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A search for R-parity-violating supersymmetry in final states with high jet multiplicity is
presented. The search uses 140 fb−1 of
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in the context of R-parity-violating supersymmetry models that feature prompt gluino-pair
production decaying directly to three jets each or decaying to two jets and a neutralino which
subsequently decays promptly to three jets. No significant excess over the Standard Model
expectation is observed and exclusion limits at the 95% confidence level are extracted. Gluinos
with masses up to 1800 GeV are excluded when decaying directly to three jets. In the cascade
scenario, gluinos with masses up to 2340 GeV are excluded for a neutralino with mass up to
1250 GeV.
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Figure 1: Signal diagrams for the gluino direct decay model (left) and gluino cascade decay model (right) targeted in
this analysis.

1 Introduction

Supersymmetry (SUSY) [1–6] is a theoretical extension of the Standard Model (SM) which fundamentally
relates fermions and bosons by introducing a partner particle for each SM particle. It is an alluring
theoretical possibility given its potential to solve the hierarchy problem [7–10]. An ad-hoc conserved
quantity, R-parity [11], is often introduced in SUSY models to avoid rapid proton decay, rendering the
lightest supersymmetric particle (LSP) stable and therefore a potential dark-matter candidate [12, 13].
However, there is no fundamental theoretical reason to impose strict R-parity conservation. R-parity-
violating (RPV) SUSY models are well motivated and generally have fewer experimental constraints than
many R-parity-conserving (RPC) models [14, 15]. This suggests that the ATLAS Run 2 dataset could
contain thousands of events where the supersymmetric partner of the gluon, the gluino (𝑔̃) is present.

This article presents a search for supersymmetric gluinos (𝑔̃) pair production with subsequent RPV decays
into quarks in events with many jets using 140 fb−1 of 𝑝𝑝 collision data collected at

√
𝑠 = 13 TeV by the

ATLAS detector during Run 2 of the LHC. Such a final state is predicted in RPV models with a non-zero
baryon-number-violating 𝑈𝐷̄𝐷̄ coupling [16, 17]. The dominant SM background process originates from
multi-jet production, with a cross-section multiple orders of magnitude higher than the targeted signals.
Two approaches are implemented to distinguish between the SM background and potential SUSY signal.
The first, so-called “jet counting” analysis defines several search regions requiring many high 𝑝T jets.
The background is estimated using a combination of both data and simulation, where events containing
low jet multiplicities and low momenta are extrapolated to higher jet-momenta and multiplicities. The
second, “mass resonance”, approach aims to reconstruct the gluino mass with machine-learning methods,
solving the combinatorial assignment challenge to correctly identify which jets belong to a given gluino.
A mass-resonance search is then performed on the gluino-candidate mass spectrum. A fully data-driven
approach is used to estimate the background, with a functional fit of the smoothly falling gluino-candidate
mass distribution.

Two RPV SUSY simplified signal models [18–20] featuring gluino-pair production are targeted. Figure 1(a)
presents the gluino direct-decay model, where the gluino decays into three quarks via a 𝜆′′

𝑖 𝑗𝑘
𝑈𝐷̄𝐷̄ RPV

coupling, leading to final states containing at least six jets. The gluino cascade-decay model is presented in
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Figure 1(b), in which the gluino decays to two quarks and neutralino, 𝜒̃0
1 , where the neutralinos result from

the mixing between the supersymmetric partners of the neutral SM bosons. The neutralino then decays
into three quarks, again via the 𝜆

′′
𝑖 𝑗𝑘

𝑈𝐷̄𝐷̄ coupling, leading to at least ten jets in the final state. Both
scenarios assume that 𝜆′′

𝑖 𝑗𝑘
is large enough to ensure prompt SUSY decays. Two couplings are considered,

𝜆′′112 and 𝜆′′113, leading to the RPV decays 𝑔̃/𝜒0
1 → 𝑢𝑑𝑠 referred to as the UDS-decay or 𝑔̃/𝜒0

1 → 𝑢𝑑𝑏

referred to as the UDB-decay respectively. The results of this note apply equally to other couplings, 𝜆′′
𝑖 𝑗2,

𝜆′′
𝑖 𝑗3, with 𝑖, 𝑗 ∈ 2, 3, since it leads to the same experimental final state. The UDB-decay leads to a unique

signal phenomenology containing bottom quarks and a dedicated event selection containing 𝑏-tagged jets
is employed to specifically target this scenario.

Previous searches in this final state have been performed by the ATLAS [21, 22] and CMS collaborations [23].
This analysis uses new methods in both the jet counting and mass resonance approaches, dramatically
improving the sensitivity beyond the expected gains due to the larger dataset.

2 ATLAS detector

The ATLAS experiment [24] at the LHC is a multipurpose particle detector with a forward–backward
symmetric cylindrical geometry and a near 4𝜋 coverage in solid angle.1 It consists of an inner tracking
detector surrounded by a thin superconducting solenoid providing a 2 T axial magnetic field, electromagnetic
and hadron calorimeters, and a muon spectrometer. The inner tracking detector covers the pseudorapidity
range |𝜂 | < 2.5. It consists of silicon pixel, silicon microstrip, and transition radiation tracking detectors.
Lead/liquid-argon (LAr) sampling calorimeters provide electromagnetic (EM) energy measurements
with high granularity. A steel/scintillator-tile hadron calorimeter covers the central pseudorapidity range
(|𝜂 | < 1.7). The endcap and forward regions are instrumented with LAr calorimeters for both the EM and
hadronic energy measurements up to |𝜂 | = 4.9. The muon spectrometer surrounds the calorimeters and is
based on three large superconducting air-core toroidal magnets with eight coils each. The field integral of
the toroids ranges between 2.0 and 6.0 T m across most of the detector. The muon spectrometer includes
a system of precision tracking chambers and fast detectors for triggering. A two-level trigger system is
used to select events. The first-level trigger is implemented in hardware and uses a subset of the detector
information to accept events at a rate below 100 kHz. This is followed by a software-based trigger that
reduces the accepted event rate to 1 kHz on average depending on the data-taking conditions. An extensive
software suite [25] is used in data simulation, in the reconstruction and analysis of real and simulated data,
in detector operations, and in the trigger and data acquisition systems of the experiment.

3 Data and simulated event samples

The data analysed in this paper were collected between 2015 and 2018 at a centre-of-mass energy of 13 TeV
with a 25 ns proton bunch crossing interval. The average number of 𝑝𝑝 interactions per bunch crossing,
referred to as pile-up, ranged from 13 in 2015 to around 38 in 2017–2018. Application of beam, detector
and data-quality criteria [26] results in a total integrated luminosity of 140 fb−1.

1 ATLAS uses a right-handed coordinate system with its origin at the nominal interaction point (IP) in the centre of the detector
and the 𝑧-axis along the beam pipe. The 𝑥-axis points from the IP to the centre of the LHC ring, and the 𝑦-axis points upwards.
Polar coordinates (𝑟, 𝜙) are used in the transverse plane, 𝜙 being the azimuthal angle around the 𝑧-axis. The pseudorapidity is
defined in terms of the polar angle 𝜃 as 𝜂 = − ln tan(𝜃/2). Angular distance is measured in units of Δ𝑅 ≡

√︁
(Δ𝜂)2 + (Δ𝜙)2.
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Monte Carlo (MC) samples are primarily used in the analysis to estimate the expected number of events for
a given signal scenario. MC samples are also used to aid in the modelling of the SM backgrounds in the
search regions, or as a cross-check of the data-driven methods used to model the expected background
yield.

Signal samples are generated at leading-order (LO) accuracy with up to two additional partons using the
MadGraph5_aMC@NLO event generator [27] interfaced with Pythia8 [28]. The A14 [29] set of tunes
are used for underlying event together with the NNPDF2.3lo [30] parton distribution function (PDF) set.
The EvtGen program [31] is used to generate the events in free space which is then passed through a
simulated version of the ATLAS detector using GEANT4 [32, 33]. The signal cross-sections are calculated
at next-to-next-to-leading order (NNLO) in the strong coupling constant, adding the resummation of soft
gluon emission at next-to-next-to-leading-logarithmic accuracy (NNLO+NNLL).

Multĳet events constitute the dominant background in the search region. Multĳet production in the SM
is generated using Pythia 8.230 [34] with leading-order matrix elements for dĳet production which are
matched to the parton shower. The renormalisation and factorisation scales are set to the geometric mean of
the squared transverse masses of the two outgoing particles in the matrix element. The NNPDF2.3lo PDF
set is used in the ME generation, the parton shower, and the simulation of the multi-parton interactions. The
A14 set of tuned parameters is used. Perturbative uncertainties are estimated through event weights [28]
that encompass variations of the scales at which the strong coupling constant is evaluated in the initial- and
final-state shower as well as the PDF uncertainty in the shower and the non-singular part of the splitting
functions.

In the regions requiring the presence of a jet identified as originating from a 𝑏-quark, there is contri-
bution from top-quark pair production (𝑡𝑡). The production of fully hadronic decays of 𝑡𝑡 events, is
modeled at NLO using the Powheg Box [35, 36] generator. Additional 𝑡𝑡 samples are generated with
MadGraph5_aMC@NLO interfaced with Pythia 8, and with Powheg Box interfaced with Herwig 7 [37,
38], for the evaluation of systematic uncertainties.

The effect of pile-up interactions is modelled by overlaying the simulated hard-scattering event with
inelastic proton–proton (𝑝𝑝) events generated with Pythia 8.186 [39] using the NNPDF2.3lo set of parton
distribution functions (PDF) [30] and the A3 set of tuned parameters [40].

The Monte Carlo (MC) events are weighted to reproduce the distribution of the average number of
interactions per bunch crossing (⟨𝜇⟩) observed in the data. The ⟨𝜇⟩ value in data is rescaled by a factor of
1.03 ± 0.04 to improve agreement between data and simulation in the visible inelastic proton–proton (𝑝𝑝)
cross-section [41].

4 Event Reconstruction

As the signal scenarios under investigation have a general event phenomenology consisting of a large
number of energetic jets, an identical trigger strategy and a set of common object definitions can be used
for both analysis strategies.

Events are required to pass an 𝐻T trigger, which is the scalar sum of the transverse energy of the jets in
the event. To ensure the trigger is fully efficient, a selection of 𝐻T > 1100 GeV and a selection on the
transverse momentum of the leading jet, 𝑝T( 𝑗1) > 200 GeV, is applied. The 𝐻T trigger has an efficiency
exceeding 95% for signal events passing the selection for all data-taking periods.
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Jets are reconstructed using the particle flow (PFlow) algorithm [42], which suppresses calorimeter energy
deposits arising from charged pileup particles and takes the momentum estimation from tracks whenever
the tracker resolution is better than the calorimeter resolution. The anti-kT algorithm [43] with a size
parameter of 𝑅 = 0.4 is subsequently used to define the analysis-level jets. Jets containing a large particle
momentum contribution from pile-up vertices, as measured by the jet vertex tagger (JVT) discriminant [44]
are rejected if they have 𝑝T ∈ [20, 60] GeV, |𝜂 | < 2.4 and a discriminant value of JVT < 0.5. Two classes
of jets are defined: “baseline” jets and “signal” jets. Baseline jets require 𝑝T > 20 GeV and |𝜂 | < 4.8.
Signal jets are used for the computation of kinematic variables and for the final event selections and require
𝑝T > 50 GeV and |𝜂 | < 2.8.

Selected jets are tagged as 𝑏-jets if they are within the inner tracking detector acceptance of |𝜂 | < 2.5 and
are identified by a multivariate algorithm (DL1r) which uses a selection of inputs including information
about the impact parameters of inner detector tracks, the presence of displaced secondary vertices and the
reconstructed flight paths of 𝑏- and 𝑐-hadrons inside the jet [45]. The 𝑏-tagging algorithm uses a working
point with an efficiency of 77%, determined with a sample of simulated 𝑡𝑡 events. The corresponding
misidentification (mis-tag) rate is 20% for 𝑐-jets and 0.9% for light-flavour jets. Differences in efficiency
and mis-tag rate between data and MC simulation are taken into account with correction factors as described
in Ref.[45].

As the signal scenarios considered do not contain any light leptons (𝑒, 𝜇) signal sensitivity can be
increased by vetoing events containing leptons. Electron candidates are reconstructed from an isolated
electromagnetic calorimeter energy deposit matched to an inner detector track [46] and are required to
possess 𝑝T > 10 GeV and |𝜂 | < 2.47, and to satisfy the “Loose” likelihood-based identification criteria
described in Refs.[46, 47]. Muon candidates are formed by combining information from the muon
spectrometer and inner detector as described in Ref.[48] and are required to possess 𝑝T >10 GeV and
|𝜂 | < 2.7. Furthermore, muon candidates must satisfy the “Medium” identification requirements described
in Ref.[48]. In both cases lepton candidates must additionally have a longitudinal impact parameter relative
to the primary vertex |𝑧0 sin 𝜃 | < 0.5 mm.

Multiplicative scale factors are applied to simulated events to account for differences between data and
simulation for reconstruction, identification and isolation efficiencies, for example to account for the
jet momentum scales and energy resolutions. Similar corrections are also applied to the probability of
mis-tagging jets originating from the hard scattering as pile-up jets with the JVT discriminant, and the
associated corrections related to the efficiency of identifying jets arising from 𝑏-hadrons.

After the object selection step, a procedure to avoid double counting of tracks and energy depositions
associated with overlapping reconstructed jets, electrons, and muons is implemented. This procedure
applies the following actions to the baseline jets and leptons in a sequential order. If a jet and an electron
are within Δ𝑅 =

√︁
(Δ𝜂)2 + (Δ𝜙)2 < 0.2 the jet is removed, whereas if jet and an electron are within Δ𝑅 <

0.4 the electron is removed. If a jet and a muon are within Δ𝑅 < 0.2, or the muon track is associated with
the jet, the jet is removed if the number of tracks is fewer than three and if the jet and total track 𝑝T is
consistent with the muon energy. Finally if a muon and a jet are within Δ𝑅 < 0.4 the muon is rejected.

5 Analysis Strategy

The signal scenarios considered are targeted using two complementary analysis methods. In addition to
possessing common object and trigger requirements, similar kinematic variables are employed to perform
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a simple discrimination between signal and background, upon which the two analyses build upon.

Events are required to pass the 𝐻T trigger, and all of the associated requirements to assure the trigger is
fully efficient as discussed in Section 4. All events veto the presence of any leptons (𝑒, 𝜇), and are required
to contain at least four jets with 𝑝T > 50 GeV.

For both analyses, the event-shape variable 𝐶 [49] derived from the linearized sphericity tensor of the event
is used to distinguish between signal and background. The sphericity tensor, which captures the momentum
distributions of an event, can be reduced to three eigenvalues, 𝜆1, 𝜆2, 𝜆3, representing the shape of this
distribution along three orthogonal directions. It is calculated as a combination of these eigenvalues as:

𝐶 = 3(𝜆1𝜆2 + 𝜆1𝜆3 + 𝜆2𝜆3) (1)

For events consisting of two back-to-back jets, which dominate the QCD multi-jet background, the 𝐶 value
tends to be smaller than for gluino decays where the energy is distributed more uniformly or isotropically
and the 𝐶 value tends to larger values. A selection on the 𝐶 variable and a selection requiring many high-𝑝T
jets are employed by both analysis methods, as key variables to discriminate between the signal and the
SM background. Figure 2 presents unit-area-normalised comparisons of these key variables, showing the
significant differences between the signal models and the background.

The following two sections describe the signal optimisation strategy and the background estimation methods
for the jet counting analysis, and the mass resonance analysis respectively. While both analyses target the
direct decay scenario, the jet counting analysis provides a more model-independent approach which could
see a general excess in events with large jet multiplicities and also investigates the cascade decay scenario,
the mass resonance analysis is more model specific, and focuses specifically on the direct decay scenario,
seeking to reconstruct the gluino mass directly from the decay products.
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Figure 2: Comparison between normalised to unity distributions of the observed data, the QCD Multi-jet background
and signal models. Left: 𝑛jets spectrum with a 𝑝T requirement of 100 GeV. Right: distribution of the 𝐶 variable for
events with at least 6 jets above 100 GeV.

5.1 Jet counting analysis

The jet counting analysis is built on the fact that the signal scenarios considered produce a large multiplicity
of high-𝑝𝑇 jets, a feature that has been already exploited in previous analyses targeting similar models
[21, 50]. In this approach, signal regions (SRs) are defined by requiring a high jet multiplicity and a tight
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requirement on the 𝑝T of the jets. The expected number of background events in this region is estimated by
using control regions (CRs) which are defined with lower jet 𝑝T requirements, which are then extrapolated
to the SRs. To check the validity of this extrapolation, the background expectation (extrapolated from the
CR) is compared to the observed data in intermediate validation regions (VRs), which are tighter than the
CR requirements, but looser than the SRs.

In total seven SRs are defined to target different regions of the SUSY phase space under consideration. The
SRs are sensitive to both the direct gluino decay scenario and for the cascade scenario. Table 1 presents
the SR selections. All SRs require at least seven high 𝑝T jets, and tight selections on the 𝐶 variable. A
selection of at least seven jets is chosen, instead of six as suggested by the tree-level diagrams, as the
inclusion an extra jet which arises from initial or final state radiation is found to increase the sensitivity to
the signal scenarios and further reject background events. Two SRs are defined with a requirement on the
number of 𝑏-tagged jets present to specifically target the scenarios where the UDB-coupling allows for
𝑏-quarks in the decay.

Table 1: SR definitions for the jet counting method, 𝑛jets represents the number of jets above the given 𝑝T threshold
(𝑝T ( 𝑗)). The common analysis selections on the 𝐻T, 𝑝T ( 𝑗1) and trigger selection are also applied.

𝑛jets
𝑝T( 𝑗)
[GeV] 𝐶 𝑛𝑏−jets

SR1 ≥ 7 180 ≥ 0.90 -

SR2 ≥ 7 220 ≥ 0.90 -

SR3 ≥ 7 240 ≥ 0.90 -

SR4 ≥ 8 180 ≥ 0.85 -

SR5 ≥ 8 210 ≥ 0.85 -

SR1bj ≥ 7 180 ≥ 0.85 ≥ 2

SR2bj ≥ 8 180 ≥ 0.85 ≥ 2

Background estimation method

The primary source of background arises from QCD multi-jet events, which are estimated using a
semi-data-driven approach. Multi-jet MC is employed to compute transfer factors across different jet
multiplicities, while the prediction is normalised using data. The number of expected events with a given
jet multiplicity 𝑛jets above a certain jet-𝑝T threshold 𝑋 (denoted as 𝑁𝑛,𝑝𝑋

T
) can be evaluated as:

𝑁𝑖, 𝑝𝑋
T
= 𝑤𝑖 · 𝑁Data

4, 𝑝𝑋
T
·
𝑁MC
𝑖, 𝑝𝑋

T

𝑁MC
4, 𝑝𝑋

T

𝑤𝑖 =

𝑁Data
𝑖, 𝑝60

T

𝑁MC
𝑖, 𝑝60

T

/𝑁Data
4, 𝑝60

T

𝑁MC
4, 𝑝60

T

𝑁≥𝑛,𝑝𝑋
T
=

𝑛+2∑︁
𝑖=𝑛

𝑁𝑖, 𝑝𝑋
T

(2)
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To address potential biases in the MC modeling of the jet multiplicity, correction factors (𝑤𝑖) are computed
at lower jet 𝑝T thresholds, based on a double ratio between data and MC at different jet multiplicities. The
CRs used to calculate the correction factors use the same selection on the variable 𝐶 as in the associated SR,
however the jet 𝑝T threshold is reduced to 60 GeV, to avoid eventual signal contamination. The correction
factors are then calculated using the CRs with jet multiplicities 𝑛jets = 4, and ≥ 7. The SRs are inclusive in
jet multiplicity (≥ 𝑛jets), and are estimated by summing exclusive jet multiplicities up to 𝑛 + 2.

When introducing the selection on the number of 𝑏-tagged jets (𝑛𝑏−jets), as in SR1bj and SR2bj, there is a
sizeable contribution from the 𝑡𝑡 SM process, with up to 30% of the total background consisting of 𝑡𝑡. In
this case, the 𝑁MC terms in Equation 2 are treated as the combined sum of multi-jet and 𝑡𝑡 events. Figure 3
shows two examples of the background method with and without the selection on 𝑏-tags. The latter figure
also shows the small impact of the correction factors 𝑤𝑖 .
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Figure 3: Test of the background method at different jet 𝑝T requirements without (left) and with (right) 𝑏-tagging
selections. The red line is the prediction using correction factors estimated in the CR, while the orange line is
obtained without such corrections.

Background Validation

To evaluate the background modelling several VR sets are defined, presented in Tables 2 and 3. The VRAs
and VRBs are designed to validate the method at high values of 𝐶, but with lower jet multiplicities to
negate signal contamination. The VRCs and VRDs validate the method in a high jet multiplicity and jet
momenta region, utilising an inverted 𝐶 requirement compared to minimise signal contamination. The
individual regions in a given VR set are not orthogonal, as the regions only differ in the 𝑝T selection and
can therefore be considered to be subsets of each other. Four dedicated VRs (VR-A-bj, VR-B-bj, VR-C-bj
and VR-D-bj) are defined to validate the modelling of the selections requiring at least two 𝑏-tagged jets,
due to the difference in the background composition when 𝑏-jets are present in the final state. Figure 3
shows the agreement between the background estimate in the VR-C (left) and VR-C-bj (right) as a function
of the jet-𝑝T threshold used to count the jets. It is seen that there is generally acceptable agreement between
the data and the background estimate while increasing the threshold to the highest values used in the SRs.
Figure 4 presents the yields of the VRs, displaying the agreement between the background expectation
from the jet counting method and the observed data. A slight discrepancy is observed in VR-B3, this
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non-closure of the method is used to define an additional non-closure uncertainty of 5% on the expected
background yields in the SRs.

Table 2: VR definitions and yields, for the regions used to validate the background strategy without an explicit
selection on the number of 𝑏-tagged jets. The common analysis selections on the 𝐻T, 𝑝T ( 𝑗1) and trigger selection
are also applied. The uncertainties shown contain both statistical and systematic uncertainties.

𝑛jets
𝑝T( 𝑗)
[GeV] 𝐶

Background
Expectation Data

VR-A1 180 ≥ 0.80 73000+1800
−2400 70184

VR-A2 5 160 ≥ 0.85 65000+1800
−2200 64985

VR-A3 150 ≥ 0.90 30000+2100
−1000 30360

VR-B1 120 ≥ 0.80 80000+2100
−2800 80271

VR-B2 6 110 ≥ 0.85 58000+3900
−1800 59997

VR-B3 100 ≥ 0.90 28000+1000
−2000 30212

VR-C1 180 350+37
−72 372

VR-C2 ≥ 7 220 ≤ 0.60 47+6
−10 35

VR-C3 240 18+4
−3 14

VR-D1 ≥ 8 180 ≤ 0.60 23+5
−6 16

Table 3: VR definitions and yields, for the regions used to validate the background strategy with a selection on the
number of 𝑏-tagged jets of ≥ 2. The common analysis selections on the 𝐻T, 𝑝T ( 𝑗1) and trigger selection are also
applied. The uncertainties shown contain both statistical and systematic uncertainties.

𝑛jets
𝑝T( 𝑗)
[GeV] 𝐶

Background
Expectation Data

VR-A-bj 5 180 ≥ 0.85 2100+600
−100 1973

VR-B-bj 6 120 ≥ 0.85 3700+500
−300 3425

VR-C-bj ≥ 7 180 ≤ 0.60 34+13
−6 39

VR-D-bj ≥ 8 160 ≤ 0.60 8+6
−5 6
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Figure 4: Comparison between the observed data and the background expectation in the VRs. Left: VRs containing
no explicit selection on the number of 𝑏-tagged jets. Right: VRs containing at least 2 𝑏-tagged jets. The bottom
panel presents the ratio of data to the background prediction. The hashed pattern represents the combined statistical
and systematic uncertainty on the background estimate.

10



5.2 Mass resonance analysis

The objective of the mass resonance method is to observe a resonance in the reconstructed candidate
gluino mass spectrum. In contrast to the jet counting analysis which could have an excess from a variety
of high energy contributions, this search would be an unambigious sign of new physics from resonant
production at the probed energy scale. In the case of the direct gluino decay model, the combinatorial issue
of correctly identifying which jets should be grouped to each gluino candidate is a significant issue and
is the main focus of the method design. A dedicated neural network (NN) is developed which aims to
correctly group together the jets from each individual gluino candidate decay. Machine-learning techniques
have been applied previously to the combinatorial assignment problem focusing on the reconstruction
of standard model processes [51–53] and with less focus on BSM scenarios [54] given the additional
unknown of the BSM particle masses. The invariant mass 𝑚𝑖

𝑔̃
of the two gluino candidates is built from

the jets that are selected by the NN and the average of the two masses 𝑚avg = 1
2

(
𝑚1

𝑔̃
+ 𝑚2

𝑔̃

)
is used as the

key discriminating variable. The method searches for a localized excess on the 𝑚avg spectrum where the
background is estimated through a functional fit to a smoothly falling spectrum.

A selection is applied to events entering the mass resonance method requiring at least six jets with 𝑝T
above 100 GeV, and 𝐶 ≥ 0.9. A second selection is defined requiring in addition at least one 𝑏-tagged jet,
which is used to improve the sensitivity to the UDB model. Further to the previously introduced selections,
which are used for the model-dependent interpretation, a set of model-independent SRs are defined using
single bins in the invariant mass distribution with a width of 300 GeV, and assume no signal contribution
outside of the SR.

Jet assignment model

A NN is built based on the attention mechanism [55], taking inspiration from the transformer model and
implemented in PyTorch [56]. The input to the network is the jet four-momentum of the leading eight
signal jets, where jets are zero-padded in case the event contains less than eight jets. The first layer consists
of an embedding block where each jet is mapped to a latent space. The embedded jets are passed to
an encoder block consisting of a jet self-attention block, a gluino-candidate self-attention block, and a
jet-candidate cross-attention block. The outputs of the model are three scores per jet representing the
probability of the jet to originate from each of the two gluino candidates or a non-signal source such as
initial state radiation of pileup. The highest score per jet is used to assign jets in the event to each gluino or
non-signal contribution.

The NN is trained using a categorical cross-entropy loss, where the jets are labelled based on Δ𝑅 < 0.4
matching with truth partons from the gluino decay. Only events with exactly three jets matched per gluino
are used in the training, which represents approximately 50% of the total available events. A tighter
preselection, than introduced at the start of this section, is applied to the training set to obtain a sample
representative of the final kinematic selections while retaining sufficient statistics, requiring at least six jets
with 𝑝T above 100 GeV, and 𝐶 ≥ 0.8. All the available signal models are used in the training, combining
both the UDS and UDB models. The inclusion of all mass points was shown to mitigate the background
sculpting by shifting the multĳet average mass spectrum to roughly 650 GeV, below the start of the search
window at 700 GeV. The model is trained for 500, 000 steps with a warm-up phase which increases the
learning rate linearly to 10−3 during the first 5% of the training steps and is then decayed exponentially.
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Figure 5: Normalised average mass spectrum comparing the shapes of the reconstructed (solid) and target (light)
distributions for different masses. The reconstructed distribution is produced using the NN assignments, whereas the
target distribution is built assigning jets to gluinos based on their truth labels.

Hyperparameters were tuned through a population scan and the model with lowest validation loss was
retained [57, 58].

The performance of the NN is illustrated in Figure 5. The reconstructed mass matches the target with a
small loss in resolution as expected. Target signals show a low-mass tail, especially at higher masses,
which originates from the restriction that exactly three jets are matched. This requirement misses additional
final state radiation jets which are significant for the highest masses.

Background estimation

Non-resonant QCD processes, which constitute the dominant SM background for this search, result in
multĳet systems with smoothly-falling invariant mass distributions. In order to estimate this background a
parametric function is fit to the observed data distributions, which are binned in 100 GeV-wide bins:

𝑓 (𝑥) = 𝑝1 (1 − 𝑥) 𝑝2 𝑥𝑝3+𝑝4 ln 𝑥

where 𝑥 = 𝑚𝑎𝑣𝑔/
√
𝑠 and 𝑝1−4 are the fitted parameters. This function has been succesfully used in a wide

variety of resonance dĳet and multĳet searches by the CDF, CMS, and ATLAS experiments [59–67]. For
the background estimation, a three-parameter fit is used, where 𝑝4 is set to zero, while the four-parameter
fit is used to produce pseudodata to validate the fit strategy.

The background distribution is fit using a binned, maximum-likelihood fit implemented using the HistFitter
framework [68]. In background-only fits, the signal strength is set to zero, while in the signal-plus-
background fits, the signal strength is left as a free parameter. The fit region is set between 0.7 and 3
TeV.
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Figure 6: Observed data and fitted background model in the nominal (left) and 𝑏-tagged (right) regions using a loose
selection and 3.2 fb−1 of data which matches roughly the number of events expected in the full selection and full
dataset. The grey and blue bands present the combined statistical and systematic uncertainty on the background
estimate for the data and MC fit functions respectively. The red arrow denotes points which lie above the range of the
ratio plot.

The data-driven background fitting procedure was validated with Monte Carlo simulation as well as a small
3.2 fb−1 sample of data from 2015 with a loose selection of 𝐶 ≥ 0.7 and six jets with 𝑝T above 70 GeV
such that the number of events is similar to that of the full dataset with nominal selections. The validity
of the background model was tested by checking for a small 𝜒2/𝑁D.O.F. as well as performing ‘spurious
signal tests’ and ‘signal injection tests’.

The spurious signal test evaluates whether the fitting procedure is biased in a manner that will produce
a non-zero extracted signal when fitting a dataset with no true signal. This test is performed for the
nominal 3-parameter fit function by performing a signal-plus-background fit to a pseudodata distribution
that is generated from a background-only fit to the data distribution with a 4-parameter function. For each
pseudodata distribution, the number of extracted signal events per signal model, 𝑛spur, is determined. In
order to pass the spurious signal requirement, 𝑛spur is required to be less than 20% of the nominal signal
events and ratio of the number of spurious signal events to its statistical uncertainty, 𝑛spur/𝜎(𝑛spur) is
required to be less than 0.2. The 3-parameter fit function passed the spurious signal test for all signal
samples.

The signal injection test is performed to ensure that the background fit is able to extract a signal component
with the expected signal strength. Simulated signal models are included together with the background
template to form a pseudodata distribution. The injected signals were extracted through the fit to pseudodata
and confirmed that the extracted signal strength was in agreement with unity.

Figure 6 shows the validation of the fit model in the 2015 data sample with loose selection and additionally
with a multĳet MC background sample scaled to 140 fb−1. The fitted function is shown to have acceptable
agreement with both the MC and data.
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When considering the model-independent SRs the background is estimated through a fit to the reconstructed
average mass distribution excluding the signal region bin. This is contrary to the model-dependent fits
which are performed using the full average-mass distribution with 100 GeV bins.

6 Systematic Uncertainties

Three categories of systematic uncertainties are considered in both methods: theoretical modelling
uncertainties, experimental uncertainties, and uncertainties in the assumptions and methods used for
background estimation. The statistical uncertainty due to the limited dataset is the dominant source of
uncertainties for both methods all the mass range considered.

Modelling uncertainties related to the simulation of background events arise from missing higher orders in
the simulation, PDF and strong coupling constant 𝛼𝑠 uncertainties. They are included in the jet counting
method as simulation is used to support the background prediction, but not in the mass resonance method.
The effect of these uncertainties on the QCD multĳet background yields, used to calculate the correction
factors in the jet counting analysis, is evaluated through variations of the renormalisation and factorisation
scale by factors of two, variations of the shower tune, PDF and 𝛼𝑠 parameters within their uncertainties.
Additional uncertainties are included on the 𝑡𝑡 background taking the difference between an alternative
matrix-element generator (MadGraph5_aMC@NLO) and an alternative parton shower (Herwig 7). The
modelling of the QCD multĳet background is the leading systematic uncertainty on the jet counting method.
In the SRs this uncertainty ranges from roughly 20% up to almost 40% in SR5.

Experimental uncertainties arise from imperfect calibrations and associated uncertainties of the reconstructed
objects used in the search. The leading experimental uncertainties arise from the jet energy scale and
jet energy resolution. Uncertainties on the pile-up modelling, suppression of pile-up jets, 𝑏-tagging
efficiencies and mis-tagging rates are included but have a negligible impact on the sensitivity. The impact
of experimental uncertainties is also considered for signal samples and correlated with the background
variation. The uncertainty in the combined 2015–2018 integrated luminosity is 0.83% [69], obtained using
the LUCID-2 detector [70] for the primary luminosity measurements, complemented by measurements
using the inner detector and calorimeters.

Dedicated additional uncertainties due the background estimation methodology are included. In the jet
counting method the observed level of agreement in the VRs is used to derive an uncertainty due to possible
imperfections in the method. The level of disagreement is below one standard deviation in all VRs except
for VR-B3. As previously mentioned, an additional non-closure systematic of 5% is added to all SRs with
𝐶 > 0.9, which was derived from the maximum non-closure in the VRs.

In the mass resonance method a spurious signal uncertainty is derived by fitting the distribution obtained
from a 4-parameter background fit to a signal plus background hypothesis using the nominal 3-paramater
model. The size of the fitted signal is included as uncertainty due to possible limitations of the 3-parameter
model to capture the correct background distribution. The uncertainty varies from roughly 300 events
for a reconstructed average mass of 900 GeV to 5 events at 2500 GeV. The spurious signal uncertainty is
the dominant systematic in the mass resonance method, however the largest uncertainty is the statistical
uncertainty from the background prediction.
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7 Results and Interpretation

The observed data event yields and the corresponding estimates for the backgrounds in the SRs are shown
in Figure 7 for the jet counting and mass resonance analyses. No significant excess of data over the expected
event yields is observed in any of the SRs.
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Figure 7: Observed and predicted yields in the signal regions of the jet counting method for the (a) ≥ 0 and (b) ≥ 2
regions. Background only fits to the reconstructed average mass spectrum of the candidate gluinos (c) ≥ 0 and (d)
≥ 1 𝑏-tagged of the mass resonance method. The grey bands include both statistical and systematic uncertainties.
The red arrow denotes points which lie above the range of the ratio plot.

The profile likelihood-ratio test [71] is used to establish 95% confidence intervals using the CLs prescrip-
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Signal region ⟨𝜖𝜎⟩95
o𝑏𝑠[fb] 𝑆95

o𝑏𝑠 𝑆95
e𝑥𝑝 𝐶𝐿𝐵 𝑝(𝑠 = 0) (𝑍)

SR1 0.32 45 57+18
−14 0.51 0.50 (0.00)

SR2 0.09 13 14.1+5.7
−4.1 0.56 0.50 (0.00)

SR3 0.07 10 9.5+4.1
−2.7 0.52 0.42 (0.20)

SR4 0.16 22 17.4+6.5
−4.7 0.26 0.21 (0.79)

SR5 0.07 9.4 7.4+3.6
−2.4 0.42 0.32 (0.46)

SR1bj 0.08 11 17.0+6.9
−4.8 0.55 0.50 (0.00)

SR2bj 0.03 4.4 6.6+2.9
−1.9 0.66 0.50 (0.00)

Table 4: The upper limit table for the signal regions for the jet counting method. Left to right: 95% CL upper limits
on the visible cross section (⟨𝜖𝜎⟩95

o𝑏𝑠) and on the number of signal events (𝑆95
o𝑏𝑠 ). The third column (𝑆95

e𝑥𝑝) shows
the 95% CL upper limit on the number of signal events, given the expected number (and ±1𝜎 excursions on the
expectation) of background events. The last two columns indicate the 𝐶𝐿𝐵 value, i.e. the confidence level observed
for the background-only hypothesis, and the discovery 𝑝-value (𝑝(𝑠 = 0)).

tion [72]. The asymptotic approximation of the CLs is used for all statistical tests except for the high
mass model independent bins of the mass resonance method where the number of events is small and
toys are generated. The approximation is validated for other regions with moderately small yields for
both methods using toys. The uncertainties introduced in the previous section are included as nuisance
parameters described by a Gaussian distribution. Upper limits on the product of cross-section, acceptance,
and efficiency are shown in Table 4 for the jet counting analysis, and Tables 5 and 6 for the mass resonance
analysis. The upper limits range from 7.9 to 0.03 fb, depending on the signal region considered.

Exclusion limits as a function of the masses of the SUSY particles are shown in Figures 8 and 9 for the
direct and cascade gluino decay models respectively. For the jet counting analysis, the SR which provides
the best expected sensitivity for a given gluino mass is used to set the limit. Gluinos with masses up to
1730 and 1800 GeV are excluded in the direct-decay models where the gluinos decay with 100% BR into
qqq (UDS coupling) and qqb (UDB coupling), respectively. For the cascade decay model the limits are
provided exclusively by the jet counting approach, where again the SR with the best expected sensitivity
to a given signal mass scenario is used to set the limit. Gluinos with masses up to 2230 (2340) GeV are
excluded for a neutralino with 1250 GeV mass and UDS (UDB) coupling .
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mavg range [GeV] ⟨𝜖𝜎⟩95
o𝑏𝑠[fb] 𝑆95

o𝑏𝑠 𝑆95
e𝑥𝑝 𝐶𝐿𝐵 𝑝(𝑠 = 0) (𝑍)

700 - 1000 7.3 1000 1300+460
−300 0.22 0.50 (0.00)

800 - 1100 5.7 800 360+150
−49 0.99 0.01 (2.5)

900 - 1200 2.1 290 210+88
−25 0.81 0.18 (0.91)

1000 - 1300 1.5 210 160+50
−34 0.80 0.18 (0.90)

1100 - 1400 0.54 76 120+45
−30 0.09 0.50 (0.00)

1200 - 1500 0.27 37 85+33
−24 0.00 0.50 (0.00)

1300 - 1600 0.16 23 63+37
−18 0.00 0.50 (0.00)

1400 - 1700 0.16 22 47+19
−13 0.00 0.50 (0.00)

1500 - 1800 0.24 33 38.8+16
−9.9 0.25 0.50 (0.00)

1600 - 1900 0.26 37 37.9+15
−9.7 0.47 0.50 (0.00)

1700 - 2000 0.30 42 34.1+12
−6.8 0.71 0.29 (0.55)

1800 - 2100 0.25 35 28.2+12
−7.6 0.72 0.28 (0.57)

1900 - 2200 0.29 41 24.5+11
−3.8 0.93 0.06 (1.5)

2000 - 2300 0.19 27 21.5+7.6
−4.4 0.78 0.19 (0.89)

2100 - 2400 0.15 21 15.5+6.2
−2.3 0.74 0.20 (0.84)

2200 - 2500 0.08 11 10.5+3.2
−1.9 0.57 0.40 (0.26)

2300 - 2600 0.08 11 9.2+3.9
−1.2 0.66 0.27 (0.61)

2400 - 2700 0.05 6.9 6.8+2.1
−1.4 0.51 0.48 (0.05)

2500 - 2800 0.02 2.3 3.1+2.1
−1.2 0.26 0.50 (0.01)

2600 - 2900 0.04 5.3 5.2+2.2
−1.3 0.52 0.46 (0.10)

2700 - 3000 0.06 8.3 8.2+0.4
−0.7 0.53 0.44 (0.16)

Table 5: The upper limit table for the ≥ 0 𝑏-tagged jets region. Left to right: 95% CL upper limits on the visible
cross section (⟨𝜖𝜎⟩95

o𝑏𝑠) and on the number of signal events (𝑆95
o𝑏𝑠 ). The third column (𝑆95

e𝑥𝑝) shows the 95% CL
upper limit on the number of signal events, given the expected number (and ±1𝜎 excursions on the expectation)
of background events. The last two columns indicate the 𝐶𝐿𝐵 value, i.e. the confidence level observed for the
background-only hypothesis, and the discovery 𝑝-value (𝑝(𝑠 = 0)).

17



mavg range [GeV] ⟨𝜖𝜎⟩95
o𝑏𝑠[fb] 𝑆95

o𝑏𝑠 𝑆95
e𝑥𝑝 𝐶𝐿𝐵 𝑝(𝑠 = 0) (𝑍)

700 - 1000 5.7 800 960+330
−240 0.31 0.50 (0.00)

800 - 1100 3.3 460 320+100
−65 0.89 0.11 (1.2)

900 - 1200 1.1 150 130+38
−31 0.74 0.24 (0.71)

1000 - 1300 0.92 130 92+40
−13 0.81 0.18 (0.91)

1100 - 1400 0.36 51 70+27
−20 0.17 0.50 (0.00)

1200 - 1500 0.16 23 52+21
−15 0.00 0.50 (0.00)

1300 - 1600 0.11 16 39+15
−11 0.00 0.50 (0.00)

1400 - 1700 0.12 17 28.9+12
−8.1 0.04 0.50 (0.00)

1500 - 1800 0.20 27 24.9+25
−7.1 0.61 0.38 (0.29)

1600 - 1900 0.25 35 30.0+10
−7.1 0.68 0.45 (0.13)

1700 - 2000 0.21 30 27.7+10
−7.7 0.58 0.42 (0.20)

1800 - 2100 0.17 24 24.0+5.9
−6.2 0.51 0.49 (0.03)

1900 - 2200 0.18 25 21.6+5.9
−5.8 0.71 0.26 (0.65)

2000 - 2300 0.13 18 17.1+5.3
−2.1 0.63 0.32 (0.47)

2100 - 2400 0.10 13 12.4+3.3
−2.6 0.63 0.30 (0.51)

2200 - 2500 0.05 6.4 6.4+2.5
−1.5 0.50 0.50 (0.00)

2300 - 2600 0.05 6.8 6.7+2.6
−0.8 0.54 0.42 (0.20)

2400 - 2700 0.03 4.0 3.9+2.2
−1.2 0.52 0.45 (0.14)

2500 - 2800 0.01 2.0 2.1+1.8
−0.9 0.47 0.49 (0.02)

2600 - 2900 0.04 5.4 5.3+2.2
−1.3 0.53 0.43 (0.19)

2700 - 3000 0.04 6.1 6.0+2.3
−0.6 0.53 0.42 (0.20)

Table 6: The upper limit table for the ≥ 1 𝑏-tagged jets region. Left to right: 95% CL upper limits on the visible
cross section (⟨𝜖𝜎⟩95

o𝑏𝑠) and on the number of signal events (𝑆95
o𝑏𝑠 ). The third column (𝑆95

e𝑥𝑝) shows the 95% CL
upper limit on the number of signal events, given the expected number (and ±1𝜎 excursions on the expectation)
of background events. The last two columns indicate the 𝐶𝐿𝐵 value, i.e. the confidence level observed for the
background-only hypothesis, and the discovery 𝑝-value (𝑝(𝑠 = 0)).
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Figure 8: Observed and expected exclusion contours for the gluino direct decay model with (left) 𝑈𝐷𝑆 and (right)
𝑈𝐷𝐵 decays, as obtained by the jet counting analysis (top) and mass resonance analysis (bottom). The yellow and
green contours of the band around the expected limit are the ±1𝜎 and ±2𝜎 variations including both systematic and
statistical uncertainties, respectively. The theoretical prediction is also shown, with the uncertainties in the prediction
shown as a coloured band.

19



1200 1400 1600 1800 2000 2200 2400

m(g̃) [GeV]

250

500

750

1000

1250

1500

1750

2000

m
(χ̃

0 1
)

[G
eV

]

ATLAS Preliminary√
s = 13 TeV, 140 fb-1

g̃g̃ production, g̃→ qqχ̃0
1, χ̃0

1 → qqq

g̃→qqχ̃
0
1
Forbidden

SUSY
theory

arXiv:1804.03568

All limits at 95% CL
Expected Limit (±1σ)
Observed Limit
±1σ
Previous Limit

1200 1400 1600 1800 2000 2200 2400

m(g̃) [GeV]

250

500

750

1000

1250

1500

1750

2000

m
(χ̃

0 1
)

[G
eV

]

ATLAS Preliminary√
s = 13 TeV, 140 fb-1

g̃g̃ production, g̃→ qqχ̃0
1, χ̃0

1 → qqb

g̃→qqχ̃
0
1
Forbidden

SUSY
theory

arXiv:1804.03568

All limits at 95% CL
Expected Limit (±1σ)
Observed Limit
±1σ
Previous Limit

Figure 9: Observed and expected exclusion contours for the gluino cascade decay model with (left) 𝑈𝐷𝑆 and (right)
𝑈𝐷𝐵 decays using the Jet Counting method. The contours of the band around the expected limit are the ±1𝜎
variations, including all uncertainties. The dotted lines around the observed limit illustrate the change in the observed
limit as the nominal signal cross-section is scaled up and down by the theoretical uncertainty. The diagonal line
indicates the kinematic limit for the decay of the gluino.

8 Conclusion

A search for R-parity-violating SUSY signals in events with multiple jets is performed with 140 fb−1 of
proton–proton collision data at

√
𝑠 = 13 TeV collected by the ATLAS detector at the LHC. Two methods

are utilised, a jet counting method searching for excess events in single-bin signal regions defined at high
jet multiplicity and high 𝐶, and a mass resonance approach, which searches for a localized excess in the
reconstructed gluino mass spectrum. A novel machine-learning approach is employed to address the
combinatorial assignment problem and successfully reconstruct the gluino mass. No significant excess is
seen in any signal region. Limits are set on the production of gluinos in the gluino direct decay and cascade
decay models in 𝑈𝐷̄𝐷̄ scenarios of RPV SUSY. In the gluino direct decay model, gluinos with masses up
to 1800 GeV are excluded at 95% CL. In the gluino cascade decay model, gluinos with masses as high as
2340 GeV are excluded for a neutralino with 1250 GeV mass. Model-independent limits are also set on
the signal production cross section times branching ratio in five overlapping signal regions. This search
significantly extends the limits from previous results beyond the expected improvement due to the larger
dataset. These results improve upon the previously existing LHC limits owing to the larger luminosity, the
introduction of event shape variables to suppress background, and the development of machine-learning
techniques to assign jets to gluinos and reconstruct their mass.
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