence the curve which passes through these four slices in the
best way possible, is the best trajectory for H(z). It seems
that this condition could not be satisfied by curves which are
monotonically increasing functions of z. Because by looking
at the distribution of the data, one can see that while some data
located in larger redshift, they have lower value of Hubble
parameter and the data approximately located on the way to a
spiral path. The best fitted of three different models have the
same behavior for redshift 0 < z < 0.5 (see Fig. 5), but while

� CDM and XCDM have approximately the same behavior
for 0.07 < z < 2.36, from redshift z = 0.5, the chameleon
model separates its path from the other two models and in the
end of the data where the two high z data located, it comes
to the other two models again. It is important to note that
both �CDM and XCDM models are monotonically increas-
ing function of z. In contrast, the trajectory of H(z) for best
fitted chameleon model has the spiral behavior and it can sat-
isfy this condition. In other word the spiral behavior is more
than monotonically increasing function of z intimate with
the Hubble data. In particular it seems that at first the data
between 1 < z < 2 pull the trajectory of H(z) downward and
deviate it from monotonically increasing form then the two
last data upward it again. Hence the curve breaks slowly two
times. In addition to chameleon model, we have examined
the Brans Dick theory by these data, the same results have
been obtained for Brans Dick theory. Note that the alignment
between chameleon model and Brans Dick theory may be
not surprising, because under appropriate conformal trans-
formation, it is possible to mapping Brans -Dick theory to
chameleon gravity .

Data Availability Statement This manuscript has no associated data
or the data will not be deposited. [Authors’ comment: The manuscript
has no associate data, however in our analysis we have used CC,BAO
and Pantheon data which the source of the data have been cited in section
4.]
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