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Abstract

We review recent developments in Jackiw—Teitelboim gravity. This is a simple solvable
model of quantum gravity in two dimensions (that arises e.g. from the s-wave sector of
higher dimensional gravity systems with spherical symmetry). Due to its solvability,
it has proven to be a fruitful toy model to analyze important questions such as the
relation between black holes and chaos, the role of wormholes in black hole physics
and holography, and the way in which information that falls into a black hole can be
recovered.
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1 Introduction

Understanding quantum gravity and quantum black hole physics are some of the
most pressing open problems in contemporary theoretical physics. In particular, deep
questions arise in the problem of black hole formation and subsequent evaporation,
starting with Hawking’s work in the 1970 s (Hawking 1975, 1976).

The road towards quantum gravity, starting with the problem of non-renormalizability
of pure Einstein—Hilbert gravity in 3+1d, has in the years led us through higher dimen-
sions, string theory, compactification, branes.... And some significant successes have
been made using this approach (Strominger and Vafa 1996). However, it is safe to say
that we do not have a fully satisfying understanding, and any alternative approaches
that could shed new light on the problem would be most welcome.

With this goal in mind, an alternative strategy toward quantum gravity would be to
work in lower dimensions (2d or 3d), where gravitational models can make sense at
the level of the Euclidean path integral. If we furthermore do this in the framework
of holography, then we have a preferred anchoring point, and are guided by the major
breakthroughs in that field throughout the years (Maldacena 1999).

Even within this strategy, finding interesting lower-dimensional solvable models of
gravity is an art on its own. Few such models exist, but the degree of solvability that we
can obtain in 2d Jackiw—Teitelboim gravity is unprecedented as we aim to explain with
this review. If we work in two spacetime dimensions, the simplest candidate model
would be Einstein—Hilbert gravity

1

2
= TorGo /d xv/—gR +. (1.1

However, this model is topological since its Euclidean action is just the Euler charac-
teristic, and the Einstein tensor vanishes identically. This model does play an important
role as the 2d gravity on the string worldsheet, weighing different topologies. Addi-
tionally coupling this model to a matter action S,,, the gravitational equations lead to
T)), = 0 and no energy flows exist. Hence when using it as a classical toy model for
black hole formation and evaporation, this model has little value.!

To get something more interesting, the required adjustment in two dimensions is
to introduce a direct coupling of the Ricci scalar to a new scalar field @, called the
dilaton field for historical (string-theoretic) reasons:

1

d’x/—g®R 1.2
= 167Gy / * + (1.2)

Models of this kind have been introduced in 3+1d as scalar-tensor (Brans—Dicke type)
models, and provide deformations of general relativity with spacetime-varying gravi-
tational coupling. Here we view these dilaton gravity models as quantum mechanical
solvable toy models of quantum gravity and black hole physics. Jackiw—Teitelboim

! Quantum mechanically, gauge fixing this model with conformal matter, leads to Liouville gravity which
is an interesting model appearing in the context of the non-critical string (Polyakov 1981; Distler and Kawai
1989; David 1988). We do not follow this route.
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4 Page4of124 T. G. Mertens, G. J. Turiaci

(JT) gravity is one such particular model that we will specify below. Interestingly,
this particular model also captures the dynamics close to the horizon of near-extremal
black holes in higher dimensions, see the upcoming review by Iliesiu and Turiaci
(2023).

Gravitational models of this kind have attracted widespread attention over the years
[see e.g. the reviews by Grumiller et al. (2002), Nojiri and Odintsov (2001)], but it has
been only recently, sparked by developments in 2015 by A. Kitaev in solvable many-
body models (the Sachdev—Ye—Kitaev or SYK models; Sachdev and Ye 1993; Kitaev
2014, 2015a,b), that we have reached a far deeper understanding of their quantum
mechanical aspects. This work refined the original proposal relating SYK and AdS;
gravity put forward by Sachdev (2010).

Our aim here is to provide an in-depth review of these developments in JT gravity.
This review is organized into four main sections. In Sect. 2 we introduce the model,
and fully solve its classical equations of motion, crucially incorporating boundary
conditions at the holographic boundary that allow us to map the dynamics to its
boundary Schwarzian description. Section3 proceeds with the exact quantization of
the model, by computing the Euclidean gravitational path integral in the Schwarzian
language. In Sect. 4 we furthermore include non-trivial topological corrections (or
wormholes) to the quantum amplitudes, that modify the heavy quantum regime even
further. Finally, Sect. 5 contains several applications of the exact solvability of JT
gravity. We do not treat these in technical detail, but refer to the literature for more
information. In particular, in the past few years significant progress has been made
on Hawking’s information loss paradox, made possible to a large extent due to the
solvability of JT gravity. We discuss some of these developments, but will not do justice
to this topic in this work. We refer e.g. to the excellent recent review by Almheiri et al.
(2021) for details.

A few reviews have been written before on the connection between JT gravity and
SYK. We refer the interested reader to the excellent review on this topic by Chowdhury
et al. (2022) that focuses mostly on the SYK side. Other earlier reviews are Sarosi
(2018) and Rosenhaus (2019). However, no comprehensive review exists that combines
these earlier developments with the current state-of-the-art of JT gravity specifically
and lower-dimensional gravitational models more generally, something we hope to
address with this review.

Finally, a few comments on conventions: in Lorentzian signature our metric sig-
nature convention is (—, +, ... +). We denote Lorentzian actions as S and Euclidean
actions as 1.

2 Classical Jackiw-Teitelboim gravity

We begin by introducing and motivating the JT model and its coupling to matter.
In this section, we study the classical solution of this model including gravitational
backreaction. Our endeavors will ultimately lead us to a description in terms of a
boundary Schwarzian model that will be the starting point for a quantum mechanical
solution in the next Sect. 3.
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2.1 Dilaton gravity models

To start, it is instructive to consider what is the most general theory of dilaton grav-
ity in two dimensions with a two-derivative action (Banks and O’Loughlin 1991,
Louis-Martinez et al. 1994; Ikeda 1994; Grumiller et al. 2002). Working in Euclidean
signature, any such theory can be written as

1 ~ ~ - -
I =— d? Ui (®)R + Up(P)g""9,, 3, @ + Us(®)), (2.1
16HGN/M 2VE(U1@R + Ua(@)g" 9,80, + Us(@)), 2.1)

where g, is the two-dimensional metric and &)(x) is the dilaton field. The 2d Newton’s
constant G y is dimensionless, and hence unlike in higher dimensions does not set the
scale of physics.? This theory seems to be parametrized by three functions Uy (®),
U»(®) and Uz (D) but two of them are redundant. To see this, first perform a field
redefinition on the dilaton ® — ® = U 1 (CTD). We assume there is no value of ® such
that U { (<T>) = 0 so the field redefinition is invertible, otherwise the resulting kinetic
term in ® will be ill-defined.

We can further set Uz (®) = 0 by making a Weyl transformation on the metric as
follows. Under a local rescaling, the 2d Ricci scalar transforms as

G =g, — "R =g'A(R—2V?w). 2.2)

It is then a simple calculation to show that the choice

1 D(x)
o(x) = 5/ U (®)d D', (2.3)

will cancel the term in (2.1) proportional to U;. In dimensions greater than two, this
Weyl field redefinition g;w =% &uv» with a suitable choice of w, allows us to redefine
®R — R’, a procedure that is well-known in string theory to transfer between the
so-called string frame and the Einstein frame. In 2d however, the above Weyl field
redefinition allows us instead to set the kinetic term of the dilaton to zero, and it is
impossible to get rid of the ® R term: dilaton gravity is (in this sense) an invariant
notion in 2d. This observation also implies that calling ® a dilaton is not a good
nomenclature in 2d since it is not related to rescalings of the metric. Regardless of this
point, to avoid confusion we will follow tradition and continue calling it the dilaton
field.
This leaves us with a very general class of 2d dilaton gravity models:

1
167Gy

Ig, ®] = /M d*x /g (PR + U (D)), (2.4)

parametrized by a single function U (®) called the dilaton potential. Let us first make
some comments on this class of models.

2 Later on, around Eq. (2.58) in JT gravity, we will see an effective scale emerge nonetheless.
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4 Page6of124 T. G. Mertens, G. J. Turiaci

Notice that the above field transformations from (2.1) to (2.4) are done at the
classical level. In the full quantum theory, care has to be taken when performing these
steps, in particular with regard to the thermodynamics of the resulting models.

We started with a two-derivative action (2.1). One can relax this assumption and
include higher-derivative terms. The resulting model becomes power-counting non-
renormalizable, but since there are no local degrees of freedom anyway, this may not
be a problem. See Grumiller et al. (2022) for investigations of this generalization of
Eq. (2.1).

In some works, partially motivated by string theory, the dilaton field is denoted
instead as ® — ®Z or & — exp(—2®P), emphasizing its positivity throughout space-
time. The dilaton coupling parametrizes a spacetime-dependent effective Newton’s
constant

G
Geii(x) = W:)’ 2.5)

and to interpret a classical solution physically, one wants this effective gravitational
coupling to remain positive everywhere.? This will also lead to another more appro-
priate interpretation for the dilaton: as a measure of entropy.

Jackiw-Teitelboim (or JT) gravity corresponds to a specific linear choice of dilaton
potential in (2.4), where U (®) = —A P (Jackiw 1985; Teitelboim 1983):

1
167TGN

IHlg, @] = — /M JEO(R—A). (2.6)

The quantity A (of dimension energy squared) is the cosmological constant of the
model. To focus on the Anti-de Sitter space (AdS) case, we choose negative A and set
A = —2/L?. Working in units where the AdS length L = 1, we can write down our
JT model:

1

Iyr[g, @] = — 167Gx

1
d(R+2) — — h®(K —1). 2.7
/M“/E (R+2) SHGNngf< ). @)

For manifolds that have a boundary 9 M, we wrote explicitly the Gibbons—Hawking—
York (GHY) boundary term (Gibbons and Hawking 1977; York 1972), and a
holographic counterterm (the “—1"") which is needed a posteriori to make sense of
the model at an asymptotically AdS boundary as will become clear later on. It will be
important later to add the topological Einstein—Hilbert term as well, proportional to
a parameter of the model Sy. The final action we will study throughout this review is
hence

I[g7 q)] = _SOX + IJT[gv CD]’ (28)

3 This will be revisited when considering the integration contour for the dilaton in the quantum theory in
Sect. 3.
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where we introduced the Euler characteristic of the manifold

1 1
X = E/M \/§R+Z}gM ViK. 2.9)

The topological term will be important in Sect. 4, but in this section it will only produce
an overall shift of the action. This term can be thought of as being produced by a shift

in the dilaton field by a constant ® (x) — ®g + ®(x) producing the term (2.8) with
So = 4CIG>—(;V

It is possible to study JT gravity in asymptotically de Sitter (dS) by choosing the
same dilaton potential with positive A = +2/L? and we will consider this theory
briefly in Sect. 5.5. Finally, the asymptotically flat case where U (®) = constant, also
has interesting applications which we will briefly mention there as well. For the body

of this work, we will restrict to AdS.

2.1.1 First-order formulation

Just as any gravitational model, 2d dilaton gravity can be written in the first-order
formulation. Unlike gravity in four or higher spacetime dimensions, the resulting
model is a topological gauge theory: the Poisson-sigma model (Schaller and Strobl
1994b). For the specific case of JT gravity, this gauge theory further simplifies into
the topological BF model (Horowitz 1989). Here we review this connection for closed
manifolds M. We start with the Euclidean dilaton gravity model:

I = ! / d*x /g (PR + U(D)). (2.10)
M

- 167Gy

Introducing the frame field ¢, as:

8uv = €ebSap, @2.11)

wherea, b € {0, 1}, and the torsion-free spin connection w*? = w,[fb ] dx*,determined

by de® + w%p A e = 0, we have the following relations in 2d:
o =etw,  dPxJg=e"ne!,  d*x JZR=2dw. (2.12)
We can then write the gravitational action (2.10) in the first-order form:

1 1
I=— / Ddw+ -U(D)e ey Aep + X (deg + €’w Aep) |. (2.13)
8n Gy M 4

Indeed, integrating over the Lagrange multipliers X%!, we produce the torsion-free
conditions and the remaining action reduces back to the second-order form (2.10).
This model can be identified with a topological Poisson sigma model, with 3d target
space (Ikeda and Izawa 1993; TIkeda 1994). To see this, introduce a connection A; =
(eg, e1, ) and a 3d space parametrized by scalars X' = (X°, X!, X% = ®). Poisson
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4 Page8of124 T. G. Mertens, G. J. Turiaci

manifolds are characterized by a (possibly degenerate) bracket { X i X/Ypg = PY(X).
The antisymmetric tensor P/ satisfies the Jacobi identity 3 P/ P!kl = 0. In terms
of this data the Poisson sigma model action is given by

1
871Gy

. 1 ..
Ipsm = — / (AiAXm—i-EPl](X)AiAAj), i=0,1,2, (2.19)
M

where the brackets needed to reproduce (2.13) can be read off as

U(x?
POl — {XO, xl} _ UKD pa {x xz} =e%XxP. (2.15)
PB 2 PB

Upon redefining the generators as E¥ = —X? + X! and H = X?, this non-linear
Poisson algebra becomes:

{H E*},y =+E*, {ET, E™},; =UH). (2.16)

For the special case of JT gravity where U (®) = 2®, this algebra becomes the linear
sl(2, R) Lie algebra. Starting with (2.14), one can perform an integration by parts in
the first term and, since the Poisson tensor P (X) is linear in X in this case, rewrite the
action (2.13) as a BF model (Fukuyama and Kamimura 1985; Isler and Trugenberger
1989; Chamseddine and Wyler 1989; Jackiw 1992):

1 .
I =— / X'F, = —
8nGNn Jm 4nGn

/ TrXF, F=dA+AAA, (2.17)
M

where X = X'}; (and similarly for F) with {A, A2, A3} the generators of s[(2, R),
normalized such that Tra; A/ = 8i1/2.

This discussion was valid for manifolds without boundaries. We will come back
to the case with boundaries later on in Sect. 3.7.4. The s[(2, R) BF description of JT
gravity is extremely useful to obtain explicit solutions, but care has to be taken: the
BF description is only locally equivalent with JT gravity, and the relation with the
global group-theoretic description is a bit more subtle, and contains several layers of
complications:

e A good gauge connection A, can be singular in Euclidean gravity. An example is
A, =0, leading to g, = 0. These singular metrics are to be excluded from the
gravitational path integral.

e Gravity contains large diffeomorphisms (such as the SL(2, Z) modular group of the
torus; more generally in 2d this is the mapping class group) that are not contained
within the gauge transformations of the BF description.

e Gravity contains a sum over topologies that is not included in the gauge theory
description.

All of these items are present for any model of dilaton gravity, but they can be dealt
with very explicitly even in quantum JT gravity, for which we refer to the recent works
(Blommaert et al. 2019b; Fan and Mertens 2022b, a), and to some of the older literature
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(Schaller and Strobl 1994a). These complications parallel the difficulties in writing
3d gravity as a Chern—Simons gauge theory, explained nicely in Witten (2007).

2.1.2 Motivation: near-extremal black holes

One of the attractive features of JT gravity is the fact that it universally describes
the physics near the horizon of near-extremal black holes in higher dimensions. The
simplest realization of this is a near-extremal charged black hole in 4d Einstein—
Maxwell theory. The 4d theory has a U(1) gauge field beside the metric, and the
Lorentzian action is:

1

= 1erG® /d“x«/ g (R = F2) + Sway. 2.18)
Spdy includes the necessary boundary terms and counterterms to make the variational
problem well-defined, such as the Gibbons—Hawking—York one. The Reissner—
Nordstrom black hole solution with charge Q is given by

2 2
s = —f(r)di® + % +r2dQ3,  fr)=1-— Z_M + = Q (2.19)

where we absorbed Ggé) into M for brevity of notation. The only non-zero component
of the electric field is F,; o« Q/ r2, and dQ% is the metric element of the transverse

2-sphere. The horizons are at r+ = M 4 /M? — Q? and the Hawking temperature
of the black hole is T = | f/(r4)|/47. The near-extremal limit corresponds to low
temperatures such that M ~ |Q] and hence ry ~ r_ ~ |Q|. From now on we take
0 >0.

The first step to see how JT gravity arises from this 4d theory, is to identify the near-
horizon near-extremal geometry. We consider the scaling limitof small AM = M —Q,
where r = Q + Q?F, and the radial coordinate scales as # ~ \/AM / Q3. In this region,
the spacetime metric (2.19) becomes:

2AM
Q3

2AM 2472
s%—Qz( i - L )d2 ~2Q 4 %0l (2.20)
72 _

This is the near-horizon AdS, x S? geometry, with AdS length and 2-sphere radius
both Q. Rescaling lengths by Q~!, we can rewrite this in the canonical form:

di? e _[2aM 5o
2_r}%+ 9 rh_ Q3’ (')

with the AdS length and sphere radius equal to 1 in these units. The exactly extremal
case is found by setting AM = 0 which implies r;, = 0. Otherwise, we have a black
hole in AdS; with a horizon at a finite distance rj,. Within this AdS, region, 7 —r; < ry,

0 2ds? ~ — (F2 — r,%) dr? + —
r
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Asymptotically 4d Flat

[ 7

AdSy xS2

Horizon

Fig. 1 Spatial geometry of the Reissner-Nordstrom black hole which interpolates between flat space far
away and an AdSy x S2 throat near the horizon when the temperature is low. The size of the black hole is of
order Q (in appropriate units) while the length of the AdS; x S2 throat diverges as we approach extremality.
JT gravity arises as a sector of Einstein—Maxwell in 4d and is the dominant mode controlling the low energy
dynamics taking place inside the throat. This is true for a large class of black holes with AdS; xS2 throats

corresponds to the Rindler region whereas 7 — 0o corresponds to the boundary of
AdS,.

In Fig. 1, we illustrate the spatial geometry of the Reissner—Nordstrom black hole
which interpolates between flat space far away and an AdS; x S? throat near the horizon
when the temperature is low. The size of the black hole is of order Q (in appropriate
units) while the length of the AdS» x S? throat diverges as we approach extremality.

Having described the classical geometry near the horizon, we now study pertur-
bations around it. Metric fluctuations can be parametrized by Davison et al. (2017),
Nayak et al. (2018), Sachdev (2019)

ds* = ﬁgwdx“dx” + x(dy' + Al yldx")dy' + Al yTdxt) + -

(2.22)

where y = (y!, y2, y3) with y'y! =1 parametrize the transverse S2. The coordinate
x# = (t,r) parametrizes the time and radial directions. Both x, g, and Ai{ are
assumed to depend only on x*. The dots in the equation above denotes other Kaluza—
Klein modes that are not turned on in the Reissner—Nordstrom solution and whose
fluctuations around the background are massive, with masses ~ Q~! the AdS scale
and hence not parametrically large for a near-extremal black hole. Therefore the correct
low-energy description involves two-dimensional gravity with a large number of light
(~ 01 fields.* The one-forms A reduce on the 2d space to an SU(2) gauge field
whose charge corresponds to angular momentum J.

For simplicity, we work in an ensemble with fixed black hole charge and fixed van-
ishing angular momentum. Then the Einstein—-Maxwell action (2.18) dimensionally

4 This feature is not different from other realizations of AdS. For example in a five-dimensional description
of the AdSs x§? background in type IIB string theory, there are also a large number of light fields from
compactification on the sphere.
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Solvable models of quantum black holes... Page 11 of 124 4

reduces to the restricted 2d dilaton-gravity dynamics (with dilaton x)°:

1 ) 207 2
Slg, X]Iw/d X &/=8g(XR+U()+---, U(X)z_ﬁ—i_ﬁ’ (2.23)

where we can define the 2d Newton’s constant by Ggs) =4r Gﬁ). Turning on angular
momentum would correct the potential by a term proportional to J2. The classical
solution of this theory, with appropriate boundary conditions, reproduces (2.19). The
dots in the equation above denote contribution from either matter or other Kaluza—
Klein modes of the Einstein—-Maxwell sector, resulting in 2d dilaton-gravity coupled
to matter.

A classical solution with constant sphere area has U (x = ®() = 0 and therefore
®¢ = 02, which corresponds to rigid AdS, x S? spacetime. This is the geometry very
close to the horizon of the near-extremal black hole as presented above. JT gravity
arises as we take the S2 area large, and allow it to fluctuate slightly:

x(x) =@+ O(x), D<K D (2.24)

Under this assumption the 4d Einstein-Maxwell theory reduces near the horizon to
JT gravity, after rescaling the 2d metric g — Q3 g:

® 1
Slg, @)= —2 | J=gR+ —— | V=g®R+2)+---. (225
@ @
4G4 4G4

Corrections to this action are suppressed in the regime (2.24) and we end up with the
JT action (2.7) coupled to matter arising both from 4d matter as well as metric KK
modes we ignored in (2.22). (To leading order in the large ® limit, the matter fields
do not couple to the dilaton ®, a feature that will be important later when studying
quantum effects.) Hence JT gravity arises as a sector in 4d Einstein—-Maxwell theory,
and it is the dominant mode controling the low-energy dynamics taking place inside
the throat.

This derivation also gives a nice interpretation of each term that appears in the
lower-dimensional gravity action. We can identify the parameter Sy in (2.8) with

So = _ e (2.26)
@ @
GN GN

which is the Bekenstein—Hawking area term corresponding to the 4d extremal black
hole. Note that from the 2d perspective, thisis A/ 46%) where @ plays the role of the
area A. We will see more evidence later that the dilaton should indeed be identified with
the entropy of the black hole. We might be tempted to refer to the extremal Bekenstein—
Hawking area Sp as extremal degeneracy of black hole microstates, although we will

5 The coefficient of the Einstein term in two dimensions vanishes when x = 0. This corresponds to the
singularity of the 4d black hole. Since we will focus on the physics near the horizon we will not worry
about that, although it is important to keep in mind.
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see this is an incorrect interpretation both in JT gravity (Stanford and Witten 2017)
and for the higher-dimensional black hole. This point was made for the near-extremal
BTZ black hole in Ghosh et al. (2020) and then generalized to the Reissner—Nordstrom
black hole in Iliesiu and Turiaci (2021), Heydeman et al. (2022). The reason is that
quantum effects from the JT mode get enhanced at low enough temperatures and, in
a fixed charge ensemble, only the JT mode affects the temperature-dependence of the
free energy, even at the quantum level.

The 4d Reissner—Nordstrom black hole is not the only higher-dimensional black
hole whose near-horizon near-extremal dynamics is governed by JT gravity, but there
is in fact a large class. We will discuss this further in Sect. 5.3. The universality of JT
gravity in this kinematic regime of black hole physics is hence a strong motivation for
studying the JT model in more detail.

2.2 Classical solutions

In this section, we will solve and study the classical equations of motion of Lorentzian
JT gravity, including its coupling to a matter action:

[/«/_RJrZ?{«/ K}+SJT[g, O+ Sulp. gl (227)
1671G

The first term corresponds to a constant dilaton background ®( and is the Lorentzian
version of Eq. (2.8) where Sy = ®¢/(4G ). The second term is the JT action itself
with a varying dilaton

Sirlg, @1 =

[Ty [/\/_CD(R+2)+2?§\/_®(K—1):| (2.28)

Finally, S;,[¢, g] is the matter action, which we assume only couples to the metric,
and not directly to the dilaton field ®. This assumption will allow for an explicit and
analytic solution.® We will not have to be explicit about the matter action in order
to write down the most general solution of Einstein’s equations, which is one of the
benefits of working in lower dimensions.

2.2.1 Metric solution
Now we describe general classical solutions of the matter-coupled model (2.27). The
equation of motion one obtains by varying (2.27) with respect to the dilaton & is given

by

R(x) = —2. (2.29)

6 This is true when applying JT gravity to the dynamics of gravity and matter near the horizon of a near-
extremal black hole in Einstein-Maxwell gravity. Another example is given by extremal dilatonic black
holes in four or higher dimensions in superstring theories, where the relevant matter action coming from
Ramond-Ramond fields, describing the radial dynamics, is just a free scalar field in 2d, and would indeed
not have a direct coupling to the dilaton field (Callan et al. 1992).
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In two dimensions, knowing the value of the local Ricci scalar is sufficient to know
the metric itself up to coordinate transformations, in this case some patch of the AdS,
manifold. Let us make this statement more explicit.

It is convenient to describe the 2d metric in conformal gauge, which can always be
reached by a coordinate transformation, where:

ds® = —**®Vdydv, (2.30)

where the only metric degree of freedom is w(u, v). The coordinates u and v are
lightcone coordinates defined as u = ¢ + z and v = t — z. For a conformal gauge
metric (2.30), we have R = 8¢—2%9,9,, and (2.29) boils down to Liouville’s equation
49,8, + €*® = 0. The general solution to Liouville’s equation is well-known:

o - V) 2.31)

U ) — V()
in terms of two chiral functions U (1) and V (v). This solution can be restricted when
imposing boundary conditions as we will implement further on in Sect. 2.3. With this
solution, the metric (2.30) is

_ 4, Uwd,V(@)dudv _ 4dUdV (2.32)

ds? = — ,
(U@u) —V(v))? U —V)?

and represents the Poincaré patch of AdS, with lightcone coordinate (U, V). The two
chiral functions U (1) and V (v) are interpreted as the diffeomorphisms that preserve
conformal gauge, and relate the lightcone coordinates U and V of the Poincaré patch
to new lightcone coordinates u# and v. This proves that all metric solutions are just
different coordinate frames on the AdS; manifold.

It is useful to summarize the geometric properties of several important classical
frames of AdS,. The Poincaré patch itself is described by the metric

—dT? +d7? 1
2 _ — 2072 2 _
ds® = ) = —R°dT" + 2dR =

44U0dV

_m, U>1V,

(2.33)

where we defined R = 1/Z in the first equality. The isometry group of AdS; is
PSL(2,R) >~ SO(2, 1), which acts as Mobius transformations on the Poincaré light-
cone coordinates U — fgis V —» f://is, where a,b,c,d € R and ad — bc = 1.
PSL(2, R) is the projective subgroup of SL(2, R), the group of invertible 2 x 2 matrices
with determinant 1, where we identify the matrix with minus itself.

We denote the Poincaré time coordinate as 7 = (U + V') /2 and the spatial coordi-
nate as Z = (U — V) /2. Ithas a single boundary at U = V (or Z = 0). It has horizons
atU —V — oo, or U — +o0o (future horizon) and at V — —oo (past horizon). This
geometry is found in the near-horizon limit of a higher-dimensional extremal black
hole, the r;, = 0 limit of Eq. (2.21). The horizons are at an infinite proper distance
(f +oo ‘%Z — 00) at the end of an infinite throat. Starting with the Poincaré patch, we
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Fig.2 Penrose diagram with the different classical patches of global AdSy

can reach other important frames that we discuss next. We illustrate these in Fig. 2,
and the reader can consult this figure throughout.
The global frame is found by performing the following coordinate transformation

U(u) =tan(u), V(v) =tan(v), (2.34)

defining new lightcone coordinates (u, v). The metric (2.33) is transformed into:

4
ds* = ——————dudy, (2.35)
sin“(u — v)

and can be continued beyond the original Poincaré patch. We define the global spatial
coordinate z = (u—v)/2 and time coordinate t = (u+v)/2. There are two boundaries
where the metric blows up: thisisatu = v (orz = 0),andatu = v+ (orz = 7/2).
These coordinates cover a strip-region with two boundaries containing the Poincaré
patch. Usually in AdS p/CFTP~!, the boundary in global coordinates is the R x §°~2
manifold, which in this case gives a 0-sphere for the spatial manifold, or two disjoint
points.

Finally, the black hole patch can be found by the following coordinate transforma-
tion:

U =L anh (Zu) . vy =L ann (Zo). (2.36)
T p T B
with parameter 8. This leads to the metric
2
4
ds? =2 " judv. (2.37)

B? sinh? (G (u — v))
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We define also the coordinates z = (u —v)/2 and t = (u +v)/2. The black hole patch
(2.37) is contained within the Poincaré patch (2.33) since the Poincaré coordinates

only range over the restricted range —g <U,V < g (with U > V). This geometry
dz
sinh %”z

has horizons where u — v — oo at finite distance ( oo < 00). Using the

radial coordinate r = rj coth % where r;, = 2/, the metric can be rewritten as

2 22y g.2 dr?
ds® = - —rp)dt” + >3- (2.38)
re—rj

This patch is directly found in the near-horizon regime of a higher-dimensional near-
extremal black hole, as in (2.21). From the near-horizon region where » & rj, of the
Euclidean section, we can deduce the Hawking temperature 7 = g~' = r;, /27,
justifying the parameter label 8 as the inverse temperature. This is simultaneously the
temperature of the higher-dimensional near-extremal black hole. One further way of
rewriting this patch is to use the proper distance coordinate p to the black hole horizon,
which allows us to write the same patch as

2

4
sinh p = ds® = —% sinh? pd® +dp>.  (2.39)

sinh %(u - )

Near the horizon where p <« 1, this becomes the Rindler geometry.” Some early
references on the black hole solution are (Lemos and Sa 1994a,b; Lemos 1996).

Since the metric solution is always a patch of the AdS; manifold, our model can be
interpreted in a holographic context with holographic boundary at Z = 0. However,
AdS,/CFT; has been notoriously tricky to make sense of. Resolving the tensions
around it, has been one of the chief successes of JT gravity as we illustrate below. For
now, let us review some arguments why this version of holography is subtle.

Firstly, for a CFT in any number of dimensions, the stress tensor is traceless:
Mt = 0.2 But in 0+1d there is only one index, and hence 7;; = 0. Hence the
energy is always zero, and we are only able to describe a theory of ground states, or
extremal states. Whereas this is consistent, it is not our main interest when considering
dynamical models of black hole formation and evaporation. Even though the metric
is locally AdS,, we have seen the physics in each of the patches described above is
very different. Whether there is a black hole horizon or not, and the global structure of
spacetime, can vary from patch to patch. So far we have not given a physical mechanism
within the theory that fixes this ambiguity, something one cannot do without a (non-
zero) boundary Hamiltonian 7,. In the example in Sect. 2.1.2, the black hole patch
is fixed by the way the AdS; region is glued to the asymptotically flat space. We will
see in the next subsection how to phrase this intrinsically in terms of JT gravity, and
the price to pay is the loss of conformal invariance.

7 Note that these two new radial coordinates r and p are found by doing purely spatial coordinate transfor-
mations, which hence preserve the causality structure, the thermodynamics, and the black hole interpretation
of the spacetime.

8 In an even number of spacetime dimensions, there is the famous trace anomaly that violates this equality
at the quantum level, but here we are in 0+1 dimensions.
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Secondly, due to a lack of dimensionful parameters, the density of states of a 1d
CFT is by dimensional analysis of the form (Jensen et al. 2011)

p(E) = AS(E) + g (2.40)

where A and B are dimensionless.” Now, either B = 0, in which case we again have
a theory of ground states as before, or B # 0 in which case the number of low-energy
states diverges, and the model does not work without an additional IR cutoff.

We summarize that genuine AdS,/CFT only makes sense as a model of zero-energy
states (as topological QM), but to describe dynamics, we would have to modify this
framework. This is precisely what JT gravity achieves as will become apparent further
on. Moreover, in examples where a genuine AdS,/CFT; limit exists the bulk theory
is strongly coupled and does not have a simple description (Heydeman et al. 2022;
Boruch et al. 2022; Lin et al. 2023a,b).

2.2.2 Dilaton solution

Let us continue with the classical solution of the JT model. Varying (2.27) with respect
to the metric, we find the equations of motion for the dilaton field:

VYV ® — g, V20 + g, ® = —87 Gy Ty, (2.41)
or when written out in conformal gauge:

—e29, (e72°0,9) = 87G T
—e2p, (e*Zwavcb) — 87Gy Ty, (2.42)
20,0,® + D = 167Gy Ty,

where T}, are the stress tensor components of the matter sector in (2.27). Notice that
in this model all backreaction of matter fields is contained in the dilaton field ® and
not in the actual geometry itself.

These coupled equations of motion (2.42) can be solved systematically by integrat-
ing the first and second equation twice, and then inserting it in the last equation to find
a consistency requirement.

Let us first describe the vacuum solutions where T,,,, = Ty, = T, = 0. It is easy
to show by directly using (2.41) that the quantity ¢#* = €9, ® is a Killing vector of
the entire dilaton gravity system: V¢, + V, ¢, = 0. This is an important observation
for later on: in Euclidean signature, hyperbolic surfaces (R = —2) at higher genus
g > 2 do not have Killing vectors. So there will be no classical solutions to JT gravity
on higher genus surfaces.

9 In higher dimensions, one can have the volume of space as a further dimensionful factor, which allows
for other possibilities.
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The most general solution of Eq. (2.42) is in this case described by three integration
constants a, b and u:

a+blU+V)—pUV

d(u,v) = UV

(2.43)

We note the following: the dilaton solution blows up on the holographic boundary
(U = V). The integration constant a has the dimension of length, and will be important
to understand this divergent nature of the solution. The parameter p has the dimension
of energy, and will be identified with the mass of a black hole later on. The parameter b
will turn out to be not physically meaningful (one can set b = 0 by using an PSL(2, R)
isometry of the metric as discussed below (2.33), and we assume this has been done
from here on).

Next, we consider non-zero matter sources. For simplicity of the expressions, we
restrict to a 2d conformal field theory (CFT) as our matter sector. We will make a brief
comment on the more generic case later on, but we point out that for the purposes of
finding good models of black hole formation and evaporation, any (conserved) matter
will do. The solution with conformal classical matter, for which 7,,,, = 0 and by energy
conservation Ty, (1) and T, (v) are chiral functions as denoted, is given by (Almheiri
and Polchinski 2015)

D (u,v) =

" 8GN
1—-=UV - It +10)), 2.44
U_V( ; (1 + )) (2.44)

where I are given in terms of the matter stress-tensor by

+00
Ly (u,v) = / ds (s =U)(s = V) Tyu (s), (2.45)
U

4
I_(u,v) = / ds(s =U)(s = V) Tyy(s),

e¢]

and TyydU? = T,,du? and TyydV? = T,,dv?. In the rest of this subsection we
point out some important features of this solution. It is useful to first work out a simple
example.

Example:

Consider an infalling energy pulse of energy £ > 0 in the Poincaré patch, modeled
as Tyy (V) = E&§(V) as in Fig. 3. This immediately leads to I, = 0 and I =
EUVO(V), and hence the dilaton profile

_a—8wrGNEUVH(V)
B U-V ’

1) (2.46)

Comparing with (2.43), we see that after the pulse has passed, we have created the
vacuum solution where one identifies the parameter © = 8 Gy E.
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Fig.3 Penrose diagram of AdS; in the Poincaré patch. An energy pulse is injected at time 7 = 0, indicated
in red

We will retake this specific example at multiple instances further on as we develop
the classical model. We have interpreted the parameter u of Eq. (2.43) in terms of the
total spacetime energy E.

It will be useful to describe this finite £ solution using black hole coordinates
introduced in Sect. 2.2.1, and it is convenient to rewrite it in several ways as:

_a— nU @)V (v) . " _a
o= —U(u) Vo) JJap coth <\/:2z) = 2r, (2.47)

using the coordinates of Egs. (2.37) and (2.38).
_0_

Imagine we set a = 0 a priori in (2.44), such that initially ® (u, v) = 0. Then
sending in some matter through 7, or Ty, suddenly causes ® at Z = 0 to diverge. This
runaway backreaction at the holographic boundary was first noticed in Maldacena et al.
(1999), where it was argued to ruin Maldacena’s decoupling limit (Maldacena 1999)
for AdS,/CFT. This is one of the bulk avatars of the difficulties with AdS,/CFT|. We
see here that the resolution is to consider backgrounds with a # 0, where the dilaton
always diverges at the boundary. The rate of divergence of the solution then contains
the information on backreaction. We elaborate on this point in the next subsection.

Moreover, in order to assess the regime of validity of the classical approximation
of this section, it is useful to determine the location of possible singularities. Since
the metric is always AdS,, there are no curvature singularities. However, tracking
the dilaton profile, there can be places where the effective Newton’s constant blows
up. This corresponds to points where ¢ + (2.44) = 0. One expects the classical
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approximation (studied in this section) to break down far before reaching this region.'?

Demanding this locus to be far away from the holographic AdS; boundary for the
solution (2.44), restricts us to a > 0, providing an independent reason to regularize
the backreaction by introducing the non-zero quantity a.

An interesting point that emphasizes the connection between the dilaton and entan-
glement entropy is the following: the quantities /4/(U — V) and I_/(U — V)
introduced in (2.44) match with expressions of modular Hamiltonians of a 2d CFT in
an interval between the point (U, V) and a boundary at Z = 0. This observation was
explored in Callebaut and Verlinde (2019), Callebaut (2019) to show that JT gravity
can be viewed as an emergent model describing the entanglement dynamics of a 2d
CFT on a halfspace.

The generic dilaton solution with arbitrary non-conformal matter is also known
(Joshi et al. 2020), albeit is less elegant.

2.3 Boundary conditions and Schwarzian dynamics

In order to proceed further, we need to implement suitable boundary conditions at the
holographic boundary u = v. Several equivalent perspectives have been developed to
both motivate and implement these efficiently. An approach rooted in hydrodynamic
effective actions can be found in Jensen (2016). In parallel, an insightful Euclidean
geometric argument was constructed in Maldacena et al. (2016b), while in Engelsoy
et al. (2016), generalizing the set-up of Almheiri and Polchinski (2015), a real-time
perspective at the level of the equations of motion was developed. These arguments
have been reviewed in many works by now. Here we focus first on the approach of
Engelsoy et al. (2016), and then summarize the geometric route taken by Maldacena
et al. (2016b).

2.3.1 Real-time derivation

We impose two boundary conditions that will restrict the freedom in the coordinate
transformations at the boundary as follows.

1. The geometry is asymptotically AdS. We demand any bulk solution to have the
leading asymptotics in Fefferman—Graham gauge:

2 2
ds? = _dtz—jdz + (subleading as z — 0). (2.48)
If we now perform an arbitrary (non-chiral) coordinate transformation in lightcone
coordinates U (1, v) and V (u, v), then it is easy to show that in order to preserve the
asymptotics (2.48), we require: (i) 9,V = 0 = 9,U at leading order as z — 0,
(ii) U(u,v) = V(u,v) at leading order as z — 0. The first identity leads to chiral
functions, and the second shows that both functions need to be the same. Translating

10 In the case considered in Sect. 2.1.2, where JT gravity arises from a near-extremal black hole in 4d, the
locus @ + ® = 0 corresponds to r = 0 in coordinates (2.19), i.e. the black hole singularity. At this point,
the expansion studied in Sect. 2.1.2 breaks down as well.
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this to new time and radial coordinates through U = F +Z and V = F — Z, we
obtain the near-boundary relations:

F(t) = % Ut+e)+ Vit —e)=U)+ O), (2.49)
Z(t) = % (U(t+e) =Vt —e) =eF (t) + O). (2.50)

u—uv

where € is viewed as the near-boundary cutoff z = ~ €, regularizing the holo-
graphic boundary by moving it slightly inwards from z = 0 to z = €.

In Poincaré coordinates, this leads to a boundary trajectory determined in terms of
a single function F(¢), as (T = F(t), Z = € F'(t)). This function F(¢) parametrizes
the subset of large diffeomorphisms that preserves the asymptotics (2.48), and by the
usual dictionary in AdS/CFT, these generate the group of conformal transformations
(i.e. arbitrary time reparametrizations in 1d) in the dual QM. However, this is not the
end of the story since for all classical solutions, just like the metric, the dilaton field
(2.44) blows up as z — 0 as well.

2. The dilaton field asymptotics is fixed. We have argued that a solution with finite
® at the boundary is not consistent with backreaction. To avoid this we choose the
divergent dilaton asymptotics:

®= 21 + ( subleading as z — 0). (2.51)
Z

The parameter a of dimension length defines the particular model we are studying.

A physical way to motivate this boundary condition, is that to define the timelike
trajectory of the boundary curve, one has to impose a scalar condition. Making the
boundary follow a fixed value of the dilaton field ® is a natural coordinate-invariant
way of defining this line in a dynamical situation. From a higher-dimensional perspec-
tive, the dilaton field descends from the transverse area of the fixed radial hypersurface,
as discussed in Sect. 2.1.2. Keeping fixed the size of this surface is an invariant way
of defining a radial location r in a dynamical bulk geometry.

Implementing this boundary condition by inserting the dilaton solution (2.44), we
obtain the following integro-differential equation for F(¢):

F) = 1_87‘[GN (

a F(1) 00

+o0 F()
/ ds (s—F(0))*Tyuy (s) + / ds(s—F(t))vav@),
(2.52)

where we have set © = 0 since it can be created by the matter as discussed earlier in the
example in Sect. 2.2.2. This procedure breaks the conformal symmetry of the boundary
theory, and leads to a fixed and preferred boundary time frame F(¢) determined by
the above equation.!! This boundary condition (2.51) resolves the tension around

I A finite-dimensional subgroup of the infinite dimensional conformal group is typically left unbroken
QW F(u)dy F(v)

due to the isometries of AdS;. To appreciate this, consider the metric equation gy, = (FG)—F ()2
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Fig. 4 Penrose diagram of AdS; in Poincaré patch before and after injecting an energy pulse. In red we
show the boundary trajectory. We see this gets kicked after the insertion in such a way that a black hole
horizon appears

AdS,/CFT; by deforming it into a NAdS,/NCFT; of “nearly” AdS; (by the varying
dilaton field and its asymptotics) dual to a “nearly” CFT (by explicit breaking of
conformal symmetry in the UV).

Example (continued):

Let’s solve equation (2.52) for our previous example. We have

F<0 —> F =1, (2.53)
F>0—> F=1-2F2 (2.54)
a

For t < O the solution is trivial F(t) =t and Z(t) = €, while forr > O itis
F@) = \/Etanh \/Et, (2.55)
" a
Z4) = eF(t) = —— (2.56)
cosh? \/gt

Notice that Z(t) — 0 as t — oo which happens at finite Poincaré time F =
(a/u)'/?. This time reparametrization is precisely the boundary limit of the black

in terms of F. In transfering from gy, to F, there is a redundancy since all F related by PSL(2, R)
transformations as F — f ﬁi’s yield the same metric, and hence have to be identified. In hyperbolic spaces
with other topologies, only a subgroup of PSL(2, R) is redundant when demanding compatibility with
suitable periodicity conditions on F. This will become more clear in Sect. 3 and in particular in Sect. 3.6.
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hole frame on the AdS, manifold (2.36) we described earlier, with \/g = %, relating
the temperature S~! to the parameter 1. See Fig. 4.

—0—

In order to write Eq. (2.52) in a more manageable form, we first need to consider a
different quantity in this model. The holographic stress tensor can be computed using
standard techniques, supplemented here with the proper boundary coordinates (Jensen
2016; Maldacena et al. 2016b; Engelsoy et al. 2016). We will not detail the calculation
itself here. In 0+1d, this quantity is the total energy contained in the spacetime at
any time ¢ and, without boundary sources for massive bulk fields, can be written
suggestively as:

a F" 3 /F 2
E(lt)=— F,t}, F,t} = =1l = . 2.57
()= eGP0 (=T 2<F) (257)

The prefactor 6”GN will appear a lot, and plays the role of the actual gravitational

coupling constant in NAdS,. Note that this gravitational coupling is power-counting
superrenormalizable. We introduce the shorthand notation in terms of the quantity C
of dimension length:

a

= 167Gy’

(2.58)

Let us apply the relation (2.57) to the black hole coordinates, and study black hole
thermodynamics from this perspective. For the solution (2.55) F(t) = \/g tanh \/g t,

we immediately find the stress tensor (2.57): E(t) = % , agreeing with our previous
analysis around Eq. (2.46). From this, we find the energy-temperature relation:
1

_1LJE A 22
T=—\3c = E@=2CT. (2.59)

Using 2 5E E = T, and identifying the zero-energy entropy with the parameter Sy in the
action, we can find the thermal entropy contained in the system as

S(E) = So + 27v2CE = Sy + 4—VG“ (2.60)

In the canonical ensemble, the entropy has a behavior linear with the temperature
given by

S(T) = Sy +47>CT. (2.61)

We can compare this entropy to the Bekenstein—-Hawking (BH) entropy of a black hole
SBH = %, where A is the horizon area. The analogous formula in 1+1d requires

the following modifications. Firstly, the area of a d — 1 sphere is S9! = 1351//22), and

hence A — 2 when d — 1. Because the 0-sphere consists of 2 disjoint points, we
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obtain A = 1 for a single horizon. Secondly, in our model the effective Newton’s
constant in dilaton gravity is spacetime-dependent: 1/G y eff(x) = (Po+ P (x))/Gn,
which evaluates at the horizon to (®g + ®5)/G N, where ®y, is the horizon value of
the dilaton field. Hence the 1+1d analog of the Bekenstein—-Hawking entropy is

Dy + Py,

2.62
4G N ( )

SpH =

We remind the reader that for convenience we separated the constant background piece
of the dilaton ®( from the varying piece ®. The entropy is simply proportional to the
total value of the dilaton evaluated at the horizon. Using now the dilaton profile for
the black hole solution (2.47)

_ a—pUwm)V(v) _ 14
D= —U(u) Vo) JJap coth <\/:22> , (2.63)

we obtain &, = ,/au, and we see that the resulting BH entropy (2.62) matches the
thermal entropy (2.60). Finally, we note that the entropy can be equally computed
from the Ryu—Takayanagi (RT) formula (Ryu and Takayanagi 2006) as:

Do+ P(2)

S = Min, 1G
N

(2.64)
where the minimum occurs at the black hole horizon z — +o0o. Non-trivial checks
of this 2d version of the RT formula in more complicated geometries can be found in
Goel et al. (2019).

Now let’s continue our main analysis, where we come to the main point. Equipped
with the formula (2.57), taking suitable derivatives of Eq. (2.52), we can massage
(2.52) into an ODE in terms of the energy E(t) = —C {F, t}'2

dE(t)

T (Tvv (1) — Ty @) F?lapm = Tou(t) — T (O], (2.65)

where the right hand side is the net influx of matter from the holographic boundary
in the proper coordinates (u, v). Hence the differential equation that determines the
frame F'(¢) is just energy conservation, where the wiggly boundary curve (F (), Z(t))
reacts to a net energy influx from the holographic boundary. In particular, injecting
positive energy causes the boundary trajectory to bend towards the actual boundary as
illustrated before around Eq. (2.56) and vice versa. With this interpretation, the right
hand side of Eq. (2.65) can be immediately generalized to arbitrary non-conformal
matter as well. This equation of motion is the main result of the classical analysis of
the JT equations of motion.!?

12 The sequence applied to (2.52) is: differentiate, divide by F' /. differentiate, divide by F /. differentiate,
/
multiply by F’. Then use that {F, 1}/ := F' ((F”/F/)/ /F/) .

13 This is reminiscent of hydrodynamics where the only conserved quantity is the energy (Jensen 2016). A
related similarity is that, as we will point out in Sect. 3.6, the only local observable operator in the resulting
quantum theory is constructed from the stress tensor.
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Some of the above mysterious properties of 2d dilaton gravity are naturally
explained when embedding the model within higher-dimensional gravity. For near
extremal charged black holes in 4d considered in Sect. 2.1.2, the boundary condition
on the dilaton arises from gluing the AdS; throat to the exterior region (Almheiri and
Kang 2016; Nayak et al. 2018). Another example is the observation that the dynamics
of s-waves of 3d gravity are governed by 2d JT gravity (Achucarro and Ortiz 1993).
Indeed, parametrizing a 3d spherically symmetric geometry by the metric ansatz:

ds* = g0 (x")dxtdx" + @*(xM)dg®,  p.v=t.r, ¢~¢+2m, (2.66)
the 3d pure gravity action reduces to JT gravity:

1 2
—G)/d3x./_—g(R(3) —A) = —(S)/dzx«/_—gCD(R(z) — A), (2.67)
167G 167G,

where Gﬁ) = GS) /27, and the dilaton field ® originated from the gy, met-
ric component. This immediately explains the BH entropy formula (2.62) since
SgH = 27 Py, /4G§3) = O, /4G§$) where 27 @y, is the horizon circumference in
3d gravity. Moreover, our dilaton boundary condition (2.51) can be seen to directly
arise from the usual Fefferman—Graham gauge asymptotic expansion of the full 3d
metric. In this sense, JT gravity resolves the tension in AdS;/CFT; by being secretly
a 3d gravity model in disguise.

2.3.2 Aside: general dilaton gravity

It is important to know that some of this story can be generalized to arbitrary dilaton
gravity models with action (2.4), and @ in that expression denotes the total dilaton
without separating into a background ®¢ and a varying piece. Starting with (2.4),
one can write down the generic black hole (sourceless) solution, generalizing the JT
solution (2.38). We can partially fix coordinates in the bulk by identifying ®(r) = 5r,
for a radial coordinate r with r — oo the boundary of our system. In this gauge, the
dilaton can be thought of as a ruler providing a definition of proper radial distance.
The generic black hole solution after further gauge fixing can be written as

2 d(r)
ds? = — fryd + 9 foy = iz/ dd U(®). (2.68)
f@) as Jo,

The location r = ry, is the black hole horizon and ®;, = ®(ry,) = %rh. The solution
near rj, only has the right spacetime signature if U(®$;) > 0, and the dilaton potential
for & > @, should be such that f(r) is positive everywhere outside the horizon.
Expanding near r;, one obtains the Hawking temperature:

= Y@ (2.69)
2ma

conjugate to the choice of time coordinate ¢ in (2.68).
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The location r = 0 is the would-be singularity where ® — 0. From the embedding
of dilaton gravity models in higher dimensions, since the dilaton is proportional to the
area of the transverse sphere, this is the curvature singularity of the higher-dimensional
model. In 2d however, this is a strongly coupled singularity where the effective New-
ton’s constant diverges. Since there is only a single curvature invariant, and since the
® equation of motion yields

R =-U(®), (2.70)

a curvature singularity in 2d can only arise when U ’(CDSing.) — =00 for some Pgjpe , a
situation that is usually excluded by choice of dilaton potential. However, one interest-
ing example where this does happen is in the dilaton gravity description of Liouville
gravity, for which we will make some comments in Sect. 5.10.

The general E(T) and S(T') black hole first law equations for (2.68) are:

E(T) =

)

2.71)

1 U=l @mal) U-'QraT) @,
U@)dd, S(T)= =
87Gya 4Gy 4G N

where U ~!(.) is the inverse function of U (®). This gives a physical interpretation to
the dilaton potential: 7(S) = ﬁU (® = 4Gy S) is the equation of state, with the
entropy identified with the dilaton and the temperature with the value of the potential.
The connection with the entropy is the correct interpretation of the dilaton field in 2d
dilaton-gravity.

We leave it as an exercise to apply the above relations to the JT case, where in
the conventions of this subsection U (®) = 2(d — dp). We note that a linear dilaton
potential is the only one where the resulting thermodynamical relations only depend
on the ratioa/Gy ~ C.

2.3.3 The Schwarzian action

We were led to a dynamical boundary curve described by (2.65), which in the absence
of matter injections is governed by the simple equation

d
TAF.1) =0, (2.72)

This equation of motion can be found as the Euler-Lagrange equation of a suitable
action: the Schwarzian action. This action describing the dynamics of JT gravity is:

F" 3 F//2
= — dt{F,t F,tl=——=-|—) . 2.73
s=—c [aFn. (Fan=2 2(F,) (2.73)

and contains the Schwarzian derivative as the Lagrangian. As a higher-derivative
model, this looks complicated at first sight. After integrating by parts using
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[dt8{F.t} = — [dt ‘= F1V 5. the equation of motion following from (2.73) is
indeed (2.72) as pr0m1sed

It is now relatively straightforward to write down the effective action whose equa-
tions of motion give the full sourced Eq. (2.65). We just minimally couple a generic
2d matter Lagrangian L, (¢, dr¢), where we denoted its dependence on the fields ¢
and the time-derivatives dr¢, to the wiggly boundary curve and extrapolate the time
reparametrization ¢ — F(¢) throughout the entire bulk. We can then write the total

Lorentzian action in a hybrid way as'*
S = —C/dt {F,t}+/dFdZ£m(¢, orQ) (2.74)
1
= —C/dt {F, 1t} +/dtdZ F'Ly(p, Fa,ab), (2.75)

where in the second line we made the F-dependence of the matter part explicit. Varying
with respect to F(¢) yields

5SS = dt C{F [}(SF 0 L SF’ 2.76
_/ [ F' / (F¢88F¢> ’") } (270

Identifying the matter Hamiltonian density as H,, = 8F¢ aa ¢ — L,,, then leads to
the sourced equation of motion:

—C{F,tY =F ,
{F, 1} IF

Hy = / dZ H,y. (2.77)

The quantity on the RHS is the total change in the energy in the matter sector since
by energy conservation in the matter sector ddig" = Tyy — Tyylym. The explicit F2
converts the matter energy fluxes to the ¢ time coordinate. This is precisely the content
of the sourced equation of motion (2.65).

In order to proceed, it is convenient to summarize some of the salient mathematical
properties of the Schwarzian derivative:

1. By explicit calculation, we have the following representation of the Schwarzian
derivative:

B F@F'@o 1
_{F "= 32,<((F(ﬂ)_F(;>)2 (ﬂ—r)z)' 279

2. Composition law:

[F(G®), 1} ={G ), 1} + G')*(F(G), G}(0). (2.79)

14 Some comments are in order here. Firstly, we can always extrapolate the boundary reparametrization
into the bulk in any way we want. Here we choose a simple way. Secondly, the Z-integral only ranges to
Z(t) = €F'(¢) but this is infinitesimal and does not play a role in the current argument. This term would
be important for massive matter boundary sources turned on, but this will not be studied here.
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This can be proven easily using the representation (2.78).
3. The Schwarzian derivative itselfis PSL(2, R) invariant: if F' = ggi{?,then {F,t} =
{G, t}. This can again be easily shown by using the above identity (2.78).

4. The solution to the equation {F, t} = 0 is

at+b
F@) = . 2.80
@ ct+d ( )

To see this, note that (1) = t has vanishing Schwarzian derivative {F, t} = 0. By
property 3, this means also i’;ig has zero Schwarzian derivative. This is a three-
parameter family of solutions. The differential equation {F, ¢} = O itself is third
order and hence requires three integration constants as initial conditions, F(0),
F’(0) and F"”(0) which can be one-to-one mapped into the three parameters of the
PSL(2, R) transformation parametrized by a, b, ¢, d above.

5. A converse of property 3: if two functions have equal Schwarzian derivative, then

they differ at most by a Mobius transformation: {F, t} = {G, ¢t} if 3 (Z Z) such

that F = Z(G;ig . To prove this, we first use the composition law (2.79) to rewrite the

aG+b
cG+d-

proposition as {F', G} = 0. Then by property 4, we immediately get F =

Now we are equipped to discuss the solution of Eq. (2.72) in more detail. We imme-
diately have:

d
E{F,t}:O = {F,t} = constant. (2.81)

For any fixed value of this constant, which is interpretable as proportional to the energy
(2.57), this equation has a unique solution up to an PSL(2, R) M&bius ambiguity

aF(@)+b

F(t) —> —cF(t) npl

(2.82)

The Schwarzian action (2.73) has a PSL(2, R) symmetry, under F — fﬁis This
leads to the following conserved Noether charges:

Wk F//2

Q- =Cl—5- ﬁ} , (2.83)
TF"F FF//2 F"

Qo=C F2 T 3 | (2.84)
r F///FZ F2 F//Z 2FF" ,

Qy=C|—(5 ——f5 — 5 +2F'|, (2.85)

associated to the one-parameter subgroups generated by b for Q_, a and d for Qy,
and ¢ for Q4 respectively. One checks explicitly that these conserved charges form
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an sl(2, R) algebra, and yield the Hamiltonian as the quadratic Casimir:

1 1
=—C(F,1} =5 [Q% -5 1oy, Q—}} : (2.86)

which is also the Noether charge of Eq. (2.73) corresponding to time translations in
the coordinate time  — ¢ + ¢.!3

We would like to stress that even though the transformations generated by Q that
act on F' are symmetries, the transformation ¢ — fltis is not a symmetry unless
t — t + b; the boundary conformal symmetry is broken for C # 0.

As emphasized earlier, configurations that are related by Mobius transformations
F — ‘C‘gis, are to be identified in the gravitational model. In order for F(¢) to be a
good reparametrization, we also require F’ > 0 anywhere on its domain. Depending
on the precise situation, the set of all allowed F'(¢) can get further restrictions as we
make precise in Sect. 3. For now, let us call this space G, and the Mobius subgroup
(which is a redundancy) as H = PSL(2, R). Then the set of all possible F(¢) is
described by the coset G/H. This is a situation familiar from e.g. the pion effective
QFT in particle physics, where we view F as describing the (pseudo) Goldstone boson
degrees of freedom in the symmetry breaking G — H. The Schwarzian action itself
(2.73) is however only invariant under the (gauged) subgroup H, illustrating that the
original group G is broken both explicitly and spontaneously, hence the adverb pseudo.
The prefactor C ~ a of the Schwarzian action hence represents the scale of explicit
breaking of the 1d group of reparametrizations, i.e. the 1d conformal group. This is
an interpretation we indeed encountered earlier in Sect. 2.3.1 when regularizing the
dilaton asymptotics.

The Schwarzian term itself is the lowest order non-trivial local term one could pos-
sibly write down as a Lagrangian that is invariant under H. As such, the Schwarzian
model exhibits universality, and is fully determined by this specific pattern of symme-
try breaking.

It is in this language that the Schwarzian action first emerged in A. Kitaev’s work in
2015 on the Sachdev—Ye—Kitaev (SYK) model (Sachdev and Ye 1993; Kitaev 2014,
2015a,b): the dynamics of SYK atlow energies is approximated by a reparametrization
F (¢) describing an explicitly (by UV effects) and spontaneously (by making a specific
choice of F(¢) mod PSL(2, R)) broken symmetry.

Hence since the PSL(2, R) symmetry is a gauge redundancy, this means only con-
figurations with zero overall PSL(2, R) charges are physically observable. The correct
interpretation for this is that the gravitational charges have to be compensated by other
sectors, either in a two-sided configuration, or by adding additional matter sectors that
can carry these charges.

2.3.4 Geometric derivation from the action

There is a faster derivation of the Schwarzian description that is more geometric in
nature (Maldacena et al. 2016b) and stays at the level of the action. It will be our

15 The expression for the energy (2.57) is to be compared to this Noether charge, which can be used to
deduce that the prefactor of the Schwarzian action is indeed —C as in (2.73).
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A

Fig.5 Cutout of the Poincaré upper half plane

starting point in the next sections. Let us go back to the Euclidean JT action:

1 1
Ir[g. @] = ~ 163G / VP (R+2) — e f Vho(K —1). (2.87)

We first vary with respect to the dilaton field, to find R = —2, or a patch of the 2d
hyperbolic plane ds? = M.

The dynamics is now fully governed by the GHY boundary term on some wiggly
boundary curve. One can draw this as the hyperbolic upper half plane, where we cut out
and remove a shape that is close to the actual boundary Z = 0. This is the Euclidean
counterpart of our discussion so far. We illustrate the procedure in Fig. 5.

We parametrize the boundary curve as (T = F(t), Z(r)). Fixing the boundary
metric to VA = 1 /€ imposes Z(t) = € F'(t). We can directly evaluate the extrinsic
curvature trace:

/(2 2 " I8
k=" +(§/2 I ;f);/z 220 1L O, 288)

using standard techniques.'® We also fix the boundary dilaton to be &), = ®|; = %>
which appears in the GHY term in the action (2.87). Plugging this back in the Euclidean
action, we immediately obtain the Schwarzian action:

Iir[F] = —C/dt{F, 1}, C= a

—_— 2.89
167TGN ( )

The added benefit is that one can directly generalize this to a Euclidean gravitational
path integral argument, as we will do further on in Sect. 3.

16 Some technical details. The non-zero Christoffel symbols are F%Z = —F%T = —F;Z = 1/Z.
The extrinsic curvature is computed as K = h'' Ky = h'"' M!*MYV,,n, where M/ = ;x*, the pull-
back metric is by = MM} guv- The unit-normalized outwards-pointing normal co-vector is n, =

(Z(Z’Z-f;f’z)l/z , Z(Z’2+F,’2)1/2 ) The ¢-dependence of the objects Z’ and F’ can be rewritten into a F-

dependence using the chain rule: d(.)/d F = (.)’/F’, making the normal co-vector a function of (F, Z).
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50

Fig.6 The left figure depicts the wiggly thermal boundary curve as a cutout of the Poincaré disk. The right
figure shows the boundary clock ticking pattern. The number of ticks on the clock f(7) is fixed by the
periodicity constraint (2.91), but their spreading along the thermal circle is not

The Schwarzian action describes the reparametrization F(t) as the dynamical
degree of freedom. Much like in well-known studies of 3d Chern—Simons and 2d WZW
boundary CFT (Elitzur et al. 1989) (and in the BF dimensional reduction discussed
briefly in Sect. 3.7.4), the physical boundary degrees of freedom are the would-be
large gauge (or diff) transformations, which have become physical and observable in
the presence of a boundary.!”

Up to now, we have always described our reparametrization as referring to the
Poincaré time coordinate F. This is not necessary, and in fact it is more natural to
choose a different reference frame when considering the thermal system, that is the
black hole frame. We define'®:

F(1) = tan %f(r), (2.90)

in terms of a new variable f(t), which has the properties:

f@+B=f@O+p  f(x)=0. (2.91)

These two properties give f(t) the interpretation of a time reparametrization of the
boundary thermal circle: f € Diff S'. The metric boundary condition (2.48) can
then be rephrased as a fixed length boundary condition, where we keep fixed the
regularized boundary length to g The rescaled (renormalized) boundary length is S,
with the physical interpretation of the inverse temperature.

Two useful graphical representations, emphasizing different perspectives, are the
following.

The classical equation of motion of Eq. (2.89) for a thermal reparametrization
(2.90) with the above periodicity requirements, leads to the unique classical solution

17 We will encounter different boundary conditions later on for interior boundaries. We refer to Goel et al.
(2021), Ferrari (2021) for classifications of boundary conditions.

I8 This is the Euclidean version of Eq. (2.36), setting both F — —i F and f — —if, where the prefactor
B/ is removed. This prefactor is part of the SL(2, R) gauge isometry group and is hence not observable.
It was however convenient to include it earlier because the time coordinate then has a clean § — +o0 limit
back to the Poincaré time coordinate F — f.
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f(r) = t,up to PSL(2, R). This is precisely the (Wick-rotated) black hole solution
(2.36).

2.4 Quantum matter in classical gravity

Before starting with the quantum solution of JT gravity in the next sections, we want to
present a physically interesting intermediate situation where we study quantum matter
in a classical gravitational model.

The sourced Schwarzian equation of motion (2.65) is this model’s Einstein equation
G v = 8w Gy T,y . Inthis subsection, we promote the matter sources on the right hand
side to be quantum mechanical, while retaining classicality for the gravitational sector,
ie. G =81Gy (TW). Such an approximation is only valid as long as the quantum
effects of gravity are subdominant compared to the matter quantum effects. For a 2d
matter CFT with central charge c, this can be realized when ¢ > 1, and as long as any
bulk black hole is not Planck-scale.

Quantum effects in a matter sector that is a 2d CFT are governed by the conformal
anomaly (Davies et al. 1976; Christensen and Fulling 1977), see also the textbook by
Fabbri and Navarro-Salas (2005). This leads to the following stress tensor components,
to be inserted in (2.42):

Cc
(Tuu) = —E((auwf — 320) + (- Tuu(w) 3,

Cc
(Ty) = —E((am2 —32w) + ( Tp() ), (2.92)
<Tuv> = _Lauaval
127

The objects T, Tyy and T, transform as tensor components and are covariantly
conserved V,T*" = 0, as should be for consistency of Einstein’s equations. This
stress tensor is decomposed as shown into a Casimir contribution, that depends solely
on the metric through w (u, v) and not on the quantum state, plus an operational part
that depends on the quantum state and also on a reference state as we explain. Both
transform anomalously under coordinate transformations, but their sum is a covariant
tensor.

The terms on the RHS : 7, (#) : and : T, (v) : are frame-dependent due to normal-
ordering with respect to a specific vacuum. Let us be more explicit. Suppose we have
a free boson CFT with ¢ = 1, with bulk field equation (¢ = 0. Then T, = 9,,¢9,¢
is a composite operator in the quantum matter sector, and requires regularization and
renormalization. We define the renormalized stress tensor by subtracting its expec-
tation value in the vacuum state |0,) defined using positive frequency modes in the
u, v-coordinates, as:

Ty - = 0490y — (04] 3,93y |0y) (2.93)
. , 1 1
= ulglli’ (3u¢(14)au¢('4 )+ Em) , (2.94)
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and analogously for : Ty, :. This stress tensor is operationally defined and measured by
local observers with measuring devices calibrated to their vacuum. Between different
frames u and U (i.e. calibrated w.r.t. different vacua), it transforms anomalously as:

T, dU\* T < U, (2.95)
: =—) : :——{U,u}. .
i du vu 247

In our specific set-up, the influence of the quantum matter sources (2.92) is the
following. (1) The non-zero component (7;,) leads in the classical equation of motion
to a simple shift in the dilaton & — & + CGTN (Almheiri and Polchinski 2015), which
has no influence on the boundary equation of motion at ® — oco. (2) For the AdS,
geometry with the specific formula (2.31) for w (u, v), the T,,,, and Ty, components are
still holomorphic: Ty, (u) and T, (v), leading to exactly the same sourced Schwarzian
equation of motion (2.65).

Hence evaluating these stress tensor components (2.92) at the boundary, we have:

(T (D)) lopg = —2: (F )+ Tu(0) 2) lapa (2.96)
TT

(To (6)) lopt = —2: (F )+ ( Ton0) ) lom 2.97)
T

and the equation of motion (2.65) can be written in two equivalent ways:

dE
E = (Too (@) — (Tuu (@) lopm = ¢ Tou (1) ) — ¢ Tuu(®) 2) oM (2.98)

in terms of either the actual net influx of energy, or the net operationally measured
influx of energy, evaluated in the matter quantum state of interest.

2.4.1 Application: Hawking—Unruh effect and information loss

We can apply these equations directly to derive the 2d analog of Unruh and Hawking
radiation, and probe information flows in the model.

Black holes in asymptotically AdS spacetimes do not typically evaporate due to
standard reflecting boundary conditions at the holographic boundary.

Example (continued):
We impose reflecting boundary conditions for the matter sector at the holographic
boundary after the initial energy injection at r = 0, see Fig. 7. The matter sector state
is the Poincaré vacuum since that is the initial vacuum state before the pulse. This
leads to the boundary conditions (7, (t)) [gam = 0 = (T, (1)) |aam, and hence the net
energy in the bulk spacetime does not change.

However, the operational stress tensor components are nonzero by the confor-

bg

mal anomaly (2.96). Evaluating these for the frame F(r) = gtanh Ft’ with g =
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Fig.7 Penrose diagram of formation and subsequent Hawking radiation of a black hole, after injecting an
energy pulse

T,/ S”GTNE after the initial pulse, we have

(T @) D lom = Too(0) 2) lom t>0. (2.99)

N T
=

This is the Unruh heat bath with equal left- and right-moving energy flux, and no
macroscopic flow of energy. This is the AdS, analog of physics in the Minkowski
vacuum for flat space, or the Hartle-Hawking vacuum for the Schwarzschild metric.
The energy density profile is : T(? (p) == cﬁﬂw ﬁ where p is the proper distance to
the horizon, as introduced around (2.39). The conformal anomaly technique provides a
very efficient derivation of this observer-dependent physics (Spradlin and Strominger
1999). Notice that the thermal flux immediately sets in after the black hole is created;

no transient regime is present in this model and it has instant thermalization.
_0_

To model actual evaporation, let’s instead implement absorbing boundary conditions
at the holographic boundary, where the observer on the boundary line removes all
Hawking radiation he detects in his local frame (detector calibrated w.r.t. the vacuum
associated with his own preferred time ¢ coordinate) (: 7y, (?) :) |[aar = 0 (Engelsoy
et al. 2016). The boundary condition for the outgoing component remains the same
(Tyu (1)) lapm = 0. This leads to the equation of motion:

dE d c
o _CE {F,t} = (To () — (Tuu (D)) lopm = A {F,t}, t >0,(2.100)

solvable by an exponentially decaying energy profile'”:

E(t) = Ee mxc!o(r). (2.101)

19 This profile is in agreement with a quasi-static approximation where one uses the black hole first law
T ~ \/E , combined with the 2d Stefan-Boltzman law Cfl—? ~ T2,
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Spu(t)

Srad (t) >
t

Fig. 8 Coarse-grained entropy Sgy(#) and fine-grained early-late matter entanglement entropy Sren(¢) as
a function of time ¢ during evaporation

From this solution, one can then find the explicit time reparametrization solution

F@) = 2 IO(a)KO(aeiﬁl)_Ko(a)lo(ae*ﬁl)

= — - —, (2.102)
@A Iy (@) Ko(ae™®C) + Ky (@) Io(ae™ BrT)

in terms of modified Bessel functions Ip and K¢, and where o = 247” 2CE2
From this dissipating energy profile, using (2.60), one can likewise find an instanta-

neous Bekenstein—-Hawking entropy as (in this argument we consider entropies above

extremality, and therefore So does not play a role)

Spn(t) = 2nV2CEe™ ®c! (2.103)

which is a measure for the course-grained entropy of the dissipating black hole during
evaporation. Using the 2d CFT entanglement entropy formula, one can also compute
the fine-grained (renormalized) matter entanglement entropy between the early radia-
tion (hitting the boundary at times < ¢) and the late radiation (arriving at the boundary
at times > ) (Mertens 2019). For a macroscopic black hole where £ > 1/C, one
gets:

c Fn? _ JiCE ey
Sua(t) = 1310 s < 4nV2CE (1 — T ) (2.104)

This profile is always increasing. Both entropies are illustrated as a function of time
t in Fig. 8. From the above, one sees that the matter entropy Sraq(?) rises twice as
fast as the black hole entropy Sy (#) decreases, which is no coincidence (Zurek 1982;
Fiola et al. 1994). Indeed, assuming black hole evaporation is an irreversible process
of radiating into empty space, we can relate the black hole first law dSgy = dE/T
and the 2d relativistic ideal gas law E = ST /2 of the thermal atmosphere, yielding
the relation d Spy = —d S/2.

Since the matter entropy Sraq(#) never comes down to zero, this is a clean quantitative
illustration of Hawking’s information loss paradox, and shows that unitarity of the full

20 Generalizations of the dissipating black hole when including charges and/or supercharges can be found
in De Vuyst and Mertens (2023).
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quantum system is not apparent in the semi-classical gravitational approximation. This
and related puzzles, motivates us to go beyond classical gravity, a problem to which
we turn next.

3 Quantum Jackiw-Teitelboim gravity

The previous section has focused on aspects of JT gravity that can be understood from
a classical gravity treatment. One of the attractive features of JT gravity is the fact that
one can also study quantum gravitational effects exactly. We first study the quantum
corrections to the black hole spectrum as derived from the gravitational path integral
approach. Then we move on to the study of matter correlators including quantum
gravity corrections.

3.1 Spectrum of quantum black holes

The gravitational path integral pioneered by Gibbons and Hawking (Gibbons and
Hawking 1977) that computes the black hole partition function instructs us to inte-
grate over smooth geometries with boundary conditions corresponding to fixed inverse
temperature B, fixing the size of the thermal circle. The thermal disk or black hole
partition function is given by the JT path integral:

@25 JEO(RAD+2 g VER(K-D)]

Z(B) = &% /[Dg][D@]e'G”IGN[ 3.1

B 7f(@)
_ (Df] eC Jo dr{tan T’T}_ (3.2)

&% /
Diff(S')/SL(2,R)

As explained in Sect. 2.3.4, we reduce the bulk JT model to that of the Schwarzian
theory on its boundary. Within the path integral, the procedure consists of first path-
integrating over the dilaton along an imaginary contour, producing a functional delta
constraint [ [, §(R(x) + 2) reducing the integral to only hyperbolic geometries with
R(x) = —2. The remaining degree of freedom, the Schwarzian mode, arises from the
freedom to cut out an appropriate patch of the hyperbolic disk with a fixed length 8/¢
boundary. The cost of each configuration is given by the Schwarzian action.

Within the Euclidean gravitational path integral approach to quantum gravity, an
omnipresent issue is that of the unstable conformal mode, making the Euclidean grav-
itational action unbounded from below, and causing the path integral to diverge. The
standard way of dealing with this is to define the path integral along a specific cycle of
complex metrics (Gibbons et al. 1978). For JT gravity (and generic dilaton gravities),
we see that the answer is to take the bulk dilaton imaginary in the Euclidean path inte-
gral. The question of unbounded Euclidean action is then transferred to the boundary
Schwarzian action, which we will show explicitly does not contain negative modes.

To incorporate quantum effects, the derivation outlined in the previous paragraph is
not yet complete. For Eq. (3.2) to be meaningful, it is necessary to provide a measure
for the integration over f(7), derived from the integral in Eq. (3.1) over the metric and
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dilaton. This analysis was carried out in Sect. 3 of Saad et al. (2019). The proposal is
to pick the measure of JT gravity to correspond to the symplectic measure in the BF
formulation discussed in Sect. 2.1.1. This analysis leads to [Df] =[], df (z)/f' (7).,
which is invariant under reparametrizations of the Schwarzian mode.?! We will come
back to the implications of this choice later.

3.1.1 Perturbative calculation

We now compute the disk partition function in JT gravity. The Schwarzian action looks
rather complicated, and a first approach is to use perturbation theory: we expand the
reparametrization f(t) in terms of its saddle fy(tr) = t, corresponding to a circular
boundary, plus fluctuations:

f(r) =1+ ¢(7), e(t+ B) = ¢(7). (3.3)

. 2 . .
For small ¢ the action becomes Is.p ~ mC oy (’)(82). Setting the quantum fluctuation

to zero gives the classical black hole spectrum analyzed in the previous section

22C

Z(B) ~ e—Iclassical — €SO+ B = p(E) ~ eS0+2n v 2CE. (3.4)

3

This answer reproduces the two-dimensional analog of the Bekenstein—-Hawking pre-
scription identifying the horizon value of the dilaton with the entropy of the black hole
in a classical gravity approximation.

Next we incorporate the one-loop determinant around this saddle. One of the advan-
tages of JT gravity is the fact that this is a simple explicit computation. This is not
so in higher dimensions, with the only exception being the BTZ black hole (Giombi
et al. 2008; Maloney and Witten 2010). We expand fluctuations in Fourier space:

21
e(r) = ﬁ E 677””'8” + h.c. (3.5)
2
n#—1,0,1

The action to quadratic order is given by

D n*@? = DEnen + OE), (3.6)
'3 '3 n>1

and computing the Gaussian integral in these variables is very simple. The measure
of integration around the saddle point is given by Stanford and Witten (2017); Moitra
etal. (2021): [Df] = ]_[n22 47 (n3 —n)de,ds_,. We combine the quadratic action for
the Schwarzian mode with the measure to obtain the partition function to a one-loop

21 1t was shown in Moitra et al. (2021) how this measure directly arises in the second order formalism.
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approximation

3/2 2
S()+ﬁ ﬂ 1 2nC S0+M
7 B | | [ B . 3.7
By =e 25 Cn Ar2 B ¢ 7

We make the following observations on this result:

e The measure is only defined up to an overall factor, which can be absorbed into a
shift of Sp. This will be less trivial when considering non-perturbative contributions
with spacetime wormholes in Sect. 4.

e Since there is only a single saddle, and all quadratic fluctuations are stable (posi-
tive), this means that the saddle is a global minimum and the action functional is
bounded below. This is no longer true for some generalizations of the Schwarzian
model to be discussed in Sect. 3.6.

e We have chosen zeta-function regularization, following standard practice. Other
choices can be absorbed into shifts of Sy or the zero-point energy (which we have
set to zero). The power of 3/2 appearing in the one-loop determinant has a nice
interpretation. In zeta-function regularization we have ), _, 1 — 0, and if all
Fourier modes were present, the one-loop determinant would be B-independent.
Since the Schwarzian action has a PSL(2, R) symmetry, one has to remove the
n = —1, 0, 1 modes. The factor of 3 is counting the number of omitted zero-modes
in the path integral.

e Potential corrections to the one-loop result appear as a Taylor expansion in (8/C)
to (3.7). This can be seen by rescaling € by ¢ — €8/C. Therefore this ratio 8/C
can be interpreted as an effective dimensionless coupling constant.

e A somewhat miraculous statement is that the partition function Z () is in fact one-
loop exact! So our expression (3.7) is the entire answer. The reason is explained
by Stanford and Witten (2017) in terms of a localization argument.

The result (3.7) has interesting implications. We can compute the free energy given
by the logarithm of the partition function:

2t2C 3. 2xC
+ = log

—BF =logZ(p) = So + 5 5 5

e (3.8)

where the dots are temperature-independent. The first two terms on the right-hand side
are classical contributions while the third is a quantum effect. The quantum effects
become large as we lower the temperature 8 = C. When applied to near-extremal
black holes, it implies quantum gravity effects are large very close to extremality. We
elaborate on this application in Sect. 5.3.

We can interpret (3.7) in holography, which states that a black hole can be described
by a quantum system with finite entropy. The partition function of such a system with
Hilbert space Hpy and Hamiltonian H would be

28) = Trs [ | = [dE 0(BYePE, pE) = 3 5(E~ B 39)
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where E,, is a discrete set of states of the quantum system describing the black hole.
We can use Eq. (3.7) to infer what the density of states of this quantum system should
be. An inverse Laplace transform of Eq. (3.7) gives

c
orr(E) = ——¢% sinh (Zn«/ZCE) . (3.10)
272

Some comments on this result:

e Expression (3.10) is not a sum of delta functions and the spectrum is continuous.
In quantum mechanics, this is usually associated to a non-compact space such that
one considers the density of states per unit volume, but in our case there is no
infinite spatial dimension in the boundary theory. A continuous spectrum implies
the entropy in the microcanonical ensemble is infinite, such that information can
be lost inside a black hole. To see signs of a discrete spectrum with finite entropy
will require non-perturbative effects beyond those we have access to at the level
of the disk.

e For large E > 1/C, the spectrum is pjT(E) =~ So+27V/2CE , congistent with the
classical Bekenstein—-Hawking entropy of the JT black hole in (2.60).

e Quantum effects are large at small energies and indeed for E < 1/C the spectrum
is strongly modified pyr(E) &~ ¢%0+/2CE. The density of states goes to zero as
E — 0! This shows that it is wrong to interpret Sy as a ground state degeneracy.

We reduced the gravitational description in JT gravity to a solvable boundary gravi-
ton mode. There is a derivation of the path integral at the one-loop level performed by
Charles and Larsen (2020) that makes the relation between the boundary Schwarzian
and bulk metric fluctuations more transparent. A similar analysis can also be found in
Moitra et al. (2021).

3.2 Quantum Jackiw-Teitelboim gravity coupled to matter

We now perform the calculation with the addition of matter (not coupled to the dilaton
field @ as studied above in Sect. 2). For concreteness we work with a concrete example:
a massive scalar field ¢ propagating on the JT black hole background. Its Euclidean
action is

1

: /d2x¢§[(a¢)2 + m2¢2]. G.11)

Imatter[¢, g] =

In the putative dual 1d nearly-conformal quantum mechanics, this field is dual to an
operator O of scaling dimension (defined at short distances or large energies where
the gravitational effects that break the conformal symmetry are small) given by A =
1/2+4+/1/4 + m?. We compute the gravitational path integral with Dirichlet boundary
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conditions for the matter field
Z(B: ¢pp) = 50 /[Dg][DCI)] eﬁ[f/vt O(R+2)42 f; g DK —1)] f[D¢] e~ Imater[,8]

= eSO /[Df] e_ISCh[f] Zmatter[¢b, f]v (3'12)

where we defined the matter path integral in the hyperbolic disk described by a
cut-off curve f(r) and with boundary conditions ¢|s = ¢» as Zmauerl®n, f1 =
[1D¢] ¢~ Imauer[9-8] This path integral depends in principle on both the Schwarzian
mode and the boundary value of the scalar field. Notice the order we chose to do the path
integration is important: first the dilaton, then the matter, and lastly the Schwarzian.

The undeformed theory corresponds to ¢, — 0, such that boundary sources are
turned off. In the limit that the boundary curve approaches the boundary of the hyper-
bolic disk, i.e. its proper length goes to infinity, Zmaer[0, f] becomes independent
of the Schwarzian mode to leading order. An explicit illustration of this fact is given
in Appendix C of Yang (2019), for the case of a massless scalar field with m = 0
(actually the calculation applies to any two-dimensional conformal field theory).??

The partition function (even in the presence of matter) is given by the Schwarzian
density of states and therefore the quantum black hole spectrum is insensitive to the
matter content.> The situation changes when we turn on a source ¢, # 0 for the
boundary dual operators O, deforming the boundary theory. The source ¢, in the
boundary’s own time coordinate 7, is defined through the relations:

Ply = Z'72G,(T) = ' "2 F'2¢,(T) = €' 72 ¢, (1), (3.13)

where we have first used the Poincaré coordinates (7', Z) and its source ¢~>r, and rewrit-
ten this in coordinates specified along the boundary curve defined by the Schwarzian
mode. The result is the well-known generating functional for generalized free fields,
but reparametrized to the fluctuating boundary line:

A
%fdndrz(%) & (t1)dr (12)
L sin? 27~
Zmaver[@r, fl=¢ T s (3.14)

(A—PT(A)
Vah(a—1)
of D, ¢, — ¢,/~/D. Equation (3.14) is true up to an overall coefficient independent
of the Schwarzian mode and the source, and we absorb it in Sp.

where D = . From now on we rescale the matter field to absorb the factor

22 One can use conformal symmetry to map the cut-off hyperbolic disk with boundary curve labeled by
f(7) to a unit disk with a circular boundary. The non-trivial dependence with f(t) arises then from the
conformal anomaly involved in this transformation. An explicit calculation shows that the final answer is
independent of f(7) up to terms suppressed in the proper length of the boundary curve.

23 This requires some fine print. If we assume ¢y, is non-zero but arbitrarily small, then at low enough
temperatures the contribution from the matter can be dominant in the window 1 < A < 3/2, see Maldacena
et al. (2016b).
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3.3 Correlators

Next, we go over the calculation of the boundary matter correlators dual to JT gravity
coupled to matter fields. Some partial results were obtained in Bagrets et al. (2016,
2017) and the full solution for all correlators was derived in Mertens et al. (2017) real-
izing that the Schwarzian theory is a limit of Liouvile field theory, further elaborated
in Mertens (2018); Lam et al. (2018). These correlators were later reproduced using
a variety of approaches by Blommaert et al. (2018); Iliesiu et al. (2019) using the BF
approach and by Kitaev and Suh (2019), Yang (2019), Suh (2020) using the particle
in a magnetic field perspective on JT gravity, proposed by Kitaev in 2016.

3.3.1 Path integral representation

Computing correlators involves taking functional derivatives with respect to matter
sources as

8 8
O(11)...0(y)) = Z(B, , 3.15)
R TN TR TR RIS
with generating functional
A
1 fdndrz(ﬁz_“"”“’”) 9r (@)1 (22)
Z(B, py) = €™ / [Df]e TsanlfTe w7 2 Bl =S ) . (3.16)

The quantum gravity effects are encoded in the fluctuations of the Schwarzian mode.

Two-point function Let us begin with the two-point function (since one-point func-
tions vanish):

@) f ()
B sin’ 21 f(z1) - f (1)

e

(OT)O()) = e / (Df1eC I tan 1.0
(3.17)

The building block here is the conformal two-point function, while the coupling to
gravity is accounted for by the reparametrization mode. For example, when we freeze
gravity by sending C — 00, we can set f(t) = t (the gravitational saddle), and we
reduce to the conformal two-point function

2 A
(O(11)O(12)) = Z(B) <m> . (3.18)

We will see how this semi-classical answer emerges from the exact expression later,
and how corrections are suppressed as long as 8, |712| < C.
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The previous discussion motivates introducing the following bilocal operator within
the Schwarzian theory

@) fl(m)

e (3.19)
22 8in” glf (1) = f(w)]

Ga(t1, ) =

This operator has an important property: it is invariant under the SL(2, R) transfor-
mations (2.82), and since by (2.86) the Hamiltonian is the quadratic Casimir, it hence
commutes with the Hamiltonian. It will be useful later to denote the two-point function
by the following diagram

(GA(T1,T2))sen = T2 71,

(3.20)

where we drew the boundary thermal circle, and the points denote the insertions labeled
by the times 71 and 7. The line going through the “interior” denotes the insertion of
the bilocal operator G A (71, 72).

Four-point function We will also work out the four-point function in some detail.
Assume for concreteness that 7; < 72 < 13 < 74. The boundary four-point function of
asingle free field is a sum of products of two-point functions in different channels since,
turning off the reparametrization mode, the action in (3.14) is quadratic. After applying
a reparametrization, each two-point function becomes the Schwarzian bilocal. The
final answer is**

(O(11)O(12)O(13)O(14)) = (G A(T1, T2) G A(T3, T4))Sch
+H(Ga(t1, )G A (12, 13))sch + (Ga(T1, T3) GA(T2, T4))Sch- (3.21)

This gives the matter four-point function as a Schwarzian correlator of a product of

bilocals. We describe the answer for each term in the next section. The four-point
function can be represented in a diagrammatic way as the sum of these three terms:

T2 T1 T2 T1

73 T4 T3 T4

2 T simplify the discussion, we could also consider the presence of two free fields with scaling dimensions
Aj and A dual to operators O} and O;. Then the four point function is given by (GA | G a, ). In this case
there is only a single channel depending on the position of the two insertions and there is no need to sum
over three different diagrams.
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The first two terms above are simple to compute: as mentioned above, the bilocal
operator commutes with the Hamiltonian and states with the same energy propagate
along the lines joining 1-4 and 2-3 in the first diagram, or 1-2 and 3—4 in the second
diagram. This implies that in the energy eigenbasis the first two contributions are
just products of two-point functions. The third diagram involves a new calculation
due to the specific ordering of insertions and bilocals. As explained in Maldacena
et al. (2016b), this correlator when coupled to the Schwarzian mode will describe
gravitational shockwave scattering in the bulk.

Generalizations  For free fields the generalization to higher-point functions is
straightforward: they will involve higher correlators of the Schwarzian bilocal.

Another generalization we will not pursue here is to include self-interactions
between matter fields in the bulk (besides their gravitational interactions). This involves
first computing the interacting matter boundary correlator in rigid AdS;. Then one
applies a reparametrization and integrates over the Schwarzian mode. The conformal
block expansion shows that it can always be expanded in a possibly infinite number
of bilocal insertions. Even in the presence of bulk interactions, the one- and two-point
functions are universal. Three-point functions are universal up to a single coupling
factor: the OPE coefficient, but can likewise be written in terms of a product of three
bilocal operators when coupling to the gravitational Schwarzian sector.

3.3.2 Afirst approach: Schwarzian perturbation theory

As a first approach of computing Schwarzian correlation functions of bilocal operators
(3.19) explicitly, one can utilize perturbation theory as introduced before in Sect. 3.1.1.
Schwarzian perturbation theory requires the propagator (1 = 2w t/f8) (Maldacena and
Stanford 2016; Maldacena et al. 2016b):

3 2
(e(1)e(0)) = L ( p ) |:1 — %(u —n)z—i— T + écosu—i—(r —n)sinui|,

2nC \ 27 6 2
(3.22)
and the expansion of the bilocal operator insertion as:
< F|F} )A (U 4eDAa+ept (3.23)
(F\ — F»)? (g sin %(rlz + 6 — )22 .

Any propagator carries a factor 1/C, whereas any vertex gives a factor of C. The result-
ing perturbative expansion is then a power series in 1/C,> which gets complicated
very quickly since new interaction vertices appear at higher orders as well. Nonethe-
less, interesting computations have been done, see e.g. Maldacena et al. (2016b), Haehl

25 One convenient way of seeing this is to redefine +/Ce — € to make the propagator independent of C.
This makes all vertices (including those coming from expanding the operator as in (3.23)) contribute with
negative integer powers of C.
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and Rozali (2018), Maldacena et al. (2021), Cotler et al. (2020), Qi et al. (2019) for a
selection of applications at lower orders in 1/C.

Fortunately, the situation in JT gravity is even better: exact expressions are known
to which we turn next, which can be compared to the perturbative 1/C results as we
will comment further on.

3.3.3 Exact two-point function

We now state the explicit answers of Schwarzian correlation functions, and review
some of their immediate gravitational properties. We postpone an overview of their
derivation until Sect. 3.7.

For the two-point function, the answer can be written in the following suggestive
form as a double integral:

o K2 B T(A +ik) % iko)
_ s 2 Y e T (B35 L=
(O(1)O()) =e 0/0 l_[ (dk; sinh 2mk;) e 2C v 874(2C)2AT 2A)

i=1,2
(3.24)

where we defined t = |71 — 12|. This is the unnormalized expression (where we
did not divide by the partition function Z(8)). We introduced the useful notation that
whenever £ appears inside a gamma function, it means one should take a product of
that gamma function with both signs. For example I'(x = y) = I'(x + y)['(x — )
and hence the numerator in the right hand side of Eq. (3.27) involves a product of four
gamma functions. As a simple check we can see that if A — 0 then (3.24) gives back
the Schwarzian partition function, using the identities lima . ¢ rﬁi;‘ ) =278 (x) and
[(£2ik) = srsim07-

We can interpret this expression from the boundary holographic perspective. The
quantum black hole in the bulk is supposed to be dual to a system with Hilbert
space Hpn defined above. Then O should be an operator within this theory. Quantum
mechanics gives an expansion

(OEO(®) = Trry [ P O@IO@)] (3.25)

= f p(E1)dE 1 p(Ep)dEye PE-TEI=ED |0 112 (3.26)

where for systems with finite entropy p(E) is a sum of delta functions and Og, g,
are the operator matrix elements between energy eigenstates. Matter does not affect
the partition function to leading order, so we should identify p(E) = pjr(E) given in
Eq. (3.10). Combining this with the expression (3.24), we can identify the integration
variables with the intermediate energies as E = % The remainder gives the off-
diagonal matrix elements of the operator in the putative dual quantum mechanical
system

I (A +iy2CE; +i2CEy)
(20)2AT(2A) ’

|0, £, |> = 2750 (3.27)
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Fig.9 Complex time plane with Lorentzian time on the horizontal axis and Euclidean time on the vertical
axis. Branch cuts of correlators are denoted by red wiggly lines

where the factor of ¢=50 implies that Of, g, ~ (’)(e_SO/ 2) can be understood from
the point of view of the eigenstate thermalization hypothesis (ETH) (Deutsch 1991;
Srednicki 1994), as emphasized in Saad (2019), Jafferis et al. (2022a,b).?

We can extract from (3.26) the two-point function in the microcanonical ensemble,
essentially by stripping off the E-integral, evaluated in a state with fixed energy E.
The answer is 00
(E|O()O(n))|E) = / dE'p(E")e " EEN0Op pi|. (3.28)

0

We can verify that when the energy is of order C, this correlator becomes thermal with
an effective temperature S(E) = / 2w2C/E, consistent with ETH, see section 6.2 of
Lam et al. (2018).

Att — 0ort — g, either the E; or the E, integral lose their exponential
damping. The result is the UV divergence from the underlying matter CFT 1/7 or
1/(B — 7)?2. This pole gets smoothed out if one embeds JT within the microscopic
SYK model.

The result (3.24) is written in Euclidean signature. It is possible to analytically

continue this result to real time as follows. The singularity as T — 0, 8 is actually part
of a branch cut when analytically continuing to the complex plane ¢ where J(¢) = —r,
with periodic cuts at J(f) = np, as illustrated in Fig. 9. When continuing these
expressions to real time ) (¢), we have two answers depending on whether we approach
the real axis from above or below.
These correspond to the two orderings of the operators O(z;), and are the real-time
Wightman correlators G (1) = (O(t1)O(t2)) and G_(t) = (O(t2)O(t1)), where the
+-symbol denotes the continuation from the bottom (+) or top (—) of Fig. 9, and
t = t; — tp. These turn out to be complex conjugates of each other and G 4(¢) is given
by

s LK N i3 ] i
eSO/ [T @kidk; sinh 2k;) 712t ~BFinsE g€t —e3¢ FAxik £ik)
) 874(2C)2AT 2A)

i=1,2
(3.29)

26 The phase of the matrix elements is arbitrary and would require knowing more complicated observables.

@ Springer



Solvable models of quantum black holes... Page 45 of 124 4

where € is a Euclidean regulator to make the integrals converge, t = t; — t2, and the
=+ symbol in the exponentials depends on which of the two correlators we consider
(the Gamma-functions still involve a product over all signs). These are different since
timelike separated operators generically do not commute.>’

Finally, one can also separate the operators by 8/2 in Euclidean time and ¢ in real
time. This corresponds physically to having the operators acting on opposite halves
of the thermofield double state (TFD). As visible in the above figure, the resulting
real-time thermodouble correlation function is unique, reflecting the commutativity
of operator insertions on opposite ends of the TFD state.

The semi-classical two-point function decays exponentially at large Lorentzian
time. Indeed, under a Wick rotation t — ir of Eq. (3.18) we have (O(r)O(0)) ~

2nt

¢~ “F . This is not so when quantum gravity is turned on. Equation (3.29) implies that
at very late times ¢ > C the correlator is dominated by small energies E1 5 ~ ¢~
In this limit, |Op 0| approaches a constant while p(E) ~ VE, implying that the
correlators decay as

(ON)00)) ~173. (3.30)

This behavior was derived before knowing the full answer for the correlator in Bagrets
et al. (2017). Quantum gravity slows down the decay but does not stop it, leading to
the information paradox raised in Maldacena (2003a). We will review later in Sect. 4
how the addition of spacetime wormholes resolves this problem.

Let us finally make some comments on the large C (or semi-classical) content of
these expressions, and the relation to boundary graviton expansions.

e Quantum gravity effects break conformal invariance, and only as we take the
semi-classical limit C — oo with a light operator insertion A ~ O(1), do we
recover the conformal two-point function (3.18). This is true as long as both
B, 1 < C. To see this, we first write E1 = E; + . Then the integral is domi-
nated by configurations with large E1 2 ~ O(C) and small v ~ O(1). Physically,
this means we have a semi-classical black hole of large energy E» that is per-
turbed by a small energy injection w caused by the operator insertion. Writing
e PEr—t(E1=E2) — o=BE2—70 ip this limit the rest of the integrand becomes

T [0}
2E,/C . W
¢ VB2 F(Aiz—m>

(2E2/C)%_AF(2A)

p(ENp(E2)|OF, g,|* ~ ¥"V¥CE

, (33D

where we omit energy-independent prefactors. The integral over E5 can be done by
saddle point techniques combining the exponential in the RHS with the Boltzmann
e~PE2 factor, giving the saddle identification E, = 272C /% (which is again the
JT black hole first law). This produces a factor of Z(8). The rest of the RHS is

27 We note that semi-classically both of these correlators have an infinitesimal imaginary part of opposite
sign £ie. However, the full quantum expressions have finite imaginary parts and are hence different beyond
infinitesimals.
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FA

Fig. 10 Classical solution for the Schwarzian mode F () with sources inserted at time #; and reabsorbed
at tr. Tg denotes the net time delay after this process

given by g 1_2Aeﬁ7w rati ﬁ). The w-integral then finally reduces to the Fourier
transform of Eq. (3.18).

e If the scaling dimension of the field is large in units of C, A ~ C as C — oo,
the operator is called heavy. In this case classical gravitational backreaction is
important: the saddle equation is sourced by the bilocal operator insertion since
one can write the operator insertion into the action as:

S —/dt C{F,t}— Al Fif (3.32)
eff = ’ Og (Fl — F2)2 . .

Since A ~ C, this contributes equally importantly as the Schwarzian action itself.
The limit can be taken both directly in the expression (3.24), or using the new
sourced saddle, with matching results Lam et al. (2018). An illustrative example
is the case of zero temperature ~! — 0. In that case, the boundary clock starts at
F(t) = t, transfers through a region of finite intermediate energy for 1 < t < 1o
between the ends of the bilocal operator, and ends up as F(¢) = ¢t — Ty, see Fig. 10.
The quantity Ts > 0for A > 0 and is a net time delay, a Shapiro time delay, whose
explicit expression depends on the time difference #, — #1 and the operator weight
A.

e Beyond the large C limits, the expression (3.24) can be expanded in powers
of 1/C, and compared to the perturbative analysis. The results match (Mertens
2021; Griguolo et al. 2021). Moreover, one can use this exact result to prove that
the perturbative 1/C expansion is asymptotic for generic real values of A, and
hence cannot be captured just by the perturbative boundary graviton treatment of
Sect. 3.3.2.

e An exception occurs when A € —N/2. In this case, the expression (3.24) would
seem to vanish due to the poles of the Gamma-function in the denominator. What
actually happens, is that the numerator also degenerates to a single k-integral. The
resulting expressions are somewhat simpler structurally, but correspond to non-
unitary matter insertions (Mertens 2021).28 In this case, one can show that the
1/C perturbative expansion is convergent, and all physics is captured by boundary
graviton Feynman diagrams.

28 These have a natural origin in terms of the BF gauge model description (as finite-dimensional non-unitary
representations of SL(2, R)), and in the Liouville CFT language (as degenerate Virasoro representations).
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3.3.4 Exact four-point function

We now describe the results for the different types of four-point functions. To separate
the channels that contribute, we consider a correlator between two pairs of operators
01 and O, with scaling dimensions A >, defined by

(Oa, (11)O0A, (12) O, (13) O, (14)). (3.33)

We begin by considering the case with 11 < 72 < 73 < 74 such that the four-point
function is equal to (G a, (71, 72) G A, (73, T4))sch. This corresponds to the diagram

(08, (1)0a, (72) 0, (75)Ony(ra)) = ()
T3 ° T4

It is convenient to rewrite the correlator in terms of a fixed energy amplitude
Ak, ..., ks) as
eSo 00
(Oa, (11)O0A, (12) O, (13) O, (1a)) = 7/0 dky)dp(ko)dp(ks)du(ks)
K2 3 K2 K3
e 2C T ae B o W3 5 (B—Ta1) Aky, ko, k3, ka), (3.34)

where du(k) = ]‘Si’;f#dk and we can identify % with the energies propagating
between each insertion: k; propagates between insertions 1-2, kp between 2 — 3,
k3 between 3—4 and k4 between 4-1. Moreover it is clear that under this identifi-
cation d (k) is proportional to the Schwarzian density of states. Then the quantity
A(ky, k2, k3, ka) can be interpreted as a fixed energy amplitude computing the corre-
lator. This amplitude is (Mertens et al. 2017)

T(A] £ iky £ iko) T(Ag £ iks £+ iky) w28 (ks — k2)
QC)2AIT(2A1)  (20)222T(2A) ks sinh27wks

(3.35)

Auncross‘ =

The delta function is a manifestation of the SL(2, R) invariance of the Schwarzian
bilocal operator, and as expected the remaining factor is a product of two-point function
amplitudes.

As a simple check, when A; — 0 (3.35) the correlator reduces to the two-
point function of the Oa, operator, and viceversa. We can also verify it gives the
correct semiclassical limit: defining w; 2 = (k% — k%3) /2C, then at large C the inte-
gral over kp yields ko = 27 C/B via the saddle point method, while the integrals
over w12 factorize into a product of conformal two-point functions. Finally, at very
late times when quantum effects are important, the four-point function decays as
(O(1)O1)O(13)O(ta)) ~ 17,13, when 112, 134 > C, similarly to the two-point
function. Again this late-time power law was derived before knowing the complete
answer by Bagrets et al. (2017).
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/scm
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Fig. 11 Complex u-plane relevant for computing the four-point function with crossing. The contour of
integration is indicated in blue while the black crosses denote the poles of the integrand

We now move on to the four-point function including shockwave interaction,
which has a much more interesting structure. This requires a computation of
(Ga, (11, 13)G A, (T2, T4))sch for a configuration such that 11 < 70 < 13 < 74 and
therefore the SL(2, R) invariance of the bilocal does not help. This can be represented
by

<OA1 (T1)0A2 (TQ)OA1 (7-3)OA2 (7—4)> =

The final result obtained in Mertens et al. (2017) is given by inserting in (3.34) the
following amplitude:

F'(Ay +iky £ikg)T(A] —iks £iky) T'(Ay —iky £ ikp)T (A +ik3 £ iky)

Acros& = (2C)2A1F(2A1) (2C)2A2r(2A2)

. / du T(u % ik (u + ik +iks = ik)T (A1 — ik — )T (A — iks — u)
o 2 T+ A1+ k)T + A + ik3) '
(3.36)

There is an extra auxiliary integral involved in the evaluation of the amplitude. The
contour C in the complex u-plane is defined in the following way, illustrated in Fig. 11.
The integrand has four set of poles coming from I'(u +ik4) and I' (u +ik| +ikz £iks)
that extend towards negative real u and reach the Re(#) = 0 axis. The contour C is
to the right of these poles. At the same time there are two set of poles coming from
I'(A1 —iky —u) and I'(Ay — ik3 — u) that extend towards the right (we are assuming
A1, > 0). The contour runs to the left of these poles.

With this choice, the integral can be evaluated into a linear combination of hyper-
geometric functions, although it will be useful to keep it in the integral form.

A check: A{ — O limit
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To get some practice with this amplitude we take the limit where one of the scaling
dimension vanishes A; — 0, so the four-point function should reduce to a two-point
function with scaling dimension A;. To show this, first close the contour to the right.
In the A; — 0 limit only a single pole dominates given by u = A — ikj. The residue
around this pole contributes to the amplitude in the following way

I'(Ay ik £kg) T'(Ay £iks £iky) T(Ay £iky £iko)
Ay 2C)2AT(2A1)  (2C)222T'(2A5)
C'(Ay +iks £iky)T'(Ay — Ay + ik —ik3)
T + ikt £ k)T (Aa + Ay + ik —iky)

Across. =

. (3.37)

where the dots denote other residues that are subleading. Using again the identity

lima_o = (F?;A";‘) = 27 §(x) and keeping track of the prefactors gives the expected

answer

T(As +iky +iks) 728(ky — ks) 728 (ko — k3)

. . . (338)
(2C)222T"(2A,) ks sinh2mks ko sinh 27ks

lim Across. =
A1—0

This has the two needed delta functions to completely remove the dependence of the
four-point function on t; and 12, and leaves precisely the two-point amplitude.

—0—

Since this correlator is of central importance in the study of quantum chaos and its
relation to shockwave scattering near the black hole horizon, we will analyze some
properties in the next section.

3.3.5 Application: quantum chaos

The exponential growth in time of double commutators is a signal of quantum chaos.
This involves the computation of an out-of-time-ordered four-point function (OTOC).
To compute it, we need to first analytically continue to Lorentzian signature t — e+it,
where ¢ is Lorentzian time and € is a small Euclidean time, chosen partly to produce
the desired operator ordering in real time. An out-of-time-ordered correlator is

OTOC = (O, (0)Oa, (1)Op, (0004, (1)), t>0. (3.39)

From the operator placing it is clear that this involves an analytic continuation of the
more interesting four-point function in Euclidean space with crossed bilocal lines. In
the energy basis, the OTOC can be written as

So o0
(O, (108, (12O, (1), 1) = 5 /0 dpn (k) (ha)d e (ks d k)

k% k% k% k‘%
—i 5 t12—I 5= 13 —1 x5 143 — 5 (B—it.
xe trct2Tisps it o B=ila) Ao (ky, ka, k3, ka), (3.40)
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OAz,t/Q

On,,—1/2

Fig. 12 Penrose diagram of an AdS black hole. A particle is inserted at very early times —¢/2 (red) and
another at very late times +¢/2 (blue). The scattering which happens near the horizon for large time
separations is captured by the out-of-time ordered correlator (OTOC). Since the scattering happens at high
energies it is described by a gravitational shockwave interaction

where the amplitude A is the same as in (3.36). We also generalized the insertions to
be at arbitrary four times with the understanding they are out of time ordered, meaning
11,3 <hg4.

In the context of semi-classical AdS/CFT, the OTOC is computed in gravity by
a four-point function in a black hole background as shown in Fig. 12, see Shenker
and Stanford (2015) for a detailed explanation. We have chosen t; = 13 = —t/2
and 1, = t4 = t/2 to make it symmetric. In the semiclassical limit each insertion
corresponds to a bulk particle denoted by red and blue for both types of operators.

As t grows, the particles meet closer to the black hole horizon and therefore are
highly boosted. The OTOC is constructed by combining the scattering S-matrix of
the two particles near the horizon with their respective in- and out-wavefunctions
given by bulk-boundary propagators. At high energies, this scattering is described by
a shockwave where one particle (red) creates a backreaction in the geometry that shifts
the position of the other particle (blue) closer to the horizon. In higher dimensions this
is a genuine bulk interaction, while in 2d the particles do not really interact in the bulk:
the shockwave scattering is due to the dynamics of the boundary Schwarzian mode.

The OTOC gives a signature of quantum chaos for the quantum system describing
the black hole. One way to see this is to notice that the OTOC appears when computing
the expectation value of [Ox, (t), Oa, (0)]%. Systems with quantum chaos display an
exponential growth in time of this quantity for times bigger than the dissipation time
(order of the temperature for the black hole) and smaller than the scrambling time
(logarithmic in N, when the double commutator saturates).?’

Next we will show explicitly how all these elements of the semi-classical picture
emerge from the exact OTOC expressions.

Semiclassical limit of OTOC  To identify the semi-classical behavior of the OTOC, we
take the large C limit. In this limit all k ~ O(C), such that all intermediate energies
are of order C, but energy differences are order one. As shown in Lam et al. (2018),
in this limit only the pole at u = ik4 is relevant. Its residue gives a contribution to the

29 1tis important for this interpretation that the four-point function involves pairwise equal insertions. The
more general case is also interesting (Turiaci 2019) but is not captured by gravity in a simple way.
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OTOC amplitude given by
A= (AL +ikg £ik))T(A —iks £iky) '(Ay — ik £ ikp)T(Ay +ikg £ik3)
B (2C)?21T(2AY) (2C)?22T (242)
XI(—=2ikg)[ (—ikg £iky +iky +ik3) +--- (341

Following the procedure applied for the two-point function we parametrize the energies
as

k2 kZ 2 k2
L —Ftw, 2=E—-w3—w4, —>=E—awa, =E, (342
2C 2C 2C 20

where E is taken to be of order C and w ~ (O(1). The first observation is that the
E-dependence simplifies and gives OTOC = [ dE @2 V2CE-BE O(1), where the
order one factor is a function of the w’s and E/C. Therefore, just like for the two-point
function, we can perform the E-integral at large C by saddle point techniques, relating
E to the temperature E = 272C/f%. We can now write the order one term as

OTOC dw, it B oy 2og) ( 2T \2B1282-3
Z6) / H oo (Z0)
LA —iZ2ra — B2 (A +i 52T (A + i 82
. FRADNT(2A)
B\ R LB+ o) !
(ae) T T )(e) 6w

This expression has a nice holographic interpretation. The OTOC involves a scattering
of two particles and w measures their energy according to an asymptotic observer. The
factors in the first and second line of Eq. (3.43) are bulk-to-boundary propagators and
the particles interact through an S-matrix given by the final line of Eq. (3.43).

The physical interpretation becomes more transparent when written in a basis of
wavefunctions with fixed Kruskal energy. In this basis the S-matrix should be the

Dray—‘t Hooft shockwave S-matrix S = ¢’ e P-a+ , where p_ and g are the Kruskal
momenta of the two particles being scattered. Applying the change of basis between
the Dray—‘t Hooft S-matrix from Kruskal to Schwarschild energies, which can be
found in Shenker and Stanford (2015), gives the expression:

dq Oodp Iﬂ<w1+w3) _iBlptey) 4
S(a)l,wz,w3,w4):/ =t p_ T elmcP-a+

+w3)

_jBl . 4
z(%) b e§<w1+w3>r<”3(“’;—ﬂ+“’3))zna<zwi). (3.44)

i=1

The remainder of the calculation is to match the other factors in (3.43) with bulk-
boundary propagators. The details of the calculation are in Lam et al. (2018).
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After rewriting Eq. (3.43) in the Kruskal basis, we can do the integrals and obtain
a closed expression for the semiclassical OTOC. This was done in Maldacena et al.
(2016b) without the full OTOC answer and by working directly in the semi-classical
limit (which can be matched to Eq. (3.43)). The answer is:

OTOC  UQAy, 14241 —2As,1/2)
Z(B) 281 (Lsin T)200 (£ sin Zhpay200°

(3.45)

where U (a, b, x) is the Tricomi confluent hypergeometric function and we normalize
by the partition function Z(8). We have also defined

iB T (tty—11—13)/B

7= .
167 C sinh % sinh %

(3.46)

This answer also matches with specific Virasoro vacuum blocks computed in Chen
et al. (2017), for reasons explained in Lam et al. (2018). We see from the expression
for z that the correlator is trivial at large C unless we scale times such that e’ ~ C /.
This can also be seen by noting that the effective Dray-"t Hooft scattering phase is

. pe! .
actually Segr = €' #rc P=9+ which goes to 1 unless ¢’ ~ C/B.

Behavior of OTOC We assume C is large and look at how the OTOC depends on
time. It is convenient to choose the operators evenly spread along the thermal circle:

B B B B 2y
H=—Ii—, bh=t—i—, t3=0, 4=t -, = B,
1=y "y B A T2 T

(3.47)

This regularizes divergences that appear at coincident points by Euclidean damping
factors. The following quantity will play an important role

2nC
tsczﬁlogn_

2 B’

and is called the scrambling time of the black hole.

With these choices, we show a plot of the normalized OTOC(¢) (3.45), where we
additionally divide out the product of two-point functions, such that it starts at 1 for
t — —o0. We marked the thermal time 8 and scrambling time 7, for this configuration.
This is illustrated in Fig. 13. The following qualitative features can be distinguished.

(3.48)

e We can first consider early times with small z, or equivalently ¢ < ... Using the
expansion z=“U(a, b, 1/z) 1 —a(l + a — b)z for small z, we get

OTOC(1) aiong (| DA mp
“Z() (/)™ 2<1 I ef' + > (3.49)

This is valid for times smaller than the thermal scale, where the OTOC becomes
the product of two-point functions (the “1” in the above expansion), and is also
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1.0
OTOC(t)
0.8
0.6
041
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/8 tSC t
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Fig. 13 Plot of the OTOC as a function of time. We chose the parameters as A} = Ay = 1, f = 2w and
8C = 10°. The vertical lines separate different physical behavior. The first corresponds to time shorter than
the dissipation time ~ S. Then the chaos regime kicks in at times B < ¢ < fs¢. Finally after the scrambling
time #5c, the OTOC decays exponentially. For very late times ¢ 3> C (not shown) quantum gravity effects
become important

valid at times ¢+ 2 B where it displays exponential deviations from this: this is
chaotic Lyapunov behavior with maximal chaos exponent 27” This interpretation
arises from the fact that

(01, O:O]) ~ &, = %”, (3.50)

indicating the chaotic spread of an initial perturbation with Lyapunov exponent A.
The value for black holes saturates the chaos bound of Maldacena et al. (2016a),
and black holes are therefore maximally chaotic.

e The correlator transitions to a different behavior at the scrambling time ¢ >
tsc defined such that z is order one and the OTOC is small. In this regime
Ua,b,1/7) = % + Zb_l% when z > 1 and therefore, assuming
for concreteness that A; > Aj, the OTOC decays exponentially as

2
OTOC(r) ~ e 2225 ", (3.51)

This is quasinormal mode decay. The reason is that the kinematical effect from
the bulk-boundary propagation at these times dominates over the effect of the
shockwave scattering.

e The scrambling time is logarithmic in C. A final transition happens when ¢ > C
(not shown on the figure above). At such late times quantum gravity effects are
important, invalidating (3.45), and we need to go back to the exact expression.
The low energy behavior of Eq. (3.36) and the density of states near the edge
determines a power-law decay OTOC(r) ~ 1/¢°. This behavior has a quantum
gravity origin and cannot be understood classically.
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3.4 Diagrammatic rules for exact correlators

More complicated correlators can be computed by following a simple set of diagram-
matic rules, developed in Mertens et al. (2017) and Lam et al. (2018). These can
be used to compute any bilocal Schwarzian correlator, or equivalently the boundary
correlators with quantum gravity effects.

The first step is to draw the boundary thermal circle with the corresponding inser-
tions, joined by bilocal lines in the configuration of interest. The second step is to
assign a positive real number k to each region bounded by the boundary or bilocal
lines in the diagram. In the example of the OTOC four-point function, there are four
k1, k2, k3 and k4. Each of these variables is integrated with the Schwarzian density of
states measure d (k) = #kdk sinh 27 k.

For each boundary line bounding a region with parameter k, we assign the expo-
nential factor:

k 2
/_\ _ e—g—c(‘rz—7’1)
T2 T1

This factor represents the usual Hamiltonian time evolution of the intermediate energy
eigenstates. Each point where a bilocal line with conformal weight A hits the boundary
bounding two regions with k| and k7, we insert a vertex factor

(3.52)

k1

(A +£iky £k
= ya(ky, ko) \/( S 2)-

(20)2AT(2A)

h (3.53)

This vertex factor represents the matrix element of an endpoint of the bilocal operator
between the corresponding two energy eigenstates.

Finally, for each crossing of bilocal lines in the interior of the diagram, we insert the
following factor which depends on the four energies k surrounding it, and the scaling
dimensions of the two crossing lines:

Ag AN1 N A1 k1 kQ}
]€2><k4 B {A2k3k4

ks (3.54)
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The quantity on the right hand side depends on six variables. It is the 6j-symbol of
SL(2, R), and its explicit expression is

[Al ky kz}
Ao k3 kg

_ (A1 4+ iky £ikg)T(Ay —iky £ iko)T (A —iks £ iky)[ (A +iks £ iky)
- ['(Ap —iky £ikg)T(Ar +iky £iky)T (A 4+ ik3s £ ikp)[(Ay — ik3 £ iky)

ico
/ du T(u xiky)U(u+iky +iks £ iko)) T (A1 —iky —u)['(Ay —iks —u)
2i Cu+ Ay +ik)T(u 4+ Ar + ik3) ’

—ioo

(3.55)

Multiplying the vertex factors with the 6j-symbol involved in the crossing of lines
for the case of the four-point function gives

Across. = 71 k1, k) v (ks Ka)ya, (s, ko) o k) f 3112 L 3.56)

which is precisely the amplitude quoted in (3.36). The final step consists in multi-
plying the whole correlator by ¢%0 /2. Note that we are computing correlators without
normalizing by the partition function Z ().

Some further examples of these rules, including higher-point OTOCs, can be found
in Lam et al. (2018).

3.5 Pure states and end-of-the-world (EOW) branes

Most of this section studies JT gravity in the hyperbolic disk (which corresponds to the
Euclidean thermal path integral of the boundary theory). Half of the hyperbolic disk
can be used to prepare a state: the thermofield double state. This state is dual to the
Einstein—Rosen bridge obtained from the maximally extended black hole solution:

(3.57)

This state is represented by |TFD) = ), e_ﬁE"/2|E,,)L ® |En) g. After integrating
out the left boundary, this gives a thermal density matrix for the right system.

To instead produce a pure state on the right, one can project the left state onto
a chosen state |B); such that we get |W)g = (B|TFD). The construction of such
states was done explicitly in the SYK model. The projection on specific states can
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be modeled by a heavy operator with scaling dimension of order C. The diagram
proposed in Kourkoulou »»d Maldacana (9017\ ie

—

(3.58)

On the left we show the Euclidean preparation with the projection operator inserted
in red. On the right is the diagram after continuing to Lorentzian signature, and shows
how the projection creates a high-energy shockwave in the bulk that acts as a so-called
EOW brane behind the black hole horizon. We could also consider the Penrose diagram
fully in Lorentzian time: the EOW brane emerges from the past singularity, reaches
the left boundary and then falls to the future singularity.

More general projections that act non-locally near the left boundary can also be
considered. These are dual to states described geometrically by

(3.59)

The EOW brane moves behind the horizon, but does not reach the left boundary. In
Euclidean signature, this can be obtained by a boundary curve made of two pieces: a
holographic boundary of renormalized length 8 and a geodesic (corresponding to the
EOW brane) of renormalized length £. The Euclidean action describing this set-up is

I = LT +m/ ds, (3.60)
brane

where the second term is integrated over the EOW brane worldline and m is the tension.
This term effectively imposes the boundary conditions 9, = m and K = 0 along
the EOW worldline, with 9, the normal derivative. The path integral in Euclidean
signature over the disk with a partly holographic boundary of renormalized length
and an EOW brane with geodesic length £ is then given by Harlow and Jafferis (2018);
Yang (2019):

Z(B; 0) = D =2¢7/? /OO du(k)efﬁ% Koir(4e=4?).
’ (3.61)

As a check of this formula, one can verify that gluing two such disks along the
geodesic, adding a matter propagator e ¢ and integrating over the geodesic length
f deZ(t; 0 Z(B — t; Qe AL reproduces the two-point function (3.24). Equation
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(3.61) can also be interpreted as the wavefunction for creating an ER bridge of length
£ in a TFD state of inverse temperature S.

There have been several applications in JT gravity involving EOW branes. The first
was already mentioned (Kourkoulou and Maldacena 2017). One can also consider
intermediate situations of partially entangled states which can be modeled by (not
EOW) branes gluing to patches of AdS; (Goel et al. 2019). More recently, they were
used in Penington et al. (2019) to model pure state black hole evaporation in a simple
model of a system with a Page curve. Embedding of dynamical EOW branes in a
random matrix framework appeared in e.g. Gao et al. (2022); Blommaert and Usatyuk
(2022).

3.6 Other operator insertions in JT gravity

The bilocal operator studied so far is not the only operator one can insert into the
gravitational path integral. Here we go through other possibilities.

In fact, the simplest local operator insertion that is PSL(2, R) invariant is the local
energy operator E(t) = —C {F,t}. Its correlators are relatively straightforward to
determine and are piecewise constant up to contact terms. Within the diagrammatic
formalism, they represent the energy k?/2C in the different sectors of the diagram,
depending on where we insert them in the Schwarzian path integral. To derive the
expressions, one can write down a Ward identity relating a correlator with such an
insertion to one without, see Stanford and Witten (2017); Mertens etal. (2017); Mertens
(2019) for details from various perspectives on this result.

Mixing up these operator insertions with the bilocals, reinforces the physical
interpretation of the bilocal operator itself in holography: in the sector between the
endpoints of the bilocal, an energy has been injected into the gravitational bulk, only
to be removed again at the second endpoint of the bilocal operator. A single endpoint
of these operators can hence be compared to the classical energy pulses we studied in
Sect. 2.

A structurally more interesting class of operators is the so-called defects in the JT
bulk to which we turn next (Mertens and Turiaci 2019). We have previously shown
that the thermal disk partition function is described by writing F(t) = tan % f(o),

where f(7) € % = %. This integration space is special since it is symplectic,

but it is also precisely the coadjoint orbit of the identity element of the Virasoro group
(Witten 1988; Balog et al. 1998). This is no coincidence. In fact, there is a host of
Schwarzian models that can be found by considering all of the different Virasoro orbits,
with different choices of the preserved subgroup H. All of them can be interpreted
gravitationally. Let us give an overview. In all cases, we write the Schwarzian action
as:

B
Sulfl= —C/O dt{F oy f(1), ). (3.62)
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The different models are at a crude level distinguished by a monodromy matrix M €
PSL(2, R), defined by the periodicity relation F(t + B) = M - F(r) = %,
and we label the orbits by the conjugacy class of this matrix M. The stabilizer H is
then defined as the subgroup of all 4~ € PSL(2, R) satisfying [#, M] = 0. We can

distinguish the following different models>®

e Elliptic H = U(1)y. Elliptic orbits are parametrized by

cos(mf) sin(wO)

T
F og f =tan EQf, M = <_ sin(;0) cos(wh)

) € PSL(2, R). (3.63)

In the bulk, one can choose conformal gauge and continue this time reparametriza-
tion into the bulk as in (2.32) by setting U(u) = F(u) and V(v) = F(v). This
choice is arbitrary, but coordinate-invariant results we obtain from it have meaning.
This leads to the metric:

6\?* dr? + dz?
ds> =4<”—> e (3.64)
B sinh® <20z

This geometry can be readily shown to have a conical singularity of periodicity
276.
Within the path integral, one can show that the result is again one-loop exact:

Z(5,0)

B 270 :/ [Df] oC Jo' dr{tan 50 (r),7}
Diff S1/U(1)g

B

™ 2T

/+QodkCOSh(27T9k)€_ﬁ§§'_ 1 (271'0)1/262”;002.
0

(3.65)

The calculation only has a single zero-mode in this case, since the only isometry
of the metric are rotations around the defect.

The action functional for these models precisely matches with the energy func-
tional in Virasoro coadjoint orbit theory. In particular, bounds of this functional in
the different orbits have been analyzed (Balog et al. 1998), which can then be used
to show that for & > 1 negative modes exist and the path integral evaluation is
formal. Nonetheless, the answer can be derived by other means (e.g., from limits of
Virasoro characters (Mertens and Turiaci 2019), or by complexifying the unstable

30 Some fineprint is due. Firstly, there is no agreed-upon naming of the different orbits, so care must be
taken when comparing different references. Secondly, the difference between orbits and conjugacy classes
is mainly that we need to keep track of the winding number of the elliptic conjugacy class. This means the
parameter 6 € R instead of 6 € [0, 1). Finally, we only consider orbits that have a constant representative.
The reason is that the other orbits, by definition, have no solution to the equation j—r {F, 1} =0, but this is
precisely the saddle equation of all of these models. Such orbits would hence be highly quantum, and we
are not aware of any use of these orbits (in any context).
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fluctuations), see Alekseev and Shatashvili (2021) for some further speculation on
an interpretation in terms of a change of integration cycle.!

The following observation made in Mertens and Turiaci (2019) will be important in
Sect. 4.5.2. The presence of a defect at the point x. of the hyperbolic disk means the
scalar curvature has a delta-function singularity R(x) = —2+44mx(1— 0)82(x —x¢).
This is equivalent to the insertion in the JT gravity path integral of an operator

4GN (1=6)P(xe) at the location of the defect.

e Exceptional Elliptic H = PSL"(2, R). When 6 € N, the stabilizer is enhanced:

Fo, f =tan %nf, M= ((1) ?) € PSL(2, R). (3.68)

The conical singularity is 2mn, and this represents a replicated version of the
original disk. There are three zero-modes (just like for the n = 1 case where there
is no conical deficit), and we obtain the one-loop exact amplitude:

B T
Z(B,n) = / [D £] €0 detian Gnf (0).7)
Diff §!/PSL" (2,R)

n . 32
_/ oodkksmh(Znnk)e_ﬂgé_L<2nC> 62”,:%2_ (3.69)
0

N 22 T 4x2 \ B

e Hyperbolic # = U(1),. The hyperbolic orbit can be viewed as an analytic con-
tinuation of the elliptic case where in essence 0 — iA:

cosh(mrA) sinh(mr))

T
F o, f = tanh Ekf’ M= <sinh(ﬂ)») cosh(mrA)

) € PSL(2, R).
(3.70)

31 we present some details on the boundedness of the Schwarzian action. We first write the Schwarzian
actionas —C fés dt{F,7}=-C fég dt{f,t _2m2Cy2 fﬁ dr f'%. One can show the following inequal-

f;Z
ities for the Schwarzian action of f € Dift S 1:
27r2 B B c B f//
—c=- | dva- /z)ng/ dr { ,r}=7/ dt ( ) . 3.66
8% Jo / 0 / 2 Jo 1 (3.66)

The rightmost equality shows that the Euclidean action is unbounded from above by making f’ have strong
fluctuations. The inequality on the left can then be used directly to derive the following lower bound on the
action:

B 27262C 2n2c
—cfo dt {F,t} > — 5 52 (1—9)/ dr(f — (3.67)

When 6% < 1, the second term on the RHS is positive for all f, and the action is bounded below by

242
_2779°C O the other hand, for 02 > 1, one can readily find examples that lower the action without

bound. The result is that for & > 1, the path integral has negative modes and the one-loop computation is
formal.
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The geometry is of the form:

de? +d
ds _4< ) Lzz 3.71)
B sin2 %Az

and describes instead a macroscopic tube, with a minimal length circle (the neck
of a wormhole) at z = %. This neck is a geodesic with a circumference b = 27 A.
Once again, the answer is one-loop exact:

Z(Ba)‘) _ / ] C’foﬁ dr{tanh FAf(7),7}
Diff Sl/U(l)A

/ cos (2w AE) —Bﬁ 1 [/2nC _Cp?
_— 2C — e 23 .
0 71' 2r\ B

(3.72)
e Parabolic H = U(1)y. Finally, we have the parabolic orbit:
11
Foof=f, M= (0 l) € PSL(2, R), (3.73)

which is found as a limiting case of both elliptic and hyperbolic defects. It corre-
sponds geometrically to an infinite cusp-singularity, identifiable as thermal AdS,
in Poincaré coordinates, with one-loop exact amplitude:

koot = L (2C
o= oD - [Tt L ()

One can mix in these defect insertions with bilocal operator insertions by replacing the
usual JT spectral density du(k;) in the sector of the diagram of interest by those found
in (3.65), (3.69), (3.72), or (3.74). Some example expressions were written down in
Mertens and Turiaci (2019).

A useful diagrammatic representation is to include a cross in the relevant sector
of the diagram, labeled by the orbit parameter. An example for the OTOC with a
hyperbolic defect A in one of the four sectors is the diagram:

72 ‘ ™ (3.75)

(3.74)
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3.7 Outline of derivations in the literature

In this subsection we briefly outline and summarize the main approaches available to
derive the JT amplitudes discussed in this section, and refer to the original papers for
more details. Each of the studied approaches has benefits and downsides, which we
describe, and it is worthwhile to have some understanding of all of them.

3.7.1 Free particle approach

Using the redefinition F’' = ¢%, which is always possible since F’ > 0 for a suitable
time reparametrization, one immediately sees that the thermal Schwarzian action can
be rewritten into a free boson action:

B Cc r#
S = —c/ dt{F,t) = —/ dt(9:9)>. (3.76)
0 2 Jo

Implementing the (formal) periodicity requirement F(t 4+ ) = F(t) + oo leads
to the constraint foﬂ dte¥ = +o00, which can be implemented after regularization
using a Lagrange multiplier, and which leads to an exponential potential added to the
otherwise free boson system (3.76).

Bilocal operator insertions become more complicated non-local operators since

F'F) A eAv1eA0
(F 1; 2) = —. (3.77)
( 1 — 2) (fr? d‘re‘/’)

Correlators can then be computed by using the identity A =7 = %p) fooo daaP=le @A
which leads to an exponential potential with piecewise constant prefactor (Bagrets et al.
2016, 2017), with the prefactor changing each time a bilocal endpoint is encountered.

As a closely related approach, one can instead use the black hole time coordinate
f' = e? and rewrite the Schwarzian action again as a particle in exponential poten-
tial(s). This is however less useful when including operator insertions, and the full
expression for the correlators has not been obtained from this approach, except in
some special cases.

Strong points Weak points
— Fast and intuitive, since it relates to the 1d — Subtle in terms of boundary conditions and
free boson. handling of PSL(2, R) gauge group

— More difficult for more complicated cor-
relators, not useful to derive final answers
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Fig. 14 2d Liouville CFT between vacuum branes and its double-scaled Schwarzian limit. Operator inser-
tions can be added and are depicted in red

3.7.2 Limit of Liouville theory

Schwarzian correlation functions can be found by taking a suitable double-scaling
limit of Virasoro CFT (Mertens et al. 2017). Let us sketch how that works. Virasoro
CFT at large central charge can be dynamically realized by the 2d Liouville CFT,
described by the classical action:

1 T T 5 2
S = Wfo dr/o do [(a¢) + due ] (3.78)

on a cylindrical surface with o € (0, 7) and Euclidean time direction 7 of period 7.
The central charge is ¢ = 1 4+ 6(b + b~12. In 2d Liouville CFT, one can consider
branes for the worldsheet to end on. In particular, generalizing Cardy’s construc-
tion of boundary states to irrational CFT, considering a pair of identity or ZZ-branes
(Zamolodchikov and Zamolodchikov 2001) at the ends of the cylinder worldsheet at
o =0,  gives an amplitude that is the Virasoro vacuum character:

q%(l —q) -T (3.79)

x0(q) = nGT27) q=e

A convenient trick in dealing with identity branes is to use the mirror doubling trick
with periodic boundary conditions around the doubled space. The procedure is now
to study this amplitude in the limit where the cylinder becomes long and narrow, in
conjunction with the classical large ¢ limit (b — 0). This means that in this limit, the
cylinder becomes a narrow (doubled) circular tube of length 27 that degenerates. This
is precisely the thermal circle where the Schwarzian model lives! The entire set-up is
given in Fig. 14.

One can use this procedure at the level of the Liouville path integral directly to find
both the Schwarzian action and path integral measure (Mertens et al. 2017; Mertens
2018) using an older field redefinition of Gervais and Neveu (1982a,b, 1983a,b).
In the process, one encounters the 2d ancestor of the Schwarzian model as the so-
called Alekseev—Shatashvili geometric action for coadjoint orbits of the Virasoro
group (Alekseev and Shatashvili 1989, 1990).32

32 This structural relation with Virasoro CFT is useful also in its relation with 3d gravity, see e.g. Cotler
and Jensen (2019).
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We can furthermore consider Liouville primary vertex operator insertions 2% V)
on the cylinder worldsheet in the above double-scaling limit. This operator pairs up
with its mirror image to form a single bilocal line (3.19), as drawn above. This calcu-
lation leads precisely to the JT disk boundary correlators as shown in detail in Mertens
et al. (2017); Mertens (2018), Lam et al. (2018).

Diagrams with crossing bilocal lines are found by incorporating the Schwarzian
double-scaling limit of the 2d braiding R matrix of Virasoro conformal blocks. Intu-
itively, if we have two uncrossed bilocal lines of the type drawn above, we can generate
the crossed diagram if we swap either of the endpoints of both bilocals. This process
acts on a chiral half of the Liouville CFT calculation and can be achieved by using the
braiding R matrix of the relevant modular tensor category.

Furthermore, defect insertions can be found by further enriching the story by adding
Verlinde loops wrapped along the t-direction of the cylinder (Mertens and Turiaci
2019). This is a generalization of studying different brane types (beyond ZZ) at either
end of the worldsheet.

Finally, local 2d CFT stress tensor insertions reduce to insertions of the energy
operator E(t) in the Schwarzian limit.

Let us show the procedure in more detail for the partition function. We can evaluate
(3.79) in the dual “closed” channel as

OO P §P2 4m?)T
X0 (q) = / dPSo" xp(@), xp(@)=—s—= q=e "7,
0 n@2n/T)
(3.80)
with the Virasoro modular S-matrix element:
27 P
So¥ ~ sinh(27b P) sinh (%) . (3.81)

Parametrizing P = bk, we take the Schwarzian double-scaling limit (Mertens et al.
2017), where we let the central charge go to infinity ¢ — oo (or b — 0) and simul-
taneously let 7 — 0 keeping the combination 7c¢ = 2472 fved where B will be the
inverse temperature of the resulting 1d model. We get:

X0 (q) — 27mb* / dkk sinh 2 ke P¥* (3.82)

which is the JT disk partition function, up to an immaterial prefactor that can be
absorbed into Sy again. Notice that descendants scale out as is suitable for a classical
limit, and that the momentum k comes from the “closed” channel and hence flows
along the boundary circle.
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Strong points Weak points

— Explains presence of 2d CFT structure in — Obscures the bulk JT disk picture, since the auxiliary
JT and Schwarzian. Liouville CFT lives on a different space than JT.

— One can use and exploit the past knowl-

edge of 2d Liouville results.

3.7.3 Boundary particle approach

A different approach uses a direct rewriting of the GHY boundary term of the gravity
path integral using the 2d Gauss—Bonnet theorem into a worldline path integral as
(Kitaev and Suh 2019; Yang 2019; Suh 2020):

B lT/2+Z’2 T/
N/[Dx]e Jo dts 72 +qz’ qzza_e_>+00’ (3.83)

which is a non-relativistic particle in 2d hyperbolic space (7', Z) in an imaginary infi-
nite magnetic field. One can reach the same conclusion in a Hamiltonian formulation
of the model.

This non-relativistic system has been solved by Comtet and Houston (1985, 1987),
with the spectral measure leading to the JT disk spectral density in the ¢ — 400
limit:

1 k sinh 2wk
— —
472 cosh2wq + cosh 2wk  g—>+oo

p(k) = ~ k sinh 27k, (3.84)

with an infinite but k-independent prefactor in the Schwarzian limit.

Using the known propagator of the particle in the magnetic field in the same
q — oo limit, one can derive the following suggestive expression for JT boundary
correlators for the simplest case of ordered operators (Yang 2019):

(O(t1) ... O(w)) (3.85)

=/mG(m;xl,xz)...G(fnl;xn,xl)(O(X1)-..O(xn)>QFr,

where the ingredients are the bulk propagators of the particle in magnetic field model
G(1ij; xi. xj) = (xile ™ |x;) in proper time 7;; (between points in the hyperbolic
disk x; and x) and the “undressed” bulk matter correlator (O(x1) ... O(xy)) gt that
can be determined in terms of Witten diagrams.

3.7.4 Two-dimensional gauge theory

We have previously mentioned the BF formulation of JT gravity on a closed manifold
in Sect. 2.1.1. For a group G BF model on a manifold M with a boundary o.M, we

@ Springer



Solvable models of quantum black holes... Page 65 of 124 4

Strong points Weak points
— Direct approach. — Structural and symmetry properties less visible a
— Makes the JT bulk explicitly visible, and priori in more complicated correlators.

allows for bulk interactions to be treated
universally since we start with the generic
undressed (O(x1) ... O(xn))QFT-

can include the boundary term and condition (Mertens 2018):

1
Igrp = —/ Tr(BF) + —% dtTr(BA), B =A:|ym- (3.86)
M 2 Jom

With this boundary term, we have a well-defined variational principle. Structurally,
one can motivate this also by realizing one gets precisely this term when dimensionally
reducing 3d Chern—Simons theory to the 2d BF model.

Path-integrating over B along an imaginary contour makes F pure gauge on the
disk, and A, = g ! 0,.&. The dynamics reduces to a pure boundary dynamics given
by the action of a non-relativistic particle on a group manifold:

1
Igp = — f dtTr(g ' 9. 9)%. (3.87)
2 Jom

Notice the similarity of this argument with that for JT gravity of Sect. 2.3.4.
Interesting operator insertions in this model are boundary-anchored Wilson lines.
Since they intersect the boundary twice, these correspond to bilocal operator insertions
in the boundary model defined by the action (3.87). Correlation functions of any
number of these bilocal operator insertions can be determined using techniques very
similar to 2d Yang-Mills theory (Migdal 1975; Witten 1991a; Cordes et al. 1995).
The result of the disk partition function, and that with a single Wilson line insertion,
in this model are given by (Mertens 2018; Blommaert et al. 2018; Iliesiu et al. 2019):

Z(B) =) _(dim R)*e Pk, (3.88)
R

2
<GﬁM(r, 0)>= > dimRydim Ry e~ ChiTe R (F7D <£i£§1§1) . (3.89)

Ry, Ry,my,my

where the R; labels run through all unitary irreducible representations of the group
G of interest, with dim R; and Cg,; its dimension and quadratic Casimir respectively.
The m-label runs through the different states within each representation. Finally, the
1'12 Alfl) in the above example), and 6 j-symbols can appear for Wilson
line endpoints and bulk crossings respectively (Mertens 2018; Blommaert et al. 2018;
Iliesiu et al. 2019). One can directly see the analogy with the JT correlation functions

3 j-symbols ((2
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by setting ), — f0+°° dk and interpreting™3

. 1 . . C(A +iky +iko) . A k1 ky
dimR — ;ksthyrk, 3j — 20T N 6J—>{A2 ks k4}'

(3.90)

These observations can be made more explicit in terms of a BF model closely related to
the non-compact SL(2, R) group.3* There are two proposals: one based on the positive
semigroup SL™ (2, R) (Blommaert et al. 2018, 2019b), and one based on an analytic
continuation of the universal cover of SL(2, R) (Iliesiu et al. 2019).

Defect insertions can also be studied and correspond to insertions of Trg 2B,
which descend from “vertical” Wilson loops in irrep R in the Chern—Simons ancestor
of the BF model. Finally, insertions of the quadratic Casimir itself correspond directly
to energy operator insertions in the JT model.

It should be noted that one could also be interested in the case of compact group
G in its own right, and add this sector to the gravitational JT sector. We present some
details later on in Sect. 4.5.3. This describes more general models of 2d gravity that
include conserved charges, of relevance to higher-dimensional black hole physics.

Both the approach of this section and that of Sect. 3.7.2 above have a structurally
natural embedding of the different JT operator insertions, and from both perspectives,
these operator insertions exhaust the interesting possibilities.

Strong points

Weak points

— Intuitive picture of natural operator inser-
tions.

— Group theoretical structure explicit.

— Provides efficient generalizations to mod-
els that include other conserved quantum

— Subtleties in the group theoretic structure
make this approach a priori difficult.

— Higher topology moduli space is Teich-
miiller space, instead of the moduli space of
Riemann surfaces.

numbers.

33 One might worry about the (dim R)Z in the disk amplitude (3.88). One way to understand how to
reproduce the JT answer, is that gravity has asymptotic Brown—-Henneaux boundary conditions, which
mathematically lead to a coset model instead of a pure group model. For a coset model, the indices running
in loops are somewhat constrained, removing one (dim R) factor and leading directly to an expression
similar as in JT gravity.

34 Around (3.61) we noted one can get the two-point function by performing an integral over the boundary-
to-boundary geodesic length £. That integral has a direct interpretation in terms of a group integral of three
representation matrices.
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4 Spacetime wormholes and random matrices

In this section, we review how to compute wormhole contributions to gravitational
amplitudes, and how they further correct the previous answers towards results that are
more in line with a finite entropy boundary system in holography. This section heavily
draws on material from the seminal work by Saad et al. (2019).

4.1 Motivation: information loss and late time decay

First, let us take stock of where we are up to this point and how our JT amplitudes are
integrated into a holographic framework of a microscopic UV-complete system.

Consider a discrete microscopic holographic model, i.e. a 0+1d quantum mechani-
cal system with a bulk dual. Its boundary two-point correlator can be expanded in the
energy eigenbasis as:

Tr [e*f‘HO(t)O(O)] =" e PEn| (n]Ofm) P En—En) 4.1

where this truly is a discrete sum over energy eigenstates labeled by n and m. Due to
the energy phase factors, this expression oscillates erratically as a function of time ¢.
At late times, the terms with n = m dominate the correlator, and we find the late-time
mean non-zero value

Tr [e—f‘HO(z)O(O)] ~ 3 e P (n]Oln) 1. 4.2)

This late-time behavior of oscillations around a non-zero mean, is to be contrasted
with our results in JT gravity so far. Indeed, semi-classically we have the late-time
quasinormal mode exponential decay (as in Eq. (3.18)):

(O®)0(0))4 :< LT )—M ~ o FA 4.3)

sinh —¢
Z(B) B

Quantum gravitational corrections discussed up to this point, would modify this into
a power-law decay instead (3.30):

OO0
Z(B)

Both of these are in conflict with the behavior of a discrete finite entropy boundary sys-
tem (4.1). This mismatch is one of the manifestations of information loss (Maldacena

4.4)

35 Physically, we can motivate this dominance of diagonal contributions by introducing a late-

time averaging procedure to smoothen erratic fluctuations. E.g. % fTTj—AA /22 e M Em—En) g =

2sin L A(En—En) o—iT(En
A(Em—En)

oscillating signal: A > (E; — En)*l. Diagonal contributions (E;; = Ej) are not suppressed by this

procedure.

—En) | which is suppressed as long as we average over multiple periods of the
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log|Z (8 + it)|?

log t

Fig. 15 Spectral form factor for a matrix drawn from the GUE, with the averaged result in red

2003a), related to a continuum of energies in the energy spectrum due to the infinitely
large near-horizon black hole region, or to the infinite redshift of near-horizon matter
according to an asymptotic observer.

In order to address this, it is useful to first simplify a bit the observable to its
core essence. For sufficiently simple operators O that have zero one-point-function,>¢
by ETH one expects the squared energy matrix elements | (rn|O|m) |2 to be smooth
functions of the energy (Deutsch 1991; Srednicki 1994). Hence the main qualitative
features we want to study here solely come from the erratically oscillating phase
factors in (4.1). So, as a zeroth-order approximation, we remove these energy matrix
elements and study instead the spectral form factor:

ZB+inZB—in =y e BTNk F=inEn (4.5)

n,m

which is the modulus squared of an analytically continued partition function. This
quantity starts off at + = 0 as |Z(B)|* and oscillates erratically around a late-time
mean Z(2p), which is suppressed by ¢°.37 These high-frequency oscillations have
a period on the scale of the energy difference between adjacent levels. This is for a
system whose energy levels are sufficiently random, such as a chaotic system, with
the hallmark example being random matrix ensembles. For integrable systems on the
other hand, conspiracies between energy levels can create regular oscillations and
recurrences.

The spectral form factor (4.5) for a chaotic system has a very characteristic shape
as a function of time (Cotler et al. 2017). We sketch an example where we draw the
spectrum from the Gaussian Unitary Ensemble (GUE) in Fig. 15. We can see an initial
downward slope, followed by an erratic rising ramp and erratic oscillations around a
final plateau. The proposal of Cotler et al. (2017) is that the black hole spectrum is
chaotic and the level spacing statistics is captured by random matrix theory.

In order to see any indications of this underlying discreteness and chaotic behavior
of a microscopic holographic system in its bulk gravitational description, we will have
to include quantum gravity effects beyond those we have studied up to this point:

36 This can be achieved either by subtracting the one-point functions explicitly, or by the presence of e.g.
a Zp-symmetry mapping O — —O.

37 Poincaré recurrences are expected at much later times ¢, and will not play a role in this review.
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gravitational configurations whose topology is different from the disk, i.e. spacetime
wormholes. We first turn to describing how one computes such amplitudes gravita-
tionally in JT gravity. We will come back to the spectral form factor and signs of
discreteness for JT gravity in Sect. 4.4.2. Some aspects of this connection between
wormbholes and chaos generalize to black holes in any dimension through the double-
cone wormhole of Saad et al. (2018).

4.2 Multiboundary higher genus amplitudes

In this section, we review the computation of the gravitational path integral on geome-
tries with spacetime wormholes, and sum over topologies. We consider first the case
of pure JT gravity studied by Saad et al. (2019, 2018).

As discussed at length in Sects. 2 and 3, computing the partition function using the
gravitational path integral involves considering the situation with a Euclidean geometry
with a boundary curve (in 2d) such that the proper length L and the boundary dilaton
®; both diverge at a constant rate L, ®5 — oo with L/®y = B/C. The parameter
C is fixed once and for all and sets the units in which the inverse temperature g is
measured, see Sect. 2 for more details.

It will be convenient for the remainder of this section to generalize this set-up to the
case of n boundaries, each described by their own inverse temperatures By, ..., B;.
We will denote the gravity path integral with n boundaries by Zgray(B1, ..., Br). The
aim of this section is to analyze whether

Zorav(Bi, - .-, Bn) ~ Trige, (e‘f’lH> Ty, (e‘ﬁ”H> (4.6)

is true, where H is a Hamiltonian acting on the putative black hole Hilbert space Hpy.
The purpose of this subsection is to compute the left hand side of this expression,
while the relation on the right hand side will be analyzed in the next subsection.

To start the analysis, we repeat here the Euclidean action of pure JT gravity including
the topological term:

= e,

16”GN [/ fcb(R+2)+27§ x/_CD(K—l):| (4.7)

where g is the metric on the two-dimensional space M and /4 the induced metric on
its boundary 9. M. We focus on a connected surface here. Each time we add a handle
to the Euclidean geometry, we increase the genus g of the surface. These handles are
often called spacetime wormholes in this context.3® Since the first line of the action
I is proportional to the Euler characteristic x = 2 — 2 g — n, with g the number of
handles and n the number of boundaries, this allows us to expand the full path integral

38 This nomenclature is to distinguish them from purely spatial wormholes that live at a fixed timeslice,
such as the Einstein—Rosen bridge of an eternal black hole. Spacetime wormholes on the other hand extend
in the full (Euclidean) spacetime. See e.g. Kundu (2022) for a recent review.
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as a genus expansion

o
Zoeavcom(Br - Bn) = D eNCTETIZ (B Bu). (4.8)

§=0

Notice the suppressing prefactor at higher genus g for fixed n. In this expression Z ,
denotes the contribution from geometries with fixed topology. For convenience we
focus solely on connected contributions, which are the building blocks for the full
answers.

Before directly computing Z ,, it will be useful first to consider the case of a
surface of genus g with n geodesic boundaries of lengths b;,i = 1...n, and no
holographic (or Schwarzian) boundaries. A geodesic boundary by definition has zero
extrinsic curvature trace: K = (. The JT path integral on such a surface becomes

[Dgul[D®] ;[ [Dgul

V (Diff) e = | voim S(R+2), 4.9)

where no boundary actions appear. Here we mod out by bulk diffeomorphisms. The
RHS is suggestive: the JT path integral on such a manifold is a volume integral (since
the integrand is “1”) over all hyperbolic (R = —2) metrics mod diffeomorphisms
on the given surface. This is the volume of the moduli space of Riemann surfaces.
We denote this moduli space as M , (l;). The real dimension of this moduli space is
dim (M, (b)) = 6 g — 6+ 2n.%°

The measure in the integral over M, , (l;) requires a calculation of the one-loop
determinant arising after integrating out the dilaton and restricting to hyperbolic
metrics. Insightful discussions can be found in Sect. 3.2 of Saad et al. (2019) in a
perturbative string language, and in Sect. 3 of Stanford and Witten (2019), using the
relation between analytic and combinatoric torsion. The upshot is that the correct
measure over M, ,(b) that appears in JT gravity is the one induced from the Weil—-
Petersson symplectic form as follows. We can decompose any hyperbolic surface with
genus g into a set of 2g — 2 + n pair-of-pants with 3g — 3 + n connecting tubes with
lengths and twists (5,-, t;) fori = 1,...,3g — 3 + n. The Weil-Petersson form in
these length-twist or Fenchel-Nielsen coordinates, is

3g—3+n
wen= Y dbndy. (4.10)
i=1

39 This is explained above equation (4.10) but another way to derive this is as follows. We start with the
two-sphere S 2, Increasing the genus by one can be done by cutting out two disks from a surface and gluing
them together. This requires the specification of four real moduli for the locations of both disks, one real
moduli for their relative size, and one real moduli for their relative angle. This gives 6g real moduli overall.
The —6 comes from the SL(2, C) global conformal transformations on the starting 52, producing the same
surface. Finally, a boundary has three real moduli: two for its location, and one for its length. Here we keep
the length fixed, so we are left with two real moduli per geodesic boundary. Note that one can get a puncture
if we let b; — 0.
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3g—3+n
The volume form extracted from this Weil-Petersson form is % Even though
this measure is very simple, it is not easy to determine the region of integration over the
variables (b;, 7;) when modding by the group of so-called large diffeomorphisms, i.e.
the mapping class group. These are by definition the set of diffeomorphisms that are
not continuously connected to the identity. We have to do this to make sure geometries
are not overcounted. We will come back to this later.

Now we are ready to present the computation of Zg ;.
4.2.1 The disk 20,1 (ﬁ)

There are two cases we need to work out separately. The first is the disk with g = 0
and n = 1 (and hence x = 1), which we already computed in Sect. 3.1.1:

C3/2 22c

W@ p (411)

Z0,1(B) = Zsch,disk(B) =

This gives a contribution of order €% to the partition function, since x = 1. We can
use this to extract the leading order density of states:

po(E) = 2£ sinh <27n/2CE) . (4.12)

2

where we have defined the g = 0 density po(E) with the overall factor %0 removed
(compare with (3.10)). When summing over topologies this is only the first term in an
e~25 expansion.

4.2.2 The cylinder Z 2 (B4, B2)

The second case we need to consider separately is the genus zero two-boundary ampli-
tude. The quantity Zgry(B1, B2) gets two contributions. The first comes from two
disconnected disks 250 Z0.1(B1)Zo,1(B2). More interesting is the contribution from
the connected geometry without handles, a cylinder (or annulus) between the two
boundaries, Zo 2(B1, B2). Its Euler characteristic is x = 0, and for large Sy it is at first
sight strongly suppressed compared to the disconnected two disks. This conclusion,
however, is too quick and can be invalidated in certain parametric regimes as we will
explain later on in Sect. 4.4.2. This geometry is so important that it got a new name:
the double trumpet.

To compute this quantity we first integrate out the dilaton, imposing that the metric
is hyperbolic. We can write down the two-parameter family of hyperbolic metrics on
the double trumpet as:

ds® = dr? + cosh? r[bdx + rB(r)dr]z, x~x+ 1. 4.13)

where b > 0 and 0 < © < b. For this metric, r is the radial distance and the
boundaries are at large negative r (left boundary) or large positive r (right boundary).
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The precise radial cutoff is picked to match the boundary conditions. The x-coordinate
is discontinuous; one can transfer to a continuous coordinate y defined as dy =
bdx + té(r)dr.

In the center at r = 0 there is a geodesic with length b. Finally the parameter t
denotes a possible twist when crossing the middle geodesic. Given (b, t), the geometry
can be depicted as:

51 B2
(4.14)

We first compute the path integral on this cylinder with fixed (b, ), and afterward
integrate over these parameters. This can be done by separating the cylinder into two
single trumpets: one for r < 0 and another for r > 0. Each trumpet is a hyperbolic
cylinder bounding a holographic boundary and a geodesic. This procedure can be
depicted as

—

B1 B2 Z/dde

(4.15)

On each single trumpet, the path integral is given by the contribution of the Schwarzian
mode on the holographic boundary.*® The boundary mode of the single trumpet
is not the same as the disk, it corresponds to an integral over the hyperbolic orbit
Diff (S')/U (1). This orbit is labeled by a continuous parameter b. We quote the result
(3.72) from Sect. 3:

Zr(B,b) = B b = e,
(4.16)

The final step is to glue the two trumpets into the complete cylinder, which requires
knowing the correct measure on the moduli space of hyperbolic surfaces as derived
earlier. Locality guarantees that the same measure and volume form (4.10) should be
used here when gluing along the pair of geodesics: the volume form is thus dbdr.
Since the integrand is independent of the twist, we can integrate over it producing a

40 On the inner geodesic boundary there are no dynamical degrees of freedom since the extrinsic curvature
is being fixed to zero.
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factor of fob dt = b, giving a total measure of bdb.*' The final answer is:

00 1
Zo2(B. ) = f bdb Zr(Br, B Zr(Ba, by = — YPPL 419
0 2w B+ B2

We note that this is a completely off-shell calculation: there is no saddle point value
determining b and stabilizing the wormbhole, as can be seen from (4.16) where the
exponential factor pushes b to zero.*> A general argument for this lack of classical
solution can be found in Maldacena et al. (1999) and Qi et al. (2019). This is not
necessarily a problem, but it does complicate things when trying to generalize to
higher-dimensional physics, where we do not have an exact quantum solution. Related
to this, we make two further comments:

e Fixing b does allow for a saddle to exist. This saddle is hence the solution of a
constrained extremization problem, and is called a constrained instanton. With
this constraint, wormhole saddle solutions have been found explicitly in higher
dimensions (Cotler and Jensen 2021, 2022).

e Analytically continuing B — B + it, we can find a saddle at § = 0, a genuine
saddle if we also transfer to a microcanonical version of Eq. (4.17) (Saad et al.
2018). This geometry has been constructed explicitly and looks like a double cone
of two cones joined at the tip, and where Lorentzian time is periodically identified
with period ¢. Stability of this saddle has been investigated in Mahajan et al. (2021).
This wormhole solution can actually be written for black holes in any number of
dimensions.

4.2.3 The general case Zy (B, . . . , Bn)
We can now describe a formula valid for all other Z, , aslongas (g, n) # (0, 1), (0, 2).
To derive it, first notice that in hyperbolic geometry we can always find geodesics

homologous to each holographic boundary, such that these n geodesics bound an
inner hyperbolic surface in the bulk. For example, for three boundaries at genus one:

5 2

ZI,B(ﬁlu ﬂ?v ﬂ3) =

£ (33

41 If we utilize Teichmiiller space instead of M (l;), the integral over twists would give a divergent but
b-independent factor. Teichmiiller space is the universal cover of Mg (l;), where we “undo” the modding
by the mapping class group of large diffeomorphisms. Another way of representing Teichmiiller space is
by adding a Moore-Seiberg graph to a given Riemann surface. Using the local gluing procedure in the BF
gauge theoretical TQFT framework, leads precisely to the Teichmiiller space gluing integrals (Blommaert
et al. 2019b).

42 Although one could think of » = 0 as a saddle on the boundary of the moduli space (Witten 2021).
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Each of the three boundaries has an associated geodesic, drawn as a dashed line,
bounding a single trumpet. The interior remainder is a hyperbolic surface with g
handles (in the example just one) bounded by geodesics. The hyperbolic surface now
is described by two types of moduli: the one associated to the inner surface Mg , (I;),
and (b1, 71, ..., by, 17,) that determine how the “outer” geodesics are glued to the
boundary trumpets. Using this decomposition, after integrating over the boundary
twists 71, . . . T,, we find the following expression (Saad et al. 2019):

Zgn(B1,---. Bn) =/0 |:1_[bidbi ZT(ﬂivbi):| Ven(br,....by).  (4.18)

i=1

The integrals on the right hand side are over the lengths of the geodesics homolo-
gous to each boundary and include the single trumpet contributions. The last factor
Ven(b1,...,by) is the volume of the interior moduli space Vi ,(b1,...,b,) =
Vol(M (l;)), or the Weil-Petersson volumes.

The last ingredient we need is to provide a way to compute efficiently these Weil—
Petersson volumes, so that the general expression for Z, ,, can become useful. There
are two approaches to this problem, both developed by Mirzakhani (2007a,b). The
first consists in using the following identity:

V(b1 ... .by) = /f sty Xi bl (4.19)
M

g.n

where Mg, » is the Deligne-Mumford compactification of the moduli space of hyper-
bolic surfaces of genus g and n punctures (which corresponds to a geodesic boundary
with b — 0) and w, , is the Weil-Petersson form on the moduli space of genus g
and n punctures. V; is defined as follows: let £; be the cotangent space to the ith
puncture. As we move along the moduli space, £; varies as the fiber of a complex
line bundle over moduli space. The psi-class is the first Chern class of this line bundle
Y = c1(L;). A simple recursion formula to compute this type of integrals over psi-
classes and Weil-Petersson form (or more generally kappa-classes) was conjectured
by Witten (1991b) and proven by Kontsevich (1992). This point of view was exploited
in the context of JT gravity mainly by Okuyama and Sakai (2020a,b).

Instead, we will follow the approach originally taken by SSS which has a more
geometric origin. First of all, even though the volume form is very simple, taking into
account the mapping class group to determine the region of integration in the (l;, T)
space is a very complicated problem. In Mirzakhani (2007a) this was circumvented by
using the following trick.*> First we pick a (geodesic) boundary, labeled as 1 below, and
start shooting geodesics perpendicular to the boundary, along the entire circumference
of the boundary. There are three options: (A) the curve intersects itself at some point or
returns to the same geodesic boundary, and we truncate it as soon as either happens; (B)
the geodesic reaches a different boundary geodesic; (C) the geodesic continues forever

43 A useful presentation of the argument aimed at physicists can be found in Appendix D of (Stanford and
Witten 2019).
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in the interior without self-intersection and without reaching any boundary. Now we
can write the length of the geodesic by as a sum over the length of segments where
geodesics of type A, B and C start. It was proven by Birman and Series that the set C
has measure zero so we can ignore its contribution to the length. When the hyperbolic
surface is decorated by a geodesic of either type A or B, we can single out a pair of
pants (i.e. a three-holed sphere surface) that in case A bounds the geodesic 1 and two
internal ones; or in case B the geodesic 1, another boundary geodesic and an internal
one. This decomposes the surface of genus g and n boundaries into either one or two
surfaces with either lower genus or a smaller number of boundaries. Using the fact
that there is only a single hyperbolic surface of genus zero with three given geodesic
lengths: Vp 3(b1, by, b3) = 1, and a short calculation in hyperbolic geometry reviewed
in Stanford and Witten (2019), one arrives at Mirzakhani’s recursion relation:

1 o0
biVen(b1. B) = 5 / b'db'b"db" D(by, b, b") Ve 1 (b, b", B),
0
1 o
by [ OB DO B Y Vi b BV, B,
0

stable

n o0
+ Z/ b/db/(bl —T(by, v, bk))Vg(b/, B/by), (4.20)
k=20

b by +b
cosh % +cosh %

where B = {b, ..., b,}, and we defined T (b1, by, b3) = log — 5y and
cosh > +cosh —-—=

Dby, by, b3) = by — T (by, by, b3) — T(by1, bz, by). These functions arise from com-
puting within each pair of pants the length along b1 of segments of types A or type
B in hyperbolic geometry. The three lines in (4.20) correspond graphically to the
decomposition of surfaces:

v (7 y o:@ n
by + b + b’ (i @
I\ b”():@ b

where the grey blobs denote the remainder hyperbolic Riemann surface in this decom-
position. The first line in (4.20) corresponds to case A, cutting the pair of pants involves
only one boundary and does not divide the surface, but lowers the genus to g — 1.
The second line in (4.20) corresponds also to case A, when removing the pair of pants
divides the surface in two with genus /1 and ki, and boundaries (b', By) and (b, By),
such that i1 +hy = g and By U B, = B.** Finally, the third line in (4.20) corresponds
to case B where the pair of pants to be removed involves two boundaries by and by.
Then B /by denotes the set B with the element b; removed.

44 The sum is restricted to only stable surfaces. This means surfaces on which a hyperbolic metric exists;
this excludes for example genus zero with less than three boundaries or genus one with no boundary.

@ Springer



4 Page760f124 T. G. Mertens, G. J. Turiaci

In spite of not having an explicit closed expression for the Weil-Petersson vol-
umes,* one can immediately derive the following important property: Ven(bi, ..., by)
is a symmetric multivariate polynomial of degree 3g — 3 + n in the bi2. This is most

easily seen from (4.19).

Using the recursion relation above, one can compute any Weil-Petersson volume
and combine it with the exterior trumpets to compute any desired Z, ,. This completes
the exact gravitational solution of JT gravity in a topological (or genus) expansion,
i.e. by summing over all spacetime wormhole configurations.

As a final comment, going back to the intersection numbers approach of Eq. (4.19)
and inserting that directly in (4.18), one can obtain a formula for Z, , as an integral
over moduli space with punctures:

4.21)

Zg,n(ﬂl,...,ﬁm:Vﬁl"'ﬁ”ff —
Mg [1

QrCym2 =By

This expression can be understood as an application of localization to JT gravity, as
explained in Eberhardt (2022). This approach generalizes nicely to chiral gravity in
three dimensions.

To illustrate this rather abstract treatment, we will work out explicitly the example
of the one-wormhole correction to the disk partition function Z; 1 (B).
Example: Z; ;(8):
The only option to decompose the surface with one boundary and one handle is:

1 o0 \\‘
b x @ - 7/ Wdy DbV, b) b
2/, )y

where in the right hand side we have a single pair of pants with the two geodesics
of length 2’ identified (indicated by the dashed line). The equation for the volume
becomes

b* + 4x?

R (4.22)

oo

Vi) = L f b'db'D(b, b, b)) =
’ 2b Jo

This integral is actually divergent. The standard way of dealing with this is to compute

instead 9, (b V1,1 (b)), which involves d, D (b, b’, b’) for which the integral converges.

After integrating the result over b, the integration constant can be fixed by demanding

V1,1(b) has a smooth b — 0 limit.

4 An exception is the case g = 0. An explicit formula for Vg , (b1, ..., by) was recently derived in
Mertens and Turiaci (2021), equation (7.54).
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This case does not quite work the same as in the generic case of Eq. (4.20). Firstly,
there is no volume factor appearing on the right hand side of the recursion and also
one less integral since when gluing two ends of a single pair of pants those lengths
are identified. Note that if we define Vjy 2(b1, by) = bl18(b1 — by) then this could be
written as a special case of Eq. (4.20). This case is special for a second reason: the
torus with one hole has a Z, symmetry and the volume given above is taking this
symmetry into account.

Using (4.22) we can plug it in (4.18) and obtain the one-wormhole correction to
the partition function

_ _ [ _ P wPB
Z11(8) = /0 bdbZr(B,b)V1,1(b) = YNGETeE + TN ok
(4.23)
—o—

The above example already displays some interesting and generic features. Firstly,
the amplitude with one wormhole is a polynomial in /8. This is in contrast to the
disk which has an essential singularity at /8 = 0. The lack of an exponential term
in Z1 1(B) is related to the fact that there is no classical solution of a disk with one
wormhole. Much like the double trumpet, all of these configurations have no saddle
point in the JT path integral. The reason was already pointed out around (2.41): the
equation of motion for the metric leads to a Killing vector which does not exist on
higher genus hyperbolic surfaces. Secondly, this correction is of order one and there-
fore it is suppressed by e =50 compared to the disk with no wormhole. Nevertheless this
is too naive. Adding the disk and one-wormhole contributions, we find schematically
for small temperatures Z ~ ¢%0 73/24 4 ¢=50 83/2# and therefore the one-wormhole
contribution becomes dominant when g ~ O(e?%/ 3). However, at such low temper-
atures we cannot even trust the perturbative expansion in e~ to begin with.*0

4.3 JT and random matrices

In this subsection, we turn towards the connection between JT gravity and random
matrix models in the double-scaling limit. This connection can be seen in the inter-
section number approach to computing Weil-Petersson volumes (4.19), since those
can be obtained in a double-scaled matrix model through the Witten—Kontsevich the-
orem (Witten 1991b; Kontsevich 1992). A discussion along these lines can be found
in Dijkgraaf and Witten (2018). Instead we will follow SSS (Saad et al. 2019), and use

46 In general, the large 8 behavior is dominated by the large b behavior of the volumes. When one of the
. 6g—6+2n
boundaries, say the first, has a very large length b > 1 one can show Vg ,, (D) ~

1

’ ) - . (24)8g1238=3+1(3 g—3+n)!

(see Appendix A of Maxfield and Turiaci 2021) and therefore in the case of one boundary Z, | (8) ~
3/2 3

%% at large . We see that at higher genus, the divergence at low temperatures becomes

stronger. This can be interpreted as a perturbative e=50 correction to the zero-point energy.
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Mirzakhani’s recursion relation and compare it with the loop equations of the matrix
model.

4.3.1 SSS duality

We come back to the original question of whether a relation such as (4.6) is true in pure
JT gravity. From the calculations done in the previous section, it is immediately clear
that such a relation cannot be correct since, (1) there is no indication (in perturbation
theory at least) that the density of states is discrete in any way which is in tension with
(finite-volume) holography, and (2) the connected two-boundary path integral due to
the connected wormhole amplitude does not factorize:

Zgrav(,Bla B2) ?é Zgrav(ﬁl)zgrav(ﬂZ)- (4.24)

This is in tension with (4.6), which would predict a factorized answer for a given H
and Hpy. This is the factorization puzzle for holography raised first by Witten and Yau
(1999). Both problems can be resolved by relaxing (4.6) in the following way. If pure
JT gravity is not dual to a single quantum system with a discrete spectrum, can it be
dual to an ensemble average of quantum systems? The results of SSS give a positive
answer to this question. This resolves the tension (1) since the continuous spectrum
can arise after averaging, and also resolves tension (2) since the non-factorization is
due to the statistics of the ensemble.

We now describe the holographic dual of JT gravity. Take the black hole Hilbert
space Hpy to be of dimension L, with L a large integer which will be later related to
e%. A quantum theory is described by an L x L Hermitian Hamiltonian matrix H,
acting on Hpy. The JT gravitational path integral is then equal to an ensemble average
over theories, in this case an integral over all L x L ~ ¢%0 x ¢5 Hermitian matrices:

Zarav (B -+ Bu) =/dH P(H) Tr (e—ﬂlf’)...Tr (e—ﬁnﬂ), (4.25)

where P(H) oc e ETV(H) is the probability distribution over theory space (in this case
over the Hamiltonian matrix itself), and it is normalized such that f dHP(H) = 1.
The quantity V (H) is the potential, which is taken to be a sum (possibly infinite) of
positive powers of H. Hence the claim is that JT gravity is a matrix integral (Saad
et al. 2019)!

Matrix models and techniques to solve them have a long history that we will not
do justice here. We refer the reader to Mehta (2004), and to Eynard et al. (2015) for
a pedagogical review of more recent techniques. Shorter accounts can also be found
in reviews on Liouville gravity and non-critical string models (Ginsparg and Moore
1993; Di Francesco et al. 1995; Nakayama 2004), a topic that also has a deep link
with matrix models, which turns out not to be a coincidence as we will point out later
on in Sect. 5.10.

Let us continue with our main story. On the left hand side of Eq. (4.25), the JT
gravity path integral can be expanded as a sum over topologies, so the first question
is: what is the meaning of this expansion on the matrix model side?
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Matrix integrals have natural insertions given by the resolvent R(E), the “partition
sum” Z () and the spectral density p(E):

L
. ZB) =Tr (e—f‘H> . p(E)= Y S(E — En)(426)

m=1

1
R(E) = Tr
E—H

where we denoted the eigenvalues of H as E,,. There are simple relations between
these different quantities as:

f OoeﬁEZw) = R(E), Z(B) = f dEp(E)e PE, (4.27)
0
R(E +i€) — R(E —i€) = —2mip(E), (4.28)

so it suffices to study one of them. We then define correlation functions on the matrix
integral side with n of these insertions:

Rvv(EL, ..., Ey) = (R(E1)...R(Ep)), (4.29)
Zvm (Bt -5 Bn) = (Z(B1) ... Z(By)) (4.30)
pMM(ET, . Ep) = (p(E1) ... p(Epn)) , (4.31)

where (X) denotes the ensemble average (X) = f dH P(H)X. Correlation functions
of resolvents in the matrix integral are known to have a 1 /L expansion in the large L
limit, of the form

[oS)
Ren(E1, ..., Ep)
RvM(EL, - -+, Endcomn. = E gnL2g+n_2 . s (4.32)
§=0

for resolvents and similarly for partition functions. The left hand side of this equation
denotes the connected piece only of the n-resolvent correlator. The series on the right
hand side is only asymptotic and there are non-perturbative corrections, but we can
take it as a definition of the coefficients R, ,. This expansion arises from a perturbation
theory in 't Hooft double line diagrams (‘t Hooft 1974; Brezin et al. 1978). In this
context, n is the number of insertions while g is the genus of the surface needed to
embed the particular double-line diagram into. This means the large L expansion of
the matrix model should be identified with the large ¢%0 expansion of JT gravity, and
the coefficients should match term by term.

To make the identification (4.25) precise, hence requires a precise relation between
L and Sy, and the probability distribution P (H) through the matrix potential V (H).
We address these two points in the next subsections and complete the derivation of
Eq. (4.25).
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4.3.2 Double-scaling limit of matrix integrals

Consider the spectral density of the matrix model: p(E) = ZiL=1 8(E — E;).Even if
each realization for H has a discrete spectrum for finite L, after averaging over H and
taking the large L limit, the resulting density of states will be continuous.

In the simplest models, the leading density of states at large L has support on a
single interval E € [a_, a,] with a_ and a, > a_ real numbers.*’ In these one-cut
cases, there is a simple relation between the function V(H) and po(E), see Eynard
et al. (2015) for details. The prototypical example where this applies is a Gaussian
model with leading density of states

8 2 8L E(a—E
vin=—(H-5) o) = (o) = o [P

(4.33)

where the brackets mean we average over H with the measure determined by V (H).
This is the famous Wigner semicircle distribution. We chose the potential such that
a_ = 0and a4 = a > 0 and the overall normalization of the density of states is such
that its integral gives L.

To apply this to the JT gravity case, we should find a potential V (H) such that
its density of states to leading order at large L matches with JT gravity on the disk.
This is not possible, since JT gravity has an infinite support over E € [0, 400). The
resolution of this puzzle is that JT gravity is dual not to an ordinary matrix integral,
but to a double-scaled matrix integral.

Let us see first how the double scaling limit works in the case of the Gaussian
matrix model (4.33). We wish to obtain a distribution that has support on the entire
positive real axis. So we should take the limit of ¢ — oo. This runs into an issue:
since we have a finite number of eigenvalues L to be distributed on the whole real
line, the spectral density po(E) goes to zero. To resolve this, we need to send the
number of eigenvalues to infinity L — oo at the same time, such that we keep the
following quantity 8L /ma’/> = ¢% fixed. This gives the double-scaled density of
states po(E) ~ ¢%0+/E, which is smooth and has support on the positive energy axis,
although it is not normalized: the number of eigenvalues is infinite. Much like the
original Gaussian matrix model (4.33), the resulting double-scaled matrix model is

exactly solvable and is called the Airy model. Schematically, the operation we realize
on the leadine dencitv nf ctatec ic:

po(E) po(E)

47 More general models can have several disjoint cuts.
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This operation can be translated as due to a particular fine-tuning of the matrix poten-
tial.

This double-scaling limit affects the topological expansion of the matrix integral in
a simple way. Instead of weighing different topologies by L, now the expansion is in
the new parameter €% which is large but fixed as L, a — oo. In terms of resolvents,
for example, we can write:

o0

RMM(EI, ceey En)conn. = Z
g=0

Rg,n(Els B En)
(eSo)2g+ﬂ*2

(4.34)

It requires a separate calculation to justify that once L is scaled in the right way as
a — oo, with E fixed, all the terms in the topological expansion have a well-defined
limit (4.34). The quantity e controls the scale of the eigenvalue density, and e =50
hence controls the average eigenvalue spacing.

We now have the tools to describe the holographic dual of JT gravity. Since standard
matrix integrals in the large L limit only have finite support, we begin by “regularizing”
the disk density of states, and constructing a matrix potential V (H), such that to leading
orderin 1/L e.g.

00(E) = (p(E)) 00 = eSO% sinh (2n,/2CE“ ; E) , (4.35)

where ¢ is a function of L and a that can be determined by fixing normalization. We
do not need to know this relation explicitly, since we are next going to take a — oo
and L — oo, such that %0 is fixed. Note that there are many ways to “regularize” the
JT disk density of states. Schematically, this gives us:

po(E)
4)
L E
! a | ’

The topological expansion for Zym(B1, - - -, Bn) 1s now in terms of €% instead of L. It
is this double-scaled parameter Sy that we identify with the prefactor of the topological
term in the JT gravity action (4.7), that weighs different topologies in gravity by their
Euler characteristic .

The non-trivial statement we will describe next is that, once the matrix potential
is tuned to give the disk JT gravity density of states in the large ¢ limit, all other
subleading terms in the topological expansion will automatically match between the
matrix model and the gravity calculation we described in Sect. 4.2.

po(E)
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4.3.3 Derivation of the duality

A very direct way to derive the equivalence between JT gravity and a double-scaled
matrix integral is through the so-called loop equations or topological recursion rela-
tions of the matrix model, which provide a recursive relation that determines all Ry ,
or equivalently Z ,,, in the 1/L or e~50 expansion. The loop equations themselves
were studied a long time ago (Migdal 1975), but they were put in its most useful
form by Eynard (2004). The strategy will be to relate this recursion relation to the
geometrical one used to compute Weil-Petersson volumes (4.20).

To state the topological recursion relation in the matrix model, it is convenient to
introduce the following quantities related to the resolvent correlators:

Wen(@is . oy zn) = (=2)"21 ... 2aRg (=23, . .., =25 com., E = —2%. (4.36)

Just as in the gravitational genus expansion, the matrix model topological expansion
requires previous knowledge of two special cases Wy 1 and Wy ». These are related
to the leading (p(E))L— o0, Which is determined by the potential, and to the density-
density correlator (,o(E Yo(E’ )) - o> Which is universal (independent of the matrix
potential). They are explicitly given by

Wo,1(2) = 2zy(2), Wo2(z1,22) = (4.37)

(z1 —22)%

The function y(z) = —impo(—z>) determines the spectral curve, given by the locus
(—E(z) = 72, y(z)) C CZ. Once these two quantities are determined, all other cor-
rections to the resolvent correlators are determined by:

1 1
Won(z1, Z =Res{——[W, 2, Z

g,n(Zl ) = Z% — 2 4y(2) g 1n+1(2, =2, Z)
+ D Why 1120 Z0) Wy, 14120/ (—2, Zz)]}, (4.38)

stable

where Z = {z2,...,z,). The sum in the second line is over sets Zj > such that
Z1UZy = Z and g = h|+h>, and the sum is again over stable curves. This form of the
loop equations was derived in Eynard (2004), and is written for the case of a spectrum
with support on the positive real line [0, +00). For more general spectral support
[a—, a4 ], the expression is the same, but with the residue taken at both endpoints.
We now compare this with JT gravity, for which the spectral curve is chosen as

_ Csin(2n+/2C2)

y(2) o

(4.39)

First of all, Wp,; and Wy > are related to (4.11) and (4.17) respectively by a Laplace
transform that turns the resolvents into thermal partition functions. More generally,
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W, n is related to Z, , by the n-fold Laplace transform:

Wen(Zl, .o s 2n) = (szifo dﬂie—ﬂﬂ?> ZenBis.ooyBn).  (4.40)
i=1

Expressing Z, (0,1, (0,2) in terms of the Weil-Petersson volumes in JT gravity (4.18),
one finds:

n [e'9)
Wen(@1.....2n) = 0)"? (H/O bidbie_mbm) Ven(bi, ..., by).
i=1

(4.41)

Since the volumes are polynomials in bl.z, these integrals are convergent for z # O.
Now comes the non-trivial part of the proof. Eynard and Orantin (2007) started from
Mirzakhani’s recursion relation (4.20) and applied to it the Laplace transform (4.41)
to derive a recursion relation for W, ,,. After a lengthy calculation, they obtained pre-

cisely the recursion (4.38) with the spectral curve y(z) = %@ used in JT

gravity. This result completes the derivation that JT gravity is equivalent, order by
order in the topological expansion, to a double-scaled matrix integral.

Example: Z; () revisited:

We repeat now the example worked out in Sect. 4.2.3 but from the matrix model side.
To do this we use the matrix model loop equation in the form (4.38) to obtain the
genus one contribution to the resolvent

472C72 +3
Wo,2(z, —z)} =1 = (4.42)

Wi =R - ,
L) =26 48v2C327}

1
0 |:z% —z24y(2)

The matrix model prediction for the genus one correction to Z(f) is then given by
solving for Z1 1(p) in the relation (4.40). The answer is

ﬂ3/2 713/2\/3
+ .
2427 C3/12 12324/ C

This is precisely the same as the gravitational answer found in Sect. 4.2.3.

Z11(B) =

(4.43)

—0—

4.4 Non-perturbative effects in topological expansion
By the above matching of recursion relations, the SSS duality is proven order-by-order

in the topological expansion in powers of e~50. Since in gravity Sp ~ 1/Gy, these
are non-perturbative effects in G . From the matrix integral side, since the size of
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the matrix is L ~ ¢%, these are perturbative effects in the (double-scaled) ‘t Hooft
expansion.

We know this cannot be the whole story: from either perspective, the genus expan-
sion is divergent since each term grows for large genus as (2g)!. This indicates the
need for doubly non-perturbative effects of order e’#eso, as originally suggested by
Shenker (1990) in the context of the non-critical string. In that context, this issue has
a beautiful resolution: these doubly non-perturbative effects can be accounted for by
adding D-branes to string theory.

In JT gravity, the interpretation of these doubly non-perturbative corrections is
more mysterious. When seen as a limit of the non-critical string (as we review in
Sect. 5.10), the spacetime of JT gravity is identified with the string worldsheet. There-
fore, D-branes create holes in the JT gravity spacetime. However, as usual in D-brane
physics (Polchinski 1994), we need to sum over configurations where the worldsheet
(= spacetime here) ends on a single D-brane an arbitrary number of times, so a universe
with an arbitrary number of boundaries. This obscures an intuitive bulk picture, but
we can still write down the equations. A D-brane insertion in the matrix integral (in
the non-critical string of FZZT type) is a determinant insertion:

det(E — H) = eTlog (E—H) (4.44)

Here we wrote it as the exponential of a new object. The insertion Tr Log (E — H) =
f % ¢PE Z(B) in the matrix integral can be viewed as an unmarked fixed energy bound-

ary.*® The exponentiation of this insertion then shows that we consider an arbitrary
number of these unmarked boundaries, accounting for their indistinguishability by
1/n! in the Taylor expansion. Computations can be done for such insertions, and we
refer to (Saad et al. 2019).

In this subsection, we will review how the doubly non-perturbative effects work
from the matrix integral perspective, and leave their interpretation in bulk physics open
(see Saad et al. 2019 for some discussion). For concreteness, we will analyze these
corrections in the context of computing the black hole density of states and spectral
form factor.

4.4.1 Density of states

Consider the exact computation of (o (E)) in the random matrix framework for large
e%. As previously explained, perturbative corrections are suppressed by powers of
¢~%0 and non-perturbative corrections are naively even further suppressed as e
However, it is known that counter-intuitively the non-perturbative corrections can
actually be more important than the perturbative ones, essentially due to the factor #
in the exponential being imaginary.

In the large Sy regime, the full spectral density of the JT matrix model (for E < 1/C)
is sketched in Fig. 16. There are several ways to find it. One approach is that of

Johnson (2020), which uses numerical techniques. This requires some random matrix

48 It is unmarked due to the dividing by B as familiar in worldsheet string theory. The resolvent R(E) is
marked since it does not have this 1/ present as in (4.27).
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{p(E))

E

Fig. 16 Sketch of full spectral density of JT gravity including non-perturbative effects

machinery from the "90s that we will not explain here. Another approach, only valid
at large S, is to approximate the JT answer using only contributions from topological
disks and cylinders.

This “disk and cylinder” approximation was developed first for determinant inser-
tions in Maldacena et al. (2004), but can be translated to density insertions.*® This
approach does not work at small E, but one can match it there onto the exactly solvable
Airy model mentioned earlier.

Let us discuss the qualitative features of the spectral density (p(E)).

Corrections to forbidden region E < 0 We begin by analyzing the classically for-
bidden region E < 0. It is easy to show that any perturbative corrections will never
give a non-zero answer in this region: pg 1(E < 0) = 0 for all g. However, there is
a non-perturbative correction to the density of states, computable using the “disk and
cylinder” method, in the classically forbidden region E < 0:

205 f1E1dx »
E <0)) = , 45
(p(E < 0)) S |E] (4.45)

which is a very small exponential tail going all the way to E — —00.%? The function
in the exponential Ve (E) = 2¢% fOIEl dx y(y/x) is the effective potential felt by an
eigenvalue placed at that energy E < 0. The one-eigenvalue instanton corresponds to
the locations where this effective potential is stationary (Shenker 1990).%!

If the effective potential would be positive in the forbidden region, this would have
a simple interpretation, giving a doubly exponentially suppressed in e probabil-
ity to find a black hole state with an energy below the classically allowed region.

Nevertheless this is not so simple for JT gravity, since the effective potential is

49 In Saad et al. (2019), the authors went from single determinant (or brane) insertions to resolvents and
then evaluated their discontinuity (4.28) to get the density in the large Sp regime. In Blommaert et al.
(2021b), density operator insertions were directly determined from brane pair insertions. The results are
the same.

50 For E ~ 0, this expression is no longer useable and one has to resort to other means, as mentioned
above.

51 See Alexandrov et al. (2003) for a string theory perspective as a ZZ brane contribution.

@ Springer



4 Page 86 of 124 T. G. Mertens, G. J. Turiaci

Verr (E) = %[sin(an) — 2m+/2C|E] cos(2n+/2C|E])] for E < 0. This
means that the matrix model dual to JT gravity is non-perturbatively ill-defined. An
option proposed in Saad et al. (2019) is to choose a steepest-descent contour for
the matrix eigenvalues that runs along the real axis only for £ > —1/8C and at
E = —1/8C goes to the complex plane in a convergent direction. A different option
is to change its random matrix completion to remove the forbidden region even non-
perturbatively. This approach has been developed in a series of papers, nicely reviewed
in Johnson (2022).

Corrections to allowed region E > 0 The non-perturbative corrections in the
allowed region E > 0, computed using the “disk and cylinder” method, give instead

1 E
(p(E > 0)) = ¥ po(E) = — cos (2ne50/0 dE’ﬁo(E’)>, (4.46)

where the first term is the disk answer with the ¢%0 written explicitly.> This correction
is not small, but is instead extremely rapidly oscillating eite’ (For example, it is
larger than the leading one-wormhole correction to the disk Z; | which is of order
¢~50).These rapid oscillations with frequency ~ ¢, of the order of the average
separation between matrix eigenvalues, are an indication of the underlying discreteness
of the system.

The rapidly oscillating corrections are subleading after performing an average over
an energy window, for example when computing the thermal partition function. In this
sense, they can be ignored compared with the perturbative corrections in the topolog-
ical expansion. Nevertheless, as emphasized in Saad et al. (2019), these oscillations
can become very important in some observables, such as the very late time behavior
of the spectral form factor, which we analyze next.

4.4.2 Late time decay of spectral form factor

As our second example, let us look at the late-time behavior of the spectral form
factor in JT gravity. Within the random matrix ensemble, the spectral form factor is
the average (Z(B + it)Z(B — it)). First we double Laplace transform to write

(ZB+iZ(B —it)) = /dEdE’ (p(E)p(E"))e PEHED pmit(E=E)
(4.47)
The pair density correlator <p(E Yo(E' )) in random matrix theory is of monumental

importance. At large e%, for small energy separation |E — E’| < 1, and sufficiently
far away from spectral edges such that the spectral density pg(E) is not wildly varying,

52 From the non-critical string perspective, (4.46) can be thought of as coming from FZZT-brane corrections
to the the partition function.
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it is given by the expression:

sin® (o (E)(E — E'))
n2(E — E')?

+ po(E)S(E — E').
(4.48)

(o(E)p(EN)) ~ po(E)po(E') —

This equation holds for any random matrix potential V (H) in the unitary universality
class, which is of relevance to oriented bosonic JT gravity.>> This is a direct mani-
festation of random matrix universality, governing universal level statistics at small
energy separations.

The RHS contains the famous sine kernel %%f/», implementing level
repulsion in a chaotic system. Indeed, as E — E’, the first two terms in (4.48) cancel
out as ~ (E — E’)?, indicating energy levels do not wish to be on top of each other.

It is useful to first mention the scaling in &5 of the different terms, hidden within
po(E) ~ %0 The first, factorized, term scales as €25 and seems to vastly dominate
the other terms in the regime of interest ¢ >> 1: the sine kernel oscillates rapidly
but does not scale in amplitude with €50 and the contact term scales as €50, However,
this is no longer true if the energy separation is extremely tiny: E — E' ~ ¢~50_ In
that case, the sine kernel can compete against the factorized contribution. Since small
energy separation means late times, this is precisely what happens at very late times
as we will now explain.

It will be convenient to explicitly extract the average value of the sine kernel by
rewriting (0 (E)p(E")) (4.48) as:

1 cosmpo(E)(E — E"))
272(E — E')2 272(E — E')?

+ po(E)S(E — E).
(4.49)

po(E)po(E”) —

We go through all four terms of Eq. (4.49) and look at their late-time behavior and
gravitational interpretation.

e The first term po(E)po(E’) is just the factorized contribution we studied before,
and arises gravitationally from two disconnected disks ~ ¢>%. It leads to the
expression:

e 2mC P ke o, e
Z(B+it)= 2 \pxi ePit - (|Z(B+it)|") — oy

(4.50)
The spectral form factor decays with a power-law expression as studied exten-

sively for the more complicated boundary two-point functions in Sect. 3. This is
the so-called slope.

53 See Stanford and Witten (2019) for a thorough treatment of the relation between the other ensembles
and gravity models.
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e Inserting the second term —
Fourier transform identity

+oo 1 : 1
- dx ———e"™ = 1], 4.51)
oo 2m2x2 2

m of Eq. (4.49) into (4.47), and using the

. . .. N 1 1
this leads to a linear growth in time (| Z(8 + it)|“) D gl The term — S E-ER
has no % scaling, and should gravitationally then be sought for in the connected
pieceof Zyp », where x = 0. We already computed thisin (4.17). Setting 81 = B+it

and B, = B — it, we get at late times:

2 2
L Vhp L yE e L 4.52)

ZO,2(ﬂlﬂ 182) = 271, ﬂl +,B2 - 27‘[ 2}3 47[/8

indeed gravitationally accounting for the linear growth in late time ¢ with precisely
the correct prefactor to match the random matrix result. This is the so-called ramp.
Hence we can summarize that the ramp is gravitationally explained by the double
trumpet amplitude.’* In a microcanonical ensemble version of the spectral form
factor, there is a solution of this form, the double cone we mentioned above. This
contribution has a linear growth in time regardless of spacetime dimension, hinting
at a random matrix universality of the black hole spectrum in all dimensions.
One can wonder about higher genus corrections Zy > at late times. One can readily
show starting with (4.37) and (4.38) that only Wy > is diverging at small energy
differences, and for which hence the enhancement can compensate the suppression
by =285 at late times.

. 28, .. . .
The decreasing slope (~ ‘3[—30) and rising ramp (~ ) intersect at a late time

tg = (2BC3)1/4¢5/2 This s called the dip time 74 and its precise location depends
on details of the dynamics of the model. Note that its scaling with the entropy
14 ~ €%0/2 is more robust since it only depends on the topologies responsible for
the slope and ramp.

e The third term of Eq. (4.49) is wildly oscillating: %‘w due to

po(E) ~ €% >> 1, and non-perturbative in e =50 (due to exp(i#e%°)). As men-
tioned before, this is actually doubly non-perturbative in G ~ 1/Sp. Its Fourier
transform yields a linear downward piece, starting at the time t ~ Ce, and
perfectly canceling the slope linear growth. This location is smoothed out due to
the remaining Laplace transform in (4.47). This causes the spectral form factor at
times ~ Ce™ to flatten out and reach the plateau.

e Finally, the height of the plateau is determined by the contact term po(E)S(E — E’)
in (4.49), which when inserted into (4.47) leads to the final non-zero value Z(28)
as required for the late-time average as discussed in Sect. 4.1.

54 An alternative proposal was made in Germani (2022), but we disagree with their approach.
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log|Z (B + it)|?

plateau
ramp

t~C t~CeSo  logt

Fig. 17 Averaged behavior of the spectral form factor from random matrix theory

The full late-time behavior of the spectral form factor is conveniently summarized
in a log-log plot, and is qualitatively of the shape shown in Fig. 17.

These random matrix results resolve the tension between the perpetual late-time
decay of the semi-classical correlators and unitarity, as mentioned before in Sect. 4.1.

We understand the origin of the slope and ramp from gravity: it is an exchange in
dominance from the disconnected pair of disks to the leading wormhole contribution.
The gravity origin of the plateau is more mysterious, although there is recent progress
indicating it might be reproduced by resumming a subset of the terms that appear in
the topological expansion (Blommaert et al. 2023; Saad et al. 2022).

This is the shape predicted for a discrete system for which some sort of late-time
averaging has been done to remove the erratic oscillations (such as the red curve
drawn in the figure in Sect. 4.1). It is still an open question at the time of writing to
understand the gravitational origin of the erratic oscillations, and fully make contact
with an unaveraged discrete system. We will present some directions on this in Sect. 5.2
later on.

4.5 Generalization

We finish this section with a brief outline of some key generalizations on the duality
between two-dimensional gravitational models and matrix integrals.

4.5.1 Other ensembles

The SSS duality has on one side an integral over Hermitian matrices, interpreted as
a disordered Hamiltonian of a holographic theory, and on the other JT gravity on
orientable manifolds with arbitrary topology. This involves the unitary ensemble, for
which the canonical example is the Gaussian Unitary Ensemble (GUE). There are a
total of ten types of random matrix ensembles characterized by Altland and Zirnbauer
(1997). The simplest generalizations are the GOE and GSE ensembles which are dual
to JT gravity on unorientable manifolds. For all the ten ensembles, it is possible to
consider gravitational duals as modifications of JT gravity, either by adding topological
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theories in the bulk, or by working with A = 1 supersymmetric JT gravity. The details
of all dualities can be found in Stanford and Witten (2019).

As an example consider ' = 1 supersymmetric JT gravity. Its disk density of states
is known (Stanford and Witten 2017; Mertens et al. 2017)

( 2C cosh <2n\/2C_E)

_1 gk (E) = — s 4.53
PN =1,disk(E) = e - Nt (4.53)

and in the topological expansion one also has to sum over spin structures. Whereas
bosonic JT gravity has the universal square root spectral edge p ~ +/E, (4.53) has
instead the universal p ~ 1/+/E small E behavior. The dual is a Hermitian matrix
integral over the L x L supercharge matrix Q such that the Hamiltonian is H = Q2 >
0.5 The eigenvalues of Q have support over the whole real axis in the double-scaling
limit and have no edge. The p ~ 1/+/E behavior is just coming from transforming
the Q eigenvalue density to the H spectral density.

There is a topological theory in the two-dimensional bulk that weighs odd and even
spin structures differently, and we can add this theory to A" = 1 JT gravity. This has the
same disk density of states as (4.53) but a different topological expansion. The Hilbert
space of the dual theory separates in two equal sized blocks (fermionic and bosonic,
A04 A{;) with M an
arbitrary complex matrix. The ensemble average is done over M and the Hamiltonian
is H = Q2. The universal edge of this ensembleis p ~ 1/ VE, consistent with (4.53).
This realizes another ensemble in the Altland—Zirnbauer classification.

It is possible to define theories of pure JT gravity with N” = 2 or N' = 4 super-
symmetry. These theories of gravity also appear when describing near-extremal black
holes in string theory, in either asymptotically flat space or higher-dimensional AdS.
The matrix ensemble dual to pure N' = 2 JT gravity was derived in Turiaci and Witten
(2023) and surprisingly only involves the Altland—Zirnbauer ensembles as building
blocks.

the (—1)% is a symmetry) and the supercharge acts as Q = (

4.5.2 2d dilaton gravity with general potential

We can consider other theories of pure 2d dilaton gravity on orientable manifolds.
At the two-derivative level, we reviewed in Sect. 2.1 that such theories of gravity are
parametrized by a single function, the dilaton potential U (®). On the other side of the
duality, matrix integrals that we consider are parametrized as well by a single function:
the spectral density (or equivalently the matrix potential V (H), before double scaling).

It is natural to expect a duality, similar to the JT case, between pure 2d dilaton
gravity and a matrix integral by finding a relation between the dilaton potential and
the matrix potential. This duality was proven in Maxfield and Turiaci (2021) and
independently in Witten (2020), and a precise relation was found between these two
functions.

55 Notice that the Hilbert space does not separate into bosonic and fermionic subsectors: the (-nF sym-
metry is anomalous.
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The idea is the following. Starting from JT gravity, each time a defect with opening
angle 276 is added to the geometry at point x in the two-dimensional spacetime,
it is equivalent to inserting an operator e~ >*(1=)®() (Mertens and Turiaci 2019).
Integrating over the position of the defect is equivalent to inserting the integrated
operator [ d*x ﬁe‘zﬂ (1=6)®() Finally, we can insert an arbitrary number of these
defects and sum over their number, introducing a defect ‘fugacity’ L. The effect of
this operator insertion in the JT path integral is very simple: the summation over the
number of defects exponentiates the operator and corresponds to a deformation of the
JT action that can be encoded in a shift of the dilaton potential from Uyt (®P) = 2P to

1
U(®) =20 + W(D), W(D) =/ dor(@)e 7 1=0® (4.54)
0

where we allowed for an arbitrary distribution of deficit angles and weights (For exam-
ple a discrete set of defect flavors would correspond to A(8) = ), A;8(0 — 6;)). We
can now compute the gravitational path integral for theories with such dilaton poten-
tials by summing over defects in the JT path integral. This requires a generalization of
the Weil-Petersson volumes to include the possibility of defects, geodesic boundaries
and handles. These volumes are well-understood for the case that all 8 < 1/2 (sharp
defects) and that allowed (Maxfield and Turiaci 2021) to prove the equivalence with
a random matrix integral. The density of states in this case, even at the disk level,
requires a non-trivial resummation over defects and the answer is

So rd , VE—E
po(E: W) = S / D 275 tanh ! 0 . (455)
2m ) 2 V2 =2W(y) — Eo

where now the supportis E € (Ep, +00) and E|) is the largest solution of the equation
f dye*™ (y — \/ y2 — Eg — 2W(y)) = 0. The integration over the auxiliary variable
y is on a contour that runs along the imaginary axis such that all singularities of the
integrand are placed to the left of it.

The expression above for po(E; W) and the duality of 2d dilaton gravity with
matrix models can only be proven when the defect distribution A(6) has support for
6 € (0, 1/2). It was proposed in Turiaci et al. (2021) by comparing this result with a
limit of the minimal string that the expression above is valid for all & € (0, 1), and
justified in Eberhardt and Turiaci (2023). This matches the answer originally found
in Maxfield and Turiaci (2021), Witten (2020) for sharp defects, but the dependence
with the deficit angle can be highly non-analytic.

Since the correction to the dilaton potential decays exponentially at large &, and
since ® = r classically as discussed in Sect. 2.3.2, all these theories are asymptotically
AdS. It would be interesting to extend this approach to other spaces.

This argument has been extended to N = 1 supersymmetric dilaton gravity theories
in Rosso and Turiaci (2022).
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4.5.3 JT gravity coupled to gauge fields

Having considered a general class of 2d dilaton gravity models, the next step is to
generalize the 2d black hole/random matrix duality to the case where matter is present.
A simple realization of this is to couple JT gravity to 2d gauge fields (Davison et al.
2017; Mertens and Turiaci 2019) (another option previously discussed is to add also
fermions using supersymmetry). These models of gravity coupled to gauge fields are
also dual to double-scaled matrix models (Iliesiu 2019; Kapec et al. 2020) in a way
we now describe.

Let us begin with the gravity side. For simplicity, we consider JT gravity coupled
to a group G BF theory (similar considerations can be made for 2d Yang—Mills). We
work in the grand canonical ensemble. The total Euclidean action is (3.86):

K
[=1Iyp— f Tr BF + = f deTr [(Ar n M)Z] , (4.56)
M 2 Jam

supplemented with the chemical potential 4« (an element of the Lie algebra) and K is a
dimensionful coupling constant (sometimes called the compressibility Davison et al.
2017). We impose the following mixed boundary conditions>®

B = K(Ar + m)lym- (4.57)

The exact solution of 2d Yang—Mills theory is known explicitly (Witten 1991a, 1992),
from which the BF amplitudes can be determined almost immediately: some ampli-
tudes were written down in Eqs. (3.88) and (3.89) in Sect. 3.7.4. We first need to obtain
the disk partition function. Integrating out the B field (along an imaginary direction)
results in an integral over flat connections A = gdg~'. We mod out by bulk (small)
gauge transformations, but the resulting action depends on the boundary value g(t)

giving the particle-on-a-group action’:

K [P . 2
I =It+ —/ dt Tr |:(g3rg + M) ] , (4.58)
2 Jo

where g(t + ) = g(t). This theory is one-loop exact (Picken 1989), and the partition
function is given by

1
vol(G)

. _pGW®
Zpisk BF = 3 dim(R)xr (e P (4.59)
R

56 In higher dimensions, working in the grand canonical ensemble implies keeping fixed the holonomy of
the gauge potential at the boundary. The 2d case is special in this regard and requires a boundary condition
mixing B and A in this fashion.

57 The field transformation from A to g has a redundancy under right multiplication g(7) — g(7)U with
U € G. This results in an integration space Loop(G)/G. This is not true for left multiplication which acts
as a true global symmetry. This redundancy is the gauge theory version of that discussed in footnote 11
earlier.
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where R are the irreducible representations of G, C2(R) the quadratic Casimir, and
xr(V) the character in representation R of group element V € G. Combining this
result with the JT gravity sector we obtain the total disk partition function:

o
Zowrine B = 3 [, A or(Evin@) e PE a60)
R 2K

with a density of states per representation given by (Mertens and Turiaci 2019)

: S
pp(E) = IR €C (Zn\/2C<E - CZ(R))) . 4.61)

Vol(G) 272 2K

This is precisely the Schwarzian spectrum with a representation-dependent gap pro-
portional to C2(R).

The calculation can be extended to higher genus surfaces in the following way.
Compute first the JT and BF path integral on single trumpets, where we additionally
fix the gauge holonomy of A along the geodesic boundaries. Next, we need to perform
the path integral over the interior surface with geodesic boundaries with fixed length
and holonomies. Similarly to JT, there are no boundary terms on these gluing cycles
and the result is the volume of the moduli space of flat G connections. These are easy
to compute locally (since there is no issue analogous to the mapping class group) by
cut-and-glue TQFT techniques (Witten 1991a, 1992). The final step is to glue on the
single trumpets by integrating over geodesic lengths and holonomies.

Now we move on to the holographic dual which is a random matrix model. In
holography, when a group G gauge field is present in the bulk, a global symmetry
G should commute with the boundary Hamiltonian. This implies that the boundary
Hilbert space Hpy = @ R’H]I;H breaks up into separate subspaces in different repre-
sentations R of G. We can define separate Hamiltonians Hg acting on each subspace
labeled by the representation R. The dual of JT gravity coupled to a group G gauge
field, derived in Iliesiu (2019), Kapec et al. (2020), corresponds to an ensemble aver-
age over Hamiltonians, where each Hp, is taken from a matrix ensemble described by
a disk density of states pr(FE) given by (4.61). The Hamiltonians acting on different
representation subsectors are statistically independent. It is a non-trivial calculation to
verify that this matrix integral reproduces the higher genus bulk calculations described
in the previous paragraph.

This story can be easily generalized to a more general 2d dilaton gravity theory
coupled to gauge fields, by applying the defect expansion of Sect. 4.5.2 to JT gravity
with gauge fields. As far as we know, this has not been studied in the literature, but it
is straightforward.

4.5.4 JT gravity coupled to matter
One further extension is to describe matter boundary correlation functions of the type

studied in Sect. 3.3 including wormholes. Increasingly detailed investigations of these
were performed in Saad et al. (2018), Blommaert et al. (2019a), Saad (2019), see also
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Blommaert (2020); Iliesiu et al. (2022). A concrete random matrix dual of JT gravity
with matter was proposed in Jafferis et al. (2022b, a).

We focus here on the boundary two-point function. The algorithm is the following.
We first cut open the disk along the bilocal line:

O=CZD

In a second step, we can add all wormhole corrections in all possible ways to the
resulting cut geometry:

2D+ 55 Bb-

It was shown in Saad (2019) that this procedure is identical to first starting with
a given higher genus hyperbolic surface, and then summing over all topologically
distinct bilocal lines one can draw on the surface. The result is quite elegant, and upon
summing over genus combines into

(O(1)O(n)) = f dEdE; (p(Ey, Ep)) e PETTEI=ED|0p £ 120 (4.62)

where, comparing to (3.26), we only replace the product of densities po(E1)00(E2)
at the disk level, by the pair density correlator (p(E1, E2)) of the JT random matrix
ensemble described in Sect. 4.3. This matches with inserting simple operators O(t)
with given matrix elements (E1|O|E;) between H-eigenvalues E1 5, directly into the
JT random matrix integral. The decomposition of the pair density correlator (4.49)
in random matrix theory, mirrors the gravitational amplitudes. In particular, the first
two diagrams above correspond to the disconnected contribution to {(p(E1, E2)). The
last diagram contains the connected contributions, which at lowest genus leads to a
linearly increasing ramp for the boundary two-point function at late times (Blommaert
et al. 2019a; Saad 2019). Investigations beyond the two-point function can be found
in Blommaert (2020), Stanford et al. (2022).

There are still some open questions surrounding these matter correlation functions.
One open problem is the role of “self-intersecting” bilocal lines, whose intersection is
topologically supported by wrapping around the wormhole. These were not included in
the above prescription. At late times, we expect these are subdominant, but it is an open
question how to think of them from the random matrix ensemble, and even whether
they should be included in the first place. Another problem is that when considering
dynamical matter in the bulk, one can have matter loops encircling wormhole necks.
It is easy to show that the resulting negative Casimir energy causes a divergence due
to the small wormhole UV region b — 0, essentially the tachyon divergence familiar
from string theory.”® The recent work by Jafferis et al. (2022b,a) studies a way to
regularize this divergence by deforming the model directly at the matrix level.

58 Details of this calculation can be found in section 2.2 of Jafferis et al. (2022a).

@ Springer



Solvable models of quantum black holes... Page 95 of 124 4

A final comment is that the matrix integral language does not a priori know about
the dynamical ingredients in correlation functions of these local boundary operators
(the vertex factors (3.53) and the crossing kernel (3.54)), and these have to be supplied
externally. In this sense, the matrix integral is merely a machine that produces the
correct combinatorics of higher genus contributions in a non-perturbative framework.

5 Applications and future directions

In this last section, we provide several applications and generalizations of the results
we reviewed up to this point on the exact solution of JT gravity. This section is not
aimed to be entirely self-contained, we instead refer to the literature for more details.

5.1 The entropy of Hawking radiation

Since the discovery of Hawking radiation (Hawking 1975), it was realized that semi-
classical black hole evaporation is inconsistent with quantum mechanical unitarity
(Hawking 1976). Holography however implies that black holes behave as a quantum
system, and it is important to resolve this tension and determine the fate of spacetime
inside and around the horizon. This tension manifests in two ways when naively
computing the gravitational path integral semi-classically.

The first is that semi-classical gravity does not produce a discrete black hole spec-
trum, manifested e.g. in the late-time decay behavior described in Sect. 4.1. This is
inconsistent with the microscopic interpretation of the Bekenstein—-Hawking entropy.
We already discussed in Sect. 4.4.2 how it can be improved via the inclusion of space-
time wormholes. Obtaining an entirely discrete spectrum and seeing the erratic wiggles
discussed in Sect. 4.1 is not yet well-understood. We come back to this in Sect. 5.2
further on.

The second is that the radiation entropy of an evaporating black hole grows forever,
see Srad(?) plotted in the figure below Eq. (2.104) for the JT computation. If the
evaporation is unitary and the initial state is pure, the black hole microstates can
only purify as much as their own entropy. This was recently resolved as well by the
inclusion of spacetime wormholes that appear when computing the entropy using the
replica trick, sometimes called replica wormholes (Penington et al. 2019; Almheiri
et al. 2020).

The result of this discussion is the following proposal for a formula that computes
the radiation entanglement entropy in a gravitating system (Penington 2020; Almheiri
et al. 2019; Penington et al. 2019; Almbheiri et al. 2020):

Area(X)

S = miny {ext
{[ e

+ Ssemicl(EX)]} . 5.1

The meaning of the right hand side is the following: first extremize the generalized
entropy Sgen(X) = AZ%EVX) 4+ Ssemicl (X x) over a codimension-two surface X such that
it defines a codimension-one surface Xy, whose boundary is X, on the region whose

entropy we are computing. After finding all extrema X for Sgep, the one with the mini-
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Fig. 18 Evaporating AdS, black hole coupled to a flat space bath to the left

mum value is selected. Finally, the quantity Ssemic1 (X x) is the radiation entanglement
entropy computed in the semiclassical state. The regions in Xy disconnected from the
semi-classical radiation region are called entanglement islands.

The above island formula resolves the issue with the entropy of Hawking radi-
ation: when the semiclassical radiation entropy Ssemicl(Xx) grows larger than the
Bekenstein—Hawking entropy AZ%(;O, the entropy is computed by choosing X to be
a surface slightly in the interior of the black hole. In the end, this means that one
essentially follows the minimum of both curves plotted earlier below Eq. (2.104) in
Sect. 2.4.1. We note that the procedure of swapping between extrema as a function of
time is a non-perturbative (in G ) tunneling process in quantum gravity.

In the coming three subsections, we first perform this computation in JT gravity,
followed by reviews on the role of replica wormholes in understanding these devel-
opments, and in particular deriving formula (5.1).

5.1.1 Entanglement islands in JT gravity

Having simple solvable black hole systems as JT gravity was fundamental for uncov-
ering the entropy formula (5.1) to begin with. We described a setup in JT gravity of
evaporating black holes in Sect. 2.4.1 that we retake here. We supplement that set-up
by adding an asymptotically flat region, acting as a bath collecting the radiation. On
this flat region, we use the metric ds?> = —dudv whereu =t +zandv =t — z
in terms of the proper coordinates defined using the near-boundary asymptotics in
Sect. 2.3. Use of this time coordinate ¢ allows a continuous gluing to the bulk region.
Here we will sketch the computations that lead to a non-trivial entanglement island
and resolve the tension with quantum unitarity. We follow a simplified combination
of Almbheiri et al. (2019), Goto et al. (2021).

We consider the (naive, semi-classical) radiation region R consisting of the flat
space bath spacelike interval R = [B’, B], where we will imagine taking B on the
boundary (at measured time ¢) for simplicity, although our equations are more general.
The bath is decoupled for # < 0, and the interface is made transparent for r > 0. Next to
this, we allow for a non-trivial spacelike island I = [A, A’] ranging from the Poincaré
horizon A’ to some point A that could be behind the black hole horizon, as illustrated
in Fig. 18.
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Our goal is to find the location A = X keeping fixed all other quantities by fol-
lowing the above prescription (5.1). In this enlarged set-up, we can continue with the
expressions obtained in Sect. 2.4.1. We can read the stress tensor vevs around (2.100)
as those corresponding to the vacuum state defined by the coordinate (U = F(u), v)
after the pulse, where F (u) is the explicit solution (2.102).%°

First let us consider the case of no island (A — A’). Then we only need to consider
the entanglement entropy of the radiation region R. The emitted Hawking radiation
is only captured there from U > 0, and we can consider the entanglement entropy of
the interval [B”, B]. There is an additive reference (and uninteresting) entanglement
entropy in the state where the bath and system would remain decoupled forever. If one
were to remove this, we would obtain the same result as before (2.104).

If a non-trivial island endpoint A can be found, then the radiation region consists of
both the naive one R and the island region /. As the black hole evaporates, the union
R U I increases in size, and the entanglement entropy decreases with time, yielding a
result consistent with unitarity.

Let us work this out more explicitly. The computation is more straightforward when
trying to solve the closely related problem of finding a quantum extremal surface at
point A, where we extremize the same quantity as before (5.1), except that we take
the QFT entanglement entropy in the complementary interval [A, B] instead, and
extremize for A. It is straightforward to show that in the case of no ingoing flux
: Tyy := 0, the dilaton solution (2.44) can be written explicitly in terms of the solution
F (1) of Eq. (2.98) as (Goto et al. 2021):

a ((F'(va) 2F'(va)
DUa,v4) = ( + i (5.2)
2\ F'(va) Ua—Va(va)
For the metric ds? = —Q~2dztdz ™, and for the vacuum state defined in the (zt,z7)

coordinates, the curved spacetime 2d CFT entanglement entropy for an interval
between points (zj, z,) and (z;g, zp) is given by (Fiola et al. 1994)

. |GE =25y —z23)l
Scrr = —log —A—8—=4 8
6 €4€p2(zA)Q2(zB)

(5.3)

where the UV cutoffs €4 p are measured in the inertial coordinates at the endpoints.
In our case, the coordinates (U, v) are those with respect to which we choose the
vacuum. The somewhat peculiar feature here is that one endpoint (A) is in the AdS
bulk, whereas the other endpoint (B) is in the glued flat region. Writing the bulk AdS
metric as

»  —4dUdV  —4F' (v)dUdv
S Ww-v)2? (U -V)?

ds

1 1
Q(za) = E(UA - VA)W,
(5.4)

9 To compare notation with (Almheiri et al. 2019; Goto et al. 2021), our (u, v) are their o, y~). Our
(U, V) are their (xT, x 7).
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we can read off €2(z4) in the bulk point A as written. Analogously, in the flat region,
we write the metric as:

ds®> = —dudv = —%dUdv, = Q(zp) = VF'(up). (5.5)
u

With this information, we evaluate the QFT entanglement entropy (5.3) as

¢, 2(Us—Up)(vp —va)v/F'(va)
SCFT = Ssemicl = - IOg .

5.6
6 €aep(Ua — VA)VF (up) 60

Adding this to the gravity contribution (5.2), we write the entropy functional Sgen (X)
as:

Sy + a/2 (F”(UA) 2F (va) > c log 2(Us — Up)(vp — va)VF'(va)
0" 4Gy \F'vg)  Ua—Vaua)) ' 6 eacs(Ua — VONSF(ug)

(5.7)

The UV cutoffs €4, g yield additive terms that can be reabsorbed into a renormalization
of G y. Now, for fixed B-coordinates, this expression is to be extremized for the island
endpoints U4 and v4. Upon doing this, the following important conclusions are found:

o At early times ¢ < fpage, the minimal Sgen(X) is found to be the no-island situ-
ation where A — A’, located on the initial Poincaré horizon. This leads to zero
contribution from the BH entropy in the entropy formula, and the rising Hawking
semi-classical radiation entropy (2.104) is retrieved:

S A Srad (1). (5-8)

o At late times ¢ > fpyge, a non-trivial island endpoint A minimizes the entropy
functional. Plugging the resulting location back into the entropy formula, one
finds

S ~ Sgu(t), (5.9)

and the black hole entropy decreases in time, following roughly the quasi-statically
decreasing Bekenstein—Hawking entropy. The resulting Page curve is then just the
minimum of these two entropies, as illustrated in Fig. 19.

e The Page time itself gets its dimensions from C, and is inversely proportional to
the (assumed large) matter central charge c, as tpage ~ C/c.

e The location Uy > F(t — +00), putting the island endpoint behind the black
hole horizon.®

60 For the eternal black hole, the island endpoint is located outside of the black hole horizon (Almheiri
et al. 2019c¢).
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S(t)

Srud (t)

>

tPage t

Fig. 19 Page curve of evaporating black hole using the island prescription

e For the other lightcone component, one can write (Penington 2020; Almheiri et al.
2019):

log (16@), (5.10)

~ t J—
vA 27T ()

where T'(t) = %, / %e* wcl (1) is the quasi-static temperature determined from

the energy profile (2.101) and the energy-temperature relation (2.59). The island
va-coordinate (5.10) trails behind a scrambling time behind the time t when we
measure the entropy at the boundary. Both this and the previous feature were
illustrated in the Penrose diagram above.

The apparent conflict with unitarity is hence resolved by taking into account entan-
glement islands at times greater than the Page time.

5.1.2 Replica wormholes

Next we review ways to motivate and derive the island formula (5.1).

A firstroute is to consider the case where the matter CFT sector is on its own strongly
coupled and holographic. This is a version of double holography studied in Almheiri
et al. (2020). The quantum extremal surface or island formula (5.1) reduces to the
classical Ryu-Takayanagi formula in this higher-dimensional space. The 2d JT model
is then described by a dynamical metric on the “Planck brane” (or Randall-Sundrum
brane (Randall and Sundrum 1999; Karch and Randall 2001)).

There is a more generic derivation of the island rule (5.1) based on Euclidean replica
trick techniques. This approach was investigated by two groups Almheiri et al. (2020);
Penington et al. (2019). Here we provide a short summary of the first one, referred to
as the “east coast model”, the other one follows in the next subsection.

In QFT, the n’th Rényi entropy S, = Tr(p}) of an interval is computed by consid-
ering n replicas of the original manifold, glued together cyclically across branch cuts,
with branch points at all endpoints of the interval of interest. We depict the n = 2
case for a single endpoint, where the color-coding denotes how one moves between
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replicas as one crosses a branch cut:

(v
W

However, if there is a gravitational region in the space, we are instructed by holography
(or quantum gravity more generally) to fill in the gravitational interior in all possible
ways, and then sum over these possibilities with the Euclidean path integral. One
of these possibilities is to connect all of the different replicas together into a single
connected geometry, forming a replica wormhole. In this context, this is a saddle
solution of the replicated equations of motion. For example, for the specific case of
the two-sided eternal black hole in AdS, for which the radiation region contains an
interval in both the left- and right flat bath region, we sketch the 2-replica configuration
below:

The grey region is the non-gravitating region (the flat bath) in Euclidean signature.
Locations on opposite sides of the eternal black hole (the two intervals) are in Euclidean
signature separated by a rotation by 180 degrees, as drawn. The white region is a
gravitating region for which we are instructed to sum over geometries, for which
the two saddle topologies are drawn. For replica number n, the connected saddle is
topologically suppressed as ~ ¢%02~") but can get enhanced at late times.

For a Z,,-symmetric fully connected replica saddle configuration, one can represent
the replica wormhole in two ways. As a single smooth surface as above; or by modding
by the Z,, symmetry as a surface of disk topology that has two twist points present
(drawn in the figure on the right for n = 2), around which one has a 27 /n conical
singularity:

With these ideas, the following conclusions can be drawn:
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e The island formula (5.1) follows directly from a generalization of the argument
of Lewkowycz and Maldacena (2013) that was used to prove the Ryu—Takanayagi
formula.

e The twist operator locations in the replica geometry are also part of the extrem-
ization procedure, and these locations are precisely the island endpoints in the
gravitational bulk.

e The disconnected replica geometry dominates at early times (before the Page time),
whereas the fully connected replica geometry dominates at late times (after the
Page time).

This approach was first used for the information paradox for the eternal black hole
in Almheiri et al. (2020), for which we drew the 2-replica geometries above, and
generalized to the evaporating case in Goto et al. (2021).

5.1.3 Replica wormholes and EOW branes

We next review a very simple model proposed in Penington et al. (2019), commonly
referred to as the “west coast model”, to study the role of wormholes in replica trick
computations. It consists of a black hole in a pure state using the end-of-the-world
(EOW) branes introduced in Sect. 3.5. To produce an information-like paradox, we
can introduce a very large number k of internal states of the EOW brane, entangled
with an auxiliary system R, schematically as:

The motivation of Penington et al. (2019) to consider this model was to interpret the
EOW states as the interior radiation modes and the auxiliary system R as the early
Hawking radiation. The state of the whole system and the radiation density matrix are
therefore

k

1 & 1
|W>=ﬁ;|¢f>3u>r{, = r=2 ) IR, (5D

ij=1

where the state of the black hole with an EOW brane in state i is |¢;)g. It is easy to
see that when wormholes are not included, and if we pick an orthogonal basis of EOW
states, gravity will give:

%

(Yilhj) = D x b5,

7= (5.12)
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implying pr = k™! Zf-‘zl [i)(i] is maximally mixed with entropy log(k). This is the
information paradox: as we increase k the entropy of the radiation can grow and
become bigger than the black hole entropy Sgy. If the black hole is described by a
quantum system with ¢BH degrees of freedom, this is an inconsistency: for system B
to purify R, the dimension of B should be at least as large as that of R.

Instead of considering entropies, it is instructive to study the purity of a state defined
as Tr (,oﬁ). This quantity is one for a pure state and strictly smaller than one for
a mixed state. Ignoring wormholes, the fact that the entropy of Hawking radiation
grows indefinitely is related to the fact that the purity can decay without bound in
time. Using the radiation density matrix (5.11) gives

k

Tt (pé) = k% 2 lwilvpr. (5.13)

i,j=1

If we take (y;|¥;) o &;; then the purity is Tr (/’122) = 1/k and decays indefinitely
as k grows. Computing this quantity in gravity involves a computation of |{; | j)|2,
which in the presence of wormholes gets the following contributions to leading order:

wor- OO0+ (O
i=i j=i j i
Z%6U+ZQ ZQ
:7:(Sl+77
Iz Tz

(5.14)

where the path integral on a disk with one holographic boundary and one EOW brane
is denoted by Z; (only non-zero when i = j) and discussed in Sect. 3.5, while the path
integral on a surface with two holographic boundaries and two EOW branes is denoted
by Z, and is independent of the EOW brane flavor indices i, j. The denominator Z %
is only a choice of normalization of the states |;). There are two important features
we need for this discussion. The first is that both Z| = Z 1% with Z 1 of order one,
Z» = Z»e%. The second is that while the disconnected diagram imposes j = i and
therefore is given by 2128,- » the second diagram is non-zero for any i and j, giving an
off-diagonal component to the inner product. We can use this result to compute the
purity

kZ?2+ k7 |/

2 -4 22 (5.15)
(kZ1)? k z%
L Z (5.16)
“iteg |

with Z»/ Z% an order one number computed in Penington et al. (2019). We now see
how the wormhole term resolves this version of the information paradox: while the
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first term 1/k decays without bound as k — oo whenever the number of states is
of order k 2 ¢ the purity will saturate to Tr (p3) ~ ¢~ thanks to the wormhole
contribution.

The previous argument can be applied to the computation of Renyi entropies
involving Tr (pﬁ) and used to extract the entanglement entropy of the radiation
S(R) = —Tr (pr log pr). The result is:

S(R) = min {log(k), Spu},

which is precisely what one obtains from the “island rule” defined in Eq. (5.1), when
applying that discussion to an eternal black hole [see e.g. Almheiri et al. (2019¢)] and
interpreting k loosely as time. In the right we show the analog of the Page curve for
this model. This answer is accurate except when we are close to the transition where
k ~ 81, That same work (Penington et al. 2019) also found the answer that precisely
interpolates between the early and late behaviors in this simple toy model. This is a
striking result: without gravity, if we want to compute the entropy of a quantum system
R it is enough to know pR. If the auxiliary system R is entangled with a system with
gravity, such as the pure JT black hole, then the entanglement wedge of R includes
the region behind the black hole horizon with an area term contributing Spy.

Finally, another interesting feature of this calculation is related to the interplay
between wormholes, the lack of factorization and the need for ensemble average. In
terms of the matter density matrix, the derivation above does not seem to make sense
since (V| ;) = &;; while ([ ;) 1?2 = 8ij +Zz/Zl2. The interpretation is that gravity
is computing ensemble averages over these matrix elements, and wormholes capture
the variance around the leading order delta function.

5.2 Factorization, discreteness, and ensemble averaging in gravity

The non-perturbative features of random matrix theory contain high frequency wiggles
of temporal size ~ e ™0 that are an indication of the underlying discreteness of the
matrix integral. However, JT gravity’s matrix model description is double-scaled and
moreover evaluated in a e =50 expansion, where the actual discreteness of the under-
lying system is washed out. But if JT gravity is truly a low-energy approximation of
some microscopic model (such as SYK), then it should be possible to describe the
discreteness of that UV model in the gravitational low-energy language. There have
been several works attempting to reintroduce discreteness in JT gravity by introduc-
ing additional brane-like objects in the gravitational bulk, see e.g. Blommaert et al.
(2021b), Johnson (2022), Blommaert et al. (2021a) for various approaches.
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One of the important features of this link with a discrete spectrum is the so-called
factorization problem mentioned in Sect. 4.3.1 before. The paradox goes as follows.
Suppose we have an n-boundary amplitude (Z(B81)...Z(B,)). Then the boundary
theories are disconnected and the amplitude should factorize. However, holography
instructs us to sum over all possible geometric interiors that end on these n boundaries,
disconnected and connected. How does gravity know in this set-up that it ultimately
should factorize microscopically, since many individual geometries do not? One pos-
sibility is that there are actually additional saddles in the bulk path integral that do not
appear in an averaged theory, but would appear for any specific microscopic version
of it. A simple analog of the mechanism is to consider the spectral form factor (at
B = 0) of a discrete system:

i i=j i#j

After averaging (e.g. in time), the off-diagonal terms on the RHS cancel out due to the
heavy fluctuations; only the diagonal terms survive. But this diagonal contribution on
its own does not factorize as the LHS does. Hence, the non-factorization is an artifact
of the averaging procedure, but is not there in the truly microscopic model. For a
simplified version of the SYK model, this mechanism was investigated in Saad et al.
(2021b), Mukhametzhanov (2022), Saad et al. (2021a), where the new configurations
were dubbed “half-wormholes”. A geometric interpretation of these is still lacking at
the time of writing.

This discussion is related to the deep problem of how one should really think
about quantized gravity when including wormholes. There have been several distinct
indications (Harlow and Jafferis 2018; Penington et al. 2019; Almheiri et al. 2020;
Giddings and Turiaci 2020; Stanford 2020; Engelhardt et al. 2021; Johnson 2021;
Saad et al. 2021a) that the gravitational path integral is not equivalent to an ordinary
quantum mechanical system (where we interpret the boundary circles as representing
Euclidean time).

As a further example of this tension, we noted at several points that the higher
genus sectors in the gravitational path integral do not contain classical saddle points in
dilaton gravity. However standard canonical quantization starts by solving the classical
equations of motion, which means that, in canonical quantization, it is seemingly
impossible to see effects from any surfaces besides disconnected disks!

The new interpretation that we seem to be led to, is that gravity should instead
be viewed as an ensemble average that happens at the very end of the computation.
This is precisely the same situation as in disorder averages in spin glass systems in
condensed matter physics. For example, for the free energy of the system, one should
compute the quenched free energy (log Z), and not the annealed free energy log (Z),
where the brackets denote the gravitational path integral. The situation is exactly the
same in gravity (Engelhardt et al. 2021; Johnson 2021; Alishahiha et al. 2021).
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5.3 Near-extremal black holes

In Sect. 2.1.2, we gave a brief overview of how JT gravity describes physics close to
the horizon of a near-extremal black hole, at the classical gravity level. This is an old
observation which was recently developed further thanks to an improved understanding
of JT gravity. A partial collection of references that explore this connection is Nayak
etal. (2018), Moitra et al. (2019b), Hadar (2019), Castro et al. (2018), Larsen and Zeng
(2019), Kolekar and Narayan (2018), Moitra et al. (2019a), Sachdev (2019), Hong et al.
(2019), Castro and Godet (2020), Charles and Larsen (2020), Larsen and Paranjape
(2021), Narayan (2021), Castro and Verheijden (2021), Castro et al. (2021b), Castro
et al. (2021a).

In Ghosh et al. (2020) and Iliesiu and Turiaci (2021), it was explained how the link
between JT gravity and near-extremal black holes can be made also at the quantum
level. This means that the leading low-temperature behavior of quantum gravity correc-
tions from large fluctuations of a certain mode in the metric of the higher-dimensional
black hole can be approximated by the quantum effects in JT gravity we analyzed in
Sect. 3. This leads to interesting conclusions such as the fact that there are no classical
extremal black holes in gravity and the Bekenstein—Hawking area law for extremal
black holes is meaningless, except when the black hole is embedded in a supersym-
metric theory and preserves enough supersymmetry (Heydeman et al. 2022; Boruch
et al. 2022). A more detailed review on these results can be found in the upcoming
review Iliesiu and Turiaci (2023).

5.4 SupersymmetricJT

JT gravity has since its start been generalized to include supersymmetry. Next to
providing interesting solvable models of supergravity, whose solution can be done in
parallel with the bosonic case, they are also of direct relevance to match with higher-
dimensional supersymmetric black hole physics, as briefly mentioned in Sect. 2.1.2.

Here we summarize what has been computed in supersymmetric generalization of
JT gravity at the time of writing this review.

The simplest case with A/ = 1 has one supercharge and describes on the boundary
side the symmetry breaking pattern associated to OSp(2|1) D SL(2, R). The super-
Schwarzian action has been derived using a fluctuating boundary curve analysis in
Forste and Golla (2017). At the level of the pure ' = 1 JT gravity partition function,
it has been computed for all genus and matched with random matrix models in Stan-
ford and Witten (2019). In the presence of matter, at the disk level, the time-ordered
correlators were computed in Mertens et al. (2017); Fan and Mertens (2022b) while
the OTOCSs are unknown. Defects have been classified in Fan and Mertens (2022b).

The next case has two supercharges, N” = 2 JT gravity describing the symmetry
breaking pattern of SU(1, 1|1) D SL(2, R) x U (1)g. The super-Schwarzian analysis
appears in Forste et al. (2018). The disk partition function was computed in Stanford
and Witten (2017), and the density of states in Mertens et al. (2017). This theory can
have fractional charge and also be supplemented by a theta angle, see Boruch et al.
(2022) and Heydeman et al. (2023). The time-ordered correlators were computed
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recently in Lin et al. (2023a,b). The OTOCs are unknown. The contribution from
higher topologies and its matrix dual were recently proposed in Turiaci and Witten
(2023).

The case with four supercharges, N' = 4 JT gravity, describing the breaking pattern
of PSU(1, 112) D SL(2,R) x SU (2)g, was defined and the disk partition function
computed in Heydeman et al. (2022). Matter correlators have not been computed and
the sum over topologies is not known, although some preliminary calculations are in
Turiaci and Witten (2023).

5.5 Two-dimensional cosmology

JT gravity with positive cosmological constant coupled to matter was considered in
Maldacena et al. (2021), Cotler et al. (2020). The action takes the form (2.4) with a
dilaton potential U (®) = —2®, supplemented by a ®( term. This theory has asymptot-
ically two-dimensional de Sitter solutions and it therefore models lower-dimensional
cosmology.

There are several set-ups one can analyze in JT gravity with positive cosmological
constant. One option is to follow the Hartle—-Hawking no-boundary proposal (Hartle
and Hawking 1983). In a frame where the metric is rigid dS,, there is a conformal
symmetry that is broken by the (asymptotics of the) dilaton which is slowly increasing
with time (similar pattern of symmetry breaking as in inflation). The value of the
dilaton acts as a clock, and we fix its value on the future boundary &, = ®|3. The
wavefunction of the universe depends on the proper length of the spatial universe which
we call £ (analogous to 8/€ in the AdS case), and it is computed by the geometry

£, @y, large
S —

W(e.@) > [(DgDa)

(5.18)

Considering ®;, and ¢ large is an invariant way of specifying we want to compute the
wavefunction at late times. The result can be computed by reducing JT gravity to a
space-like Schwarzian mode living in the future boundary. The result is W (£, ®5)

32 2
(bb/ —iDpl+So+i 2D
32 € ¢

x . In this context the parameter Sy can be interpreted as half of the
dS entropy. An interpretation of this formula can be found in Maldacena et al. (2021),
Cotler et al. (2020). When matter is present, it is possible to compute quantum gravity
corrections to late time matter correlators using the Schwarzian action (Maldacena
etal. 2021). Since dS correlators involve an integral over the wavefunction (instead of
derivatives as in AdS) (Maldacena 2003b), this is considerably harder than the AdS
case and the full answer for these correlators is not known.

For the case of pure JT gravity, the sum over non-trivial topologies when computing
this wavefunction of the universe can be reproduced by a matrix model similar to SSS
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(Maldacena et al. 2021; Cotler et al. 2020). The ultimate role of these cosmological
wormholes is not understood. Finally, when matter is present there is a paradox due to
the fact that the matter entropy can grow larger than the de Sitter entropy. A simplified
version of a resolution of this paradox uses wormholes (Chen et al. 2021) not too
different from the ones discussed in Sect. 5.1.

JT gravity with positive cosmological constant describes the physics near the hori-
zon of a near-Nariai black hole in higher-dimensional dS. This limit is very different
than the near-extremal near-horizon counterpart: it does not require charge and it is
a solution of pure gravity. Four-dimensional black holes in dS have a maximal mass
and when this is approached, a dS, x S? throat emerges close to the black hole and
cosmological horizons.

Having discussed AdS and dS it is important to point out that some works also
studied JT gravity in flat spacetime, see Dubovsky et al. (2017); Godet and Marteau
(2021), and even proposed a matrix model dual (Kar et al. 2022).

5.6 Traversable wormholes

The main ingredient of wormhole traversability in a holographic system is a specific
coupling between two boundary systems that allows an initial state, localized to one
boundary system, after a complicated evolution become a simple final state localized in
the second boundary system. The holographic dual of such a process, is geometrically
smooth travel through a traversable wormhole. We need to distinguish between two
classes of such wormholes, the first containing black hole horizons and the second
containing no horizons.

Traversable ER wormholes The thermofield double state in holography has a spatial
wormbhole, which is the AdS analog of the Einstein—Rosen (ER) bridge. This wormhole
is famously not traversable by any bulk probe, but it is very close.

It was argued in Gao et al. (2017) that one can make this TFD wormhole traversable
by introducing a double trace boundary interaction, leading to a schematic path inte-
gral insertion ¢’89L(MOrO) 4t 3 reference time t = 0 for simple boundary operators
Or . r localized to either the left (L) or right (R) boundary, and with suitable sign
of the coupling g. This results in a negative bulk energy insertion violating the null
energy condition and making the wormhole traversable. This procedure was explored
in detail in the NAdS, context in Maldacena et al. (2017). The physics of the resulting
traversability can be conveniently captured by thinking about the wiggly boundary
curve experiencing a kick whenever bulk matter is injected. In particular, after the
interaction happens, the left- and right boundaries are pushed towards each other due
to the negative energy injection, making a bulk signal able to traverse the wormhole
and arrive at the other boundary.

In Fig. 20, the left panel illustrates the non-traversability of any signal through the
Einstein—Rosen bridge. The right panel of the same figure illustrates that after negative
energy injection through the double trace interaction (blue), the boundary is kicked
inwards (green) and the wormhole becomes traversable.
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Fig. 20 Left: two-sided black hole as a non-traversable wormhole, or Einstein—Rosen bridge. Right: an
interaction between the two sides can open up the wormhole

The bulk particle, in turn, also backreacts (not shown above) on the boundary
curve, kicking the boundary curve towards the asymptotic boundary, and hence limits
the amount of information that can be sent through the wormhole.

Eternal traversable wormholes There is a second class of traversable wormholes
that are eternal and horizonless, first described in the JT framework in Maldacena and
Qi (2018). These can be described in NAdS, by understanding how to interpret both
global boundaries as NAdS boundaries. The vacuum solution for the dilaton field ¢
in global coordinates is ® = a cot2z,°" where the right boundary is at z = 0 and
leads to ® — 400 as before. The left boundary on the other hand is at z = 7 and
hence ® — —oo0. This boundary hence does not satisfy the boundary conditions of
Sect. 2.3.1.

In order to make sense of the two-boundary system in NAdS,/NCFT/, we need to
have ® — +-oc0 at both ends. To implement this, one has to violate the null energy
condition of the matter sector, since by integrating the first equation of motion in
(2.42) along the u-direction from boundary to boundary, we get —(CDIf + & llj ) =
8tGn fjoO: Ty+x+dx™t, where xT is the affine coordinate along the null line dx™ =
e**du. The LHS is negative, but the RHS is positive if the null energy condition is
satisfied. Violating the null energy condition can again be implemented by a left-right
coupling of similar type as before: Sip; = g f dt ZlN: 1 OiL (1) OiR (t). Atleading order
in large N and small g with fixed Ng, the effect of this coupling can be captured in a
double Schwarzian language in terms of left and right global time reparametrizations
fr and fg of the respective boundaries. The global frame is shown in Fig. 21, with
bulk negative energy interactions (blue) and two wiggly curves at the holographic
boundaries.

The effective action describing this coupled system is

A
fL IR gN Q0]
1= —C/dt[{tan T’t} + {tan T’t} ~ 2ac <cosszL(')R;fR(t)) i|

(5.19)

61 We set n = —a (and b = 0) in Eq. (2.43) and use the global frame (2.34). Note that because y < 0, the
global frame has a negative energy —a /87w G y compared to the Poincaré patch. This is very similar to the
situation in 3d gravity.
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ta

Fig.21 Global AdS; as an eternal traversable wormhole

where there is only a single “diagonal” Mobius redundancy. For the analysis of this
system, and an alternative derivation from the low-energy limit of two coupled SYK
models, we refer to the original work by Maldacena and Qi (2018).

Physically, the resulting wormhole is horizonless. From the higher-dimensional
perspective, it has been argued that one could obtain it by gluing together the throats
of two near-extremal black holes by integrating out sufficiently energetic field modes.
For further investigations into the presence of these kinds of solutions in our universe,
we refer to Maldacena et al. (2018).

5.7 Finite cut-offand 7T

The TT deformation is a solvable irrelevant deformation of two-dimensional confor-
mal field theories (Smirnov and Zamolodchikov 2017). It was proposed in McGough
et al. (2018) that the AdS dual interpretation is to move the holographic boundary
inside the bulk with Dirichlet boundary conditions. Even though this has passed many
tests, it is still not fully understood.

In Iliesiu et al. (2020), Stanford and Yang (2020) the problem of computing the
partition function of JT gravity in AdS with a finite-length boundary was studied,
using different methods. Up to now we considered boundary conditions where both
the dilaton @, and the boundary proper length L diverge, with a fixed ratio L / &}, given
in terms of the boundary temperature. This corresponds to sending the boundary to
infinity in AdS,. The finite cutoff version of this calculation is to work with a fixed
dilaton and proper length not parametrically large. The results found by the two groups
are different, and it is still an open question to resolve it. The result in Iliesiu et al.
(2020) is given by

L2
Z(L. ®p) = rf;ﬂe_m K2< — oL+ 4;12)), (5.20)

and was matched to a quantum-mechanical version of the 77T deformation introduced
in Gross et al. (2020) applied to the Schwarzian theory.
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A problem with this theory is that it has a non-unitary spectrum, an issue anticipated
in McGough et al. (2018). The result in Stanford and Yang (2020) is more complicated,
but has a more transparent geometric interpretation.

Further references include Griguolo et al. (2022) which applies resurgence tech-
niques to the problem, and Ebert et al. (2022) which analyzes the connection with 3d
gravity.

5.8 Volume of black hole interior and complexity

A further success of JT gravity is the explicit evaluation of the volume of the
black hole interior, including quantum gravity corrections. The extremal volume of
a codimension-one slice, reduces to the geodesic length in one spatial dimension. In
the hyperbolic two-plane ds*> = w, geodesics are circle segments. For two
bulk points P = (T, Z1) and Q = (1>, Z»), the length ¢ along the circle geodesic

connecting these two points is readily computed

0 Z1 — 722+ (T} — T»)?
ds = 2 Arcsinh | 21— 2"+ (i = D)7 (5.21)
YAVA)

(P, Q) =/
P

In the case where both points are on the wiggly boundary curve, and hence Z = €T’ =
eF’, we get

(F) — F»)?

2
FIF] — Ine”. (5.22)

£ =1In

If we finally plug in the black hole solution F(t) = tan Zt, move one endpoint
to the other side of the TFD state by letting 11 — 71 + £/2, and Wick-rotate as
t =it — i1p, we obtain the renormalized real-time result:

2
Cren (1) = In cosh? %t -~ (5.23)

t—00 :3

which is linear in the time separation ¢ for large times (Brown et al. 2019; Goto et al.
2019; Akhavan et al. 2018). This geodesic length is growing indefinitely due to the
unbounded growth of the black hole interior as time evolves (Hartman and Maldacena
2013).

The beauty of the expression (5.22) is that we can go beyond classical gravity,
and plug it into the Schwarzian path integral directly. The resulting path integral

evaluation can be done exactly by relating it to the boundary two-point function using
(Fi—F)?
FiF
Yang (2019) and somewhat surprisingly shows a continued linear growth. This means
the quantum gravity fluctuations described in Sect. 3 do not cause a change in very

late time behavior.%?

the trick: %G AT, 2)|a=0 = —1n . The resulting expression is written in

62 The same late time growth can be shown to hold in the N = 1 supersymmetric version of JT gravity as
well (Fan and Mertens 2022b).
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Going beyond the Schwarzian, one can include wormhole corrections to this compu-
tation. As previously, the calculation can be done by directly relating it to the boundary
two-point function (Iliesiu et al. 2022). The result is a saturation of the growth of the
black hole interior size at the timescale where non-perturbative random matrix effects
kick in t ~ Ce™0. Within the complexity = volume conjecture (Susskind 2016), it was
argued by L. Susskind and collaborators (Brown and Susskind 2018) that this late time
rise and saturation is expected for the growth of computational complexity of the dual
boundary quantum system.

5.9 Bulk correlators and observables

Within any theory of quantum gravity, defining bulk observables is a delicate business.
Namely, when coordinate transformations (or diffeomorphisms) are treated as a gauge
symmetry, only diff-invariant operators are physically observable. Defining such diff-
invariant operators requires gravitationally dressing a bulk matter operator. There are
uncountably many ways of doing this. Here we focus on one particular choice that leads
to explicit results in JT gravity (Blommaert et al. 2019a; Mertens 2019). Using the
wiggly boundary curve for any off-shell F'(¢), we use a radar procedure to define a bulk
pointas (U = F(u), V = F(v)) in terms of two proper times u and v on the boundary
clock. This then defines an observable matter operator O(U = F(u), V = F(v)) that
has implicit dependence on the gravitational degrees of freedom through F (¢).

For instance, for a massless scalar field in the bulk, the CFT bulk two-point function
with Dirichlet boundary conditions at the AdS boundary equals:

1 ) = Fu))(F) — F(v2))
4 (F(up) — F(v2)(F(v1) — F(u2))

(@ur, v)@(u2, v2))cpr = — . (5.24)

This object is then viewed in a second step as a gravitational operator to be inserted in
the Schwarzian path integral. To actually evaluate it, we can make use of the following
trick:

o ) = Fug))(F ) — F(v2)) f dn f F'@)F' (1)
(F(u1) = F(v2))(F(v1) = F(u2)) 2 (F() — F()*
(5.25)

relating it to a double integral of the known boundary two-point function.

The technical trick (5.25) is actually the HKLL bulk reconstruction formula (Hamil-
ton et al. 2006a,b) applied to a massless scalar in AdS,. This prescription is hence
elevated here into generic off-shell configurations F (z).

One can Fourier transform these expressions to get the spectral occupation of the
bulk matter modes, leading to quantum gravitational corrections to the Unruh heat
bath (Mertens 2019; Blommaert et al. 2021c¢). These dressed bulk observables seem to
correspond to measurements done by static (fiducial) observers in the quantum bulk.

The near-horizon region is very far from the holographic boundary and corresponds
to an IR region. This means that correlators of these bulk observables experience strong
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quantum gravitational fluctuations in the near-horizon Rindler region. Hence, insist-
ing on using such observable operators leads to tension with assuming quantum field
theory in curved spacetime close to the black hole horizon, one of the main assump-
tions in arguing for information loss during black hole evaporation. This comment
is independent from other relations to the information paradox discussed in earlier
sections, which relied on wormhole configurations.

5.10 Liouville gravity and minimal string

When considering solvable models of 2d gravity, next to JT gravity, there is an older
model that attracted considerable attention in the 1980s and 1990s: that is Liouville
gravity. An important recent result is that these models are not independent, but JT
gravity can be embedded in Liouville gravity. This was first noticed for the spectrum
in Saad et al. (2019), and subsequently developed in detail in Mertens and Turiaci
(2021), Mertens (2021), Turiaci et al. (2021), Fan and Mertens (2022a), Suzuki and
Takayanagi (2021), Hirano and Kuroki (2022), Artemev (2022).

Liouville gravity, or the non-critical string, is a model of two-dimensional quantum
gravity, where a 2d CFT matter sector Sys[ x] is coupled to gravity as

_ [DNDX] —syix.g1-n0 [y d>x 7
7= Z Vol © = . (5.26)

topologies

The conformal factor ¢>¢ of the metric gets dynamics at the quantum level governed
by the Liouville CFT S, (3.78) (Polyakov 1981; Distler and Kawai 1989; David 1988).
This gauge fixing leads to additional bc¢ ghosts, and the total model is hence 2d Liouville
+ matter + ghost CFT, with the conformal anomaly constraint cy; + ¢ + cgn = 0,
wherec;, =1 4+60>=14+6(b+ b2

Within this string theoretic framework, the fixed length amplitude on the disk world-
sheet, in suitable units, equals

00 _sE ' 1
Z(B) ~ f dE ¢ PE po(E),  po(E) = sinh (ﬁarccoshE). (5.27)
1

We now interpret this in the same way as in JT gravity as a canonical partition function
of a quantum black hole with temperature 8!, but with a modified density of states.
At low energies, po(E) limits to the JT density of states. To see this, we identify new
kinematic variables as E = 1 4+ 27%b*Eyr and g = 2£J2Tb4. Zooming in on the region
close to the spectral cutoff by b — 0, keeping Ejt and gjr fixed, we reduce to the
JT density of states po(E) ~ sinh 27 /Ejr. At high energies, the Liouville gravity
density of states (5.27) deviates from JT and rises with a power-law as ~ E I/ hz.

This observation of embedding JT in the IR regime of Liouville gravity is no
coincidence, and substantial more evidence can be gathered for it:

e Bulk and boundary vertex operators can be inserted on the disk, and their fixed
length amplitudes computed. The results match in each case with the JT expressions
in the IR kinematic regime (Mertens and Turiaci 2021).
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e Describing Sy, with atimelike Liouville field x, one can perform a field redefinition
from the Liouville gravity variables (¢, x) into the dilaton gravity variables (v, ©)
by using ¢ = b~'w — br ®, and x = b~ w + b ®. This transformation leads to
a dilaton gravity model of the type (2.4) with dilaton potential

U(®) ~ sinh(2Qrbh> D), (5.28)

which in the deep IR region, where ® = r is small, becomes the JT dilaton
potential. Close to the boundary r &~ 400, the dilaton potential diverges leading
to a curvature singularity at the holographic boundary.

e The amplitudes of this model are governed by an algebraic structure related to
the U, (s1(2, R)) quantum group. This can be explained directly at the Lagrangian
level by the above dilaton potential (5.28) in the Poisson-sigma model framework
of Sect. 2.1.1 (Fan and Mertens 2022a; Mertens 2022).

e For the particular case where the matter sector is the (p, ¢) minimal model, the
resulting string model is called the (p, ¢) minimal string, which famously was
conjectured to be equivalent to a random matrix integral, stemming from ideas
around random triangulations of a 2d surface (Brezin and Kazakov 1990; Douglas
and Shenker 1990; Gross and Migdal 1990). The fact that JT gravity is a matrix
integral is hence embedded into this older statement.

e Multi-boundary and higher genus effects can be studied within the random matrix
framework of the minimal string, leading to a deformation of the decomposition
of amplitudes given in Sect. 4.2 (Mertens and Turiaci 2021).

5.11 Universe field theory and quantum chaos

The non-perturbative completion of JT gravity into a matrix integral is very useful,
but it has its downsides. For instance, a matrix integral is not an ordinary quantum
mechanical system, instead representing a maximally disordered average over models.

What one would want is an all-encompassing quantum mechanical framework
that correctly describes multi-universes as quantum mechanical operator insertions,
and allows for quantum processes that capture the emission and absorption of entire
universes.®3 This is a third quantization of sorts, similar to string field theory. Such
a quantum picture was already developed in the past by Coleman (1988); Giddings
and Strominger (1988), and was reinvestigated in the current context in Marolf and
Maxfield (2020), Giddings and Turiaci (2020), where basic principles were formulated.

A concrete description in which such multi-universe phenomena are captured in
JT gravity is in terms of Kodaira—Spencer theory. This observation was made in Post
et al. (2022), and we refer to that work for all the details of this correspondence. The
Kodaira—Spencer model is defined on a 2d surface (Dijkgraaf and Vafa 2007) (the

63 Notice that there is no tension with Sect. 5.2, since we are not working with a fixed number of bound-
aries, and do not require the interpretation of the boundaries as Euclidean time directions of this quantum
mechanical system.
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spectral curve of the associated matrix model)®*:

S —/d2 <1aq>5<1>—(j—2 ())5<1>>+§7€ dz T2, (5.29)
KS = Z > Zy(Z ) 102zy() .

in terms of two fields ® (unrelated to the dilaton!) and .7, which can be thought of as Z-
twisted boson fields. The free theory has the propagators (7 (z0) P (z)) = 1

20—z 0tz
and (7 @) T () = L +

The cubic interaction vertex in (5.29) is to be identified with the elementary three-
holed sphere in hyperbolic geometry. The full hyperbolic surface is then created as
a Feynman graph that coincides with the “skeleton graph” one draws on the surface.
This theory is a string field theory model for which the perturbative string worldsheets

are reinterpreted as spacetime universes, hence the name universe field theory.

Example:

Let us consider the genus one correction to the disk amplitude, given in 1st order
perturbation theory by bringing down a single instance of the interaction vertex (5.29)
as

A

(T (z0)| = >

dz
?f (TP (T@DIT @), (530)
022y(2)

corresponding to a one-loop Feynman diagram. Evaluating gives

AResicgy 2y 2 L 320 5.31
(T (z0))] = —Res = 01(2) — 72sin2wz 472 247§ o

which is indeed the correct contribution Wy j.
_0_

Feynman diagrammatics with the cubic vertex in (5.29) allows one to immediately
write down recursive Dyson—Schwinger relations that can be shown to match with
Eynard—Orantin’s topological recursion relations (Dijkgraaf and Vafa 2007).%3

FZZT brane (and anti-brane) operators can be inserted into the model as e®@
(and e~®@), and can be utilized to get to the same non-perturbative physics as the
matrix model completion of JT gravity reviewed in Sect. 4.4. The model with a fixed
number of branes can be rewritten in terms of a Kontsevich-like matrix model in terms
of flavor degrees of freedom. The resulting flavor matrix theory can then be shown
to describe universal chaotic dynamics (Altland et al. 2022). This hence provides a
direct connection between the universal ergodic behavior in chaotic systems, and the
universe field theory of a gravity model.

64 Tt starts its life as a 6d model on the topological closed string B-model that is reduced to 2d.

65 A subtlety with this expression is that naively not all contractions are taken into account: the external [J
lines only contract with the ®-leg of an internal vertex. This is related to the fact that the boson fields are
chiral (Dijkgraaf and Vafa 2007). This is also present in (5.30) above.

@ Springer



Solvable models of quantum black holes... Page 115 of 124 4

Acknowledgements We would like to thank all our collaborators throughout the past years, without whom
we would not have been able to write the current review. We thank Roberto Emparan, Juan Maldacena,
Francesca Mariani and Subir Sachdev for comments on the draft. We would like to specially thank Herman
Verlinde for introducing us to this subject. TM acknowledges financial support from Research Foundation
Flanders (FWO Vlaanderen) and the European Research Council (Grant BHHQG-101040024). Funded by
the European Union. Views and opinions expressed are however those of the author(s) only and do not
necessarily reflect those of the European Union or the European Research Council. Neither the European
Union nor the granting authority can be held responsible for them. GJT is supported by the Institute for
Advanced Study and the National Science Foundation under Grant No. PHY-2207584, and by the Sivian
Fund. GJT thanks the University of Warsaw for hospitality during final stages of writing this review.

OpenAccess Thisarticleis licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included
in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

Achucarro A, Ortiz ME (1993) Relating black holes in two-dimensions and three-dimensions. Phys Rev D
48:3600-3605. https://doi.org/10.1103/PhysRevD.48.3600. arXiv:hep-th/9304068

Akhavan A, Alishahiha M, Naseh A et al (2018) Complexity and behind the horizon cut off. JHEP 12:090.
https://doi.org/10.1007/JHEP12(2018)090. arXiv:1810.12015 [hep-th]

Alekseev A, Shatashvili SL (1989) Path integral quantization of the coadjoint orbits of the Virasoro group
and 2D gravity. Nucl Phys B 323:719-733. https://doi.org/10.1016/0550-3213(89)90130-2

Alekseev A, Shatashvili SL (1990) From geometric quantization to conformal field theory. Commun Math
Phys 128:197-212. https://doi.org/10.1007/BF02097053

Alekseev A, Shatashvili SL (2021) Characters, coadjoint orbits and Duistermaat—Heckman integrals. ] Geom
Phys 170:104386. https://doi.org/10.1016/j.geomphys.2021.104386. arXiv:2004.03024 [hep-th]

Alexandrov SY, Kazakov VA, Kutasov D (2003) Nonperturbative effects in matrix models and D-branes.
JHEP 09:057. https://doi.org/10.1088/1126-6708/2003/09/057. arXiv:hep-th/0306177

Alishahiha M, Faraji Astaneh A, Jafari G et al (2021) Free energy for deformed Jackiw—Teitelboim gravity.
Phys Rev D 103(4):046005. https://doi.org/10.1103/PhysRevD.103.046005. arXiv:2010.02016 [hep-
th]

Almheiri A, Kang B (2016) Conformal symmetry breaking and thermodynamics of near-extremal black
holes. JHEP 10:052. https://doi.org/10.1007/JHEP10(2016)052. arXiv:1606.04108 [hep-th]

Almheiri A, Polchinski J (2015) Models of AdS, backreaction and holography. JHEP 11:014. https://doi.
org/10.1007/JHEP11(2015)014. arXiv:1402.6334 [hep-th]

Almheiri A, Engelhardt N, Marolf D et al (2019) The entropy of bulk quantum fields and the entangle-
ment wedge of an evaporating black hole. JHEP 12:063. https://doi.org/10.1007/JHEP12(2019)063.
arXiv:1905.08762 [hep-th]

Almheiri A, Hartman T, Maldacena J, et al (2020) Replica wormholes and the entropy of Hawking radiation.
JHEP 05:013. https://doi.org/10.1007/JHEP05(2020)013. arXiv:1911.12333 [hep-th]

Almheiri A, Mahajan R, Maldacena J (2019c) Islands outside the horizon. arXiv e-prints arXiv:1910.11077
[hep-th]

Almheiri A, Mahajan R, Maldacena J et al (2020) The Page curve of Hawking radiation from semiclassical
geometry. JHEP 03:149. https://doi.org/10.1007/JHEP03(2020)149. arXiv:1908.10996 [hep-th]
Almheiri A, Hartman T, Maldacena J et al (2021) The entropy of Hawking radiation. Rev Mod Phys

93(3):035002. https://doi.org/10.1103/RevModPhys.93.035002. arXiv:2006.06872 [hep-th]

Altland A, Zirnbauer MR (1997) Nonstandard symmetry classes in mesoscopic normal-superconducting
hybrid structures. Phys Rev B 55:1142-1161. https://doi.org/10.1103/PhysRevB.55.1142.
arXiv:cond-mat/9602137

@ Springer


http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1103/PhysRevD.48.3600
http://arxiv.org/abs/hep-th/9304068
https://doi.org/10.1007/JHEP12(2018)090
http://arxiv.org/abs/1810.12015
https://doi.org/10.1016/0550-3213(89)90130-2
https://doi.org/10.1007/BF02097053
https://doi.org/10.1016/j.geomphys.2021.104386
http://arxiv.org/abs/2004.03024
https://doi.org/10.1088/1126-6708/2003/09/057
http://arxiv.org/abs/hep-th/0306177
https://doi.org/10.1103/PhysRevD.103.046005
http://arxiv.org/abs/2010.02016
https://doi.org/10.1007/JHEP10(2016)052
http://arxiv.org/abs/1606.04108
https://doi.org/10.1007/JHEP11(2015)014
https://doi.org/10.1007/JHEP11(2015)014
http://arxiv.org/abs/1402.6334
https://doi.org/10.1007/JHEP12(2019)063
http://arxiv.org/abs/1905.08762
https://doi.org/10.1007/JHEP05(2020)013
http://arxiv.org/abs/1911.12333
http://arxiv.org/abs/1910.11077
https://doi.org/10.1007/JHEP03(2020)149
http://arxiv.org/abs/1908.10996
https://doi.org/10.1103/RevModPhys.93.035002
http://arxiv.org/abs/2006.06872
https://doi.org/10.1103/PhysRevB.55.1142
http://arxiv.org/abs/cond-mat/9602137

4  Page1160f 124 T. G. Mertens, G. J. Turiaci

Altland A, Post B, Sonner J, et al (2022) Quantum chaos in 2D gravity. arXiv e-prints arXiv:2204.07583
[hep-th]

Artemev A (2022) Note on large-p limit of (2,2p+1) minimal Liouville gravity and moduli space volumes.
Nucl Phys B 981:115876. https://doi.org/10.1016/j.nuclphysb.2022.115876. arXiv:2203.06629 [hep-
th]

Bagrets D, Altland A, Kamenev A (2016) Sachdev-Ye-Kitaev model as Liouville quantum mechan-
ics. Nucl Phys B 911:191-205. https://doi.org/10.1016/j.nuclphysb.2016.08.002, arXiv:1607.00694
[cond-mat.str-el]

Bagrets D, Altland A, Kamenev A (2017) Power-law out of time order correlation functions in
the SYK model. Nucl Phys B 921:727-752. https://doi.org/10.1016/j.nuclphysb.2017.06.012,
arXiv:1702.08902 [cond-mat.str-el]

Balog J, Feher L, Palla L (1998) Coadjoint orbits of the Virasoro algebra and the global Liouville equation.
Int J Mod Phys A 13:315-362. https://doi.org/10.1142/S0217751X98000147. arXiv:hep-th/9703045

Banks T, O’Loughlin M (1991) Two-dimensional quantum gravity in Minkowski space. Nucl Phys B
362:649-664. https://doi.org/10.1016/0550-3213(91)90547-B

Blommaert A (2020) Dissecting the ensemble in JT gravity. arXiv e-prints arXiv:2006.13971 [hep-th]

Blommaert A, Usatyuk M (2022) Microstructure in matrix elements. JHEP 09:070. https://doi.org/10.1007/
JHEP09(2022)070. arXiv:2108.02210 [hep-th]

Blommaert A, Mertens TG, Verschelde H (2018) The Schwarzian theory: a Wilson line perspective. JHEP
12:022. https://doi.org/10.1007/JHEP12(2018)022. arXiv:1806.07765 [hep-th]

Blommaert A, Mertens TG, Verschelde H (2019) Clocks and Rods in Jackiw—Teitelboim quantum gravity.
JHEP 09:060. https://doi.org/10.1007/JHEP09(2019)060. arXiv:1902.11194 [hep-th]

Blommaert A, Mertens TG, Verschelde H (2019) Fine structure of Jackiw-Teitelboim quantum gravity.
JHEP 09:066. https://doi.org/10.1007/JHEP09(2019)066. arXiv:1812.00918 [hep-th]

Blommaert A, Iliesiu LV, Kruthoff J (2021a) Gravity factorized. arXiv e-prints arXiv:2111.07863 [hep-th]

Blommaert A, Mertens TG, Verschelde H (2021) Eigenbranes in Jackiw—Teitelboim gravity. JHEP 02:168.
https://doi.org/10.1007/JHEP02(2021)168. arXiv:1911.11603 [hep-th]

Blommaert A, Mertens TG, Verschelde H (2021) Unruh detectors and quantum chaos in JT gravity. JHEP
03:086. https://doi.org/10.1007/JHEP03(2021)086. arXiv:2005.13058 [hep-th]

Blommaert A, Kruthoff J, Yao S (2023) An integrable road to a perturbative plateau. JHEP 04:048. https://
doi.org/10.1007/JTHEP04(2023)048. arXiv:2208.13795 [hep-th]

Boruch J, Heydeman MT, Iliesiu LV, et al (2022) BPS and near-BPS black holes in Ad S5 and their spectrum
in V' =4 SYM. arXiv e-prints arXiv:2203.01331 [hep-th]

Brezin E, Kazakov VA (1990) Exactly solvable field theories of closed strings. Phys Lett B 236:144—150.
https://doi.org/10.1016/0370-2693(90)90818-Q

Brezin E, Itzykson C, Parisi G et al (1978) Planar diagrams. Commun Math Phys 59:35. https://doi.org/10.
1007/BF01614153

Brown AR, Susskind L (2018) Second law of quantum complexity. Phys Rev D 97(8):086015. https://doi.
org/10.1103/PhysRevD.97.086015. arXiv:1701.01107 [hep-th]

Brown AR, Gharibyan H, Lin HW et al (2019) Complexity of Jackiw—Teitelboim gravity. Phys Rev D
99(4):046016. https://doi.org/10.1103/PhysRevD.99.046016. arXiv:1810.08741 [hep-th]

Callan CG Jr.,, Giddings SB, Harvey JA, et al (1992) Evanescent black holes. Phys Rev D 45(4):R1005.
https://doi.org/10.1103/PhysRevD.45.R1005. arXiv:hep-th/9111056

Callebaut N (2019) The gravitational dynamics of kinematic space. JHEP 02:153. https://doi.org/10.1007/
JHEP02(2019)153. arXiv:1808.10431 [hep-th]

Callebaut N, Verlinde H (2019) Entanglement dynamics in 2D CFT with boundary: entropic ori-
gin of JT gravity and Schwarzian QM. JHEP 05:045. https://doi.org/10.1007/JHEP05(2019)045.
arXiv:1808.05583 [hep-th]

Castro A, Godet V (2020) Breaking away from the near horizon of extreme Kerr. SciPost Phys 8:098.
https://doi.org/10.21468/SciPostPhys.8.6.089 arXiv:1906.09083 [hep-th]

Castro A, Verheijden E (2021) Near-AdS2 spectroscopy: classifying the spectrum of operators and inter-
actions in N = 2 4D supergravity. Universe 7(12):475. https://doi.org/10.3390/universe7120475.
arXiv:2110.04208 [hep-th]

Castro A, Larsen F, Papadimitriou I (2018) 5D rotating black holes and the nAdS,/nCFT{ correspondence.
JHEP 10:042. https://doi.org/10.1007/JHEP10(2018)042. arXiv:1807.06988 [hep-th]

Castro A, Godet V, Simén J et al (2021a) Gravitational perturbations from NHEK to Kerr. JHEP 07:218.
https://doi.org/10.1007/JHEP07(2021)218. arXiv:2102.08060 [hep-th]

@ Springer


http://arxiv.org/abs/2204.07583
https://doi.org/10.1016/j.nuclphysb.2022.115876
http://arxiv.org/abs/2203.06629
https://doi.org/10.1016/j.nuclphysb.2016.08.002
http://arxiv.org/abs/1607.00694
https://doi.org/10.1016/j.nuclphysb.2017.06.012
http://arxiv.org/abs/1702.08902
https://doi.org/10.1142/S0217751X98000147
http://arxiv.org/abs/hep-th/9703045
https://doi.org/10.1016/0550-3213(91)90547-B
http://arxiv.org/abs/2006.13971
https://doi.org/10.1007/JHEP09(2022)070
https://doi.org/10.1007/JHEP09(2022)070
http://arxiv.org/abs/2108.02210
https://doi.org/10.1007/JHEP12(2018)022
http://arxiv.org/abs/1806.07765
https://doi.org/10.1007/JHEP09(2019)060
http://arxiv.org/abs/1902.11194
https://doi.org/10.1007/JHEP09(2019)066
http://arxiv.org/abs/1812.00918
http://arxiv.org/abs/2111.07863
https://doi.org/10.1007/JHEP02(2021)168
http://arxiv.org/abs/1911.11603
https://doi.org/10.1007/JHEP03(2021)086
http://arxiv.org/abs/2005.13058
https://doi.org/10.1007/JHEP04(2023)048
https://doi.org/10.1007/JHEP04(2023)048
http://arxiv.org/abs/2208.13795
http://arxiv.org/abs/2203.01331
https://doi.org/10.1016/0370-2693(90)90818-Q
https://doi.org/10.1007/BF01614153
https://doi.org/10.1007/BF01614153
https://doi.org/10.1103/PhysRevD.97.086015
https://doi.org/10.1103/PhysRevD.97.086015
http://arxiv.org/abs/1701.01107
https://doi.org/10.1103/PhysRevD.99.046016
http://arxiv.org/abs/1810.08741
https://doi.org/10.1103/PhysRevD.45.R1005
http://arxiv.org/abs/hep-th/9111056
https://doi.org/10.1007/JHEP02(2019)153
https://doi.org/10.1007/JHEP02(2019)153
http://arxiv.org/abs/1808.10431
https://doi.org/10.1007/JHEP05(2019)045
http://arxiv.org/abs/1808.05583
https://doi.org/10.21468/SciPostPhys.8.6.089
http://arxiv.org/abs/1906.09083
https://doi.org/10.3390/universe7120475
http://arxiv.org/abs/2110.04208
https://doi.org/10.1007/JHEP10(2018)042
http://arxiv.org/abs/1807.06988
https://doi.org/10.1007/JHEP07(2021)218
http://arxiv.org/abs/2102.08060

Solvable models of quantum black holes... Page 117 of 124 4

Castro A, Pedraza JF, Toldo C, et al (2021b) Rotating 5D black holes: interactions and deformations near
extremality. SciPost Phys 11:102. https://doi.org/10.21468/SciPostPhys.11.6.102, arXiv:2106.00649
[hep-th]

Chamseddine AH, Wyler D (1989) Gauge theory of topological gravity in (1+1)-dimensions. Phys Lett B
228:75-78. https://doi.org/10.1016/0370-2693(89)90528-5

Charles AM, Larsen F (2020) A one-loop test of the near-AdSy/near-CFT; correspondence. JHEP
07(07):186. https://doi.org/10.1007/JHEP07(2020)186. arXiv:1908.03575 [hep-th]

Chen H, Fitzpatrick AL, Kaplan J et al (2017) Degenerate operators and the 1/c expansion: Lorentzian
resummations, high order computations, and super-virasoro blocks. JHEP 03:167. https://doi.org/10.
1007/JHEP03(2017)167. arXiv:1606.02659 [hep-th]

Chen Y, Gorbenko V, Maldacena J (2021) Bra-ket wormholes in gravitationally prepared states. JHEP
02:009. https://doi.org/10.1007/JHEP02(2021)009. arXiv:2007.16091 [hep-th]

Chowdhury D, Georges A, Parcollet O, et al (2022) Sachdev-Ye-Kitaev models and beyond: Window into
non-Fermi liquids. Rev Mod Phys 94(3):035004. https://doi.org/10.1103/RevModPhys.94.035004,
arXiv:2109.05037 [cond-mat.str-el]

Christensen SM, Fulling SA (1977) Trace anomalies and the Hawking effect. Phys Rev D 15:2088-2104.
https://doi.org/10.1103/PhysRevD.15.2088

Coleman SR (1988) Black holes as red herrings: topological fluctuations and the loss of quantum coherence.
Nucl Phys B307:867-882. https://doi.org/10.1016/0550-3213(88)90110-1

Comtet A (1987) On the Landau levels on the hyperbolic plane. Ann Phys 173:185. https://doi.org/10.1016/
0003-4916(87)90098-4

Comtet A, Houston PJ (1985) Effective action on the hyperbolic plane in a constant external field. J Math
Phys 26:185. https://doi.org/10.1063/1.526781

Cordes S, Moore GW, Ramgoolam S (1995) Lectures on 2-d Yang—Mills theory, equivariant cohomol-
ogy and topological field theories. Nucl Phys Proc Suppl 41:184-244. https://doi.org/10.1016/0920-
5632(95)00434-B, arXiv:hep-th/9411210 [hep-th]

Cotler J, Jensen K (2019) A theory of reparameterizations for AdS3 gravity. JHEP 02:079. https://doi.org/
10.1007/JHEP02(2019)079. arXiv:1808.03263 [hep-th]

Cotler J, Jensen K (2021) Gravitational constrained instantons. Phys Rev D 104:081501. https://doi.org/
10.1103/PhysRevD.104.L081501. arXiv:2010.02241 [hep-th]

Cotler J, Jensen K (2022) A precision test of averaging in AdS/CFT. JHEP 11:070. https://doi.org/10.1007/
JHEP11(2022)070 arXiv:2205.12968 [hep-th]

Cotler J, Jensen K, Maloney A (2020) Low-dimensional de Sitter quantum gravity. JHEP 06:048. https://
doi.org/10.1007/JHEP06(2020)048. arXiv:1905.03780 [hep-th]

Cotler JS, Gur-Ari G, Hanada M et al (2017) Black holes and random matrices. JHEP 05:118. https://doi.
org/10.1007/JHEP05(2017)118. arXiv:1611.04650 [hep-th]. [Erratum: JHEP 09, 002 (2018)]

David F (1988) Conformal field theories coupled to 2-d gravity in the conformal gauge. Mod Phys Lett A
3:1651. https://doi.org/10.1142/S0217732388001975

Davies PCW, Fulling SA, Unruh WG (1976) Energy momentum tensor near an evaporating black hole.
Phys Rev D 13:2720-2723. https://doi.org/10.1103/PhysRevD.13.2720

Davison RA, Fu W, Georges A, et al (2017) Thermoelectric transport in disordered metals without quasi-
particles: the Sachdev-Ye-Kitaev models and holography. Phys Rev B 95(15):155131. https://doi.org/
10.1103/PhysRevB.95.155131, arXiv:1612.00849 [cond-mat.str-el]

De Vuyst J, Mertens TG (2023) Operational islands and black hole dissipation in JT gravity. JHEP 01:027.
https://doi.org/10.1007/JHEP01(2023)027. arXiv:2207.03351 [hep-th]

Deutsch JM (1991) Quantum statistical mechanics in a closed system. Phys Rev A 43:2046-2049. https://
doi.org/10.1103/PhysRevA.43.2046

Di Francesco P, Ginsparg PH, Zinn-Justin J (1995) 2-D gravity and random matrices. Phys Rep 254:1-133.
https://doi.org/10.1016/0370-1573(94)00084-G. arXiv:hep-th/9306153

Dijkgraaf R, Vafa C (2007) Two dimensional Kodaira—Spencer theory and three dimensional Chern—Simons
gravity. arXiv e-prints arXiv:0711.1932 [hep-th]

Dijkgraaf R, Witten E (2018) Developments in topological gravity. Int J] Mod Phys A 33(30):1830029.
https://doi.org/10.1142/S0217751X18300296. arXiv:1804.03275 [hep-th]

Distler J, Kawai H (1989) Conformal field theory and 2D quantum gravity. Nucl Phys B 321:509-527.
https://doi.org/10.1016/0550-3213(89)90354-4

Douglas MR, Shenker SH (1990) Strings in less than one-dimension. Nucl Phys B 335:635. https://doi.org/
10.1016/0550-3213(90)90522-F

@ Springer


https://doi.org/10.21468/SciPostPhys.11.6.102
http://arxiv.org/abs/2106.00649
https://doi.org/10.1016/0370-2693(89)90528-5
https://doi.org/10.1007/JHEP07(2020)186
http://arxiv.org/abs/1908.03575
https://doi.org/10.1007/JHEP03(2017)167
https://doi.org/10.1007/JHEP03(2017)167
http://arxiv.org/abs/1606.02659
https://doi.org/10.1007/JHEP02(2021)009
http://arxiv.org/abs/2007.16091
https://doi.org/10.1103/RevModPhys.94.035004
http://arxiv.org/abs/2109.05037
https://doi.org/10.1103/PhysRevD.15.2088
https://doi.org/10.1016/0550-3213(88)90110-1
https://doi.org/10.1016/0003-4916(87)90098-4
https://doi.org/10.1016/0003-4916(87)90098-4
https://doi.org/10.1063/1.526781
https://doi.org/10.1016/0920-5632(95)00434-B
https://doi.org/10.1016/0920-5632(95)00434-B
http://arxiv.org/abs/hep-th/9411210
https://doi.org/10.1007/JHEP02(2019)079
https://doi.org/10.1007/JHEP02(2019)079
http://arxiv.org/abs/1808.03263
https://doi.org/10.1103/PhysRevD.104.L081501
https://doi.org/10.1103/PhysRevD.104.L081501
http://arxiv.org/abs/2010.02241
https://doi.org/10.1007/JHEP11(2022)070
https://doi.org/10.1007/JHEP11(2022)070
http://arxiv.org/abs/2205.12968
https://doi.org/10.1007/JHEP06(2020)048
https://doi.org/10.1007/JHEP06(2020)048
http://arxiv.org/abs/1905.03780
https://doi.org/10.1007/JHEP05(2017)118
https://doi.org/10.1007/JHEP05(2017)118
http://arxiv.org/abs/1611.04650
https://doi.org/10.1142/S0217732388001975
https://doi.org/10.1103/PhysRevD.13.2720
https://doi.org/10.1103/PhysRevB.95.155131
https://doi.org/10.1103/PhysRevB.95.155131
http://arxiv.org/abs/1612.00849
https://doi.org/10.1007/JHEP01(2023)027
http://arxiv.org/abs/2207.03351
https://doi.org/10.1103/PhysRevA.43.2046
https://doi.org/10.1103/PhysRevA.43.2046
https://doi.org/10.1016/0370-1573(94)00084-G
http://arxiv.org/abs/hep-th/9306153
http://arxiv.org/abs/0711.1932
https://doi.org/10.1142/S0217751X18300296
http://arxiv.org/abs/1804.03275
https://doi.org/10.1016/0550-3213(89)90354-4
https://doi.org/10.1016/0550-3213(90)90522-F
https://doi.org/10.1016/0550-3213(90)90522-F

4  Page1180f 124 T. G. Mertens, G. J. Turiaci

Dubovsky S, Gorbenko V, Mirbabayi M (2017) Asymptotic fragility, near AdS, holography and 7T. JHEP
09:136. https://doi.org/10.1007/JHEP09(2017)136. arXiv:1706.06604 [hep-th]

Eberhardt L (2022) Off-shell partition functions in 3d gravity. arXiv e-prints arXiv:2204.09789 [hep-th]

Eberhardt L, Turiaci GJ (2023) 2D dilaton gravity and the Weil-Petersson volumes with conical defects.
arXiv e-prints arXiv:2304.14948 [hep-th]

Ebert S, Ferko C, Sun HY, et al (2022) T'T in JT gravity and BF gauge theory. SciPost Phys 13:096. https://
doi.org/10.21468/SciPostPhys.13.4.096, arXiv:2205.07817 [hep-th]

Elitzur S, Moore GW, Schwimmer A et al (1989) Remarks on the canonical quantization of the Chern—
Simons—Witten theory. Nucl Phys B 326:108—134. https://doi.org/10.1016/0550-3213(89)90436-7

Engelhardt N, Fischetti S, Maloney A (2021) Free energy from replica wormholes. Phys Rev D
103(4):046021. https://doi.org/10.1103/PhysRevD.103.046021. arXiv:2007.07444 [hep-th]

Engelsoy J, Mertens TG, Verlinde H (2016) An investigation of AdS, backreaction and holography. JHEP
07:139. https://doi.org/10.1007/JHEP07(2016)139. arXiv:1606.03438 [hep-th]

Eynard B (2004) Topological expansion for the 1-Hermitian matrix model correlation functions. JHEP
11:031. https://doi.org/10.1088/1126-6708/2004/11/031, arXiv:hep-th/0407261 [hep-th]

Eynard B, Orantin N (2007) Weil-Petersson volume of moduli spaces, Mirzakhani’s recursion and matrix
models. arXiv e-prints arXiv:0705.3600 [math-ph]

Eynard B, Kimura T, Ribault S (2015) Random matrices. arXiv e-prints arXiv:1510.04430 [math-ph]

Fabbri A, Navarro-Salas J (2005) Modeling black hole evaporation. Imperial College Press, London

Fan Y, Mertens TG (2022) From quantum groups to Liouville and dilaton quantum gravity. JHEP 05:092.
https://doi.org/10.1007/JHEP05(2022)092. arXiv:2109.07770 [hep-th]

Fan Y, Mertens TG (2022) Supergroup structure of Jackiw—Teitelboim supergravity. JHEP 08:002. https://
doi.org/10.1007/JHEP08(2022)002. arXiv:2106.09353 [hep-th]

Ferrari F (2021) Gauge theory formulation of hyperbolic gravity. JHEP 03:046. https://doi.org/10.1007/
JHEP03(2021)046. arXiv:2011.02108 [hep-th]

Fiola TM, Preskill J, Strominger A et al (1994) Black hole thermodynamics and information
loss in two-dimensions. Phys Rev D 50:3987-4014. https://doi.org/10.1103/PhysRevD.50.3987.
arXiv:hep-th/9403137

Forste S, Golla I (2017) Nearly AdS, sugra and the super-Schwarzian. Phys Lett B 771:157-161. https://
doi.org/10.1016/j.physletb.2017.05.039. arXiv:1703.10969 [hep-th]

Forste S, Kames-King J, Wiesner M (2018) Towards the holographic dual of N =2 SYK. JHEP 03:028.
https://doi.org/10.1007/JHEP03(2018)028. arXiv:1712.07398 [hep-th]

Fukuyama T, Kamimura K (1985) Gauge theory of two-dimensional gravity. Phys Lett B 160:259-262.
https://doi.org/10.1016/0370-2693(85)91322-X

Gao P, Jafferis DL, Wall AC (2017) Traversable Wormholes via a double trace deformation. JHEP 12:151.
https://doi.org/10.1007/JHEP12(2017)151. arXiv:1608.05687 [hep-th]

Gao P, Jafferis DL, Kolchmeyer DK (2022) An effective matrix model for dynamical end of the
world branes in Jackiw—Teitelboim gravity. JHEP 01:038. https://doi.org/10.1007/JHEP01(2022)038.
arXiv:2104.01184 [hep-th]

Germani C (2022) Retrieving black hole information from the main Lorentzian saddle point. Phys Rev D
106(6):066018. https://doi.org/10.1103/PhysRevD.106.066018. arXiv:2204.13046 [hep-th]

Gervais JL, Neveu A (1982) Dual string spectrum in Polyakov’s quantization (II). Mode separation. Nucl
Phys B 209:125-145. https://doi.org/10.1016/0550-3213(82)90105-5

Gervais JL, Neveu A (1982) The dual string spectrum in Polyakov’s quantization (I). Nucl Phys B 199:59.
https://doi.org/10.1016/0550-3213(82)90566- 1

Gervais JL, Neveu A (1983) A new quantum solution of Liouville field theory. Phys Lett B 123:86-88.
https://doi.org/10.1016/0370-2693(83)90964-4

Gervais JL, Neveu A (1983) New quantum treatment of Liouville field theory. Nucl Phys B 224:329-348.
https://doi.org/10.1016/0550-3213(83)90008- 1

Ghosh A, Maxfield H, Turiaci GJ (2020) A universal Schwarzian sector in two-dimensional conformal field
theories. JHEP 05:104. https://doi.org/10.1007/JHEP05(2020)104. arXiv:1912.07654 [hep-th]

Gibbons GW, Hawking SW (1977) Action integrals and partition functions in quantum gravity. Phys Rev
D 15:2752-2756. https://doi.org/10.1103/PhysRevD.15.2752

Gibbons GW, Hawking SW, Perry MJ (1978) Path integrals and the indefiniteness of the gravitational action.
Nucl Phys B 138:141-150. https://doi.org/10.1016/0550-3213(78)90161-X

Giddings SB, Strominger A (1988) Loss of incoherence and determination of coupling constants in quantum
gravity. Nucl Phys B307:854-866. https://doi.org/10.1016/0550-3213(88)90109-5

@ Springer


https://doi.org/10.1007/JHEP09(2017)136
http://arxiv.org/abs/1706.06604
http://arxiv.org/abs/2204.09789
http://arxiv.org/abs/2304.14948
https://doi.org/10.21468/SciPostPhys.13.4.096
https://doi.org/10.21468/SciPostPhys.13.4.096
http://arxiv.org/abs/2205.07817
https://doi.org/10.1016/0550-3213(89)90436-7
https://doi.org/10.1103/PhysRevD.103.046021
http://arxiv.org/abs/2007.07444
https://doi.org/10.1007/JHEP07(2016)139
http://arxiv.org/abs/1606.03438
https://doi.org/10.1088/1126-6708/2004/11/031
http://arxiv.org/abs/hep-th/0407261
http://arxiv.org/abs/0705.3600
http://arxiv.org/abs/1510.04430
https://doi.org/10.1007/JHEP05(2022)092
http://arxiv.org/abs/2109.07770
https://doi.org/10.1007/JHEP08(2022)002
https://doi.org/10.1007/JHEP08(2022)002
http://arxiv.org/abs/2106.09353
https://doi.org/10.1007/JHEP03(2021)046
https://doi.org/10.1007/JHEP03(2021)046
http://arxiv.org/abs/2011.02108
https://doi.org/10.1103/PhysRevD.50.3987
http://arxiv.org/abs/hep-th/9403137
https://doi.org/10.1016/j.physletb.2017.05.039
https://doi.org/10.1016/j.physletb.2017.05.039
http://arxiv.org/abs/1703.10969
https://doi.org/10.1007/JHEP03(2018)028
http://arxiv.org/abs/1712.07398
https://doi.org/10.1016/0370-2693(85)91322-X
https://doi.org/10.1007/JHEP12(2017)151
http://arxiv.org/abs/1608.05687
https://doi.org/10.1007/JHEP01(2022)038
http://arxiv.org/abs/2104.01184
https://doi.org/10.1103/PhysRevD.106.066018
http://arxiv.org/abs/2204.13046
https://doi.org/10.1016/0550-3213(82)90105-5
https://doi.org/10.1016/0550-3213(82)90566-1
https://doi.org/10.1016/0370-2693(83)90964-4
https://doi.org/10.1016/0550-3213(83)90008-1
https://doi.org/10.1007/JHEP05(2020)104
http://arxiv.org/abs/1912.07654
https://doi.org/10.1103/PhysRevD.15.2752
https://doi.org/10.1016/0550-3213(78)90161-X
https://doi.org/10.1016/0550-3213(88)90109-5

Solvable models of quantum black holes... Page 119 of 124 4

Giddings SB, Turiaci GJ (2020) Wormhole calculus, replicas, and entropies. JHEP 09:194. https://doi.org/
10.1007/JHEP09(2020)194. arXiv:2004.02900 [hep-th]

Ginsparg PH, Moore GW (1993) Lectures on 2-D gravity and 2-D string theory. In: Proceedings, theoretical
advanced study institute (TAS192): from black holes and strings to particles: Boulder, USA, June 1-26,
1992, pp 277-469, arXiv:hep-th/9304011

Giombi S, Maloney A, Yin X (2008) One-loop partition functions of 3D gravity. JHEP 08:007. https://doi.
org/10.1088/1126-6708/2008/08/007. arXiv:0804.1773 [hep-th]

Godet V, Marteau C (2021) From black holes to baby universes in CGHS gravity. JHEP 07:138. https://doi.
org/10.1007/JHEP07(2021)138. arXiv:2103.13422 [hep-th]

Goel A, Lam HT, Turiaci GJ et al (2019) Expanding the Black hole interior: partially entangled thermal
states in SYK. JHEP 02:156. https://doi.org/10.1007/JHEP02(2019)156. arXiv:1807.03916 [hep-th]

Goel A, Iliesiu LV, Kruthoff J et al (2021) Classifying boundary conditions in JT gravity: from energy-branes
to a-branes. JHEP 04:069. https://doi.org/10.1007/JHEP04(2021)069. arXiv:2010.12592 [hep-th]

Goto K, Marrochio H, Myers RC et al (2019) Holographic complexity equals which action? JHEP 02:160.
https://doi.org/10.1007/JHEP02(2019)160. arXiv:1901.00014 [hep-th]

Goto K, Hartman T, Tajdini A (2021) Replica wormholes for an evaporating 2D black hole. JHEP 04:289.
https://doi.org/10.1007/JHEP04(2021)289. arXiv:2011.09043 [hep-th]

Griguolo L, Papalini J, Seminara D (2021) On the perturbative expansion of exact bi-local correlators in JT
gravity. JHEP 05:140. https://doi.org/10.1007/JHEP05(2021)140. arXiv:2101.06252 [hep-th]

Griguolo L, Panerai R, Papalini J et al (2022) Nonperturbative effects and resurgence in Jackiw—Teitelboim
gravity at finite cutoff. Phys Rev D 105(4):046015. https://doi.org/10.1103/PhysRevD.105.046015.
arXiv:2106.01375 [hep-th]

Gross DJ, Migdal AA (1990) Nonperturbative two-dimensional quantum gravity. Phys Rev Lett 64:127.
https://doi.org/10.1103/PhysRevLett.64.127

Gross DJ, Kruthoff J, Rolph A, et al (2020) T T in AdS; and quantum mechanics. Phys Rev D 101:026011.
https://doi.org/10.1103/PhysRevD.101.026011. arXiv:1907.04873 [hep-th]

Grumiller D, Kummer W, Vassilevich DV (2002) Dilaton gravity in two-dimensions. Phys Rep 369:327—
430. https://doi.org/10.1016/S0370-1573(02)00267-3, arXiv:hep-th/0204253 [hep-th]

Grumiller D, Ruzziconi R, Zwikel C (2022) Generalized dilaton gravity in 2d. SciPost Phys 12(1):032.
https://doi.org/10.21468/SciPostPhys.12.1.032, arXiv:2109.03266 [hep-th]

Hadar S (2019) Near-extremal black holes at late times, backreacted. JHEP 01:214. https://doi.org/10.1007/
JHEP01(2019)214. arXiv:1811.01022 [hep-th]

Haehl FM, Rozali M (2018) Fine grained chaos in Ad S, gravity. Phys Rev Lett 120(12):121601. https://
doi.org/10.1103/PhysRevLett.120.121601. arXiv:1712.04963 [hep-th]

Hamilton A, Kabat DN, Lifschytz G et al (2006) Holographic representation of local bulk operators. Phys
Rev D 74:066009. https://doi.org/10.1103/PhysRevD.74.066009. arXiv:hep-th/0606141

Hamilton A, Kabat DN, Lifschytz G et al (2006) Local bulk operators in AdS/CFT: a boundary view
of horizons and locality. Phys Rev D 73:086003. https://doi.org/10.1103/PhysRevD.73.086003.
arXiv:hep-th/0506118

Harlow D, Jafferis D (2018) The factorization problem in Jackiw—Teitelboim gravity. arXiv e-prints
arXiv:1804.01081 [hep-th]

Hartle JB, Hawking SW (1983) Wave function of the universe. Phys Rev D 28:2960-2975. https://doi.org/
10.1103/PhysRevD.28.2960

Hartman T, Maldacena J (2013) Time evolution of entanglement entropy from black hole interiors. JHEP
05:014. https://doi.org/10.1007/JHEP05(2013)014. arXiv:1303.1080 [hep-th]

Hawking SW (1975) Particle creation by black holes. Commun Math Phys 43:199-220. https://doi.org/10.
1007/BF02345020. [Erratum: Commun. Math. Phys. 46, 206 (1976)]

Hawking SW (1976) Breakdown of predictability in gravitational collapse. Phys Rev D 14:2460-2473.
https://doi.org/10.1103/PhysRevD.14.2460

Heydeman M, Iliesiu LV, Turiaci GJ et al (2022) The statistical mechanics of near-BPS black holes. J Phys
A 55(1):014004. https://doi.org/10.1088/1751-8121/ac3be9. arXiv:2011.01953 [hep-th]

Heydeman M, Turiaci GJ, Zhao W (2023) Phases of N = 2 Sachdev—Ye—Kitaev models. JHEP 01:098.
https://doi.org/10.1007/JHEP01(2023)098. arXiv:2206.14900 [hep-th]

Hirano S, Kuroki T (2022) Replica wormholes from Liouville theory. JHEP 01:094. https://doi.org/10.
1007/JHEP01(2022)094. arXiv:2109.12539 [hep-th]

Hong J, Larsen F, Liu JT (2019) The scales of black holes with nAdS, geometry. JHEP 10:260. https://doi.
org/10.1007/JHEP10(2019)260. arXiv:1907.08862 [hep-th]

@ Springer


https://doi.org/10.1007/JHEP09(2020)194
https://doi.org/10.1007/JHEP09(2020)194
http://arxiv.org/abs/2004.02900
http://arxiv.org/abs/hep-th/9304011
https://doi.org/10.1088/1126-6708/2008/08/007
https://doi.org/10.1088/1126-6708/2008/08/007
http://arxiv.org/abs/0804.1773
https://doi.org/10.1007/JHEP07(2021)138
https://doi.org/10.1007/JHEP07(2021)138
http://arxiv.org/abs/2103.13422
https://doi.org/10.1007/JHEP02(2019)156
http://arxiv.org/abs/1807.03916
https://doi.org/10.1007/JHEP04(2021)069
http://arxiv.org/abs/2010.12592
https://doi.org/10.1007/JHEP02(2019)160
http://arxiv.org/abs/1901.00014
https://doi.org/10.1007/JHEP04(2021)289
http://arxiv.org/abs/2011.09043
https://doi.org/10.1007/JHEP05(2021)140
http://arxiv.org/abs/2101.06252
https://doi.org/10.1103/PhysRevD.105.046015
http://arxiv.org/abs/2106.01375
https://doi.org/10.1103/PhysRevLett.64.127
https://doi.org/10.1103/PhysRevD.101.026011
http://arxiv.org/abs/1907.04873
https://doi.org/10.1016/S0370-1573(02)00267-3
http://arxiv.org/abs/hep-th/0204253
https://doi.org/10.21468/SciPostPhys.12.1.032
http://arxiv.org/abs/2109.03266
https://doi.org/10.1007/JHEP01(2019)214
https://doi.org/10.1007/JHEP01(2019)214
http://arxiv.org/abs/1811.01022
https://doi.org/10.1103/PhysRevLett.120.121601
https://doi.org/10.1103/PhysRevLett.120.121601
http://arxiv.org/abs/1712.04963
https://doi.org/10.1103/PhysRevD.74.066009
http://arxiv.org/abs/hep-th/0606141
https://doi.org/10.1103/PhysRevD.73.086003
http://arxiv.org/abs/hep-th/0506118
http://arxiv.org/abs/1804.01081
https://doi.org/10.1103/PhysRevD.28.2960
https://doi.org/10.1103/PhysRevD.28.2960
https://doi.org/10.1007/JHEP05(2013)014
http://arxiv.org/abs/1303.1080
https://doi.org/10.1007/BF02345020
https://doi.org/10.1007/BF02345020
https://doi.org/10.1103/PhysRevD.14.2460
https://doi.org/10.1088/1751-8121/ac3be9
http://arxiv.org/abs/2011.01953
https://doi.org/10.1007/JHEP01(2023)098
http://arxiv.org/abs/2206.14900
https://doi.org/10.1007/JHEP01(2022)094
https://doi.org/10.1007/JHEP01(2022)094
http://arxiv.org/abs/2109.12539
https://doi.org/10.1007/JHEP10(2019)260
https://doi.org/10.1007/JHEP10(2019)260
http://arxiv.org/abs/1907.08862

4 Page 1200f 124 T. G. Mertens, G. J. Turiaci

Horowitz GT (1989) Exactly soluble diffeomorphism invariant theories. Commun Math Phys 125:417.
https://doi.org/10.1007/BF01218410

Ikeda N (1994) Two-dimensional gravity and nonlinear gauge theory. Ann Phys 235:435-464. https://doi.
org/10.1006/aphy.1994.1104. arXiv:hep-th/9312059

Ikeda N, Izawa KI (1993) General form of Dilaton gravity and nonlinear gauge theory. Prog Theor Phys
90:237-246. https://doi.org/10.1143/PTP.90.237. arXiv:hep-th/9304012

Tliesiu L, Turiaci GJ (2023) upcoming. Rep Prog Phys

Iliesiu LV (2019) On 2D gauge theories in Jackiw—Teitelboim gravity. arXiv e-prints arXiv:1909.05253
[hep-th]

Iliesiu LV, Turiaci GJ (2021) The statistical mechanics of near-extremal black holes. JHEP 05:145. https://
doi.org/10.1007/JTHEP05(2021)145. arXiv:2003.02860 [hep-th]

Iliesiu LV, Pufu SS, Verlinde H et al (2019) An exact quantization of Jackiw—Teitelboim gravity. JHEP
11:091. https://doi.org/10.1007/JHEP11(2019)091. arXiv:1905.02726 [hep-th]

Tliesiu LV, Kruthoff J, Turiaci GJ, et al (2020) JT gravity at finite cutoff. SciPost Phys 9:023. https://doi.
org/10.21468/SciPostPhys.9.2.023, arXiv:2004.07242 [hep-th]

Tliesiu LV, Mezei M, Sdrosi G (2022) The volume of the black hole interior at late times. JHEP 07:073.
https://doi.org/10.1007/JHEP07(2022)073. arXiv:2107.06286 [hep-th]

Isler K, Trugenberger CA (1989) A gauge theory of two-dimensional quantum gravity. Phys Rev Lett
63:834. https://doi.org/10.1103/PhysRevLett.63.834

Jackiw R (1985) Lower dimensional gravity. Nucl Phys B 252:343-356. https://doi.org/10.1016/0550-
3213(85)90448-1

Jackiw R (1992) Gauge theories for gravity on a line. Theor Math Phys 92:979-987. https://doi.org/10.
1007/BF01017075, [,197(1992)], arXiv:hep-th/9206093 [hep-th]

Jafferis DL, Kolchmeyer DK, Mukhametzhanov B, et al (2022a) JT gravity with matter, generalized ETH,
and random matrices. arXiv e-prints arXiv:2209.02131 [hep-th]

Jafferis DL, Kolchmeyer DK, Mukhametzhanov B, et al (2022b) Matrix models for eigenstate thermaliza-
tion. arXiv e-prints arXiv:2209.02130 [hep-th]

Jensen K (2016) Chaos in AdS, holography. Phys Rev Lett 117(11):111601. https://doi.org/10.1103/
PhysRevLett.117.111601. arXiv:1605.06098 [hep-th]

Jensen K, Kachru S, Karch A et al (2011) Towards a holographic marginal Fermi liquid. Phys Rev D
84:126002. https://doi.org/10.1103/PhysRevD.84.126002. arXiv:1105.1772 [hep-th]

Johnson CV (2020) Nonperturbative Jackiw—Teitelboim gravity. Phys Rev D 101(10):106023. https://doi.
org/10.1103/PhysRevD.101.106023. arXiv:1912.03637 [hep-th]

Johnson CV (2021) On the quenched free energy of JT gravity and supergravity. arXiv e-prints
arXiv:2104.02733 [hep-th]

Johnson CV (2022) The microstate physics of JT gravity and supergravity. arXiv e-prints arXiv:2201.11942
[hep-th]

Joshi LK, Mukhopadhyay A, Soloviev A (2020) Time-dependent N Ad S, holography with applications.
Phys Rev D 101(6):066001. https://doi.org/10.1103/PhysRevD.101.066001. arXiv:1901.08877 [hep-
th]

Kapec D, Mahajan R, Stanford D (2020) Matrix ensembles with global symmetries and "t Hooft anomalies
from 2d gauge theory. JHEP 04:186. https://doi.org/10.1007/JHEP04(2020)186. arXiv:1912.12285
[hep-th]

Kar A, Lamprou L, Marteau C, et al (2022) Celestial matrix model. Phys Rev Lett 129:201601. https://doi.
org/10.1103/PhysRevLett.129.201601. arXiv:2205.02240 [hep-th]

Karch A, Randall L (2001) Locally localized gravity. JHEP 05:008. https://doi.org/10.1088/1126-6708/
2001/05/008. arXiv:hep-th/0011156

Kitaev A (2014) 2015 Breakthrough prize fundamental physics symposium. https://www.youtube.com/
watch?v=0Q9qN8j7EZI

Kitaev A (2015a) A simple model of quantum holography (part 1). http://online kitp.ucsb.edu/online/
entangled15/kitaev

Kitaev A (2015b) Hidden correlations in the Hawking radiation and thermal noise. http://online Kitp.ucsb.
edu/online/joint98/kitaev/

Kitaev A, Suh SJ (2019) Statistical mechanics of a two-dimensional black hole. JHEP 05:198. https://doi.
org/10.1007/JHEP05(2019)198. arXiv:1808.07032 [hep-th]

Kolekar KS, Narayan K (2018) AdS, dilaton gravity from reductions of some nonrelativistic theories. Phys
Rev D 98(4):046012. https://doi.org/10.1103/PhysRevD.98.046012. arXiv:1803.06827 [hep-th]

@ Springer


https://doi.org/10.1007/BF01218410
https://doi.org/10.1006/aphy.1994.1104
https://doi.org/10.1006/aphy.1994.1104
http://arxiv.org/abs/hep-th/9312059
https://doi.org/10.1143/PTP.90.237
http://arxiv.org/abs/hep-th/9304012
http://arxiv.org/abs/1909.05253
https://doi.org/10.1007/JHEP05(2021)145
https://doi.org/10.1007/JHEP05(2021)145
http://arxiv.org/abs/2003.02860
https://doi.org/10.1007/JHEP11(2019)091
http://arxiv.org/abs/1905.02726
https://doi.org/10.21468/SciPostPhys.9.2.023
https://doi.org/10.21468/SciPostPhys.9.2.023
http://arxiv.org/abs/2004.07242
https://doi.org/10.1007/JHEP07(2022)073
http://arxiv.org/abs/2107.06286
https://doi.org/10.1103/PhysRevLett.63.834
https://doi.org/10.1016/0550-3213(85)90448-1
https://doi.org/10.1016/0550-3213(85)90448-1
https://doi.org/10.1007/BF01017075
https://doi.org/10.1007/BF01017075
http://arxiv.org/abs/hep-th/9206093
http://arxiv.org/abs/2209.02131
http://arxiv.org/abs/2209.02130
https://doi.org/10.1103/PhysRevLett.117.111601
https://doi.org/10.1103/PhysRevLett.117.111601
http://arxiv.org/abs/1605.06098
https://doi.org/10.1103/PhysRevD.84.126002
http://arxiv.org/abs/1105.1772
https://doi.org/10.1103/PhysRevD.101.106023
https://doi.org/10.1103/PhysRevD.101.106023
http://arxiv.org/abs/1912.03637
http://arxiv.org/abs/2104.02733
http://arxiv.org/abs/2201.11942
https://doi.org/10.1103/PhysRevD.101.066001
http://arxiv.org/abs/1901.08877
https://doi.org/10.1007/JHEP04(2020)186
http://arxiv.org/abs/1912.12285
https://doi.org/10.1103/PhysRevLett.129.201601
https://doi.org/10.1103/PhysRevLett.129.201601
http://arxiv.org/abs/2205.02240
https://doi.org/10.1088/1126-6708/2001/05/008
https://doi.org/10.1088/1126-6708/2001/05/008
http://arxiv.org/abs/hep-th/0011156
https://www.youtube.com/watch?v=OQ9qN8j7EZI
https://www.youtube.com/watch?v=OQ9qN8j7EZI
http://online.kitp.ucsb.edu/online/entangled15/kitaev
http://online.kitp.ucsb.edu/online/entangled15/kitaev
http://online.kitp.ucsb.edu/online/joint98/kitaev/
http://online.kitp.ucsb.edu/online/joint98/kitaev/
https://doi.org/10.1007/JHEP05(2019)198
https://doi.org/10.1007/JHEP05(2019)198
http://arxiv.org/abs/1808.07032
https://doi.org/10.1103/PhysRevD.98.046012
http://arxiv.org/abs/1803.06827

Solvable models of quantum black holes... Page 121 of 124 4

Kontsevich M (1992) Intersection theory on the moduli space of curves and the matrix Airy function.
Commun Math Phys 147:1-23. https://doi.org/10.1007/BF02099526

Kourkoulou I, Maldacena J (2017) Pure states in the SYK model and nearly-Ad S, gravity. arXiv e-prints
arXiv:1707.02325 [hep-th]

Kundu A (2022) Wormholes and holography: an introduction. Eur Phys J C 82(5):447. https://doi.org/10.
1140/epjc/s10052-022-10376-z. arXiv:2110.14958 [hep-th]

Lam HT, Mertens TG, Turiaci GJ et al (2018) Shockwave S-matrix from Schwarzian quantum mechanics.
JHEP 11:182. https://doi.org/10.1007/JHEP11(2018)182. arXiv:1804.09834 [hep-th]

Larsen F, Paranjape S (2021) Thermodynamics of near BPS black holes in AdS4 and AdS7. JHEP 10:198.
https://doi.org/10.1007/JHEP10(2021)198. arXiv:2010.04359 [hep-th]

Larsen F, Zeng Y (2019) Black hole spectroscopy and AdS, holography. JHEP 04:164. https://doi.org/10.
1007/JHEP04(2019)164. arXiv:1811.01288 [hep-th]

Lemos JPS (1996) Thermodynamics of the two-dimensional black hole in the Teitelboim—Jackiw theory.
Phys Rev D 54:6206-6212. https://doi.org/10.1103/PhysRevD.54.6206. arXiv:gr-qc/9608016

Lemos JPS, Sa PM (1994) Nonsingular constant curvature two-dimensional black hole. Mod Phys Lett A
9:771-774. https://doi.org/10.1142/S0217732394000587. arXiv:gr-qc/9309023

Lemos JPS, Sa PM (1994) The Black holes of a general two-dimensional dilaton gravity theory. Phys Rev
D 49:2897-2908. https://doi.org/10.1103/PhysRevD.49.2897. arXiv:gr-qc/9311008. [Erratum: Phys
Rev D 51, 5967-5968 (1995)]

Lewkowycz A, Maldacena J (2013) Generalized gravitational entropy. JHEP 08:090. https://doi.org/10.
1007/JHEP08(2013)090. arXiv:1304.4926 [hep-th]

Lin HW, Maldacena J, Rozenberg L, et al (2023a) Holography for people with no time. SciPost Phys 14:150.
https://doi.org/10.21468/SciPostPhys.14.6.150. arXiv:2207.00407 [hep-th]

Lin HW, Maldacena J, Rozenberg L, et al (2023b) Looking at supersymmetric black holes for a very
long time. SciPost Phys. 14:128. https://doi.org/10.21468/SciPostPhys.14.5.128. arXiv:2207.00408
[hep-th]

Louis-Martinez D, Gegenberg J, Kunstatter G (1994) Exact Dirac quantization of all 2-D Dila-
ton gravity theories. Phys Lett B 321:193-198. https://doi.org/10.1016/0370-2693(94)90463-4.
arXiv:gr-qc/9309018

Mahajan R, Marolf D, Santos JE (2021) The double cone geometry is stable to brane nucleation. JHEP
09:156. https://doi.org/10.1007/JHEP09(2021)156. arXiv:2104.00022 [hep-th]

Maldacena J, Qi XL (2018) Eternal traversable wormhole. arXiv e-prints arXiv:1804.00491 [hep-th]

Maldacena J, Stanford D (2016) Remarks on the Sachdev—Ye—Kitaev model. Phys Rev D 94(10):106002.
https://doi.org/10.1103/PhysRevD.94.106002. arXiv:1604.07818 [hep-th]

Maldacena J, Shenker SH, Stanford D (2016) A bound on chaos. JHEP 08:106. https://doi.org/10.1007/
JHEP08(2016)106. arXiv:1503.01409 [hep-th]

Maldacena J, Stanford D, Yang Z (2016) Conformal symmetry and its breaking in two dimensional nearly
Anti-de-Sitter space. PTEP 12:12C104. https://doi.org/10.1093/ptep/ptw 124. arXiv:1606.01857 [hep-
th]

Maldacena J, Stanford D, Yang Z (2017) Diving into traversable wormholes. Fortsch Phys 65(5):1700034.
https://doi.org/10.1002/prop.201700034. arXiv:1704.05333 [hep-th]

Maldacena J, Milekhin A, Popov F (2018) Traversable wormholes in four dimensions. arXiv e-prints
arXiv:1807.04726 [hep-th]

Maldacena J, Turiaci GJ, Yang Z (2021) Two dimensional Nearly de Sitter gravity. JHEP 01:139. https://
doi.org/10.1007/JHEP01(2021)139. arXiv:1904.01911 [hep-th]

Maldacena JM (1999) The Large N limit of superconformal field theories and supergravity. Int J Theor Phys
38:1113-1133. https://doi.org/10.1023/A:1026654312961, https://doi.org/10.4310/ATMP.1998.v2.
n2.al, [Adv. Theor. Math. Phys.2,231(1998)], arXiv:hep-th/9711200 [hep-th]

Maldacena JM (2003) Eternal black holes in anti-de Sitter. JHEP 04:021. https://doi.org/10.1088/1126-
6708/2003/04/021. arXiv:hep-th/0106112

Maldacena JM (2003) Non-Gaussian features of primordial fluctuations in single field inflationary models.
JHEP 05:013. https://doi.org/10.1088/1126-6708/2003/05/013. arXiv:astro-ph/0210603

Maldacena JM, Michelson J, Strominger A (1999) Anti-de Sitter fragmentation. JHEP 02:011. https://doi.
org/10.1088/1126-6708/1999/02/011, arXiv:hep-th/9812073 [hep-th]

Maldacena JM, Moore GW, Seiberg N, et al (2004) Exact vs. semiclassical target space of the minimal
string. JHEP 10:020. https://doi.org/10.1088/1126-6708/2004/10/020, arXiv:hep-th/0408039

@ Springer


https://doi.org/10.1007/BF02099526
http://arxiv.org/abs/1707.02325
https://doi.org/10.1140/epjc/s10052-022-10376-z
https://doi.org/10.1140/epjc/s10052-022-10376-z
http://arxiv.org/abs/2110.14958
https://doi.org/10.1007/JHEP11(2018)182
http://arxiv.org/abs/1804.09834
https://doi.org/10.1007/JHEP10(2021)198
http://arxiv.org/abs/2010.04359
https://doi.org/10.1007/JHEP04(2019)164
https://doi.org/10.1007/JHEP04(2019)164
http://arxiv.org/abs/1811.01288
https://doi.org/10.1103/PhysRevD.54.6206
http://arxiv.org/abs/gr-qc/9608016
https://doi.org/10.1142/S0217732394000587
http://arxiv.org/abs/gr-qc/9309023
https://doi.org/10.1103/PhysRevD.49.2897
http://arxiv.org/abs/gr-qc/9311008
https://doi.org/10.1007/JHEP08(2013)090
https://doi.org/10.1007/JHEP08(2013)090
http://arxiv.org/abs/1304.4926
https://doi.org/10.21468/SciPostPhys.14.6.150
http://arxiv.org/abs/2207.00407
https://doi.org/10.21468/SciPostPhys.14.5.128
http://arxiv.org/abs/2207.00408
https://doi.org/10.1016/0370-2693(94)90463-4
http://arxiv.org/abs/gr-qc/9309018
https://doi.org/10.1007/JHEP09(2021)156
http://arxiv.org/abs/2104.00022
http://arxiv.org/abs/1804.00491
https://doi.org/10.1103/PhysRevD.94.106002
http://arxiv.org/abs/1604.07818
https://doi.org/10.1007/JHEP08(2016)106
https://doi.org/10.1007/JHEP08(2016)106
http://arxiv.org/abs/1503.01409
https://doi.org/10.1093/ptep/ptw124
http://arxiv.org/abs/1606.01857
https://doi.org/10.1002/prop.201700034
http://arxiv.org/abs/1704.05333
http://arxiv.org/abs/1807.04726
https://doi.org/10.1007/JHEP01(2021)139
https://doi.org/10.1007/JHEP01(2021)139
http://arxiv.org/abs/1904.01911
https://doi.org/10.1023/A:1026654312961
https://doi.org/10.4310/ATMP.1998.v2.n2.a1
https://doi.org/10.4310/ATMP.1998.v2.n2.a1
http://arxiv.org/abs/hep-th/9711200
https://doi.org/10.1088/1126-6708/2003/04/021
https://doi.org/10.1088/1126-6708/2003/04/021
http://arxiv.org/abs/hep-th/0106112
https://doi.org/10.1088/1126-6708/2003/05/013
http://arxiv.org/abs/astro-ph/0210603
https://doi.org/10.1088/1126-6708/1999/02/011
https://doi.org/10.1088/1126-6708/1999/02/011
http://arxiv.org/abs/hep-th/9812073
https://doi.org/10.1088/1126-6708/2004/10/020
http://arxiv.org/abs/hep-th/0408039

4 Page1220f124 T. G. Mertens, G. J. Turiaci

Maloney A, Witten E (2010) Quantum gravity partition functions in three dimensions. JHEP 02:029. https://
doi.org/10.1007/JHEP02(2010)029. arXiv:0712.0155 [hep-th]

Marolf D, Maxfield H (2020) Transcending the ensemble: baby universes, spacetime wormholes,
and the order and disorder of black hole information. JHEP 08:044. https://doi.org/10.1007/
JHEP08(2020)044. arXiv:2002.08950 [hep-th]

Maxfield H, Turiaci GJ (2021) The path integral of 3D gravity near extremality; or, JT gravity with defects as
a matrix integral. JHEP 01:118. https://doi.org/10.1007/JHEP01(2021)118. arXiv:2006.11317 [hep-
th]

McGough L, Mezei M, Verlinde H (2018) Moving the CFT into the bulk with 77. JHEP 04:010. https://
doi.org/10.1007/JHEP04(2018)010. arXiv:1611.03470 [hep-th]

Mehta ML (2004) Random matrices, 3rd edn. Elsevier Academic Press, Amsterdam

Mertens TG (2018) The Schwarzian theory—origins. JHEP 05:036. https://doi.org/10.1007/
JHEP05(2018)036. arXiv:1801.09605 [hep-th]

Mertens TG (2019) Towards black hole evaporation in Jackiw—Teitelboim gravity. JHEP 07:097. https://
doi.org/10.1007/JHEP07(2019)097. arXiv:1903.10485 [hep-th]

Mertens TG (2021) Degenerate operators in JT and Liouville (super)gravity. JHEP 04:245. https://doi.org/
10.1007/JHEP04(2021)245. arXiv:2007.00998 [hep-th]

Mertens TG (2022) Quantum exponentials for the modular double and applications in gravity models. arXiv
e-prints arXiv:2212.07696 [hep-th]

Mertens TG, Turiaci GJ (2019) Defects in Jackiw—Teitelboim quantum gravity. JHEP 08:127. https://doi.
org/10.1007/JHEP08(2019)127. arXiv:1904.05228 [hep-th]

Mertens TG, Turiaci GJ (2021) Liouville quantum gravity—holography. JT and matrices. JHEP 01:073.
https://doi.org/10.1007/JHEP01(2021)073. arXiv:2006.07072 [hep-th]

Mertens TG, Turiaci GJ, Verlinde HL (2017) Solving the Schwarzian via the conformal bootstrap. JHEP
08:136. https://doi.org/10.1007/JHEP08(2017)136. arXiv:1705.08408 [hep-th]

Migdal AA (1975) Recursion equations in gauge theories. Sov Phys JETP 42:413

Mirzakhani M (2007) Simple geodesics and Weil-Petersson volumes of moduli spaces of bordered Riemann
surfaces. Invent Math 167(1):179-222. https://doi.org/10.1007/500222-006-0013-2

Mirzakhani M (2007) Weil-Petersson volumes and intersection theory on the moduli space of curves. J Am
Math Soc 20(01):1-24. https://doi.org/10.1090/S0894-0347-06-00526- 1

Moitra U, Sake SK, Trivedi SP, et al (2019a) Jackiw—Teitelboim gravity and rotating black holes. JHEP
11:047. https://doi.org/10.1007/JHEP11(2019)047. arXiv:1905.10378 [hep-th]

Moitra U, Trivedi SP, Vishal V (2019b) Extremal and near-extremal black holes and near-CFT;. JHEP
07:055. https://doi.org/10.1007/JHEP07(2019)055. arXiv:1808.08239 [hep-th]

Moitra U, Sake SK, Trivedi SP (2021) Jackiw—Teitelboim gravity in the second order formalism. JHEP
10:204. https://doi.org/10.1007/JHEP10(2021)204. arXiv:2101.00596 [hep-th]

Mukhametzhanov B (2022) Half-wormholes in SYK with one time point. SciPost Phys 12(1):029. https://
doi.org/10.21468/SciPostPhys.12.1.029, arXiv:2105.08207 [hep-th]

Nakayama Y (2004) Liouville field theory: a decade after the revolution. Int ] Mod Phys A 19:2771-2930.
https://doi.org/10.1142/S0217751X04019500. arXiv:hep-th/0402009

Narayan K (2021) Aspects of two-dimensional Dilaton gravity, dimensional reduction, and holography. Phys
Rev D 104(2):026007. https://doi.org/10.1103/PhysRevD.104.026007. arXiv:2010.12955 [hep-th]

Nayak P, Shukla A, Soni RM et al (2018) On the dynamics of near-extremal black holes. JHEP 09:048.
https://doi.org/10.1007/JHEP09(2018)048. arXiv:1802.09547 [hep-th]

Nojiri S, Odintsov SD (2001) Quantum Dilatonic gravity in (D = 2)-dimensions, (D = 4)-dimensions and
(D =5)-dimensions. Int ] Mod Phys A 16:1015-1108. https://doi.org/10.1142/S0217751X01002968.
arXiv:hep-th/0009202

Okuyama K, Sakai K (2020) JT gravity, KdV equations and macroscopic loop operators. JHEP 01:156.
https://doi.org/10.1007/JHEP01(2020)156. arXiv:1911.01659 [hep-th]

Okuyama K, Sakai K (2020) Multi-boundary correlators in JT gravity. JHEP 08:126. https://doi.org/10.
1007/JHEP08(2020)126. arXiv:2004.07555 [hep-th]

Penington G (2020) Entanglement wedge reconstruction and the information paradox. JHEP 09:002. https://
doi.org/10.1007/JHEP09(2020)002. arXiv:1905.08255 [hep-th]

Penington G, Shenker SH, Stanford D, et al (2019) Replica wormholes and the black hole interior. arXiv
e-prints arXiv:1911.11977 [hep-th]

Picken R (1989) The propagator for quantum mechanics on a group manifold from an infinite-dimensional
analogue of the Duistermaat—Heckman integration formula. J Phys A 22(13):2285

@ Springer


https://doi.org/10.1007/JHEP02(2010)029
https://doi.org/10.1007/JHEP02(2010)029
http://arxiv.org/abs/0712.0155
https://doi.org/10.1007/JHEP08(2020)044
https://doi.org/10.1007/JHEP08(2020)044
http://arxiv.org/abs/2002.08950
https://doi.org/10.1007/JHEP01(2021)118
http://arxiv.org/abs/2006.11317
https://doi.org/10.1007/JHEP04(2018)010
https://doi.org/10.1007/JHEP04(2018)010
http://arxiv.org/abs/1611.03470
https://doi.org/10.1007/JHEP05(2018)036
https://doi.org/10.1007/JHEP05(2018)036
http://arxiv.org/abs/1801.09605
https://doi.org/10.1007/JHEP07(2019)097
https://doi.org/10.1007/JHEP07(2019)097
http://arxiv.org/abs/1903.10485
https://doi.org/10.1007/JHEP04(2021)245
https://doi.org/10.1007/JHEP04(2021)245
http://arxiv.org/abs/2007.00998
http://arxiv.org/abs/2212.07696
https://doi.org/10.1007/JHEP08(2019)127
https://doi.org/10.1007/JHEP08(2019)127
http://arxiv.org/abs/1904.05228
https://doi.org/10.1007/JHEP01(2021)073
http://arxiv.org/abs/2006.07072
https://doi.org/10.1007/JHEP08(2017)136
http://arxiv.org/abs/1705.08408
https://doi.org/10.1007/s00222-006-0013-2
https://doi.org/10.1090/S0894-0347-06-00526-1
https://doi.org/10.1007/JHEP11(2019)047
http://arxiv.org/abs/1905.10378
https://doi.org/10.1007/JHEP07(2019)055
http://arxiv.org/abs/1808.08239
https://doi.org/10.1007/JHEP10(2021)204
http://arxiv.org/abs/2101.00596
https://doi.org/10.21468/SciPostPhys.12.1.029
https://doi.org/10.21468/SciPostPhys.12.1.029
http://arxiv.org/abs/2105.08207
https://doi.org/10.1142/S0217751X04019500
http://arxiv.org/abs/hep-th/0402009
https://doi.org/10.1103/PhysRevD.104.026007
http://arxiv.org/abs/2010.12955
https://doi.org/10.1007/JHEP09(2018)048
http://arxiv.org/abs/1802.09547
https://doi.org/10.1142/S0217751X01002968
http://arxiv.org/abs/hep-th/0009202
https://doi.org/10.1007/JHEP01(2020)156
http://arxiv.org/abs/1911.01659
https://doi.org/10.1007/JHEP08(2020)126
https://doi.org/10.1007/JHEP08(2020)126
http://arxiv.org/abs/2004.07555
https://doi.org/10.1007/JHEP09(2020)002
https://doi.org/10.1007/JHEP09(2020)002
http://arxiv.org/abs/1905.08255
http://arxiv.org/abs/1911.11977

Solvable models of quantum black holes... Page 123 of 124 4

Polchinski J (1994) Combinatorics of boundaries in string theory. Phys Rev D 50:R6041-R6045. https://
doi.org/10.1103/PhysRevD.50.R6041. arXiv:hep-th/9407031

Polyakov AM (1981) Quantum geometry of bosonic strings. Phys Lett B 103:207-210. https://doi.org/10.
1016/0370-2693(81)90743-7

Post B, van der Heijden J, Verlinde E (2022) A universe field theory for JT gravity. JHEP 05:118. https:/
doi.org/10.1007/JTHEP05(2022)118. arXiv:2201.08859 [hep-th]

Qi YH, Sin SJ, Yoon J (2019) Quantum correction to chaos in Schwarzian theory. JHEP 11:035. https:/
doi.org/10.1007/JHEP11(2019)035. arXiv:1906.00996 [hep-th]

Randall L, Sundrum R (1999) A large mass hierarchy from a small extra dimension. Phys Rev Lett 83:3370—
3373. https://doi.org/10.1103/PhysRevLett.83.3370. arXiv:hep-ph/9905221

Rosenhaus V (2019) An introduction to the SYK model. J Phys A 52:323001. https://doi.org/10.1088/
1751-8121/ab2cel. arXiv:1807.03334 [hep-th]

Rosso F, Turiaci GJ (2022) Phase transitions for deformations of JT supergravity and matrix models. JHEP
02:187. https://doi.org/10.1007/JHEP02(2022)187. arXiv:2111.09330 [hep-th]

Ryu S, Takayanagi T (2006) Aspects of holographic entanglement entropy. JHEP 08:045. https://doi.org/
10.1088/1126-6708/2006/08/045. arXiv:hep-th/0605073

Saad P (2019) Late time correlation functions, Baby Universes, and ETH in JT Gravity. arXiv e-prints
arXiv:1910.10311 [hep-th]

Saad P, Shenker SH, Stanford D (2018) A semiclassical ramp in SYK and in gravity. arXiv e-prints
arXiv:1806.06840 [hep-th]

Saad P, Shenker SH, Stanford D (2019) JT gravity as a matrix integral. arXiv e-prints arXiv:1903.11115
[hep-th]

Saad P, Shenker S, Yao S (2021a) Comments on wormholes and factorization. arXiv e-prints
arXiv:2107.13130 [hep-th]

Saad P, Shenker SH, Stanford D, et al (2021b) Wormholes without averaging. arXiv e-prints
arXiv:2103.16754 [hep-th]

Saad P, Stanford D, Yang Z, et al (2022) A convergent genus expansion for the plateau. arXiv e-prints
arXiv:2210.11565 [hep-th]

Sachdev S (2010) Holographic metals and the fractionalized Fermi liquid. Phys Rev Lett 105:151602.
https://doi.org/10.1103/PhysRevLett.105.151602. arXiv:1006.3794 [hep-th]

Sachdev S (2019) Universal low temperature theory of charged black holes with AdS; horizons. J Math
Phys 60(5):052303. https://doi.org/10.1063/1.5092726. arXiv:1902.04078 [hep-th]

Sachdev S, Ye J (1993) Gapless spin fluid ground state in a random, quantum Heisenberg magnet. Phys Rev
Lett 70:3339. https://doi.org/10.1103/PhysRevLett.70.3339, arXiv:cond-mat/9212030 [cond-mat]

Sarosi G (2018) AdS; holography and the SYK model. PoS Modave2017:001. https://doi.org/10.22323/1.
323.0001, arXiv:1711.08482 [hep-th]

Schaller P, Strobl T (1994) Diffeomorphisms versus non abelian gauge transformations: an example of
(1+1)-dimensional gravity. Phys Lett B 337:266-270. https://doi.org/10.1016/0370-2693(94)90974-
1. arXiv:hep-th/9401110

Schaller P, Strobl T (1994) Poisson structure induced (topological) field theories. Mod Phys Lett A 9:3129—
3136. https://doi.org/10.1142/S0217732394002951. arXiv:hep-th/9405110

Shenker SH (1990) The strength of nonperturbative effects in string theory. In: Cargese study institute:
random surfaces, quantum gravity and strings, pp 809-819

Shenker SH, Stanford D (2015) Stringy effects in scrambling. JHEP 05:132. https://doi.org/10.1007/
JHEP05(2015)132. arXiv:1412.6087 [hep-th]

Smirnov FA, Zamolodchikov AB (2017) On space of integrable quantum field theories. Nucl Phys B
915:363-383. https://doi.org/10.1016/j.nuclphysb.2016.12.014. arXiv:1608.05499 [hep-th]

Spradlin M, Strominger A (1999) Vacuum states for AdS(2) black holes. JHEP 11:021. https://doi.org/10.
1088/1126-6708/1999/11/021. arXiv:hep-th/9904143

Srednicki M (1994) Chaos and Quantum Thermalization. Phys Rev E 50:888. https://doi.org/10.1103/
PhysRevE.50.888. arXiv:cond-mat/9403051

Stanford D (2020) More quantum noise from wormholes. arXiv e-prints arXiv:2008.08570 [hep-th]

Stanford D, Witten E (2017) Fermionic localization of the Schwarzian theory. JHEP 10:008. https://doi.
org/10.1007/JHEP10(2017)008. arXiv:1703.04612 [hep-th]

Stanford D, Witten E (2019) JT gravity and the ensembles of random matrix theory. arXiv e-prints
arXiv:1907.03363 [hep-th]

@ Springer


https://doi.org/10.1103/PhysRevD.50.R6041
https://doi.org/10.1103/PhysRevD.50.R6041
http://arxiv.org/abs/hep-th/9407031
https://doi.org/10.1016/0370-2693(81)90743-7
https://doi.org/10.1016/0370-2693(81)90743-7
https://doi.org/10.1007/JHEP05(2022)118
https://doi.org/10.1007/JHEP05(2022)118
http://arxiv.org/abs/2201.08859
https://doi.org/10.1007/JHEP11(2019)035
https://doi.org/10.1007/JHEP11(2019)035
http://arxiv.org/abs/1906.00996
https://doi.org/10.1103/PhysRevLett.83.3370
http://arxiv.org/abs/hep-ph/9905221
https://doi.org/10.1088/1751-8121/ab2ce1
https://doi.org/10.1088/1751-8121/ab2ce1
http://arxiv.org/abs/1807.03334
https://doi.org/10.1007/JHEP02(2022)187
http://arxiv.org/abs/2111.09330
https://doi.org/10.1088/1126-6708/2006/08/045
https://doi.org/10.1088/1126-6708/2006/08/045
http://arxiv.org/abs/hep-th/0605073
http://arxiv.org/abs/1910.10311
http://arxiv.org/abs/1806.06840
http://arxiv.org/abs/1903.11115
http://arxiv.org/abs/2107.13130
http://arxiv.org/abs/2103.16754
http://arxiv.org/abs/2210.11565
https://doi.org/10.1103/PhysRevLett.105.151602
http://arxiv.org/abs/1006.3794
https://doi.org/10.1063/1.5092726
http://arxiv.org/abs/1902.04078
https://doi.org/10.1103/PhysRevLett.70.3339
http://arxiv.org/abs/cond-mat/9212030
https://doi.org/10.22323/1.323.0001
https://doi.org/10.22323/1.323.0001
http://arxiv.org/abs/1711.08482
https://doi.org/10.1016/0370-2693(94)90974-1
https://doi.org/10.1016/0370-2693(94)90974-1
http://arxiv.org/abs/hep-th/9401110
https://doi.org/10.1142/S0217732394002951
http://arxiv.org/abs/hep-th/9405110
https://doi.org/10.1007/JHEP05(2015)132
https://doi.org/10.1007/JHEP05(2015)132
http://arxiv.org/abs/1412.6087
https://doi.org/10.1016/j.nuclphysb.2016.12.014
http://arxiv.org/abs/1608.05499
https://doi.org/10.1088/1126-6708/1999/11/021
https://doi.org/10.1088/1126-6708/1999/11/021
http://arxiv.org/abs/hep-th/9904143
https://doi.org/10.1103/PhysRevE.50.888
https://doi.org/10.1103/PhysRevE.50.888
http://arxiv.org/abs/cond-mat/9403051
http://arxiv.org/abs/2008.08570
https://doi.org/10.1007/JHEP10(2017)008
https://doi.org/10.1007/JHEP10(2017)008
http://arxiv.org/abs/1703.04612
http://arxiv.org/abs/1907.03363

4 Page 1240f 124 T. G. Mertens, G. J. Turiaci

Stanford D, Yang Z (2020) Finite-cutoff JT gravity and self-avoiding loops. arXiv e-prints arXiv:2004.08005
[hep-th]

Stanford D, Yang Z, Yao S (2022) Subleading Weingartens. JHEP 02:200. https://doi.org/10.1007/
JHEP02(2022)200. arXiv:2107.10252 [hep-th]

Strominger A, Vafa C (1996) Microscopic origin of the Bekenstein—-Hawking entropy. Phys Lett B 379:99—
104. https://doi.org/10.1016/0370-2693(96)00345-0. arXiv:hep-th/9601029

Suh SJ (2020) Dynamics of black holes in Jackiw—Teitelboim gravity. JHEP 03:093. https://doi.org/10.
1007/JHEP03(2020)093. arXiv:1912.00861 [hep-th]

Susskind L (2016) Computational complexity and black hole horizons. Fortsch Phys 64:24-43. https://doi.
org/10.1002/prop.201500092. arXiv:1403.5695 [hep-th]. [Addendum: Fortsch Phys 64, 44-48 (2016)]

Suzuki K, Takayanagi T (2021) JT gravity limit of Liouville CFT and matrix model. JHEP 11:137. https://
doi.org/10.1007/JHEP11(2021)137. arXiv:2108.12096 [hep-th]

Teitelboim C (1983) Gravitation and Hamiltonian structure in two space-time dimensions. Phys Lett
126B:41-45. https://doi.org/10.1016/0370-2693(83)90012-6

‘t Hooft G (1974) A planar diagram theory for strong interactions. Nucl Phys B 72:461. https://doi.org/10.
1016/0550-3213(74)90154-0

Turiaci GJ (2019) An inelastic bound on chaos. JHEP 07:099. https://doi.org/10.1007/JHEP07(2019)099.
arXiv:1901.04360 [hep-th]

Turiaci GJ, Witten E (2023) V' = 2 JT Supergravity and matrix models. arXiv e-prints arXiv:2305.19438
[hep-th]

Turiaci GJ, Usatyuk M, Weng WW (2021) 2D dilaton-gravity, deformations of the minimal string,
and matrix models. Class Quant Grav 38(20):204001. https://doi.org/10.1088/1361-6382/ac25df.
arXiv:2011.06038 [hep-th]

Witten E (1988) Coadjoint orbits of the Virasoro Group. Commun Math Phys 114:1. https://doi.org/10.
1007/BF01218287

Witten E (1991) On quantum gauge theories in two dimensions. Commun Math Phys 141:153-209. https://
doi.org/10.1007/BF02100009

Witten E (1991) Two-dimensional gravity and intersection theory on moduli space. Surveys Diff Geom
1:243-310. https://doi.org/10.4310/SDG.1990.v1.n1.a5

Witten E (1992) Two dimensional gauge theories revisited. J Geom Phys 9:303-368. https://doi.org/10.
1016/0393-0440(92)90034-X. arXiv:hep-th/9204083

Witten E (2007) Three-dimensional gravity revisited. arXiv e-prints arXiv:0706.3359 [hep-th]

Witten E (2020) Matrix models and deformations of JT gravity. arXiv e-prints arXiv:2006.13414 [hep-th]

Witten E (2021) A note on complex spacetime metrics. arXiv e-prints arXiv:2111.06514 [hep-th]

Witten E, Yau ST (1999) Connectedness of the boundary in the AdS/CFT correspondence. Adv Theor Math
Phys 3:1635-1655. https://doi.org/10.4310/ATMP.1999.v3.n6.al. arXiv:hep-th/9910245

Yang Z (2019) The quantum gravity dynamics of near extremal black holes. JHEP 05:205. https://doi.org/
10.1007/JHEP05(2019)205. arXiv:1809.08647 [hep-th]

York JWJr. (1972) Role of conformal three geometry in the dynamics of gravitation. Phys Rev Lett 28:1082—
1085. https://doi.org/10.1103/PhysRevLett.28.1082

Zamolodchikov AB, Zamolodchikov AB (2001) Liouville field theory on a pseudosphere. arXiv e-prints
arXiv:hep-th/0101152

Zurek WH (1982) Entropy evaporated by a black hole. Phys Rev Lett 49:1683-1686. https://doi.org/10.
1103/PhysRevLett.49.1683

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

@ Springer


http://arxiv.org/abs/2004.08005
https://doi.org/10.1007/JHEP02(2022)200
https://doi.org/10.1007/JHEP02(2022)200
http://arxiv.org/abs/2107.10252
https://doi.org/10.1016/0370-2693(96)00345-0
http://arxiv.org/abs/hep-th/9601029
https://doi.org/10.1007/JHEP03(2020)093
https://doi.org/10.1007/JHEP03(2020)093
http://arxiv.org/abs/1912.00861
https://doi.org/10.1002/prop.201500092
https://doi.org/10.1002/prop.201500092
http://arxiv.org/abs/1403.5695
https://doi.org/10.1007/JHEP11(2021)137
https://doi.org/10.1007/JHEP11(2021)137
http://arxiv.org/abs/2108.12096
https://doi.org/10.1016/0370-2693(83)90012-6
https://doi.org/10.1016/0550-3213(74)90154-0
https://doi.org/10.1016/0550-3213(74)90154-0
https://doi.org/10.1007/JHEP07(2019)099
http://arxiv.org/abs/1901.04360
http://arxiv.org/abs/2305.19438
https://doi.org/10.1088/1361-6382/ac25df
http://arxiv.org/abs/2011.06038
https://doi.org/10.1007/BF01218287
https://doi.org/10.1007/BF01218287
https://doi.org/10.1007/BF02100009
https://doi.org/10.1007/BF02100009
https://doi.org/10.4310/SDG.1990.v1.n1.a5
https://doi.org/10.1016/0393-0440(92)90034-X
https://doi.org/10.1016/0393-0440(92)90034-X
http://arxiv.org/abs/hep-th/9204083
http://arxiv.org/abs/0706.3359
http://arxiv.org/abs/2006.13414
http://arxiv.org/abs/2111.06514
https://doi.org/10.4310/ATMP.1999.v3.n6.a1
http://arxiv.org/abs/hep-th/9910245
https://doi.org/10.1007/JHEP05(2019)205
https://doi.org/10.1007/JHEP05(2019)205
http://arxiv.org/abs/1809.08647
https://doi.org/10.1103/PhysRevLett.28.1082
http://arxiv.org/abs/hep-th/0101152
https://doi.org/10.1103/PhysRevLett.49.1683
https://doi.org/10.1103/PhysRevLett.49.1683

	Solvable models of quantum black holes: a review on Jackiw–Teitelboim gravity
	Abstract
	1 Introduction
	2 Classical Jackiw–Teitelboim gravity
	2.1 Dilaton gravity models
	2.1.1 First-order formulation
	2.1.2 Motivation: near-extremal black holes

	2.2 Classical solutions
	2.2.1 Metric solution
	2.2.2 Dilaton solution

	2.3 Boundary conditions and Schwarzian dynamics
	2.3.1 Real-time derivation
	2.3.2 Aside: general dilaton gravity
	2.3.3 The Schwarzian action
	2.3.4 Geometric derivation from the action

	2.4 Quantum matter in classical gravity
	2.4.1 Application: Hawking–Unruh effect and information loss


	3 Quantum Jackiw–Teitelboim gravity
	3.1 Spectrum of quantum black holes
	3.1.1 Perturbative calculation

	3.2 Quantum Jackiw–Teitelboim gravity coupled to matter
	3.3 Correlators
	3.3.1 Path integral representation
	3.3.2 A first approach: Schwarzian perturbation theory
	3.3.3 Exact two-point function
	3.3.4 Exact four-point function
	3.3.5 Application: quantum chaos

	3.4 Diagrammatic rules for exact correlators
	3.5 Pure states and end-of-the-world (EOW) branes
	3.6 Other operator insertions in JT gravity
	3.7 Outline of derivations in the literature
	3.7.1 Free particle approach
	3.7.2 Limit of Liouville theory
	3.7.3 Boundary particle approach
	3.7.4 Two-dimensional gauge theory


	4 Spacetime wormholes and random matrices
	4.1 Motivation: information loss and late time decay
	4.2 Multiboundary higher genus amplitudes
	4.2.1 The disk Z0,1(β)
	4.2.2 The cylinder Z0,2(β1,β2)
	4.2.3 The general case Zg,n(β1,…, βn)

	4.3 JT and random matrices
	4.3.1 SSS duality
	4.3.2 Double-scaling limit of matrix integrals
	4.3.3 Derivation of the duality

	4.4 Non-perturbative effects in topological expansion
	4.4.1 Density of states
	4.4.2 Late time decay of spectral form factor

	4.5 Generalization
	4.5.1 Other ensembles
	4.5.2 2d dilaton gravity with general potential
	4.5.3 JT gravity coupled to gauge fields
	4.5.4 JT gravity coupled to matter


	5 Applications and future directions
	5.1 The entropy of Hawking radiation
	5.1.1 Entanglement islands in JT gravity
	5.1.2 Replica wormholes
	5.1.3 Replica wormholes and EOW branes

	5.2 Factorization, discreteness, and ensemble averaging in gravity
	5.3 Near-extremal black holes
	5.4 Supersymmetric JT
	5.5 Two-dimensional cosmology
	5.6 Traversable wormholes
	5.7 Finite cut-off and TbarT
	5.8 Volume of black hole interior and complexity
	5.9 Bulk correlators and observables
	5.10 Liouville gravity and minimal string
	5.11 Universe field theory and quantum chaos

	Acknowledgements
	References


