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Abstract: The ALICE (A Large Ion Collider Experiment) detector at the Large Hadron
Collider (LHC), operated by the European Organization for Nuclear Research (CERN),
is dedicated to heavy-ion collisions. Within ALICE, the application logs of the online
computing systems are consolidated through a logging system known as Infologger, which
integrates data from various sources. To identify potential anomalies, shifters in the
control room manually review logs for anomalies, which require significant expertise and
pose challenges due to the frequent onboarding of new personnel. To address this issue,
we propose a real-time semi-supervised log anomaly detection framework designed to
automatically detect anomalies in ALICE operations. The framework leverages BERTopic,
a topic modeling technique, to provide real-time insights for incoming log messages
for shifters. This includes an analytical dashboard that represents the anomaly status
in log messages, facilitating informative monitoring for shifters. Through evaluation,
including Infologger and BGL (BlueGene/L supercomputer), we analyze the effects of
word embeddings, clustering algorithms, and HDBSCAN hyperparameters on model
performance. The result demonstrates that the BERTopic can enhance the log anomaly
detection process over traditional topic models, achieving remarkable performance metrics
and attaining F1-scores of 0.957 and 0.958 for the InfoLogger and BGL datasets, respectively,
even without the preprocessing technique.

Keywords: ALICE experiment; BERTopic; clustering; FLP cluster; machine learning; topic
modeling

1. Introduction

The European Organization for Nuclear Research (CERN) is the world’s leading
institution for particle physics research, conducting extensive experiments aimed at un-
derstanding the fundamental nature of matter and energy. Over the years, a variety of
high-energy physics experiments have been performed with CERN using different particle
accelerator complexes, each addressing different key scientific questions. One of these
experiments was a Large Ion Collider Experiment (ALICE) [1], which was dedicated to
the study of heavy-ion physics at the Large Hadron Collider (LHC). It was designed to
investigate the properties of strongly interacting matter under extreme energy densities,
wherein a phase of matter called quark—gluon plasma is formed.

In ALICE, the ALICE O? (Online-Offline) facilities [2] are designed to handle the
exceptionally high data rates generated via the ALICE detector during heavy-ion collisions.
It utilizes a scalable, distributed computing architecture to enable real-time processing
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and analysis of massive data streams, allowing the ALICE collaboration to monitor au-
tomated system logging and ensure any issue that arises during experimental runs is
promptly addressed.

The importance of real-time capability becomes even more evident when the high-
stakes nature of experiments at CERN is considered. Any downtime in the system, espe-
cially during an active experimental run, could lead to severe consequences, compromised
experiment integrity, or even the loss of crucial scientific insights. Hence, logging messages
plays a vital role in both system monitoring and troubleshooting, providing essential in-
formation on runtime events and activities to detect anomalies in a timely manner. In a
single ALICE data-taking run, the volume of log messages generated can reach up to one
million. This challenge is amplified during system upgrades, when numerous software
modifications may introduce new types of logs, leading to new failure points. Real-time
log anomaly detection addresses this issue by identifying anomalies as they occur and pro-
viding immediate feedback, enabling operators to take corrective actions before problems
escalate and thus enhancing the reliability of the system.

Current trends in log anomaly detection have leveraged deep learning and unsuper-
vised methods to improve accuracy and reduce dependency on labeled data. Techniques
such as Autoencoders with Isolation Forest [3], LSTM-based models like DeepLog [4],
CNN:s [5], and transformer-based approaches like NeuralLog [6] have achieved notable suc-
cess. However, these systems often lack interpretability and diagnostic capabilities, offering
only binary anomaly flags. To address this limitation, topic modeling has emerged as a
promising solution, enabling the categorization of anomalous log entries into interpretable
topics. By integrating methods such as NMEF, LDA, and clustering on latent vectors, recent
research [7-9] has demonstrated improved context awareness in anomaly detection.

Given these challenges, we present a real-time log anomaly detection framework based
on BERTopic [10] for detecting anomalous activities in log data generated via ALICE. We
placed emphasis on investigating the scalability of the model when provided with a large
amount of data and on exploring the factors that contribute to performance improvement.
This study offers the following contributions:

e We present a complete framework for automatic log anomaly detection with a focus
on explaining semantics inside each topic and automatically labeling the incoming
log messages.

e We developed a semi-supervised real-time log anomaly detection model designed to
provide actionable insights for shifters as new log messages arrive.

*  We provide a monitoring dashboard to analyze distribution of topics in log messages,
which helps identify anomalies effectively.

This paper is organized as follows. In Section 2, we summarize the related works
on topic modeling in log anomaly detection. Section 3 explains in detail our proposed
framework for real-time semi-supervised log anomaly detection and experimental setup.
Section 4 describes and discusses our analytical results. Section 5 finally concludes
the paper.

2. Literature Review

Recent advancements in log anomaly detection have explored diverse techniques to en-
hance system reliability and security. Farzad and Gulliver [11] combined autoencoders [12]
with isolation forest [3] to create a two-stage unsupervised framework that extracts features
from logs and classifies anomalies, reducing reliance on labeled data but lacking root cause
analysis. DeepLog [4] employed LSTM [13] to learn sequential patterns in logs using log
parsing [14], offering effective anomaly detection but limited adaptability and interpretabil-
ity. Lu et al. [5] utilized a CNN [15] with Logkey2Vec to capture short-range dependencies
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in logs, outperforming LSTM and MLP [16] in certain scenarios, although this approach
was still reliant on log parsing. LogRobust [17] addressed log instability with semantic
vectorization and attention-based Bi-LSTM [18], providing robustness to evolving logs but
struggling with drastic changes. LogAnomaly [19] combined sequential and quantitative
data using template2vec and LSTM to detect anomalies while mitigating false alarms from
unseen templates, yet it still lacked diagnostic capability. Lastly, NeuralLog [6] proposed an
approach without log parsing using BERT [20] and Transformer models to directly extract
semantic representations from raw logs, achieving state-of-the-art results across datasets
but still failing to offer detailed insights into anomaly causes.

Despite all significant advances in log anomaly detection techniques, existing ap-
proaches exhibit a notable limitation, as they typically provide only binary classification
outputs that indicate whether an anomaly exists without delivering contextual informa-
tion necessary for effective troubleshooting. This creates significant challenges for sys-
tem administrators who require more comprehensive insights to diagnose and resolve
issues efficiently.

Topic modeling offers a promising approach to overcoming the limitations of current
systems by extracting meaningful topics from log messages. By applying topic modeling
techniques to anomalous log entries, it is possible to develop systems that not only detect
anomalies but also categorize them into interpretable topics. This enables shifters to quickly
comprehend the nature of issues and direct their attention to the most relevant system
components or facilities for further investigation. This research [7] has demonstrated that
combining topic modeling techniques such as non-negative matrix factorization (NMF)
and latent Dirichlet allocation (LDA) with anomaly detection can effectively cluster outlier
messages into coherent topics. Other research [8,9] has applied clustering strategies to
detect abnormal behavior in latent vectors. Given the advancements in topic modeling,
it is now feasible to combine topic modeling with the ability to detect anomalies within
log messages.

In what follows, we provide a review of key concepts and methodologies in log
anomaly detection, with a focus on the topic modeling algorithms employed in previous
works, including latent Dirichlet allocation (LDA) [21], latent semantic analysis (LSA),
and non-negative matrix factorization (NMF) [22]. We analyze their strengths, limitations,
and applicability to log data analysis, illustrating how topic modeling contributes to
uncovering patterns and identifying anomalies. Additionally, this section discusses word
embeddings, a crucial foundation for topic modeling, and their role in enhancing the
effectiveness of these algorithms.

2.1. Latent Dirichlet Allocation (LDA)

Latent Dirichlet allocation (LDA) [21] is one of the basic probabilistic models for topic
modeling. It identifies latent topics in text data by modeling the data as a mixture of topics,
where each topic is a distribution over words. These models rely on input representa-
tions (e.g., bag-of-words (BoW), or word frequency) to construct the topic distributions,
summarizing term occurrences to facilitate topic extraction.

LDA has been extensively applied to detect anomalies by identifying log mes-
sages with topic distributions that deviate significantly from the normal. For instance,
Kasliwal et al. [23] proposed a hybrid anomaly detection model combining LDA with
Gaussian mixtures (G-LDA) to identify anomaly packets in network traffic. Similarly,
Elkhadir et al. [24] utilized median-based LDA alongside principal component analysis
(R1-PCA) to detect anomalies in network traffic logs. These studies highlight LDA’s versa-
tility in handling structured textual data (e.g., log messages), where patterns and semantic
structures play a crucial role in identifying anomalies.



Appl. Sci. 2025, 15, 5901

4 0f27

The strength of LDA lies in its ability to provide interpretable topic distributions,
making it suitable for analyzing log data. Additionally, its probabilistic framework supports
extensions for incorporating contextual information, as shown in Mahapatra et al. [25],
who applied LDA for contextual anomaly detection in a variety of text forms (i.e., emails,
blogs, papers, and video tags). However, LDA is not without limitations. Its performance
heavily depends on the length of the documents, as a sufficient number of words is required
to generate meaningful topic distributions. When it is applied to very short documents,
the word frequency becomes sparse and unreliable, reducing the effectiveness of LDA’s
probabilistic modeling [26].

2.2. Latent Semantic Analysis (LSA)

Latent semantic analysis (LSA) [27] is a widely recognized method for dimensionality
reduction and topic modeling in text data. In the context of anomaly detection, LSA
analyzes the underlying structure of text data by mapping them into a lower-dimensional
semantic space. This representation allows the identification of anomalies by detecting
deviations from established patterns in the semantic space.

Lefoane et al. [28] utilized LSA for decomposition and cluster representation in net-
work traffic logs, demonstrating its capability to enhance model performance by reducing
irrelevant features and effectively classifying anomalies. Similarly, Fawaz and Sanders [29]
applied LSA to establish behavioral baselines for process anomaly detection, showing its
effectiveness in distinguishing normal behavior from anomalous activities by constructing
LSA matrices from the normal training set. Additionally, McCulloh et al. [30] further
highlighted the utility of LSA in analyzing free text data by detecting changes in social
groups through email analysis, emphasizing its strength in uncovering hidden patterns in
structured textual datasets.

The primary strength of LSA lies in its ability to handle high-dimensional log data
and reveal latent patterns, making it especially useful for understanding the underlying
structure of log messages. However, LSA faces several drawbacks [31]. It assumes a joint
Gaussian distribution between words and documents, making it less consistent with the
observed data. The factorized matrix also contains negative values that lack a clear meaning
in the context of word distributions. Moreover, choosing the number of latent dimensions
in LSA typically relies on ad hoc heuristics, rather than formal statistical methods, leading
to a less systematic approach to determining model complexity.

2.3. Non-Negative Matrix Factorization (NMF)

Non-negative matrix factorization (NMF) [22] is a dimensionality reduction and clus-
tering technique widely applied to text data for uncovering latent features and patterns.
By approximating a non-negative data matrix as the product of two lower-dimensional ma-
trices, NMF can extract meaningful topics or clusters from textual datasets. This property
has made NMF particularly effective for log anomaly detection, where the sparse nature of
log data aligns well with the method’s non-negativity constraint. Its ability to decompose
log data into interpretable components allows for identifying anomalous patterns and
behaviors in structured datasets.

Although there are no direct applications of NMF specifically targeting log message
analysis, its use in related domains highlights its potential for anomaly detection. For ex-
ample, Wang et al. [32] utilized NMF to detect anomalies in profiling a program and
user behavior by identifying deviations from typical patterns in user commands. Simi-
larly, Alshammari et al. [33] applied NMF to outlier detection in wireless sensor networks,
showcasing its capability to manage large-scale and distributed systems. These studies
demonstrate NMF’s relevance for tasks that share similarities with log anomaly detection.
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Recent advancements in NMF methodologies focus on enhancing its robustness to
noise and sparsity in text data. Li et al. [34] introduced an anomaly-aware symmetric NMF
for short text clustering. This approach demonstrates the adaptability of NMF for anomaly
detection in which one could consider short text as a log message.

The primary strength of NMF lies in its ability to uncover hidden patterns in log
data while maintaining interpretability by decomposing the data into meaningful matrices.
However, NMF is highly sensitive to the initialization of the factor matrices. Poor initial-
ization can lead to local optima instead of the global solution [35]. Additionally, NMF is
computationally expensive. An alternative approach employs an alternating minimization
cost function, which enhances its efficiency and scalability for large datasets [36].

2.4. Word Embeddings

Word embeddings serve as a crucial foundation for topic modeling by converting text
into numerical vectors within latent semantic dimensions. This transformation is essential,
as it enables machines to process and analyze textual data mathematically [37]. The quality
of word embeddings directly impacts a topic model’s performance. Additionally, these
embeddings reduce dimensionality while preserving key semantic information, making
the topic modeling process both efficient and effective.

2.4.1. Bag of Words (BoW)

The bag of words (BoW) [38] representation forms a foundational preprocessing
technique for latent Dirichlet allocation (LDA) topic modeling by transforming documents
into numerical vectors based on term frequencies. This approach constructs a document-
term matrix in which each document vector represents word abundance, disregarding
syntactic structure. While BoW’s computational efficiency facilitates LDA’s topic inference,
its inability to capture semantic relationships and contextual information presents inherent
limitations for a sophisticated topic analysis.

2.4.2. Term Frequency-Inverse Document Frequency (TF-IDF)

Term frequency-inverse document frequency (TF-IDF) [39] represents a statistical
weighting mechanism that quantifies term significance within document collections by
balancing local frequency with global document frequency. This weighted representation
facilitates dimensionality reduction techniques in topic modeling, specifically through LSA
and NMEF. While LSA employs singular value decomposition on the TF-IDF matrix to extract
latent semantic dimensions, NMF decomposes it into interpretable non-negative compo-
nents representing topical structures. Both methodologies exploit TF-IDF’s discriminative
properties to identify coherent thematic patterns within a document’s body.

2.4.3. Sentence Transformer (SBERT)

SBERT is a word-embedding model that complements the topic modeling process
by enabling semantic understanding and similarity computations between textual data
points. It leverages transformer architectures (i.e., bidirectional encoder representations
from transformers (BERTs) [20]) to generate dense vector embeddings for textual data,
enhancing topic modeling by capturing contextual and semantic features.

By embedding text into a high-dimensional vector space, the framework facilitates
grouping semantically similar sentences, overcoming the limitations of traditional methods
like LDA, which rely heavily on surface-level word co-occurrence. This semantic approach
significantly improves the clustering and interpretability of complex datasets, as well as
unstructured and varied log messages, in topic modeling applications.

Although algorithms such as LDA, LSA, and NMF have demonstrated utility in log
anomaly detection, they exhibit notable limitations. These methods predominantly rely



Appl. Sci. 2025, 15, 5901

6 of 27

on bag-of-words representations, which are insufficient for capturing the contextual and
sequential information inherent to log messages. Additionally, their generalizability to
unseen data is constrained, particularly when the underlying log distribution evolves
over time. These challenges underscore the need for advancements in topic modeling
techniques. In this context, approaches leveraging deep learning or contextual embeddings
offer a promising avenue for addressing the shortcomings of traditional algorithms. In the
following section, we introduce our proposed log anomaly detection framework, which
utilizes sentence transformer embeddings (SBERTs) and the BERTopic model to overcome
these limitations effectively.

3. Methodology
3.1. Proposed Framework

To address the limitations identified in existing log anomaly detection methodologies,
we propose a framework for log anomaly detection, emphasizing the real-time detection
and categorization of anomalies. Central to this framework is the use of topic clustering,
which organizes log messages into distinct topics, allowing users to better understand the
structure and nature of anomalies as they emerge. By leveraging BERTopic [10], a powerful
topic clustering technique that integrates BERT embeddings, the framework enables users
to identify indicative keywords of anomalous behavior. This real-time categorization
provides crucial insights into anomaly groups, empowering users to analyze and respond
to potential issues quickly. The results generated by BERTopic are seamlessly integrated into
an informative dashboard, which displays detailed information for each topic, including
relevant words, classified log messages, and the probability of messages being anomalies.
This unified presentation ensures that users can monitor, analyze, and act on anomalies
in real time, providing an all-in-one framework for streamlined anomaly management.
An overview of the proposed framework is presented in Figure 1.

‘ Raw Log Message ‘

1 Preprocess 1
BERTopic )
‘ SBERT ‘ Embeddings
Dimensionality
‘ UMAP ‘ Reduction
Training ‘ HDBSCAN ‘ Clustering
‘ Topic Representation c-TF-IDF

l

‘ Anomaly Classification

l

‘ Analytic Dashboard ‘

Figure 1. An overview of the proposed framework. Raw log messages optionally undergo prepro-
cessing (dashed-line box) before topic modeling with BERTopic. The extracted topics are then utilized
for anomaly classification with the results presented in an analytic dashboard.
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In the following sections, Sections 3.1.1-3.1.4, we provide a description of each pro-
cess, ranging from data preprocessing and BERTopic to anomaly classification and the
analytic dashboard.

3.1.1. Data Preprocessing

In our data preprocessing pipeline, we utilize Drain [40] and regular expressions to
identify and extract non-dictionary elements such as usernames, hostnames, IP addresses,
URL paths, and numerical values. This step helps remove noise and irrelevant tokens,
improving the model’s ability to capture meaningful semantic patterns for topic modeling.
However, as shown with the dashed line in Figure 1, preprocessing is an optional step,
rather than a strict requirement. To assess its impact, we conducted experiments to evaluate
the effects of preprocessing on model performance. The results demonstrate that our
proposed framework can achieve high accuracy even without preprocessing, as discussed
in Section 4.1.

3.1.2. BERTopic

BERTopic [10] is a topic modeling technique that utilizes transformers for embedding
representations and clustering algorithms to discover topics in textual data. It stands
as a significant advancement from traditional topic modeling approaches such as LDA
and NME, particularly in handling contextual and semantic information in large-scale text
corpora. As illustrated in Figure 1, BERTopic can be divided into the following components:

¢  Text embedding: BERTopic utilizes pre-trained transformer models, sentence trans-
former embeddings (SBERTs), to convert textual data into dense vector representations,
capturing the contextual relationships between words and sentences.

*  Dimensionality reduction: BERTopic applies dimensionality reduction techniques
(i.e., uniform manifold approximation and projection (UMAP) [41]). This reduces the
complexity of the embedding space while preserving the essential structure of the
data, facilitating efficient and meaningful clustering in subsequent steps.

*  Clustering: The embedded vectors are clustered using Hierarchical Density-Based
Spatial Clustering of Applications with Noise (HDBSCAN) [42] as a default algorithm
in BERTopic. HDBSCAN excels at identifying clusters of varying densities, handling
noise, and automatically determining the optimal number of clusters, making it
ideal for complex data. Alternatively, other algorithms can be applied. DBSCAN [43],
another density-based method, performs well for uniform-density clusters but requires
manual parameter tuning and struggles with varying densities. K-means [44,45],
a centroid-based algorithm, is computationally efficient but assumes spherical clusters
and requires the number of clusters to be predefined.

¢  Topic representation: Class-based Term Frequency-Inverse Document Frequency
(c-TF-IDF) has been introduced in BERTopic for topic representation. It is an adapta-
tion of the traditional TF-IDF technique designed for topic modeling. Unlike TF-IDF,
c-TF-IDF calculates term significance within specific clusters or classes (e.g., topics).
It aggregates term frequencies within a class and adjusts for their rarity across other
classes, highlighting terms that define each topic. This approach is particularly effec-
tive in methods such as BERTopic, as it emphasizes the key terms that characterize
each topic. This approach provides a meaningful representation of the underlying
clusters by highlighting the terms that are used to define the cluster. The c-TF-IDF
score for a term x within topic ¢ is computed as follows:

Wee = toe - log(1 + 2) (1)
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where {fy . is the frequency of word x in class ¢, f is the frequency of word x across
all classes, and A is the average number of words per class.

In anomaly detection within logging systems, BERTopic can be employed to uncover
latent topics in log entries, aiding in the identification of anomalous patterns or events.
By extracting semantic topics from logs, the model can help distinguish between normal
system behavior and potential anomalies, where an anomalous event might correspond
with an unusual topic. For instance, logs containing error messages, system failures,
or security breaches can be categorized into distinct topics that represent unusual activity,
which can then be flagged as anomalies.

Figure 1 illustrates the proposed framework, which begins by ingesting raw log mes-
sages from the logging system. A preprocessing stage ensures consistency by standardizing
log messages through data preprocessing tasks, as mentioned. After preprocessing, pre-
processed log messages are transformed into high-dimensional embeddings using SBERT,
which encodes their semantic content. These embeddings are then reduced in dimensional-
ity using UMADP, preserving intrinsic structures while reducing computational complexity.
Next, the reduced embeddings are clustered using HDBSCAN, which identifies topics
and labels outliers as potential anomalies. Then, c-TF-IDF generates interpretable topic
representations by extracting key terms for each cluster, enhancing user understanding.
As a result, the framework produces two key outcomes for users which are anomaly
classification results and an analytic dashboard for detailed log analysis.

3.1.3. Anomaly Classification

Anomaly classification is a crucial component of our proposed framework. Since
the topic model operates in an unsupervised manner, it generates a topic distribution
that represents the probability of a given log message belonging to all possible topics.
Based on this distribution, the framework assigns the log message to the topic with the
highest probability. In each topic, n-grams of words are extracted from log messages
related to that topic, facilitating downstream applications such as text analysis and the
study of log message behavior. However, when applied to anomaly classification, this
approach does not inherently produce a binary decision indicating whether a log message
is anomalous. To address this, we integrate topic representations with rule-based criteria
for anomaly assessment. Specifically, log severity levels (e.g., INFO, WARNING, ERROR,
and CRITICAL), which are already included within system-generated log messages, are
leveraged to distinguish errors and prioritize critical issues.

The classification process produces the topic prediction. Log messages that do not
align with the identified normal topics and are assigned as a high-severity level (e.g.,
ERROR and CRITICAL) are flagged as anomalies. This approach ensures that anomalies
are not only identified based on their deviation from normal patterns but are also filtered
by their potential impact or urgency, as indicated by their severity. Each flagged anomaly
is accompanied by its corresponding log message content, providing context for further
analysis and rapid response. This combination of topic modeling and log message severity
enhances the reliability and interpretability of the anomaly classification.

3.1.4. Analytic Dashboard

Another outcome of our proposed framework is an interactive analytic dashboard,
as shown in Figure 2, which visualizes the results of topic modeling using BERTopic.
The dashboard is designed to support rapid diagnostics and anomaly classification by
presenting detailed information about individual log messages through the following
six components:
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Anomaly status: This section prominently displays whether the analyzed log message
is classified as an anomaly or normal. It enables operators to immediately assess the
urgency of the issue.

Log message content: This part presents the original content of the log message,
allowing users to understand the raw system output. It provides a whole context for
interpreting the detected anomaly.

Classified topic: This shows the topic number assigned to the log message by
BERTopic, indicating the cluster it belongs to. This helps group similar incidents
and track recurring issues.

Log message information: This section contains key metadata fields extracted from
the log, including severity, system, detector, and facility. These metadata elements
are crucial for routing alerts to the correct subsystem experts and understanding the
operational scope of the issue.

Topic terms: This panel lists the top keywords and multi-word expressions that define the
assigned topic, along with their corresponding c-TF-IDF scores. These terms offer insight
into the semantic themes captured via the model and aid in identifying anomaly terms.
Topic distribution: This pie chart illustrates the probabilistic topic distribution for the
log message, showing how strongly the message aligns with other topics beyond the
primary one. This probabilistic view supports uncertainty estimation and highlights
potential overlaps or ambiguities in the message’s classification.

Together, these components provide a comprehensive and interpretable interface for

analyzing log data, supporting both high-level system monitoring and in-depth anomaly in-
vestigation.

Anomaly

Status 0

RAWPARSER: Incomplete HBF - jump in packet counter 43 to 45 (1
total RawParser errors)

Content @

206

Topic

E DPL TPC tpc-idc-to-vector
Severity System Detector Facility @

Topic Terms

Term
rawparser errors
errors rawparser

rawparser incomplete
incomplete hbf
rawparser
total rawparser
hbf jump
hbf
packet counter
dropped packets

Topic Distribution

® Topic 206
@ Topic 50

@ Topic 283

c-tfidf 13.12%
0.64803815
0.6061491
0.60437876
0.50728333
0.49230665
0.46746507
0.40319246

@ Topic 94
@ Topic 95
@ Topic 99

Topic 98
@ Topic 97

0.3834384
0.3687319
0.36401206 @ Topic 96

@ Topic 298

® @

Figure 2. Dashboard information: (1) anomaly’s status, (2) log message’s content, (3) classified topic,

(4) log message’s information, (5) topic terms, (6) topic distribution.

According to both outcomes, this framework aims to enhance the anomaly detection

process significantly, improving both the detection accuracy and comprehension of log

messages. The framework enables a deeper understanding of anomalous behaviors by

offering detailed insights through an intuitive dashboard. This facilitates more effective
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identification and mitigation of potential issues, advancing log analytics and contributing
to the development of more reliable systems.

3.2. Datasets

In this study, two datasets were utilized for experimental evaluation: InfoLogger [46],
which comprises ALICE O? application logs that document activities within the modular
architecture of the ALICE facility, and BGL (BlueGene/L), one of the benchmark datasets
in the Loghub [47] repository that offers a vast collection of system log datasets for log ana-
lytics research. Both examples of datasets are shown in Table 1, which illustrates the shared
structure between InfoLogger and BGL logs, highlighting key fields such as timestamps,
log levels, component identifiers, and message contents. More detailed information on
each of the datasets is provided in the following subsections.

Table 1. Example of datasets.

Infologger Dataset

LineId severity level p 1 pid username system facility detector partition run content
1 E 2 1716783000  alio2-crl-qc03  alio2-crl-qc03 1649194 qc QC post/ TOFQuality Task TOF 2nenhEPazQ4 552028  Requested resource does not exist:
BGL Dataset
Line Id label timestamp date node time noderepeat type component level content
1 KERNDTLB 1118536327 2005.06.11 R30-M0-N9-C:J16-U01 2005-06-11-17.32.07.581048 ~ R30-MO0-N9-C:J16-U01 RAS KERNEL FATAL data TLB error interrupt

3.2.1. Infologger

InfoLogger serves as a critical infrastructure component for the collection, storage,
and visualization of log messages generated via diverse processes operating across multiple
machines in the ALICE detector. This system acts as a core broker, facilitating the aggre-
gation of log data from a wide array of applications and services distributed throughout
machines. As the ALICE detector evolves, newly introduced components are seamlessly
integrated into this logging framework, ensuring comprehensive coverage of system ac-
tivities. During active physics operations, the system experiences a high volume of log
generation, which can be up to one million in each run due to the concurrent operation of
multiple detectors and associated applications. The scale and complexity of the InfoLogger
system present significant challenges for effective monitoring and anomaly detection.

3.2.2. BGL

The BlueGene/L (BGL) dataset represents a significant resource in the field of large-
scale computing system analysis and anomaly detection research. This open-access dataset
comprises logs collected from the BlueGene /L supercomputer system, a high-performance
computing (HPC) infrastructure operated by Lawrence Livermore National Labs (LLNL)
in Livermore, CA, USA. The system’s architecture is characterized by its impressive scale,
incorporating 131,072 processors and 32,768 GB of memory and thus providing a rich
source of operational data from a complex, distributed computing environment. BGL
logs are particularly valuable due to their comprehensive nature, encompassing both alert
and non-alert messages, which are distinctly identified through alert category tags. This
binary classification is facilitated via a simple labeling scheme: non-alert messages are

“ o

denoted with a “-” in the first column of the log, while alert messages are indicated with
alternative markers. Such a clear delineation of alert statuses within the dataset renders it
exceptionally suitable for research in anomaly detection. The BGL dataset has consequently
gained prominence in the academic community, serving as a benchmark in numerous
studies focusing on log-parsing techniques, anomaly detection algorithms, and failure
prediction models in large-scale computing environments.

The statistics for both datasets are presented in Table 2, with a focus on anomaly

sessions. InfoLogger contains only 387 confirmed anomalous sessions (0.48%), reflecting
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the limited availability of expert-verified anomalies, which poses challenges for evalu-
ation. In contrast, BGL provides a more balanced distribution with 31,374 anomalous
sessions (45.31%), making it well suited for comparative analysis. Both datasets share a key
characteristic: the inclusion of a property that indicates the severity level of log content.
Specifically, this property is referred to as “severity” in InfoLogger and “level” in BGL. We
utilize this attribute to identify anomalies in log messages, serving as the ground truth
labels for evaluation. This shared property forms a robust foundation for benchmarking
our methodology. By leveraging the similarities between InfoLogger and BGL, we ensure a
fair basis for experimental comparison.

Table 2. Dataset properties.

Dataset L Max # Normal # Sessions Anomaly # Sessions Total # Sessions
ogs/Sequence
Infologger 2,194,073 79,528 (99.52%) 387 (0.48%) 79,915 (100%)
BGL 152,329 37,875 (54.69%) 31,374 (45.31%) 69,249 (100%)

3.3. Data Labeling

In the ALICE experiment, the InfoLogger dataset lacked predefined log labels. Ad-
dressing this necessitates an understanding of the operational context. During operations,
shifters are responsible for managing the data collection process, which involves starting
and stopping the collection of physics data from the detector as particle collisions occur.
Shifters serve in different functions, such as quality control (QC), first-level processing
(FLP), and the detector team, depending on their specific responsibilities. However, all
shifters are required to perform a common task: logging actions and errors that occur
during the experimental run. These logs are referred to as “Bookkeeping” logs, which
document all actions undertaken by shifters during a given run. The structure of the
bookkeeping logs enables the InfoLogger data to be categorized into potential anomaly
topics. In this study, we manually explored the bookkeeping data and mapped them into
the InfoLogger dataset to identify log messages associated with anomalous behavior. These
manually labeled anomalous logs were then used for model training. For the BGL dataset,
the labels were already provided, making the labeling process unnecessary in this case.

3.4. Baseline Methods

In this work, we selected LDA, LSA, and NMF as traditional algorithms for baseline
methods. LDA'’s parameters include n_components, doc_topic_prior, topic_word_prior,
and learning_method. LSA’s parameters are n_components, n_iter, and n_oversamples.
NMF’s parameters are n_components, solver, beta_loss, and other parameters. However,
we focused solely on the n_components parameter, which determines the number of topics,
and left other parameters at their default states. In upcoming experiments, other algorithms,
such as LDA, LSA, and NMF, were not considered for hyperparameter tuning due to their
inherent limitations when dealing with unprocessed log data and their dynamic density.
These algorithms rely on fixed or rigid structures, making them less effective in capturing
the evolving and non-uniform characteristics of log messages.

3.5. Hyperparameter Tuning on HDBSCAN

To optimize the performance of our framework, we focused our hyperparameter
tuning exclusively on the HDBSCAN algorithm, which serves as a core component of the
system. Density-based clustering approach in HDBSCAN is particularly well suited to this
type of data, allowing for more adaptive anomaly detection.
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3.5.1. Min_Samples

Min_samples is a parameter that is identical in both HDBSCAN and DBSCAN, as HDB-
SCAN is an extension of DBSCAN. The min_samples parameter determines the algorithm'’s
sensitivity to density variations within the data. In DBSCAN, it specifies the minimum
number of points required to consider a point as a core point (i.e., a point surrounded by
a minimum number of nearby points within a certain distance which the algorithm uses
to identify clusters with high point density), effectively influencing how the algorithm
differentiates between dense regions and sparse regions. This parameter indirectly controls
the minimum-density threshold for forming clusters, with higher values resulting in stricter
density requirements. Conversely, lower values relax the density criteria, enabling the
detection of clusters in less dense areas.

3.5.2. Min_Cluster_Size

The HDBSCAN introduces min_cluster_size as an additional parameter to DBSCAN. It
serves as a critical determinant for the minimum number of points required to form a cluster
by establishing the smallest number of log messages that the algorithm will recognize as
a valid cluster, thereby influencing the resolution of clustering results. This parameter
ensures that clusters are composed of a sufficiently dense group of points, avoiding the
identification of noise or outliers as separate clusters. A smaller min_cluster_size allows
the algorithm to detect finer-grained, potentially smaller clusters, while a larger value
promotes the formation of broader and more robust clusters. However, a larger value also
ignores small clusters if it is excessively large. This parameter is particularly important in
controlling the granularity and reliability of clustering outcomes.

3.5.3. Cluster_Selection_Epsilon

Unlike DBSCAN, HDBSCAN also includes the cluster_selection_epsilon parameter.
The cluster_selection_epsilon extends the hierarchical cluster selection process in HDB-
SCAN by merging clusters that are in close proximity to each other within the spanning
tree. It essentially defines a distance threshold that determines how far apart clusters can be
before being considered for merging. A smaller cluster_selection_epsilon results in sparse
boundaries, preserving more distinct and separate clusters, whereas a larger value allows
for broader merging, potentially combining closely related clusters into a single, larger
cluster. In relation to min_cluster_size, this mechanism is particularly useful in applications
where the smaller cluster is considered but where we want to avoid micro-clusters inside
the large cluster, as it provides additional control to adapt the clustering results to the
specific needs of the dataset or the analysis objectives.

In the experiment, we systematically evaluated HDBSCAN's performance by modify-
ing individual hyperparameters while maintaining all other parameters at their scikit-
learn default values (https://scikit-learn.org/1.5/modules/generated /sklearn.cluster.
HDBSCAN.html (accessed on 17 March 2025)), as shown in Table 3.

Table 3. The default hyperparameters setting.

No. Parameter Value
1. min_cluster_size 5
2. min_samples 5
3. cluster_selection_epsilon 0.0

3.6. Evaluation

To evaluate our experiment, five evaluation metrics were used to measure the perfor-
mance of the proposed framework in detecting anomalous log messages. These metrics
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were precision, recall, F1-score, the false positive rate (FPR), and the false negative rate
(FNR), all of which can be computed based on values provided in the confusion matrix (i.e.,
true positives (TPs), false positives (FPs), false negatives (FNs), and true negatives (TN)).

In particular, for this study, the main focus was on recall, which measures the ability
of the framework to detect all anomalous log messages in the dataset. Maximizing recall
is critical in high-stakes environments like the ALICE experiment, where detecting every
anomaly is essential to minimize the risk of undetected system failures. Recall can be
computed using the following formula:

True Positive

Recall = . 2
ect True Positive + False Negative @

Precision is also important, as it evaluates the proportion of correctly identified anoma-
lies among all messages flagged as anomalous. High precision ensures fewer false positives,
reducing unnecessary alerts and making the system more practical for real-world monitor-
ing. Precision can be computed as follows:

True Positive

Precision = ' ’
TeCISIOn = e Positive + False Positive ¥

While recall is prioritized, the Fl-score is used to balance recall and precision by
providing a single measure of overall performance. As the harmonic mean of precision
and recall, the F1-score ensures that the model not only captures anomalies effectively but
also maintains accuracy in its predictions. This combination of metrics enables a robust
evaluation of the framework, ensuring its effectiveness in detecting anomalies and its
reliability in operational contexts. The Fl-score can be computed as follows:

2 x Precision x Recall

F1— = . 4
score Precision + Recall @

In addition to the above metrics, the anomalies mostly occur rarely and lead to an
imbalanced class problem. Precision and recall can be biased towards the majority class
as a simple strategy of always predicting the majority class can yield high precision and
recall scores, but this is not a desirable outcome, as it fails to capture the model’s ability to
identify the minority class instances correctly. Therefore, the other two metrics included in
this work were the false positive rate (FPR) and the false negative rate (FNR).

FPR is commonly termed the false alarm rate. It quantifies the proportion of negative
instances (e.g., normal cases) that are incorrectly classified as positive (e.g., anomalous
cases) through the classification model. A high FPR can be problematic because it leads to an
increased number of false alerts, which can pose an inconvenience to system administrators,
who receive erroneous alerts generated via the model. FPR is defined as follows:

False Positive

FPR = .
True Negative + False Positive

)

FNR, commonly termed the misdetection rate, quantifies the likelihood that the model
will fail to detect or identify a positive instance, resulting in a missed detection or a false
negative prediction. A high false negative rate can be problematic because it carries severe
implications for administrators, leading to unexpected system failures. FNR is defined as

follows:
False Negative

™ True Positive + False Negative

ENR (6)
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Incorporating FPR and FNR alongside precision, recall, and F1-score provides valuable
insights into the model’s ability to identify the minority class instances correctly while
minimizing false alarms.

3.7. Experimental Setup

Our experiments were performed on a virtual machine simulating from a Linux server
with 16 Intel(R) Xeon(R) Gold 6126 CPUs, 64 GB of RAM, and a single NVIDIA TESLA V100
with 32 GB of vVRAM. All development was performed using the Python programming
language (https:/ /www.python.org/downloads/release/python-31016 (accessed on 17
March 2025)), including the Pandas, Scikit-Learn, Gensim, and BERTopic packages.

4. Results and Discussion

In this section, we present the results of three experiments. First, we evaluate the
performance of our model in comparison to existing topic modeling techniques. Sec-
ond, we investigate the impact of different clustering algorithms within the modular
BERTopic framework to identify the most effective algorithm. Third, we perform hy-
perparameter tuning, focusing on three key parameters: min_cluster_size, min_samples,
and cluster_selection_epsilon in order to optimize the model’s configuration. All experi-
ment results are averaged across the five time runs conducted in each experiment to ensure
the reliability of the results.

4.1. Comparison with Traditional Topic Models

In the first experiment, we evaluated the capability of various models, including
traditional approaches and BERTopic, to handle raw data. Traditional approaches such
as LDA requires a predetermined number of topics, making it necessary to establish a
fixed number of topics for a fair comparison and to investigate the performance when the
number of topics varies. However, in subsequent experiments with BERTopic, we leveraged
its ability to determine the optimal number of topics dynamically based on the dataset.
This approach provided insights into how BERTopic adapts to different data distributions
compared to traditional models. The results of this experiment are presented in two tables:
Table 4 shows the performance on unprocessed data, while Table 5 presents the results
from preprocessed data.

Table 4. Performance of different models (unprocessed data).

Dataset Model No. of Topics P R F1 FPR FNR
Infologger LDA 100 0.933 0.994 0.960 0.0002 0.0064
(CERN) 200 0.757 0.993 0.811 0.0030 0.0065
300 0.141 0.994 0.247 0.0149 0.0058

LSA 100 0.148 0.993 0.258 0.0141 0.0070

200 0.144 0.996 0.252 0.0146 0.0041

300 0.150 0.996 0.260 0.0140 0.0041

NMF 100 0.948 0.976 0.962 0.0001 0.0239

200 0.147 0.987 0.257 0.0141 0.0130

300 0.962 0.994 0.977 0.0001 0.0064

BERTopic 100 0.775 0.988 0.868 0.0007 0.0123

200 0.782 0.996 0.876 0.0007 0.0043

300 0.783 0.995 0.876 0.0007 0.0048

BGL LDA 100 0.826 0.932 0.876 0.0138 0.0678
200 0.438 1.000 0.609 0.0903 0.0000

300 0.415 1.000 0.587 0.0987 0.0000

LSA 100 0.747 0.706 0.726 0.0168 0.2942

200 0.778 0.991 0.872 0.0198 0.0089

300 0.808 0.990 0.890 0.0165 0.0098

NMF 100 0.618 0.706 0.659 0.0306 0.2944

200 0.895 0.991 0.941 0.0081 0.0090

300 0.869 0.988 0.925 0.0105 0.0115

BERTopic 100 0.679 0.970 0.790 0.0365 0.0305

200 0.766 0.970 0.851 0.0223 0.0303

300 0.703 0.972 0.811 0.0309 0.0285

P = Precision; R = Recall.
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In terms of preprocessing, it significantly enhanced model performance in specific
datasets, particularly for InfoLogger. Overall metrics showed marked improvements,
with FPR and FNR decreasing notably after the preprocessing, as the best settings of
each algorithm are presented in Figure 3. LSA achieved the highest F1-score at 0.990 in
the InfoLogger dataset, followed closely by LSA at 0.989. In contrast, the unprocessed
datasets exhibited significantly low performance, with the lowest F1-score at 0.247 in LDA.
For the BGL dataset, the results were different. All preprocessed data revealed the worst
performance across all models, with the lowest F1-score at 0.587 in LDA. This contrast can
be explained by differences in the structure and content of the datasets, particularly in
relation to the preprocessing strategy employed. The preprocessing pipeline relied on a
fixed regular expression format to clean and standardize log messages before modeling.
While this approach was effective for the InfoLogger dataset, where the log structure
was relatively consistent and the regular expression could reliably remove noise without
affecting informative content, it proved harmful for the BGL dataset. The BGL logs have
a different structure, often embedding crucial information in positions or formats not
accounted for by the fixed regular expression. As a result, important tokens and contextual
cues were inadvertently removed or distorted during preprocessing. This negatively
impacted the topic modeling process, leading to poor topic coherence and degraded
classification performance. Therefore, the gap in results underscores a key limitation
of using one preprocessing format to fit all datasets, resulting in reduced effectiveness.
These findings emphasize the importance of customizing preprocessing techniques to
better align them with the requirements of each dataset, ensuring consistent and reliable
model performance.

Table 5. Performance of different models (processed data).

Dataset Model No. of Topics P R F1 FPR FNR
Infologger LDA 100 0.906 0.996 0.946 0.0003 0.0040
(CERN) 200 0.903 0.996 0.947 0.0003 0.0039
300 0.906 0.996 0.946 0.0003 0.0040
LSA 100 0.149 0.996 0.259 0.0141 0.0039
200 0.149 0.996 0.259 0.0141 0.0039
300 0.984 0.996 0.990 0.0000 0.0039
NMF 100 0.149 0.992 0.259 0.0140 0.0084
200 0.148 0.992 0.258 0.0141 0.0080
300 0.985 0.992 0.989 0.0000 0.0080
BERTopic 100 0.149 0.996 0.259 0.0141 0.0039
200 0.959 0.995 0.976 0.0001 0.0050
300 0.960 0.996 0.978 0.0001 0.0045
BGL LDA 100 0.831 0.680 0.748 0.0097 0.3196
200 0.415 1.000 0.587 0.0987 0.0000
300 0.415 1.000 0.587 0.0988 0.0000
LSA 100 0.486 0.923 0.636 0.0686 0.0770
200 0.487 0.922 0.638 0.0680 0.0779
300 0.487 0.922 0.638 0.0680 0.0779
NMF 100 0.899 0.925 0.912 0.0073 0.0752
200 0.907 0.922 0.914 0.0067 0.0778
300 0.907 0.922 0.914 0.0067 0.0778
BERTopic 100 0.430 0.947 0.592 0.0878 0.0533
200 0.441 0.931 0.598 0.0833 0.0688
300 0.428 0.933 0.587 0.0875 0.0668

P = Precision; R = Recall.

In terms of computational efficiency, traditional topic modeling methods exhibited
varying training and inference times. The training time defines the time required to
train the entire dataset, while the inference time defines the time required to classify
new topics based on the trained model on the entire dataset. As illustrated in Figure 4,
the results indicate that the LDA and NMF tended to have relatively high inference times
compared to other approaches, with the highest inference time 915.51 s in Infologger.
As a generative model, LDA requires computationally intensive inference and sampling
procedures. Similarly, NMF’s multiplicative update rule can be costly, particularly for
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time(sec)

large datasets. In contrast, LSA achieves the lowest inference time at 14.49 s in Infolog-
ger since it relies on precomputed matrices, enabling efficient topic assignment through
simple matrix multiplication. Regarding BERTopic, its training time is generally longer
than that of traditional methods due to the integration of clustering algorithms, which
involve more complex update rules. However, its inference time remains moderate at
456.91 s, as it still requires embedding and dimensionality reduction, which introduce some

computational overhead.
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Figure 4. Comparison of computational efficiency based on training and inference time.

Among the models evaluated, NMF emerged as the most effective approach. On the
unprocessed InfoLogger dataset, NMF achieved the highest F1-score (0.977) at 300, demon-
strating its ability to classify log messages accurately. Similarly, LDA and BERTopic also
delivered high precision and recall, making them competitive alternatives to NMF. In the
BGL dataset, NMF was still the most effective approach in both before and after prepro-
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cessing. NMF achieved an Fl-score of 0.941 at 200 in the unprocessed BGL dataset, while
LSA and LDA followed closely with F1-scores ranging from 0.876 to 0.890.

These empirical findings demonstrate that preprocessing procedures have more influ-
ence than models and the number of topics, highlighting their importance in the analysis
workflow. Nevertheless, preprocessing remains inherently dataset-specific and requires
careful consideration for each specific case. Despite their performance, traditional methods
still incurred substantial computational overheads during inference time. This is because
traditional algorithms needed to update their results multiple times to converge to an
optimal solution, excluding the LSA matrices, which had already been computed. While
this trade-off enhanced performance, it still resulted in significant computational costs.
However, BERTopic achieved moderate results in both performance and time consumption.
Consequently, the next experiments explored BERTopic’s capacity to handle unprocessed
data through parameter optimization, potentially providing insights into more robust topic
modeling solutions.

4.2. The Effect of Clustering Algorithm

As illustrated in Figure 1, the BERTopic architecture employs a modular design that
can be decomposed into distinct functional components. The clustering mechanism serves
as the algorithm’s core element, responsible for cluster identification and topic assignments.
To assess BERTopic’s performance characteristics, a comprehensive comparative analysis
was conducted. As detailed in Table 6, this analysis evaluated three distinct clustering
methodologies across the two datasets: K-means, DBSCAN, and HDBSCAN.

Table 6. Performance of BERTopic’s clustering algorithms.

Clustering

Dataset Method P R F1 FPR FNR
Infologger HDBSCAN 0.955 0.995 0.975 0.000 0.005
(CERN) DBSCAN 0.923 0.995 0.956 0.000 0.005
K-means 0.123 0.821 0.214 0.014 0.179

BGL HDBSCAN 0.814 0.930 0.865 0.016 0.070
DBSCAN 0.953 0.924 0.938 0.003 0.076

K-means 0.789 0.903 0.822 0.023 0.097

P = Precision; R = Recall.

For the InfoLogger dataset, HDBSCAN demonstrated superior performance with
an Fl-score of 0.975 while maintaining minimal FPR and FNR. DBSCAN also achieved
competitive effectiveness with an Fl-score of 0.956, whereas K-means showed signifi-
cantly diminished performance, suggesting its inadequacy for density-based clustering
requirements. In the BGL dataset analysis, DBSCAN emerged as the optimal clustering
method, followed closely by the HDBSCAN. The K-means again demonstrated suboptimal
performance, indicating its limitations in the efficiency of clustering the embeddings.

Figure 5 reveals that the density-based clustering algorithms, specifically DBSCAN
and HDBSCAN, demonstrated superior performance compared to K-means across both
datasets. In particular, DBSCAN achieved optimal results when applied to the BGL dataset,
whereas HDBSCAN exhibited maximum effectiveness in processing the InfoLogger dataset.
Nevertheless, DBSCAN's functionality was limited by its requirement to yield uniform
density across clusters, presenting a limitation for complex datasets. With HDBSCAN's
hierarchical architecture, it was able to handle variable density distributions across different
clusters which means it can effectively accommodate complex datasets like InfoLogger.

Figure 6 presents the time consumption of each algorithm. The results indicate that
K-means exhibited the longest training time compared to DBSCAN and HDBSCAN. No-
tably, when applied to larger datasets such as InfoLogger, the training time of K-means
increased exponentially, highlighting its major limitation as a computationally expensive
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algorithm. In contrast, DBSCAN and HDBSCAN demonstrated less time consumption,
with HDBSCAN requiring slightly more training time than DBSCAN due to its hierarchical
clustering mechanisms. Regarding inference time, both datasets exhibited competitive time
consumption across all three algorithms.
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Figure 5. Overall performance of the BERTopic’s algorithms.
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Figure 6. Time consumption of the BERTopic’s algorithm.

According to the common structure of HDBSCAN and DBSCAN, as mentioned in
Section 3.5, the third experiment focused on the parameter optimization of HDBSCAN
to investigate whether fine-tuning could address the limitations observed in the current
default setting.

4.3. The Effect of Hyperparameter in the HDBSCAN

In the last experiment, we investigated the effects of the key hyperparameters
in HDBSCAN on clustering results and performance. Specifically, we focused on the
three main parameters: min_cluster_size, which determines the smallest size of clus-
ters; cluster_selection_epsilon, which controls the density level for cluster separation; and
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min_samples, which influences the minimum number of points required to define a dense
region. By systematically testing these parameters, we aimed to understand their impact
on the effectiveness of clustering outcomes.

4.3.1. Min_Cluster_Size

First, we examined how min_cluster_size affected HDBSCAN's topic-clustering be-
havior. This parameter controls the minimum number of samples required for establishing
new topics within the dataset. The results are presented in Table 7.

For the InfoLogger dataset, a progressive increase in min_cluster_size decreased the
model’s precision while maintaining high recall values. The optimal configuration was
achieved at 100, yielding the highest F1-score (0.810) and minimal error rates. Conversely,
the BGL dataset exhibited different behavior, reaching peak performance at 400 with
exceptional F1-score (0.944) as illustrated in Figure 7. However, a further increase to 500
led to a slight degradation in all performance metrics. These findings emphasize the
delicate fine-tuning in parameter selection. While larger min_cluster_size values generally
improved precision and reduced false positives, excessive values sometimes led to cluster
overgeneralization, compromising the model’s ability to maintain high recall. This analysis
established dataset-specific optimal values, with InfoLogger and BGL performing best at
100 and 400, respectively.

1F T T T T ]
08 *
)
= 0.6
Q
P
i
= 04r |
02 |
0 ! ! ! ! !
100 200 300 400 500
min_cluster_size
—o— BGL —=— Infologger
Figure 7. Effect of min_cluster_size.
Table 7. Effect of min_cluster_size.
Dataset min_cluster_size P R F1 FPR FNR
Infologger 100 0.786 0.881 0.810 0.0009 0.1186
(CERN) 200 0.373 0.963 0.533 0.0043 0.0367
300 0.333 0.992 0.498 0.0049 0.0085
400 0.143 0.992 0.250 0.0147 0.0078
500 0.142 0.993 0.249 0.0148 0.0067
BGL 100 0.796 0.972 0.868 0.0200 0.0284
200 0.909 0.974 0.939 0.0074 0.0259
300 0.859 0.986 0.915 0.0126 0.0143
400 0.910 0.987 0.944 0.0079 0.0129
500 0.862 0.932 0.886 0.0122 0.0676

P = Precision; R = Recall.

4.3.2. Cluster_Selection_Epsilon (&)

Second, we examine cluster_selection_epsilon (g), which determines the granularity
of topic clustering. The various configurations are evaluated in Table 8.
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Table 8. Effect of cluster_selection_epsilon.

Dataset Cluster_Selection_Epsilon P R F1 FPR FNR

Infologger 0.01 0.957 0.995 0.976 0.0001 0.0046

(CERN) 0.03 0.761 0.996 0.840 0.0012 0.0043

0.05 0.797 0.995 0.864 0.0010 0.0048

0.07 0.468 0.996 0.637 0.0028 0.0039

0.09 0.203 0.996 0.338 0.0096 0.0039

BGL 0.01 0.792 0.941 0.853 0.0200 0.0588

0.03 0.765 0.983 0.858 0.0222 0.0172

0.05 0.683 0.973 0.801 0.0325 0.0270

0.07 0.765 0.849 0.796 0.0142 0.1514

0.09 0.839 0.997 0.908 0.0144 0.0033

P = Precision; R = Recall.

The cluster_selection_epsilon (&) parameter demonstrated distinct effects across the
two datasets. For the InfoLogger dataset, the lowest configuration (0.01) established a
strong baseline with exceptional performance across all metrics. The moderate configu-
ration resulted in fair performance in cluster_selection_epsilon up to 0.05, demonstrating
acceptable performance across this range. However, a critical threshold was observed at
0.09, where the model experienced a substantial degradation in precision and F1-score,
suggesting that excessive epsilon values lead to over-generalization in topic assignment.
The BGL dataset exhibited notably different behavior, as illustrated in Figure 8. Lower
epsilon values (0.01 and 0.03) yielded fair performance, while moderate values (0.05-0.07)
showed slightly lower performance compared with lower previous scores, with optimal
results at 0.09. This pattern indicates that the BGL dataset requires larger epsilon values to
consolidate dispersed embeddings effectively into coherent topics.

| | | | |
0.01 0.03 0.05 0.07 0.09
cluster_selection_epsilon

—e— BGL —=— Infologger

Figure 8. Effect of cluster_selection_epsilon.

4.3.3. Min_Samples

Third, we examined min_samples, which represents a fundamental property shared
between the DBSCAN and the HDBSCAN algorithms. This parameter defines the minimum
number of neighboring points required for a data point to be considered a core point.
The core distance refers to the distance from a core point to its min_samples-th nearest
neighbor. This directly affects how clusters form and how densely packed points need to be
in order to be grouped together. By adjusting min_samples, we can control the algorithm’s
sensitivity to clusters, influencing both their size and structure. The various configurations
of min_samples are presented in Table 9.
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Table 9. Effect of min_samples.
Dataset min_samples P R F1 FPR FNR
Infologger 100 0.810 0.946 0.871 0.0006 0.0539
(CERN) 200 0.903 0.751 0.793 0.0003 0.2487
300 0.831 0.716 0.741 0.0004 0.2843
400 0.686 0.562 0.617 0.0006 0.4380
500 0.211 0.963 0.340 0.0102 0.0366
BGL 100 0.920 0.972 0.945 0.0296 0.0279
200 0.883 0.746 0.802 0.0069 0.2540
300 0.918 0.695 0.782 0.0050 0.3048
400 0.937 0.586 0.721 0.0137 0.4144
500 0.958 0.947 0.952 0.0029 0.0534

P = Precision; R = Recall.

The min_samples parameter exhibited distinct performance patterns across both
datasets. The InfoLogger dataset showed optimal performance at the lowest min_samples
values (100), achieving high precision while maintaining a high recall rate. However, a crit-
ical threshold was observed at min_samples equal to 500, where the model experienced a
severe performance degradation across all metrics. This pattern suggests that, while higher
min_samples values can enhance precision and reduce FPR, excessive values may lead to
overgeneralization and missed cluster identification. Conversely, the BGL dataset displayed
optimal performance at lower and higher min_samples values (100 and 500), with peak
metrics achieved at 500, followed by degradation performance in moderate min_samples
(200-400). The different behaviors of the two datasets, as visualized in Figure 9, indicate that
min_samples optimization is highly dataset-dependent, with InfoLogger favoring lower
values for optimal performance while BGL benefits from higher min_samples settings.
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Figure 9. Effect of min_samples.

The comprehensive analysis of the HDBSCAN's three primary parameters re-
vealed a hierarchical influence on model performance. For the InfoLogger dataset,
the cluster_selection_epsilon demonstrated the most substantial impact, followed by
min_samples, while min_cluster_size exhibited the least significant effect for an opti-
mal solution. For the BGL dataset, the min_samples had the most effect, followed by
min_cluster_size and cluster_selection_epsilon, sequentially. This finding underscores the
necessity of specific parameter tuning. In the case of InfoLogger, the primary chal-
lenge lies in the identification of small clusters, necessitating a precise adjustment of
cluster_selection_epsilon, which directly aggregates these clusters into larger, more related
groups. Conversely, for the BGL dataset, min_samples appears to be more highly influenced
by regulating cluster density. As a result, cluster_selection_epsilon had a minimal impact
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to no impact on the BGL dataset. Through the optimal parameter configuration derived
from these experimental iterations, BERTopic achieved remarkable performance metrics,
attaining F1-scores of 0.957 and 0.958 for the InfoLogger and BGL datasets, respectively,
demonstrating the model’s robust capability when properly tuned.

An alternative approach to evaluating BERTopic’s performance involves analyz-
ing log message embeddings through the two-dimensional visualizations of reduced-
dimensionality embeddings. As illustrated in Figure 10, the transformer architecture
demonstrated remarkable capability in learning robust representations prior to the clus-
tering phase. The visualization, generated using UMAP for dimensionality reduction,
represents log message embeddings in a two-dimensional space. In this figure, each dot
corresponds to a log message, and its position is determined by the UMAP’s projection
from a high-dimensional embedding space. Dots with the same color belong to the same
topic, as assigned via BERTopic, and their proximity reflects the semantic similarity of
the log messages. The visualization reveals distinctly delineated regions for individual
clusters, indicating effective semantic separation. Nevertheless, the inherent limitations
of the two-dimensional representation manifest in regions where multiple topics overlap.
This can be categorized into two primary scenarios. The first scenario involves semantically
distinct topics appearing in close proximity due to dimensional constraints, where addi-
tional dimensions might provide better separation. Additionally, some clusters may have
merged, as the number of topics was limited to 300 for clearer presentation. The second
scenario encompasses related topics that are differentiated through HDBSCAN's hierar-
chical clustering. As shown in Figure 11, the log messages within the rectangular area in
Figure 10 share the same prefix, “Storing MonitorObject”, with variations in the path’s
suffix. Although most of this area is assigned the same brown color, some log messages
are assigned different colors, indicating that BERTopic identified subtle differences in the
path suffix and classified them as distinct topics. Addressing this may require more refined
hyperparameter tuning or manual post-processing to consolidate these log messages into
a single topic. The quality of these learned representations extends beyond anomaly de-
tection, offering opportunities for integration with other machine learning algorithms and
applications in future research and development initiatives.

Documents and Topics

D2

0_ch_cern ch_cern

1_the user_user task_user

2_objects validity_the objects_validity is

3_cycle published_merged object_merged
4_monitorobject_monitorobject gc_trd mo
5_avg_min_count

6_quality_quality objects_the aggregator
7_plots_generating_plots generating

B8_zero cannot_into account_account for

9_mo itsclustertask_itsclustertask_its mo

10 _enabled message pad_enabled

11_nfiforeadyfull equipment_roc nfiforeadyfull _noutputfull equipment
12_max count_min max_roc fifooccupancyreadyblocks
13_ready running_running ready_running
14_processing aggregator_processing_aggregator
15_gualityobjects storing_gualityobjects_storing qualityobjects
16_dma for_dma_for roc

17 _bc_error registered_registered

18_contiguous timeframe_timeframe ids_ids

19_of qo_itsquality_itsquality is

20 _idle exiting_exiting idle_idle

21_fairmq state_fairmg_exiting fairmq

22_similar messages_similar_auto mute

23_task ready_resetting task_ready resetting

24 _task device_device ready_resetting task

25_device device_device_resetting device
26_idle resetting_device idle_idle

27_mo distributions_distributions global_global
28_quitting new_seconds before_15 seconds
29 throuahout averaae data data throuahout

Figure 10. Representation of InfoLogger’s two-dimensional log message embeddings (the rectangular
area is magnified in Figure 11).
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Figure 11. Magnified rectangular area of Figure 10, highlighting the examples of log message’s
content in a brown cluster.

In summary, the proposed framework proved to be highly effective when applied
to the InfoLogger system, primarily due to the characteristics of the anomalies and the
operational workflow within the ALICE facilities. One of the primary needs of the
shifter is access to meaningful anomaly-related terms. These terms are crucial not only
for identifying known anomalies but also for recognizing previously unseen ones, sup-
porting rapid decision-making during physics runs. Moreover, the framework demon-
strates a degree of generalizability, especially in its clustering component. For instance,
the cluster_selection_epsilon parameter used within the HDBSCAN algorithm plays a key
role in balancing sensitivity to both dense and sparse clusters. This makes it particularly
suitable as an initial hyperparameter for tuning across different datasets or monitoring
systems. Its adaptive nature allows the algorithm to capture both small, fine-grained
anomaly clusters and broader, more diffuse patterns, which enhances the framework’s
applicability beyond the InfoLogger dataset.

Furthermore, an understanding of the topic distribution across log messages is es-
sential for conducting thorough investigations into the underlying causes of anomalies.
By employing BERTopic, the framework generates interpretable topic representations along
with relevant terms, allowing the shifter to analyze anomalies without requiring prior
knowledge of the specific operational context. This stands in contrast to conventional
frameworks based on binary classification, which simply flag anomalies without providing
actionable insights. Such approaches are insufficient in complex environments like the
ALICE facilities, where shifters must take responsibility for diagnosing errors and tracing
their root causes. The integration of topic modeling into anomaly detection thus represents
a significant methodological advancement that not only enhances the interpretability of log
analysis but also offers a scalable and informative solution that can be extended to other
complex logging systems.

5. Conclusions

In conclusion, this research has presented a framework for log-based anomaly detec-
tion that effectively combines natural language processing techniques with density-based
clustering algorithms. Through comprehensive experimental evaluation, we demonstrated
several key contributions to the field. First, our framework demonstrated remarkable
resilience in processing raw log messages, delivering exceptional performance metrics. It
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achieved Fl-scores of 0.957 and 0.958 for the InfoLogger and BGL datasets, respectively.
This remarkable performance eliminated the need for complex preprocessing configura-
tions that often require dataset-specific tuning. This capability significantly enhances the
framework’s practical applicability in real-world scenarios.

Second, our comparative analysis established the superiority of density-based cluster-
ing approaches over traditional methods. Both DBSCAN and HDBSCAN demonstrated
more competitive performance compared to K-means clustering, with DBSCAN proving
particularly effective as a default configuration for datasets with static density distribu-
tions, such as InfoLogger. Additionally, HDBSCAN excelled in handling varying cluster
densities, a critical feature for real-world log analysis, for which log message distributions
are inherently heterogeneous. The integration of SBERT embeddings with BERTopic fur-
ther enhanced this framework, enabling the sophisticated semantic representation of log
messages without requiring extensive preprocessing.

Our research extends the application of topic modeling techniques to anomaly detec-
tion, equipping system administrators with interpretable topic distributions that enhance
log message classification and analysis. The framework integrates real-time intervention
capabilities through a comprehensive dashboard, enabling users to detect anomalies and
respond to potential issues with minimal delay. Since logging systems vary and require
dedicated tuning based on dataset characteristics, as discussed in the sections on InfoLog-
ger and BGL in this study, our framework is built for adaptability. This flexibility makes
it suitable for different real-world logging environments, providing a robust solution for
log-based anomaly detection.

These findings not only validate our approach but also contribute to the understanding
of log-based anomaly detection systems. Future research could explore the framework’s
adaptability to different log sources and its potential integration with real-time monitoring
systems. Additionally, since our current approach relies on a semi-supervised setup by
guiding the model with seed words, future work could investigate the feasibility of an
unsupervised method or an automated approach to generating seed words to reduce
human dependency in the system.
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Abbreviations

The following abbreviations are used in this manuscript:

ALICE A Large Ion Collider Experiment

BERT Bidirectional Encoder Representations from Transformers
BGL BlueGene/L Supercomputer System

Bi-LSTM Bidirectional Long Short-Term Memory

BoW Bag-of-Words

CERN The European Organization for Nuclear Research

CNN Convolutional Neural Network

c-TF-IDF Class-based Term Frequency-Inverse Document Frequency
DBSCAN Density-Based Spatial Clustering of Applications with Noise
FLP First-Level Processing

FN False Negative

FNR False Negative Rate

FP False Positive

FPR False Positive Rate

HDBSCAN  Hierarchical Density-Based Spatial Clustering of Applications with Noise
LDA Latent Dirichlet Allocation

LHC Large Hadron Collider

LSA Latent Semantic Analysis

LSTM Long Short-Term Memory

MDPI Multidisciplinary Digital Publishing Institute

MLP Multi-Layer Perceptron

NMF Non-Negative Matrix Factorization

0? Online—Offline

PCA Principal Component Analysis

QC Quality Control

SBERT Sentence Transformer Embeddings

TF-IDF Term Frequency-Inverse Document Frequency

TN True Negative

TP True Positive

TPR True Positive Rate

UMAP Uniform Manifold Approximation and Projection
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