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Abstract. Two-point one-loop fermionic amplitudes modified by a constant homoge-
neous magnetic field are studied. In addition to the amplitudes resulted after an insertion
of scalar, pseudoscalar, vector and axial-vector fermionic currents, we calculate similar
amplitudes with the tensor and (pseudo)scalar vertices. The crossed-field limit of these
amplitudes is presented. The tensor current is a fermionic part of the Pauli Lagrangian
relevant for the electromagnetic interaction of fermions through the anomalous magnetic
moment and its contribution to the photon polarization operator is briefly discussed.

1 Introduction

The general case of the two-point one-loop fermionic amplitudes modified by a constant homogeneous
magnetic field was studied in Ref. [1]. The Lagrangian density of a local fermion interaction can be
written in the form [1, 2]:

Lint(x) =
[
f̄ (x)ΓA f (x)

]
JA(x) ≡ jA(x) JA(x), (1)

where f (x) is the quantum fermion field, ΓA is any of the γ-matrices from the standard set
{1, γ5, γµ, γµγ5, σµν} [3], and JA(x) is a generalized electrically neutral current which can be, for
example, a photon field, neutrino current, derivative of the axion field and etc. [the corresponding
coupling constants are included into JA(x)]. After the generalized currents are removed from a two-
point one-loop amplitude, it is reduced to a correlator of two fermionic currents (1) which can be
written as follows [1, 2]:

ΠAB =

∫
d4X e−i(qX) Sp {S F(−X) ΓA S F(X) ΓB} , (2)

where qµ is the four-momentum carried by the generalized current and S F(X) is the Lorentz-invariant
part of an exact fermion propagator calculated in an external field background [4]. We assume the con-
stant homogeneous magnetic field configuration for the external field. Among the existing represen-
tations of S F(X) in this field, we accept the so-called Fock-Schwinger one [4, 5] in which the fermion
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propagator has an explicitly Lorentz-covariant form. Correlations, being under an influence of the
magnetic field, among the scalar, pseudoscalar, vector and axial-vector currents in the Fock-Schwinger
formalism were already studied [1, 2] but correlators with the tensor current jµν(x) ≡

[
f̄ (x)σµν f (x)

]
and other currents jA(x) were not considered in this approach, except the pseudoscalar-tensor correla-
tor calculated by us earlier [6].

In this paper, we present the propagator of a charged fermion in the constant homogeneous mag-
netic field in the Fock-Schwinger representation, show some selected results for the two-point corre-
lation functions, find their crossed-field limits, and conclude with a discussion of an application of the
amplitudes considered.

2 Propagator in Constant Homogeneous Magnetic Field

The general form of the charged fermion propagator in the Fock-Schwinger representation is known
well [4, 5]:

GF(x, y) = eiΩ(x,y) S F(x − y), (3)

where Ω(x, y) is the Lorentz non-invariant phase. In the two-point one-loop amplitude, the phase
factors of the two propagators cancel each other: Ω(x, y)+Ω(y, x) = 0, and the Lorentz-invariant parts
of the fermion propagators are left only [see Eq. (2)].

Let us consider a pure constant homogeneous magnetic field, B = (0, 0, B). The corresponding
four-potential can be written in the exactly Lorentz-covariant form, Aµ(x) = −Fµνxν/2. Minkowski
space filled with the constant homogeneous magnetic field is divided into two subspaces: the Eu-
clidean one with the metric tensor Λµν = (ϕϕ)µν, which is nothing else but the plane orthogonal to the
field direction, and pseudo-Euclidean one with the metric tensor Λ̃µν = (ϕ̃ϕ̃)µν. The metric tensor of
Minkowski space is the difference of the subspaces’ metrics, gµν = Λ̃µν −Λµν. In each subspace there
is also the Levi-Civita symbol: ϕµν and ϕ̃µν, respectively. They are the dimensionless tensor of the
external magnetic field ϕµν = Fµν/B and its dual ϕ̃µν = εµνρσϕ

ρσ/2, where εµνρσ is the antisymmetric
Levi-Civita symbol of the Minkowski space with the definition ε0123 = 1 [3].

The Lorentz-invariant part of the fermion propagator is as follows [2]:

S F(X) = −
iβ

2(4π)2

∞∫
0

ds
s2 exp

(
−i

[
m2

f s +
1
4s

(XΛ̃X) −
β cot(βs)

4
(XΛX)

])

×

{
(XΛ̃γ) cot(βs) − i(Xϕ̃γ)γ5 −

βs

sin2(βs)
(XΛγ) + m f s

[
2 cot(βs) + (γϕγ)

] }
, (4)

where β = eB|Q f |.

3 Orthogonal Basis in Magnetic Field Background

A correlator with a rank different from zero is convenient to decompose in some set of four indepen-
dent vectors. In the magnetic field background, such an orthogonal basis naturally exists [2]:

b(1)
µ = (qϕ)µ, b(2)

µ = (qϕ̃)µ b(3)
µ = q2 (Λq)µ − (qΛq) qµ, b(4)

µ = qµ, (5)

and an arbitrary four-vector aµ can be presented as follows:

aµ =

4∑
i=1

ai
b(i)
µ

(b(i)b(i))
, ai = aµb(i)

µ = (ab(i)). (6)
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An arbitrary second-rank tensor Tµν can be decomposed similarly:

Tµν =

4∑
i, j=1

Ti j
b(i)
µ b( j)

ν

(b(i)b(i)) (b( j)b( j))
, Ti j = b(i)

µ T µνb( j)
ν = (b(i)Tb( j)). (7)

This procedure can be easily extended to higher rank tensors.

4 Correlators of Tensor Current in Magnetic Field

The correlators containing the tensor current in combination with a fermionic current of other Lorentz
structure are the second-, third- and fourth-rank tensors. If we restrict ourselves by the (pseudo)scalar-
tensor correlator, the decomposition (7) for the second-rank tensor should be used. From six non-
trivial coefficients in the basis decomposition, only three are independent. It is convenient to use the
following double-integral representation for the coefficients in the decomposition:

Πi j(q2, q2
⊥, β) =

1
16π2

∞∫
0

dt
t

1∫
0

du Yi j(q2, q2
⊥, β; t, u) × (8)

× exp

−i

m2
f t −

q2
‖

4
t (1 − u2) + q2

⊥

cos(βtu) − cos(βt)
2β sin(βt)


 ,

where the integration variables t = s1 + s2 and u = (s1 − s2)/(s1 + s2) are the combinations of two
proper-time variables s1 and s2 entering the propagators. Note also the relation among the momenta
squared: q2

‖
= q2 + q2

⊥.
The integrands of the scalar-tensor correlator:

Y (ST)
13 (q2, q2

⊥, β; t, u) =
1
2
β q2
‖ q2
⊥

{
4
[
m2

f t − i
]

+ q2t
(
1 − u2

)
+ q2

⊥t R(β; t, u)
}
, (9)

Y (ST)
14 (q2, q2

⊥, β; t, u) = −
1
2
β q2
⊥

{
4
[
m2

f t − i
]

+ q2
‖ t R(β; t, u)

}
, (10)

Y (ST)
34 (q2, q2

⊥, β; t, u) = −βt q2 q2
‖ q2
⊥

sin(βtu)
sin(βt)

[
cot(βt) − u cot(βtu)

]
, (11)

and pseudoscalar-tensor one1:

Y (PT)
12 (q2, q2

⊥, β; t, u) = −i βt q2
‖ q2
⊥

sin(βtu)
sin(βt)

[
cot(βt) − u cot(βtu)

]
, (12)

Y (PT)
23 (q2, q2

⊥, β; t, u) =
i
2
β q2
‖ q2
⊥

{
4
[
m2

f t + i
]
− q2

‖ t R(β; t, u)
}
, (13)

Y (PT)
24 (q2, q2

⊥, β; t, u) = −
i
2
β q2
‖

{
4
[
m2

f t + i
]
− q2t

(
1 − u2

)
− q2

⊥t R(β; t, u)
}
. (14)

To simplify the presentation, the auxiliary function is introduced:

R(β; t, u) = 1 − u2 +
2

sin2(βt)
[
cos(βt) cos(βtu) + u sin(βt) sin(βtu) − 1

]
. (15)

1These integrands correct the ones presented in [6]
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5 Correlators in the Crossed-Field Limit

Correlators in an electromagnetic crossed field can be obtained from the ones calculated in the mag-
netic field after the pure field parameter β2

F = e2Q2
f Fµν Fµν/4 is neglected. Quantities calculated in the

crossed field are completely determined by the dynamical parameter χ2
f = e2Q2

f (qFFq) = β2 q2
⊥. The

crossed-field limit is valid for an ultrarelativistic particle moving in the direction transverse to the field
strength in a relatively weak magnetic field. As basic vectors, it is convenient to use the following
normalized orthogonal set:

b(1)
µ =

eQ f

χ f
(qF)µ, b(2)

µ =
eQ f

χ f
(qF̃)µ, b(3)

µ =
e2Q2

f

χ2
f

√
q2

[
q2 (FFq)µ − (qFFq) qµ

]
, b(4)

µ =
qµ√
q2
.

(16)
The coefficients in the tensor decomposition can be presented as double integrals:

Πi j(q2, χ f ) =
1

16π2

∞∫
0

dt
t

1∫
0

du Yi j(q2, χ f ; t, u) exp
{
−i

[(
m2

f −
q2

4
(1 − u2)

)
t +

1
48

χ2
f (1 − u2)2 m6

f t
3
]}
.

(17)
The integrands of the scalar-tensor correlator in the crossed-field Limit are as follows:

Y (ST)
13 =

χ f

2
√

q2

{
4
[
m2

f t − i
]

+ q2t
(
1 − u2

)
−

1
4
χ2

f t
3
(
1 − u2

)2
}
, (18)

Y (ST)
14 =

χ f

2
√

q2

{
4
[
m2

f t − i
]
−

1
4
χ2

f t
3
(
1 − u2

)2
}
, (19)

Y (ST)
34 =

1
3
χ2

f t2 u
(
1 − u2

)
, (20)

and of the pseudoscalar-tensor one are similar:

Y (PT)
12 =

i
3
χ2

f t2 u
(
1 − u2

)
, (21)

Y (PT)
23 =

iχ f

2
√

q2

{
4
[
m2

f t + i
]

+
1
4
χ2

f t
3
(
1 − u2

)2
}
, (22)

Y (PT)
24 =

iχ f

2
√

q2

{
4
[
m2

f t + i
]

+ q2t
(
1 − u2

)
+

1
4
χ2

f t
3
(
1 − u2

)2
}
. (23)

In getting this limit, the expansion in β of the function (15) is taken into account:

R(β; t, u) ' −
1
4
β2t2

(
1 − u2

)2
−

1
72

β4t4
(
1 − u2

)2 (
3 − u2

)
− · · · . (24)

6 Applications of Correlators

Searches for physics beyond the Standard Model is the main stream of modern theoretical and exper-
imental physics [7]. Models beyond the Standard Model can effectively modify the QED Lagrangian
with an extra term called the Pauli Lagrangian density [8–10]:

LAMM(x) =
µ f

4

[
f̄ (x)σµν f (x)

]
Fµν(x), (25)
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where µ f is the anomalous magnetic moment (AMM) of the fermion. The existence of (25) in the ef-
fective QED Lagrangian should also change the photon polarization operator which is nothing else but
the correlator of two vector currents. If one makes a reasonable assumption about a smallness of µ f ,
the contribution linear in the fermion AMM, which is the vector-tensor correlator, is of importance.
Its influence on the photon properties is under study and will be presented elsewhere [11].

The strong-magnetic-field formalism suggested by Loskutov and Skobelev [12, 13] allows to per-
form calculations very similar to the conventional approach developed for vacuum [3]. The disad-
vantage of this formalism is divergences which are appearing in two-point one-loop amplitudes. The
most natural way to remove divergences is to consider the strong-field limit of the amplitudes calcu-
lated in the Fock-Schwinger formalism as it was demonstrated for the axion self-energy calculated
in the magnetic field [14]. It is of interest to find the strong-field limit of all the two-point one-loop
amplitudes and compare with ones obtained within the strong-magnetic-field formalism [12, 13].

7 Conclusions

Two-point one-loop fermionic amplitudes with the (pseudo)scalar and tensor vertices are considered.
The influence of a constant homogeneous external magnetic field is taken into account exactly by
using the exact propagators of a charged fermion in the Fock-Schwinger representation. The limit of
the external electromagnetic crossed field is also obtained for the amplitudes considered.
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