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Abstract. Two-point one-loop fermionic amplitudes modified by a constant homoge-
neous magnetic field are studied. In addition to the amplitudes resulted after an insertion
of scalar, pseudoscalar, vector and axial-vector fermionic currents, we calculate similar
amplitudes with the tensor and (pseudo)scalar vertices. The crossed-field limit of these
amplitudes is presented. The tensor current is a fermionic part of the Pauli Lagrangian
relevant for the electromagnetic interaction of fermions through the anomalous magnetic
moment and its contribution to the photon polarization operator is briefly discussed.

1 Introduction

The general case of the two-point one-loop fermionic amplitudes modified by a constant homogeneous
magnetic field was studied in Ref. [1]. The Lagrangian density of a local fermion interaction can be
written in the form [1, 2]:

Lin() = [FET F0)] Ja(0) = jA() Ja(x), e))

where f(x) is the quantum fermion field, Iy is any of the y-matrices from the standard set
{1, ¥s, Yu» Yu¥s5. 0w} [3], and J4(x) is a generalized electrically neutral current which can be, for
example, a photon field, neutrino current, derivative of the axion field and etc. [the corresponding
coupling constants are included into J4(x)]. After the generalized currents are removed from a two-
point one-loop amplitude, it is reduced to a correlator of two fermionic currents (1) which can be
written as follows [1, 2]:

My = f d*X 00 Sp (S 5(~X) T4 SE(X) Ty} &)

where g is the four-momentum carried by the generalized current and S g(X) is the Lorentz-invariant
part of an exact fermion propagator calculated in an external field background [4]. We assume the con-
stant homogeneous magnetic field configuration for the external field. Among the existing represen-
tations of S r(X) in this field, we accept the so-called Fock-Schwinger one [4, 5] in which the fermion
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propagator has an explicitly Lorentz-covariant form. Correlations, being under an influence of the
magnetic field, among the scalar, pseudoscalar, vector and axial-vector currents in the Fock-Schwinger
formalism were already studied [1, 2] but correlators with the tensor current j,,(x) = [ fi (X)ouy f (x)]
and other currents j,(x) were not considered in this approach, except the pseudoscalar-tensor correla-
tor calculated by us earlier [6].

In this paper, we present the propagator of a charged fermion in the constant homogeneous mag-
netic field in the Fock-Schwinger representation, show some selected results for the two-point corre-
lation functions, find their crossed-field limits, and conclude with a discussion of an application of the
amplitudes considered.

2 Propagator in Constant Homogeneous Magnetic Field

The general form of the charged fermion propagator in the Fock-Schwinger representation is known
well [4, 5]: ‘
Gr(x,y) = Y Sp(x — y), 3

where Q(x,y) is the Lorentz non-invariant phase. In the two-point one-loop amplitude, the phase
factors of the two propagators cancel each other: Q(x, y) + Q(y, x) = 0, and the Lorentz-invariant parts
of the fermion propagators are left only [see Eq. (2)].

Let us consider a pure constant homogeneous magnetic field, B = (0,0, B). The corresponding
four-potential can be written in the exactly Lorentz-covariant form, A,(x) = —F,x"/2. Minkowski
space filled with the constant homogeneous magnetic field is divided into two subspaces: the Eu-
clidean one with the metric tensor A, = (¢¢),,, Which is nothing else but the plane orthogonal to the
field direction, and pseudo-Euclidean one with the metric tensor /~\#V = (§®),y. The metric tensor of
Minkowski space is the difference of the subspaces’ metrics, g, = IN\W — Ay In each subspace there
is also the Levi-Civita symbol: ¢, and @,,, respectively. They are the dimensionless tensor of the
external magnetic field ¢,, = F,,/B and its dual @,, = &,,,-¢"7 /2, where g, is the antisymmetric
Levi-Civita symbol of the Minkowski space with the definition £€2'2% = 1 [3].

The Lorentz-invariant part of the fermion propagator is as follows [2]:

B [ ds _ 1~ Bcot(Bs)
Sr(X) = —2(4ﬂ)2 f? exp (—l [m?s + T (XAX) - 1 (XAX)D
0
x (R cots) = i0Gys - —5o— XAy +mys [2e0Bs) + Gonl | (@)
sin“(8s)

where § = eB|Qy|.

3 Orthogonal Basis in Magnetic Field Background

A correlator with a rank different from zero is convenient to decompose in some set of four indepen-
dent vectors. In the magnetic field background, such an orthogonal basis naturally exists [2]:

b =@, bP =@y b = (ADu— gAY . b =g Q)

and an arbitrary four-vector a,, can be presented as follows:

4 (@)
b ) )
— . [l Ty X () R ()
a, = él a; D050’ a;, =d by = (ab"). (6)
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An arbitrary second-rank tensor 7, can be decomposed similarly:

4 (OYX0)]
T b, by

- N = PO D) — D)
w = Z:l Tij (BOLDY (BDB))’ Tij = b, 107" = (GTTH). @
1,]=

This procedure can be easily extended to higher rank tensors.

4 Correlators of Tensor Current in Magnetic Field

The correlators containing the tensor current in combination with a fermionic current of other Lorentz
structure are the second-, third- and fourth-rank tensors. If we restrict ourselves by the (pseudo)scalar-
tensor correlator, the decomposition (7) for the second-rank tensor should be used. From six non-
trivial coefficients in the basis decomposition, only three are independent. It is convenient to use the
following double-integral representation for the coefficients in the decomposition:

0 1
1 dt
(%, ¢%.B) = 3 f - f duYi(q*. q7. Bt u) X (8)
0 0

2
X exp {—i [m%t - % r(1—u?)+ qi COS(?;us)i;(;))S(ﬁt)]} ’

where the integration variables r = s; + s, and u = (s; — s2)/(s; + s2) are the combinations of two
proper-time variables s; and s, entering the propagators. Note also the relation among the momenta
squared: g = ¢* +q7.

The integrands of the scalar-tensor correlator:

YR gL Bt w) = %Bqﬁ g (4[mf 1= i]+ @1 (1 =) + gL RB; 1)) ©)

YD (G2, g2 Bty u) = %qu (4[m2 e~ i] + G1R@: Lw), (10)

YSOP G Bt u) = i q Si“(fﬁt)) [cot(Br) — u cot(Bru)], (11)
and pseudoscalar-tensor one':

YOO, B tyu) = —iBt G’ & st (ét)) [cot(Br) — ucot(Bru)] , (12)

VDGR i) = 5 Ba) (4] 1+ 1] - iR 1w (3)

YA ¢ Bt u) = —éﬁqﬁ {almie+i] -t (1-w2) - gLt RB: ). (14)

To simplify the presentation, the auxiliary function is introduced:

RB;t,u)=1-u?+ 2L [cos(Br) cos(Btu) + u sin(Br) sin(Btu) — 1] . (15)
sin“(Br)

IThese integrands correct the ones presented in [6]
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5 Correlators in the Crossed-Field Limit

Correlators in an electromagnetic crossed field can be obtained from the ones calculated in the mag-
netic field after the pure field parameter ,8% =¢? Qj% w P[4 1s neglected Quantities calculated in the

crossed field are completely determined by the dynamical parameter X =e Q2 (gFFq) = 5* ¢>. The
crossed-field limit is valid for an ultrarelativistic particle moving in the dlrectlon transverse to the field
strength in a relatively weak magnetic field. As basic vectors, it is convenient to use the following
normalized orthogonal set:

22
o = 2 gry, b2 = Qf( P 9 = 2 [P (FFay - @FFaq,]. b =
Ty T RNE ! S N
(16)

The coefficients in the tensor decomposition can be presented as double integrals:

1
i xp) = 16”2[ fd“Yu(‘] X135 tu)eXp{—z [(mf——(l—uz))w—xf(l - u?)’ m 3]}
a7

The integrands of the scalar-tensor correlator in the crossed-field Limit are as follows:
YD = [mt—z]+qt(1—u)—l)(t(l—u)2 (18)
13 5 \/— f qtf K
1 2
YSP = t—i|l == 2R (1=u?) 3, 19
4T /— [’"f ’] 4Xf ( ) (19)

1
Yo = g/yft 2u(l-12), (20)

and of the pseudoscalar-tensor one are similar:

Y(PT) 3)(ft u(l —u ) 2D
Yo - 23f_ {4 e i)+ 2 (1 - )} @2)
Y& = 2’/\7_ { [mit+i]+ g’ (1-u?)+ %ﬁf (1- uz)z} . (23)

In getting this limit, the expansion in S of the function (15) is taken into account:
R:t.u) ~ —~ g7 (1-) - L g (1-2) (3-w)=--. 24)
4 72

6 Applications of Correlators

Searches for physics beyond the Standard Model is the main stream of modern theoretical and exper-
imental physics [7]. Models beyond the Standard Model can effectively modify the QED Lagrangian
with an extra term called the Pauli Lagrangian density [8—10]:

Lan(0) = L [F f 0] P (0, (25)
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where (17 is the anomalous magnetic moment (AMM) of the fermion. The existence of (25) in the ef-
fective QED Lagrangian should also change the photon polarization operator which is nothing else but
the correlator of two vector currents. If one makes a reasonable assumption about a smallness of p,
the contribution linear in the fermion AMM, which is the vector-tensor correlator, is of importance.
Its influence on the photon properties is under study and will be presented elsewhere [11].

The strong-magnetic-field formalism suggested by Loskutov and Skobelev [12, 13] allows to per-
form calculations very similar to the conventional approach developed for vacuum [3]. The disad-
vantage of this formalism is divergences which are appearing in two-point one-loop amplitudes. The
most natural way to remove divergences is to consider the strong-field limit of the amplitudes calcu-
lated in the Fock-Schwinger formalism as it was demonstrated for the axion self-energy calculated
in the magnetic field [14]. It is of interest to find the strong-field limit of all the two-point one-loop
amplitudes and compare with ones obtained within the strong-magnetic-field formalism [12, 13].

7 Conclusions

Two-point one-loop fermionic amplitudes with the (pseudo)scalar and tensor vertices are considered.
The influence of a constant homogeneous external magnetic field is taken into account exactly by
using the exact propagators of a charged fermion in the Fock-Schwinger representation. The limit of
the external electromagnetic crossed field is also obtained for the amplitudes considered.
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