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Preface to the Series

The series of volumes, Concepts in Contemporary Physics, is addressed
to the professional physicist and to the serious graduate student of
physics. The subjects to be covered will include those at the forefront of
current research. It is anticipated that the various volumes in the series
will be rigorous and complete in their treatment, supplying the intellec-
tual tools necessary for the appreciation of the present status of the
areas under consideration and providing the framework upon which
future developments may be based.
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Preface

For many years I have been keeping notes on different topics in
physics—a kind of scientific diary. They contain occasional new results
and mostly derivations of known things, done in a way that seemed nice
to me. The notes were very helpful when I needed to recall some subject.
It is surely best to consult with one’s own self.

This book has arisen from these notes, or better to say, from the part
of them devoted to field theory. I decided to publish it because it seems
that there are some people who may find it useful.

In many cases I discuss things that have never been completely
understood. I do this in the hope that the approach I suggest, although
imperfect, will stimulate deeper penetration into the subject.

I do not give many references in this book (except for very recent
results). The reason is that although to study the history of physics and
to distribute credits is an interesting enterprise, I am not yet prepared
for it.

The reader can find extra information and references in many review
papers, e.g. J. Kogut and K.G. Wilson, Physics Reports, 12, 75-199
(1974); J. Kogut, Reviews of Modern Physics, 55, 775-836 (1983);
A.A. Migdal, Physics Reports, 102, 199-290 (1983); Patashinsky, Pok-
rovsky, “Fluctuation Theory of Phase Transitions” Pergamon Press,
Oxford (1979) and “Superstrings” (J. Schwarz ed.), World Scientific
Pub (1985).

Also, below I list (in arbitrary order) some of my favorite papers that
had a profound influence on this book. The choice is, by definition,
subjective and incomplete:

A. M. Polyakov

1. A. Patashinsky and V. Pokrovsky, Zhetph 46, 994 (1964).
2. V. Gribov and A. Migdal, Zhetph 55, 1498 (1968).

3. V. Vaks and A. Larkin, Zhetph 49, 975 (1975).

4. V. Berezinsky, Zhetph 61, 1144 (1971).

5. K. Wilson, Phys. Rev. D 10, 2445 (1974).

6. M. Gell-Mann and F. Low, Phys. Rev. 111, 582 (1954).

ix
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CHAPTER 1

Statistical Mechanics and Quantum
Field Theory

DOI:10.1201/9780203755082-1

1.1 Quantum Particles

We have no better way of describing elementary particles than quan-
tum field theory. A quantum field in general is an assembly of an infinite
number of interacting harmonic oscillators. Excitations of such oscilla-
tors are associated with particles. The special importance of the
harmonic oscillator follows from the fact that its excitation spectrum is
additive, i.e. if E, and E, are energy levels above the ground state then
E, + E, will be an energy level as well. It is precisely this property that
we expect to be true for a system of elementary particles. Therefore we
attempt to identify the Hamiltonian of the particles with the Hamilto-
nian of coupled oscillators (there is a familiar example from solid state
physics: the excitations of a crystal lattice can be interpreted as
particles—phonons). All this has the flavour of the XIX century, when
people tried to construct mechanical models for all phenomena. I see
nothing wrong with it because any nontrivial idea is in a certain sense
correct. The garbage of the past often becomes the treasure of the
present (and vice versa). For this reason we shall boldly investigate all
possible analogies together with our main problem.

A very important analogy, which will be extensively used below, is
the one between the quantum mechanics of a 2-dimensional system
and the classical statistical mechanics of a 2 + 1-dimensional system.
Let us demonstrate it in the simplest case of the 2 =1 quantum
mechanics of one particle. According to the Feynman principle, the
transition amplitude F from the point x to the point x’ is given by the
sum over all possible trajectories connecting points x and x', each
trajectory entering with the weight exp((i/#)S[x(¢)]) where S[x(¢)] is the

1



2 GAUGE FIELDS AND STRINGS

classical action. Therefore:

T
Fx, X, T) = f Dx(t) exp{l J [—— - v(x(t))] dt} (1.1)
[

x(0)=x
xT)=x"

Here F is the amplitude, T is the time allowed for the transition, v(x) is
an external potential, and the functional integral is defined in the
following way. Split the interval [0, T] into N small pieces [0,1,],
[ti,t2], ..., [ty 1, T]. Consider instead of (1.1) the expression:

m 12 m 1/2
n dx (21tlh(t ti- ,)) (2nih(T —ty- ,))

P& mx;—x;_) X
X exp%{Jz m bt Z(tl - tj_l)v(xj_l)} (12)

j=1 i=1

(here xo = x,to =0, xy =x, ty = T).

Now, it is possible to show that as the mesh ¢;,; — t; ~ T/N — 0 the
expression (1.2) has a finite limit that is precisely the transition
amplitude. While I do not intend to prove it (and refer instead to the
book by Feynman and Hibbs), I shall explain briefly the origin of the
formulae (1.1) and (1.2). It is actually quite simple. According to
standard quantum mechanics, the transition amplitude is given byt:

F(x, x', T) = <{x'|e” YMAT | (1.3)
where H is the Hamiltonian. We can rewrite (1.3) in the following way:

F(x, x’, T) — <x'|e‘(i/h)H(T-le l)e‘(i/h)H(INAx—lN—z) . ,e‘(i/ﬁ)H!1|x>

= J(x’le‘(i/h)H(T-lN-1)|xN_l><xN_1|e—iH(1N—\—!N—z)/'llxN_2>
X oo x {xple T UMHO S dyl e dx, (1.4)
It is easy to check that as all time intervals t;,, — t; - 0 we obtain:

. —GRH@ + 1 ) e
<x,+1|e Ix,> !1+1:j—'0
m (441 = X)°

@mi (t”l - tj))_llz P h {2 Livi — L

= v(x)tjey — tj)} (L5)

T We put (x'|x) = (x' — x)
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After substitution of (1.5) into (1.4) we obtain (1.2). Notice also that
without the potential v the formula (1.5) is exact for any value t;,; —t;
and describes the propagation of a free particle.

In order to establish the analogy with classical statistical mechanics
one has to consider the propagation for imaginary time T. Namely, let
us look at

Z(x, x', T) = {x'|e" W™\ x> = F(x, x', —iT) (1.6)

We can repeat the splitting procedure again with the only difference
that the ¢;in (1.4) will acquire an extra factor —i. In this way we obtain:

T

Z(x,x', T) = J Dx(t) exp{— % j(’; x4+ v(x(t))) dt} (1.7)
0

x(0)=x

x(Ty=x'
which is to be understood in the same way as (1.1). The mnemonic rule
for passing from (1.1) to (1.7) is very simple: consider the expression:

iT

i J ('; P v(x(t))> dt (1.8)

0
and introduce t = —it. We obtain:

T

1.8) = m (dxy? d 1.9
(~)——J{5<E> +U(X(T))} T (1.9)

0

The derivation (1.9) shows also that we have even more freedom in
computing the functional integral. Namely, we can chose the splitting
points {¢;} to lic on an arbitrary contour in the complex plane, and
therefore time not only can be imaginary but also can go along some
complex path (provided that the convergence condition for (1.5), Im
At < 0, is satisfied). For some problems this freedom is very useful. At
the moment, however, we are interested in a different aspect of all this.
Namely, that formula (1.9) has an important physical interpretation.
Let us consider an elastic string of length T and tension m with the ends
fixed at x and x’. Suppose that this string stays in an external potential
v(x). The potential energy of such a string will be given by:

¢ m [dx\?
Epulx(t)] = J{z <dr> + v(x(r))} dr (1.10)
0
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Notice, again, that now 1 is not a time but the length of the elastic string.
According to the Boltzmann principle, the classical partition function of
the string is proportional to:

Z~ J Dx(t)e ™ Pevol=t) (1.11)

(P being the inverse temperature), (we have omitted the contribution
from the kinetic energy, since in classical statistical mechanics it factors
out and does not depend on x and x’). Comparison of (1.11) and (1.9)
shows the first analogy between classical statistical mechanics and
quantum mechanics: The transition amplitude for a quantum particle for
the time (—iT) is equal to the classical partition function for a string of
length T computed at the value of § = 1/h.

The second analogy follows from the fact that the quantum partition
function for the particle is given by Z_, = Tr ¢™#¥ and hence:

Zy= J dx F(x, x, —ifh) (1.12)

Therefore our second rule is that in the quantum case the inverse
temperature acts as imaginary time.

Our derivation of these analogies was technical. I feel that there are
deep reasons for them, connected with the properties of space-time.
Although no real explanation exists, I shall give some comments on this
below, when discussing gravity. At the moment our aims are more
modest—we are going to exploit these analogies in concrete problems.
It is quite clear that, although we have derived everything for one
particle, both of our analogies are true for an arbitrary number of
degrees of freedom.

1.2 , Global and Local Symmetries.
Preliminary Description

Elementary particles existing in nature resemble very much excitations
of some complicated medium (ether). We do not know the detailed
structure of the ether but we have learned a lot about effective
lagrangians for its low energy excitations. It is as if we knew nothing
about the molecular structure of some liquid but did know the
Navier-Stokes equation and could thus predict many exciting things.
Clearly, there are lots of different possibilities at the molecular level
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leading to the same low energy picture. For theoretical purposes we can
take any model we like if it has desirable low energy properties.

In this section we shall discuss the most fundamental symmetry
properties of particle physics in context of such specially chosen models.
Perhaps the most important discovery of modern particle physics is the
gauge principle. According to it, all interactions in nature arise from the
claim that the Lagrangian has to be invariant under local symmetry
transformations, ie. symmetry rotations that may be different at
different space-time points. It is remarkable that this claim predicts the
low energy structure of the Lagrangian.

The first (and most complicated) example of this phenomenon was
general relativity, in which, due to the presence of the gravitational field,
it is possible to perform Lorentz rotations, different at each point. The
second (and easiest) example was quantum electrodynamics, in which
the gauge group is abelian (the arbitrariness of the phase of the electron
wave function). And lastly, we have the Yang-Mills fields, which are
supposed to mediate strong and weak interactions. The study of the
dynamics of gauge fields is the most important problem of modern
physics.

Using the analogies described in the preceeding section, we shall first
examine certain classical systems, and then formulate results in the
language of particle theory.

1.3 Discrete Global Symmetries

Let us begin with the case of global (nongauge) symmetries. The
simplest example is the well-known Ising model. Its partition function is
given by:

Z = Ye #lod

{ox}

éa[ox] = - Z Gy0x+8

(x,8)

(1.13)

Here x denotes a site of a cubic lattice, & is a unit vector connecting this
site with one of its nearest neighbours and the variable o, is +1. It is
clear that the system is invariant under the Z, group: g, - —o,. If the
dimensionality of the x space is more than 1, the system (1.13) has two
different phases. In the high temperature (small f) phase the Z,
symmetry is unbroken and we do not have long range order. By that 1
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mean that if one considers a large but finite system and fixes the value of
o, at the boundary B by the condition:

O lees =1 (1.14)

we have the average value of {(¢,) inside the system vanishing as the
size of the system goes to infinity. To prove this, let us compute the
correlation function in the small g limit. We have:

(oo0p> =Z~ l(Z e””‘”"“’o"n)

Oz

x pizZ- I<Z 00(0905)" - (Og _ 5‘7")‘7")

= pIR (1.15)

(In (1.15) we have expanded the exponent in f and left the lowest
nonvanishing order obtained by the string of f(o,,0,,5) along the
shortest path connecting the points 0 and R). We conclude that, since
the correlation length is small, being of the order (log(1/8))~!, the
influence of the boundary condition inside the system must also be
small. So, one expects that for small g:

(6> ~ e—Llog(l/ﬂ)L::CO (1.16)

(L being the size of the system).

Now let us look at the case of large f (low temperature phase). The
maximal contribution to (1.13) in this case will be given by the
configuration with all o, = 1. The probability for a spin to flip is of the
order of e"*?%, 50 one expects:

(6> =1—0(e*"%) (1.17)

Here 2 is the dimensionality of space and 22 is equal to the number
of nearest neighbours. However, (1.17) is not completely true. For
2 = 1 the entropy effects spoil the order completely for all §. In order
to see how this happens, let us examine a one dimensional Ising chain.
In the ground state all the spins point up. The general configuration can
be described by marking the links that connect opposite spins. If there
are n such links, then the energy factor of the system is just e “2#" but the
number of such configurations is 2(N!/ni(N — n)!). (N is the total
number of links). As a result:

z=v2_ N - 118
=) me (1.18)

n
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We see that the average value of n is of the order of Ne ™ 2, giving for the
correlation length r, ~ N/n ~ e*#. Therefore, for any value of § the
influence of the boundary conditions is negligible and the spontaneous
magnetization {o) is zero. In the two dimensional case a simple and
important argument due to Peierls shows that the long range order
persists for large . The essence of the argument is the following. Let us
consider a “drop” of reversed spins plunged into the sea of “up” spins.
If the boundary of the drop has length L, then the energy factor for the
configuration is given by e ~ L. At the same time the number of loops of
length L that can be drawn on the lattice behaves as CL (where C is
some constant): this combinatorial result will be discussed below in
great detail. Therefore, if § > {log C, creation of these dissident drops is
strongly suppressed, and we have long range order in our system. For
B < $ log C we have proliferation of drops which spoil the long range
order. For ¢ > 2 the argument is similar. So, the conclusion is that in
the case of Z, symmetry we have a phase transition for 2 > 2 that
separates the phases with spontaneously broken symmetry (ferromag-
netic phase) and with restored symmetry (paramagnetic). We could
consider in a similar way more complicated discrete groups, like Z; the
phase structure would be more rich in these cases, and we postpone
their discussion until later.

Now, we would like to explain in more detail the relationship
between the qualitative behaviour of the Ising model just discussed and
quantum field theory. The statement to be proved is that, if we consider
the continuum limit of the quantum field theory with the Lagrangian:

AN
[
B
—~
»

L 0) — (@)

(1.19)
(@) = v(— @)

it will be described by the continuum limit of an Ising model, more or
less independent of the detailed form of v(¢). The general reason for this
is that the neighbourhood of the second order phase transition, where
the lattice system appears continuous because of the large correlation
length, possesses remarkable universality properties. Usually a change
in the lattice interaction changes the transition temperature but not the
correlation functions expressed in terms of the correlation length r..
This universality will be explained below by means of operator algebra.
For the moment we shall content ourselves with a less sophisticated
derivation. Let us first obtain a diagrammatic representation for the
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Ising model correlation functions. We have the set of identities:

Z= ZCXP(ﬂ Z fx,x"’:"x)

{ox) x,x'

L (D> exp( 0. )
(xg’ 6 a(px {ox} Z ®=0

- exp(ﬁ Z Hexw 70, ) cxp<z log(2 cosh ‘P:))

(or = Tour)

We have thus obtained the standard functional representation for the
set of Feynman diagrams with the bare propagator f¢ _ .. and vertices
generated by the potential log(2 cosh ¢). If we define Dyson’s self-
energy part ¥ as the sum of diagrams that do not contain parts
connected by just one line (one line irreducible) we have the Dyson
equation (in momentum space):

! 1)
BX@) T-Xp) 1 - X (PE(P)

p= -t -+

(G is the exact propagator for the ¢-field). For a generic value of 8,
(1.21) has singularities in p for | p| ~ 1, which means that the correlation
length is of the order of the lattice spacing. In that case there is no
rotational symmetry and no universality in the system. However, there
should exist a phase transition temperature f_ defined by the relation:

1 = B, X (0)X(0) (1.22)

(1.20)

p=0

G(p) = (1.21)

At this point we have a singularity at p = 0 and power-like behaviour of
the correlation functions. Expanding J'(p) in p for |f — B.| < B. we

have:

z
0. D) = o 3, ) - 200, 0) (1.23)

(here Z ~ 1 is a constant that will be absorbed below into a redefinition
of the ¢-field, and 7 ~ |(8 — B.)/B.). Equation (1.23) permits us to
estimate quickly the situation at the critical point. Let us take the bare
Green function Go(p) = 1/(p* + 1) and estimate the first diagram for X:

d@
s Q ~Jp2 Y (124)
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We see that if 2 > 4 then the contribution of ) is negligible in
comparison with p? + t; for 2 = 4 the correction is of relative order
log(1/7) and for 2 <4 we have a very large powerlike correction.
Similar estimates of higher diagrams show that for 2 > 2., = 4 they
are irrelevant. Moreover, we see that the most singular terms arise from
the ¢*-type of interaction, and all higher powers in ¢ may be presumed
to be irrelevant. This is indeed the case, as will be shown later. The
detailed form of the interaction ), ,. is also irrelevant—we have seen
that it was sufficient to keep only the p-term in the expansion of %°(p).
All these arguments are not proofs, but they give correct guidance in
complex situations and are therefore worth mentioning.

We have arrived at the following statement. Let us consider a 2-
dimensional Ising model with short ranged interaction:

E=—3Y N, 0,0,
Take the temperature f close to the critical one: [(f — B,)/8.| < 1. Then
all the correlation functions are the same as those for a field theory with
Lagrangian:

&L =30,0) + imio® + A,0* (1.25)

also defined in the Z-dimensional Euclidean space. An important point
about (1.25) is that m} must be chosen in such a way that the physical
mass mZ, =1 <A? (where A is a momentum cut-off). This last
condition means that we are in the critical region for (1.25). The critical
point itself corresponds to the value mg = m3 ., at which m%, . = 0. In
order to obtain the continuum limit (or, in other words, to renormalize
the theory) we must take the limit m3 - m3 .. and A2 > oo in such a
way that mghys remains fixed. If this is possible, we get a rotationaly
invariant theory that does not depend on the way it has been defined in
the cut-off region.

We also see that the theory (1.25) has two phases for 2 > 1, one with
{@)> = 0and another, the broken symmetry phase, with (¢ # 0. In the
case 2 =1 we have just the example we analysed in the beginning,
which is the quantum mechanics of a single particle in a potential. We
know that the ground state wave function must be even, and therefore
{@) = 0. This conclusion is identical to the one we found when
analysing the 2 = 1 Ising model. We shall clarify this coincidence in the
chapter about instantons. How does it happen that the theory with
discrete variables o, = + 1 appears to be equivalent to the one with a

continuum field ¢? This can be understood as follows. Let us change
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the lattice spacing by fixing the value of the so-called block-spins (e.g.,
we fix the sum of the spins occupying the vertices of each hypercube of
our lattice) and then summing over configurations with those fixed
values. As a result, we obtain an effective energy that depends on the
block-spins S, which are no longer restricted by S? = 1. Repeating this
transformation many times we shall eventually come to an effective
action depending on a continuum field ¢.

There is a tendency in particle physics to consider Lagrangians like
(1.25) as fundamental. It seems to me that it is more appropriate to
imagine some kind of o-like variables at very small distances, because
they carry a quintessence of the symmetry properties. This difference,
however, is not noticeable at large distances, and a theory of small
distances (of order the Planck length) still does not exist. The last thing
about the Ising model that we need to discuss in this preliminary
section is its Hamiltonian form. In order to derive it, let us split the 2-
dimensional coordinate x into a 2 — 1 dimensional y and one “time”
dimension ¢: x = (p, f). Let us chose the coupling in the time direction to
be much stronger than in the space ones (universality should permit us
to play this trick without changing the critical properties). We have:

Z = z exp(ﬁl Z Jy,16y+6‘1) exP(ﬁo Z O-y‘lay.lo-y.t+ 1) (126)
».8 y

{oy.1}

This sum can be presented in a convenient form if we introduce the
so-called transfer-matrix T which is defined by:

{d,}1Tl{o,}> = exp(Bo 3. 6,0,) exp(B, . 0,0, .5) (1.27)
y »98

and has the order 2V x 2" where N is the number of y-points. From this
definition it immediately follows that:

Z=TrT" (1.28)

where L is the lattice length in the ¢-direction. Therefore it is enough to
diagonalize the T-matrix in order to solve the system. For our purpose
(1.27) can be further simplified. Let us use the identity:
e#°%% = cosh B, + (6,0,) sinh B, = 3’1 + &,0,)
+1e7fo(1 — G,0,) = <{6y}|eﬂ° + e’”"rjl{a,,}} (1.29)
(Here we have introduced the Pauli matrix tj, with the states |{o,})>
satisfying 75|{o,}> = 0,[{0,})). If we take B, < 1, we have:

exP(ﬂl za"yayﬁs) =~ <{Uy}|l + B, Z T;T;+5|{Uy}> (1.30)
» .8
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From these two relations we deduce
T =eV(1 + A)
. 1.31
H=eY 1+ 5,) tiss (13D
¥ ».8

The critical point of the original model corresponds to the value of the
parameters at which H has a vanishing gap in the spectrumf).

1.4 Continuum Abelian Global Symmetries

Next in order of increasing complexity we shall consider now a system
with global O(2) symmetry. Instead of g-variables with ¢ = + 1 we have
to introduce at each site a two dimensional unit vector n = (cos «, sin o)
and to consider the energy:

E==Y A, onon.=—3 X, cos(a,—a,) (—m<a,<n) (132

x,x

The partition function is defined by:

n

Z= J [] do, ¢~ P4t (1.33)

x
-n

We can repeat the trick we used in Ising case in order to transform
(1.33) to the theory of a continuous complex field ¢ = ¢, + ip,. For
this purpose we write:

da, exp(¢L cos o, + ¢2 sin o)

62
Z= exp(ﬂ Z o W) seco

& o
- exp(ﬁxg, x x‘x’z[ad;;‘ 36, 3. 54’2‘])

x exp(Z log 27l o(iy/ ¢§¢,)>

(1.34)

$x=0

+ This condition implies that e 2% ~ B, < 1 which allows us to take for H the
approximation linear in t}.
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(I, here is a Bessel function). Repeating the arguments of the previous
section we find that the theory (1.33) lies in the same universality class
as the theory described by the Lagrangian:

£ =0,0* 0,4 + mydp*d + 1A($*$)’ (1.35)
Again, we have no phase transition for 2 =1, and we have two
different phases for 2 > 2. The crucial difference from the Ising case is
the existence of gapless excitations for all § > f., dictated by Gold-
stone’s theorem. The physical origin of these excitations is very simple.
Suppose that we have a broken symmetry, {¢> # 0 (we shall see that
this is true for 2 > 3). Then the states with different orientation:
(P> = e'*{ ¢> must have the same energy. If we form a state with slowly
varying a(x), its energy will go to the vacuum value as the wave vector
tends to zero. Hence, there should be no gap in the spectrum. To see this
more formally let us introduce the conserved current ¢,

1 0 0
Fu=7 [d’* Fl <A ¢*>¢] (1.36)
x#

i 0x,

for which we have the Ward identity:

0
o CAX)P(y)) =18(x — y)Xd(y)) (1.37)
If we pass to the momentum representation

4, FLDP(—q)> = <H(0)) (1.38)

we conclude by taking g — 0 that {_#,(q)¢(—q))> must be singular in
this limit, having a singularity:

CADH(= g0 = {D(0)q,/q* + - (1.39)

For 2 = 2 the situation is more tricky. It is quite clear in this case that
the propagator of the m-field of the model (1.33) cannot have a
Goldstone pole. Indeed, since

2

d
I = (n(0)) = j ﬁ (n(gin(—g)> (1.40)

such a pole in the right hand side would lead to an infrared contradic-
tion. The answer is that the pole is softened and replaced by some
powerlife singularity. There is also no naive order parameter and no
true symmetry breaking in this case: () = 0. Nevertheless a phase
transition at some f, does take place and the observable properties of
the phases are quite different from each other. We shall discuss them in
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detail in later sections. We observe here a feature, characteristic for all
continuous symmetries. Namely, we have two critical dimensions—the
upper one, (2 = 4) at which fluctuations at the phase transition point
become irrelevant; and the lower one, (2 = 2) at which Goldstone
bosons start to interact strongly.

1.5 Non-Abelian Global Symmetries

There are several Non-Abelian generalizations of the preceeding mo-
dels. The most straightforward possibility is to consider again the
expression (1.32) for the energy but to take the unit vectors n, to be
N-dimensional. The symmetry group in this case will be O(N). The
major qualitative difference from the Non-Abelian case reveals itself for
2 = 2. Due to the strong interaction of the Goldstone bosons, they
acquire an energy gap for all values of § and the Non-Abelian system
does not have a phase transition at all. At our preliminary level this
qualitative difference can be explained as follows. In the continuum
limit the Lagrangian (1.32) for N = 3 has the form:

£ ~ (8,n)* = (9,0)* + sin? 63, 0)? (1.41)
(here 0, p-are polar and azimuthal angles). We conclude from (1.41)
that the scattering amplitude F for the Goldstone bosons behaves like

F ~ k? where K is a characteristic momentum. The first radiative
correction to this amplitude is given by:

1
F — >©< ~F2Fkg

F

T~k9‘2f0r@¢2 (1.42)
Fo 1 lf 9D =2

TN ng or =

(The last estimate is a consequence of the logarithmic divergence of
dimensionless integrals.)

This result shows that the interaction is infrared-strong for 2 = 2 (in
contrast with the Abelian case where F ~ k*).

It is a matter of more complicated analysis to see the consequences of
this fact. We shall devote a special chapter to it.

For &2 > 2 the system has a phase transition and spontaneous
symmetry breaking.
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Another important Non-Abelian case is described by having group
elements attached to each link. Let us consider matrices g € G where G
is some compact Lie group. The energy is given by:

E=—% HeoTrgs " ge) (1.43)
The partition function is

Z= Jr[ du(g,)e#¢ (1.44)

(where du(g) is the Haar measure on the group).
The energy & is invariant under G ® G transformations, described

by the formula:
gy — Ug,v; u,veG (1.45)

The qualitative features of this theory are the same as for the O(N)
model.

There are also many other Non-Abelian models in which fields
belong not to the group itself but to some coset space G/H. They have
some interesting features which we touch upon later.

1.6 Discrete Gauge Symmetries

Let us start from the discrete gauge group. The basic variables are
quantities ¢ = + 1. But in this case they are attached to the links and
not to the sites of the lattice. If we denote a link by the pair (x, o), where
x is its beginning and « its direction, the expression for the energy has
the form:
&= — Z Ox aCx+a,8%x+p,a%x,p (1.46)
x, a B
(Here a is a unit vector in the direction e). The rule, according to which
(1.46) is constructed, is quite transparent. We have “1-forms” or
“vector potentials” o, , associated with links. Then we take four links,
forming a plaquette, and take a corresponding product around the
given plaquette. As a result we obtain a “2-form” or “field
strength” —the quantity, associated with each plaquette. The most
remarkable property of this construction is that these 2-forms are gauge
invariant. Indeed, if we change

a’x.aq nxax,a',x+a (147)
(with n, = +1) the field strength is unchanged:

fx.uﬁ = ax,aax+a.ﬁax+ﬂ,co’x‘3 —*fx,all
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Therefore, the action has the symmetry (Z,)" where N is the number of
lattice sites. We conclude that while in the global Z, case the energy &
had precisely two degenerate minima (all 6, = + 1 or —1), in the gauge
case the degeneracy is enormous, namely any configuration which is a
“pure gauge”:

Ora=Nxllx+a (1.48)

with arbitrary {#,} is the ground state.

These peculiar properties imply, first of all that there could be no
order parameter in such systems, (g, ,> = 0 and moreover, only gauge
invariant quantities are nonzero. This follows from the fact, that by
fixing the values of o, , at the boundary of our system we do not spoil
gauge invariance inside it. All this does not have any deep influence on
the phase structure of gauge systems. Different phases are easily
distinguished by the different behaviour of gauge invariant correlation
functions. The situation is reminiscent of what we had in the O(2) global
model, where the second order phase transition took place without
explicit violation of symmetry.

The physical properties of the Z,-gauge system are the following: for
2 = 2 the model is trivially solved, being equivalent to the decoupled
set of 2 =1 Ising models (which follows from the fact that by the
transformation (1.47) we can easily set g, , = 1), and therefore has no
phase transitions. For 2 = 3 we shall show that it is equivalent to the
2 = 3 Ising model (by Kramers-Wannier duality.) This model is of
great interest since it describes most of the 2 = 3 phase transitions in
Nature. We shall devote a special chapter to its study. Now, for 2 > 4
numerical studies of Z,-models show that there is a first order
transition in this case. That means that the correlation length never
becomes infinite and the theory does not have a continuum limit.

1.7 O(2) Gauge Systems

In this case the system is constructed of unit vectors (which we write in
complex form) attached to the links, ¢, , = e'*=«(—n < A4, , < 7). The
expression for the energy is:

&=~ Z %(¢x.u¢x+a‘ﬂ¢:+p',¢:n + C.C.)

ENCN

= Y coS(Ay 0+ Ariap— Aripa— Arp) (1.49)

x,a,p
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The invariance properties of (1.49) are given by:
Bra = €05, g€ Pxte (1.50)

or
Ax.a - Ax‘a T Or— Pria

(with arbitrary {¢,}). The formal continuum limit of (1.49) would give a
familar expression:

& = const. + % de F%
(1.51)
Fop= 0,45 — 0,4,
Should we conclude from this that the continuum limit of our model is
just the free Maxwell field? To understand what goes on, let us compare
the situation with the one described by (1.32). In the latter case the
energy in the formal continuum limit is:

& = const. + 3(0,)* (1.52)

It describes a massless scalar field, which is nothing but the Goldstone
field associated with symmetry breaking. In this Abelian case the
perturbative interactions (described by the omitted terms ~(6,,a)4) are
irrelevant as we saw. But, in the chapter devoted to instantons, we shall
show that due to nonperturbative effects, associated with vortices, there
exists a phase transition after which the field « acquires a mass. So, we
conclude that for f > f_ the system is indeed described by the massless
free Goldstone field, that in the critical region | — B.| < . we have
some complicated interacting continuum theory with both massless
and massive particles, and that for f < f, the massless particles
disappear. All these effects are nonperturbative. Notice also an interest-
ing phenomenon for 2 = 2: we do not strictly speaking have spontan-
eous symmetry breaking, and the ¢-field from (1.35) has the property:

(¢>=0 (1.53)

Nevertheless we do have massless Goldstone modes, described by a(x),
which disappear at the phase transition point. One of the possible ways
to understand this is to introduce the decomposition

B(x) = p(x)e*™ (1.54)
It is possible to show that

oG, 2, (1.55)

const, B> B.

{0, B<B<B.
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(where V is the volume of our system), all of which is quite analogous to
what we have in the case (1.49) and (1.51). If 2 = 4, then for large f we
have the theory of free photons. We see that these photons are in some
sense Goldstone fields associated with gauge invariance, aithough this
gauge invariance is never strictly broken. As we decrease f8, at some S,
we shall have a phase transition due to instanton effects. For § < . the
theory will contain only massive excitations. For 2 = 3 the situation is
even more interesting. It will be shown that in this case nonperturbative
effects extinguish the photons for all § and we have only one, massive
phase. Therefore, the formal continuum limit (1.51) for 2 = 3 has
nothing to do with reality. This is just one of many examples in which
owing to quantum corrections the effective Lagrangian differs drasti-
cally from the classical one.

It remains to say here that for 2 = 2 the gauge model is trivial and
for 2 > 4 it presumably has a first order phase transition.

1.8 Non-Abelian Gauge Theories

In this case we associate with each link a matrix of some compact Lie
group G: B, , € G. The energy is given by:

6= — 3 J[Tr(B, oByso pBeip ouBeg) + cc] (1.56)

x, o, B

The invariance property of (1.56) is:
Bx,a_)hx_le.ahx+u (157)

In order to find the naive continuum limit one takes B, , to be close to

the identity element:
B .~I+A,, (1.58)

with A, , small and slow varying. That gives:
1
& = const — EJTr(FfB) dx (1.59)

Fop= 0,4y — 054, + [A,, As] (1.60)

which is known as the Yang-Mills action. Just as in the case of global
symmetries for 2 = 2, in the gauge case at & = 4 the perturbative
interaction is important. This is demonstrated by the estimates:

Fe X ~1 Fa @4
FOF ~log(1/ky for 2 =4

(1.61)
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(Here F is an amplitude for the scattering of A,-quanta and k is a
characteristic wavelength.) Therefore, even for large f the true infrared
behaviour has nothing to do with the naive continuum limit. In fact we
shall give arguments that the theory has a mass gap and a rather
peculiar spectrum for large B. Investigation of this limit is in fact a
central problem of the theory of strong interactions. This is because the
theory (1.56) reaches its continuum limit at f — oo only, and there are
numerous pieces of evidence that this continuum limit for G = SU(3)
describes the world of strong interactions. Most of our efforts in the
next chapters will be devoted to this problem.

Here it remains to say that for £ =3 the theory has similar
properties, namely no phase transition for any f and a massive phase at
B — oo. For 2 > 4 we have first order transitions.

We shall pass now to a more systematic study of some of the
properties listed above.



CHAPTER 2

Asymptotic Freedom and the
Renormalization Group

DOI: 10.1201/9780203755082-2

2.1 Principal Chiral Fields+

In this section we shall study the large f limit for the & = 2 principal
chiral field described by the Lagrangian:

1 R
¥ = 56—% Tr(é,97" é,9)
Q1)
(lleg=B>1 and geG)

As we discussed in Chapter 1, the infrared interaction of the massless
particles described by (2.1) is logarithmically strong. It is our aim now
to reveal the structure of this logarithmic interaction.

Let us study the effective Lagrangian which arises from (2.1) in the
loop approximation. In order to find it we write the quantum field g(x)
in the form:

g(x) = h(x) go((x) (22)
where g_,(x) is some classical solution for the Lagrangian (2.1), namely
R =0
e 2.3)
R,=¢,9-97"

Our programme is to integrate over the field h(x) so as to obtain an
effective action depending on g (x). This approach is more or less
standard in field theory but it requires some clarification. At the first
sight, due to the invariance properties of the integration measure,
Dh(x) = 2(h(x)g.(x)), the result of such integration would seem not to
be dependent on g (x) at all. Also it is not quite clear, what kind of

A principal chiral field is one which defines the principal bundle over the base space.
19
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classical solutions must be included. Both of these questions can be
answered if we consider a finite size system and fix the value of g(x) at
the boundary I':

gl =g(Q) el 24

We are considering the functional

Y9(O)] = f Dg(x)e~ (1Ml 25)

9(x) | =g(§)

(where S is the action). This functional is just the Euclidean analogue of
the Shrodinger wave function. The classical limit # - 0 would corre-
spond to taking the minimum of the action S with the Dirichlet
boundary conditions (2.4). Integration over h(x) in the decomposition
(2.2) corresponds to the inclusion of quantum fluctuations. It is clear
from the above discussion that we should fix the boundary condition
for h:

)| =1 (2:6)

To sum up, we shall compute the integral over h and obtain an effective
action depending on g ,(x). It must be understood, however, that g (x)
is not an independent variable: in fact all classical solutions are
parametrized by their boundary values g(&) (¢ is 2 — 1-dimensional).
So, we are effectively computing the W-functional (2.5), which as we
already said is an analogue of the Shrodinger wave function and, on the
other hand is analogous to the on-shell amplitudes of the Minkowskian
theory (they also depend on 2 — 1-dimensional fields).

All this information about boundary conditions and ¥-functionals
can be kept subconsciously so far as we are interested in infinite
systems. Actually, most often we need not bother to express g (x)
through g(&). Substituting (2.2) into (2.1) we get:
L,=g7'8,9=L+g5"'(h"" 3,hgq

n
l 2
¢ =5 T
— — Ly + Lot nm o, m)
2e? o 2e # #

1
+ 2 Tr(R(h™" 9,h),  Ri'=(0,9.)9a" 27
0



ASYMPTOTIC FREEDOM AND THE RENORMALIZATION GROUP 2I

If we want to examine only one loop corrections to the classical action,
we have to consider only small fluctuations of the matrix h. We can
write:

h=e?~1+ ¢+ i¢? (2.8)

(where ¢ belongs to the Lie algebra of G.). Substitution of (2.8) into
(2.7) gives:
1 1
& =2 — 5 Tr(0,4) — 55 TH(R;[$, 0,4]) + 0(¢>) (29)
2e; " 2e; # .
(we have omitted the term R' d,¢ because of the equation of motion
3,RS = 0).
Now the term in the effective action which is quadratic in R, will be
given by the Feynman diagram ¥

d*q
~Serr = = J 2n)? (RiN@) AR~ 9))g

d’p 2p+9).2p + q),
@2n)?  8p*(p+4q)°

% %fACDfBCD

(2.10)
If we extract the ultraviolet divergent contribution from (2.10) the
formula takes the form:

d’p p.p,
@2n)* p*

—Serr = % JdZX(RZ'(x))‘(RS'(X))‘ x % CV(G)J
+ finite part

¢(G) 1 -
- < 4n log A>§ ,f Tr(0,9q" 0,9) d*x

+ finite part (2.11)

(A is a momentum cut-off).
We see that if we introduce the renormalized coupling constant by
the formula:

1 1 CG)
= log A (2.12)

e e an

+ We have introduced the generators t# of the fundamental representation of the Lie
algebra of the group G: [t4,t%] = f45¢(C, Tr t41® = — 165, ¢ = ¢t R, = RAtA. f45C
are the structure constants of this algebra. Notice that f42€fP8C = C (G)54°,



22 GAUGE FIELDS AND STRINGS

the effective action will be finite in the given order. The result of the
above computation can be interpreted in two different ways. The most
naive interpretation has already been given: namely we compute the
effective action and see that the ultraviolet divergence in it can be
absorbed into a redefinition of the coupling constant. Another interpre-
tation is the following. Let us suppose that we have a theory with the
cut-off A (which is of the order of the inverse lattice spacing). If we
integrate out the fields h(x) with the wave vectors A < p < A we shall
obtain the effective action which in the low energy limit has again the
form (2.1) but with a renormalized value of €2, e3(A):

(R) = e2(A) + %’t C(G) log % =& @.13)

This formula follows directly from (2.11), provided that we restrict the
p-integration by the condition A < [p| < A. As a result we conclude
that the physical theory, formulated with the cut-off A and the bare
charge e2 must be equivalent (for small momenta |p| < A) to the one
with the cut-off A and the specially chosen new bare charge &3. This
statement is called renormalizability and the transformations from e? to
&2 and from A to A the renormalizability group. The formula (2.13), as
is seen from its derivation, is correct provided that:

A
e2 log 3z < 1 et <1 (2.14)

Nothing prevents us from repeating the procedure and passing from A
to A < A etc.

The most important consequence of renormalizability is that it
controls the momentum dependence of different physical quantities. Let
us consider as an example the behaviour of the effective charge e?(p) for
the fluctuations with momentum p. This quantity can be defined in
different ways. One of the possibilities is to consider the four point
function with all momenta equal to p. There are many other options
and we shall comment on this ambiguity later.

Since our theory does not contain any dimensional parameter except
for A, we must have:

e*(p) = e*(log(A/p), €) (2.15)

Let us express e%(p) in terms of e?(u), where u is some fixed value of the
momentum. Inverting (2.15) we have:

e} = ed(log(A/p), e*(1)) (2.16)
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Substitution of (2.16) into (2.15) gives:

e*(p) = e*(log(p/p), €*(w), log(A/p)) 217

The first thing renormalizability tells us is that (2.17) actually does not
depend on its last argument, since we can change A and compensate for
it by changing e2 without changing e*(p). Hence:

e*(p) = e*(log(p/p), e*(w)) (2.18)

We see that e?(p), being expressed in terms of e%(u), does not contain
any divergences and does not depend on the structure of the theory at
distances of the order of lattice spacing. But this is not the end of the
story. Actually we have a further constraint on (2.18) which follows
from the fact that the point u was quite arbitrary. Hence, just as it was
with A, it must be possible to compensate for a shift in x4 by changing
e?(u). We have, therefore, a functional constraint on e?(p) which is quite
easy to solve. Namely, it is clear that:

e*(p) = f(log(p/p) + g(e*(w))) (2.19)
with
fg(x)) = x (2.20)

The structure (2.19) makes the above property explicit: a shift in
log(p/u) is obviously compensated by a change of e*(u). The formula
(2.20) follows from the fact that e*(p)|,-, = e*(u). The relation (2.19)
presents a very strong constraint on the structure of momentum
dependence. It is not fulfilled in a fixed order of perturbation theory and
permits us to obtain nonperturbative expressions.

It follows from (2.19) that in a theory without dimensional para-
meters a so-called dimensional transmutation takes place:

e*(p) = f(log(p/A)) A= pe o'W (2.21)

All quantities depend on a universal correlation length A~! which
should be kept fixed as the lattice spacing A~ ! goes to zero. No other
arbitrary parameters enter into the theory. (The last is not generally
true: there are theories with several effective charges, like massless
scalar QED, in which physical quantities depend on the ratios of these
charges). In order to see how (2.19) improves perturbation theory, let us
write it in differential form:

de*(p)
d log(p/w)

B(x) = f(g(x))

= BEp) en
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This is the Gell-Mann-Low equation. Iterations of its solution in
log(p/w) give:
e*(p) = e*(w) + P(e*(w)) log(p/u) + O(log?(p/u)) (2.23)

At the same time, from (2.13) we deduce:

C(G
&) ~ e — 5 ) log(p/) (24
Comparison gives:
pe = — 4D 4 o)
4

Solving the differential equation (2.22) we get:
e*(u)

2
1+ 949 log( p—2>
8n \
It is easy to check that while (2.24) does not have the form (2.19), (2.25)
does (with f(x) = 4n/C(G)- x). Another useful expression for e*(p) is:

e*(p) = (2.25)

e*(p) =

(2.26)

(A is the inverse lattice spacing, p € A).

What is the range of applicability of (2.25) and (2.26)? It is defined by
the fact that we have neglected all higher powers in e*(p) in the
expression for the S-function. Therefore the condition is:

e*(p) <1 (2.27)

The real meaning of this improvement to perturbation theory, invented
by Gell-Mann and Low, is that it replaces the expansion in the bare
charge e which may not be small by the expansion in e(p), which in
many important cases is small.

For example if we rewrite (2.25) as:

8n 1

C.(G) log( /i) (228)

e*(p) =
we conclude that this is a true asymptotic expansion for e?(p) when
p > 4. As we shall see, in this region all correlation functions can be
computed for the reason that the interaction is small. This ultraviolet
smallness is called asymptotic freedom. For p < 4 perturbation theory
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is untrue and qualitatively different methods are needed. They will be
discussed in later chapters.

Let us proceed to the computation of the correlation functions. Take
as an example:

D(x — y) = <{Tr(g™ (X)) (229)

The tactic is again the following. Let us integrate over rapid fluctua-
tions with A < |p| < A and use the renormalization group argument. If
we write

g(x) = e*¥go(x) = (1 + ¢(x) + F¢*(x))go(x) (2.30)

and integrate over the ¢ with the wavelengths in our interval we get:}

C A
2(p) = %(p)(l - 72 e log K) (231)

From (2.31) we deduce by the repetition of the arguments leading to
the Gell-Mann-Low equation, that if we set

2(p) = d(p)/p* (2.32)
then:
gz:(;;jz)) = y(e*(p)) (2.33)
where
y(e?) = % e? + 0(e*) 2.34)

Integrating (2.33) we get:

1 C 2 4C2/Cy
2(p) = (l + W log(pz/uz))

P 8n
1 pZ 4C>/Cy
~ I? <10g<ﬁ>> for p» 4 (2.35)
which is the desired answer. Of course, the range of applicability is

again p > A.
As we said before the definition of e?(p) is ambiguous. This ambiguity
leads to an ambiguity of the f-function and of the y-function. However

tHere we put t*t* = —C,1. For the fundamental representation of G = SU(N):
C, =(N?—1)/2N; C(SU(N)) = N.
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the next result for any correlation function is unique—the f-, and y-
ambiguities compensate each other. Moreover, the first two coefficients
in the f-function are more or less universal. This can be checked by a
change in the definition of e?(p). Suppose we chose:

&(p) = eX(p) + C,e*(p) + C,e%(p) + ... (2.36)
and
de? . o
m—ﬂle +ﬂze + ... (237)
On substituting (2.36) into (2.37) we get:
dé? de?

(1+2Ce?+..)

dlog(p/u) ~ d log(p/p)
=(1+2Ce* +..)B.e* + Be® +..) = Be* + (B, + 2C,B,)
xeb+...=B(&%—Ce" + (B, +2C,B,)& + ...
=B, + B85 + ... (2.38)

The coefficient f; will be changed, but up to two loop order the
p-function is indeed universal. In the case when several leading coeffi-
cients of the f-function vanish, this remark relates to the first nonvan-
ishing one.¥}

So, our conclusion is that the Gell-Man-Low renormalization group
is a useful tool in the region where the effective charge is small. In order
to use it one has to compute the coefficients before the leading powers
of log(p/u) in physical quantities. This is usually easy in the lowest
order, but becomes increasingly tedious in the higher orders, since one
has to separate a nonleading contribution ~ log(p/u) from the leading
ones ~ (log(p/u))". In the asymptotically free theories the renormaliza-
tion group gives order by order a small distance expansion which goes
in inverse powers of log(p/u). For example the two loop order solution
of equation (2.22) gives:

xpy e -y, Baloglog(p/4) ( { o
) B, lOg(P/l){ B Togoh T 0 log’(p//l)) p>i (239)

Another useful thing to remember is that the inverse correlation length
1 is expressed in terms of the bare parameters A, e, as

A = const - A(e2)f/8lg1/81e5 (2.40)

t1In the general case we have freedom to redefine coupling constants, leading to
Riemannian geometry in the space of coupling ‘constants’.
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which is the consequence of the relations:

o1 o4 de2
— + ——— =
N del 0N
(2.41)
A= Ag(eg)

(the first is the renormalization condition and the second is just a naive
dimensional statement). The equation (2.40) indicates a consistent
limiting procedure necessary to reach the continuum limit of the theory.
For the asymptotically free case (§, < 0) it is described by the condi-
tions:

e, —0 A—> A — const. (2.42)

2.2 The n-Fields

In this section we shall consider another important example of an
asymptotically-free system with a global symmetry. It is the theory of
the field of an N-dimensional unit vector n, n> = 1. The action is given
by:

1
= |g2 2
§= 262 Jd x(8,m) (2.43)

In order to exploit the renormalization group, we set:

N-1
n(x) = (1 = (@)")’no(x) + 3. @,e,(x) (2.44)
a=1
(where ny(x) is a slowly varying vector and the {e,} are orthogonal to it
and to each other; ¢, represents “fast” fluctuations with A < |p| < A).
The vectors (n,, e,) obey the relations

o,ny = Z Bje,

‘ (2.45)
0., =Y Aie, — Bing

b

(Here B and A% are some potentials characterizing the n,-field; (2.45)
is the consequence of n,-¢, =0 and e, e, = §,,). Substituting (2.44)
into (2.43) gives:
1
S= 2% J{(au(l - ¢*)'? - B¢’

+ (2,0 — A% + Bl — @?)'2)?) d*x (2.46)
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Selecting quadratic terms in @ we get:

1
s 2_e2 J{(auwa _ A:l‘b(pb)z + B: B’l:((pa(pb _ (PZ(sab)} d2x
0

1
ay2 42
+ _28(2) J(B") d“x

(247)

The logarithmic contribution to the renormalization of eZ comes from

the second term in (2.47). Integrating over ¢ with momenta

A<ipl<A
gives:
A 2 2
d’p e
a b 2(5ab =1 — (N — —_—
(99" — @76 [1—«( I)JJ(2n)2p2
X
ez A
= 5%(2 — -o -
(2—-N) o log 3
1_1+N—% A
2" T2n CER
Recalling the arguments of the preceeding section we obtain:

2

N —
2y _ T4 a
Be”) = 5 €

N-2
eX(p) = e*(y) / (l + e*(u) log(pz/#2)>

The correlation function

Z(x — y) = {n(x)n(y))

(2.48)

(2.49)

(2.50)

and the function y(e?) are also easily computed to leading order. We

have:
<”(x)”(Y)>A ~ <"o(x)"o(.V)>,\(1 - <(P2>A_}()

-1
2n

N
= <"o(X)no(y)><l -

and

N —
2 —_——
y(e”) = 5 €

N—2 5 2\(N-1)}/(N-2)
2(p) = 2(1 + “an € (u) logP>

eX(A) logﬁ> (2.51)
K .

(2.52)
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Notice that 4% did not participate in our derivation because it enters in
a gauge invariant way. As a consequence it appears only in combina-
tions containing (F2)* (where F4 is the Yang-Mills field strength)
which have dimension 4 and cannot contain logarithmic divergences.
This gauge invariance is just the reflection of the arbitrariness of the
fields {e,} (remember that only n is physical).

This kind of derivation can be easily generalized to fields belonging
to an arbitrary coset space, G/H. (Above we have worked out the cases
H = I, and the case of the n-field: n e S¥ = SO(N + 1)/SO(N), S¥ being

a unit sphere).

2.3 Non-Abelian Gauge Fields for & = 4

In this case the action has the form:

1
S= -3 JTr F2,d*x (2.53)

€o
We shall follow the same procedure as before. Let us set
A,=4,+a, (2.54)

and expand (2.53) up to terms quadratic in a,;
§=- LJ‘Trln d*x
2e2 v
1
= 52 Tr jd“x {(V,a,—V,a) +2F, [a,a]l}
Tr [d“x {(V,a) +2F, [a,a]— (V,a,))*} (2.55)

(Here V,a, = 0,4, + [4,.a,].)

We have to integrate over all possible a,-fields with momenta
A < |p| < A. At this point we have to fix the gauge of a,, because due to
the gauge invariance of the action the quadratic form (2.55) has zero
eigenvalues. Namely if we take

add =V, w=0,w+[4,w] (2.56)

we find that S™ = 0 for an arbitrary function w. This simply means that
we have to integrate in directions in our functional space which are
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orthogonal to @, i.e. for which
Tr ja,,a}“” d*x =0 .57

Since w is arbitrary, we find that w, must satisfy:
V,a,=0 (2.58)

This is the analogue of the Lorentz gauge of QED. A more convenient
gauge for us will be the Feynman gauge which corresponds to adding
the term (V,a,)? directly to (2.55) (thus cancelling the last term in this
expression). As is well known one has to augment the gauge-fixing term
with the ghost determinant which in the case of the Feynman and
Lorentz gauges is just Det(V2). The net result is:

W(A4) = ¢S A Jgau Det(V})

x exp{% Tr J((Vuav)z +2F, - [a,,a]) d“x} (2.59)

The meaning of each of the terms in (2.59) is very transparent. If it were
not for the term F,, - [a,, a,], we would have just four independent fields
a,, integration over which gives [Det™"/?(V2)]*. This is multiplied by
the Det(V}) thus resulting in [Det ™ '/?(V2)]%. This result implies that we
have not four but two physical polarizations for the field a, which is as
it should be. The role of the ghost determinant is seen to take care of
this cancellation of the two unphysical polarizations. The last term in
(2.59) describes the interaction of the external field F,, with the spin of
the gluons a,. So we can say that we have, first of all, two kinds of
charged particles moving in the external magnetic field F,,. This results
in Landau diamagnetism (interaction of the magnetic field with the
orbital motion) which we shall compute in a moment. Alone, this effect
would give the screening of effective charge known as “zero charge”.
However we also have the direct interaction of F,, with the spin, which
gives rise to Pauli paramagnetism. This effect turns out (as we shall see
below) to be stronger then the first one and as a consequence we end up
with the asymptotically free situation.

To within logarithmic accuracy the two above mentioned effects can
be treated separately. Let us begin with the first one. In the second order
in F,, the effective action is described by the diagram:

4

d*q
2m)*

sggm) = [0 AR~

M= 3+ Q.

(2.60)
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The expression for I1%} in (2.60) is exactly the polarization operator for
massless scalar QED multiplied by an isotopic factor:

n:‘z‘li(q) — zfacdfbcdn(scalar)(q)

uv

= 2C(G)PTIS1a(g) (2.61)

The factor 2 in (2.61) arises from the two physical polarizations of a,,.
Computation of IT¢** is easy:

qeo_ _ L[4 Cp+arta), 1 f d*p
“T 4ot pAp +9)? 27" ] @my*p?
= 1(q*Xq°,, — 4,4.) (2.62)

(This equality follows from the conservation of current g*II§S = 0. It
ensures cancellation of the quadratic divergence in I1§). Taking the
trace in uv of (2.62) and keeping only the terms proportional to g we
have:

1 [d%p 1 q* + 4pq + 4p?
w83 [ e
(T
p P2
1 [ d% 1 8(pg)> 2
L et
4)@2n)*p p p
KRS 263
= 6an? 0BT (2.63)

Therefore, to within logarithmic accuracy we have the following
diamagnetic part of the coupling renormalization:

: —1 1CGl AZK A 2.64
<‘§>diam._;+‘187 o )ng( <A) (2.64)

We see that this part of the effect decreases the coupling as we go to
larger wave lengths. The physical interpretation of this in Minkowski
space is that a charge introduced into the vacuum gets screened by
virtual pairs of particles and antiparticles, just as happens in a dielectric
medium. In Euclidean space the explanation of the sign of (2.64) is also
simple. The second order effect in general should decrease the effective
action (or free energy in the language of statistical mechanics), as is seen
from:

Scff = — log je—(S(IpHV(w))@(p
(2.65)
1 j‘ VZ((p)e—S(@) d(p

SH=— ! VHO = — 3=
eff 2 2 feS@de
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(In this formula ¢ is any field and V(¢) is any perturbation with
{¥(e)> = 0). So the normal sign in (2.64) would be negative. However,
vector fields enter the action with an extra factor i (in Euclidean space
the extra term in the amplitude for a scalar particle is exp{i@A di
where C is the particle’s trajectory). This effect in second order gives an
i2 = —1 factor, which changes the sign in (2.65).

From this consideration it is obvious that the spin term in (2.55) will
give a negative sign contribution to the charge renormalization. This
paramagnetic effect is readily evaluated:

d*q

Qa*
x [l {as,al(—q), a5al(q))
p+q
J d*x (Fo)? (G)
4=0

- _ v(G)j(a24 2¢5
(2/1)“ PP+ 97 =0

. 1
s =~ [FL@FL-0) o
0

_C(0) A
1o log 1 J(Fﬁv)z d*x (2.66)

Putting together these two effects we obtain:

1 1 llC G 1 | A2 2.67)
723 “Digrexe -
Now we can repeat all the previous arguments concerning the re-
normalization group and we find that the effective coupling in the
nonabelian gauge theories is asymptotically free:

48n? 1

2 — N
0 = 11C,6) logr 1

p» i (2.68)
This is the famous result of Gross, Wilzek and Politzer.

It is not difficult to evaluate different gauge invariant Green functions
at small distances. As before, they differ from the free ones by factors of
the type (log(p?/4?))’ where y depends on the type of the Green
function. However, the methods described above are absolutely inade-
quate for the investigation of the infrared region p? < A2, which is
physically the most interesting. To accomplish this task we proceed to a
quite different approach.



CHAPTER 3
The Strong Coupling Expansion

DOI: 10.1201/9780203755082-3

In the previous chapter we have seen how simple perturbative methods
permit us to examine the short distance behaviour in asymptotically
free theories. The reason for such success was that the effective coupling
for high momentum fluctuations is logarithmically small. In the region
p ~ A however, this coupling becomes of the order of unity (if we take
the formula (2.68), naively it becomes infinite.) In order to examine the
infrared structure of the theory we have to develop some nonperturba-
tive methods. In this chapter we shall describe the simplest (though in
many respects imperfect) method—the strong coupling expansion.
Unfortunately this phrase means expansion not in the physical cou-
pling (which may really be large) but in the bare one, e3. At first sight
the enterprise may seem completely meaningless because as was
explained above, the continuum limit of our lattice models is achieved
when

1

= log A A%

el 3.1
The reason the large e expansion is interesting is that there are grounds
to believe that in most asymptotically free systems there are no phase
transitions in e3. If true, this implies that the qualitativc character of the
spectrum and correlation functions is unchanged as we go from small to
large e2. For instance, the masses of elementary excitations must have
no singularities in e} and hence their 1/ej expansions can be continued
to rather small values of 3. This numerical aspect will not be discussed
here. Instead we shall be concerned with the qualitative picture which
arises from the strong coupling limit. Though our main interest lies in
nonabelian gauge systems, we start from the easier cases because it is
always satisfactory to realize a special theory as belonging to some
larger variety.

33
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3.1 Ising Model

In this section we shall reveal the strong coupling (small §) expansion in
the Ising model. By using the relation

e#?” = cosh f(1 + o0’ tanh B) (32

we get:

Z=(coshp)*y ] (1 +lo,0..9)
(o) (x.8) 33)
{ =tanh g

Expanding the product (3.3) we see that only those terms contribute
in which in each site we have ¢ raised to an even power. On each link we
can have the term 1 or {0, 0, , 5. If we draw a solid line on this link in the
second case we shall obtain the following diagrammatic expansion for
Z. We have to draw all closed paths on a lattice, such that at each site
only an even number of lines meets, and each link can be covered once
or not covered at all. If we look at the correlation function {oy0g), the
rules will be the same except that at the points 0 and R we must have an
odd number of lines meeting. The contribution of a given graph is just
¢E where L is the total length of the solid line.

The interpretation of these rules is the following. Since the correla-
tions are exponentially small ( ~ {'® for B < 1) we have a massive
excitation with the gap ~ log(1/8). As we increase f (decrease the
coupling) the mass gap decreases. At some point ., the number of
paths of length L which is of the order of exp(const. L) becomes larger
than the damping factor {*. At this point the paths will get condensed
—there will be a finite density of lines in the system. In terms of the
correlation function, this phase transition will mean that
{0o0R) <2, const. ‘This expansion in terms of lines is typical for all

systems with global symmetries. The lines themselves are nothing but
the world lines of the elementary excitations: to see this more explicitly
let us use the hamiltonian formulation of the Ising model, described by
(1.31):

ﬁ=uZt;+er§r;+5(u=e’”°,v=Bl) 3.4)
y » 8
The strong coupling limit corresponds to u > v. In some sense the first

term in (3.4) is a kinetic energy, while the second is a potential one
(because the first term describes the change of 7 in time).
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In the leading approximation the ground state is described by the
wave function:

o-n(.)

(The Hilbert space in our problem is formed by the direct product of the
two dimensional spaces at each site y. The operators 7, act as Pauli
matrices on the space labelled by y and as a unit operator on all other
spaces.) The ground state energy corresponding to (3.5) is given by:

Li¢>=—1é)

ara| 1>, + bl 1),
(6) 2 @ 69

Ey= — Nu (3.6)

The first excited state in this leading approximation is obtained as:

1 1\ ae
60 = T1 (_1> X<1> Zived (3.7)

These states (labelled by y,) have energy:
E,—Ey=2u (3.8)

We see that in the leading approximation we have a nondegenerate
ground state and a highly degenerate first excited level, separated by the
gap 2u. We shall see now that in the next approximation this degener-
acy is removed.

If we denote the second term in (3.4) by V we have, first of all to
consider matrix elements {(yp'|V{y)>. Due to the obvious relations

1> =10>
Ti‘|y2> =yury> W, #y2) 3.9
10> = |y>

we find that:

YWV =vY 8, 18
N (3.10)
Y'NHoly)> =2wd,

We see that while H,, described individual and independent spins, the
term V describes hopping of their excitations from one site to another.
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Diagonalizing H, + V, we find that in the first order of degenerate
perturbation theory we have the Eigenstates:

P> =3 €*7y>

E(p) = E\(p) — Eo = 2u + 20 Y cos(pb) (3.11)
&

As expected, we obtain point-like elementary excitations with a finite
gap, which are characterized by the quasimomentum p. This conclusion
will be true in all further orders of perturbation theory, which gives an
expansion in v/u. As we have already said, in the Ising model this
expansion will diverge at a certain critical value of v. This value
corresponds to the phase transition point at which the gap

E,(0)— E;=0 (3.12)

Near this point it is expected (and will be explicity shown for 2 = 2)
that:

m=E,0)— Eg < 1

and
&(p) = (m* + p*)'/? (3.13)

for |p) < 1.

After the phase transition point a condensate of these particles is
formed and the strong coupling expansion is impossible. In this phase
one has to start from the opposite limit, treating the first term in (3.4) as
a perturbation.

In the zero approximation we have a strictly ordered vacuum

1 0
o> = |1 (( )H( ) > (3.14)
y(=2nl,18.' 0 yo 1 »+é
nieZ)

It should be clear from the above that the lines which appear in the
expansion of the Euclidean version of our model are just the world lines
of the particles we treated in the Hamiltonian version. It is an
interesting exercise to establish the correspondence between Shrodinger
perturbation theory for the Hamiltonian and diagrams for the Eucli-
dean approach.
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3.2 Continuous Global Symmetry

Let us start from the abelian case. In order to obtain the strong
coupling limit it is helpful to use the expansion (the analogue of (3.2)):

ebeosto -0 Z A(B)eme ) 3.15)

n=0

(A4(B) = 1,(—1p), I, being a Bessel function). Substituting (3.15) into the
partition function we get:

Z=wzm%zmmAwmm}
x, 8

{n«, 3}
do, .
x J n 2_ exp{l Z nx.&((px - (px+5)}
x n x5

Ane o(B)

(ne,8:Lone8-nx-58)=0}x8 }“O(B)

=

(3.16)

As a result, we obtain the following graphical rules for computing
(3.16). We have again a graph on the lattice, such that each line is
characterized by a nonzero integer n. This n is conserved (owing to the
condition Y 5 (n, 5 — N, 3 5) = 0). That means for example, that if three
lines meet at some site then n; + n, + n3; = 0. To each bit of the path
we associate the factor 4, (8)/A¢(f) < 1, and take a product of all such
factors. Notice that in the Ising case the rules were the same except that
the permitted values of n_ 5 were 0, 1 and the conservation was true
mod 2. If we wish to compute a correlation function

<eimw(0)—¢(m)> = @m(R) (3.17)
(m being some integer) we have the same rules except that now:

YN —Ny_s5.5) =M, g — O,.9) (3.18)
]

which means that we have “sources” of n-flux placed at the points O
and R. The result for the correlation functions is again that they decay
exponentially for small f. Hence in this phase we expect to have only
massive excitations. It is worthwhile to study the same theory in its
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Hamiltonian version. In order to obtain it we introduce a large
anisotropy in the “time” direction:

-§= ﬂozcos((py‘! - (py,l+l)
¥

+ By Y. cos(@y,, — @yes.0) (3.19)
».8

(Here y belongs to the 2 — 1-dimensional lattice). In the limit of large
Bo we can replace (3.19) by:

1/d
—S = const — Jdt{[io Y - < ::’) — By Y cos(e, , — (py+5_,)} (3.20)
y.8

Comparing (3.20) with (1.10) we see that it is just the action for
imaginary time of the system of coupled rotators sitting at the lattice
sites and described by the angles {¢,}. In the Minkowskian time their
lagrangian is:

d 2
L= Z <£J’> + B, Y cos(@,, — ®yrs.) 3.21)
6

Passing to the Hamiltonian by the standard procedure we obtain:

2/{21 ~ B ygcos«p, — Qyu8)

(3.22)
1 o

*=idg,
(Notice the analogy with (3.4)). Now the strong coupling limit 8,8, < 1
corresponds to neglect of the potential energy in (3.22):

Ho = 2130212

ry

1
Y=expli) neo,)E=-5Yn?
(iZne,) £ =5, 20

Here {n,} is an arbitrary set of integers; the ground state corresponds to
all n, = 0. The first excited state is obtained by taking some one of the n,
n, -1, and has a mass gap. The reason for this is simple—in our
approximation all the rotators are decoupled. The elementary excita-
tion we have described is just the excitation of a single rotator placed at
the point y,. As before taking into account the potential energy causes
hopping of the excitation from y to y + 8:

YWy = - %—'25,',,“-. (3.24)
8

(3.23)
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Therefore, as in the Ising case, we have an elementary excitation with
energy depending on quasimomentum. The gap is nonzero in any finite
order in B,8,. However, again we expect a phase transition to occur.
Let us clarify the nature of the large §, f, phase. While for small 8, 8, we
had an almost decoupled set of rotators, for large 8, all these rotators
are tightly bound. If we consider them as something like a rigid body,
then the excitation spectrum will be

E=L1%21 (3.25)

where L = Y I, is the total angular momentum and I is the moment of
inertia. In the tightly bound phase we should have I ~ N where N is the
number of rotators. If the rotators are weakly coupled, then I ~ 1 (each
one rotates separately). The phase transition in S8, corresponds to the
change between these two regimes. In the small §,§, phase we have a
gap in the spectrum and in the large 8,5, phase the gap is absent (as
N — o0). In the next chapter we shall explore this phase transition in
more detail.

The Non-Abelian case in the strong coupling region is not much
different from the above. We have (in the case of the n-field) the
following Hamiltonian:

1
2ﬁO_v

In this case [, is the standard operator of angular momentum with
eigenvalues of I2: /(I + 1) (with degeneracies 2! + 1). All conclusions are
the same as above except that the elementary excitation is vector-like (it
has | = 1) and that for 2 = 2, as will be explained later, there is no
phase transition. The last fact is of great importance. It means that even
as we take B8, — o0 (or e — 0) we have a gap in the energy spectrum.
This gap can be interpreted as arising through the strong interaction of
Goldstone’s bosons. On the basis of the strong coupling expansion we
expect that the Lagrangian

H 1: -5 Zs ("y"',+o) (3.26)

1
£ =55 0,n) (3.27)
0

describes massive particles with isotopic spin 1. Dimensional transmu-
tation, described in Chapter 2, predicts that all scattering amplitudes
depend on p;/m (where p; are the momenta of the particles) and do not
contain any free parameters (like the coupling constant). All these
expectations turn out to come true as follows from the exact solution.
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The last model with global symmetry is the principal chiral field. Its
Lagrangian is:

d Y (Tr(g; 'g,.5) + cc) (3.28)

B 1
¥ =27°Tr(gy ‘g,) + >
¥ y.8
We see that it describes a set of symmetric tops (in the case g e SU(2)).
The Hamiltonian has the form:

H=Y EL 1} _h {Tr(g, 'g,.s) +cc.} (3.29)
¥ Bo 2 ».8

Here f, is an operator of left rotations which, in the case of the SU(2)
group, can be expressed in terms of derivatives in Euler angles (see any
book on quantum mechanics). Eigenvalues of [? are again I(l + 1) but
the degeneracy is (2/ + 1)? due to the fact that the symmetry group of
(3.29) is SU(2) ® SU(2) (body and frame rotations in quantum me-
chanics of the top). The quantum numbers of elementary excitations are
such that they transform by fundamental representations of both
groups. In the case of SU(2) it is a vectorlike excitation of SO(4) ~
SU(2) ® SU(2). Again, this conclusion will be confirmed by exact
results.

3.3 Gauge Symmetries

We have seen that in the strong coupling region all systems with global
symmetries look roughly the same. In all cases we had massive point-
like excitations which propagate through the lattice. In the Non-
Abelian cases with 2 = 2 this picture remained valid even for small
coupling.

In the case of a gauge system the strong coupling region is again
rather insensitive to the type of symmetry. However, gauge invariance
introduces qualitatively new features to this region which will be
discussed now.

Let us look first at the small § expansion for the partition function in
the Z, case. Since each term in the energy (1.46) is associated with a
plaquette, the result of the expansion can be presented as a collection of
plaquettes, such that at each link an even number of plaquettes meet.
Therefore we have something like closed surfaces instead of closed
paths for a nongauge system. The contribution of a given surface to the
partition function is given by (tanh f)* where A is the number of
plaquettes or, in other words, the area of the surface. For more
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complicated gauge groups, like O(2) or SU(N) the small f expansion is
similar with the only difference that the plaquettes carry conserved
quantum numbers just as it was in the case of paths, describing systems
with global symmetries.

We see that there exists a very general rule that the strong coupling
expansion for a gauge system is obtained from the corresponding global
system by replacing paths by surfaces. The physical meaning of this rule
becomes transparent in the Hamiltonian language. Let us pass to the
hamiltonian in the O(2) case (other cases are similar). As before, to do
this we introduce anisotropy in the “time” direction into the formula
(1.49). We obtain:

y——"z(Aya+¢ ¢y+a)2

+ B Y (CoS(Ay g+ Ayrgp— Ay — Ay —1) (330
y.a.f
Here a = 1,..., 2 — 1; y belongs to a 2 — 1 dimensional lattice, and
we denote by ¢, the time component of the vector potential A, ,. The
first term in (3.30) was obtained by expansion of the corresponding
cosine in (1.49) and making time continuous. In order to pass to the
hamiltonian, let us introduce canonical momenta:
oL .
Ey.u = a'—_ = BO(Ay‘a + ¢y - ¢y+a) (331)

y.a

The Hamiltonian is given by:

H=Y E, ,A,,~ %
ya

Z El + B, Y {1 —cos(A,,+4,.,
2ﬁo

y.o.B

- A.v+l3.a - A.vvll)} - Z ¢>.v(E.v‘a - Ey—a.u) (3.32)

Since we have no time derivatives for the field ¢, we must just minimize
H with respect to this field, which gives the condition:

F,=3(E,s—E,_4.=0 (3.33)
With this condition, the Hamiltonian is just:

YE L +B Y (1—cosF,,,) (3.34)
250 w

y.ap
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Notice, that the operators I', are generators for the gauge transforma-
tions of 4, ,. Indeed:

6A.Vv¢l = [z iwz rz’ Ay.u] = wy - wy+a (335)

Therefore:

[l,,H]=0 (3.36)

In quantum theory we have to substitute

and to solve the equations:

Hy = &y

=0 (3.37)

The strong coupling limit corresponds to neglecting the second, poten-
tial term in (3.34). The general solution to (3.37) in this approximation
is:

Y= exp(i 3 n,',A,.,>
ya

1 , (3.38)
=3 ,Z, "5
with n, , being integers satisfying the conservation condition
g("y., —f, ) =0 (3.39)

The vacuum solution corresponds to n,,=0. Excited states are
described by a closed loop on the lattice, such that at each site the n are
conserved. We recognize the same set of loops which we had in the
description of the global O(2) model, but the interpretation is now
different. Each loop labels the quantum state in the present case. In the
strong coupling limit the energy of this state is given by (3.38) and is
proportional to the total length. As we consider the time propagation of
such loops we obtain the world surfaces of the Euclidean approach.
Physically, the loop is formed of Faraday flux lines (we see from (3.38)
that n, , is an eigenvalue of the electric field E, ). The condition (3.39)
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is just the conservation of electric flux (which is true since we consider a
theory without charges). Due to the angular nature of the vector
potential the flux is quantized. In the zero approximation the shape of
the loop remains unchanged by time development. As we include the
second term in (3.34) two different effects arise. First of all, our closed
flux line acquires quasimomentum and begins to move across the
lattice. This is quite analogous to the case of global symmetries where
we had point-like elementary excitations. The second effect is more
tricky. As we perturb the state of a given shape with the cosine term in
(3.34) this shape can change (for instance, the cosine can create a new
small square, formed by the flux lines). Therefore the true quantum
state is a superposition of closed flux lines with different shapes. In later
chapters we shall develop a string theory so as to describe the
continuum limit of such a picture. This continuum limit exists, provided
that no phase transition in e? takes place.

Let us clarify the relation of this picture to confinement of charges.
This relation is quite simple. Suppose that we introduce two static
opposite charges into our system. Then, we shall have a flux line which
ends on these charges. The energy of such a state is proportional to the
distance between the charges. If no phase transition takes place, this
picture will remain true even for small coupling. In the next chapter it
will be shown that for 2 = 3 it is indeed so, while for 2 = 4 there is a
phase transition leading to a condensation of strings. After the conden-
sation we obtain the Coulomb law instead of confinement.

Generalization of the above discussion to the Non-Abelian case does
not present any difficulties. The basic variables in this case are matrices
of SU(N) attached to the links of a 2 — 1-dimensional lattice: B, ,. In
the abelian case we had the electric field operator E, with commutation
relations:

(iE, ., e"*] = id, 0, ge'tre
(3.40)

. o
IE.V‘G = 6Ay_a¢>lA.V.u = (elA"a)e Ara

The Non-Abelian generalization of (3.40) is the following. We have two
different electric fields, corresponding to left and right invariant forms
of the matrix B, ,. Namely let us introduce:

Ly.u = By.uB;i Ry‘a = B;';BM‘
R,.=B,.L,,B,, (3.41)

Tr(L;..) = Te(R3 )
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The commutation relations satisfied by the L and R operators are:
[La‘u’ By"ﬁ] = 5 ».y '6G.B)“aB "B

[Ry @ y ll] = 6y.v6¢l‘ﬁBJ ’l

(Here {14} is a set of generators for SU(N) and iL = A°L*: iR = A°R")
If the group is parametrized in some way, say like SU(2) be Euler
angles, then it is easy to express L* and R as differential operators with
respect to these parameters. However, we shall not need these explicit
expressions.
The Hamiltonian for the Non-Abelian case has the form (compare
with (3.34)):

(3.42)

= L TrL. - Z[Tr(B“BH,,BH,,B,, (3.43)
250

y&l’

There are operators I'}, which commute with H and generate gauge
transformation of (3.43):

= uar; = Z(Ly.a - R.v—u‘a)

_Z(Lya y—aaLy aaBy——u u) (344)
[re, H]1 =0
[re, 2] =5, , f*T (3.45)

(f** being the structure constants of the group). The last equation is
easily derived by combining the definitions with (3.42) and the Jacobi
identity. In the continuum limit (3.44) gives the covariant divergence of
the Non-Abelian electric field:

L.V-“ ~ E.V,G
B,,~I+4,, (3.46)
T, ~8,E, +[4, E]

Without external charges, the spectrum of our system is described by
the Shrodinger equation with subsidary condition:

H[B] = £'¥[B], T{¥[B] = 0 (3.47)

Since I'j is a generator of gauge transformations this last condition
means that we have to choose a gauge invariant ‘Y[ B] from all possible
solutions of the Shrédinger equation. In the strong coupling limit we
neglect the last term in (3.43) and obtain a set of independent tops (for
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the SU(2) group, taken as a representative example). Again the simplest
gauge invariant excitation is a square formed by flux lines:

‘Pl[B] ~ Tr(Bx,an+u,BBx_+1» B.qu-,I:

) 3 (3.48)
48, 1=1/2 4ﬂ0

Just as in the Abelian case, this elementary excitation will become a
superposition of different shapes in higher orders. The only physical
difference from the Abelian case appears when we consider the interac-
tion of external charges. Let us develop the corresponding formalism.
There is a small subtlety in this procedure since although infinitely
heavy charges are classical as far as their orbital properties are
concerned their isotopic spins must be treated quantum mechanically.
Therefore, it is not advisable just to add terms like #5"A, to the
lagrangian. A fool-proof procedure is to describe the charge by a
quantum field y with isotopic spin I, having the Lagrangian:

0
&, = ix+(é—t + A0>x - My*y (3.49)

The fact that y has no kinetic energy implies that the position of our
charge is fixed. After passing to the Hamiltonian and applying the
condition y*y = 1, we obtain the following natural prescription for
describing static charges with isotopic spins I,, I,,..., I sitting at the
points x,,..., xy. Consider the solution of the equations:

HY(I,my, x5 Iy, my, X3) = 61 myxacdympxn PC0)
Oy imxg; ... Iymyxy) (3.50)
= - I:z Z ()'?Ij))mpn)(s(y - yl):l\y({ljm;yj})
Jj {m3

(H is again (3.43).)

Then &,..., is just the energy of the sector with N external charges.
The second condition (3.50) means that instead of gauge invariant ¥ in
the vacuum sector we have to consider ¥ which changes under the
gauge transformations according to the rule:

\Pml...mN[Bn] = 'Z . @Ll,m',(ﬂ—l(xl)) X oene

X Dovmi( Q71 (xy)) X Wi i [BY; (351
B2, =Q;'B,.Q

x,a°%x + &
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and 2%,.(Q) are standard representation matrices for the SU(2) group.
The meaning of the rules (3.50) and (3.51) is quite transparent. They
imply that static charges, the state of which is characterized by their
isotopic spin I and its projection m, are sources of Non-Abelian electric
flux.

With these prescriptions at hand we can demonstrate an important
property specific to the Non-Abelian case mentioned above. Let us first
consider the interaction of two charges with isotopic spins 1/2 placed at
a distance R from each other. In the strong coupling limit the wave
function of their state is given by:

‘Pimxwmnz)[B] ~ 93»:?"”( n B-V'a> (-2
Ly, x

(where we have taken a product of B-matrices along the straight line
L,, ., connecting the charges). Since tops placed on this line, are excited
(they have | = 1/2) we obtain the result:

‘fl/z(—"n’v"z)~|—"1 — x| (3.53)

just as in the Abelian case. Now, let us consider two charges with I = 1.
One possible wave function will be the same as (3.52) with 2!/2
replaced by 2'. However, here we have a state with much lower energy.
To see how it is formed let us compare the first option, which could
have been represented by the picture

YW=x,me . o x,m (3.54)

(here we draw the flux line connecting x, and x,) with another one

[ , : ]xz.mz =¥, ¥ (3.55)

where the flux curls up. The explicit expression for, say, the left square
is:

Y2 x,.m

¥, = Tr("B, B, B B})
(3.56)

= +itY,1%=1°

(7% are Pauli matrices.)

It is trivial to check that under a gauge transformation (3.56)
transforms in accordance with (3.51). At the same time the energy of
this state does not depend on |x, — x,| and therefore for large distances
the state (3.55) is much more favourable than (3.54) and we have no
confinement for the states with I = 1. Notice, that for I = 1/2 the
option (3.55) was absent, which was the reason for confinement. It is



THE STRONG COUPLING EXPANSION 47

quite easy to understand what has happened. The Non-Abelian gauge
field describes gluons, having I = 1. When we added a source with
I = 1 it is energetically favourable for this source to be screened by an
adjacent gluon (this process is shown in the picture (3.55)). If the source
has I =1/2, then in the strong coupling phase such screening is
impossible and we have colour confinement. In principle another phase
is possible in which even I = 1/2 will be screened away by I = 1 gluons.
For this to happen we must have a cloud containing an infinite number
of gluons. Then statistically they can screen our source. However such a
cloud would have finite energy only if the constituent gluons are
massless. Therefore, we expect that if there is an energy gap in the gauge
theory then the effective cloud will consist of a finite number of gluons
and will be unable to screen half-integer spin. One of the amusing
consequences of this picture is that the string tension between sources
with, say, I = 7/2 is the same as for I ='1/2 because three units of I-spin
will be screened by gluons and only 1/2 will remain. All this is a
manifestation of the fact that the electric flux is conserved only mod(1).

The question whether we indeed have a mass gap in the continuum
limit (e — 0) cannot be solved by the strong coupling expansion,
because its presence in any order in 1/e? proves nothing. More subtle
methods are needed. We shall describe some of them in the next
chapter.
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CHAPTER 4
Instantons in Abelian Systems

DOI: 10.1201/9780203755082-4

In the previous chapter we saw that the existence of a mass gap is the
most important property of gauge and spin systems. In this chapter we
shall discuss a specific mechanism for gap generation, which is
especially important in Abelian systems and will also play some role in
nonabelian ones.

4.1 Instantons in Quantum Mechanics and the Ising Model

Let us describe the symmetry properties in the quantum mechanical
system described by the action (for imaginary time):
1 1 A u
- 2 C,2.02 " a4 B 4

) _[dt{2¢ SO+ 0 +4A} 4.1)
with 4 < u2. The only interest of this model for us is that it provides the
simplest demonstration of a phenomenon present in more complicated
systems. The point we intend to examine is that this model in any finite

order of perturbation theory has apparently broken symmetry, whereas
in reality the symmetry is restored. To see this we expand:

u

‘P=im+x “4.2)

Expanding the action near, say, the left-hand minimum we have:
1
S J‘dt{i 2+l + O(A”Z/u)x’} 43)

We see that we have (for small 1) almost harmonic oscillations near the
bottom of the left-hand well. The left-right symmetry ¢ - —¢ is
broken and this will remain so in any finite order in A. At the same time
we know from quantum mechanics that the ground state of this theory
is described by an even y-function and therefore is nondegenerate, with

49



50 GAUGE FIELDS AND STRINGS

restored symmetry. It is clear that restoration of symmetry occurs
because a particle placed in the left well will (with finite probability)
tunnel to the right one and back. Therefore if we wait long enough there
will be equal probability of finding the particle in either of the wells.
There exists an interesting way to describe tunnelling which we briefly
discuss now. It is easy to see (by rescaling ¢ — A~1/? o) that for small 4,
S is very large, being of the order A~ 1. That means that in the functional
integral:

Z= J'Q @ e Sl 44

we can use a saddle point approximation. It is crucial that together with
the trivial minimum ¢ = + y/\/ A, the classical equations of motion for
imaginary time:
% b+ ue—ig=0 “.5)
soy ~ P T e e .

have a solution:
u ut —ty)

o(t) = 7i tanh<—72——> 4.6)

(to is an arbitrary constant). This solution (being a local minimum for
S[¢]) connects the left well at —oo with the right one at + oo.
Substituting (4.6) into (4.1) we find a classical action:

2./ 2)u?
_(\Qu an

cl &
At first glance the contribution of the trajectory (4.6) to the functional
integral has the factor
e~ S = e—(z\/z)u’/?u1 4.8)
and is negligible. However this is not so. The reason is that we have not
one classical solution but a continuum set of them distinguished by the

value of ¢,. Therefore we have to expect that the contribution to Z has
the form:

Z ~ e @/ D3 j dt, 4.9)

This means that for relatively short periods of time, t < e~ 2v/2#°/34 the
contribution of our trajectory is indeed irrelevant, but in the large time
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limit it becomes very large. This is in complete agreement with the
tunnelling interpretation of our solution, namely the characteristic time
we have introduced, is just the tunnelling time and hence the time for
restoration of symmetry.

Let us perform now a more quantitative analysis.

Let us expand our field near the classical solution ¢ (t — t,):

o) = @t —to) + ¥ Coh,(t — to) {4.10)

n#0

In (4.10) we have introduced functions ¥, which are normal modes for
the oscillations near ¢.,. They are to be found from

28
cl 2

P?=@cilt)
or

'././n + “an - 3A(pgl‘//n = _wrﬁl,n

In the complete set of functions ¢, there exists ¥, ~ ¢, for which
w? = 0. Its existence, being a consequence of translation invariance, is
easily checked directly by differentiating equation (4.5) with respect to t.
In the expansion (4.10) we did not include ¥, in the sum, introducing
instead the parameter ¢,,. The reason for this is that while fluctuation of
the C,, are small, bounded by the action S, this action does not depend
on t, and this degree of freedom has to be treated separately. In order to
do this let us pass from the integration over ¢(t) to the integration over
C, and t,. The easiest way to find the corresponding Jacobian is to
examine the metric in the functional space:

logl® = f dt (Be(0))? = (5t,)? fdt o3

+ Y (BC)? + 0((0t,)%) (4.12)

n#Q

Therefore:

2 o(t)=A4 [] dC, dt,

n#0

+1/2
- (Ja)

(4.13)



52 GAUGE FIELDS AND STRINGS

and with this knowledge we can proceed to calculate the one kink
contribution to the correlation function:

u*/A+ Be S jdto Paty — t)Pu(ts — to)

{o(to(t)) ~
1+ Be S« J~dt0
+
2
~ K =Sa 2
~T + Be j dtg (9o (1 — L)@ty — to) — 1*/A)
T® 4.149)

Jn d¢, e Eonot

(w,,, are eigenfrequencies for the trivial minima @2 = u?/4).
Substituting (4.6) into (4.14) we obtain:

2
(PP =5 (1= Ce™ |ty — 1))

—1
=l =)

+ o

C=-B J dx<tanh\/ jt, —t,| tanh

=

(4.15)

~ 2B [ty — tal > p7!

As was expected, for large times the kink solution (4.6) gives a large
contribution. Moreover, it is clear that we have to take into account
multi-kink configurations, which in the “tunnelling” language corre-
spond to trajectories travelling from left to right and back several times,
for which ¢(t) has the following structure:

@ W2

N (TN
t t; \ t,{ t4! lfs

t
= — = — — — — - Wi

There is no exact classical solution of such a kind, because there is a
tendency for kink and anti-kink to annihilate. The attractive force
between them is easily estimated. Since the tails of kinks are exponen-
tially small:

0ul) > £ P +0e 2002 31 (4.16)
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a mere superposition of kink and anti-kink will have the action:
SU“E) =S® 4 S(ﬂ) + o(e—ZuInzI/\/i)
= 25 4 (e~ 2un2IV/Z) 4.17

where t,, is the distance between k and k. This result implies that the
interaction between kinks is exponentially small. Since for small A the
average time distance between our objects is of the order of ¢!
e2V/2¥ 3% 5, =1 the above-mentioned interaction can be neglected.
Another simplification, possible for the same reason, is that the width of
the kink can be neglected. We can approximate the general configura-

tion by: .

o) = — \/ Hsgn(r (4.18)

2./2u®
S =N \él (4.19)

ST, < < Ty

The total effect on the correlation function is given by:

2

{o(ty)olt,)) = ”7 Z —C)V e S5 -[ dr,...dty = = e An-ul (420)

. - 2u3
min(t,, t,) <1, <1, <--- < 1y <max(ty,t,), A=Ce 234

We have found that tunnelling trajectories (which are also called
instantons) remove the degeneracy of the ground state present on a
perturbative level. The symmetry ¢ — — ¢ gets restored and the system
acquires a finite, though large, correlation length r, ~ A™!, As we
discussed 1n Chapter 1, in the limit of large correlation length the
quantum theory with action (4.1) must be equivalent to the 2 = 1 Ising
model.+ This equivalence is quite obvious from the present consider-
ation: the moment we replaced the ¢-field by the step function (4.16) we
actually started counting configurations of the Ising model described by
the picture:

and the counting of kinks in (4.20) is exactly the counting of spin
reversals in (1.18)

t This fact was realized long ago by Vaks and Larkin.
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4.2 Instantons in the Global O(2) Model

This model is described by the partition function:

n

d
z= f 152 exp(B T (cos(@y — @era) — 1) @.21)
x, 8

o 2T

We shall consider its properties in the large-f limit (weak coupling): the
natural thing to do would be to expand the cosine in (4.21) and to write:

Y (0~ 0eis)’ & g_[dlx Vo)’ (422)

However, this expansion is not entirely correct. It restricts ¢, to be very
close to its neighbour ¢, , 5. This is physically reasonable since at large
p neighbouring spins must be almost parallel. However, almost parallel
spins do not always mean ¢, ~ ¢, .5 since we can have as well the
situation:

Py =T —¢€
<1 (4.23)
Pers= —M+eE

The configuration (4.23), for which ¢, , 3 — ¢, = 2¢ — 2 must be just
as important as configurations with ¢, .5 — @, ~ & but in the expan-
sion (4.22), where we have lost the periodicity of the cosine, (4.23) is
strongly suppressed. We must find the remedy for this unphysical
situation. There are several ways of doing it. The most elegant one is to
consider a continuum limit (4.22) but to allow ¢ to be a multivalued
function, so that it has 27 jumps at certain branch cuts. We shall return
to this approach but first it is useful to work out the theory on a lattice,
and then to see how this multivalued field arises.

Our aim is to retain the harmonic approximation for the ¢-field, but
to account for the configuration with (4.23). This aim can be achieved
by replacing (4.21) by:

n

d
Z = Z n O 228 _E Z ((px - (px+5 + znnz.b)z (424)
{nx.8} x 2n 2 %8

-n




INSTANTONS IN ABELIAN SYSTEMS 55

where the n are arbitrary integers. Formally, we have replaced the
function exp(f(cos ¢ — 1)) by

o)=Y exp( - g(cp - 2nn)’> (4.25)

n=-x

In the large § limit when the only important property of the action was
its periodicity and anharmonic terms ~¢@* are irrelevant as was
discussed in Chapter 1, the replacement of (4.21) by (4.25) is legitimate.
With (4.24), which is periodic, we properly take into account the
formally discontinuous configurations (4.23).

The partition function (4.24) can be transformed into a physically
meaningful form. In order to do this let us take the case 2 = 2 and
characterize the set of integers {n, s} by the integers q,, (where x. are
the centres of plaquettes) defined as

Que SNy T Npiq 2 = Nepz g — N,z

=2 Nes (4.26)
]

In other words q,, is a “field strength ™ created by the “vector potential”
n, s- Any set n_ 5 can be represented by:

Neg =M, — M5 + Ay — Ap+s + 86-,' (¢xa - d)x.—y) (427)

Here ¢;, is the standard antisymmetric tensor, the m, are integers,
la | < 1, and ¢,, satisfies the equations:

Ax.x,'.d)x; = Z (4¢x. - ¢x—y - ¢xg+y) = q,. (4‘28)

¥

The decomposition (4.27) splits n, 4 into longitudinal and transverse
parts. The lattice Laplace equation (4.28) is obtained from (4.27) by
forming the “field strength” (4.26), to which only ¢ contributes. If we
form the lattice divergence of n, 5 we get an equation which determines
m, and «, in terms of {n, s}.

Summation over {n, s} can be replaced by summations over {m,}
and {q,,}. Substituting (4.27) into (4.24) and changing variables in each
term by

P = O — Zn(mx + ax) (4'29)
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we obtain: {

coxp( = 5[5 (0= 0eas 4228 T (= 0.F) (430
x, 8 X, ¥

B
= ZGauss Z CXp(— 5

g}

Z Ax_«.le Gx. 9x, 27[2)

Xe, X4

+ o0

do, B 2
ZGauss - l:[ j g exp<— 5 _‘;5 ((px - (px+5)

In deriving (4.30) we have used the fact that the replacement (4.29)

n+2n(m+a)

‘[ do = j do

—n+2n(m+a)

and summation on m are thus equivalent to replacing

k4 +

do do

m )
The formula (4.30) has a remarkable physical interpretation. It shows
that in order to account for the periodicity of the action in the large p
limit one has to introduce a set of vortices into the system, which
interact according to the two-dimensional Coulomb law (the inverse
Laplacian in (4.30)). Let us examine the correspondence between the
distribution of {q,} and configuration of angles {¢,}. Take the case
when only one vortex is present at x = 0, g, = 1. Take a large closed
loop L on the lattice surrounding x = 0, and examine B, 5 = ¢, — ¢, .5
along this loop. From the definition it is clear that:

3@3,'5 =0 (4.31)

L

t The whole set of arguments, leading to (4.30) first appeared in V. G. Berezinsky’s
Ph.D. Thesis.
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(Here we have denoted by §, the sum of B, ; along the loop; in the
continuum limit it goes to an ordinary contour integral). As we noticed
at the beginning of this section, | B, 5| < 1 (mod 27) at large B. The set of
integers {n, ;} which we have introduced is defined so that:

—n< Ax.s T Px — Prars + 2n nes <n

and for large B, |A, 5| < 1. The quantity A4, 5, uniquely defined for a
given configuration {¢,}, has a nonzero circulation, equal to the
vorticity:

1

ez
L

do Aes (4.32)

A simple example of {n, 3} leading to a unit vortex can be constructed
from the following picture:

(4.33)

All links except those intersected by the dashed line have n, 5 = 0.
Intersected links have n_ 5 = 1. This picture clearly satisfies the condi-
tion (4.32) and corresponds to the angles ¢, having a 2zn-jump on the
dashed line. The exact shape of this line is irrelevant because its change
is just a gauge transformation of {n, s}. In the continuum limit this
dashed line becomes a cut in the complex plane with the branch point at
the position of the vortex.

In the large-f limit in two dimensions, owing to the long range
properties of the two-dimensional Coulomb force, vortices are com-
bined into neutral dipoles, and the system (4.30) is dielectric. Such
dipoles have very small influence on the correlation functions and are
irrelevant at large . At some critical § the dipoles dissociate and we get
a plasma of vortices. We shall not investigate these phenomena here
(see e.g. [3]). Instead, it is conceptually important to explain how (4.30)
could have been obtained, directly from the continuum theory, and that
it is precisely the instanton approximation to (4.21).

As we have said, the action in the continuum limit has the form:

S= l—; j(a,,fp)l d? x (4.34)

Classical minima of this action are defined from the equation:
p(x) =0 (4.35)
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If o(x) ol 0, eq. (4.35) has only the zero continuous solution. Let us

suppose now, that we have introduced a set of vortices, placed at the
points {x,} with strengths {g,}. This means that we integrate over the
multivalued fields ¢ which change by 2nq, as we go around the point
x,. In this sector we do have a nontrivial classical solution of (4.35). It is
given by:

N

= , Im log(z — z,)
¢ ag'x 1 g( (4.36)

z =Xy +ix,

The formula (4.36) can be viewed as a continuum approximation to the
classical solution, minimizing the action:

S = E u((px - (px+8) (437)
x5

with any periodic u(¢):

u(p + 2m) = u(e)

4.38
u(fp)z(g)q)z, o<l 3%

This solution far from the singularity is universal and described by

(4.36). The structure near x, (the core of the vortex) depends on the

detailed form of u, but fortunately it appears to be irrelevant.
Substituting (4.36) into (4.34) we obtain:

B R
Sa=x .45 27 log ———— +const. Y g2 4.39)
' z{agbqu glxn_xbl ;q} (

(R being the size of the system; the second term is the self-energy of the
vortex).

Noticing that (1/2n) log(R/|x|) is just the inverse Laplacian of a two-
dimensional Coulomb energy we see that taking account of instantons
for (4.21) leads to the continuum version of formula (4.30). We see that
the obscure transformations leading to (4.30) serve a simple purpose—
they take account of vortices.

However, in the present case, owing to the “confinement” of vortices
they do not have any qualitative effects (at large §). In the next section
we shall consider the case when such effects are present.

Let us mention what happens for 2 = 3. In this case we have, instead
of point-like singularities, singular lines. The field ¢ has a 27 jump as we
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go around such vortex line. The vortex lines carry energy and are
directly observable in “He.

To conclude this section, we describe the continuum description of
0(2) systems. It is given by the Lagrangian:

£ =10,¢1” + v(|1*) (4.40)

where, as we explained in Chapter 1, v(]¢|?) can be taken without loss
of generality to be:

- PR S
v(|¢|2)=7—/10|¢| +7|¢| 4.41)

The relation of this theory to the one described by (4.21) is the same as
that of the quantum mechanics of a double well to the 2 = 1 Ising
model. Their long range properties are identical. This is most easily seen
in the present case if we introduce variables:

$(x) = u(x)e™

S= j {(0,u)* + v(u?) + u*(9,0)*} dx. (4.42)

For small values of 1, we have

u(x) = \/i} < 1+ 0(%)) (4.43)
0

and we see that the fluctuations of the modulus u(x) are small and short
ranged (they have a mass y,). At the same time, the field 6(x) is massless
and the only one contributing at very large distances. It is worthwhile
demonstrating how the vortex contribution arises directly in (4.40). As
before, the vortex arises as a nontrivial classical minimum for the action
(4.40). In the two-dimensional case the equations have the form:

o —uip+1lol’¢=0 (444)

or
A/72
62¢a - ”g¢a + 5(? ¢§>¢a =0

(where ¢, , are defined by ¢ = (¢, + id,)/\/2).

This equation has 0(2) ® O(2) invariance, one of the 0(2) being
rotation of x-space and the other rotation of the ¢. Let us look for a
solution which breaks this 0(2) ® O(2) but preserves the single 0(2)
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symmetry under simultaneous rotations of x and ¢ spaces. The most
general ansatz with such a property is:

bo = ()", 0r ¢ = u(r)e'®
(4.45)

r? = x3 + x3, ¢ = arctg(x,/x,)

From the above symmetry consideration it has to be consistent with
(4.44), and direct substitution confirms that it indeed is. We obtain an
equation for u:

2
U — uiu— Su+ ud=0 (4.46)

There exists a solution to (4.46) with the properties:

wr) 2.0, u(r) 2 po/N/4 (4.47)
The reasons for the existence and stability of such a solution are the
following. Substitution of (4.45) into (4.42) gives:

S = J 2nr dr{(du/dr)? + v(u?) + u*/r?} (4.48)
]

In order to avoid quadratic divergence at infinity we must have
v(u?(o0)) = 0 or u*(c0) = ui/A. Now, because of the last term in (4.48) it
is desirable to have u(0) = 0. Interpolation between zero and u?/A
should not be too fast because of the first term and should not be too
slow because of the second one. So we expect that there is a unique
function u(r) which minimizes S. This is indeed the case as can be
rigorously shown, but we content ourselves with the above heuristic
consideration.

We have also to consider stability with respect to variation of the
phase 6. It is clear from (4.42) that if it were possible to deform 6(x)
continuously from 6(x) = ¢ to § = 0, the action (4.42) would decrease.
However, such a deformation is not possible, as follows from the
condition that ¢ is single valued and that every 6(¢) has to satisfy:

0(2m) — 6(0) = 2nq (4.49)

~with integer g. The solution (4.45) corresponds to g = 1, and it cannot
be deformed without violation of single-valuedness of ¢ to the solution
with ¢ = 0.
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This fact guarantees the phase stability of (4.45). Notice that very
similar topological considerations could have been used to prove
stability of the kink solution of the preceeding section; it also can be
seen that in the case of a complex field the kink solution is unstable,
because the kink can be deformed to nothing by continuous phase
rotations.

The action for a single vortex is logarithmically divergent at large
distances, due to the last term in (4.48). However, if we consider a
neutral superposition of vortices and anti-vortices the total action will
be finite, and in the limit when all relative distances are larger than pg !
it will be given by (4.39) with B replaced by 2u3/A.

Our conclusion is that in the infrared limit we have three equivalent
descriptions of the O(2) systems, given by the actions (4.21), (4.24) and
(4.30).

Remarks 1. The analogy between the 2 =1 Ising model and
double-well quantum mechanics was first noted by Vaks and Larkin.
The theory of vortices in the planar O(2) magnet and the effective
description by 6-functions was suggested by V. L. Berezinsky in his
PhD thesis (1970) and rediscovered by Koesterlitz and Thouless.

2. The O(2) model is quite relevant to several physical problems.
First of all it describes by its definition planar magnetic systems with
0(2) symmetries. Secondly since the action (4.40) is the second quan-
tized hamiltonian for the interacting Bose gas, the model decribes two-
dimensional “He films at nonzero temperature (the static long range
properties). It is also operative for the theory of two dimensional
crystals. This occurs for the following reasons. It we denote by u,(x) a
displacement of the atom placed at the point x of the crystal then in the
infrared limit we have (according to the theory of elasticity):

E= J {%‘ (@atty + Bgu,)* + /21(6,1%1)2} d*x (4.50)

(4, u are the so-called Lamé constants). In order to find a partition
function we have to compute:

Z= J@ua(x) ¢~ FEM 4.51)

This would have been an easy Gaussian integral if the fields were single
valued. However, just as phases {¢,} were defined (mod 2r), displace-
ments u,(x) are defined (mod b,) where b, is a lattice vector, since on a
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lattice the energy must be a periodic function of displacements. There-
fore, we have to account for jumps in u,(x). If we have a branch point at
X,, and a loop L surrounding this point then:

§0‘, u(x)dxf = b, (4.52)

L

For such u (x) it is said that we have a dislocation located at x,. We see
that the properties of dislocations almost coincide with those of
vortices. In particular, at some  we have a condensation of dislocations
which can be interpreted as melting.

4.3. Compact QED (0O(2) Gauge Model)

In this section we shall examine the case of Abelian gauge theories. This
case is nontrivial, in spite of the fact that the naive continuum limit of
the action is given by:

s d7x(8, A, — 6,4,)? (4.53)

T4
and describes apparently free photons. The nontriviality, as in the
preceeding sections, comes from the fact that the vector potential has
certain angular properties which force us to account for the analogues
of vortices or dislocations in the functional integral.

Before we do this, let us explain why the vector potential is supposed
to be an angular variable.

A priori, we can define on a lattice two different models. The first one
is (1.49) with the action:

S= —17 Y (1 —cosF,,p)
2€5 <2 (4.54)
Frap=Aeat Agiap— Aripa— Arp
—n< A, <1
The second option is:
s= Y Flu—0 <A, +© (4.55)

2
dep

In the naive continuum limit both of these actions lead to (4.53), but the
physics of these models is different. An analogous situation arises in
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ordinary quantum mechanics with the action:
1
S=3 f x2 dt (4.56)

This action can describe a free particle on a line or a free particle on a
circle. The spectrum is continuous in the first case and is discrete in the
second. The difference arise because in the first case we integrate over
continuous x(t) while in the second we should allow 2n-jumps.

We have to decide on physical grounds what version of QED is
realized in Nature. The main reason why we believe in the periodic (or
compact) version of QED is based on the empirical fact of charge
quantization. We know that the ratio of any two electric charges is a
rational number. Let us show that this is a necessary consequence of
compact QED, while in the noncompact version it would be an
unexplained mystery.

The qualitative argument is that, as we saw in Chapter 3, the electric
flux (which is an analogue of angular momentum) is quantized. Since
charged particles are sources of electric flux, which according to Gauss’
theorem must be equal to their charges, we conclude that possible
charges are quantized as well.

To be more explicit, let us consider two charged fields, . with a unit
charge and y, with charge e. The Lagrangian for these fields is of the
form:

L=Y (Yligetew, + xliseile) +cc 4.57)
x 8

The form of (4.57) is dictated by gauge invariance:

Ax.& - Ax.ﬁ + %5 = Uy

. (4.58)

Yo=Y, x, = €%,

From (4.57) we see that ¥’ is well defined in our phase space only if e is
integer, which is needed for periodicity in A, 5. Notice also that the
period of the free action (4.54) defines a natural unit of charge.

In noncompact QED the flux is continuous and there are no reasons
for charge quantization. Another important thing concerning compact-
ness is that the two above-mentioned options are present only in the
abelian case. For any Non-Abelian group the fact of compactness or
noncompactness can be seen from its Lie algebra. For instance if the
gauge group is SU(2) we cannot formulate the noncompact version at
all. If we consider the noncompact group SU(1, 1), we get gauge quanta
with negative norm. Therefore, when we consider QED as arising as a
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subgroup of some Non-Abelian gauge theory we are necessarily dealing
with the compact version.

After this explanation let us work out the theory of this version
starting from 2 = 3. Following the strategy of the preceeding section
we consider a partition function:

1
Z= Y% [1dA,., exp{— 402 Y (Froop— Znn,'a,,)z} (4.59)

{nx, ap) 0 x,ap
-n

which takes account of the periodicity of the action. For a given set of
{n, .p} we introduce numbers g, (where z belongs to the centres of the
cubes of our lattice) defined as the flux of n through a given cube o,:

§nx.aﬂ = qz (460)

[-£1

(the notation in the Lh.s. of (4.60) means the sums of n, ,, correspond-
ing to oriented plaquettes forming a cube with centre at z. Its conti-
nuum analogue will be an integral of the field n,; over a closed surface).
Decomposing n, .4 as:

Nyap = My, + My g~ Meipa— My

+ Ax,a + )‘x+a,ﬂ - }'x+|$.a - j’x.ﬁ
+ €up (P, ~ Do y) @.61)

We obtain from (4.60):

Azz’¢z’ = qz (462)

(A,,- is the lattice Laplace operator). Substitution of (4.61) and (4.62)
into (4.59) gives:

1
Z = ZGauss z exp<— 4—82 Z quz—zl' qz’87[2

(qs} 01z,z

+ oo (4.63)

|
ZGauss = n dA:.a exp(— 4¢2 Z Fi.uﬁ)
x.a 0 x,ap

We thus obtain the same Coulomb system as (4.30) but in three
dimensions. As we shall see that makes a lot of physical difference.
Before working this out let us explain the meaning of the “charges”
which appeared in (4.63). They can be thought of as instanton solutions
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for the action (4.54). In the infrared limit the classical equations take the

form:
0,F,,=—curlH=0
(4.64)

divH =0, H =curl A = }¢,4,Fp,

afy

They do not have nonsingular solutions except for H = 0. However, as
before, since (4.64) was obtained from a periodic action we can allow
certain J-like singularities in H with strengths 27q. Such a solution
(analogous to (4.36)) can be easily given:

H,(x) = ; ﬁ 2nqd,30(x,)0(x,)0(x ) (4.65)
(6 is the step function).

This solution represents a magnetic charge, sitting at the origin. Its
magnetic flux 2ng created by the first term is compensated by the
ingoing flux along the third axis. In two-dimensions we had the
analogue of (4.65):

Au = 6;4(0 = qeuv(xv/xz) - 2nq0(x2)5(x1) (466)

where the second term arose from the discontinuity of the phase. Owing
to the periodicity of the action, the second terms in both (4.66) and
(4.65) do not contribute to physical quantities. Therefore, the general
instanton configuration in our case is described by a set of magnetic
charges with Coulomb interactions and has the action:

4., 2m const

SINST 4e2 Z

0axp % — xb'

Z 2 (4.67)

This is the same result as (4.63), provided that these charges are far
apart. Let us show now that due to the disordering effect of instantons
the system acquires a finite correlation length (the photon becomes
massive). To show this we shall use the following functional representa-
tion for the instanton part of Z:

Z = Zgauss Zinst

N
Zpst= 2, fVJ‘n dx; exP< n 9.9 )

5,2
N.{qa} 2e® [Ty 1%, — x,]

J%((x) CXP{ ( )f(V )2} jdx, .dxy  (4.68)
N (qn)

x exv<i Y q.,x(x.,)>

2
r J@x(x) exp{—(zé) j((Vx)z — M? cos x)} dx
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2
é = e—ctmst/e2 M2 = (2_1f> é

e

Here:

The formula (4.63) was obtained through the use of the general
property of Gaussian integrals:

1
Jr[ dx; exp(— 3 Z Ajxix;+iy bixi> = (Det A)~ /2 cxp(— Z A 1b,»bj)
13 i,J nJ
(4.69)

and also by taking into account only q, = + 1. The last approximation
will be justified when we check that for small e? the monopoles are far
apart (like the kinks in Section 4.1) and therefore monopoles with g > 1
have a tendency to dissociate to monopoles with g = 1. Actually taking
account of g > 1 would lead to terms ~ cos(qy) in (4.68). The functional
integral (4.68) supplies us with a diagrammatic expansion for the
monopole plasma. However, the effective nonlinearity in (4.68) is
exponentially small, because the coefficient g of y* in (4.63) is of the
order of

M 2
This result could have been anticipated since it corresponds to the
condition for validity of the Debye or mean field approximation. For
this to hold it is necessary that in the Debye volume, of order
M ™3 ~ exp(—3 const./e?), there is a large number of particles, so that
the fluctuations in the sum of their individual fields may be neglected.
But according to the Boltzmann formula, the density of particles is
given by

n~ e comye? 4.71)

Hence the criterion for the mean field approximation is
nM =3 ~ ecomtie’ 5 | 4.72)

which is the same as before.

Now let us calculate certain correlation functions. We shall concern
ourselves only with gauge-invariant quantities. As an intermediate step
it is convenient to have an expression for the generating functional for
the charge density of the plasma. After simply repeating the derivation
of (4.68) we get:

<exp<i Ip(x)n(x) dx>> = Z[n(x)])/Z[0] (4.73)
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where

p(x) =Y q,6(x — x,)

2
Z[n] = J@x exp{—(%> J[(V(X — )2 — M2 cos x]}

The simplest correlation functions for our problem are those of the
operator

(4.74)

H(x) =} €,5,Fp,(%). 4.75)

At large distances this is just the electromagnetic field strength.
In the quasiclassical approximation, H(x) is connected with the
charge density as follows:

L (x =)
H,(x)=3 Jd VX =yP p(y)
2nik (4.76)
Hyx)= 2 £ p(k)
Using formula (4.74) we get:
e \? e\*
{plk)p(—k)) = <£> k* — k“(x(k)x(—k»(ﬂ)
(4.77)

2mi\¥ A,
() <ottt = [T ki<t stk

Now the correlation function of the H-field is given by

k,k,

CH(H (=k)) = CH ()H (— k) + (2m)? &

<p(k)p(—k)> (4.78)

The first term in (4.78) is the bare (that is without monopoles) Green
function of the H-field. It has the form

k. k
(H,HY? = e2<6w - ;zv) (4.79)

Its singularity at k = O reflects the existence of a massless photon in this
approximation. Using (4.77) and the previous comment about the small
coupling of the y-field we get

2 k4 2 Mzkz
Won-w> = (3) (¥ - )= (55) g @0
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From formula (4.78)-(4.80) we obtain
kk, kk, M2

gr CHAOHL=R) =5, = 0 s
k,k,
=5‘”_M2“—-|-k2 (4.81)

This formula implies that there are no massless particles in the theory
and instead we have a massive scalar particle with a small mass M.
Analogously we find the result

1
CH (ky). o Hy (KD cona = km...k Hk2+M (ij=0) (4.82)
i %i J

The qualitative explanation of the above result is the following. In our
system there is a finite density of pseudoparticles with long range
interaction and their random fields spoil the correlation. From the
strong coupling expansion we know that the correlation length is
nonzero also for e? > 1. It is reasonable to assume that there is no phase
transition in this system and that the confinement regime continues to
weak coupling. As we shall show in the next chapter, this is indeed true.
Here we shall discuss another implication of the resuit.

First of all let us notice that since we showed that the O(2) system for
%9 = 3 is disordered (has a mass gap) the same must be true for
nonabelian systems. Indeed, let us take the case of SU(2) and constrain
the B, , so that they lie in 0(2) = SU(2). One should expect that this
constraint increases the order in the system and if the constrained
system is disordered the unconstrained one must be even more disor-
dered and have an even larger gap. There is no doubt that this
statement is correct but a rigorous proof has yet to be given.

As we turn to 2 = 4 the picture described above changes. Three-
dimensional cubes embedded into four-dimensional space have four
different orientations (analogously to the three different orientations for
squares embedded in 3-space). Hence we expect that the number ¢ in
(4.60) for 2 = 4 will have a directional index a:q = g, ,. To check this,
let us write down the decomposition analogous to (4.61) for the
numbers N, ., in the case 9 = 4:

N, .p=0,mg — Opgm, + 0, A5 — Oply + €,4,50,05 (4.83)
Here we have used the notation d, for the lattice derivatives, e.g.:

Oomg=m, g —m,_, 4 4.84)
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Taking the surface integral over the surface of the cube with direction y
we obtain the analogue of eq. (4.62)

—0%, + 0,0,05 =14, (4.85)

Here we have used a continuum notation in the hope that after previous
discussions it will not be misleading. Formulas with explicit lattice
notations would look rather clumsy for 2 = 4.

From eq. (4.85) we see that g, are subjected to the constraint:

0,8y, =) ey~ dx—y,) =0 (4.86)
Y
The instanton part of the partition function has the form:

Zit= T ow(-gg Lo silen,) G5
{gzyi Oyqy =0} 0xx

Let us explain the meaning of these results, which could have been
anticipated without the derivation given. The instanton for 2 = 3 was
described by a magnetic monopole solution (4.65). Suppose, we add one
more dimension (“time”). Then this solution, being point-like for 2 = 3
is represented by a line for 2 = 4 (the world-line of the point-like
object). We can take the line to be arbitrarily curved. Then we shall
have for each shape a different classical solution, minimizing locally the
action (4.54). Since magnetic flux is conserved these lines have to be
closed or infinite. The contribution to the partition function can be
expressed as a sum over all possible magnetic flux lines, which have
Coulomb attraction between them. This picture is quantitatively ref-
lected in formulas (4.83), (4.86), (4.87).

It is easy to deduce that for large e, 2 those flux lines have negligible
influence on the system in the infrared limit. The reason is that lines of
length L have action ~ L and their contribution to (4.87) is given by:

ZY ~ e Ly (4.88)

(Here (c')* is the number of loops of the length L). We conclude that for
large enough e 2> magnetic loops are small and we have no disordering
in the system, which is effectively described in this case by means of
massless free photons. At the same time there is a critical coupling e2, at
which condensation of magnetic lines begins. It is to be expected that
for e > e2 we obtain a strong coupling phase with confinement of
charge, while for e2 < e we obtain the photon phase.

The picture described above can be understood in yet another way.
Magnetic monopoles which were instantons for 2 = 3 become particles
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for 9 = 4, being minima of the potential energy for the hamiltonian
(3.34). This point will be discussed in detail in Chapter 6. Here it suffices
to realize that each time-independent classical solution with finite
energy (a soliton) corresponds in the limit of small coupling to a stable
particle. As we go to 2 = 4 the quantity which was action in 2 = 3
becomes energy.

"The closed loops we discussed above are the world lines of mono-
pole-antimonopole pairs. We see that at some coupling the vacuum
becomes filled with a monopole condensate. Such a medium confines
electric charges as is seen from the following physical analogy. Take a
superconductor in which in the ground state we have a condensate of
electrically charged fields (Cooper pairs). It is known that an external
magnetic field can penetrate inside a superconductor only by forming a
number of thin filaments, carrying quantized magnetic flux. If we
imagine two magnetic charges inside the superconductor, we shall
deduce from the Ginzburg-Landau equations that their magnetic flux
should be concentrated inside such a filament, connecting them. Their
interaction energy is proportional to the distance. If in this description
we interchange words “electric” and “magnetic” we conclude that two
electric charges in a medium formed by a monopole condensate are
confined.

Can we have an Abelian theory which confines even at 2 = 4 for all
couplings? We see that this equation is equivalent to finding a system
with point-like finite action instantons. It is easy to give an example of
such a system. Let us consider a “gauge field of the third rank”, namely
consider as primary variables not vector potentials A, , but tensors
F, .5 attached to plaquettes. Form a field strength, associated with
cubes:

O, = €4p,505F 15 (4.89)
and consider the action
1

2
€

S=—Y (1 —cosd,,) (4.90)

Literal repetition of the above consideration would lead us to the
following instanton part of the partition function:

- 1 -
Zt =3 exp(— - L AL q,r<2n)2) (491
{q=} 0x,x

In this case we have a 2 = 4 plasma of point-like instantons. We see
that the system will acquire a mass gap owing to Debye screening,
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Following the tradition of previous sections let us explain how the
systems we have discussed look in the continuum formulation. As we
have already said, compact QED can be obtained from Non-Abelian
gauge theory. To give an example, let us consider SU(2) theory, which
contains three gauge bosons, and break the SU(2) so as to make two of
these bosons massive. This is the so-called Georgi-Glashow model for
unifying weak and electromagnetic interactions. All more complicated
unifications follow the pattern we encounter in this model. Its action is
given by:

— 1 2 1 202 4 2y2 1 2
5= Jd"{i (V@) =5 1307 + ;@) + 15 (F) (492)

where @ = (¢, ¢,,¢3) is a triplet of isotopic vector fields, F,, =
0,4, — 0,4, + A, x A, is the Yang-Mills field strength, and V,¢ =
0,9+ A, x @. If we consider an expansion of the fields near the
absolute minimum of the potential energy: ¢, , =0, ¢3 = uo/\/ A we
find as a result the following particle content: heavy charged W<
bosons

WE=(AlF iAﬁ)/\/i with m = e2u2/A (4.93)

a scalar field o = @3 — o/ /4 with a mass m2 = 242, and the electro-
magnetic field 4} which is massless. We see that in the infrared limit this
theory describes free photons. All heavy fields can be viewed in this
limit as a regularization of this photon theory, which replaces the lattice
regularization. The fact that it is a compact version of photon theory
reveals itself in the existence of nontrivial instantons for the action
(4.92). They have the form (for 2 = 3):

X,
b —
nab ~

Aj = a(r)e

a Xa
¢° =u(r) —
r

with

w0 =0 o) =po/\/A
a(0) =0 a(r) ~ —1fr, r->w

The analysis which will be given in Chapter 6 shows that this solution
has a finite action and describes magnetic charge. For the present
purposes it is enough to understand that since A%, ~ 1/r and F4, ~ 1/r?
as r — oo the interaction of two such objects, | FZ, d®x ~ r3/r* ~ 1/r
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and we obtain a Coulomb force. Therefore all our considerations of
compact QED in three dimensions work for the Georgi-Glashow
model. In particular, in the weak coupling limit this model confines
electric charges by a linear potential for 9 =3 and describes an
ordinary Coulomb electric force for 2 = 4.

It would be quite interesting to have a continuum formulation for the
compact theory of the third rank. Unfortunately this is not known,
mainly because it is difficult to give a continuum Non-Abelian general-
ization for this case.



CHAPTER 5

Quark Confinement, Superfluidity,
Elasticity. Criteria and Analogies

DOI: 10.1201/9780203755082-5

In the previous chapter we were mainly interested in the influence of
instantons on the mass gap. Here we shall present more direct criteria
for confinement by computation of the electric force between charges
and the dielectric permeability of the vacuum. We shall also stress
analogies with some phenomena in solid state physics.

Let us begin from the general expression for the static potential valid
in both the Abelian and the Non-Abelian cases. The main idea is the
following. We have seen in Chapter 3 that the eigenstates of a gauge
Hamiltonian can be divided into sectors, containing static charges at
points x,, ..., xy with colour spins (for the SU(2) group as an example)
I,,..., Iy. We shall now show how to express the partition function:

ZUyxy, . yxy) = ¥ e Pl .1

in terms of a functional integral. Here E (I,x,, ..., IyXxy) are the energy
levels for the corresponding sector and f is the physical inverse
temperature (and not an inverse coupling constant). We find it conven-
ient to begin with nonzero temperature both for physical and technical
reasons. The static potential (which depends on f) is defined as the
difference in free energy between the sector we are considering and the
vacuum sector:

e P dvmn B = Z(] x L Iyxy)/Z, (52)

Our first aim now is to express this quantity in terms of a functional
integral over the gauge field. The derivation is based on the following
formula of quantum mechanics:

Z(x, %, By = Y e 7Py (x )W ,(%)
s

= j Dx(t) exp{— J dr(x? + v(x))} (5.3)

x(0)=x (V]
x(fr=x

73
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The generalization of this formula for the gauge system is:}

Z{A A =Y e B ({A,(0ONY, ({40}

I}
= I DA(x,T) exp{— J dt Tr(A? + F2) dx3} (54)
0

An(x, 0) = An(x)
An(x, p)= An(x)

Here the dot means time derivative, indices refer to space directions,
F,,, is the magnetic part of the Yang-Mills field strength, and the sum
over eigenstates includes them all. Let us first compute the partition
function corresponding to the vacuum sector. In order to project it out
of (5.4), we use the following comment. According to (3.37),

W, (A%) = ¥, (A) for the vacuum sector
and
¥, (4% =[] 2'(Q(x )Y, (4)

J

(5.5)
(A2=0714,0+0Q°19,0)

for the other sectors (where 2 is the representation matrix for the SU(2)
group). These functions 2 have the property:

f dQ 2'Q) =0 for 1#0 (5.6)

(where the integral is taken over the SU(2) group measure). Usih'g (5.5)
and (5.6) we conclude that:

Zo= 3 s | 900 [ 2a@z(ahiam

nevacuum
sector

= j 20(x) J DA, (x,7)

An(x, )= Af}x.0)

s
x exp{—Tr J (A2 + F2) dx dr}
0

= j DQUx)Z[Qx)] )

+ We have fixed the gauge by A4(x) =0



QUARK CONFINEMENT 75

We see that in order to project out gauge invariant states (vacuum
sector) one has to integrate over gauge fields, rotated by the gauge
transformation Q. The total (unprojected) Z would be given by the
integral over strictly periodic A4,,.

In order to project out the sector with a certain number of static
charges we have to consider the integral:

Z(xy, .., Iyxy) = j D)y (QAx ) - 4 (QAxNZIQAX)]  (5.8)
where y,(Q) is the character of the representation with spin I:

+1
H@= Y ’9,',.»,(9) (59)
This formula is easily checked by use of the transformation law (3.51)
and standard orthonormality conditions for the representation matrix
9'. For a general group G the formula will be the same, except that [
will be replaced by the set of numbers characterizing the representation.
We have obtained the following result:

e Vs IneniB) = () (Q(x,)) - X (x> (5.10)

where the averaging must be performed with the “rotated” partition
function Z[Q] as a weight. We see from this representation that a single
static charge I would have an infinite energy if:

((x))) =0 (5.11)
The linear potential between two charges would correspond to:
AQUx AA(QAxDD | =, e clximxl (5.12)

Let us show now that there is a symmetry in the gauge systems which, if
unbroken, leads to the condition (5.11) for half-integer I, and hence to
charge confinement. This is the symmetry of the centre of the gauge
group. In the case of SU(2) the centre consists of reflections Q - —Q,
while for SU(N) it is formed by transformations:

Q - e2miNQ (5.13)
From the definition of Z[Q]:

Z[Q] = J‘ gAn(x* T) exp(—s(An))

(5.14)
Ax B =Q 1 Ax,00Q + Q1 3,
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we see that Z[Q] is indeed invariant under the transformations
described. At the same time (for SU(2)):

1u(—Q) = x,(Q) I integer
(5.15)
1u(—Q) = —x(Q) [ halfinteger

We see, that in the case of unbroken symmetry (5.11) is true for
half-integer I, only. We have already encountered this situation in
Chapter 3, and explained that it reflects screening of integer I-spins by
I =1 gluons.

Half-integer spins cannot be screened if Q —» —Q symmetry is
unbroken. In the broken symmetry phase they are also screened thus
giving (x;> # 0. It is a dynamical question to find out which phase is
realized in our theory.

We shall see below how this question is solved for the cases analysed
in the previous chapter. Before doing that, let us give another criterion
for confinement, which is sometimes more convenient than the previous
one. It is applicable only at zero temperature.

Let us consider a closed loop C, and associate with it a phase factor:

Y(C)=Pexp § A, dx* (5.16)

C

Here P exp means an ordered exponent defined as:

P exp §Au dx* = lim [](1+ A (x;) Ax%) (5.17)

Ax;j~0 j

(remember that 4, is a matrix, lying in the Lie algebra of our group and
factors in (5.17) do not commute). Now the properties of gauge systems
can be characterized by the behaviour of the following correlation
function:

Wi(C) = <01, (P(C)]0) (5.18)
Let us show that if

W (C) — exp(— const & ;.(C))
(5.19)
(A in(C) 1s the minimal area bounded by C)

for large enough loops, then the static potential between charges is
linear. To prove this, let us consider a rectangle lying in the x3, ¢ plane,
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and take the gauge A, = 0. We have then:
0 R
Wi(Crr) = <O[x,(P exp f A3(<% T)dx*- Pexp IAa(x3, 0)dx*|0>
R ]
0 R
= <0|@,’,,,,,,<P expj Ay (%3, T)dx3>.oz,',,,,,,<P exp f Ay(x3,0) dx3>|0)

R 0

0
= <0|9:,,m,<P exp j dx3A3(x3,0)) e~ *T
R

nom,m’

R
x@;'m(Pexp f As(xS,O)dx3>|0>= Y I ol e 5T
1]

where

R

(fwmn0 = <n|9,',.l,,..(P exp J A5(x>,0) dx3>|0> (5.20)

0

A is the Hamiltonian of the gauge system and a standard insertion of a
complete set of states has been used. The crucial point of the derivation
is that while the vacuum |0) belongs to the gauge invariant sector the
states |n> belong to the sector with two static charges of colour spin I.
This is because the P-exponent in (5.20) is not gauge invariant, but

transforms as:
R

R
Pexp J ASdx3=Q" l(0)<P exp J A, dx3)Q(R) (5.21)
(4]
Therefore the states

¥ = @,’,,,,,(P exp | A4, dx3>|0>

ol—ﬁh

have a transformation law, which according to (3.51), corresponds to
the two charge sector.
As we take the limit T — co we find from (5.20):
Wi(Cry) — e Bo®T (5.22)

T—=w
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where EJ(R) is the minimal energy in the sector described. From this
we see that the “area law” (5.19) corresponds to

EY(R) ~ R (5.23)

From the above, we expect the area law to be true in the confining
phase for half-integer I, while for integers the decay of W,(C) is much
slower. Intuitively the criterion described can be understood as follows.
Take a charge I around a closed loop C in space-time. The transition
amplitude associated with this process is given by W,(C). On the other
hand, this loop can be interpreted as the creation of a quark-anti-quark
pair, propagation of this pair for a long time T and finally its
annihilation. The T-dependence of the amplitude must be given by a
factor exp{ —iE(R)Y(—iT)} = exp(— E(R)T), where E(R) is the interac-
tion energy of the pair and (—iT) is the time of its existence.

Equating these two factors we again get (5.22).

Let us check now if we really have confinement in the models
described in the previous chapter and compute the binding force
between charges. We shall show that instanton contributions to the
phase factor in the case of 2 = 3 O(2) gauge theory lead to the area law.

The calculation is easily performed since

F(C)= <exp<i § A} dx“)> ~ <exp<i J H, dS“>> (5.24)
s S

and we know from (4.76) that this can be written

F(C)= <exp(i J n(x)p(x) dx>> (5.25)

1 —
CRIE =

where

N
Since the field 7(x) is strong enough we cannot neglect nonlinearities in
(4.74). Rather F(C) is given by
2
F(O)= CXP{— <%) J [(V(tes = m)* — M? cos 1] d’-‘} (5.26)
where y., is determined from the nonlinear Debye equation
V3t — m) = M?sin x (527

Fluctuation corrections to this field are again exponentially small.
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Let us assume that the contour C is planar and lies in the xy plane.
Then, eq. (5.27) takes the form
Vi = 218" (2)05(xy) + $M? sin y,,

1, x,yeS (5.28)
0 otherwise

Os(xy) = {

Far from the boundaries of the contour, eq. (5.28) is essentially one
dimensional (x., depends only on Z) and has the solution

2= 4 arctan(e™™%) Z>0 539
te(2) = {—4 arctan(eM?) Z <0 (-29)
Substituting (5.29) into (5.26), we obtain
F(C)=¢"
E(R) =yR (5.30)
e\? N
y= <ﬂ) M f dy((xe — 1"Xx — y) + M? cos xo,(y))

The result (5.30) implies that between two fixed charges there exists an
electric string with energy density 7.

Now several comments are in order. First it is useful to understand
the results we have obtained, using a special diagram technique.
Namely, it is possible to represent

H@HG) = «—» 4 « QO 41 0 0, (5.31)
+ 00 . Q 44...

Here we denote the free H-field operator by a solid line, pseudoparticles
by open circles and the Coulomb interaction between pseudoparticles
by dashed lines. It is possible to draw more complicated diagrams
containing both solid and dashed lines, but all of them are small for
small momenta and charges.

From (5.31) and (4.78) we see the crucial difference between pseudo-
particle and instanton contributions to correlation functions. The
second is purely transverse and the first is longitudinal, due to the fact
that the quantity d, H, measures the density of topological charge. The
existence of these two contributions makes possible the cancellation of
singularities at zero momentum.

We have proved that the potential between two charges grows
linearly. It is evident that there should exist an infinite resonance



80 GAUGE FIELDS AND STRINGS

spectrum in our theory, and it is tempting to find it directly by
considering the correlation functions for operators of higher spin.
Unfortunately in our approximation these correlation functions con-
tain only scalar particle thresholds, and resonances should appear in
higher order approximation, so the resonance problem remains to be
solved even in our model.

An interesting property of the above formulas is that they lead to
confinement of half-integer charges for which the Dirac quantization
condition is true:

e-g=12m

(where g is the minimal charge of a magnetic pole). If we double the
charge of the test particles, then it is easy to check that the contribution
of monopoles to exp{i | H,dS*} will be negligible and we have no
confinement of such charges. In the framework of the Georgi-Glashow
model, described in Chapter 4, this result is quite natural since integer
charges can be screened by W* bosons, while for half-integers this is
impossible. However, in the case of the lattice 0(2) model the above
conclusion is rather surprising. Thus, we have proved the anticipated
result that O(2) gauge theories for 2 = 3 produce linear confinement of
half-integer charges. For 2 =4 it is not so for e} < 1 since small
instanton loops give very small contributions to the phase factors. This
is easy to verify by calculations analogous to those above.

Let us now describe one more manifestation of confinement, which is
of some interest because of analogies with solid state physics. Namely
let us show that in the confining phase the dielectric constant is zero. In
order to introduce this quantity in abelian systems let us consider an
antisymmetric external field f,,(x) coupled to our system in the
following way:

exp(—W[/f,]) = f DA, e SFuvtSu) (5.32)

(where F,, =0,A, — 0,A,; we take the liberty of using continuum
notation while meaning a lattice field theory). From this definition it is
clear that W[ f] is invariant under gauge transformation of the “third
kind”:

S =S + 0,4, — 0,4, (5.33)

because it can be compensated in (5.32) by a change 4, - A4, + 4,.
Therefore, W should depend on the following combinations of f,,:

¢uvl = aufv,l + avf).u + a/l uv (534)
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At first glance this implies that a constant external f,, has no influence
on the system. This is indeed so if we are in a phase with finite
correlation length. However, when massless photons are present we
have for constant f,, (at first neglecting instanton effects):

e"W‘f‘=J@A exp< : IFZ d.rc)exp(—gj-f2 dx)

(5.35)
WLf] = W[0] = —J £2, dx

(because | F,, f,, dx = f,, [ F,, dx = 0). Accounting for small (in 2 =
4) instanton effects gives:

2
WLf] - W[0] = "(eez")J f2,dx (5.36)
(1]

where k is some constant which has a natural interpretation as the
dielectric constant of the vacuum. The apparent paradox between (5.34)
and (5.36) is easily resolved if we notice that due to the gapless photon,
terms like § ¢,,, 07 %¢,,, dx dx’ (where 82 is the inverse Laplacian)
are present in the effective action. Such terms do not vanish for constant
Jfuvand produce the result (5.36). We can also say that while constant f,,
can be removed by the transformation:

A, - A+ X7 (5.37)

This transformation changes the boundary conditions which were
A,lise = 0. If the system has long range correlations, this change of
boundary condition will change the partition function which thus
becomes dependent on f,,. As we know, for e§ > €3, in @ = 4 we have
a mass gap and a confining phase. From the above argument it is clear
that at this point the dielectric constant x becomes zero, and remains
zero in all the confining region:

k(ed) =0 for el > el (5.38)

In the case 2 = 3, k is zero for all values of the coupling. We conclude
that the reaction to the homogeneous external antisymmetric field,
described by the dielectric constant x can serve as a confinement
criterion; we have

(5.39)

_ {const in the Coulomb phase
"o in the confining phase
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There exists an interesting analogy between « in the gauge systems and
certain quantities in global systems. Let us consider the response of the
global O(2) system to the external vector field v,:

e Wl = J D e~ S@ueton) (5.40)

Again W[v,] is gauge invariant:
Wlo, + 0,41 = W[,] (5.41)

If we neglect vortices, for constant v, we obtain:
B 2
W= 3 ps(B) | vidx (5.42)

(ps(B) being some function).
The constant v, can be removed from the action by the transforma-
tion:

@ - @+ uv,x" (5.43)

but then it appears in the boundary conditions. Formula (5.42) does not
contradict gauge invariance since due to massless excitations in the
system v,(x) appears in the combination:

W~ j vﬂ<5~" s )v dx (5.44)

After the phase transition, when a correlation length appears in the
system, we must have:

~

ps(B)=0 for B<B., (5.45)

The analogy between pgand « is obvious. What is interesting is that if
our O(2) system describes *He then py(B) has an interpretation as the
superfluid density. Therefore, the normal phase of *He correspond to
the confining phase of the gauge system, and the superfluid phase to the
Coulomb phase. Let us show now that pg is indeed the superfluid
density. To do this we consider a second-quantized Hamiltonian,
describing a Bose liquid:

-

H = J(;; 10, W1 + J ¥ (x)P(x)u(x — Y0P dy) dx (5.46)

where u is a shortrange interatomic interaction. Suppose that the walls,
containing our liquid, move with velocity v. The question is whether the
liquid will move with the same velocity (owing to friction with the
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walls) or whether it will stay at rest (as in the case of a superfluid). Let
us go to the coordinate system where the walls are at rest. This is
achieved by a Galilean transformation

Y(x) - e~ ™ mY(x) (5.47)

after which

(HY —><J %nl(a“ — imp)¥|? dx + >

= (K> — 0(Py> + Nmp?/2 (5.48)

Here

L1
P, = j W Wdr

is the total momentum. We see that if before the transformation the
liquid was at rest (P, = 0, 5#, = E,) we have to expect that the change
(5.47) will add to the Hamiltonian a v-term. If the liquid moves then
Hy=Ey+ Nmv?/2; P, = +Nmv and the substitution (5.47) should
add nothing to (). If we recall now that the only infrared-important
quantity in *He is ¢(x), the phase of W(x), we conclude that the
existence of superfluidity manifests itself in the response of our system
to the transformation:

@o(x) > @ — mox (5.49)

Normal liquid is indifferent to such a transformation, while the
superfluid does react. We have also seen that such a response is possible
exclusively because of the pole terms in (5.44). The dielectric constant in
a gauge system was shown to be a precise analogue of the superfluid
density pg. This analogy can be extended further in order to include
crystals which, as we saw, are described by the same kind of actions
depending on u,(x). In this case we have to examine the response of the
system to a symmetric traceless field defined by:

U (X) = u(x) + hygx? (5.50)

(h.e = 0). Again, nonzero response to h,, (which is a kind of external
gravitational field, just as v, could have been considered as an external
electromagnetic field), is possible in the longranged phase, and is
described by the shear modulus

W= g h, (5.51)
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After melting we have u = 0. All these nontrivial constants, k, pg, 4, etc.,
can be called, following V. L. Berezinsky, transverse rigidities. They can
be formally defined as residues at the massless poles of corresponding
polarization operators and therefore exist only in the broken symmetry
phase. A subtle point is that, as we mentioned in Chapter 1, in the case
of gauge systems, and in &2 = 2 global systems, the order parameters are
zero and there are no poles in the Green’s functions. However, there are
poles in the corresponding polarization operators and it is these poles
which determine the physics of the systems.

In Non-Abelian cases with global symmetries it is quite straight-
forward to introduce an analogue of the superfluid density. If we take,
for instance, the case of the n-field we can examine its response to an
external triplet vector field:

e~ Wiva — f Dn(x) exp{— gj @,m+ v, x n)? dx} (5.52)

Again we conclude that W[v] has to possess Non-Abelian gauge
invariance:

Wiv,] = WLf,]

(5.53)
S=0,0,—0,v, +v, X0,
The “superfluid density” can be defined as the residue:
~ B 1
W= 5 Ps f;.v '55 _f;‘v dx (554)

The Non-Abelian gauge theories present some difficulty in this respect.
We have to introduce a gauge field of the “third kind”, £,,, coupled to
the Yang-Mills field so as to have Non-Abelian third kind gauge
invariance. I do not know how to do this in a continuum theory, though
on a lattice there are some possibilities. We still can introduce a purely
static dielectric constant by means of integrating over A, fields with
boundary conditions:

a a
By MY

x" (5.55)

and defining « as the coefficient before (/%,)? in the effective action.
Vanishing of this x is a signal for quark confinement.

Ending this section, let us stress that the dielectric constants intro-
duced above do not have a naive direct relation to static potentials.
This is because they determine the response to infinitesimal fields, and
static charges, being quantized, are necessarily finite.



CHAPTER 6

Topology of Gauge Fields
and Related Problems

DOI: 10.1201/9780203755082-6

We have seen in the previous chapters, that in Abelian systems the
problem of charge confinement is solved by instantons.

In Non-Abelian theories instanton solutions are also present. How-
ever, due to the large perturbative fluctuations, discussed in Chapter 2,
it is difficult to judge whether they play a decisive role in forming a mass
gap and a confining regime. In such theories we have a kind of
instanton liquid which is difficult to treat. It is possible that due to some
hidden symmetries, present in these systems, instantons may form a
useful set of variables for an exact description of the system, but this has
not yet been shown.

At the same time, due to the fact that instantons carry nontrivial
topology (they describe configurations of the fields which can not be
“disentangled”), some manifestations of instantons cannot be mixed up
with perturbative fluctuations.

In this chapter we shall analyse topological properties of (mainly)
nonabelian instantons and solitons and discuss some associated
peculiar effects.

6.1 Instantons for 2 = 2, N = 3 n-Fields

Let us find minima of the classical action for the a-field in the case
N = 3. In order that this action be finite, we have to consider a
boundary condition:

n(x) - n, 6.1)
Therefore, since infinity can be viewed as one point, our x-space is
topologically a sphere. Each configuration n(x) defines a map of such a
sphere in x-space onto the sphere n> = 1, which in the case N = 3 gives

85
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§? — 82 It is known that such maps can be classified by integers q
which define the number of times the second sphere is covered by the
first one. The simplest example of the g-map is described by the
formulas:

3=29, = qe (mod 271) (6.2)

Here (9, ¢) and (9, ¢) are polar and azimuthal angles for the first and
the second sphere. In this formula g must be integer since otherwise the
map would be discontinuous. For the general case the number of
coverings (or topological charge) is defined by:
2r n
1 . =06, 9)
q—z;i J dzpfd..‘)sm.‘)aw,w (6.3)
0

0

(O3, @)/A(3, ) = (08/09)(0p/0¢p) — (09/0¢)0P/¢) is the jacobian for
the mapping under consideration). It is easy to check that (6.3) can be
rewritten in a more invariant form. For the mapping n = n(x), n* = 1:

q= 1 j d%x n-{0,nd,n)e™ 6.4)
8 s

Here ¢*” is the standard antisymmetric tensor. This formula is checked

by the direct substitution of n = (cos 3, sin § cos @, sin 3sin @) into

(6.4) after which we obtain (6.3). We wish now to minimize the classical

action in the sector with given g. This problem is simplified by the

following trick. Let us consider the identity:

1
Zj(aun + ¢,,[n x 0,n])* d’x
1 1
= 5J‘(ii‘un)z dx — ijeuvn- [0,n x 0,n] d*x (6.5)

From (6.5) we conclude:

S= 2%‘2) f (0,n) d*x = 4e—7:2)q + 4—23 J (0,n + €,,[n x 0,n])* d*x  (6.6)
It follows from (6.6) that in order to find an absolute minimum for the
n-fields with the topological charge g one can avoid the problem of
solving classical equations of motion, which are second order differen-
tial equations. Instead, first order equations can be considered which
are in some sense the “square root” of the classical equations. We have:

O0,n= —¢,[nx0d,n] 6.7)
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the so-called duality equation. If (6.7) is satisfied then, owing to (6.6),
the action has the absolute minimum value equal to 4ng/e3.

Solution of (6.7) is easy. We introduce a complex field w by a
stereographic projection:

ny +iny = 2w/(1 + [w]?)

2z
my=(— W+ " (6.8)

The substitution of (6.8) into (6.7) reduces this equation to:

o,w=(0,+i0,)w=0 (6.9)

Therefore (6.7) are just Cauchy-Riemann equations for the function
w. This function must be not only analytic, but also meromorphic, since
otherwise n would have branch cuts. Hence the most general solution
has the form:

J (6.10)

where we have normalized w by w(w0) = 1, corresponding to n(c0)
pointing in the x-direction. The integer g in (6.10) is just the topological
number. This can be seen without explicit computation since it is clear
from (6.10) that the inverse function z = z(w) is g-valued. That implies
that the w-sphere is covered q times by the z-sphere. Of course, it is also
not difficult to substitute (6.10) into (6.4) and to compute g explicitly.

The remarkable thing about the instantons (6.10) is that they do not
interact classically. There are, however, anti-instantons

L (Z—a;
w =jI=—[l <z‘— b.> (6.11)

J,

having negative topological charge. The mixed configuration of instan-
tons and anti-instantons is not a strict classical solution (as it was for
kinks and anti-kinks in Chapter 4) and a dipole-dipole like interaction
is present. Notice also, that the instantons (6.10) have a natural
structure of dipoles with poles placed at a; and b;.

As we turn from this nice, clean classical mathematics to functional
integrals we encounter a difficulty. Namely, while in the zeroth order
approximation the one instanton contribution is proportional to
e~ St = e#%¢ it is quite obvious that quantum fluctuations should
renormalize the bare coupling e3. The resulting contribution can be
found without explicit computation by the following argument. As we
see from (6.10), the effective size of the instanton with parameters a and
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b is |a — b|. So, it is natural to expect that e in the above expression
will be replaced by:

e*(la — b|) ~ 2n/log(Ala — b|)~* (6.12)

obtained from (2.49) for N = 3. The instanton contribution Z‘!) has to
contain an integral over the parameters a and b. The measure of
integration must have both translational and scale invariance (since a
and b in the classical solution are defined modulo their common scale).
On these grounds we expect:

d%a d%b
Z0~ f ja— b P~ 4n/e*(la — b))
(6.13)

=2 - ~pp|t
la — bf? P

5 j d%a d% dp

(V is the volume of the system and p = |a — b|). We see that this
integral diverges at large values of |a — b| but we learned in Chapter 2
that for |a—b) 2 A~ the formula (6.12) is not applicable since
e?(Ja — b|) is not small any more. For the same reason we cannot trust
(6.13) in this region, since the WKB approximation used in its deriva-
tion is valid only for small couplings.

Nevertheless it makes sense to ask what happens after accounting for
the multi-instanton solution. The tactic for this is to take a classical field
(6.10) and to consider small fluctuations on it as background. After
performing the Gaussian integral, we obtain a determinant of the
corresponding quadratic form which will depend on {a;} and {b;}. The
logarithm of this determinant can be considered as an interaction
energy between instantons, induced by quantum fluctuations. Finally
we_shall have to integrate over the parameters {a;} and {b;}. This
programme can be carried through quite explicitly, the main reason
being that for any self-dual background the kernel of the above-
mentioned quadratic form simplifies considerably. To show this let us
recall that the quadratic part of the action is described by (2.47). In the
case of O(3) we can introduce the complex notation:

(P=(P1 +l(p2 A;a=A“42

1 ,
S"= > J {16, +i4,)01* — 3(¢* 9)BL B} dx? (6.14)
2

- L {10, +14)0)* + 3¢, , F* (0¥ @)} dx* (F,, = 38,4, — 0,4,)
_28(2’ " u(p 2%uv Qo wy — Yuty vl
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where we have used self-duality (6.7):
B = €a,, By
and the consequence of (2.45):
F,, =i(B*B, — B,BY) (6.15)

The kernel of this quadratic form coincides with the square of the Dirac
operator:

(yu(au + IA,‘))Z = (ap + iAp)z + %yséquuv

(1 0 (6.16)
Vs*(o _1>

It is well known (and will be discussed in Chapter 8) that the last
determinant is easily computed. Namely:

1 1
log det (7#(3, +i4,)) = - j (Fun 53 Fa) &% (6.17)

In order to calculate the multi-instanton contribution much work is
still needed. One has to take account properly of collective coordinates
and to compute the integral (6.17). I do not know any simple way of
doing this (which, I am sure, exists). So, referring the reader for further
details to the original papers, let me give the final result:

2q

A
Z@ = W J d2a1 .. .dzaq dzbl . ..dzbq

x [Tla; — ;12 TT1b; — b2 [Tla; — b, 72 (6.18)
ij

i<j

i<j

Or, after summing over g:
= 1241 2 2
Zpnst = — d*a; d*b;
INST q;o (q')Z J‘ I;I J J

X exp{Z(log la; — a;|* + log |b; — b;|?)

i<j

—Zlogla,.—bjlz} (6.19)
i
This result is quite surprising. We see that each instanton behaves as
if it is composed of a pair of opposite Coulomb charges, placed at a;
and b;. Since the two dimensional Coulomb energy is given by
(1/4n) log |a — b|?, the expression (6.19) is the partition function for the
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plasma with inverse temperature f =4n. As was discussed in
Chapter 4, such a plasma has two different phases. For large f§ the
charges form dipoles and the system is neutral, with long range
correlations (no mass gap). At some critical § (which is known to be
equal to 8n), dissociation of the dipoles occurs and for § < ., = 87 we
have a plasma phase with Debye screening, and therefore a mass gap.
We conclude that owing to quantum effects instantons “melt” and
create a finite mass gap in the theory. Before discussing the validity of
the approximations made, let us give a very useful representation for
(6.19). It is based on the so-called bosonization formulas which we
discuss later. If one considers a free massless Dirac field y = (§%) for
2 = 2 and introduces two operators: ¢ . (x) =Y/ Yyrand 6_ = Yz ¥,
it can be shown that
(o.(ay))...0.(ay)o_(by)...0_(by)>
= [Tla;— a,21b, = b TTla;— b; "2 dn e (6.20)

i<j ij

From this formula it follows, that
Zinst = j.@'l/(x)g'/—’(x)
X exp{ — J(l[)iy" 0¥+ ,h/—/lll)} 6.21)

(where Yy = o ,.(x) + o_(x) is a mass term).
We see that in this representation, expansion in instantons becomes a
mass expansion. It is also obvious from (6.21) that

d2
108 Zynsr = VJ (—2—7;)'3 Tr log (y*p, + A) (6.22)

Expansion in A leads to more and more infrared singular terms,
containing | d*p/p" but the sum (6.22) is well behaved.

We may draw important conclusions from the above computations,
but to what extent are the results reliable? There are two sources of
errors. First of all we have to include anti-instantons and take account
of their (classical) interaction with instantons. This interaction is of
dipole-dipole type. One can imagine that we shall have to introduce
two sorts of massive fermions, ¥, and ¥ ,, describing instantons and
anti-instantons and to consider some kind of interaction for y, and ¥ ,.
This approacht results in a completely integrable model containing the
fermions just described. The problem with this approach is that the

1 Due to Buchvostov and Lipatov (1980).
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instanton-anti-instanton configuration can be unambiguously defined
only for well-separated objects, because otherwise it is difficult to
distinguish it from other fluctuations with zero topological charge. This
ambiguity is closely connected with another source of errors, coming
from the fact that the quantum fluctuations above were treated in one
loop approximation. For each separate g-instanton contribution this
would be disastrous because these terms are infrared divergent and the
effective charge e? becomes unboundedly large. [However, we see that
after summation over g these divergences are cut off at the Debye length
4717 At this length e2 ~ 1 and so are higher quantum corrections. That
gives hope that at least qualitatively the system is properly described by
the above approach. Moreover, it often happens in integrable systems
that the one loop approximation turns out to be exact. So an optimistic
view of the situation is the following. One has to introduce instantons,
described by a massive Dirac field ,, and anti-instantons described by
¥,. Next one must find a certain extrapolation of the instanton-anti-
instanton interaction to small distance. Then it might be hoped that
there exists such an extrapolation that the resulting system describes
the n-field exactly and not only in one loop approximation. Whether
this is true can in principle be checked by the use of exact solutions, but
up to now this has not yet been done.

So at present we do not know whether exact properties of the n-field
can be formulated in terms of instantons, but this possibility seems to be
open.

The same, and even more difficult, problems exist in nonabelian
gauge theories which we describe in the next section. Before coming to
that let us mention briefly what kind of instanton structure is present in
other versions of chiral models. First of all, n-fields with the group
O(N), N = 4 do not have any nontrivial topology; that is to say any
map S — SV~ for N > 4 is contractible. The reason for this is easy to
understand if we consider the case of mapping S! — 52, that is a circle
mapped on to an ordinary sphere, say to its equator. It is obvious, that
by moving this circle to the north pole we can contract it to a point. For
similar reasons any map S? — SV¥ ! can be deformed to the trivial one.
A slightly more complicated argument shows that the map of S? onto
any Non-Abelian Lie group G, described by the principal chiral field
g(x) is also contractible. These theories do not have stable instantons.
The chiral theories which do have them are described by the coset
spaces G/H in which H contains U(1) as a factor. Let us explain how
this comes about. In the above theories the fields can be represented by

@uX) = gup(X)0p, x€5* (6.23)
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where g,,€G and ¢{” is a constant field, invariant under H:
hyol® = @@ for heH (6.24)

The matrix g,,(x) in (6.23) need not be continuous. Let us consider a set
of matrices g™(x) defined in the northern hemisphere and g(x)
defined in the southern one. Suppose on the equator we have the
relation:

g¥(x) = g®N(x)- h(x) xeequator = §* heH (6.25)

We see from (6.23) and (6.24) that in spite of the discontinuity in g(x)
the field ¢,(x) is continuous and defines a map S? — G/H. From (6.25)
we deduce that these maps can be classified according to the maps of
the equator to H:S' —» H. If H = U(1) this is just a S' - S* map,
classified by the winding number. If H = U(1) x something, then we
can map S' onto the first factor in H. In mathematical notation the
statement we have proved is written as:

1 (G/H)Y ~ n(H) if n,G)=0 (6.26)

(where n,(M) is the kth homotopy group, elements of which are classes
of nontrivial maps of §* - M).

The most familiar example of a chiral theory with instanton structure
is the so-called CPY~!'-model where the field belongs to the complex
projective space:

SU(N)

N-1 __
beCPY ! = N - D e U (6.27)

(The case N =2 is the O(3) n-field) There are some interesting
dynamics in this model. We shall discuss it in Chapter 8.

6.2 Instantons in Non-Abelian Gauge Theories

Non-Abelian gauge theories with any symmetry group G possess
topologically nontrivial fields. This can be seen from the following
consideration. In order that the Yang-Mills action be finite one must
require that:

F(x) = o(1/x?) (6.28)

-
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From this fact we deduce:

A (x) = g7 (x) 0,9(x) + o(1/x) (6.29)
where g(x)eG.

If we bound our 2 = 4 Euclidean space by a large three-dimensional
sphere S* we obtain, according to (6.29), a map g(x): S - G. It is easy
to see that all such maps are classified by the integers for any G. Let us
prove this for G = SU(2). Any matrix g in this case can be written as:

g=n, +in-t (6.30)
n+n=1; gtg=1 (6.31)

(here t are the Pauli matrices). Therefore, elements of the SU(2) group
are in one to one correspondence with points of the sphere S* defined
by the equation (6.31). The map of the $* which bounds the x-space
onto SU(2) is therefore just the map S* — S>. In this latter case all the
arguments we had for 2 — $? in Section 6.1 are applicable. We have an
integer q which is equal to the number of coverings given by the integral
of the Jacobian. The analogue of the formula (6.4) in the present case
has the form:

1
122

q J d3x e, (n® E,n® &,n° ¢,n%)

1
=5 J d*x €,,, TH(L, L, L)) (6.32)

with
L(x)=g""'¢,9(x)

It is easily checked that the combination of n in the first equality is just
the surface element of $* and hence the first term (6.32) is the Jacobian
for the transformation from the x-space (forming S°) to the n-space.
The second equality can be checked by explicit computation or by
realizing that the integrand in this formula is the only possible
expression, having dimension 3 and invariant under G ® G:

g(x) — ug(x)v (6.33)

Therefore it must be proportional to an element of the group volume.

We have obtained the following classification of A,. Take the
asymptotic form of a given A -field at x — oo, and determine g(x) from
(6.29). After that, compute q from (6.32). Gauge fields with different g
cannot be continuously deformed to one another.
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There exists a more convenient expression for g than (6.32). It is given
by the formula:

q " Tr(F,, F,,) d*x

T 32
1
=53 |TrFAF (6.34)

X

Here in the second equality we have used a convenient notation
adopted in mathematics. For each skew-symmetric p-rank tensor
T*#» one can define the p-form:

T,

4

1
— _ THi1.
= T rdx,, A A dx#p

where the “wedge™ product A is a skew-symmetric bilinear operation.
Its main property is:

dx; A dx; = —dx; A dx; (ie.dx; A dx; =0)

Generally,

TAT,=(=1FT AT,
The volume element of a space of dimension n can also be represented
as an n-form:

1
dV=dx' A Adx"=—¢, dx*t A - A dxtn
n! 1ee-lin

Below we will use the operator one-form

0
d=dx*—
xax“

that transforms p-forms into (p + 1)-forms:

1
dT, = — (@

=5 Yydx' A dx*t A -eo A dxte

va.”u,,
From this definition the important property d*7T, =0 follows for
arbitrary T,. The main convenience of this notation is that we avoid
writing tensor indices, thus saving a lot of ink.

Let us prove now that (6.34) is equivalent to (6.32). For this let us
show first that the integrand in (6.34) is a total divergence. The easiest
way of doing this is to consider a variation of the integrand under
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variation of the field. We have:
p(x)=Tr(F A F)
3p(x) = 2 Te(F A 6F) (6.35)
F=dA+ AnA A=%F”vdx“/\dx"

OF=d0A+ AASA+O0AANA=V-6A4

(where F is a 2-form; d is called the exterior derivative). For pedagogi-
cal reasons let us repeat (6.35) in the ordinary notation:

P(X) = §€4,5, TH(F, F, ) d*x

nvip Tr(F”v‘sFlp) d“x (6.36)
F,=0,A,—0,A,+[A4,, A]

OF,, = 8,64, + [A,,04,] — (uov)=V,84, -V, 64

Sp =1e

M

From these equalities we obtain:

op(x)=2TrFA(dOA+ A ASA+ 34N A)
=2Tr(F A ddA)+2Tr(FAA—AAF)AdA
=2TrF AdéA + 2TrdF A 6A =2d(Tr F A 8A)
=" 9, Tr(F,;64,) d*x (6.37)

where we have used the Bianchi identity:

[V,Fl=dF+ AAF—FA A
(6.38)
=3(3,F;, + [A,, F;,,D) dx* A dx* A dx? =0

We have:

8p(x) = (8,0*(x)) d*x
(6.39)
SHH(x) = "™ Tr(F,,04,)
Now we have to obtain the current ¢, itself. To do this let us introduce
a parameter 1:0 <t <1 and consider a family of gauge fields
A, (x, 1) = 1A, (x). According to (6.39) we have:

O (X1 s 04,
T—é Tr| FVA(X,T)Aa—T-

= e Tr{(1(0,4; — 0;4,) + T[4, A1) 4,}

(6.40)
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Integrating (6.40) on 7 we obtain:

HH(x) = A HMx, 1) 641)
= 3P Tr(0,4, — 0,4, + 3[A,, 4,])- 4,)
3 To(F *F) = 0, 4%(x) 642)
(“Fa = $euus )

uvip

Of course, after the answer (6.41) and (6.42) is known, it can be checked
by direct computation.
Substitution of (6.42) into (6.34) gives:

1
= ffu d3g# (6.43)
s

where we integrate over a large S. At these distances F w =0, and
(6.41) can be replaced by:

i
HHx) = 5 TH(0, Ay = 0,4, + 34,44,

x — % Tr(A,4,4,)

~ — L Tr(L, L, L,) (6.44)

This proves the equivalence of (6.32) and (6.34).
Our aim now is to find an instanton solution with g = 1. As in the
case of the n-field we can avoid solving the Yang-Mills equations

themselves, by considering instead the “square root” of them. Let us use
an identity:

1
S=‘QITrFﬁVd4x

1 1
= j Tr(F,, — *F,,)?) d*x + — | Tr(F,,*F,) d*x

8ed 4e
8n? 1
= J TH(F,y — *F,)?) d*x (6.45)
eg  8ef
We see that if we find a solution of the “duality” equation
F, =*F, (6.46)

then the action for a fixed q will be minimal. Actually, it is trivial to
check that if the first-order equations (6.46) are satisfied, then the

Yang-Mills equations
V,F* =0 (6.47)
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will also be satisfied (the converse is not true). To check this, let us
differentiate (6.46):

V,F*"=V*F, =0 (6.48)
(where the last equality is a consequence of the Bianichi identity:

Vo Fp,+ VyF, +V,F ;=0
Y B ¥ y' ap (6.49)
if Fop=0,A45— 0,4, +[A4,, Ap))

Notice by the way that for constant A, this reduces to the Jacobi
identity:

(A, (4, A, 1] + [Ay, [4,, A1) + [4,,[A,, 411 =0 (6.50)

We see that the “duality” equations (6.46) are in some sense a
four dimensional analogue of the Cauchy-Riemann equations (6.9).
Their most surprising property is that they possess multi-instanton
solutions. Before discussing them let us present a solution with g = 1.
The ansatz for this solution can be found by the following trick.

Let us consider instead of the gauge group SU(2), a group SU(2) ®
SU(2) ~ 0(4). Then equations (6.46) will have the symmetry group
0(4) ® 0(4), where the first factor is space rotations, and the second
isotopic rotations. We shall be looking for a solution which breaks
0(4) ® O(4) but preserves the single O(4) formed by simultaneous
rotations in x-space and isotopic space. After that we shall return to
SUQ2).

Generators of O(4) are described by matrices I*#, skew-symmetric in
(a, B), which represent a rotation in the («, f)-plane. Therefore, gauge
fields for this group also have these indices:

A, = A:”(x) (6.51)
The most general O(4)-symmetric ansatz is given by:
A(x) = a(r*)x,0,5 — X50,,) (r* = x,x*) (6.52)

On symmetry grounds it must be compatible with the Yang-Mills and
duality equations. The six fields 4% can be split into two sets, each of
three fields, 45 and B, each corresponding to an SU(2). This splitting is
described by:
Ay = 3(AR° + 3™ AL) = (g ALY
(6.53)
By = 3(AQ® + e AY) = in,,, A%
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(here 9,5 = €ape> Nabo = Oap» €tC.). The origin of this decomposition is
based on a check that the commutation relations:
[Iuﬂ’ 176] = WP 4 P
— 891 — §P1 (6.54)
get decomposed as:

[X: Xf)=eu XS, [X].X;1=0

abc

for
X3 = 3Geapelye £ Loo)
We conclude from (6.52) and (6.53) that the ansatz:
Ay = — My x,a(r?) (6.55)

»

is bound to be compatible with the duality equation. The substitution
of (6.55) into (6.46) gives after some simple calculations:

znauv(xv - av)
(x —a)* + p?

o’
((x — @)* + p?)?
with arbitrary scale parameter p and position parameter a,,.

This Non-Abelian instanton can be viewed as a magnetic dipole of
size p. If we consider now the contribution of one instanton to the
partition function Z we find, just as in cas¢ of n-field, several factors.
First of all we have a factor e~ = e ~#*%/¢ which gets replaced, after

taking account of the one loop correction by e~ %**/¢*® where, for
SU(N)

A(x) =
(6.56)
F:v(x) = -

8n?

3
€)= TIN = log(ip)

(6.57)

is an effective coupling for the size p. The contribution has to be
integrated over p and a. The measure must be both scale and transla-
tionally invariant. The only combination with these properties is
d*R dp p~>. We find from this consideration:

d 2102 d
Zgll‘l)ST ~ VJ__ge—Sn fe*(p) Vj_g pllN/3 (658)
p p
(V is the 4-volume).

As happened in the case of the n-field, the instanton contribution has
an infrared divergence. This implies that in the multi-instanton picture,
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individual instantons tend to grow and to overlap. The naive dilute gas
approximation is certainly inapplicable then, and we should expect
something like dissociation of dipole-like instantons to their elementary
constituents, as happened in the case of the n-field. However, even one
loop computations on the multi-instanton background have not yet
been performed, and nothing similar to the Coulomb plasma of the
previous section has been discovered. This is connected partly with the
fact that multi-instanton solutions have not been explicitly parame-
trized up to now. I expect many interesting surprises await us, even on
the one loop level, in this hard problem.

There exists an interesting phenomenological description of the
instanton liquid, which explains some qualitative features of hadrons.
This approacht will not be discussed in this book.

So, our conclusion is that on the present level of understanding of
instanton dynamics, we cannot obtain any exact dynamical statements
concerning Non-Abelian gauge theory. In the case of n-fields the
situation is slightly better, since we were able to demonstrate the
appearance of the mass gap on a qualitative level. Even in this case one
would like to have much deeper understanding of the situation. There
are reasons to believe that some considerable progress will be achieved
in the near future. In the case of gauge fields we have to pray for luck.

At the same time, the existence of fields with topological charge has a
deep qualitative influence on the dynamical structure of the theory. We
describe some of this in the next section.

6.3 Qualitative Effects of Instantons

The most dramatic manifestation of topological effects occurs when we
take account of the interaction of massless Dirac fermions with
instantons. We shall show in this section that instantons lead in this
case to violation of some apparent conservation laws. Qualitatively, the
effect can be described as follows. Let us examine an isospinor Dirac
field ¢ in the external Non-Abelian gauge field 4,,. It is represented by
the action:

S, = Jd“x W(iy"(@, + AW (6.59)

+ Due to Callan and Gross (1979).
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On a classical level, this action conserves an axial current:
8,y y°y) =0 (6.60)

However, if we consider the axial current which arises in the vacuum
when we apply the external field 4, then equation (6.60) will be untrue
because of the so-called quantum anomaly. Let us show how this comes
about. The partition function of fermions in the external field is given
by:

Z[A] = j@.p@% expl(— J Yiy"(@, + AW d*x) (6.61)
The induced axial current can be written as:

Js(x, 4) = Z7'[A] x j@w@ exp(—ﬁiy“(a“ - AN d‘x)iiyuysw

O+ O+ o7+ (6.62)

—iTry,ysG(x, x; A)

where G(x, x'; A) is a Green function for the Dirac operator in the field
A,. The definition (6.62) diverges because of singularities of the Green
function at coincident points. It is necessary therefore to introduce a
cut-off and to separate the divergent terms in J 5.

In order to perform this programme, let us express G(x, x’; A) in
terms of eigenfunctions of the Dirac equation, ¥ ,(x):

1y*(0, + A W,(x) = E,¥,(x) (6.63)
According to standard formulas, the Green function is given by:

YOO (X)

G(x,x) =Y B

(6.64)

In order to regularize (6.64) we intend to insert into sums over
eigenstates a factor ¢ ~*E», with ¢ being of the order of A~ 2 and A being a
momentum cut-off. The motivation for such a procedure is the follow-
ing. High momentum divergences, or divergences for large n in (6.64)
would not have arisen if we had worked with a theory on the lattice.
While in this case the low lying E, coincide with those of continuum
theory, the higher E, are not present at all because we have a finite
number of degrees of freedom per unit volume. If we expect that the
ultraviolet region produces only local effects, removed by renormaliza-
tion, then we can imitate a lattice, which achieves this by means of a
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natural cut-off, by the quenching factor e~ En. The E? is needed here,
since E, in (6.62) can be both positive and negative.
After these explanations let us compute the quantity:

ill-/n‘y”’YS‘pn C-‘E'z'

Js(x; A) = Z 3 (6.65)
which is just the regularized axial current. We have:
0, =% au(li.g,,vsdf.,) o ek
=-2 Z Vays¥ae ™ EF = 2 tr(x|yse~|x), (6.66)
(2 = (17, V)
Here we have used an identity, following straight from (6.63):
i 0,(a7u7s¥a) = —2E,(0a75¥,)
The last term in (6.66) is easily calculable as ¢ = 0. We have:
2 =(y,V)' = =0, + A — 30, F 50, = 3[100 7] (6.67)

The most singular term in ¢ ~<?

all fields, then:

will come from 82 in (6.67). If we neglect

(x|e™?|x) = dLpe—w‘ - (6.68)
2n)* 16n%¢?

Expansion in 4, and F,, will give us less singular terms. These terms are
important since for 4, = 0:

Tr(yse %) = Trys =0 (6.69)

622

We see that it will be useless to expand (0, + 4,)* in terms of 4, since
Tr ys = 0 will remain in our formulas. Expansion up to the first term in

6, F,, also does not help since Trys0,, = 0. The first nonzero contri-
bution arises from:

2
_ €
Tr yse ™2 = (x|e%|x) 3 Tr(y56,,6,,) - Tr(F,, F,,) (6.70)

If we notice that:

Tr(YS auvalp) = 4¢

uvip
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and compare (6.70) with (6.66) we get:

i'h)’,ﬁ’s'//n e..(Eg

0,J,s(x)=1lm}Y d, E

=0 n
1
" 8n?

Tr(F,,*F,,) 6.71)

This “anomaly” relation and other similar ones have amazingly many
consequences. Before coming to them, let us explain again how (6.71)
arises.

We begin with a Lagrangian which conserves the axial current or, in
other words it conserves separately the number of left- and right-
handed fermions, Y, x = 3(1 £ y5). Since this theory is divergent, we
consider its regularized version, and then let the cut-off tend to infinity.
After that we find a finite contribution (which is independent of the
form of the cut-off) to the divergence of the axial current (6.71). This
fact implies, that in the process of regularizing the theory we are bound
to violate conservation of the axial current, and that in the limit A - o
a finite piece of this violation remains. Let us give some examples of
this phenomenon. Take a nonrelativistic Fermi gas in one dimension
in its ground state. This state is formed by particles with momenta
—pr < p < pr where pp is the Fermi-momentum. The spectrum of
this system contains gapless excitations (if there is no superfluidity).
These excitations are by particles and holes with momenta lying very
near + pr. The particle-hole excitation energy is given by:

_ (pr + Kl)z _ (pr — Kz)z

E 2 2

= pr- (K, — K3) (6.72)

where p + K is a particle momentum and p; — K, is a hole momen-
tum. Therefore, all low lying excitations are described by two fields; the
first, Y x(k) corresponding to the particles with p ~ p; + k (antiparticles
for them are holes with p = py — k) and y (k) corresponding to
particles with p ~ —p. — k. These fields have a linear spectrum (ac-
cording to (6.72) and satisfy the massless Dirac equation:

(@—kW,=0
(+ kWepg=0

(6.73)

The axial current is therefore conserved. However, we see that y, (k)
and Y g(k) are not independent fields in an exact sense—they become
mixed as k ~ pg. Therefore taking into account the cut-off region (in
this case the cut-off is just the Fermi-momentum) leads to nonconserva-
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tion of left- and right-handed particles separately. Whether this leads to
a finite effect after removing the cut-off is another matter. It depends on
the compensation between the small values of amplitudes involving
p ~ pr particles and the large number of particles in the Dirac sea.

Our computation which lead to (6.71) revealed that the compensa-
tion was exact in the 2 = 4 case. Although this computation was
performed for a specific regularization of the theory, its final and finite
result (6.71) can be shown to be regularization-independent. In more
than one dimension, fermions need spin ¢ in order to be relativistic. In
this case w = 6K. Spinlesss fermions cannot be relativistic, from spin
statistics theory.

We recognize in the right hand side of (6.71) the density of topologi-
cal charge. As we have shown in Section 6.2 this can be written as the
divergence of some current ) #(x). One might have thought, therefore,
that the anomaly equation (6.71) does not break the conservation of
axial charge, but rather redefines this current: J,5 = J,5s — An? u

This is not the case. If we consider a field 4, with topological charge g
and integrate equation (6.71) over the 4-volume, we obtain:

AQs = J@Jus d*x = 2g (6.74)
Here:

Qs = Jjos d’x =N, — Ng

and we denote by AQ, the total change of Q for infinite time under the
influence of A,. Equation (6.74) shows that it is equal to twice the
topological charge of A,.

This amazing result means that there exists “compulsory” produc-
tion of fermions and antifermions in topological nontrivial fields and
that the numbers of left- and right-handed particles N, and Ny
necessarily change.

We derived all this using the Euclidean formalism, but there is no
difficulty at all in understanding this effect in Minkowski space. To do
this, let us recall the Minkowskian interpretation of instantons. As we
have seen in Chapter 4, the instanton represents a tunnelling transition
between two states divided by a barrier (recall the double-well exam-
ple). In the real time formulation we have very many different trajector-
ies connecting these two states. However, since the classical action does
not have a corresponding extremum (since the transition is forbidden
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classically) the interference among these trajectories is highly destruc-
tive and the amplitude is exponentially small. The instanton is a
classical solution for imaginary time, which accounts for this smallness
as described in Chapter 4.

Let us explain, after these reminiscences, what kind of states are
connected by the instantons in the nonabelian gauge theories. In order
to do this we can pass to the gauge A, = 0 in the instanton solution,
finding that the nonzero part of it, A,(x, t), has the property:

A(x,t)y - O

t— — oo

(6.75)
Afxt) = g7 '(x)0,g(x)
t— +w

Here g(x) is a certain matrix, satisfying the condition g(o0) = I
Therefore it maps x-space, which can be considered as S* due to the last
condition, onto the group G. This is just the same topologically
nontrivial map, which was discussed in Section 6.2, only transcribed to
the A, = 0 gauge.

Now we can interpret the Yang-Mills instanton as follows. The
configuration space in gauge theory is formed by all possible fields
{A,(x)}. Let us consider a transition in real time such that it lead from
zero A, at t = —oo to g~ ' d,g with topologically nontrivial g(x) at
t = + 0. Due to this nontrivial g(x), in the process of such a transition
nonzero field strengths necessarily arise. (Otherwise the field g(x, t) in
A x,t) =g '(x,1) 0, g(x, t) would have interpolated between g(x) and
I, which is impossible.)

The Minkowskian interpretation of (6.74) is that those field strengths
are such that they lead to compulsory pair-creation. The word “com-
pulsory” here means that the transition amplitude without pair creation
is exactly zero.

It is interesting to see how these properties are fulfilled in terms of
explicit expressions for the amplitudes.

The vacuum-vacuum amplitude, which as we said must be zero, is
given by (6.61):

Z[A] = J DYDY exp{—Jinu(au + A d*x

= Det(iy,(3, + A,)) (6.76)

(We obtain the determinant to the first power and not the inverse
determinant because y are anticommuting variables, or in other words,
fermionic loops come with a negative sign.)
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The amplitude (6.76) may be seen to be zero because the Dirac
operator, as we shall show in a moment, has zero eigenvalues in the
topological fields, and the determinant, being a product of the eigen-
values, is zero.

The proof that the Dirac operator has zero eigenvalues is based on
the Atiyah-Singer index theorem. We shall derive here a special case of
this theorem sufficient for our purposes. To do this, let us notice that
according to (6.71):

[aextion 3 7, compur 65 = =g 67

=0 n

The theorem follows from (6.77) after observation that all nonzero
modes give zero contribution to (6.77). This happens because nonzero
eigenvalues appear in pairs symmetric under reflection E, » —E,,
¥, = 7s¥,. (Check this from eq. (6.63).) The value of ¥, 75 ¥, under this
reflection changes its sign. This proves the cancellation.)

As far as zero eigenmodes are concerned, they can be, and really are,
asymmetric. Since the equation

YV, 9@ =0 (6.78)
is ys-invariant, ¥ may be purely left or right:
ys‘/’(IS)R = i‘l](lg)R (6.79)

If we denote by n;  the number of corresponding zero modes we get a
beautiful theorem:

ng—n,=q (6.80)

This result shows that for q # 0 we indeed have zero modes and thus
that the vacuum-vacuum transition is zero. Moreover, we can easily
compute the nonzero matrix elements for which the selection rule (6.74)
is satisfied. Consider the Green functions instead of Z:

G(x;,y)=2"" je‘ww@&(wu,) YO - BN (6.81)

We find that this quantity is not well defined in the instanton field
because Z = 0. This just means that the Green function usually
represents a transition amplitude divided by the amplitude for the
vacuum to remain unchanged. This is not possible in the instanton field
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and we have to consider the absolute value of the particle creation
amplitude, described by

Z. G(xi’ y) = F(x;, y)
= j@m e7SY(x,) . YO(Yy) .- W) (6.82)

Since the action is quadratic this amplitude can be computed by
expansion in normal modes:

Y(x) =} Cog¥oul¥) + 2 C,¥a(x) (6.83)

n£0

Here {y,,} are the zero modes of the Dirac operator and the second
term represents the nonzero modes’ contribution. The key point in
computing (6.82) lies in the Berezin rule:

ij =0 and JC dC=1 (6.84)

for anticommuting variables. Since

292y =[] dC,, dCo, [] dC,dC, (6.85)

n*0
and

Sw,¥) = ¥ E,C,C, (6.86)
n#0

we must carefully collect in the integrand of (6.82) the terms containing
a product of all the C,,C,,. All other terms will give zero according to
(6.84). Since each left-handed ¥, gives a right-handed V,, the ampli-
tude will be nonzero, only if the selection rule (6.74) is satisfied. In this
case it is proportional to the product of the corresponding zero mode
eigenfunctions y,(x).

The above configuration treated A4, as an external field. It is quite
obvious, however, that if we take a functional integral over 4,,
including in it nontrivial topological fields, then we shall obtain (with
an amplitude ~e~8%/%) ponconversation of the axial current. This
effect leads to important physical consequences for strong and weak
interactions briefly described in the remarks to this chapter. Here we
shall mention another aspect of the above result. Namely it shows that
massless quarks tend to suppress instanton contribution, because
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Z[A] = 0in the instanton field. If we consider instanton-anti-instanton
configurations then their contribution will be nonzero, due to the fact
that the total topological charge is zero. But the effective action U(R,),
where R, is the distance between our objects, must have the property

UR,y) =, (6.87)
This means, that exchange of a massless fermion pair leads to long-
range forces between instantons and anti-instantons. The result of this
may have several alternative consequences. The first one is that since
(6.87) implies quenching of large fluctuations in the presence of massless
fermions, the system looses the confining property and we would end up
with massless gauge fields together with fermions. This option seems
highly improbable to me on the basis of some analogies and some
model considerations. However, I am not aware of any strict statements
permitting us to reject it.

The second possibility, which in my opinion is realized in the theory,
is the following. Due to the strong binding force between fermions the
chiral symmetry gets spontaneously broken and as a result the fermions
acquire a mass. After that has happened, the long range force between
instantons and anti-instantons disappears, being screened by the fer-
mionic mass term in the effective lagrangian. The only remaining effect
of anomalous non-conservation will consist of giving a mass to the
corresponding Goldstone boson.

There is also another improbable option, namely that instantons get
confined but some other type of large fluctuations, not suppressed by
fermions, disorder the system.

Unfortunately, at present we are unable to make a decisive choice
between the options.

Let us discuss another qualitative phenomenon, arising because of
the instantons. The Lagrangian density for Yang-Muills fields is conven-
tionally taken to be (1/4e) Tr(F2,). The standard reason for this choice
is that this is the only invariant expression of dimension 4. Any higher
invariant terms like Tr(V,F,,)? will be irrelevant in the infrared region
and can be omitted. This reason overlooks another invariant expres-
sion, Tr F,, *F,,, on the basis that it is a total divergence, which has no
influence on the equations of motion. But, as we already know,
instantons activate this total divergence. Therefore the most general
Lagrangian of dimension 4 has the form

1 i0
$=—4—e—éTrFfv+WTer*Fuv (6.88)
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for the Yang-Mills theory, and the analogous Lagrangian for the a-field
¥ = ! d,n)? i6 d ) 6.89
_%(”n) +§e”vn[ ,n X 0,n] (6.89)

where 8 in both cases is a new coupling constant. Due to the presence of
instantons, physical transition amplitudes will depend on 6. For
instance, the vacuum to vacuum amplitude will be

+ o
Z= Y &z, (6.90)
gq= -~
where by Z, we denoted the functional integral over the fields with a
fixed value of g.

The extra terms in the above expressions are purely imaginary in
Euclidean space for the following reasons. We have to have a real action
in Minkowski space. As we change ¢t — —it we have to change 4, - 4,
and A,—iA4,, because A, transforms as J/0t. Hence electric and
magnetic fields change as:

E,—iE,
(6.91)
H,—-H,
The two terms in (6.88) change as:
Tr F2, = E* — H? » —(H? + E?)
(6.92)

Tc F,,*F,, = —2H-E— —2iH-E

So, in the Euclidean action (6.88) we obtain i in the second term when
we transform the real Minkowskian action.

Topological “6-terms” in the action create a problem when we apply
the theory to describe strong interactions. If they really do contribute to
the physical amplitudes, then the whole theory loses invariance under
time reversal (since H - E is T-odd). This implies that for some reasons
the coupling 6 must be zero or extremely small.

Certainly the existence of this problem somewhat depends on one’s
personal philosophy. One can take the view that in the cut-off region,
i.e. at the Planck length, we have a gauge Lagrangian which preserves
T-invariance. Then 6 = O from the very beginning and no problem of
strong T-noninvariance arises. It is interesting, however, to consider
another point of view, according to which there are no special symme-
tries at the Planck length and they persist in the low energy region only
for dynamical reasons, namely because only renormalizable interac-
tions contribute significantly for large scales. Accepting this view, we
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have to consider all possible terms in the lagrangian, having dimensions
four or less with coefficients having their natural magnitude. If so, we do
have a strong T-violation problem. An attempt to resolve this problem
led to an interesting suggestion [4]. It can be shown that if massless
fermions with broken chiral symmetry are present in the system, then
due to instanton effects Goldstone’s massless particles obtain some
mass (because of nonexact conservation of J,5) and simultaneously the
0-term gets absorbed after redefinition of Goldstone’s field. This
consideration predicted a light isoscalar boson (which would have been
massless without instantons). Unfortuantely this particle, called the
axion, has not been found, and the strong 6-problem remains open.

Let us mention briefly some other interesting effects of instantons
together with the 0-term. It appears that their presence induces a small
electric charge ~0 for a magnetic monopole, and in this case the
operator of electric charge differs from a gauge group generator by a
small constant.

Another interesting thing is a probably rich phase structure of the
theory as a function of 6. In the case of n-fields, periodic §-dependence
seems to have important consequences, explaining the quantized Hall
effect in metals.

Let us stress that 6-dependence of physical quantities is not to be
taken for granted from what we have said about it. It is quite possible
that due to dynamical effects, the contributions with g # 0 may become
absent in the infinite volume limit. Example of such a phenomenon is
observed in the case of plasma where only states with total charge zero
contribute in the thermodynamic limit (because of the enormous
Coulomb energy of other states). However, this option seems unlikely
in Non-Abelian gauge theory.

Another word of caution concerns the apparent periodicity in 6. It
might well happen that because of dissociation of instantons, states
with noninteger topological charge will give finite contibutions to the
partition function. These configurations certainly have infinite action,
but this can be compensated by the entropy. As a result, the
formal decomposition (6.30) will be untrue and we shall now have
a periodic 8-dependence.

All these questions are purely dynamical and their solution requires
some new concepts. In the next chapters we shall discuss what has been
done in this direction.
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CHAPTER 7

Analogies Between Gauge and
Chiral Fields. Loop Dynamics

DOI: 10.1201/9780203755082-7

In the previous chapters we indicated some similarities between chiral
fields and gauge fields. We saw that both theories—the one for 2 = 2
and the other for 2 = 4 share the property of asymptotic freedom.
Their strong coupling expansions also looked similar, provided that we
substitute point-like excitations of chiral fields by closed flux lines for
the gauge fields. Recall also the similarity of the instanton structures of
n-fields and Yang-Mills fields.

In this chapter we shall explore the reasons for these analogies.
Roughly speaking, it appears that small pieces of the flux lines in the
gauge case move as if they were point-like excitations of a chiral field.
On the other hand, the gauge field itself can be considered as a chiral
field defined on the space of all possible loops.

These ideas are not well developed. But they provide us with a bridge
between gauge theories, chiral fields and the theory of strings (discussed
in Chapter 9). They may also help in a search for hidden symmetries in
many-dimensional systems. One cannot help feeling that many beauti-
ful secrets are concealed in loop space.

This space is the main topic of discussion below.

7.1 Non-Abelian Phase Factor

In the previous chapter we have already been dealing with a field:

11
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W(C) = Pexp §A“ dx*
¢

2n

Pexp< J ds A,(x(s)) WS)) a.n

o

lim [T+ A,(x)Ax*)

Ax;j=0 j

2n K3 52 sn—1
© d
5 fdsljdszfds3~-- j ’;(s")A(( )+ A(x(s,))
n=0 0 0 4] 0

(Here P is the Dyson ordering operation, C is a loop parametrized by
x, = x,(5), 0 <5 < 2m; A, are matrices lying in the Lie algebra of the
gauge group). For Abelian A4, it would have been possible to symmet-
rize the integrand, obtaining n-fold integration from 0 to 2n. Then ¥
would be an ordinary exponential. For the Non-Abelian case the
ordering is very important.

The most important property of (7.1) is its simple behaviour under a
gauge transformation of 4,. We have:

A,(x) = Q7 (x)A4,()x) + Q719,Q

(1.2)
Y(C) - Q7 '(x(0)P(C)Ax(27))

(where x(0) = x(2n) is the beginning of the loop).
For an open path C,, connecting points x and y, the transformation
law has the form:

Y(C,,) =Pexp j A, dx*

Cx (7.3)

¥(C,,) = Q7 ()W(C,,)Ay)

The lattice version of W is given by the formula
Y(C,) = [] B..a (74)

(Cxy)

where I, is the product of matrices B, , attached to the links,
forming the contour C,,.
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Formulas (7.2) and (7.3) are most easily checked in the lattice version
(7.4), since under gauge transformation

B,,—Q]'B,Q (15)

z,a%%z +a

and the factors Q in (7.4) cancel each other except at the ends. The
factors W(C,,) can be considered as matrices of “parallel transport” of
different quantities. This means the following. Suppose we have a field
¢(y) at the point y which transforms according to the fundamental
representation of the gauge group:

o(y) = Q7 '(Me(y) (1.6)

Without the gauge fields, the quantities ¢(y) cannot be compared with
the field (x) which has a different transformation law (with the matrix
Q™ (x)). But, having a gauge field at our disposal, we can perform a
“parallel transport” of ¢(y) to the point x, by defining the transported
field o(x)" as

LP(x) = Y¥(C,)e(y) a.n

Now, the field ,¢(x)” has the same transformation law as ¢(x) and we
can consider a covariant change of the field ¢ as we move from x to y
along C,,:

@ = o(x) — ,o(x)"

(7.8)
For infinitesimal C,, this change becomes independent of C,:
0" = o(x) — [1 + 4,()y, — x,)]o(y)
(7.9)

~ (0, + A)e(x)(x, — ¥,)

thus defining the covariant derivative.

The role of the gauge field in this geometrical language is seen to
permit comparison of the fields in different points. For that reason the
gauge field is called a “connection” by mathematicians. A field strength
F,, can be defined through the field change after the parallel transport
along a small closed loop:

@(x) — ,@(x)" = 3F,,6""0(x) (7.10)
(¢*’ is the area of the loop), where
F,=0,A,—0,A,+[4,,A)]

the mathematical name for F,, is “curvature”.
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We see that the phase factor W(C) is an important object for
differential geometry. On the other hand it has a well-defined physical
meaning. Let us consider a quantum particle moving in the external
gauge field 4,. For A, = 0 the transition amplitude from x to y is given
by a functional integral over trajectories, connecting x and y, each
entering with the weight ¢>° (S, being the classical action for a free
particle on the trajectory). It is not difficult to show, that as we switch
on A, the amplitude becomes ¢*°¥(C, ) integrated over all trajectories
C,,. If our particle moves along a classical trajectory in space-time (but
has quantized colour) then ¥(C,,) defines its transition amplitude. This
conforms with what we said about ¥ in Chapter 4.

The natural intention, which stems from both the mathematical and
the physical importance of the phase factor, is to attempt to reformulate
gauge theory in their terms.

As a first step, let us derive classical equations of motion. In the
lattice version with the action

1
S=—=Tr Y (BB, .,sB:ls.B:}) (7.11)

€0 x.a.p
we can obtain classical equations of motion by taking a variation:
éB,, = w0, B

xx T xa

. ‘ (7.12)
()B;al = _B;al OBxan—al = _Bx-al Wyy

(here w,, is an arbitrary element of the Lie algebra of G, while B,, is an
element of G itself). The classical equations of motion are:

GAY
0w,

=0 (7.13)
Their explicit form has a useful graphical representation. To find it let

us consider at first the variation of the first factor, B,,, in (7.11). We
have:

x.a.p

= X Tr(,. L:T" )

x,a,p

6(”S~Tl' z <wxan.an+a'ﬁBx_+l-ﬂ.an—.ﬁ!)
(7.14)

where we draw a plaquette (x, a, §) starting from the point x, and
associate with each link the matrix B, ,. The product starts from the
link (x, «) and proceeds anti-clockwise.
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In the second term

5{2’S~Tl' Z (Bxawx+u.BBx+a,BB;+lll.qu—.ﬂl (715)
x,a.f
we shall change x + a — x, (o 2 #) and use cyclic invariance of the trace
so as to have w in the first place. We perform similar transformations
with the other terms. Recalling that for SU(N) w is an arbitrary anti-
Hermitian matrix we obtain the following graphical equations:

<
—

Y i
Z{ R ~ X% —h.c.} =0 (7.16)
? fﬁ\} A

(h.c., means Hermitian conjugation). The same equation can be rewrit-

ten as
A A
> { - —h.c} =0 (1.17)

or in analytic notation:

A

%{(Fxﬂz.ﬂ - Br_—lB,ﬂFx-ﬂ.zBBx—ﬁ.ﬂ) - hC} = 0

(7.18)

F = Bx,:xBx+a.ﬂB;~:li.aB;,[;

x.af

The form (7.18) has the advantage of having a familiar continuum limit:
if we set B,, ~ 1 + A, and the potentials are slowly varying, we have:

25F g+ [Ag F il =0 (7.19)

Let us transcribe the equation for B, , to equations for the phase
factor W(C,,). To do this we introduce the “current” defined by

F(s,C) =¥ + nm)‘l’_ (o) (7.20)

where we denote by C + I1, the contour obtained from C by replacing

the link # s by a segment shaped like the letter IT in the direction o. It is

supposed that « is orthogonal to the direction of the original link.
Graphically:

F.(C) = _ /Q
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From this picture one sees that & is nothing but the field strength,
transported along C to the beginning of the loop, x. It is now easy to
check that equations (7.17) imply that

Y(FWAC) — F,(C—T1,) —he. =0 (7.21)

Before discussing the meaning of these relations, let us present their
continuous version. Its form can be extracted from the preceding
formulas. Namely, in this case the field ¥(C) = W[x(s)] is a functional
depending on the shape of the contour but not on its parametrization.
Therefore:

Wx(s)] = Yx(a(s)] (7.22)
and
dx,(s) oY _
ds 3x,(s) B 023)

Relation (7.23) follows from (7.22) if one takes a(s) = s + €(s) with
infinitesimal ¢(s). The variational derivative of any functional f is
defined through the relation:

é
of = J‘ds 6x“(s)<é_)_¢%> (7.24)

Let us compute 0'¥/dx, using the definition (7.1). For that we shall
use the following general relations:

t t

d
@ P exp j Mdr = <P exp j M dr)M(t)
0

(i}

2n 2n t
d Pexp f M(7)dt = J dt(P exp J M(r,)dn)éM(t)
o 0 0

2n

x(Pexp jM(TZ) drz>

2n

2n
j de P<6M(t) exp J M(7) d’t)
4]

0

2n 2n 27

62<P exp j M(z) dt) = J‘J‘ de, dt, P<6M(tl) dM(t,) exp .[ M(1) dr)
0 ) 0

for an arbitrary matrix M(1).
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With the aid of these formulas we obtain:

2n 2n
SW(C) = f P(Fw(x(s)) exp f A, dx“)))&véx"(s) ds (7.25)
0 0

where F,, is the Yang-Mills field strength. We see that the continuum
counterpart of the quantity (7.20) is given by:

Y(C)

-1
0x,(s) Yo

F(s,C) =

s s

= xv<P exp f A, %, dt F,,v(x(s))Pexp<— f A%, dt)) (7.26)

(V]
By its definition it satisfies:
X,(8)Z(5,C)=0

8F(s,C) 6F[s,C) T (7.27)
x5 - 5x,(8) +[F,(5,0), F (s, C)] =0

The second relation expresses the fact that a gauge field having nonzero
field-strength in ordinary space, in the loop space has zero curvature
being thus a chiral field.

If we take a functional divergence of (7.26) we obtain:

s

= 5(0)<P exp j A, X, dt

0

0F (5, C)
6x,(s)

s

X (0,F,y + [A, FuD P exp(— J Aux,‘dz»xv (7.28)
0o

From this relation we conclude that the Yang-Mills equations in terms
of phase factors have the form:
9 ( o ‘P“) =0 (7.29)
0x,(s) \ 0x ,(s)

To be sure (7.29) is just a continuum version of the lattice equations.
(7.18) and (7.21).

These formulas show a remarkable correspondence with equations of
motion for chiral fields. Indeed, on the lattice the action

1
S=— 53 Tr(g, "9 1) (7.30)

0 x8
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leads to equations of motion (obtained by a variation dg, = w,g,):
Z (Ax.5 - Ax—&&) —hec.=0
3

) (1.31)
Ax,s = gx+8gx !
or in a continuum version:
A, =(0,9)97"
0,4, — 0,4, +[A,, A4,]1=0 (1.32)
9,4,=0

This is to be compared with (7.27) and (7.29).

Although we have derived this analogy from the classical equations
of motion it persists on the quantum level as well. The classical
equations of motion get transcribed in quantum theory into equations
for correlations functions. The standard way to obtain these equations
is to consider an infinitesimal change of variables in a functional
integral (described by (7.12) in our case) and to apply the condition that
the integral remains unchanged. In this way one easily obtains a
Schwinger-like chain of equations in our loop space.

That will be done in the next section. Before coming to it let us sum
up what we know about the connections between gauge fields and
chiral fields. We have established above that gauge fields are chiral
fields defined on the loop space. Unfortunately, up to now it has not
been possible to extract any practical, dynamical information from this
fact. This mainly has to do with the difficulties we experience in treating
equations in loop space or, what is more or less the same, with string
dynamics. These problems we shall discuss in Chapter 9. I anticipate an
enormous progress in this field in the near future.

On the other hand, there are several, more pragmatic, similarities
between the theories under discussion. Asymptotic freedom, instantons
and also large N behaviour (see Chapter 8) and the “chiral” form of the
duality equations (see Chapter 6) make chiral theories an excellent
theoretical laboratory for the study of gauge fields.

In the next section we shall study the dynamics of loops in a very
imperfect way which is all that is known to-day. Still, it will have
important consequences for the large N-expansion, examined in
Chapter 8.

There are many obvious but unanswered questions concerning our
subject. For example, does the similarity of equations (7.31) and (7.21)
imply any similarities in the strong coupling expansions for these
theories? In particular, it seems probable that scattering small bits of
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string (which, according to Chapter 3 are elementary excitations in the
gauge case) is precisely the same as scattering of point-like excitations
of a chiral field. This could be checked in the frame of the strong
coupling expansion, but never has been. Another problem is to derive
asymptotic freedom directly in the loop space, following the pattern we
had for chiral fields in Chapter 2.

Another set of questions is the following. We derived the loop
representation starting from local gauge fields. However, another view
is possible (and seems even more natural to me). Let us suppose that the
primary quantities are the fields on the loop space. Then we can
consider gauge fields as something like Goldstone fields on the loop
space, efficiently described by the chiral equations of motion (7.29). This
point of view leads to many new options. For example we can consider,
instead of ¥ fields which belong to a gauge group G, fields belonging to
different coset spaces G/H. These seem to be interesting objects, though
1 do not know either their local representation or their role (if any) in
Nature.

7.2 Quantum Theory of Loops

It appears more practical to use a set of equations slightly different from
(7.29). It exploits the fact that, according to the transformation law
(7.2), only o(C) = Tr W(C) is a gauge-invariant quantity. Therefore the
only quantities which make sense in quantum theory are:

W(C) = {p(C)); W(C, C) = (p(O)o(C)) (7.33)
etc. Using formulas (7.24), (7.25) we derive:

EZW(C) =(Tr P(F ! ! " v > ’
5xu(s)6x"(s/) - < r P( Il\l(x(s ))F‘,),(X(S » Cxp<f Au dx >>xv(s)xl(s )

+ 0(s — s’))&v(s)<Tr P(V” F(x(s)) exp<jA u dx“)>> (7.34)

Let us now introduce a local derivative:

€

62 def .. 62
oxX(s) EI.T) _[ d 8x,(s + t/2)6x (s — t/2) (7.35)

—€




120 GAUGE FIELDS AND STRINGS

which picks up d-like terms in the second functional derivative. If the
quantum theory is regularized, then the first term in (7.34) does not
contain singularities as s — s’. From this we infer that:

2
aa—:vz—((g = <Tr<P(V“F (X(5)) exp( j A%, ds))xv)> (7.36)

For classical fields the r.h.s. of (7.36) would be zero. In the quantum
case it is finite and calculable. To find it we consider the following (non-
invariant) functional integral:

2z
1
j@A“ exP(Ee_oi jtr FZ, d“x)(P exp( j A, dx“)) (7.37)
o

and change variables by A, — A, + dA,. There are two effects coming
from this change, which must cancel each other. The first is the

variation of the action, proportional to V,F,,, while the second is the

variation of the phase factor. The cancellation condition gives the
identities:

1
(= 3 Ve 0 ) = ante = ¥ W00 )
(4]
c
i (1.38)
<— o2 Tr(V,F,(2)¥(x, X))> = i)d)’vé(z — yXTr A7¥(x, )A"™¥(y, x)>
o
C

Here the index a labels the generators A° of our Lie algebra and W(x, y)
is a piece of the phase factor for the part of the contour C connecting x
and y(x,yeC). For the SU(N) group, (7.38) is further simplified
through the use of the identity:

1
T 225 = G130y, = 3 3ug0ys (1.39)

We have:
< - iz TV, F,(2)¥(x, x))>
€
= § dyvts(z -y

1
x {(Tr Fx, ) Te ¥(y, x)) — 1 (T ¥x, y)¥(, x»} (7.40)
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Substitution of (7.40) into (7.36) gives

2
6_;;(_%,2 =—e} § o(x(s) — y){W(C)W(C) - % w(C, C)}x‘,(s) dy, (1.41)
which is the first equation in the Schwinger-like chain.

This equation requires some explanations. First of all, C, C and C are
defined as following. The loop C,, starts and terminates at the point
x = x(0). If this loop does not have a self-intersection at the point x(s)
then the r.h.s. of (7.41) will be zero because of the é-function. If it does,
then the point y splits the loop onto two closed contours C and C:

x(s)

0 X ) (742)

c ¢

A very important point, not to be forgotten, is that eq. (7.41) was
derived in an unrenormalized but regularized version of the theory. So
the o-function in (7.41) must be somehow smeared, and ¢, entering in
(7.35) must be taken much less than the smearing length. The equation
itself corresponds to a particular cut-off of the gauge theory. It may be
untrue for a different cut-off. All this is quite unpleasant, It would be
much nicer to have an equation for the finite, renormalized W(C).

Unfortunately this equation is not known, and we are unable at
present to remove the scaffolding (the regularization) from our con-
struction.

Nevertheless, equation (7.41) is meaningful. It reproduces perturba-
tion theory and in the large N limit, presents a closed equation which
sums up all planar Feynman diagrams (see the next chapter). Here we
shall show how the first order of perturbation theory for W(C) arises
from equation (7.41).

For this, let us consider the following ansatz for W(C):

WiC)=1+ § [(xy, x;) dxf dx3

s1 <82

+ §§§> T, X2, x3) dxf dx) dx} + - (7.43)

s1<s2<s3

This ansatz is true for any W(C) which can be represented as an average
of the loop factor (7.1), with:

Loz (X X2, X3,...) = (Tr 4,(x))A (x,)A,(x5)...) (7.44)
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In fact, it can be shown that this ansatz is true for more or less any
functional W(C), being an analogue of the Taylor expansion in loop
space. To see how the perturbation theory arises let us find
0*W ,(C)/0x*(s) where W, is the second term in (7.43). We have:

oW,
0x,(s)

stl dszxp(SZ){xl(sl)al w L ap(x1(51)s x2(8,))0(s — 54)
+ 62,0(s1 — ST ,(x(sy), X(52))}
= X(5) fdsz % (2 )01, , T 3,(x1(5), x5(52))

= 01,21 (%1 (5), x(52)) (7.45)

Next we have to take the second derivative 4/6x (s) and to pick out the
terms containing (s — s'). That gives:

W, 5
o) f(a 1l — 0120,,T,,)0(s — 5)%,(s)%,(s;) ds;  (7.46)
[J 13
+ terms, which do not contain é(s — s).
Thus:
W, 5 PN
ax(s) = | 01T 3, (x(8), x(1)) — 8,01 ¢ Top(x(5), X(DNX ()% (1) dt  (7.47)

We must substitute this result into the r.h.s. of (7.41) replacing W(C) in
the Lh.s. by 1. This gives the equation for I',,,:

a%rlp(x’ x,) - al,lal ' ap(x7 x)

= —e30,,0(x —x) + W ¢i(x, x') (7.48)
(]

Here ¢ is an arbitrary function which is needed to make (7.48) solvable,
and which it is possible to add, since

fax 5 =0

The solution of (7.48) has the form:

e 0y oh,(x, x")

4n 2(x x')? ox, (7:49)

rlp(x X )
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where h,, is arbitrary. This arbitrariness does not appear in W,(C) itself
which has the form:

2 ’
W,(C) = % I%Xi—i’f'iz = @ (1.50)
The formula (7.50) is precisely the first nontrivial perturbative contribu-
tion to W(C).

In order to obtain higher orders this contribution has to be substi-
tuted into the r.h.s. of (7.41). After some complicated combinatorics
(which can be found in A. A. Migdal (1977)) one finds, order by order,
the standard Feynman diagrams contributing to W(C). It is remarkable
that no a priori gauge fixing is needed, since (7.41) is an equation for
gauge invariant quantities. Ghost diagrams in the higher orders appear
automatically in the process of iteration (A. A. Migdal (1977)).

So we conclude that in spite of some dubious operations performed
in deriving (7.41), namely separating from the complete derivative
52/6x,,(s)5x”(s’) the part containing (s — s") only, which we called
0%/0x*(s), we did not lose any information. It appears that in the frame
of the general ansatz (7.43), knowledge of 6%/0x%(s) is sufficient for the
reconstruction of W(C). Again, we have to warn the reader that this is
true only in an unrenormalized but regularized version of the theory in
which the coefficients in (7.43) do not have singularities at coincident
points. Renormalized quantities, while being finite, are singular in these
cases and that makes our definition of 8%/0x*(s) inoperative. I believe
that there should exist some kind of renormalized equations but they
have not yet been found.

What is the use of loop equations, like (7.41)? Their main purpose is
to provide us with a description of gauge fields in terms of their natural
elementary excitations. We have seen in Chapter 3, that in the confine-
ment phase those excitations are closed strings. In general these strings
interact with each other. In some cases, in particular in the large N limit,
they must become free, as will be shown in Chapter 8.

The loop equation (7.41) is aimed at choosing from among possible
free string theories the one describing or being described by the gauge
fields. This task does not yet have a final solution, although consider-
able progress has been achieved.

Our next step will be to consider the large N approximation and to
prove that in this limit particles in chiral theories and strings in gauge
theories become free.
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CHAPTER 8
The Large N Expansion

DOI: 10.1201/9780203755082-8

The number N is the only free parameter both in chiral and gauge
theories, because in the continuum limit the coupling constant disap-
pears through dimensional transmutation (remember that the strong
coupling expansion referred to the lattice theory and does not give a
continuum theory in any finite order). It is very tempting therefore to
try to make a 1/N expansion. This will be done in this chapter. As
before, our main intention will be to improve our qualitative under-
standing of dynamics by means of this approximation.

8.1 O(N) a-Model

This case is the simplest one. Let us consider the functional integral in
the form:

V4

J@n(x)(ﬂ S(n(x)* — 1))exp<— —2:7 J (0,n) d2x>
x 1]

C+io

f DA(x) f@n(x) exp(— 21? J\((aun)2 + An? -1)) d2x>
0

—iwm

I

8.1)

Here we have replaced the functional d-function by its integral repre-
sentation, involving the Lagrange multiplier A(x):

C+im

o000 = =1 | i explicann’c - v}
C-iw
= J@A(x) exp{ j Ax)m® — 1) dzx} 8.2

125
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(The functions A(x) in (8.2) and (8.1) differ by an irrelevant factor
1/2g3.) We have called the field A(x) a “Lagrange multiplier” since in
the classical limit, when we have to minimize the O(N) action with the
constraint n? = 1, it is just that.

The representation (8.1) is convenient, since the integral over n is
Gaussian and can be performed in a standard fashion. We have:

C+icc

Z= J DA(x) exp{—li j)t(x) dix — N log det | — 2% + i(x)||} 8.3)
294 2
C-ix

where N is the number of components of the field n. The factor N
appears in (8.3) since each component enters independently in (8.1).
The second term in (8.3) has the Feynman graph representation:

logdet [—¢2 + i) = () + Q)) 4 ¢ + \;}/ +oe (8.4)

in which the wavy line corresponds to the external A-field and the
propagators of the n-field, represented by solid lines, are 1/p% This
expansion is formal, since for 2 = 2 it is both infrared and ultraviolet
divergent. The ultraviolet divergence has to be cut off by hand (or,
better to say, by a lattice), while the infrared one will be taken care of by
the theory itself.

If we take N to be large, then since it enters the exponent (8.3), we
have reasons to expect that the saddle point approximation will be
applicable. This is indeed the case. To show this let us first compute the
variation of the action in (8.3) with respect to 4. We get:

1

N ¢ 2
2_gz=_———logdetH—c + AX)
0

SA(x)

2
= ; G(x, x; 4) (8.5)
Here we have introduced the Green function:

G(x, x') = {X'|(= 3% + A)7Hx)
The last equality follows from the relation

dlogdet A=0TrlogA=TrA ' 64 (8.6)
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or else can be checked from (8.4). The meaning of equation (8.5)
becomes transparent if we notice that according to (8.1):

nxmfy)y =271 J@i J.@n exp<— ﬁ J{(an)z + An? — 1)} d2x>

x n(x)ngy)

[ Die" G(x, y; 4)

f2ie” ®7)

=g 0;;
W= iz j}t(x) d3x — iv—Trx log(—~d% + 1)
295 2
If the /-integral is to be approximated by the saddle point we obtain:
(nIny)> = g5 8;; G(x, y; 4,(2)) (8.8)

where 4, is the saddle point value of A. From here we see that (8.5) is
nothing but the condition {n*(x)) = 1.

Let us now solve the equation (8.5). If we guess that its solution is
homogeneous in x-space, we can verify this conjecture by passing to the
momentum representation in (8.5):

d9p eip(x—x‘)
@n)? p* + 4
clem?pr+a

G(x, x'; 4) =
(8.9)
1=Ng3G(x,x;4) = Ng

As is to be expected, this equation reflects a qualitative difference
between £ =2 and 2 > 2. For 2 = 2 we have:

L=Zr loe

A=A expl — An
Ngj

(where A is the momentum cut-off and \/ A is a physical mass or inverse
correlation length as is seen from (8.9) and (8.8)). This formula agrees
with (2.49), the only difference being that N — 2 in the “exact” formula
(2.49) is replaced by N in (8.10). So, we see that for all values of g3 we
have the same phase, with a finite correlation length. It would be quite
easy to repeat the derivation in a lattice version of the theory and to see

(8.10)
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explicitly how the strong coupling expansion connects without a phase
transition to the weak coupling region, giving (8.10).
For 2 > 2, the situation is different. We have a critical coupling g3 .,
defined by:
d@p ?2-2
= Ng} ———~Ngi  —— 8.11
1 NgO.cr J(Zn)@pz gO.cr 9 — 2 ( )

If g3 > g3 .. then the equation (8.9) has a solution with 4 > 0 and we
are in the strong coupling phase. The theory has a continuum limit as
95— g3.. + 0 as can be seen by rewriting (8.9) using (8.11) as:

d“p d?p /1 1

— 2 o 2 —

"N"J @nyept ~ V0 <2n)-”"<p2 p2+1>
2

g9 a9 A

(8.12)

Tg. P )en? et h
For 2 < 9 < 4 the integral in (8.12) is convergent and proportional to
A@I2-1 Therefore:

2 _ 42 202 -2)
gO gO.cr> (8 1 3)

m? = A = const A? 3
gO,cr

We achieve the continuum limit by taking g5 — g3 ., and A - oo so
that m* = 1 remains fixed. We see also, that while the value of g3 ,
depends on the cut-off and is not at all universal the “critical exponent™
2/(2 — 2)in (8.13) is independent of the short distance dynamics. As we
explained in Chapter 1 this is quite a general situation.

If we take g < g3 ., something goes wrong with equation (8.9)—it
does not have solutions any more. That means that we have lost the
saddle point. To understand what happens in this case we have to recall
that originally we had an integral over A. If we introduce the Fourier
expansion:

Ax) =Y 4, et (8.14)
q

then

Di(x) = (n dlq)~dlo ®.15)

q#0
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In the large N limit all g # O integrations are irrelevant (we shall prove
this later in this Section) and the integral over 4 has the form:

C+io

. o N da?p
Z= J dAoexp{V(iaog—E J Wlog(p2+io)>} (8.16)
irl

—iw pl<A

which is obtained by the substitution A(x) = A, = const. into (8.3); V
here is the volume of the system. In the complex plane of the 4, variable
we have a cut from the logarithm in (8.16) which goes from — oo to zero,
and a saddle point when g2 > g3 .,. For g3 < g¢ ., this saddle point
disappears under the cut. Therefore, in order to obtain the dominant
contribution to the integral, our contour for g3 > g3 ., must be taken to
pass through the saddle point and the integrand is strongly concen-
trated near this saddle point. This situation we have analysed above.

For g3 < gi... the contour can be deformed so that it goes around the
cut. In the limit of infinite volume the dominant contribution comes
from the origin of the cut at 1, = 0. In order to estimate the most
important values of 4y, let us notice that the singular part of the integral
in (8.16) is given by:

fd'“”p log (p? + A) = const. 122 + regular terms (8.17)

From this we conclude that the essential 4, is defined by:

NV 222 ~ 1
Ao~ (NV) 22 50

Vo

(8.18)

The conclusion we reach is that for g5 < g3 ., the quantity 4, has to be
zero in the infinite volume limit, and we have massless particles in our
system. That implies that the symmetry has been broken as we go to
gé < ga.., and these massless particles are Goldstone’s. We postpone
direct verification of this fact and proceed to consider corrections to the
naive saddle point picture.

We have to take into account that the field A(x) acquires a vacuum
expectation value in the phase with unbroken O(N) symmetry (the only
existing one for 2 < 2). In the leading approximation it is given by
(8.10). Successive approximations will change this value by an amount
~1/N. In order to develop a general formalism we must not fix
{A(x)) = 4 from the beginning, but keep it arbitrary while performing
integrations over {4,,,}. After that we shall obtain an effective action
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which depends on A. Eventually we have to take the minimum in 1 or,
equivalently, impose the condition {(n*(x)> = 1.

Let us see how this programme works. The action for {1, .,} is given
by:

Mx) = p? +io(x), og_o=0

N
w(Q) = — 3 Trlog [— 8% + p? + ia(x)]

N N (1 d? 1
= —2 WO[[IZ] — 5 {i Jn (q)aqa_q (—21[—‘)12 — 3 jrq‘qij (819)

’q,d%q,d%q
X Og,0g, qs‘s(ql +4q; +‘I3)‘4—1Z5n—)24———3+...

N 1 d%q
= 3901 =5 [T1@ Bib-0 5o
2

1 N -1/2
+ 5 (E) J 919293 ﬁqlﬂqzﬂqg 6(q1 + q; + q3) (2 )4

Here:

N 1/2
)"

d%k 1
@ = —O— = j AT TR Y

42
rlhqzqz = ’d ’ etc.
9 ds

We see, that the effective nonlinearity in (8.19) contains N ~ /2 factors,
and that perturbation theory for this f-field has a good parameter
1 /\/ N. The quantity pu? is to be adjusted at the very end of calculation.
To give an example, we see from (8.19) that up to the order 1 /\/ N we
have:

1 ) 1
VWL =5 NV W+ VW o VW, +

NG
2 N dZ
- {2”7 J(z ploe (v + ”2)}

1
-3 j# log TI(¢%) + O(N~'12) 8.21)
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The second term in (8.21) comes from the fluctuations of the Lagrange
multiplier.

At this point we encounter some trouble. From (8.19) (8.20) we see
that the propagator for the g-field is

2nq?
n 372
11(g°%) ;- , log(q*/n*)

This rising propagator introduces some power-like divergences in
Feynman graphs and this is clearly unphysical. Let us locate the origin
of this trouble and explain how to avoid it. First of all we see that these
divergences persist even in the 9 = 1 system which is the quantum
mechanics of the n-field. Quantum mechanics is a finite theory, hence
we have done something wrong.

To locate the difficulty let us consider instead of the n-field with its
rigid constraint n* = 1 a theory with a Lagrangian:

2q’) = (8.22)

2 = Ho,m? + 5 (@ ~ 1) (823)

which in the limit g = o0 goes over to the theory of the n-field. If we
introduce a A-field, we replace (8.23) by the Lagrangian:

2

A
L=4@,n +Lin®—1)— % (8.24)

and we shall have the same large N expansion as above except that
2(q*) will be replaced by:

He®) = (8.25)

1
M(g%) + (2/Ng)
Since TI(q?) ~ log(q*/u?)/q*, this new propagator does not rise at
q* - o and we shall have no power divergences. In particular, quan-
tum mechanics will be finite, as it should be.
In order to understand the origin of the power divergences, let us
stick to the case of quantum mechanics (2 = 1). The potential:

V= %(n2 — 1) (8.26)

has the tendency, as g — oo, to confine our particle to the surface of the
sphere. However, owing to the uncertainty principle, attempting such
confinement leads to large kinetic energy. Therefore, the energy levels of
the particle are shifted to infinity; that is, we have zero point energy of
the order of \/ g and radial excitations of the same order. But, on top of
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this large vacuum energy we have finite angular excitations, labelled by
angular momentum. In the limit g —» oo we have to subtract an infinite
constant from the ground state energy, and after that the theory will be
finite.

Returning to our problem we are led to expect that power diver-
gences caused by (8.22) will be removed if we renormalize the mass of
elementary excitations. A convenient procedure is the following. Let us
introduce a quantity:

m* =G ! (p=0) (8.27)

and self-energy part:

L= (5&7:) * (rf)&ﬂ) to (8.28)

The Green function is defined by:

1

P+ ml ¥ 20) = 20) ®.29)

G(p) =

While £(p?) contains power divergences, it is easy to see that £(p?) —
2(0) does not. Let us estimate as an example the first term in (8.28) (we
consider p > m):

5, $(0) = 2 d%k 1 1
0 -30=3 [ Gmas ((p “p P)

2 J k? d%k (4(p-k)2 p?

N 27 log (k2/m?) I F) + finite terms

p<ikl<A

2
= pﬁ log{(log A*/m?)/(—log m?/p*)} + finite part (8.30)

We have obtained a strange double-log divergence. In order to interpret
it, let us recall that the correlation function {a(0)»(R)> must not be
finite after charge renormalization only, since, according to Chapter 2,
we have to renormalize the n-field itself. In this chapter we have
obtained the result:

T

N -2 (N= 1N -2)
{n(0)n(R)> = <1 - g3 log R/a> (8.31)
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while in the leading 1/N approximation:
dzp eiPR

{n(0)n(R)> = Ng} ) p? ¥ m?

m:« %g?glo r—n% (8.32)
Let us compare these expressions. Since
2n
ma = exp(— N_gf,) (8.33)
we have:
%%‘23 log # =1- % g3 log g (8.34)

We see that in the leading approximation (8.32) matches with (8.31),
owing to the fact that the “anomalous dimension” (N — 1)/(N —
2) — 1. As we expand (8.31) in 1/N, in the next order we shall get:

N->wx

N-2 R N-2 R\'N-2
{n(0)n(R)) = (1 - g5 log — (1 - g4 log —
2n a a

2n

N-2 R 1 (log(1/mR)
~ <1 - g3 log Z)(l + Nlog<m) + )

(8.35)

Equation (8.35) demonstrates how double logarithms arise in the 1/N
expansion of the “exact” formula (8.31); and they are precisely those
obtained in (8.30).

Finally, all that we have said implies that after mass renormalization
(8.29) (which is essentially charge renormalization), and renormaliza-
tion of the n-field, all terms in the 1/N expansion will be finite. This can
be proved by standard methods, used in field theory.

It might have seemed strange that we needed to renormalize the field
n, the scale of which is defined by n*> = 1. As we see from (8.31) and
(8.32) this happens because in {n(0)n(R)) the constraint is satisfied only
after we take R < a (a-being the lattice size) and finite isotropic
correlations exists only at R > a. Therefore, the constraint could not be
directly applied in the continuum limit. As we see from (8.32), the
correlation of the original n-field in this limit contains the cut-off
dependent factor
Ng3 1
21 log(1/ma)
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The other way to express the same thing is to notice that after
integrating out high frequencies of our field we obtain an effective
action for block spins, which are normalized differently from the
original ones.

To sum up, after proper renormalizations, the 1/N expansion is
perfectly defined. Its main advantage is that it explicitly describes
continuum theory in the correct phase. In principle, there could be a
phase transitions as we decrease N, but in the case of the n-field this
does not happen. In the large N limit, the 2 = 2 n-field appeared to be a
theory of free massive particles. The scattering amplitudes, which are
easily computed (see the next chapter), are of the order 1/N.

Unfortunately, this simple picture is not true, as far as principal chiral
fields and 2 = 4 gauge fields are concerned. The first indication of the
trouble comes from the formula (2.35) for the correlation function of the
chiral field. In the limit N — oo it reads

N 2 R>2(N1-1)/N2+1

PR =[1--22
Ry ={1~3 ¢

R

1N BY o L mR < 8.36
4n Oga 8 mR’ " (8.36)

N-w

while the free Green function should behave as log(1/mR). We see that
in contrast with the n-field, the field g(x) does not become free in the
large N limit. In the next section we shall try to understand why.

8.2 The Principal Chiral Field For SU(NV)

Let us start by attempting the previous trick with the Lagrange
multiplier. In this case our variables are complex matrices g,,(x). The
partition function can be written as:

Z= l_[b DG, 29%, I—{ 5(2 GacGtc ~ 5ab>

1
X exp{— =Y | 0.9a20,9% dzx}

€0 a,b

c+ioo 1
= n 5 DAy DAY, CXP(? jz Aaa d2x> Jggabggfb
0 a

a<bct+ion

1 1
X exp{— ;2— Z Iaugab)z d2x - % J‘A’abgacg:c dzx} (837)

0ab
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Here we have introduced a Lagrange multiplier, which is in this case a
Hermitian matrix (because gg* is Hermitian). It ensures that in (8.37)
we integrate over unitary matrices only. So, strictly speaking, the model
(8.37) describes the U(N) and not the SU(N) group. However, it is easy
to see that in the product U(N) = U(1) ® SU(N) the field correspond-
ing to the U(1) factor decouples and can be ignored.

As before, the Gaussian integral in (8.37) can be represented as a
functional determinant. We have:

1
= j [T d*4a exp{; Y Ape— N Trlog(—0% 6, + la,,)}
0 a

a<bh

1 Ziup ™™ (8.38)

a<h

(N appears here owing to the fact that we had a sum over ¢ in (8.37)).
It now seems very natural to follow the same strategy as in the case of
the n-field. Here, however, it leads to trouble. Let us demonstrate this
fact and discuss possible ways out (at present the only way to overcome
this problem is to expand its exact solution in 1/N —not very practical
for generalizations).
It is natural to expect that 4,, acquires a nonzero expectation value:

() = 1* Oy (839)
Therefore we expand:
Agp = U3y + Z J Ve d2x =
% = ei?, ; Aoa — N Trlog(— 0823, + Ay)
= Nyu?/e2 — N Trlog[(— 3 + u2)s,, + i(N)™V2p,,] (8.40)
= Ny = N Tr 108 1)) = 5 My @iaard =0

0

N—I/Z
+

3 L aveates Vap(k 1 J0ea(ky)0e (K 3) + -+
ky+thka+tky=0

The value of u? has to be determined from the minimum of the effective
action or else from the unitarity condition

(Tr(g*g)» =N
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Up to now everything has mimicked precisely the consideration of
Section 8.1. Now we come to the crucial difference. Namely, in spite of
the N ~!/2-factor before higher powers in v, the nonlinearity in (8.40) is
absolutely important, because this smallness is compensated by sum-
mation over isotopic indices in Feynman diagrams. Let us prove this
and simultaneously separate the relevant set of diagrams. According to
(8.40):
dk 1
(m)* (k% + w?N(k + q)* + 1)

X 5(05cOpa + 0440

nabkd(q) =

= n.(ql) %((5“(52,4 + 5adébc) (841)
(This follows from the matrix equation:

Tr log((— &2 + udHI + v)

1
=Trlog(—&* + ) + Tr log(l t o= v)
=

1 1 1
'—‘"'—ET['(L’—WL‘W)-F"' (842)

where Tr is understood both in coordinate and isotopic indices).
The propagator for the v-field is given by:

el — @) = 33,000 + 806s0) (8.43)

l
n(q*)
The isotopic structure in (8.43) is conveniently represented by the
picture

b—d b_ d
laplog? = + X (8.44)
a—-c¢ a ¢

where each line corresponds to a d-symbol. Let us now consider the
nonlinear correction to this propagator, coming from the cubic term in
(8.40). The structure of I, obtained in the same way as in (8.42) is:

i
Copjealer =N~ 1/z< :—_\/_\(g + permutations) (8.45)
!

(here single lines are ordinary propagators 8,,/(k* + u?)). Therefore,
the first correction to {v,,v,,> contains a term which has the form:

g = N7 x @_—d (8.46)
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We see, that because of the summation over e, the diagram in (8.46)
acquires a factor N which cancels the N~ ! in front.

It is easy to check that such a cancellation will take place in any
planar graph (i.e. a graph which does not have overlapping lines). For
instance consider the diagram:

__/G%\.__ - ._@. (8.47)

It contains four cubic and one quartic vertices. According to (8.42) it

will come with a factor (N~ V2)* N~! = N 73, At the same time we have

three windows in (8.47) each carrying a free isotopic index, thus giving a

factor N3. The diagram doesn’t contain any small factor as N — 0.
Nonplanar diagrams are small. For example:

I
v@_ ~% (8.48)

This is easily checked by the above double line representation.

We have reached the conclusion that in order to find the large N limit
for principal chiral fields one has to sum all planar diagrams for the field
of the Lagrange multiplier.

Why is it that despite the large action W in (8.40), the saddle point
approximation appears to be wrong? The reason is the following. The
order of magnitude of the action W is N2 (one N entering in front of the
trace, and the other because the trace itself is of the order of N).
However, the number of variables 4, is also ~ N2. Therefore correc-
tions to the effective action coming from the fluctuations of 4,, are
~ N2, ie. of the same order as the leading term. In the case of the n-field
we had the effective action ~ N, but the number of variables was one.
That explains why we have a good saddle point approximation for n-
fields and nothing similar for chiral ones. Together with the above
discussion it also explains why the propagator has an extra log?(1/mR)
at mR < 1, according to (8.36). One can think that it comes from
exponentiating log log(1/mR) terms which are, according to (8.30),
present in planar graphs.

At the same time, though the propagators are not free and infinitely
many graphs contribute to them, the theory in the limit N —» o
describes free particles. To show this, let us estimate the scattering
amplitude & :

F~_JC + JOC +--~UYN (8.49)




138 GAUGE FIELDS AND STRINGS

This is an important observation. It means that in the large N limit the
field g(x) is some complicated but almost local function of some free
field, and that in fact we are dealing with a disguised free theory. If we
were able to introduce this function explicitly, the perturbation theory
in 1/N might become tractable.

This task has not been solved yet, although an exact solution of the
SU(N)-chiral field exists. The best we can do at the moment is to
present some steps leading, so it seems, in the right direction. As the
trouble was identified as the large number of integration variables, let
us introduce the following decomposition:

A=wAw™! 0w =w"! (8.50)
with
Aab = Aa(sah

Substitution of (8.50) into (8.38) gives after some standard regauging:

=
I =

V= Y A, — N Trlog[—(9,0, + A + A,d,,)
a=1 (8.51)
A = (0™ '0,w)"
We have to replace the integral over i, by one over A,, w:

[1 24w = [1 2A.24%5(F2) (8.52)
a,b a

(Fa> being the Yang-Mills field strength).

Let us suppose now that we manage somehow to integrate over A%
(it is here that the real difficulty lies). After that we obtain an effective
action depending on A,. This time the size of the action is N2, while the
number of variables is of the order of N. Hence, we have just to
minimize over A, and not to bother about their fluctuations.

The integration over A%’ is highly nontrivial, and we do not know
how to perform it. A useful observation in this respect is that for equal
A, = A the action W, being gauge invariant, depends on F,, only or,
since F,, = 0, does not depend on A4, at all. So, if we assume that in the
vacuum we have an a-independent condensate of {A4,}, we deduce that
we are indeed dealing with a free field theory. At the same time, the
Green functions of g(x) depend on A, and are nontrivial. So, we have
arrived qualitatively at the expected picture. A quantitative check of
these guesses has not yet been done. There are no doubts, however, that
the mystery of the large N limit for chiral fields will soon be resolved.
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83 The CP"~!n-Model

Being unable to proceed further with principal chiral fields, we consider
in this section another interesting model, namely the field which
belongs to the coset space CPY¥~! = SU(N)/SU(N —1)® U(1). It
resembles the n-field in the respect that the large N expansion in this
case is easy, with no planar graphs arising. On the other hand the model
is topologically nontrivial and contains instantons. This gives the
possibility to analyse effects of topological charge quantitatively. An-
other remarkable feature of this model, as we shall see, is the dynamical
generation of gauge fields.

Complex projective space CPY ! is defined by taking N-dimensional
complex space and identifying in it the point (z,, ..., zy) with the point
(Az4,...,Azy) where A # O is an arbitrary complex number. By choice of
4 we can parametrize the points of CPY~! by a unit sphere:

[z =1z, >+ + |2y* = 1 (8.53)

with the identification
z~e’z (8.54)
The complex dimensionality of the resulting space is N — 1.

The Lagrangian of the z(x)-field must be invariant under the gauge
group:

2(x) - e"¥z(x) (8.55)

Only in this case does it describe a field belonging to CPY ! and not to

the N-dimensional complex sphere (8.53) (which would be the same as
the 2N-dimensional n-field). Such a Lagrangian can be written as

t
S= szx o, — i4,)z)? (8.56)
(4]

with 4, being a new independent field which transforms as
Ay~ A, + 0,y (8.57)

It is quite obvious that (8.56) is invariant under simultaneous transfor-
mations (8.55) and (8.57). Also, since (8.56) does not contain a kinetic
term for the A,-field this field can be eliminated (at least classically) by
minimizing S. We have:

s 8 ,
51 = 5 10 +i@*0,2 - 0,204, + 47 =0 (8.58)

7 n
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From (8.58) we find:

;
A, =~ 3 (z*0,2 — (9,2%)7) 8.59)
This value of 4, can be substituted back into (8.56), providing us with a
nonlinear Lagrangian which depends on the z-field only. In the case
N =2 these Lagrangians describe the O(3) n-field, because CP! is
equivalent to a two-dimensional sphere. A simple way to see this is
based on the relation:

n=(ez) z= <zl> (8.60)

22
(o are the Pauli matrices).
If z'z = 1, the n-vector satisfies the condition:

n?=1 (8.61)

These formulas define a topologically interesting projection of the
sphere S* in z-space onto a sphere S? defined by the n. It is called Hopf’s
bundle in mathematics. The aspect which is interesting for us now is
that the Lagrangian (8.56) with the constraint (8.59) can be written as a
Lagrangian for the n-field, with n given by the Hopf projection (8.60).
This can be checked by a straightforward calculation, but instead one
can argue that (d,m)’ expressed in terms of z gives a nonlinear
Lagrangian, with two derivatives only, which is invariant under the
gauge transformation (8.55) (because # does not change at all under this
transformation). There is only one expression with such a property and
hence
o,m? =0, — i4,)z|?
(8.62)

n=z6z; A,=— % (z'0,z — (8,2")z].

Another useful relation concerns the density of topological charge. We
have:

Ln[o,n x 0,0] = 3,4, — 3,4, (8.63)

which again can be expected on the basis of counting derivatives, tensor
properties and gauge invariance (and after that checked by direct
computation).

Let us stress again that the option of introducing a local, gauge
invariant field n exists only in the case of CP'; for CPY ! with N > 2t
is not possible and we have to work with “charged” fields z. We shall
investigate now the limit of large N which exhibits some interesting
phenomena.
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Let us write the partition function as:

Z = "glz(x)@Aﬂ(x)é(z?z -1 exp<— %JK@“ - iAu)z|2 d2x>
0

Y

" Adix 1
= | 2AX)D*2(x)DA,(x) exp{IT>E ~=2 Hl(éu —idzl® + llzlz} d*x
0 0

= ”@i(x).@Au(x) exp{el-2 Ji(x) d*x — N Trlog[— (3, — i4,)* + i]}
J 0
(8.64)

In this case, in the large N limit the saddle point approximation works
perfectly. In the vacuum:

Ay = m? <Au> =0
(8.65)

= New j (2n)2(p )

At this point, a new phenomenon occurs. The field 4, originally had no
kinetic energy and could have been eliminated from the Lagrangian.
However, as we consider corrections to the 1/N expansion using an
expansion of the determinant in (8.64) near the saddle point (8.65), we
obtain in the quadratic approximation:

N
W= {z (M(@)oa)ol ~g) + nuv(q)Au(q)Av(q»} (8.66)

with:
d%k 1
@ =~O-= J(Zn)z K>+ m)(k + g + m?
Mg = - + Q- (8.67)

d2k Ck + 9,2k + q),
2m)? (k? + m>)(k + g)* + m?) f (21:)2(k2 + m?)

As could have been expected on the basis of gauge invariance, I1,,,
satisfies the relation:
qu nuv(q) = 0
const.

M, ~ —(4*8,, — 9,4,
g-0 M

(8.68)

On substituting it into (8.66) we find that for large wavelengths the
effective action contains a term:

N
Wo~ J d?x F2, + - (8.69)
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This shows that, owing to quantum effects, the system acquires a real
electromagnetic field, which actually was not present in the original
lagrangian. The z-field has a charge proportional to m?/N. Since the
Coulomb energy for 2 = 2 is infrared infinite, one expects that the
quanta of the z-field will be confined by forming neutral pairs, like z;z;.
It is possible to investigate the spectrum using the Shrodinger equation
with a Coulomb potential, but we shall not dwell on this. Instead, we
shall study topological effects in the large N limit. First of all, let us
consider the averge fluctuations of the topological charge given by:

2
Vg ~ V“‘<<Jequ”v d2x> >
2

m
= €uvéllpk/4k/1.<AvA;:o>|l¢—~0 ~ W

(8.70)

As we have discussed before, it is exactly this quantity which is relevant
for the resolution of the U(1)-problem in QCD. Also, (8.70) implies that
the ground state energy is 0-dependent for the action Sy = S + 16q.
Namely, we have:
2

%52" ={g*>#0 (8.71)
This implies that strong CP violation, due to the 8-term, is present in
this model. To show this, let us note that the 6-term is represented in
Feynman diagrams by a photon disappearing into the vacuum with the
amplitude ¢, k, |, . Since the photon propagator has a pole at k* = 0,
this process contributes to the vacuum energy, as was demonstrated in
(8.70). If we consider the Green function for neutral objects the first 6-
correction will be given by:

Kk

P Pk
rp,, p,) =
(P> P2) Pz:%:h

1
or;‘(pl’ D2 k) F 6uvkvlh—~0

k-0

(8.72)

Here the wavy line corresponds to some neutral operator such as z;z;.
The photon emission vertex I',(p,, p,; k) has to satisfy:

kL (py, p2sk)=0 8.73)

We see from (8.72) that we should have terms at least linear in k in
I, (py, p2; k) (satisfying (8.73)) in order to get a nonzero result. It is easy
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to construct such terms:

ru(pl’ pZ? k) ~ (eaﬂplapﬂi)euvkv
= Pu(Pz k) — qu(Plk) (8.74)

If we substitute this into (8.72) we obtain:

1
r'Y(p,, p,) ~ 0(€aﬁplap2ﬂ) 2 6ulkl€yvkv
= Géapplapﬂi (875)

Presence of the ¢,,-containing terms in the two point function indicates
breakdown of CP-invariance. As we have discussed before, the anal-
ogous phenomenon in QCD creates some unsolved problems.

Let us finally discuss to what extent the topological effects described
above can be attributed to instantons. A naive estimate of the instanton
contribution to Z would give a contribution of the order of ¢ V. This
happens because the instanton action for the CP¥ ~! action is finite and
independent of N. At the same time, the coupling constant e} scales as
1/N. Hence we obtain an exponentially small contribution. However,
this naive argument is wrong. The one loop calculation of the determi-
nant near a multi-instanton configuration reduces the partition func-
tion of the CPY ~! model to one of some generalized plasma, in the same
way as in CP! (see Chapter 6). The correlation length which is
established in this plasma is such that the entropy, coming from the
fluctuations, compensates the smallness of the classical contribution.
Roughly speaking the following happens. The one instanton contribu-
tion to the partition function has the form:

dp 2nN
-1 a | 22 _ -1
V-llogZ ,[p3 exp( o= log(up) )

(8.76)
d
= J;’s) (up)"

This formula is strictly correct only for up < 1, thus indicating the
exponential damping described above. However, if we consider the
plasma and not a dilute gas approximation, the infrared divergence in
(8.76) gets cut off at p ~ u~'. It is true that at this point, where
instantons dissociate (just as in the O(3) case of Chapter 6) the one loop
approximation is not applicable, and we have to deal with a strong
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coupling problem. By counting powers of N, we can easily show that
multiloop corrections to the (8.76) would lead to the replacement:

d d
Jp—’; (up)¥ - Jp—f (f(up))?

with some unknown f, which can be computed for small up loop by
loop. The use of the approximation f(x) ~ x for x ~ 1 is only qualita-
tively justified.

So, the final conclusion is the following. At all values of N we have
nontrivial topological fluctuations of the fields. They can be efficiently
described by the 1/N approximation. There could be another, comple-
mentary, description in which they are represented as a collection of
melted instantons. Unfortunately rigorous quantitative methods for the
second description are not known at present. It seems that the one-loop
WKB approximation is qualitatively sensible. But before the develop-
ment of quantitative methods, the possibility of describing topological
excitations in terms of instantons remains a semantic question.

8.4 Non-Abelian Gauge Theory

This is the case most interesting for us. Its 1/N properties are to some
extent similar to those of principal chiral fields. It is convenient to
consider not SU(N) but the U(N) = SU(N) ® U(1) case. Here again,
the U(1) part trivially decouples. The field is described by anti-
Hermitian matrices:

(Au)ji = _(A:)iﬁ ihj=1,...,N
(F Y= 08,Al; — 8,4}, — A A}, + A% Al

uftvi vitui vi‘tuk

(8.77)

N
S = —T%JTrFﬁvd‘*x

N j i 44
- 4_3(2) (Fuv)]i(Fuv)j d X

Here we have changed the normalization for the bare coupling constant
(in comparison with the previous chapters) so as to make the action
have its natural scale N2. One of the N-factors come from the trace; the
scale is natural since the Lagrangian (8.77) describes N? interacting
gluons. Their vacuum fluctuations provide the energy or effective action
~ N2, of the same scale as the classical action (8.77). Another check is
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the formula (2.68) of asymptotic freedom. For rescaled coupling it is N-
independent.

Just as before, in spite of the large factor in front of the action, the
naive saddle point approximation does not work owing to the large
number of fields, and the sum over all planar diagrams is needed. To see
this one has to use a double line representation, as in Section 8.2:

i [

(AVIAY) = 88D px == == =~ @T8)

Y =N o

In a certain sense the gauge field is represented by a “quark” with index
i and an antiquark with index j. Each “quark” line in (8.78) corresponds
to a d-symbol. Of course the word “quark™ here is just a way of
expressing the fact that the adjoint representation can be obtained as a
product of two conjugate fundamental ones. We have not yet intro-
duced quarks as physical particles.

With this notation, the logarithm of the partition function is repre-
sented by planar Feynman graphs:

log Z = + @ + 4o
@ % (8.79)

= Nf(e3)

Let us check this. The first diagram contains the summation §/6f = N2.
The second one has three closed paths and hence the factor N3, but it is
also proportional to the coupling constant, which in our notation, gives
a factor e3/N. In the same way it is checked that any planar diagram
has the same magnitude, while any nonplanar one is suppressed by 1/N.
This has an important topological interpretation. Take the first dia-
gram in (8.79), and imagine that it is a picture of two disks, lying one
upon the other. The orientation of each disk is defined by the
corresponding arrow on its boundary. Let us now glue together the
“quark” and “anti-quark” lines. As a result we shall obtain a topologi-
cal sphere. Any planar diagram has this property—after gluing all the
cuts we obtain a sphere. Now, according to (8.77), each vertex of a
diagram carries a factor N, each propagator (or edge on our surface)
contains N ~ !, and each free face contains a closed loop giving N. Hence
the total contribution is:

NV-E+F = Nx (8.80)
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where V, E, F are numbers of vertices, edges and faces, and y is the Euler
character. For a sphere y = 2 and we confirm (8.79). What is more
interesting is that any nonplanar gluon corresponds to a handle
attached to the sphere. For example:

@ _ Es0)

Here we have used the fact that a sphere with one handle is topologi-
cally a torus and has y = 0. Of course it is trivial to check (8.81) directly,
and to prove that all graphs with one nonplanar gluon have a
magnitude N° That would just be the proof of the topological
invariance of the Euler character.

We shall see below that this representation of planar graphs as a
surface with edges is something more than a convenient trick. Namely,
it is possible to interpret these surfaces as the world surfaces of colour-
electric strings. But before plunging into this hard dynamical problem,
let us proceed a little with kinematic power counting, which gives
surprisingly much in this problem.

Let us assume that the pure gluon theory has the confining property.
That means that its spectrum consists of colour singlets only. It follows
from this assumption that in the N = oo limit all amplitudes of the
theory contain only poles in momentum space, while all the cuts have
an extra 1/N. Also, the number of these poles is infinite. An important
physical conclusion is that the sum of planar diagrams describes, under
the assumption of confinement, an infinite number of stable particles
with rising masses. Higher corrections in 1/N would turn these particles
into narrow resonances.

In order to prove these statements, let us consider correlation
functions of some singlet operator, say of:

&(x) = % Tr (F2(x)). (8.82)

By the use of the double line representation we count the leading power
of N:
(ee) = N-h-(:).. ~ N"2N2 ~ N°
(8.83)

(eee) = N3 ~N7T3N2I~ N1 etc.
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Let us now suppose that we have a pole in the {e¢) correlation function.
It describes some one-particle state, |r). According to the first of

equation (8.83) we have:
Cee) = rma=— + .o~ N°
8.84
<Ojelry ~ N°® (©59

At the same time, the second of equations (8.83) gives:

<68£>=A + A%—~-~N‘l (8.85)

From this we conclude that:

Oe|ryryy = ““”<

— } ~ -1
9= r1=< N (8.86)

s

r
i NN_I

ry

These estimates show that we have no thresholds in the correlation
functions as N = oo, and that the width of resonant states scale as
g?> ~ N~ 2 The same is the scale of the two particle scattering ampli-
tude.

It is quite clear that the number of particles in the theory must be
infinite and that their masses should increase. This follows from the

representation:
2

e(p)e(—p)) = Z pra (8.87)

If we consider the limit p2 — oo, then for a finite number of resonances
we would get the behaviour ~p~? from (8.87). However, as we know
from asymptotic freedom, the true result contains powers of
log ™ !(p/m). This is compatible with (8.87) only in the case of an infinite
number of poles.

This result is very natural from the point of view of string representa-
tions. Indeed, as we have seen in Chapter 3, in the confining phase
elementary excitations are formed from closed strings of electric flux.
Such closed string have infinitely many vibrational modes (we shall
study them in Chapter 10), each of which corresponds to a particle and
produces a pole in (8.87). It is easy to give a crude estimate for the
number of states of a given mass. For a string of length L, the number of
its configurations increases as e’. The mass of a configuration is
proportional to L. Hence

N(M) ~ eM (8.88)
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(where N(M) is the number of particles with mass M, and ¢ is some
constant).

In Chapter 10 we shall discuss these things in more detail.

Another important feature of the large N limit concerns the phase
factors Y(c). Let us show that the field:

@o(C) = % Tr <P exp § A, dx“) (8.89)
has the following decoupling property:
{@(Cp(Cr)) = Lp(Cy)X<e(Cr)) (8.90)
N-w
This is again immediately seen from the “double line” representation.

We have
{ple)y =1 +%QD+.--= 1 +%QD+

~ N©
{@(C)o(C)) — Lp(C)H<P(C2)>

=%(®_O +...=%%+...~N-l (8.92)

€y €2

(8.91)

Equation (8.90) implies that the field ¢(C) can be considered as a
classical field in loop space, because its fluctuations {(¢(c) — {@(c)>)*)
are negligible. This does not imply, however, that A, itselfl becomes
classical in the large N limit.

This classical field W(C) = {¢(C)) satisfies a closed nonlinear equa-
tion in loop space which follows from (7.41). We have:

PW(C
W((s)) = —e §5(x(S) — )%,(5)dy,

x W(C)W(C) (8.93)

It can be shown by proceeding along the lines mentioned in Chapter 7,
that perturbative solution of (8.93) gives all planar diagrams, as it
should, in their unrenormalized form. However, the real destination of
this equation is to help one to choose from among possible theories of
free strings the one which describes large N gauge theory. Unfortuna-
tely this most important question is not settled yet. The main difficulty

t This property was discovered by A. A. Migdal (1977).
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lies in the inadequacy of our understanding of string theory. This will be
discussed in Chapter 10. Another problem is related to the following
clumsy feature of equation (8.93). This equation is true only for a
definite regularization of gauge theory and of string theory. Therefore it
is possible that the “correct” string theory will not satisfy (8.93) just
because it has been regularized in a different way. It makes attempts to
solve (8.93) by the use of the string ansatz very difficult. Perhaps it will
be easier to compare directly the small distance behaviour in the string
theory with the one described by asymptotically free gluons. The
situation with the loop equations, described above, is reminiscent of the
one with Shrodinger equations for field theory. Although these func-
tional equations are in principle correct for the regularized theory, and
can be renormalized with some effort, their practical use up to now has
been quite limited. Instead, it appears more convenient to study directly
their solutions in the form of functional integrals.

In the next chapter we shall describe a similar approach to the theory
of strings.
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CHAPTER 9
Quantum Strings and Random Surfaces

DOI: 10.1201/9780203755082-9

We have seen in the previous chapters that while chiral fields in the
large N limit describe free particles, gauge theories describe, or are
described by, noninteracting strings. The notion of “free string” is far
from being trivial, and actually, we have used this term before rather
loosely. It is the purpose of this chapter to present the theory of strings.
Unfortunately this theory is not yet completed. So, we shall give a
review of existing results and indicate the possible directions of future
development.

We begin our discussion with a very simple special case of infinitely
short strings or, which is the same, point-like particles. After this warm-
up we will proceed to our main case of interest—the general theory of
strings.

9.1 Mathematical Preliminaries: Summation of Random Paths

The position of a point-like particle is described by a four-vector x,,.
The meaningful question is: what is the amplitude G(x, x’) for a particle
to go from the point x to a point x'. As usual, this amplitude is given by
the sum over all possible trajectories connecting the points x and x'". In
Euclidean space the amplitude is given by:

Gx,x)= Y exp<— S[I;:‘"']> .1

(Px,x)

Here P, are paths connecting x and x’, and S[P,,.] is the classical
action for the given path. As such, one takes the simplest invariant
characteristic of the path—its length. So, we have the following
expression for the action:

SLPow] = moL(P ) ©.2)

151
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where m,, is some parameter (connected with the mass of the particle)
and L is the length of the path P, ..

Our aim now is to define properly the sum in (9.1) and to proceed to
its computation. Had we had a lattice in the x space, the definition of
the sum would be easy, because on the lattice there are a finite number
of P,,. having a fixed length. So, one respectable way of doing things is
to start on a lattice, compute the sum (9.1), and then take the mesh
a - 0, simultaneously choosing my(a) so as to make the amplitude
G(x, x') finite. Since the problem of the random walk on a lattice is
exactly solvable, the way described will readily give the desired answer.
It has only one flaw (apart from the aesthetic one): there exists no
generalization of this approach to the case of surfaces. Because of this
we shall not take this standard route but try to develop continuum
theory ab initio.

In the continuum theory the action (9.2) takes the form:

S = ld dx ") 9.3
o

(here we have parametrized the path by x, = x,(7) with x,(0) = x,;
x,(1) = x,,). This action is invariant under the “gauge transformations”
or “diffeomorphisms” or “reparametrizations”, given by

x,(1) = x,(f () 94
with the function f(z) satisfying the conditions

df (v)
dr

0O =0 f()=1 >0 9.5)
At this point we encounter two difficulties. First, we have to manage the
integration of the action (9.3) containing a square root. Second, the
measure of integration should be defined so as to count only x,(7)
modulo reparametrization (9.4) (it is obvious that two functions x,(t)
and x,(f(r)) describe the same single path). We shall now show how to
resolve these difficulties which, to some extent, compensate each other.
We wish to compute the integral:

G(x, x) = f(g;g;) exp< —mg J(xz(r))“z dt) 9.6)
o

where we have denoted by the ratio 2x(z)/2f (r) the measure on the
coset space obtained from the space of all x () by identifying functions
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connected by reparametrizations. In other words 2f(t) can be under-
stood as the volume of the gauge (reparametrization) group. Let us
rewrite (9.6) as

Dh(z)
G(x,x) = J exp<—m0 J(h(r))” 2 d‘t>
9
f (1) :

X J@x(t)&()&z(t) — h(z)) 0.7

where we have introduced a “metric tensor” h(t) on the path and
inserted a functional J-function into the integrand. Let us begin with
computation of the second integral in (9.7) and use a Lagrange
multiplier to define the d-function:

A (x, x', k(1))

= j@x(t)&(iz(r) — h(z))

c+ioo 1 1

= j D) exp< j AM2)h(1) d‘l.'> I@x(t) exp(— j A)x*(1) dr)
1] o

c—ijiw

(9.8)
The action in (9.8) is invariant under reparametrizations, if we trans-

form:
x(1) = x(f(1))

d 2
h(z) - ({;) h(f(x)) (9.9)

d -1
i0-(%) e

The measures of integration and the cut-off have to be defined so as to
preserve (9.9). In particular, it will be quite a mistake to split the
interval 0 < 7 < 1 into small equal pieces, because such a procedure
violates gauge invariance. Instead the size of the mesh Az has to be
defined by:

h(z (AT = € (9.10)

(because h(1)) is the metric tensor).
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It is convenient to introduce instead of the “tensor” A the “scalar”
Lagrange multiplier, a(t):

A1) = a(t)h(r) " 112
() = o f (7))

(9.11)

So that:

1

A (x, X, h(t)) = J@a(t) cxpj a(t)(h(1))'2 dr
0

1

2 2@ 9.12
X J x(1) exp{—fa(r)W ‘t} 9.12)
V]

We shall show now that in the continuum limit «(z) in (9.12) can be
replaced by a constant {a), just at happed in Chapter 8 with the o-
model in the large N limit. It is convenient to make one more (the last)
change of variables in (9.12) by introducing instead of 7 the proper time
t:

t= J(h(r,)”zdrl; T =1(1) 9.13)
1]

T
H(x,x', T)= j Do(t) exp Ja(t) de
0
T
X J Dx(t) exp(— ja(t)xz(t) dt) (9.14)
x(T)=x' V]

x(0)=x

According to (9.10), the functional integral in (9.14) is defined in the
conventional fashion, namely by splitting the interval [0, T] into equal
pieces:

(At) =& (9.15)

It is not hard to compute the Gaussian integral in (9.14) with the
regularization (9.15). Let us do it, though as we shall explain later, the
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final answer could have been foreseen without this computation. We

have:
T
J Dx(t) exp[-— Ja(t)xz(t)jl
0

x(T)=x'
x(0)=x

R

Tie Tie (xz+1 x:)
dx, -
‘l:_lo x exp|: ; ]
i e T/e 2
[T'/I dV,&(% Vi+x— x’) exp[— Z/ ﬂ:I
1=0 t=0 t=0 €
2
'[ P exp(ip(x — x’)) l_[ J dv, exp( Ak )
Tle - 2 -9/2
= const(]_[a, )exp _-9 (Z o ’> 9.16)

)

Next, we have to compute a seemingly complicated integral:

c+io

Tle
H(x,x,T) ~ J <Hda, o 22 e"'>d>(x N B CA )
t=0 t

where:
(R, ) = o~ 22 exp(— R?/ar)

The major idea which permits us to compute (9.17) in the limit ¢ — O is
the “law of large numbers”. Namely the interesting piece ® in the
integrand depends only on X, «,"!. Each «, fluctuates near its mean
value {a) and its fluctuation is ~ 1; the average is defined by:

c+ioo c+iow .
f@) = J do o™ 22 e“‘f(a)[ J do o= 22 e“]
e2(Aa)? = e¥a? — (1)) ~ 1 9.18)

1\2
(o) -
&
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As a result, in the limit ¢ — 0 the formula (9.17) gives:

(' =x)
T

H(x,x', T) = const. T~ 92 exp<— (ad + T(a)) (9.19)

In the process of this derivation it became clear that we could do much
better than performing the dumb discretization (9.16). If we look at
(9.14), we discover that the fluctuations of a(t) are short ranged. Indeed,
if we write

a(t) = {a) + B(1) (9.20)

then the bilinear term in f in the effective action, W, obtained after
Gaussian integration has the representation:

iy d dk k-(q — kyk-(q — k)
— __Ll i—: Vq - -~ q q
u/ll - ﬁQ/‘ I B(LI)»B( q) f I kl(q _ k)2<a>2

~ e Y B@B(~a) (9:21)
q

(Here we have the vertex of the fxx-interaction from the term
§ B(t)x*(¢) dt in the Lagrangian.) This computation shows that the field
B does not acquire any kinetic energy, and therefore has a correlation in
t of the order of ¢. That in turn means that in all expressions containing
a “large number” of a, as in j a(t)X%(t) dt (provided x(t) is smooth) one
can boldly replace a(t) by its mean value {a). This is an important
lesson.

So far we have solved only one part of the problem with the result:

H(x, X', k(1)) = J D2x(1)d(x(t) — h(t))

x(0)=x
x(1)=x’

(x = x)?
T

= const. T~ 212 exp<— () + <<x>T>, oy ~ %

(9.22)
T= J dt(h(1))!/?

0

Now we have to complete the integration in (9.7). Let us notice, first of
all, that (9.22) depends on h(t) only through T. This of course is not an
accident since T is the only invariant quantity in one-dimensional
Riemannian geometry (things like scalar curvatures etc. are zero in this
case). It is natural to expect that the integration over 2h(t)/2f (1) in
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(9.7) will become just the integration over T. This is indeed the case, but
it is worthwhile for future generalizations to work out this fact in detail.

9.2 Measures in the Space of Metrics and Diffeomorphisms

In order to define an invariant measure for the h integration, we shall
start from the definition of the metric in the space of metrics h, and then
use the “metric tensor” in this functional space for finding the volume
element. The only local expression for the “distance” ||6h| between the
metrics h(t) and h(t) + oh(t) has the form:

1
6h)1% = '[ dt(oh(z))*h~3*(1) (9.23)

0

It is quite obvious that (9.23) is invariant under reparametrizations.

Let us notice now that any metric h(t) can be made r-independent by
means of a properly chosen gauge transformation f(z). Due to (9.9) this
implies that any h can be represented as:

h(z) = T{g)z (9.24)
dz

with some T and f. Our strategy will be to pass from the integration
over Zh(7) to integration over the new variables T and f. According to
general rules:

Dh(t) = dT2f (1) x (jacobian) (9.25)

If we manage to find the jacobian, our problem will be solved, since
instead of 2h(1)/2f (7) we shall obtain a properly defined integral over
dT. The easiest way for solving this problem is to substitute the
decomposition (9.24) into (9.23) so as to find the “distance” in terms of
the new coordinates.

The computation is greatly simplified if we use a general geometrical
formula, which we derive now in its n-dimensional form (needed for
future applications). Suppose, that we have two metric tensors g,,(&)
and h,, (&), where ¢ are coordinates of some n-dimensional Riemannian
manifold. Let these two metrics be connected by the coordinate
transformation (or diffeomorphism) & — f(£):

g=hv (9.26a)
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or, explicitly:

af (&) ar%)
o b

We should like to prove the following relation, connecting small

variations of g, h, and f:

0 = [Oh,y + V00, + waa]m

9gan(8) = hel () (9.26b)

oceft . ’
= éTé" 6% (Shy + Vs + V0 )(f(E)) 9.27)
with
w*(&) = (S ~ (&) (9.28)

Here by V, we mean the standard covariant derivative computed in the
metric h, and the symbol f ! means the inverse function. This formula
(9.27) can be checked by direct computations, but it can be easily
understood without that by the following consideration, based on the
group properties of difffomorphism. We can consider the transforma-
tion f + df as the transformation f, followed by the infinitesimal
transformation 1 + . Hence it is sufficient to compute the change of
the metric tensor under the infinitesimal transformation w, which is
given by the expression in brackets in (9.27). Let us also notice, that the
analogous formula for gauge fields has the form:

Ay=f"'Bf +f7le,f
64, = f"'[6B, + V,w]f (9.29)
w=f"' Vo=¢w+([B,w)]
(here f(x) is the field of unitary matrices, performing gauge transforma-
tions).

It is straightforward now to use these general geometrical formulas in
our special case. Substitution of (9.24) into (9.23) gives:

16h(12 = szh‘3/2(r)<%>4[rar + ]
O\ AN .
0

+T? J df 62(f) (9.30)

0

T)’
T
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Here o(f) = dw/df, and the relation w(l) = w(0) = 0 has been used
(which follows from the conditions f(1) = 1 and f(0) = 0).

As the next step let us determine the measure and the metric in the
space of difffomorphisms. Just as in the case of ordinary groups
there is only one metric invariant under left and right multiplication
simultaneously. It is given by the following general formula:

161 = j (h)2h y(E)(E)oP() 7

(9.31)
(&) = of*(f 1(&)

This formula is a consequence of two facts. Let us consider first “right
multiplication”, namely the change:

foSea
S = f(()

(9.32)

Then we have:

A TR G (9)]
of (&) = of (&) 9.33)
(&) = of (aa™ '(f 1O = w()

So, the form w(¢) is invariant under “right multiplication” of a
diffeomorphism. If we look at “left multiplication”, we have:

foBef
JHE) = B

0
VRCRRALAC
a -1
()~ s 3B

BB~
o~

9.34)

w'(§) - o*(B71(E))

Therefore w? transforms as a standard covariant vector under the left
multiplication. If we transform the metric h, simultaneously, the
distance (9.31) will be invariant. It is obviously the only local expression
with these two properties. This expression generalizes the well known
double invariant Killing metrics for finite dimensional groups. In the
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finite dimensional case, if f is a group element then the Killing metric is
given by:

lofI? = Tr(w?), w=06f-f" (9.35)
This metric is invariant under the change:
f_,ﬂ.f.a; w—»ﬂ-w‘ﬂ_l (9.36)

(where dots mean the usual matrix multiplication.)

Diffeomorphisms, while forming an infinite dimensional group, be-
have very similar to the finite dimensional cases. The only crucial
difference is that in order to define the analogue of the trace in (9.35) we
have to use the metric of the manifold h,,, as seen from (9.31).

Certainly, our manipulations with metrics in the functional spaces
make sense only if some invariant regularization and renormalization is
performed. This will be the case in all our future applications.

Returning to our problem we see that:

1

1oz = -2 j OHf) df

1]

(9.37)

o=0f

After rescaling t = T f, w — Te our expressions can be written as

T
2
l6h)? = @7 + J deeX(r)
(4]

T

(9.38)

T

lofhi? = J dee?(1)
(4]
From (9.38) we deduce that:
dT d?
gh(‘[) = '\/—7: Det”z(— m)@f(‘t)

(9.39)

Pht) dT _ ./ &
@~ T (‘d—r)
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and hence we have found the desired jacobian. Now it is time to
regularize and compute the determinant in (9.39). Its infiniteness
reflects the formal nature of our manipulations with infinite dimen-
sional measures. However, we know that the ultraviolet divergences,
according to (9.15), have to be cut off by splitting the interval into equal
small pieces, since our metric tensor on the interval [0, T] is equal to 1.
There are many equivalent and more convenient regularizations. We
shall use the following expression:

d? r dz
log DetR<— W) =- |- Ye (9.40)

&2

(where 4, are the eigenvalues for —d?/dt*> which are equal to: A, =
n2n?T~2).

For the n for which A, < ¢”2 the contribution to (9.40) is just
log(1/4,¢?). Harmonics with inT ™! > ¢! give negligible contribution
to (9.40). But nn/T is just the wave vector corresponding to the eigen-
function ¢, of —d?/d¢?:

Y, ~ sin(nnt/T) (9.41)

Therefore, the definition (9.40) accounts correctly for the eigenmodes
which vary slowly in the time intervals ~¢, but cuts off higher modes.
Hence ¢ plays the role of a lattice spacing. A little later we shall see that
after renormalization we can take the limit ¢ — 0, and that the concrete
form of the cut-off is irrelevant.

To do the computation, we represent the sum in (9.40) in the form:

@ 1 tx® 1
Y. exp(—n*n?t/T?) = 3 Y. exp(— n*n*t/T?) ~ 3
n=1 n=-—ow
+
1 1
=3 J dn exp(—n*n?t/T?) — 3 + O(exp(—c¢/1))
T

1
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(where the exponential smallness of the correction follows from the
Poisson summation formula). We obtain:

d2

—log detk<— W)
dr

t n

e

d @
J huad Y. exp(—n’n’x)
X n=1

/T)?

exp(—n’ntt/T?)

1

uMg

1

dx & dx &
'[ haad Y. exp(—n?n’x) + J & Y exp(~nnx)
X =1 X n=1
1

(e/T)?

I 5

(e/T)?

dx N J dx iy L1
(2\/(nx) 2) x <n=1 A AN )
0

+ J. d; Y. exp(—n?nix) (9.43)
n=1

Now, the last two terms in the last formula are T-independent
constants. Therefore:

log det dz Ll 9.44
—log de 2) S odn og— (9-44)

If we substitute this expression into (9.39) we obtain:

Dh(t)

G = COmStexp(=T/2e/m) %T? i

= const - exp(— T/2¢,/n) dT (9.45)

The divergences are condensed into the constant factor in front and the
term exp(— T/2¢e/m).
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Now we are ready to compute (9.6). Combining (9.45), (9.22) and
(9.7) we obtain:

G(x, x") = const. J dT exp(—(m, — const./e)T
0
x T~ 22 exp(—(x — x')*/eT) (9.46)

= const. J dT exp(—peT) T~ 2% exp(—(x — x')?*/eT)
V]

= t J ( ( /))
const. eEXpiip(x — x')),
2 /4

const
p=ce"'(mo—my)= 8_1<mo - —>

Je

All our derivations make sense only if relevant values of T in the
integral (9.46) are much larger than the cut-off (or “lattice spacing”) e.
Therefore, the integral (9.6) has a continuum limit only if we adjust m,
to be very close to the critical value, or, in other words we have to take
the limit ¢ — O for the cut-off simultaneously with mqy(e) = m, ,. Then
the terms like e™/* will be compensated and we obtain the continuum
theory. This result is quite easy to understand from the lattice point of
view. On a lattice we have:

G(x,x") = i N, (x, x) e meL (9.47)

L=0

where N, (x, x) is the number of paths of the length L connecting points
x and x’. We know that for large L, N,(x, x) ~ (c)* where ¢ depends on
the type of the lattice. We see, that for my > log ¢, the relevant paths in
(9.47) have a length of the order of the lattice spacing and no continuum
limit is possible. But as we approach my, - m,_ ., = log c, then a typical
L ~ (my — mg )~ > 1 and the theory becomes continuous and lattice
independent. Our description refers precisely to this limit.

We see from (9.46) that the correlation length or the physical mass
have a nontrivial critical exponent:

Tc—orlr ~ Moy = \/l‘ ~ (mo - mo,cr)l/z (948)

The procedure of renormalization in this case consists of expressing
everything in terms of the physical mass and eliminating the irrelevant
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constant factor in front of (9.46). After that we obtain a finite amplitude
in the limit ¢ — 0.

In view of the future generalizations we have to develop the same
formalism as above for closed paths.

9.3 Closed Paths

In this case there are some technical differences in the integration over
the metric field. Let us begin with the integration over x(z), provided
that the Lagrange multiplier is replaced by its average, which we shall
choose to be } by a choice of scale. We have:

x2 dr)

0{—3‘!

H[h(r)] = j 2x(1) exp(— %
x(0)=x(T)

(9.49)

1
T= J hY2(7)dr
]
First of all we have to remove the trivial divergence in (9.49) connected
with the fact that the integrand has translation invariance x, = x, + ¢,

and so we have to fix some point of our loop. Such fixing is most
conveniently performed by inserting the relation

T

J de (% j é(x(t) —¢) d‘t) =1 (9.50)
0

and omitting the | de = V. After that we have (with the choice ¢ = 0):

T

T
K [h(t)] = J 9x(1:)<% j o(x(1)) d‘t) exp(— % j x? dr) (9.51)
o 0

The Jd-function in (9.51) will exclude the dangerous zero mode of the
operator —d?/dt2. If we expand

x(1) = (ao + Y a,exp(2nint/ T)) % (9.52)

n¥0Q
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then

T
422
jx2d1= Y A a2, A=
n#*0 T
1]

Dx(1) = da, [] da,

n¥0

From this we derive:

T

Hh()] = J dgao% a<§°? + ) de | [] da, exp(— ¥ ).,,a,f)

n#0 n*0

d2 -9/2
_ T@/z[det(_ d’ﬁ)] (9.53)

(where det'(x) is defined as the product of the nonzero eigenvalues).
Using the representation of the preceding section we get:

=]

d2 d 2,2 2
~logDet| — 1= | — exp(—4n*n®s/T?)
dt S n#0

Il
—38
“ | &
TN

Y exp(—4n?n?s/T?) — 1

= J 7(Zexp(—-41t2n2x)—l

)
)
)
)

= ( exp(—4n’n?x) — 1

d
+ j x (Z exp(—4ninx) — 1
! n

1

B dx 1 1+0
= J ~ {m -1+ (exp(-c/x))} + const

(e/T)?

T T
= —2log -~ .
T 2log - (9.54)
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This gives the result:

H[h(t)] = T2 T2 exp(cT/e)
= T~ 22 exp(cT/e) (9.55)

Now we have to find the measure Ph(t)/2f(t). Here again we must
treat zero modes carefully. Since our parametrization space is a circle it
now admits an isometry—a transformation which does not change the
metric. This is just a translation T — t + a and it must be excluded from
our gauge group. This can be done in the same way as in the case of the
x integration, by inserting the relation:

T

T
J da J f;—f&( f—ay=1 (9.56)
o

o

As a result the measure in T will be the same as for open paths and we
get the following answer for the number of closed paths of length T

dN(T) = TTT""’” exp(—cT/e) 9.57)

Of course, this formula could have been anticipated from (9.46). If we
set x = x’ we get the integrand in this formula to be T~ 2/2 exp(cT/e).
The extra 1/T in (9.57) follows from the fact that we should count paths
with different starting points x as one path. Since for a path of the
length T we have T different possibilities for a choice of the starting
point we obtain a 1/T factor.

Different physical quantities can be expressed in terms of the
amplitudes for a path to pass through a prescribed set of points {x;}.
These amplitudes are obtained as expectation values of the following
type:

T

F(x,,...,xy) = <l_[ jdrj 8(x(z)) — xj)>

i

T

f J 2x(1) exp< J 2 dr) n Idtj 3(x(z)) — x;)

0

(9.58)
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In order to compute these integrals it is convenient to go to the
momentum representation:

© T T
T 1
F(qy,....qy) = J r J@x(t) exp(— 3 J *? d‘t) f [1dz; cxp(i ) qjx(tj))
j i
0 0 0

(9.59)

The integrals in (9.59) are Gaussian. According to the general rules, to
find them we have first to solve the classical equations:

Xy =—i) ¢;0(t — 1)) (9.60)
J

and then to compute the classical action. We have:
xy(1) =i}, ¢;9(zlt) (5.61)
j

where 2(t|7') is a Green function for the operator —d?/dt2. The
substitution of (9.61) into the classical action gives:

1 .
Sa= 2 ngl dr—i Z g;x.(1))
J

1
=3 ) 6:4;2(lt) (9.62)
2 [()]

The Green function on a circle contains a zero mode contribution:

Ity = T exp iy/A,(t — 1)

+C 9.63
n#0 T in ( )

(here 4, = 4n?n?/T?, and C is the zero mode contribution which is
arbitrary). However if momentum is conserved (X; ¢; = 0) this arbitrar-
iness disappears from (9.62):

2
CYaqq= C(Z qj) =0 (9.64)
ij J
The necessity of momentum conservation can be seen also from (9.60)

by integrating it over 1. Then periodicity of %, requires Z,4; = 0.
We obtained the following expression:

@ T
dT .
F(qy,....qy) = JT T ~2/2 g—m2T/2 Jndrj
i
0

0

1
X CXP{" 2 Z qi‘lj@(filfj)} (9.65)
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In order to elucidate its meaning, we shall consider the case of the two
point function with ¢, = —¢, = ¢. Let us compute, first of all, the
2-function. We have:

) exp(iy/A(t — ) 4nn?
-329(tit)=8(r =) = /T (9.66)

(where the second terms in the r.h.s. follows from the constraint n # 0 in

the definition of the 2-function). Since the 2-function on a circle

depends on s = |t — '] we can trivially solve (9.66), finding the result:
(T —5)

(i) = — T +const. forO0<s<T (9.67)

Therefore:

o

T T
Flg = JdT T 212 g=mT12 Jdr Jdr' g Os(T-a2T
T
0o o

0

T
dT T—g/z e—sz/Z J.ds e—qls(T—s)/ZT

I
Sl

E
dX J‘ daT Tl -2/2 e—sz/Z e—qzx(l -x)T/2
0

(9.68)

- f[m +q x(l —x)]z a7z
v

(here we have introduced a new variable x = s/T = |1, — 1,|/T). It is
quite interesting that the amplitude (9.67) can be interpreted in terms of
ordinary Feynman diagrams. Let us consider the expression:

q—k d2k

F(q) = P (A) q= (k2+m2)((q__k)2+m2)

_ (4 d%
h J x.[(xk2 + (1 — x)(g — k)* + m?)?
0

dx

m? + x(1 — x)qg?)?~ 22 (969
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where we have used the standard representation:

1 _ 1 dx
AB j(Ax+B(1—x))2
0

The derivation we have given serves as a check that all normaliza-
tions, measures etc. in the path integrals were correctly chosen because
at the end it produced the standard answer for the amplitude (9.69). In
the same way it can be shown that F(q,,...,qy) defined by (9.59)

reduces to the standard diagram:
q:
q:

F(qy....q0) = ‘ 9.70)
N

In this section we have developed an unusual formalism which deals
with path integrals but in the end all the answers have appeared to be
much more easily described by the standard Feynman graphs. How-
ever, there are serious reasons for working with geometrical integrals
directly. They lie in the fact that as we go from paths to surfaces and
higher dimensional objects, geometrical functional integrals remain our
only existing tool. In the next section we are going to show how this
tool works in the case of string theory.

9.4 General Theory of Random Hypersurfaces

In the previous sections we discussed one dimensional curves randomly
immersed into 2-dimensional Euclidean space. This problem was
equivalent to the problems of Brownian motion and (after analytic
continuation to Minkowski space) to the quantum theory of a free
relativistic particle. It was hardly possible to get any new results in this
field since it has been completely investigated for many years by
classical mathematics and quantum physics. However, we have devel-
oped an approach which is readily generalizable to the case of an n-
dimensional hypersurfaces immersed into 2-dimensional space.

This problem is of great interest for both physics and mathematics.
At the same time, the case n > 1 is incomparably harder than that of
n = 1. Some incomplete success has been achieved for n = 2 and will be
discussed in later sections. Here we shall develop the general formalism
for any n up to the furthest point possible at present.
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Let us consider an immersion of the hypersurface described by the
functions:

x (& ... =x8) pu=1,...,92 9.71)

The action must depend on x,(¢) in such a way that it is invariant under
the transformation of diffeomorphisms:

&= 1)
or, explicitly:
BB a=1,..,n 9.72)
where the functions f* have to satisfy the condition:
of.... /|
—‘——’*a(él’-“’é")=det Eé—b >0 (9.73)

This claim follows from the fact that x = x(¢) and x = x(f(£)) represent
the same hypersurface, differently parametrized.

When we are looking for a continuous theory of surfaces, we have to
start from actions containing the minimal number of derivatives. If a
theory with such an action is renormalizable, then all the terms with
higher derivatives are irrelevant. Sometimes in order to achieve renor-
malizability one has to include higher terms. These questions we shall
discuss later.

A covariant expression with the minimal number of derivatives is just
the hypervolume A of our hypersurface. Therefore, the simplest action
which can be constructed is the following:

S[x(5)] = mg Jd"é(h(é))” :

h(&) = det||h, (Ol (9.74)
hab(é) = aax“ abxu

In principle, one can add some higher derivative terms like
S, =c, Jd"é R(h)h'2

9.75
S, =¢, jd"é (A(h)x)?h!2 o7

etc.

(Here R(h) is the scalar curvature computed with the metric h,, and
A(h) is the corresponding Laplace operator). In each case special
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analysis is needed in order to determine the relevance of those terms. It
is reasonable, however, to begin with the simplest action (9.74) and to
postpone the question whether renormalization produces higher deriv-
ative terms.

The amplitude for a surface with a given boundary can be written as:

G(c(s)) = J@ffg exp( mp j(det[[ﬁ x 8, x[)!? d"é)
= J ggf}"i’g) exp<—mg Jh”z d"é) J Dx(E)5(0,x 0yx — hyy)  (9.76)

Here the boundary of the surface x(¢) is an n — 1-dimensional hyper-
surface parametrized by the functions c,(s,,...,s,_,). To give a precise
formulation for the boundary condition to the functional integral (9.76)
one has to postulate that the topology of the £-space is identical to the
topology of the surfaces which we consider. This is the necessary
condition under which we can consider x,(£) as smooth functions. If the
boundary in &-space is determined from the equations

L=ty 9.77)
then the boundary conditions for the integral (9.76) are
x(&(s)) = <(s) 9.78)

The measure 2x(&)/2f(£) is, just as in the case of paths, the measure on
a coset space obtained by factorising all functions x(£) by the group of
diffeomorphisms f(&). In other words it is an invariant measure on the
space of gauge orbits where the gauge transformations in this case are
induced by the changes

E-E=1(®. 9.79)

For the invariance of our integral we have to restrict the possible f(£)
not only by (9.73) but also by the condition that they do not move the
boundary points:

JE(s) = &(9) (9.80)

The result of integration, G[¢(s)], is invariant under the reparametriza-
tion of the boundary:

Gle(s)] = Gle(a(s)] (9.81)
(where:
{di(s!,...,s"Y), i=1,...,n—1}

is a diffefomorphism).
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As we have done before, let us begin with the computation of the
quantity

H'[e(s), (D] = j@-\f(é)é(aax'abx = ha(2) (9.82)

which is equal to the number of immersions of a surface with fixed
intrinsic metric.
The use of the Lagrange multiplier representation gives:

A+ijo

He, h] = J Pi exp(jh”’l"”h,,, d"é)

A-iw

x J Px(8) exp<— J h11238 5 x.3,x d"é) (9.83)

The norms in functional spaces defining the volume elements in this
functional integral are given by:

18%(©)1? = f A

04%)* = Jhl/z(haa’hbb’ + chaphyy) (9.84)
x 6A%52°Y dn¢

In deriving these formulas we have used, apart from locality and general
covariance, the claim that the distance in functional space has to be
invariant under

x(8) = x(8) + a(d)

9.85)
A%(E) = A™(E) + (&) (

where a and c¢® are arbitrary. The invariance (9.85) of the measure
ensures the possibility of using the equations of motion for x and A,
which are derived just by the replacements (9.85) in the action.

It appears to be convenient to decompose

A7) = (O™ + f2() (9-86)

with

ha(§) () = 0.
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The integral (9.83) takes the form:

Ale, k] = J@a(é) exp(n Ja(é)h”z d”é)

X J@f""(é)@x(é) exp(— fh”z(ah“" 0, 0yx + [ 0,x 0,x) d"é)
©.87)

In order to continue the calculation we have to conjecture (and check it
later) that the correlation lengths of a(¢) and f°(¢) are small in
comparison with the size of our region. If this is true, then, as we have
seen in case of paths, these quantities can be replaced by their mean
values. On the grounds of general covariance we have:

CuE)) = &+ ¢ R(E) + -+
Sy =0

where & is an unknown constant, being of the order of A" and R(&) is the
scalar curvature, computed with the metric h,,. Equation (9.88) reflects
the fact that a(¢) is a scalar, while f(£) is a traceless tensor.

We shall be interested in such metrics h,, which are slowly varying on
the cut-off scale, or, in other words with R(¢) < A2, and we can neglect
the second term in (9.88).

After that we obtain the following expression for J#[c, h]:

(9.88a)

Ae, h] = exp(no‘z Jh”z d”é)

x f@x(é) exp(—ci fh‘”h"” 8,x-0px d"é) (9.88b)

Before going further, we have to check whether our conjectures
concerning the “freezing” of the Lagrange multipliers are correct.
Let us begin with fluctuations of a. Introducing:

(&) = &1 + iB()) (989)

we can easily find the quadratic term in the induced action for the
p-fields. Taking for simplicity of estimate h,, = d,, we obtain

d"q

(2m)’

1
B = 5 | BoK-0BG) 950)

with
k+q

L _ljd"k[k(k + 91
B(¢?) = Ck)—z GTH T o 9.91)
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where we have accounted for the fact that § interacts with the x-field
through the Lagrangian:

L = 18 Jﬂ(é)(ﬁax)z d7¢ 9.92)

A straightforward estimate of (9.91) gives:
B(g%) = cA"(1 + 0(q*/A?) 9.93)

If the constant ¢ in (9.93) does not vanish, then the correlation length
for the B-field, which is determined by the singularities in g-space, is of
the order of A~ 1. Therefore, in the generic case ¢ # 0, we can neglect the
influence of B-fluctuations since:

A2 1/2
M ~ ('ﬂ_z)l/z ~ (AA)—I/Z <1 (9.94)

where A is the volume of our object. In the presence of nontrivial h,, our
computation indicates that we have a term in the induced action

Su(B) = % A f BHERAE) A + -+ (9.95)

which supresses fluctuations of . Turning to the case of f-fluctuations,
by similar arguments we find the most singular term in the correspond-
ing action:

Sulf1=d-A'@)? fhl/%,,,,h,,,,fabfa'b' e (9.96)

which for d # 0 indicates the irrelevance of f-fluctuations.

Let us notice at this point that the question of whether ¢ and d may be
taken to have generic values or whether one should apply the condition
that either of them be zero is far from trivial. There could exist different
continuum limits for string theory, the simplest one obtained without
extra conditions on ¢ and d, while the others require fine tuning of these
constants. One has to decide what kind of possible continuum limits
have the desired properties and correspond to gauge theory. At present,
this question is unsolved, and we shall mainly investigate the generic
continuum theory, keeping in mind other options.

In the generic case we have shown that the fluctuations of the
Lagrange multiplier may be dropped, and we end up with the following
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expression (after trivial change of scale):
HTs) han )] = CXp(A j hwdnc)

X J Dx(&) exp< —Jh”zh"" 0,%-0yx d"é) (9.96b)

x(&(s) =els)

The Green function for the contour ¢(s) is obtained by integration on

hay:
Gle(s)] = f Z’;" cxr><—u jh‘“ d"c)

x j@x(é) exp(—jh‘“h"" 0,x-0,x d"é) 9.97)
(where u is the critical parameter).
Since expressions like (9.97) will form the basis of our further

discussion, it is worthwhile to present another derivation of it. Let us
consider the integral:

_[@ha,, exp( —u Jhm dne — jh”zh""ga,, d"é) (9.98)

where g¢,,(¢) is some tensor. The integral in (9.98) is supposed to be
covariantly regularized. That means that we can compute it by the
following procedure. First find the saddle point of the action (9.98):

(S([,t J'hllz d"é + J.hI/Zhabgab d"é)
1
=5 [ b uh v
1
+3 Jh”z(h“gdh“”éh,,,, + goabhy d"E =0 (9.99)

This equation gives the position of the saddle point and the value of the
action:

hap ~ Gaps S ~ Ig”’ d¢ (9.100)

If we consider small fluctuations near this saddle point, we notice that
they are nonpropagating owing to the absence of derivatives in (9.98).
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More precisely, this means that they have a correlation length propor-
tional to the inverse cut-off. Therefore their leading correction to the
effective action must be local, and on the basis of general covariance
must have the form (9.100). This is again the demonstration of our
general rule that fields with short range correlations can be replaced by
their mean values. In our case covariance dictates that these mean
values are given by (9.100).

So, by the h-integration of (9.98) we have recovered the action (9.74),
provided that g,, = J,x- J0,x. This proves the equivalence of (9.97) to
(9.76). Again, as in our first derivation of this equivalence, we have
assumed the generic situation, i.e. that no divergent constants are zero.
Whether this continuum limit is what we are interested in must be
investigated separately in each particular case. In the next section we
shall show how to compute (9.97) in the case n = 2 and what kind of
physics is described by it.

9.5 Two-Dimensional Surfaces. Geometrical Introduction

For n=2 we can proceed much further with (9.97), by explicit
computation of the functional integrals.

To do this we shall first present the necessary geometrical properties
of the functionals involved in the game.

Let us consider first:

W= f hY2pab o x. 0, x d2¢ (9.101)

where the function x(&) satisfies the boundary condition:
x(&(s)) = e(s). (9.102)

Variation of W with respect to h,, gives as we have seen in the
preceeding section:

oW = Jh”znb(i)éh"”(é) d* (9.103)
where T, can be considered as an energy-momentum tensor for the x
field:
T = 0,%-0px — Lh b 0.x-0,x (9.104)
If we take h,, so as to minimise W, that is apply the condition

T, =0 (9.105)
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we obtain:

hay'™ = c($) 0,x - 0y x (9.106)

where ¢(¢) remains undetermined by (9.105). Substituting this into
(9.101) we get:

= J‘(detllaar6,,x”)”2 d*¢ (9.107)

hap = HSE"

w

We conclude, that the problem of finding the minimal area, given by
(9.107) can be reduced to two equations:

0,(h2h™* 3yx) = 0
(9.108)
Top = 0px - 0px — 3hyph™ 0.x-0,x = 0

The next important geometrical fact which will be extensively used
below is the possibility of choosing a “conformal gauge” in which the
metric tensor h,, takes the form:

(&) = %96, (9.109)

This extremely convenient gauge has some topological limitations. We

shall discuss now both the derivation of (9.109) and these limitations.
The first naive argument which shows that (9.109) is possible is the

following. The possibility of the choice (9.109) means that any metric

h,, can be given in the form:

ofc of¢

gab(é) = (ee’(é)éab)f = ev(f({)) aéa aéb

(9.110)

where { f“(£)} defines the necessary coordinate transformation. Hence,
the r.h.s. of (9.110) depends on 3 arbitrary functions f (&), f3(&), @(&).
But h,(&) also has three independent components. Therefore, the
number of independent functions matches. However, this is not enough.
We must show that the transformation (9.110) is nonsingular, i.e. the
jacobian for passing to the (¢, f*) variables is nonzero. To show this we
shall consider a small variation of (9.110):

8ap = [00(Ohay + Vo0, + V,y0,) o.111)

where w® = df*%(f ~'(£)) and we have used the equation (9.28). The
nonsingular nature of the transformation (9.110) will be proved if for
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any dg,, we can find ¢ and w such that (9.111) will hold. In other
words, we must be able to solve the equation:
5(p(£)hab + Vawb + waa = 5g{b_ ' = Yap (91 12)

or

(L(O)ab = Vawb + waa - habvcwc = Yab — %hab‘ycc (9113)
which is obtained from (9.112) by subtracting the trace. The question,
whether the conformal gauge is always accessible, is reduced now to the

possibility of solving equation (9.113) which we shail rewrite sym-
bolically:

Lo=y (9.114)
Here we have denoted by L the differential operator, defined by (9.113)
which takes vector fields into traceless tensors (notice that the number
of independent components is the same). There exists a conjugate
operator which acts in the opposite direction—transforming tensors
into vectors. It is easy to realize that the equation (9.114) will be

solvable if and only if the conjugate operator doesn’t have zero modes.
Indeed, let us muitiply (9.114) by some tensor field f:

(f, Lo) = (L*f,w) = (f, ) (9.115)
where:
(L) = =V f%=0 (9.116)

and scalar products are defined in a covariant way. We see that if f is a
zero mode, i.e.

L*f=0 9.117)
then for such y that (y, f) # 0 equation (9.114) is not solvable. Now, if
zero modes are absent then from

L*Lo=L"y (9.118)
it follows that

Lo=1y 9.119)

since otherwise Lw — y would be a zero mode.
The operator L*L is a self-conjugate operator and (9.118) has a
solution

—— L%y (9.120)
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provided that L doesn’t have a zero mode either. If it has, then the
solution of (9.118) still exists but is not unique. Namely in this case we
have to define the Green function 1/L*L as the sum over nonzero
modes only:

o L _ v @)
<« |L+L|é> —,§0 E, 9.121)
L*Lw, = E,w,

and the general solution of (9.119) is:

1
L*L

w =

(L™ + Y a0 9.122)

where {w, o} is the set of zero modes:

Lo, =0 (9.123)

and {c,} are arbitrary constants.

So, our conclusion is that zero modes of the operator L* mean that
the conformal gauge is not accessible, and zero modes of L that it is not
unique.

The number of zero modes is regulated by the index theorem which
we have mentioned in Chapter 6, and is closely connected with the
topology of our manifold. We shall show this for the case of closed
manifolds. The demonstration is based on the identity:

No(L) = No(L*) = Tr(e*L"L — ¢7rLL™) (9.124)

(where N, is the number of zero modes) which in turn follows from the
coincidence of nonzero eigenvalues of the operators L*L and LL*
From the first order equations:

Lo =¢y
(9.125)
L'y =c¢p
we deduce:
L*Lo =eL*y =¢e%¢
(9.126)

LL "y =¢Lo = &%y

Therefore the only contribution to (9.124) comes from the zero modes.
The right hand side of (9.124) can be evaluated by taking ¢t — 0. In this



180 GAUGE FIELDS AND STRINGS

limit it is a local, invariant expression depending on the metric tensor
h,,. If the metric were Euclidean then

(L*Lw), = -—-VV,0,+ V,0,— h,V'w,)
= —dw, 9.127)
(hap = dab)
and
Ele™™ e =2 r e""2=i (9.128)
(2n)? 2nt )

where the coefficient 2 comes from the number of the components of w.
As t — 0 the external gravitational field does not have time to influence
(9.128). As we see from this formula the characteristic intervals for the
motion of a “particle” described by the wave equation (9.127) are
A& ~ 1/p ~ |/t which is just a diffusion law. The curvature R(¢) will
have a considerable effect only if':

R(EXAEY® ~ tR() ~ 1 (9.129)

This consideration makes plausible the statement that for ¢t — 0 the
expansion parameter in {(£|e "L L|£) is t- R. We expect that:

. 1
CEle ™ HEY = 2 {1 + a,tR(E) + O}
(9.130)

CEle™ L&Y = % {1 + a,tR() + 0(12)}

Later we shall derive these formulas explicitly and compute a, ,. Now,
substituting (9.130) into (9.124) we get

No(L) = No(L*)=c-x (9.131)

where ¢ = 2(a, — a,) is still to be determined and
1 2
X—EIRJhdf 9.132)

is the Euler character of our maniford. Here, in order to find ¢, it is
sufficient to consider a sphere as an example in which Ny(L) and
No(L*) can be explicitly found. Using formulas of Riemannian geo-

metry one has for g,, = €%4,,:
V.0, =0,0, - T o

(3

rai = %(aa ‘pébc + ab(p‘sac - ac(péab)

(9.133)
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Substituting these into equation (9.123) we reduce it to
d,e=0 (9-134)
Here we have introduced the notation:

=o' +i0? = e Yw, + iw,)

1/ 0 0
1y g2 YA
z=¢ 4+ &% ai—2<6§‘+16§2> (9.135)
At first glance there is a continuum number of solutions of (9.134):
¢ = &(2) (9.136)

However, we have to consider only normalizable ones:

lw, | = J\/habw“w" d¥¢
(9.137)

= je“’lsl2 dz<w
The standard metric for a sphere in stereographic coordinates is

o ds
242 e o g (9.138)

ds?=——=; ¢
(1 + |Z|2)2 |z|= o

Therefore the only possible function (9.136) with a finite norm is:
ez) = a + Pz +y2? (9.139)

Therefore Ny(L) =0 (since a, B, y are complex). The geometrical
meaning of these solutions is clear—they are transformations which
leave the original metric conformal. Therefore (9.139) describes the
two-dimensional conformal group 0(2, 1).
As far as Lt is concerned, the same reasoning leads to:
Va))ab = yaa = 0’ or ai¢ =0
) , (9.140)
G =€y — V22 +21713)

and the norm is defined as:

Iyl? = J\/h R R Yo Yoy d7¢

= Je_”|¢lzdzz

Since e ? ~ ,_, . |z|% we conclude that the operator L* does not have
normalizable zero modes.
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Recalling at last that a sphere has Euler character y = 2 we obtain:
No(L) = No(L") = 3y (9.141)
Actually, this result can be strengthened. Let us show, that for y < 0 (a
sphere with more than one handle) Ny (L) = 0. For this we compute:
(L*Lw), = —V¥(V,0, + V0, — h, V'@,)
—Viw, — [V, V, ],
= —(V? + 1R, (9.142)

]

For the manifolds with y < 0 one can consider a metric with constant
R < 0 everywhere. For such a metric we have:

(Lo, Lo) = (V,0,, V,0,) — 1R(@,, ©,) > 0 (9.143)

(where scalar products are understood in the same way as above). From
this inequality we conclude that Ny(L) = 0. This means that:

No(LY)= —-3y=6g—6 (forg=>2) (9.144)

where g is the number of handles. It is easy to check directly, that on a
torus (g =1, y =0) No(L) = No(LY) = 2.

So, we have found that on a sphere we can always introduce a
conformal gauge, which is defined modulo SL(2, C) transformations
(9.139), which require extra gauge fixing. In the case of manifolds with
higher topologies we have topological obstructions for the conformal
gauge. The best thing which can be done is the following choice of
gauge:

ha(&) = e"OhGNE; 1y, .., Teg-6) (9.145)

where K9 is some metric, which can be chosen to have constant
negative curvature and which depends on 6g — 6 extra parameters.
Integration over all metrics must include not only functional integra-
tion over ¢(¢) but also the 69 — 6 dimensional integral over {z;}. The
theory of such integrations is not well developed, but we shall explain
here a qualitative meaning of these extra parameters.

Let us first consider a torus. It can be represented as a parallelogram
in the &-plane for which opposite sides are identified. In general, this
figure can be mapped by a conformal transformation onto any other,
say onto a square. However, the identification of the opposite sides will
be lost. If we insist on preserving the identifications, the only options for
a conformal map onto another parallelogram will be rigid rotations
and scale transformations.Hence each parallelogram representing the
torus can be characterized by the two conformal invariants—the ratio



QUANTUM STRINGS AND RANDOM SURFACES 183

of its sides and the angle between them. They are just the extra
parameters, described above. One of them can be interpreted as a
“length” of the torus, while the other is the angle which determines
some canonical directions on it.

To finish this section, let us discuss briefly what happens in the case of
surfaces with a boundary, taking the topology of a disc as an example.
The analysis again rests on equation (9.114) but in this case we have to
think of boundary conditions. If we try to consider transformations
¢ — f(&) which do not change the boundary, i.e.:

S&o(8)) = &o(s) (9.146)

(where & = £,(s) is the equation for the boundary) we shall find that this
requires the boundary condition:

o (¢(s) =0 9.147)

However, it is not possible for general y in (9.114) to find such a solution
because it is a first-order differential equation. Equation (9.118) could
have been solved with conditions (9.147) since it is a standard Dirichlet
problem, but its solution (9.120) will not satisfy (9.114). This means that
we cannot reach the conformal gauge by transformations with the
condition (9.146), and we have to weaken this condition.

What is possible, is to use the transformations which reparametrize
the boundary:

S o(s) = $o(a(s) (9.148)

but leave the shape of the disc unchanged. In terms of w, that means
that:

©,(So(5)) = n ()" (Eo(s)) = 0

@ (£o(5)) = t(s)w(£4(s)) — unconstrained

(9.149)

(where n and ¢ are the tangent and normal vectors of the boundary).
In this case it is easy to solve equation (9.119) explicitly. According to
(9.134) it takes the form:

0z6 = ¥(z, 2)
(9.150)
g, = Re(e *g(e®®)) = 0
where we have parametrized the boundary of the disc by

zo(s)=¢€% 0<s<2n
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The general solution of (9.150) is given by:
&z,2) =0, J.G(z, w)y(w) d?w + f(2) 9.151)

where f(z) must be adjusted so as to satisfy the boundary conditions
and G(z, w) is a Green function for the Laplacian.

The solution of this problem always exists, but is it unique? To
answer this question we have to look at the homogeneous equation:

3;8=0

(9.152)
£, = Re(e"*e(e™*)) = 0

It is easy to check that this has three linearly independent solutions:
eV =iz, €P=1-22 =il+2? (9.153)

which can be added to (9.151). These solutions are infinitesimal
conformal transformations of the SL(2, R) group which map the unit
disc onto itself. The finite version of these maps is given by:
5 iz z—a
2=t (9.154)
(where « is a real phase and a a complex number).

Notice, that after the solution of (9.150) is found, then @ ({q(5)) is
uniquely defined (modulo SL(2, R) transformations).

Our conclusion for the case of the unit disc is thus the following. The
conformal gauge is accessible provided we include difffomorphisms
which reparametrize the boundary. This reparametrization, defined
modulo SL(2, R) transformations, is determined by the original metric
h,(€). Since in our original formulation of the functional integral (9.76)
we factored out the diffefomorphisms which become identical at the
boundary, we have to expect that the integration will be reduced to the
form:

@hab(é)
2/

= Q@(E)2a(s) x (Jacobian) (9.155)

We shall compute the jacobian later, by now it is important to realize
that the integration over all metrics must include not only the ¢-
integration, but also integration over all possible reparametrizations
a(s). In a certain sense {a(s)} replaces the discrete set of parameters
which we had for closed surfaces with complicated topology.
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9.6 Computation of Functional Integrals

The aim of this section is to compute the integral:

9hal}:(é)
21(9)

Gle()] = J exp(—1 [ 2 820

X J Dx(&) exp<—fh”2h"”aax'6bx dzf) (9.156)

x(&(s)) = e(s)

to which the problem of random surfaces has been reduced.

We shall begin with the x-integration. The reason why it can be
performed is easy to see. If we substitute h,, in the conformal gauge
h,, = €%d,, into (9.156) we see that the ¢@-dependence disappears,
indicating conformal invariance of the action. However, since we are
dealing with quantum theory, there is a comformal anomaly which will
bring ¢-dependence back. The anomaly is due to the regularization
(which breaks conformal invariance) of (9.156) at small distances,
which is needed to avoid divergences. Since it is an important point we
shall derive it by several different approaches. First, let us consider the
case of weak gravitational fields:

hey = 0 + HY (9.157)

In the case of infinite system, the induced action in quadratic approxi-
mation will be given by:

Lfd%q o o
Sll = - 5 W hab (q)hcd (—q)nab|cd(q)

k+a D [ A’k talk, @)k, )
Taedd) = _p "3 J e Kk + g7 G139

tub(k’ q) = ka(k + q)b + kb(k + q)a - 6abk‘ (k + 11)

(the vertex t,, is easily read off from (9.104)).

The integral (9.158) is divergent and must be regularized. This means
that the integral itself defines only the part of I1(g) which has singulari-
ties in g or in other words, propagates in £-space, while the regulariza-
tion adds to this expression arbitrary (a priori) polynomials in q or local
expressions in ¢-space. The condition which fixes these local parts
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uniquely is gauge invariance of the effective action. For the actual
computation it is convenient to introduce complex notation:

ky =k + ik, = [kjeti

(9.159)
k2=k, k_
and to consider first the component:
n _@ d’k Ki(q. + k)
++.++ T 2 (27!)2 kZ(q + k)2
D (d*k k +k
A5 _goaet o160

T2 )@k (g + k)

with as yet unknown C(g?); we have used the O(2) invariance of the
integral and the fact that 1/k _ transforms as k . . It is tempting to split
the integral (9.160) into (+) and (—) factors since 2zi d%k = dk, dk_.
This is almost possible but requires some extra care. Oddly, one has to
go to Minkowskian space. The propagators and momenta change as:

ky = kot k,
1 1
k2 k*+4ie (9.161)
1 ke 1
k. k*+ie k_ +iesignk,

So our integral has the form:

9
M, .= J dk.k,(q. +k+)'1“6‘i;i

+ o

dk_
X f (k_+iesignk,)q. + k_ + iesign(g, + k,))

-

(9.162)

If we take ¢, < O then the singularities in k-space are on opposite sides
of the real axis only if 0 < k, < —g,. Otherwise the k _-integral gives
zero. We have: L
21
My, 4v=- 8a J‘ dk k. (g, + k)

0
2 4
T 48mq_’
which is the desired answer.

9.163)
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The finiteness of the integral (9.160) also allows one to use the following
trick to compute it:

2 ( d% ki.(k, +4q.)

_ —ek2
(9.160) = B TR R l-o
9 [ d* 1 1
=_— ek, g )| ———
2 B (2ﬂ)2e +( + 14 )<k_ k_ + q—>¢—.0
_ kgl 0k,
T ko o
- = d’k —ek? kg ki - k+q+
(2n) ko o
2 (d% 1 1
=—— | e *[ -3¢kt — 5 a0 ezk2>
29_ ) @ny? (6 ’ =0

2¢, | i p? qi
o

Obviously this also implies:

_9 3
n___=—1 (9.164)
' 48n
Let us now consider the remaining component
2 dk
O,,__=+ g + k2 ki(g+ k), k_(q+k)_
=f&k=A (9.165)

where A4 is a quadratically divergent constant which we shall fix in a
moment. So the general form of the induced action is the following:

d’q (143
S"— —“m (27[)2 {Eq__h——(q)h——(—q)

143
+§q_h+ H@Dhy (—) + Aq2h+ +(@h- (-9
+

+ Bq2h+-(q)h+—(—11) +Clh,_q h,, + q2+h+—h——]} (9.166)

where we have added another possible local counter-terms with some
constants A, B and C. The constants 4, B and C can be determined from
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the condition that the induced action is generally covariant. The
transformation law for h,, is:
hy = hy + V0, + Vy0, 9.167)

which in the linearized approximation takes the form:

hy,—>h, i +2q,0.(9)

ho_—>h__+29_0_(q) (9.168)

heo=h,_+q,0_(@+q-w,(q

An important point is that although the nonlocal part in (9.166) is not
gauge invariant, its gauge variation appears to be local and hence can
be compensated by the gauge variation of the local part. We have the
only gauge invariant choice:

2 [ d%g 1
Su= = 1z f Gy RO 353 K- (9.169)
where:
R(Q) =Hagih-_ +q h, . —2¢°h, )
= (4uq5 — 92 0.p)h* (9.170)

(it is easy to recognize in R(q) a linearized scalar curvature made of h,,).
In the conformal gauge:

hy,=h__=0, h,_=2¢ 9.171)
and

s = -2 [, ) 9.172

v an)(q)qa(—q (9.172)

The dependence on ¢ which was originally absent in the action has
appeared here through the following mechanism. The induced action
contained ¢-independent nonlocal terms which were not gauge invar-
iant. We were forced to add a certain combination of local terms which
restore the gauge invariance. These terms were ¢-dependent. It is quite
obvious that in higher orders the nonlocal part of the induced action
will also be ¢-independent. From this follows an important conclusion:
in the conformal gauge the induced action is local. This can be
considered as a manifestation of the fact that the original action was
conformally invariant and the conformal anomaly arises only because
of the small distance cut-off, the effect of which must necessarily be
local.
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The locality of the action, together with invariance properties,
permits us to determine its exact form. To do this, let us notice that the
conformally Euclidean metric

ds? = e**= 9 4z dz (9.173)
preserves its form under analytic changes of coordinates:

z > w(z)

e (9.174)

2

ds? = e?= % dz dz — eE™)- 2D dw dw

w

Therefore, in the conformal gauge, the induced action must be a local
function of ¢ invariant under the transformation:

2

i (9.175)

@ = §(z, 2) = H(w(z), w(2)) + log

where w(z) is an arbitrary analytic function. The invariance is correct
only modulo boundary terms since the shape of the domain inevitably
changes under the analytic map w. We shall postpone the discussion of
boundary effects. As far as the bulk part of the action is concerned, the
only option consistent with the above requirement is

S[e]=4 szz (20,90,0 + u*e®) (9.176)

(where A is some constant).
We will call S the Liouville action.
The invariance (9.175) of (9.176) is quite obvious since

2
=0

0,0, log e

Any other invariant expression would have a higher number of
derivatives and so can be dropped in the continuum limit.
Comparing (9.176) with the approximate expression (9.172) one gets:

2
A= —— 9.177)

Now, it remains to compute the Jacobian in (9.155), and the problem of
the distribution of random surfaces in internal geometries will be
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solved. The simplest way to find the jacobian is to consider the norm in
the space of all metrics:

I6h|1% = fh”z(h“'hbb' + ch™h)oh 4y by (9.178)

and to substitute
hab = e—wéab; hl/2 =e?
5hab = (6(/) + Vaea)hab + (Lg)ab

(where L was defined in (9.113).
We obtain:

k)2 = f e?(8¢ + V,)%(2 + 4c) d2¢ + (Le, Le) (9.179)

From here it follows:
Dh = DePe detV*(L* L)
(L* Lw), = V*(V,0, + V,0, — h,yVo,) (9.180)

We perform now the computation of det (L* L) in a way similar to the
one we used for the ordinary Laplacian. Namely, let us again take a
weak gravitational field. The formal quadratic form, from which the
operator (9.180) arises as a kernel, can be written as:

W= J‘hl/Zh‘M’hbbl(ﬁnbd’a'b' dzé

Sup = 1V, 0, + V0, — by Ve,) (9.181)
Now, we shall compute the polarization operator II__ __ as in
(9.164). For doing this it is sufficient to take h,, in the form:
hy,2
that = ("5 5) 018

with small h,,. As we have seen in the scalar case, the general
determinant can be reconstructed from this small h-field limit. Standard
formulae for covariant derivatives give:

b xVi0, — WV, 0  +V_ 0 )h,,
20,0, + 0 _h, o, —{0.h o
—ih (@ 0_+0_w,)
¢ _~o_w_ (9.183)
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Hence:
W= j[(a+ 0. )N0_w_)+ % @-hi Nw,d_w_)

—i(0+h+ Do_0_w)-4h, (0,0 X0 )
—5hi (00,00 )] d¥ (9.184)

Since only the {w, w _) propagator is nonzero, the third and the fourth
terms do not contribute.
We are left with

det " V¥(L*L) = j@wi exp{— szé 00,00

+3@_h, w0 0. —%h, (0_0,)_0 ]} (9.185)

From this it is easy to obtain the quadratic term of the effective action
forh, ,:

1 (d?
Su= =3 | gz M+ +@he (O TIE___(a);

k+gq k+gq k+gq

e __@=4{)+o. {y+a. {yao.
k k k

(O (1RGrg 1 o Kkt
“len\t6 ikt 9 T 167 Kk + 9

1 L,k (k+q)

164 Tt o7 q)2> (9.186)

A computation similar to (9.160)-(9.163) gives the result

e @@=t (Lt )2 2 9.187)
SO = 16 \2an T an T an) T a8n 16q, ‘

Substituting into (9.186) and comparing with (9.165) we conclude that
the role of 2 is now played by the number 26 and in the gauge (9.180)

det!’2 (L*L) = exp{— 4—286; f d27 (20,0 0;0 + i2 e"’)} (9.188)
Collecting now (9.176), (9.177), (9.180) and (9.188) we get the final
expression for the distribution of the surfaces in internal metrics in
(9.156):

26-2
chosed surf. _ J@w CXP{ -

487

J’d’é & @,0) + m? e")} (9.189)
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9.7 Scattering Amplitudes

In the case of paths we have demonstrated how to compute Green
functions and amplitudes i.e. the amplitudes for a path to pass through
a set of given points. The answer was given by Feynman diagrams as it
should be. What shall we obtain in the case of surface, now that we have
learned how to compute the functional integral?

Let us consider a surface with pinned points {x;}. The corresponding
amplitude is given by:

G(xy,...,xy) = <n Jhl/z(éi)é(xi ()] d2£i> (9.190)
(where the average is taken with respect to the random surface

functional measure). By passing to the momentum representation, we
rewrite (9.190) as:

G(py,- - pn) =<1 Jh”z(é.-)ei""““" d2¢) 9.191)

A nice thing about this formula is that the x-integration in it remains
Gaussian and can be easily performed. Namely, we have to compute:

Gpy,....py) = Jg;h}i(;)) exp(—/lo Jh”z dzé) JT] d?&; hA(E)

x J@x(é) exp{— Wlén jh”zh"ba‘,xﬂ,,x +1 i pj'x(éj)}
j=1
(9.192)

(The coefficient 1/167 is a convenient x-normalization). Passing to the
conformal gauge, and writing x = x, + y where x_, satisfies

., .
_ﬁa xcl-l;pfs(f_éj) (9193)
X = iZ@(éléj)pj = —i) p;log|¢ — ¢l
J i
(Here 2(&|&') is the Green function of the Laplacian). We obtain:

1
G(pys-opw) = j%’(é) CXP[— ; '[((aq;)z + Hoe®) dzg]
X JH d?¢; exp(e(&)) — 3pF D(E;1E))

X exp{ Y 2p;-p;log e — é,-l} (9.194)

i<j
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The quantity 2(&|¢) is singular and an explanation of its meaning will
be given shortly below. Before doing this let us rewrite (9.194) in the
form:

G(py,....PN) = jn dzfj n |& ~ éjlzm'm

i<j
X F(p?,....pRs Ers-on E8) (9.195)

where F is given by a Liouville functional integral. We have to expect
that F has poles in p} corresponding to the physical spectrum of the
string. The on-shell scattering amplitude will be given by the residue at
these poles. Denoting

d’(él’ sy éN) = rcsy}= -m? F(pfi es »P)2v§ él» [ERX} éN) (9‘196)
(where m? is the position of the presumed pole and the space-time
signature is chosen such that p? = p? — p2 = —m?) we obtain an

expression for the scattering amplitude «/(p,, ..., py):

N
AP = [ 1 € [T 16~ G729 0197
j= i<

Even without knowledge of ¢ this formula contains information, since
¢ depends on fewer variables than 4. But what is the meaning of ¢? To
be sure it is some correlation function of the Liouville field theory, and
so in principle we have reduced the problem of finding the 2-
dimensional scattering amplitude to two-dimensional theory. In order
to find the kind of the correlation functions we need let us go back to
(9.195) and try to decipher 2(&|&) in it. It is clear that we have to use a
cut-off in this expression which does not destroy general covariance. A
suitable choice is

.& e“ln

2€1H =% 1

(9.198)

where ¥,(£) and A, are eigenfunctions and eigenvalues of the laplacian.
This choice is the same one which we used in defining determinants
(which were regularized by the Schwinger proper time cut-off) and is
equivalent to the use of Pauli-Villars regulators. There is a simple naive
way to compute (9.198). It consists of the observation that:

D(818) = —log(Ad)n (9-199)

where (A&)Z;, is the cut-off in the &-space. However, this cut-off is
¢-dependent, since we have to fix the minimal invariant interval (As)2

min*
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We have:
(As)rznin = ew(g)(AC)lznin =€
(9.200)
(A% = €e7*®
and on substituting this into (9.199) we get:
1
2(¢19) = logz + (%) (9.201)

This formula looks suspicious, since the left-hand side must be scalar
under conformal transformation:

¢~ 1

(9.202)
D&y - 2(f(OIf (&)
At the same time:
dar 2
o) = o(f(2)) + log & (9.203)

This is slightly confusing. We can even strengthen this confusion by
noticing that the Green function for non-coincident points,

D(E,1€2) = —log |&; — &, (9.204)

is not scalar either, since, for example under the scale transformation
& — A¢, it changes. The origin of the trouble is that the Laplace operator
on any compact manifold has a zero mode—the constant function. This
zero mode, which is revealed as translation invariance x — x + a in the
integrand (9.192) must be carefully subtracted from the Green function.
The Green function without zero mode 2'(¢,|¢,) is well defined and
does not increase logarithmically as (9.204). It is easy to show that

9’(51 Ifz) = @(fl |52) + f(fl) + f(fz) (9~205)

where f(£) is determined from the conditions that its Laplacian is
constant and that it cancels the logarithmic increase at infinity. It is easy
to give explicit formulas for f(&), but they are not needed. Indeed:

2P P2 CilE) = Y PP 2GS
) iJj
+ _ij.-pr(ci) + f&))

= Zl’i 'pjg(éiléj) + Z[ZP.f('f.):I(Z Pj)

=222, 2CE) (9.206)
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where we have used momentum conservation. By its construction &'
has correct transformation properties, but we need not bother to
replace 2 by 2’ in the previous formulas.

So, we obtain the following expression for the function ¢ in (9.190):

¢(éla tey CN) = <lpA(él)9 cers '//A(éN)>

Yp= eAw(é‘)’ A=1+ m2/2

(9.207)

The average in this formula is taken with respect to the Liouville action.
The value of A is determined from the condition that the function
F(p?,...,p%; &1y .., €5) in (9.196) has a pole at p? = —m?. This correla-
tion function can also be presented as a partition function of a
punctured sphere on which the Liouville field ¢(£) has parabolic
singularities:
1
TE= &P loglle — &

The next natural question which we shall address in the following
section concerns the properties of the correlation functions (9.207) and
their relation to the properties of the string scattering amplitudes
(9.197).

e¥®

9.8 Scattering Amplitudes and the Operator Product Expansion

The results of the preceding section can be summarized as follows. The
amplitude is given by:

N
APrs-s PN ~ J [T 428 <V, (&) VoulSn)>
j=1

(9.208)
V(&) = Ya(&):explip - x(£)):
Here we have introduced a new notation, :exp(ip - x(£)):. By it we mean
that x(¢) is a free bosonic field and when computing averages of the
product of different exponents, one has, while using the Wick theorem,
to avoid pairing of x inside the symbol: :. Therefore:

(P EE; | ey RNy
B4 exr><22’p,~ -p;log|¢; — é,~|> 9209
i<j

= [11& = ¢p*em

i<j



196 GAUGE FIELDS AND STRINGS

From this we recover (9.197) (A helpful note: to compute such averages
it is convenient to consider small p; and to write

<n:eipj~x({ﬂ:> a <l_[ (1 + lpj .x(é]))>
i j

=1- 3 2 p<2(E)-x(E)> + O} (9:210)

i<j

~ exp( 3 pi-pXHEE- (c,»)

i<j

(because we know in advance that the result is Gaussian with respect to
P)-

The correlation functions (9.209) have a remarkable property. They
are covariant under the group of projective transformations SL(2, C).
Let us introduce complex variables z = ¢! + ié? and Z = ¢! — i¢2, and
check what happens with the product (9.207) if we change:

z—»azig=w(z); a6 —yB=1 ©.211)
We have:
21— 2,
TR G2, 4 6002, 1 0)
And, hence:

[T1& = &% = [T — 20 — 2P

i<j i<j

! oo 2p;p,
_".Uj(wzi + 0Plyz; + 5|2> ‘l:[JK. PR (9.212)

The first factor has the structure which we have already encountered in
(9.206), and we rewrite it as:
dw P p;
[1 ( @ > = eXP(2 Y pi-p;log )
i<j z i<j

dw dw
dz (z) dz (z)

i

dw 9.213
e 9213)

-1

(where we have used momentum conservation ) ;p; = 0). This result
can be formalized as follows. Let us consider an operator:

U (z, 7) = :efP *=3; (9.214)
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We have proved that its correlation functions are invariant under the
transformation:

_ dw\P3 /dw\ P} N
U,z 2)— (E) (HE) U (w(z), w(z)) (9.215)
with
+
w(z)=Z§+g, ad—yf=1

We shall refer to such a situation by saying that the operator has
anomalous dimension p?, and that we are dealing with a conformal
quantum field theory.

How did it happen, that starting from the field x which has dimension
zero we obtained by exponentiating it a field with nonzero dimension?
The “leak” of dimensionality occurs through the ultraviolet cut-off
which we excluded by taking the normal product : :. Otherwise we
would get coefficients containing £~ P* (where ¢ is the small distance
cut-off) and the correlation functions are formally dimensionless,
provided that we change the cut-off scale simultaneously. This scale
transformation is not interesting. The physical rescaling does not
change the cut-off. Generically, there could be no scale invariance at all
in this case. But in many important cases, like the one we have
discussed, it still exists although the transformation properties of the
fields are renormalized.

Let us turn now to the first factor in (9.208). By construction it has
invariance under the transformation (see (9.203))

_ dw\A/dw\2 S
Yalz, Z)—><E> <E> Y a(w(2), w(z)) (9.216)
This conformal invariance, as we have already noted, is a remnant
of the general covariance in our gauge. The anomalous dimension
A in (9.207) is such that the vertex operator (9.208) has dimension
2(A + p?/2) = 2. Therefore, the mass of the ground state of the string is
determined by the anomalous dimension of the field ,(z), the quantity
being completely defined in terms of the Liouville field theory. Also, the
integral (9.208) is invariant under SL(2, C) transformations, and hence,
in order to avoid integrating over the infinite volume of SL(2, C) one
has to factor this volume out of the integral. Practically, this consists of
simply shifting three points £, &,, &5 t0 0, 1, oo by the use of SL(2, C).
Different choices of SL(2, C)—*“gauge fixing” would lead to apparently
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different but in fact coincident amplitudes .«¢. The matter is quite trivial,
like fixing center of mass coordinates.

We shall now show an extremely important thing. Namely, the
amplitude ./ as function of s;,  ;, = (p;, + -+ + p,)* has an infinite
number of poles with factorized residues, by which we mean the
following relation, satisfied by the set of amplitudes y(p,,..., Py):

d}:)(l’w e ,l’i,‘)dg)-k(l’i“ oo s Pig)

217
P, + - +p) +m} ®217

"L

Here, we have denoted by m? the mass of a resonance, among which the
ground state with m3 = 2(A — 1) must be present. The &/{” are ampli-
tudes involving k-ground state particles and one resonance. So we were
slightly imprecise when talking about the set of {4y}. In fact the
factorization requirement must be imposed on the larger set of ampli-
tudes, involving arbitrary number of excited particles. We have not
given a formula like (9.208) for them yet, but this will be done in the
course of the proof.

The factorization condition (9.217) is clearly necessary and obvious
from the physical point of view. It reflects the fact that due to the short
range of forces, separated interactions are independent. It is equally
obvious from the geometrical point of view. A resonance is presented by
a thin tube which is spanned in space-time by propagation of the closed
string in the corresponding state. The amplitude is obtained from
surfaces having topology of spheres with pinned points. In the kinemat-
ical region, described by (9.217) the relevant configurations of this

sphere will be
: \

thus representing a fusion of two (or more) closed strings into one and
subsequent decay. This is just the pole diagram (9.217). The diagrams
with branch cuts, which have several closed strings in the middle
correspond to more complex topologies, spheres with handles. At the
same time, algebraically, factorization is so terribly complicated that
the proof of it must be either very simple or not at all. Fortunately, the
first alternative is realized. We shall now show that the factorization
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condition is equivalent to the operator product expansion of the
underlying two dimensional field theory, and that there is a correspon-
dence between 2d-operators and resonances.

The operator product expansion is a fundamental property inherent
in any reasonable field theory. It states that two local operators in the
theory, placed close together, can be viewed as a set of local operators.
“Close together” here means that we are considering some multi-point
correlation function, including our pair of operators, as well as many
others, and the distance between the pair is smaller than all the other
distances. Roughly speaking, when viewed from a large distance, our
two points coalesce into one. Formally, if the field theory possesses a set
of local operators {0,(&)} the following relation holds:

04($)0n(0) 5, & Cunl$)040) (9.218)
1

which should be understood as a prescription to be inserted into any
correlation function, say:

{0,($)040)0,(Sy)---ON(En)>
=o 2 Cun(EXX0(0)0,(8,)- .- Ox(En)> (9.219)
i

We shall also assume that it is possible to find a complete set of
operators {0,}, so that any quantum state can be generated by acting
on the vacuum by their linear combination. This implies, that the
relation (9.218), when the whole set {O,} is inserted, becomes an exact
relation. Now, what can we say about the “structure functions”, C!,(£)?
Suppose that we are dealing with conformal field theory, invariant
under SL(2, C) transformations. Then any operator O, is characterized
by its anomalous dimension A,. This means that the correlation
functions are invariant under the transformations:

0,(8) = 4*0,(4%) (9.220)
In order that (9.218) be consistent with this, we have to require:
CLu(A8) = 2878 =8aCL (&) (9.221)
For scalar operators that means simply:
Coml(§) ~ |E[A1 78 o 9.222)

while in general some tensor structures appear. All this already looks
similar to the factorization property, but a few more steps are needed to
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establish an exact correspondence. First of all, let us work out explicitly
the case of operators
U,p(8) = re'?>@:
We have:
1e'Pr @ 1eiP2 ¥ (0):

v |E|®1* P2 P~ PLeilpi P 5O | esg singular terms  (9.223)

$-+0
Here we have made use of the fact that the dimension of U () is equal
to p2. The formula (9.223) follows from the fact that operators in this
case carry a conserved momentum p. This can be easily checked from
the expression for the correlation function (9.209) by allowing the
points &, and &, to coalesce, and comparing with the correlation
function containing U, . ,,(£;). This is a good exercise for a first
acquaintance with operator products. Let us turn now to the scattering
amplitude, and first consider the case 2 = 26 when the Liouville field is
absent. The main point is that singularities of the amplitude o/ as a
function of p; arise from the regions in {-space where some points, say
¢, and &,, coincide. In this case a pole singularity develops. Indeed, we
have:

(Pys - PN) = fn d? UL (D). Up (En)>
J
= jdz'l szfz‘ L4 Up &z + MU (L) UpN(éN))

~ J. d2n|n|@: +p,)? - pi—pd)

n~0

< jdzcz...d2¢~<um,<cz)...U,N(¢~)>

1
= (m)“’u- 1Py + P2, P35> PN)
1 2

+ terms, regular when (p, + p,)*> =2 (9.224)

(other poles in (p, + p,)* are also present and they will be considered
below). We have used here the operator product expansion (9.223) and
the fact that the anomalous dimension of U, (£) must be equal to 2 (to
ensure projective invariance without the Liouville field), thus giving the
mass of the ground state m3 = —p? = —2 (the well known tachyon of
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the standard dual model). We see from (9.224) that two tachyons may
coalesce into a single one and the amplitude for such a process satisfies
the factorization condition. The derivation of (9.224) shows a simple
mechanism which transforms the operator product expansion in the
underlying two dimensional field theory (the theory on the world sheet
of the string) into a 2-dimensional factorization of poles. We have
considered only the simplest example to demonstrate the idea and now
it is necessary to go further.

Staying in 2 = 26, we can look at the remaining poles of the
amplitude. They will correspond to higher operators in the OPE. By the
use of the exact version of (9.223):

:eim'x(é): :eipz-x(é):

=|&|® P2)*~ P}~ P}eip) x(Q) +ip; x(0), 9.225)

we find that the next term is given by
U, (DU, (0) > &1 +p,)1"’f_":{Upl +p0) +:ip,&° 0, x(0)e!®1+ P =(0);

i 1 .
* (5 pl.uﬁafb aaabxll - ipl“‘pl'véacbaax“abx")é'("+p1)"(0): +---
(9.226)
Substituting this into (9.224) we arrive at the general rule, which can be
stated as follows.

The general operator, which appears in the OPE (9.225) has the
form:

0ml“l~..Mkllk;"1V1~..ll'w
=1:07'x,,...07%x,, 0¥x, .. .00x,eP = (9.227)
It has dimensionality:
k !
A=p*+ Y m+ Y n
j=1 i=1

The pole corresponding to this contribution in (9.224) occurs when:
A=2 (9.228)
or

m=—p*=Ym+Yn-~2 (9.229)
; .

L}
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A convenient notational trick is to introduce two sets of harmonic
oscillators {a,, ,, d,,} with the ordinary commutation rules [a,,,
a,,) = [a,,, d,,]=né,,0,,,; [a,d =0 and associate with the
operator (9.227) a vector in their Fock space:

10, p> > e'?
(9.230)
Oml‘ll~ «Michp, NLIVL. . .MV hnd a’:un‘ ..a;kuk&:,v,. ..&rxw'O’ p>

We see, that with these notations at hand we can present m? as an
eigenvalue of the operator:

m2 = Z (a':.uam‘u + &:n,v&m.v) - 2 (9231)

The states of these oscillators thus can be interpreted as vibrational
excitations of the string. Sometimes this representation is very useful.

An important point is that not all of the operators (9.227) contribute
to the amplitude. The residues of some of the corresponding poles
vanish. For example, it is clear that operators odd under the change of
orientation z«Z (such as (9,x, d,x,— d,x, 0,x,) €?*) will not
contribute, since the residue, being proportional to

res n(py---Pn)

mipy.

~ szz d2z;...d2 2,081 P L (2, DU, (23, 25)... U,puGns 2a)) (9.232)

would vanish since all {U_} are even under this transformation.

Also, the operators must have conformal spin zero i.e. under the
rotation z — €'z they have to be scalars for the same reason as above.
The first excited state of the string thus corresponds to the operator

0,, = (9,x, :x, + 0,x, O3x,)e'® * (9.233)

and has
m=-24+1+1=0

We shall analyse its spin content later.
There is another reason for the cancellation of residues. Consider an
operator:

ip,0,, = ip,(0.x, 0;x, + 0;x, 0,x,)e'" *
= 0(05x, €7%) + 00, x, €P°%) (9.234)

(where we have used the fact, that 6,0,x = 0 since x is a free field. The
same thing was implicitly used in (9.227)).
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Owing to the fact that (9.234) is a total derivative its contribution to
the residue (9.232) is equal to zerot, or in other words the amplitude for
emission of the massless tensor state (9.233) is purely transverse. This is
a very nice fact because otherwise in the Minkowski continuation of our
theory we would inevitably have negative norm states, the time-like
gravitons.

There are actually many more cancellations. To find them we have to
exploit the conformal properties of the underlying two-dimensional
theory.

9.9 The Energy-Momentum Tensor in Conformal
Quantum Field Theory

There exists a remarkable mechanism which transforms the conformal
Ward identities of the two-dimensional field theory of a string into
certain transversality conditions, generalizing the decoupling of the
states similar to (9.234). This mechanism will be important not only for
2 = 26, but for all 2 and for that reason we shall investigate it in detail.

Let us begin with the dérivation of the Ward identities in the case
when only the free x-field is present (2 = 26). The energy-momentum
tensor of such a field is given by:

Tp(§) = 8,x-0px — 50,5(0,%) (9.235)
and due to the equations of motion it is conserved:
0Ty
= 0 (9.236)

It is very helpful to use a complex notation and to introduce:
T(z,2)=T,y — Ty, + 2iT;, = 0,x-0,x (9.237)
The conservation law now reads
0:T(z,7) = 20,x-0,0;x =0 (9.238)
implying that T is an analytic function of z. In the derivation of (9.238)
we have used not only (9.236) but also the following important property

of (9.235):

T,=0 (9.239)

T Because integrals are analytic in p;- p; and there is always a region in the space of
momenta p; where all boundary terms vanish.
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This property expresses conformal invariance of a theory in any
number of dimensions. Indeed, generically, the energy momentum
tensor determines the variation of the action S of any system under the
change of variables:

&8+ 640
S-S+ (9.240)

oS = jraﬂ(cxaaeﬂ + 8y6,) d"¢

Hence, the tracelessness (9.239) implies that the action is not changed
for such ¢, that

0,8p + Opy ~ Oyp (9.241)

or
2
Outp + 0pta = - Oupdies = 0 (9.242)

(n is the dimensionality of the &-space).

These conditions for n = 2 are just the Cauchy-Riemann equations,
satisfied by any analytic function. Thus we have an infinite dimensional
conformal group in this case. At the same time, for n > 2 the group is
finite, and consists of the ordinary translations and rotations plus
dilations and inversions.

We see that the formula (9.238) is a condensed expression of
conformal invariance of the theory. It is not just conservation of T since
generically one would also have terms in (9.238) containing J, deriva-
tives. Their absence is crucial for further discussion.

Let us show that correlation functions involving the operator T can
be determined explicitly by the Ward identities.

We shall give first their formal derivation, and then in order to get a
feeling of how they arise, analyze the special .ase of free fields.

It is convenient to treat the variables z and 7 as independent and to
concentrate on the variation of z. Suppose that we have a set of
operators {0,} which transform as

ne
0.0-(3) o

or (9.243)

6,0,(2) = £(2)0,0,(2) + A,£(2)0,(2)
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where we have passed to infinitesimal transformations, z — f(2) =
z + &(z). Under the same transformations the action acquires a varia-
tion (9.240) which can be rewritten as:

5,8 = J d2z T(2)0;¢ (9.244)

As is usual in field theory, the Ward identity arises when we change
variables in the functional integral and require its value to be un-
changed. It reads:

6,50,,(z2y)-..0,(2)> (9.245)

k
= .Zl {0,(z2y)...6,0,(z)...0,(z:)>
<
where the left-hand side represents the variation of the factor e ~% in the
Euclidean functional integral under the transformation (9.244) while
the right-hand side is the variation of the operators O, themselves.

Requiring that (9.245) holds for any ¢ and integrating by parts we
obtain:

0:(T(2)0,,(z})...0,(z)>

]
= 2,-:/ {5(2 -z 6_zj + 4,0z - zj)}

x €0,,(z,)...0,(2,)> (9.246)

(here ¢ is the two dimensional é-function).

A structure like (9.246) is typical for all Ward identities we encounter
in field theory. What is unusual is that equation (9.246) can be
integrated uniquely. To do this, let us use the following simple relations:

0,03 log(1z — Z'|*)
= 0,0;[log(z — 2') + log(z — Z')]

1
=0; .= —nd(z — Z) (9.247)

Z -

Therefore, changing without further notice, the normalization of Tby n
we get:
(T(2)0,,(2)...0,,(2)>

k A 1 0
,;, {(z —z) z—z 62,}

x 0,(zy)...0,(z)) (9.248)



206 GAUGE FIELDS AND STRINGS

The reason why the correlation functions involving T(z) are found
explicitly lies in the fact that due to the tracelessness of T4, the
energy-momentum conservation law involves only d; and not 4,.
Speaking less technically, T(z) generates some conformal transforma-
tion, and owing to invariance of the theory its result can be expressed in
terms of variations of {O,}. We shall also need Ward identities
involving several T(z). In order to find them we have to analyse how
T(z) is transformed under the conformal group. Since T(z) is a second
rank symmetric traceless tensor under SL(2, C) we expect that its
general transformation law respects these properties. Since the para-
meter of a general transformation is a vector field &(z) (remember, that
we are using a complex notation) the most general variation of T(z) has
the form:

5,T(z) = ()0, T+ 20,6)T + % o (9.249)

(since under SL(2, C), T(z) transforms as (dz)~? and &(2) as dz).

The constant ¢ which appeared in (9.249) is a dynamical characteris-
tic of the theory which plays an important role. For free fields we shall
compute it in a moment, but first let us describe its general meaning.

Its appearance in (9.249) implies that under the conformal group
T(z) transforms not as a primary operator with the variation given by
(9.243). Perhaps it is now time to say that the primary operators are not
the only ones in our complete set. Indeed, together with some primary
0,(z) we must have the derivative operator 0,0,. Its transformation law
is (we obtain this by differentiating (9.243)):

5,4, = £0,A, + (A, + 1)(0,8)4,
+ A(92%,)0, (9.250)
n = 62 Oll

It is clear that higher derivatives of O, will contain higher derivatives of
¢ in their conformal variations. The prospects for the use of an operator
algebra (9.218) with such an enormous variety of operators seem rather
hopeless.

However, this is not so. We shall show that only the primary
operators define the structure of the theory, while all others are
obtained by simple rules. The energy-momentum tensor plays a crucial
role in finding these rules and thus we go back to (9.249).
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Using (9.244) and (9.245) we obtain:

% fdzu X TWTE) = (6, T@) = 15 3e(2)
(9.251)
3 TT@W) = 755 359 — u)

or
1

Z—Uu

(TETW)) = — lc—z ag( ) - %(z — ) (9.252)
We observe that if it were not for the c-term in (9.249) the two-point
function of the energy momentum tensor would be zero, which is
incompatible with a positive norm of the space of states. For the case of
a free x-field when T(z) = 1(9,x)? elementary computation of the two
point function shows that ¢ = & (where 2 is the number of components
of x).

There is yet another geometrical interpretation of the constant ¢ and
its role in Ward identities. Let us multiply (9.248) by some mero-
morphic function &(z) and integrate around the contour C which
surrounds all the points {z;} and inside which &(z) is analytic. Then the
equation (9.248) takes the form:

(T,0,,(z2,)...0,(2)) = 6,0, (2y)...0,.(2.)>

T, = §dz &2)T(2) (9.253)
C
52 Onk(zk) = s(zk)auonk(zk) + A'lke,(zk)onk(zk)

so that T, generates conformal transformation in the space of different
correlation functions. Let us examine the commutator of two such
transformations. What kind of algebra should we expect? From the
geometrical point of view, conformal transformations are generated by
the operators

5 = 0
.= 82 0z
which form a Lie algrabra, since

[581’ 561] = 5[81.52]

[e1; €2] = .8 — €1¢,

(9.254)

So, one would think that if we consider a correlation function:
(T, T,0,(z2))...0,(z)>

€782
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where the contour C, surrounds all singularities of ¢, and {z;} and
subtract the same expression with 1 and 2 interchanged the correlation
function:

<1E51-£2]0M(zl) oo Onk(zk)>

will appear. This is not quite true because of the C-term. The correct
formula can be derived from (9.249). We have, first of all:

[T, T(z)] = &3, T + 2(,6)T + é &"(2) (9.255)

The meaning of the commutator in (9.255) is, as explained above, given
by
[T, T(2)]0,,z)) ... 0,z

det
= <§ du — § du)s(u)( T(W)T(2)0,,(zy) ... 0,(z,)> (9.256)
Cy C2

where C, includes the point z which lies outside of C,. Also &(u) is
analytic inside both contours and {z;} lie inside them. This definition of
the commutator in Euclidean field theory will of course become
equivalent to the one defined in the Hamiltonian formalism in Mink-
owski space. It is however independent of the choice of time axis. If we
integrate (9.255) with some function &, around the loop C,, we get

c
[T 1= T+ 35 gﬁdz(e';'ez — &5e,) (9.257)
C

where the contour C has to separate the points {z;} from the singulari-
ties of ¢; and ¢,.

The algebra (9.257) (called the Virasoro algebra) is an extension of
(9.254). It is easy to check that the last term in (9.257) is the only
possible functional compatible with the Jacobi identity.

We see that due to (9.249) we can easily compute correlation
functions containing any number of T. For example:

(T(@)TW)0,,(z,) ... 0,(2)>

(z—u)*<0,,(z)) ... 0,(z))

2 1 4 Z Ak 1 0
+ (z—u)2+z—ua+ P (z-z,‘)2+z—z,‘6_z,

x {TW)0,(z,) ... 0,(z)) (9.258)

NS



QUANTUM STRINGS AND RANDOM SURFACES 209

There are always several ways to derive formulas like (9.258) since for
example one can start not from T(z) but from T(u) in deriving Ward
identities. One can check that the condition that the resulting formula is
independent of the order of derivation is just the Jacobi identity for the
algebra (9.257). The Ward identities (9.258) give important information
concerning the operator algebra (9.218). Namely, they must be such
that after fusing together any two O, in the left hand side, we obtain a
result consistent with the corresponding fusion of two points in the
right hand side (which depends on {z;} explicitly). In other words the
operator algebra must be conformally invariant.

In order to classify possible operators let us consider the operator
product of T(z) and some primary operator y/(0) with dimension A. We
have:

A 1
Tz + () = e Y(z) + 7 0.9(2)

+ ¥(2) + {Ys(2) + - 9.259)

The first two terms in this formula are obtained by an immediate check
with equation (9.248) while the operators y,(z) with k > 2 must be
determined by more careful analysis of the same equation. For example,
the field y,(z) is defined through its correlation function with any
others as follows. Let us write (9.248) in the form:

(T(z + D¥(2)0,,(2,) ... 0,,(2))

(A 10 0 0
- (Q— + ZE)“"(Z’ n(2) .. O(2))

A 1 0
* §<(z+c":z,)z+z+c—zké_zk)
X (Y(2)0,,(24) - .- 0n (2 (9:260)
Taking { — 0 and comparing (9.260) and (9.259) we get:
Y2(2)0,,(2)) ... 0,(2)>

A., 1o
- [; ((z —ap T zog E)]
X (U0 (1) . Oz (9.261)

So, we see that there are an infinite number of fields y,(z) associated
with the primary field y/(z), with uniquely defined correlation functions
(for k > 2 we expand the r.h.s. to the corresponding power of {).
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It is convenient to represent the fields y,(z) in the form:

¥i(2) = T_,¥(2)

1 [d (9.262)
T (2) = ﬂ§c—k: T(z+ )

This notation tells us that the y,(z) do not exhaust all the secondary

operators which arise from one primary field ¥/(z). This is because there

are other Ward identities to be satisfied, containing more T, like (9.258).

The whole conformal family of y(z) is composed of the operators:

wh,..‘k,;I,‘..I,. = T—k, T—k,T-i, T—i,.'/’(Z, 2) (9.263)

(where T is the complex conjugate of T). Again, all correlation
functions of these operators are expressible through that of ¥(z).
Moreover, if in an operator product of two primary operators we have
some operator ¥ then together with it will appear the whole family
¥ . &> With coefficients calculable from the Ward identities. There exist
simple algebraic prescriptions for doing this, but for our purposes they
are not needed.

Generically, the field ¥, 3 transforms under conformal transforma-
tions in a complicated inhomogeneous fashion, involving lower second-
ary fields (recall (9.250) and notice that 3,0, = T_,0,). However there
are important special cases in which some secondary field y,, z,
becomes a primary one. This happens if for any n >0 Ty 5 =
T.Wy.& = 0. These conditions can be verified using the Virasoro
algebra in the form:

[T, Tyl = (n = m)Tyyp + =

5 n(n* — 130, m o (9.264)

(and the same for T') that follows from (9.255), (9.262). In this case,
owing to the homogeneity of the transformation law, we can eliminate
this field from the operator algebra without spoiling conformal invari-
ance (in these cases coefficients in the operator product expansion
become undetermined). These cases of degeneracy will serve us in the
next section to reduce the number of string states.

Let us give the simplest examples of this phenomenon. If we take an
operator T_, ¢,, where ¢, is some primary operator with dimension A,
the above degeneracy condition takes the form:

N'T.,¢=2Ty¢ =2A¢ =0
(9.265)
A=0



QUANTUM STRINGS AND RANDOM SURFACES 211

In this case we say that the conformal family with A = 0O is degenerate at
the first level. A less trivial example is degeneracy at the second level.
Consider an operator:

x=(aT., +bT2 )¢ (9.266)
and apply the degeneracy conditions:

Tix=Tx=0 (9.267)

The conditions (9.267) are always sufficient because owing to the
Virasoro algebra (9.264) any T, can be obtained by combining T, and
T,. Applying the first of these equations, and using

[T, T-,1=3T_,
[T, T2,1=2AT,T., + T_,T,)
=2T_,QT, + 1)
we get
Tx = (Ga+2QA + DH)T. ;¢ =0 (9.268)

Or, in other words the degenerate operator must have the form:

3

This form, which satisfies (9.268) for any A, is in fact just the projective
invariant operator which can always be formed out of any primary
field. The nontrivial condition, which implies covariance under the
infinite conformal group is the second equation (9.267). Applying it to
(9.266), and using the relations:
¢
2
[T, T2 1=[T, T, JT_, + T_\[T,, T_,]

=3T,T_, + T_,T)

= 6T, + 6T_, T,

[T, T_,]1=4T, +

we obtain, together with (9.268):

3a+2QA+1)b=0

. 9.270)
<4A + ‘2'>a +6Ab=0
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The condition of degeneracy is given by:

3 2QA + 1) _o
4A + c/2 6A |

8A2+(c—5A+¢/2=0 9.271)
S5—c+.J(c—25c—-1)
A= 16

This result shows, that for a fixed value of the central charge c, we have
an operator family degenerate at the second level, if and only if the
dimension A of the original operator is given by (9.271). The natural
question is what are the conditions for degeneracy at the Nth level? The
simple answer to this question is given by the so called Kac formula.
The result is the following. There are a set of dimensionalities A,
characterized by two integers n and m. They lead to degeneracy at the
level N = nm, provided that:
c—1

Ay = 5 + 3 (na, + ma_)?

1 —e\112 25 — c\1/2 9.272)
(o) =)

In the case n = 1, m = 2 the (9.272) is equivalent to (9.271).

Degenerate conformal families are very important. The reason is that
their operator content is in a sense minimal, since many operators can
be set to zero. In string theory, as we shall see, this implies decoupling of
unwanted ghost states, while in statistical physics of phase transitions
all known systems choose to be “minimal” theories or combinations
thereof.

Armed with these results, we are ready to discuss the “no-ghost”
properties of critical strings. By “no-ghost” we mean positivity of the
norm of string states. Actually it is guaranteed by our construction of
Liouville field theory, when 2 < 26. But explicit check at 2 = 26 is
very instructive.

9.10 Physical States of String Theory in the Critical Dimension

In Section 9.9 we presented a set of operators, composed out of the free
field x(z, Z), which correspond to the particle states of the string. We
also showed by explicit calculations, that some of these particles
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decouple. Now we shall start the general analysis of the spectrum. The
first (and the most important) statement will be the decoupling of all
secondary operators. In other words particles correspond not to
possible operators, but to the possible conformal families.

To demonstrate this let us examine the following Ward identity:

szz, dzzN<T(z)Um(zl) o Up e
pf/2 1 @
= Jl:[ dzz][; <(z — Zj)z + z__ Zj 5;;)]
x {Upzy) ... Up(zy)
0 1
= fl:[ dzzj ; a—z; <z———7} <pr(zl) e UPN(ZN)>>

=0 (9.273)

(where we have used the condition p? =2 which is needed for the
conformal symmetry of the amplitudes). From this identity it follows
that the operators which appear in the product T(z)U ,(z") will decouple
from the amplitude. In other words, secondary operators of the type
T_,U (z) do not correspond to physical particles. By a similar argu-
ment, the same is true for the T_, ... T_, U,. If we use the analogy
with oscillators (9.230) we can say that out of 2 chains of oscillators
{a,,} roughly 2 — 1 correspond to physical particles and one chain
decouples. If we are lucky this might imply decoupling of the negative
norm states created by {a,,}—at least the number of necessary
decouplings is the same.

To see what really goes on we have to analyse several examples.
To simplify notation we shall work with the case of “open strings”
which is obtained by forgetting about the dependence on z and
considering only z-dependent operators. The closed string case is
obtained by simple “doubling” of the operator set with z dependent
fields, since x(z, Z) = x;(z) + xx(Z). Examples of such doubling will be
given later.

Let us look at the vector (“photon™) vertex, given by:

U, =:i{* 0,x, e? "1 (%(p)ay |0, p> (9.274)

(here {,(p) is the “photon” polarization). Let us first apply the
condition that U, . must be a primary operator, or:

T,U,;=0, n>0 (9.275)
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In order to find this expression we must use the operator product:
T(2)U,,«(0)

=:—3(0,0)%(z)::i* 0,x, &P <O

= z73(¥p,: €'P"*: + less singular terms (9.276)

z—0
Recalling the definition of T, we find:
T,U, = {*p,U
e e ©277)
T,U,;=0, n>1
We see that the condition for U, ; to be a primary operator is
PLp=0 (9:278)

An equivalent way to derive (9.278) is to use the oscillator representa-
tion:

. i an./l -n a’:l‘ n
ix(z2)=4q,+p,logz+ Y - rET e+t

n=1

T(z)= —:4(@,x)*: =Y T,z7""?
gzt (9.279)

oo
To=3p*+ ) aya,
=

Applying T, to the state {*(p)a] |0, p> we obtain (9.278). This is a
useful demonstration of the complete equivalence of the operator
product formalism with the harmonic oscillator one.

Returning to (9.278) let us notice that in order that U, ; shall have
dimension 1, we must have p? = 0. In this case the number of coupled
states will not be 2 — 1 as follows from (9.278) but 2 — 2. In order to
show this, we notice that among the physical operators il* d,x,
exp(ipx(z)) with p*{ (p) = 0 there is one which is both physical and
secondary. We have already shown that the family produced by : eiP*:
with p? = 0 is degenerate and:

T_,:e? *: =:ip* 0,x, €' = (9.280)
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is, according to (9.265), physical for p> = 0. The same thing is seen from
the fact that {,(p) = p, satisfies:

P, =p*=0 (9.281)

This is a standard feature of the photon: its polarization on shell can be
shifted by a gauge transformation:

{p) — L) + Ap, (9.282)
By the use of this transformation we can make {4(p) = 0 and then
PLp) = —plp) =0 (9.283)

Hence we find that the photon has 2 — 2 possible polarizations. In our
formalism this was the consequence of two facts. First, we had the
condition for the vertex operator to transform properly under the
conformal group: T,U, . = 0,n > 0. That has left 2 — 1 possible states.
Second, one of these states was seen to be the secondary operator
generated by U, = :¢'?"*: with p?> = 0. As was shown at the beginning
of this section all secondary operators decouple. Thus, we got 2 — 2.
It is remarkable that a similar mechanism works at higher levels. Let
us discuss the second one. The most general vertex will be given by:

U s, 0) = (8,1 0,x*1 0,x* + {,i 02 x*) e'P=:
«(S,,af a7, + (a3 )0,p> (9.284)
pP=-2

Let us see what forms of S,(p) and {, are left by the condition of
conformal covariance:

TLULS, =0, n>0 (9.285)

It is easier to work out in the oscillator representation. Applying (9.279)
we find:

Tl(suvarua:v + Cua;u)lo’ p>
=2(p,S,, + (a7 ,10,p> =0
TZ(Suva;ua::v + Cua;u)|09 p>
So, the conditions for physical polarizations are:
puCu + %Sll = 0

(9.287)
pySuV+Cv=0’ p2= -2
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Again, among these physical states some are secondary. This implies
that there is some second level gauge invariance in (9.287). To find it, let
us use formulas (9.269) and (9.271) for the case A = — 1 (in this case the
secondary operator will have A = 1). We conclude that the states
lay =(T_, +3T2)I0,p>, p*= -2 (9.288)
and
|b> = T— 11,4(P)a1+,;4|0, P>’ pu}‘u = 0

are physical if ¢ = 2 = 26 in (9.272). The state |b) corresponds to the
following gauge transformation:
Saﬂ - Saﬁ + %(palﬂ + pﬁ'la)
Ca d Ca + )‘a
with p,4, = 0. It is easy to see, that the conditions (9.287) are invariant
under (9.289) provided that p2 = —2. This first gauge invariance works

for all 2. The second one, associated with the state |a) is true only for
9 = 26. After some computations, one finds:

(9.289)

Sa = Sap + €(0,5 + 3P, Pp)
o g (9.290)
{a— Co + Sep,

In both cases, gauge transformations create states of zero norm, just as
was the case with photons (recall that the state p,a ,|0, p)> with p* =0
is of zero norm). The reason for zero norm is quite simple. If any state
| f> is physical:

T|f>=0, VYn>0
and secondary:

f>=T_nlg>; TT_.lg>)=0
then:

S5 =QIT,T_,lg> =0 (9.291)

The meaning of this result is that at each level we have a certain gauge
transformation, which does not change the physics, but creates zero
norm states. It is also clear, that existence of such an invariance implies
a considerable reduction of the physical spectrum. Let us now count the
number of states remaining. Consider the states with p> = —m? =
2(1 — n). They are represented in the oscillator formalism as:

1> = (Cuan, + S8, 401, +--)10, p)
p2=1—-n

(9.292)
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The total number of these states is given by the number of ways in
which the integer n can be split into a sum of positive integers. Indeed, if
it were not for the space-time indices u, we would have the general state
in the form:

lf> =a1+, ...a,:|0,p>

(9.293)
L+..+hk=n >0
The number of such states is given by:
1 dx = 1
N(my =5 3€xnﬂ k]:[l — (9.294)

To derive this, let us represent (9.293) as
[f>=...(a'y...(a/)|0, p>

0
Y kp,=n
k=1

Then
N(n) = Z 6n.2kpk

(P

1 dx

=—§—+1 )N Ik

: n
27 T x ()

1 dx
= ki
21ti§x"+l l;](;x >
1 dx 1
=%§xn+l ].:.[ 1 _xk

When we add 2 space-time dimensions it is clear, that the number of
states Ng(n) at the n-th level is given by:

w© © 2
Y Ng(mx" = (n 1 _1 k) (9.295)
n=0

k=1 x

Now, not all states (9.292) are physical. We have to apply the condition
T,| f> = 0. This results in equations for {,, S,,, etc. similar to (9.287).
The number of such states will be generated by:

© 1 2-1 ©
<[1 ) = 5 N

x
k=1 1 —x n=0

(9.296)
N (n) = Ng_,(n)
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because effectively the T,-constraints remove one component of each
oscillator. However, this is not the end of the story because among the
physical states there are some of zero norm. Suppose first that & # 26,
The only set of zero norm states is produced by:

|f> =T l(iua:—l.u + Xuva:—Z.yar,v + "')I(), p>
p2=1-n (9.297)
This state is physical, when T_, acts on a physical state of zero
dimension. Therefore, the number of physical states with nonzero norm
vo(n) is given by:
ve(m)=Ng_ (") — Ng_(n—1)
w(x) =Y ve(n)x” (9.298)

E 1 2-1
=(1—x)<k[111_xk)

In the critical dimension & = 26 many more states have zero norm. We
have already observed this in the case of the second level. For the
general case we have to use the Kac formula. Let us see when some
conformal family with ¢ = 2 = 26 has a physical secondary operator at
some level, with dimension one. Using (9.272) we obtain:

Apm + ——5+1 + ?

o nm—24 g(nat+ mo _)
_B I3 2m)? =1 9.299
—ﬁ_ﬁ(n— m) (. )

We see that degeneracy (or zero norm states) is possible provided that:
In=2m+1 (9.300)
and the corresponding level is given by:

_ n(3n 1+ 1)

N=nm 3

(9.301)

The previously found state with N = 2 has n = 1, m = 2. It is clear, that
now, instead of (9.298) we will have:

vx)=(1 - x—x*— )(ﬁ ﬁ)“ (9.302)

k=1
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However, we should not simply subtract all levels given by (9.301). That

would lead to overcounting for the following reason. Among the zero

norm states on the second level, which as we said have the form:
If>=(T_;+3T2)lA= -1} (9.303)

there are some, for which the state |A = —1) is itself secondary. These
cases are again found from the Kac formula:

25
(3 —2m)? = —
Ay + N = % (3’! m)

(9.304)
3n—-2m=+7

which is satisfied, say, on the level 3, by n = 3, m = 1. Therefore, some of
the states (9.303) will be of the form:
)= (T, +3T2 T3+ )|A=—4) (9.305)

This can be considered as a degenerate state at the level 5. So, this state
should not be counted as we go to the level 5, setting n = 2 in (9.301).
Another state which should not be counted is the following:

[f>=T,l1A=0)
A=0>={T 4+ }|A=—4)
because according to the Kac formula:

25
24 24

On the other hand, the Kac formula predicts only one secondary state
at the level 5, and we have already counted two states. The conclusion is
that these two states are in fact the same, and that we have counted it
twice. Hence, to correct the situation, we must write instead of (9.302):

(9.306)

Ay +4= Ls_gp=0

25
v(x)=(1—x—x2+x5+~~~)<ﬂ ! k) (9.307)
e 1 —x

It is not hard to do the same combinatoricst at each level, using the Kac
formula repeatedly. The result of this counting is:

Wx) = {1 £ T (=~ g xmn-nn)}

n=1

o 25 @ 1 24
< i ) = (kL]l = x") (9.308)

+ Described in the Appendix to Ch. 9.10, p. 221.
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Here we have used an identity due to Gauss for the first factor. This
result is quite remarkable. It shows that among the 25 chains of
oscillators one chain forms zero norm states and decouples. This
implies that all the remaining oscillators have positive norms and there
are no ghosts in our theory. The reason is roughly speaking that all
negative norm components went to form zero norm states. Indeed, any
zero norm state (z) can be represented as

|z> = [n)> +|p> (9.309)
where
(njny = —1, <Lplp> =1
Any physical state | ) has the property

{flz) =0 (9.310)
which implies:
Lf>=1n>+1p>
(9.311)
Bplp =1

But, since |p) and |p) lie in the positive norm Hilbert state, the Cauchy
inequality implies:

pIp> > {plp> =1
Hence:
S5 =L<pIp> + <{nln> >0 (9.312)

When we have many negative norm states, it is sufficient for this
“no-ghost” theorem that their number at each level should be equal to
the number of zero norm states, which is the case, according to (9.308).

We have arrived at the conclusion, that for 2 = 26 we have 24 chains
of oscillators with positive norms. This result could have been expected,
since in this case the Liouville field decouples, and the only physical
fields are those of the coordinates x,(&) of the string. They would
describe 2 = 26 chains of oscillators, but owing to the general coordin-
ate transformations ¢ — f(&), involving two arbitrary functions, two
chains are unphysical. This is just what we have seen by explicit
computation. For 2 > 26, the Liouville field will have the wrong sign of
the kinetic energy, which has two interpretations. The first one is that
large gradients of the ¢-field become important, so that the surface
looses its continuum limit. The second, more formal, interpretation, is
that the wrong sign of the ¢-propagator implies negative norm states.
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This can be confirmed by examining the norms of physical states for
2 > 26: one chain of oscillators will become ghosts.

The main result of our analysis is that for & =26 the simple
Koba-Nielsen amplitude has only one flaw—a tachyon. In the next
section we will show how this flaw is corrected in the case of fermionic
strings with 2 = 10. After that, we return to the noncritical strings and
discuss many interesting possibilities which arise there.

Appendix to 9.10

Here we will briefly describe the combinatorics needed for the deriva-
tion of (9.308). Our task is to subtract the contribution of all zero-norm
states from the partition function N®* of physical states

NPh(z) = i NPh(n)z" = ﬁ (1—277)"28
n=0 n=1

Here N*"(n) denotes the number of physical states (primary fields) at
level n, and we put 9 = C = 26. There are two cases when the physical
state at a given level has zero norm:

(*) N=nm A,,+nm=A, _,=1

where A, ,, = (25 — (2n + 3m)?)/24, as follows from (9.272) for ¢ = 26.
From () we get 2n — 3m)?> = 1, or

m(3m + 1)

NeAl? =¢{ 3

¢ , me2Z + 1}
(%) N=nm+kl A, ,+nm=A, A+ ki
From the second equality follows

A, =40 or k=n+3ql=—-m—2q,qeZ

n.m

The third relation gives (2k — 3))* = (2n + 3m + 129)> = 1, and we
find

N=nm+kl=—3gm —2qn — 6q> = —6q*> + q(12q + 1) = q(6q + 1)

or

NEA(+) = {p_—(3p + 1)
h 2

, peZZ\O}
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9.11 Fermi Particles

There exists a beautiful extension of the bosonic string, the Neveu-
Schwarz-Ramond string (NSR) which represents a string analogue of
Dirac particles. We will start this section by describing the path integral
representation for these particles and then generalize it to the string
case.

Fermions can be described in many different ways. One of them, from
which we start, is to replace an ordinary path x, = x,(t) by a super
“surface”. Namely to consider a function

X, =%t 0)=x,(t) + O (1)

9.313)
0*=0
The superspace (t, §) possesses the symmetry:
ot =¢0
(9.314)

50=¢ 2=0; eb+0=0

The commutator of two such transformations is an ordinary shift in ¢:

[ €2 cl ez]t 1(810) - 55,(820)
9.315)
=£.6, — £,8, = 2€.¢,
(0., 9,10 =0
We can define a covariant derivative 2 by:
0 0 i} 0
e2 = 6900 6;5 <60+0 >
2= g 0 0 9.316
=21 (9.316)
0
2 _ J—
2 =%

The supercovariant action is given by:

1
S=3 f dt d6 222, D2+

= Jdt(%)é’ -9 9.317)
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We shall see in a moment that the fields y, will play the role of the
y-matrices in the usual approach. The action (9.317) is invariant under
the supersymmetry:

0x, = &y,
oY, = ex,

(9.318)

The action (9.317) is only globally invariant, while the proper action
should be invariant under general supercovariant transformations. This
can be achieved by the introduction of the “einbein” field e(t) (as we
have done in the bosonic case) and its superpartner—the “gravitino”
field y(t). While e(t) is coupled to the energy-momentum tensor, which
in our case is 3x2, the field y(t) must be coupled to the supercurrent. It is
clear from (3.318) that this symmetry is associated with the conserved
current:

) =Y,%; §=0 (9319)

Therefore, we can expect that the covariant action will be:

J{ (e7'%2 -y, l//”)-i- xl[/,,x,,}dt (9.320)

This is indeed the case. It is easy to check that (9.320) is invariant under:
0x,(t) = At (1)

S (1) = a(:)(—(7)+ x¢/>

de(t) = a(t)x(t)
ox(t) = —20(t)

(9.321)

We are almost ready to write a complete analogue of the bosonic
functional integral. There is, however, a small problem to overcome.
Namely, the “cosmological” term je(t) dt, which we added in the
bosonic case, is not invariant under (9.321). Moreover, no local
expression made of y and e will be invariant. The “super-length”, which
is invariant, has the form:

1 1

= Je(t) de -1 J dt, dz, sign(t; — t)x(t)x(z,) (9.322a)

0 0
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We can avoid the nonlocal form (9.322a) at the price of introducing an
extra field y s with which (9.322a) can be replaced by

1
L= J e(t)dr — JWs'ﬁs dr + Jl/lsx dr (9.322b)
0
OYs=—a)
Integrating out 5 returns us to (9.322a).
Now, the functional integral for a supersymmetric path ist

1

22
Z= J@xu@.p“@x@e@ws exp{ - '[ [x? ~ ¥~ ¥s¥s

0

+ é(x'/,ux'y - mews) + mze:l dt} (9323)

For a free particle, which we are considering, this integral is easily
computed, using the following gauge fixing:

¢=0, e=T, =0, =20 (9.324)

(where T and 0 should be integrated over, since gauge freedom is not
sufficient to eliminate them completely). For an open path from (x,, ¥,)
to (x;,, ¥,) (the quantity ¥, must not change since it satisfies a first order
differential equation in contrast with x,) we have in the momentum
representation (changing (1/T)x, — ip,):

G(p) = j dT e ™7 jdg PPV —mys)o = p2T
0
= m (ip, ¥, + mys) (9.325)

If we change ¢, -y, and ¥ 5 = 75 we obtain the propagator for Dirac
particles.

The formulas for closed loops, similar to (9.65), also can be written.
We shall not give a detailed derivation here. The answer replacing

+ This form was found by Brink, Di Vecchia, How (1975) and anticipated by Bezezin
and Mazinov (1974).
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(9.65) is given by

F(qy,....q5) = JdT T-212g—mT J dt, dé, ... dty dby
0o 0=t <1< <ty<T
1 A
X €Xp 3 Z q:- 4,26 |; (9.65a)
i#j
(T —s)
D(s) = T

where $;; is the superinvariant distance:

$; =1t — 15| — 0,0; sign(z; — 1)) (9.326)
One can easily check that, first, §;; is invariant under (9.314) and,
second, the representation (9.65a) is equivalent to taking the trace of
Dirac matrices. Thus, (9.65a) gives us the supersymmetric extension of
the Feynman-Schwinger parametrization appropriate for fermions.
Notice also, that the exponent in (9.65a) is just the average of the

product of vertex operators
Vy(1,0) = P 20,0 . oip-(x+6W)
= [1 +i6(p- )l (9.327)

Before we go to the case of strings, several more points are worth
discussing.

First of all, the geometrical properties of the fermionic path are very
different from those of the bosonic one. In particular, while in the
bosonic case we have a Brownian path with its size R and length L
connected by the diffusion law R? ~ L, in the Fermi case things
are different, namely R? ~ L2 To show this, let us recall our games
with the Lagrange multiplier. In (9.12) we argued that in the action
f A(t)(%*/e — e)dt for a bosonic path we can replace A(f) by some
constant because A(t) develops a constant vacuum expectation value. A
crude argument for that was based on a fact that the effective action for
A contains a term:

1 1

WA = é '[ e(r) de log A(t) — J A(t)e(t) dt (9.328)

0 0

where a is the lattice cut-off. Because of the first term we obtain
{Ah) ~ 1/a. For the supersymmetric action the situation is different. The



226 GAUGE FIELDS AND STRINGS

first term in (9.328) coming from the zero-point energy of the x-field
cancels with the contribution of the y-fields. As a result, we do not have
a divergent contribution to W[4]. Instead, the coefficient 1/a in the first
term can be shown to get replaced by 1/L. Because of this, for the
fermionic path we have:

1

RZm T ~ 12
R <,1>L L (9.329)

This result is responsible for the different critical behaviour of fermionic
particles.

There is also another interesting form into which the action (9.320)
can be recast. Namely, let us integrate out the y-field using (9.322a) to
find its propagator:

d
() = 7 ot —1) (9.330)

Performing the y integration, we obtain, instead of (9.322a):

T T
Z= f DN Dx cxpl:—— J (2 =y ¥, dt + }‘ J W, %), %, dt] (9.331)
1] 0

The last factor has a remarkable interpretation. If we replace ¥, by 7,
(which is the actual role of the ¥ integral) we cast this factor into the

form:
T

1
¢[C] =P exp § quv[x(r)][))u’ yv] dt (9’332)

0

where w,,[x(1)] is the rotation of the tangent vector to the trajectory:
0, [X(1)] = 3(%,%, — %,%,), (*=1) (9.333)

This gives us a new understanding of the meaning of path integrals for
fermions. In particular, in two dimensions the factor (9.332) reduces to
(—1)" where v is the total rotation of the tangent, known to be equal to
the number of self-intersections of the path. Because of these oscillating
factors, many complicated trajectories are suppressed, and this is the
reason for (9.329).

To complete our understanding of fermions, let us discuss another
representation, which combines Fermi and Bose particles together.
That is, it is possible to have a functional integral which is supersym-
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metric not only in the “inner” space (8, t) but also in the “outer” space
x,. The 2-dimensional supersymmetry is described by the following
transformations: if we define the superspace as the one described by x,
and a 2-dimensional spinor ¢ we have:

0x, =&7,9

"

(9.334)
dp=¢

Now we can define a propagator in this superspace as an amplitude
{X@|xe). It describes the propagation of a superfield ¢(x, ¢) which
contains both Fermi and Bose fields in itself. Our aim now is to give an
action invariant under (9.334). This is not hard. Consider the expres-
sion:

T

S = f dt 3%, — ¢7,9) (9.335a)
0

Invariance under (9.334) is obvious, so we can postulate that the
functional integral over x and ¢ is just the required propagator. What is
less obvious is how this new representation is connected with the
previous ones, say (9.331). Details of this connection have never been
worked out. I shall give here only the general idea. Let v's begin from
(9.332). It is easy to see that we have the following formula:

lim P exp(é J 7,(0)% () dr) = el g[c] (9.335b)

a—0
¢

This can be checked by use of the definition of the ordered product.
Now we can replace the ordered product (modulio the divergent factor)
by the functional integral:

P exp{é J 7,(D)X,(7) dr}
o] ,
= J@x exp[J(xx + 2 X)’,JO%) dr]
= J Dy explij(xy,l xx, + aix) d‘t] (9.336)

If we introduce the field ¢ by the relation y = \/ (d/dt)e we shall find
that the spinor factor (9.335) in the limit a — 0 can be considered as an
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amplitude for the propagation of the 2-dimensional fermion trapped
on the path:

olc] = J@(p exp< J 0y, 6%, dt) (9.337)

This is almost (9.335). Presumably the quartic term is needed for proper
regularization. But how come that the supersymmetric expression
(9.335), describing bosons and fermions together, is obtained from the
purely fermionic path integral? The answer to this question is simple.
When we treat the functional integral (9.337) we find that it describes a
second quantized Dirac particle, living on the path. In order to
reproduce fermionic results in (9.336) we implicitly assumed that the
occupation number for this particle is equal to one. If we remove this
constraint and integrate over all possible ¢-fields, we add to this sector
another one, with the occupation number zero. In this other case we
have no particle on the path and thus describe a boson.

There are obvious gaps in our derivation, but I believe they can be
filled without damage to the general ideas outlined above. This would
be a theme for an interesting investigation.

9.12 Fermionic Strings

We shall now describe the string analogue of a Dirac particle. Just as in
the latter case we had a field ¢, distributed on the trajectory, which
eventually played the role of the Dirac matrices y,,, in the case of strings
we have to consider a field () living on the world sheet, which should
be a supersymmetric partner of the field x,(£). As before, it is convenient
to start from the superspace, which now must have two fermionic
directions. If we describe £-space by complex variables z and 2, each of
them has its Fermi-partner 0 and 6. The supersymmetry transformation
is given by:

0z= —¢b, 6z=—¢0
- (9.338)
60 =¢, M=¢

We see that we have a direct product of one dimensional supergroups.
The corresponding covariant derivatives take the form:
0 0 d -0
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The field x,(¢) should be replaced by the superfield %,(z, z, 0, 6) which
has the decomposition:

2,02, 7,0,0) = x,(&) + 6y, + Y, + 66f, (9.340)

We see that now we have two types of fermi-fields y, and l/;,, (in
Euclidean space ¥, = ¥ while in Minkowski space they are two real
independent fields, just as happens to the coordinates z and Z which in
M-space become & + &'). These two fields form a spinor of the two
dimensional space and a vector in the external space. We have also a
new world sheet scalar f,. A supersymmetric action is easily formed out
of this material:

1 ]
s=5 J Jx,9x, d0 db d*¢
(9.341)

1 -
=3 [ @ - v = dod e

This action has the following conserved quantities, associated with its
supersymmetry:
S+ 0T = —1929°%
T‘—E(GX)Z W, 0.y,
0

T=—3@x) + 1,00, (9.342)
S =— 2:{/“ 6,x‘,
j = —‘;‘V/u 5;xu

6T=08,T=0,=0F=0

Here we have the energy momentum tensor T = T, . with conformal
spin equal to two and the supercurrent # = £ with spin 3/2 (since the
fermion Y =y, has spin 1/2). It is to be remembered that by the
“conformal spin” we mean the transformation law under z — ¢i**, If
some quantity is multiplied by e ~** we say that it has spin s. It is clear,
that in order to achieve local supersymmetry, we have to introduce into
(9.341) two gauge fields, one with spin 2 coupled to T(T), which we call
the “graviton”, and another with spin 3/2, coupled to #(#) which we
call the “gravitino”.
The action which has local supersymmetry can be found to be:

S = % J.dzé gl/2[gnb aax_abx + \Il-c'"'(f)di aa\l’

+ (10" X0 X, — 2¥))] (9.343)
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One would like to derive (9.343) directly from the superspace formal-
ism. Unfortunately, this becomes rather clumsy. It is much easier to
check that (9.343) has the desired covariance. In this formula we
denoted by o' the usual Pauli matrices, e®(¢) is a “Zweibein” field
connected with g,, by g, = €(£)ei(&), x, is the gravitino field with
vector index a and suppressed spinor index. In the limit of weak
graviton and gravitino fields, the action (9.343) will go to (9.341) plus a
graviton coupled to T(T) and a gravitino to #(#). The last term in
(9.343) is a correction to the supercurrent produced by the y-field. We
have used a non-covariant derivative acting on ¥, in the second term
since for Majorana spinors the spin connection gives zero contribution.

The symmetry of (9.343) apart from the usual general covariance is
described by the transformations:

0x,(&) = e(EW ()
(&) = a°[,x,(0) — 3(xa¥,)1e(®)
o= 2V,8(0)
0Gap = &0 X + OpXa)
with ¢(¢) being a Majorana spinor.
Just as in the purely bosonic case, the theory is greatly simplified by
the choice of the conformal gauge. This gauge is given by:

gap() = €793,
X&) = a,x(8)

Let us discuss whether it is possible to reach this gauge by the use of
general supercovariance. First of all, we count the number of indepen-
dent functions in the gauge (9.345) which gives us a rough orientation of
the situation. We have 3 components of g,, and two spinors y,, or in
other words 3 bosonic functions and 4 fermionic ones. We replace them
by one bosonic ¢ and two fermionic y. This is reasonable, since we have
two extra bosonic functions, describing general covariant transforma-
tion from the gauge (9.345) to an arbitrary one, and two fermionic ones
which enter in (9.344). All in all, the number of independent functions
matches.

Now, we have to repeat the more detailed analysis, which we have
already done in the bosonic case.

In order to decide on the accessibility of the gauge (9.345), let us
consider a general variation of y, and examine whether we can write it
as some variation of y plus a supercovariant transformation. We have:

(9.344)

(9.345)

0%, = 0,01 + 2V,¢
= 0,(0x + 6"V,6) + 2(V,e — 10,0%V,¢) (9.346)
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The meaning of the last expression in the brackets is that it is
“traceless” in the sense that being multiplied by d" it gives zero. All this
is quite analogous to the bosonic case (9.113). Accessibility of the gauge
depends on the possibility of solving the equation

(LpS) = ",8 - = (I (9.347)

where ¢/ is an arbitrary spin 3/2 spinor with ¢“g@"= 0. This is to be
combined and compared with the bosonic part of this equation (9.113):

(Lgoo) = (9.348)

with arbitrary traceless #'b. As we shall show now, the ghost determi-
nants are just those of the operators  and Lp. In the purely bosonic
case we have already derived this result (remember that we found a
det(L™ Lp) factor in the functional integral). It is almost obvious that
for the fermionic case we have to add dQ+~"(Lp Lp). Here we shall
derive this result by a different (from the bosonic case) method, which
seems quite useful to know.
Let us take a super-metric (g X the superconformal gauge

9ab — P*ah
(9.349)
la,a = i*al)a
(a is a spinor index) and consider the Faddeev-Popov equality:
Aco”eSig - L"0ji)6{Xa - Lps) (9.350)

which serves as a definition of W. Inserting this into the functional
integral for the partition function we get

(9.351)
where we have omitted integration over the supercovariance group

QioQ)8 Now, it is convenient to introduce ghost fields explicitly by
representing:

em/\(/\’/‘(-‘): det L,def/\L.
exp{-{K tgco) - (/. Lps)} (9.352)

The signs (— and (+) here indicate that we integrate over fields with
reversed statistics: co and n are fermions, while e and / are bosons.
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Now, our aim is to express the determinants entering in these
formulas in terms of the fields y and p from (9.349). In the bosonic case
we have already performed this task. However, it will be convenient to
repeat everything again, using a somewhat different method, in the
present situation, in order to see the close connection between bosons
and fermions.

First of all, let us rewrite the operators (9.348) and (9.347) in the
conformal gauge. For (9.348) we have the standard formulas of
Riemann geometry:

Vawb = aawb - ra‘;wc
T = 59%0.9ap + 05940 — 0aGap) (9.353)
= %(aa(pabc + ab(péac - ac(p(sab) ((P = lOg p)
From this we derive:
Vawb + waa - gabvcwc
= aa(‘Db + aba)a - 6ab acwt

= (0,0wy + Oy9w,) + 8,y 0.0, (9.354)
= e"’(aa(bb + abd’a - 6ab ac(bc)a

a,=¢e %w,
When computing the conjugate operator we need to know:
(Lg h) = Vh,,
= gac(achab - raezheb - rcghae)
= e %(0,hy) (9.355)

With fermions a similar thing happens. According to general rules:
V,e = + 100[s,, 0 e (9.356)
where the connection QI is defined by:

0,65 + Ql¥ley =T ¢

- (9.357)
Gap = eaeb
In the conformal gauge:
b=
and we find:
QLM] = _%(ab(péac - ac(p(sab) (9‘358)
From this:

Va &€ — %aa G'beE = e¢/2 [aa(e - O/Ze) =0, ob ab(e - 0/28)]
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For the conjugate spin 3/2 field f, we have:
Vot = 0.ty — T fo + 200", 0}y (9.359)
In the conformal gauge:
Vof, = p 18,1, (9.360)

This extensive use of general formulas was not actually needed. The
results (9.354), (9.355), (9.359), (9.360) could have been foreseen from
the following reasons. We can define the covariant derivative in the
conformal gauge as follows. Suppose that we have a field A((™,¢7)
(where ¢f = &' + i¢?) which transforms under analytic transforma-
tions

Er=fTE) T ED)

as follows

(NN L
+ — 7 -~ +
thus having conformal weight (A, A). At the same time the metric
p(E*, E7) is assumed to be transformed as:
v oo dtdm
P&, ¢ )_d_éTdé—‘p(f )
Let us try to define covariant derivatives of /. This can be easily
achieved:

V,A=(,—A@,9))4
=p*0.(p7%4) (9.362)
It is trivial to check that if the field A has the transformation law (9.361)
with some (A, A), then V , 4 has the transformation law with (A + 1, A).
Now, the results of the previous computations are becoming transpar-

ent. Indeed the field w, is a vector field (w, , w _) with the weights (1, 0)
and (0, 1) correspondingly. Hence:

V.o, =p0.(p"'w,) (9.363)
which coincides with (9.354). The field &, , has weight (2,0), hence:
Voh,, =p 'd_h,, (comp.(9.355))

The spinor field ¢, has the weights (1/2,0) and (0, 1/2), while the
gravitino field f% (f®) has (3/2,0) and (0, 3/2). That gives (9.359) and
(9.360). Let us notice also, that the tracelessness of h, means that
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h, _ =0 and we have two components h, , and h_ _ only, while the
condition ¢°f, = 0 implies also that we have only two components [
and f® of the vector-spinor /¢, which correspond to spin 3/2, while the
spin 1/2 component is removed. We must remember that all our
computations of covariant derivatives have been done on the back-
ground where we have some metric p but no gravitino field y. In the
final results we shall be able to restore y-dependence by the use of
supersymmetry. It should be noted, however, that it is easy to work
with y present. All we have to do is to consider a superspace generaliza-
tion of (9.361) and (9.362).

To put things together, we see that the ghost contribution to the
functional integral is defined by the determinants, which arise from the
following eigenvalue problems (recall (9.352)):

4 6+(p_lw+) =iEh, .

9.364
0*th,,=g" " 0_h,,=p'o_h,, =iEo, (5:364)

for bosons, and

p'? 0. (p™"%,) = iEf,

9.365
0'f,=p to_f, =iEe, ( )

for fermions. If we apply 0_ to the first equations of each pair we get:

—p 20_(pd,0)=E%
—p 23 _(p'?d,0)=E¥% (9.366)

- = -1 . — 172
Uo,-n =P Oy, Vo, - =P "84

The general operator acting on tensors with conformal spin (0, j) would
be

Li=p o (p70,) (9.367)

For j = 0 this is the scalar laplacian: for j = —1/2 and —1 these are
ghost operators, which we have just now derived. We shall need one
more value, j = 1/2, corresponding to Dirac fermions. Indeed, Dirac
fermions transform as:

(1/2,0)

Yy ~(dEH) V2~ ©.172) (9.368)

and hence the Dirac eigenvalue problem is:

pTlro Y, =iEy_

0120,y = iEy, (9.369)
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Of course the same equation could have been derived in a long way,
starting from the standard Dirac equation with spinorial connection:

oV, = iEy (9.370)

We have already described this way above in the case of the ghosts and
will not repeat it.

Our task now is to compute the determinants. All of them must be
local functions of p, since under naive manipulations the p dependence
drops out from all expressions. Indeed the action for the field u in
(9.366) and (9.367) which leads to the correct eigenvalue problem has
the form:

S, = Jp—j0+ﬁ d_ude
9.371)
N;= Jp""ﬁu d3¢

(where N; is the norm in the u-space). If we try to use perturbation
theory, setting p = 1 + ¢ we get:
k+gq

~ oD ) Jd’k kitk +q)-(k_(k +9).)

k*(k + g)*

= jo(@)e(—q) fdzk (9.372)

Which is ill-defined. This means that we have failed to compute the
effective action and demonstrated only that it does not have an
imaginary part in g-space, being a local function of ¢. The same is true
to all orders in ¢.

There are several ways out of this problem. One is to use Pauli-
Villars regularization of all loops. This amounts to adding to the action
S; the regulating action S:

§;= f(p-f 0, 00_ i+ M*p! i) d2¢ (9.373)

where loops of i-fields enter with negative signs, and cancel the
divergences of §;. The construction of the action S ; ensures that the
regularization preserves conformal symmetry. The @-dependence can
easily be extracted from the loop containing the #-field, and then the
general argument, based on conformal invariance, would lead us to the
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Liouville action with fixed coupling (this is the only conformally
invariant expression of the required dimensionality).

We shall choose here a different approach to the problem, which
seems more meaningful. Let us generalize the expression for the ghost
lagrangian (9.352) which, without external field, has the form:

S = J(h++ 0_ot+h__d,07)d¥ of=plo; 9.374)

In this bosonic part, the fields w and h have the following transforma-
tion law:

0t ~(=1,0) o ~(0, 1)
hyy, ~(2,00 h__~(0,2)

In general we could consider the case:
Sf:J.(b+ d_a, +b 8,a_)d¥ (9.375)

with

a, ~(.,’0) a_ ~(0a.])

(9.376)
b* ~(1-j,0) b ~(0,1—j)
Our tactics now will be to couple to (9.375) an external gravitational
field not in the conformal gauge, in which the effective action is
nonpropagating, but in the gauge in which we have only one compon-
ent of the gravition, say g, ,. As we have already seen, this leads to a
finite expression containing g, , which can be generalized to a covar-
iant expression.
First of all, we have to find an expression for the covariant derivative
in this gauge. The metric has the form:

ds*=d¢* d&™ +g. . (dET)
=di7(d¢™ + g4, dEY) 9.377)
It is easy now to find the coupling of the g, . -field to the a and b-fields,

or, in other words, the energy-momentum tensor of the (a, b)-system.
The idea is to find the change of the action under the coordinate
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transformations:
Er &t
(9.378)
S A (S
The fields are transformed as:
af-
a (€ E) - (é ) A EE)
2f\1-J (9.379)
b_(¢7,¢7)- (é ) b_(E,f7(¢%,¢))

The new action (or better to say the “minus” part of it) changes to

O\ forN
5= jdé df( ) <¥> BE*, 1)

O (O o+ -+
5 (a¢ ) aE fTEE)

de df"hE ST v allt f7) (9.380)

af+
0 of~
Jdé 47~ (ba)j- aé+log<aé )

Jdﬁ df” < 5 )5+f_
Now let us take

fT=8 46 (878) (9.381)
with infinitesimal ¢, . We get:
§—§= f((b d_a) —jo_(ba))d, e,
From here we can read off the energy-momentum tensor which couples

t0 g !

= (b0_a) — jo_(ba) = (1 — j)bd_a + jad_b (9.382)
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Now we can compute the second order response to the field g, .. It is
described by the diagram:

qg+k
b a
qQ, =T____(g)
k

1 2
Sees = _5 JH——.— @9+ (DG (—9q)

d*q
(2m)?

W= T ) Tk, +iesignk Xk, + q. +iesign(k +q)_)
_1+6G—1 ¢
LS RS (9.383)

(we use here the correlations:
(a?(qb! N —q))> = (q, +iesigng_)™")

The arguments, identical to those in section (9.6) now give the following
result for the determinants:

logdet | —p/~té_(p77 ¢

L6 =D (1, 5 N\
= — T j(i(caq’) + u e“’) d é (9384)
p=¢e’

This result is equivalent to the computation of the central charge for the
Virasoro algebra of the energy-momentum tensor (9.381) which is just
equal to:

=+ (1+6j(—1)-2 (9.385)

where + refers to commuting or anticommuting fields (recall, that
fermion loops must be supplied with a minus sign). Indeed, the central
charge is just the expectation of two energy-momentum tensors
{T._.T__) which we have computed.

One more step is needed before we come to the physical answer. We
have computed all determinants under the condition that the gravitino
field y = 0. We must now restore dependence on it in det .£;. This can
be done without any further computations, since there is only one
supersymmetric extension of the Liouville action (9.384). In order to
find it we can consider the superfield:

b= +0,x. +0_x_ +0,0_f (9.386)
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and the action:
$ = f(%.% $D ¢ + 2iue®’”) b df, d*¢

0 ;0 (9.387)

which is explicitly supersymmetric. Simple computation gives:

e#2 — @9/2eB ¥y +0.0- [)2

= 21+ 40, 10 + 0.2 +40.0.(/ ~ bxs 1))

sz@ d?¢e?? = szé 7e”(f — 32+ x-) (9.388)

j%9+ 62 _¢ d*e d* = J(%(@go)z - %X+0—X+

— - 0. x- + 3/ d¥
Taking the two terms together and eliminating the f-field by taking the
minimum of the action with respect to it we obtain:

5= f{%(aw)z + 31 + buee + ple?) d¥¢ 9.389)

This action should replace the Liouville one for the case when the
x-field is nonzero. It could have been obtained explicitly by coupling the
gravitino to supercurrents and considering superconformal anomalies.
As we see, this is not needed, since the superconformal extension of the
bosonic part of the action is unique.

Now we are ready to write down the partition function for the
superstring case. Let us find the value for the super-Liouville coupling
constant, or, which is the same, the central charge c. We have:

(=0 =9  (=-1) §=-2
G=h ®=92 (=-bH =1
€ =32 — 15=3(2 - 10)

(here the values of ¢ for { and x are half those in (9.385) because (9.385)
is written for a complex field). So, our final result for the effective action
of a fermionic string, which we obtain by integrating out the x and ¥
fields, is given by:

(9.390)

10-9
S =S (G007 + 420y + duetir + wen i 09D
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As in the bosonic case, this action describes longitudinal motions of the
string. In the critical dimension, 2., = 10, they are absent.

So far, we have been dealing with surfaces of spherical topology
without external lines. As in the bosonic case, in order to obtain
scattering amplitudes, one has to puncture the sphere, and in order to
find corrections to the tree amplitude one has to sum over topologies.
We shall start with the first task, which in the fermionic case has some
unusual features.

9.13 Vertex Operators

In the case of the bosonic string we have punctured its world surface by
introducing factors:

V(x) = Jé(x — x(&)g'? d%¢
Vp) = szc V(O 9.392)
V(§) = e =O(g(e)'?

into the functional integral. Our task now is to find a supersymmetric
generalization of these formulas.

Let us begin with the properties of the x fields. The Green function
for the supersymmetric laplacian 99 is given by:

<£‘4(¢l’ 01)’*\0(627 02))
= —‘:—‘: log (z, — z, — 0,0,Xz, — z, — 0,0,) (9.393)

An easy check of this formula is obtained by using the component
representation: this formula is equivalent to:

o
{xEx1(ER)) = — ﬁlog lzy — 2, 2

0 1
<VIML(§1)'I’v,_(éz) =2

4nz, —z,

8,, 1
W& WR(ED)) = — 2

dn z, — 2,

S UEDD = 8(Ey — £2),,

(9.394)
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The reason why the particular combination 2,, = z; — z, — 6,0, has
appeared in (9.393) is also simple: it is invariant under supersymmetry:
0%,, = 0z, — 0z, — 60,0, + 86,6, =0
0z, = — 0,0z, = — €0,,60, = 60, =¢)

Let us now find the expression for the supersymmetric vertex operator,
beginning with the simplest case of the critical dimension D = 10. In
this case, according to the preceeding section we expect superconformal

invariance of the theory, i.e. the fields ¢ and y should not participate on
the mass shell. The natural guess for V(p) will be:

Vip) = szé d20 :etr #6.0;
= szff szeze‘”"{l —ip-y,0
—ip-Wsb — 00[(p- )P W) — ip-f1}: (9.395)

Setting f = 0 and integrating on 0 we obtain:
Vip) = Idzﬁ 1P, PV, R)EP O (9.396)

As we have noted in the bosonic case, the dimension of :eP"*: is equal to
p*. Since the free fermions, Y, ; and y,, g, have dimension 1/2, we obtain
the following mass shell condition:

A=p*+1=2 p*=1 (9.397)

So, the vertex (9.396) still describes a tachyon, but a “better” one than
in the bosonic case (which has p? = 2). If we consider an open string,
which amounts to taking only the “left” part of all fields and coordin-
ates, we get:

VopealP) = jdz P W (2)e’? X
fel (9.398)
We can be confident that the “old” bosonic tachyon will not appear in
collisions of the new ones, because :¢'?"*: is not supersymmetric. Still it

is instructive to see this fact explicitly. Let us consider the operator
product:

P (2D HD sk (0)eie =)

= 2p k-1 ,,i(p+k) x(0), (9399)
=(p-k)z € t e
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It seems at first that the bosonic tachyon has appeared, since we have
obtained its vertex operator :¢'?'*: on the r.h.s. of (9.399). However, its
appearance is illusory. Indeed, the fusion of two tachyons of two
fermionic strings (9.398) with p? = 1/2 would produce a bosonic
tachyon with p? =1, according to (9.399), if p?> =k%=1/2 and
(p + k)? = 1. That implies that p-k = 0 and hence the residue of the
corresponding pole in all amplitudes is zero. Hence, the true ground
state of the open fermionic string has p? = 1/2.

It is possible in a consistent manner to eliminate even this tachyon.
Let us distinguish vertex operators by their parity under y, > — ¥,
(we are talking about open strings for simplicity). The tachyon state
(9.398) is odd. The fusion of two tachyons will give even states. In order
to find them we have to investigate the next terms in (9.399): the
simplest one will be the supersymmetric extension of the
operator :i0,x,¢'? *: of the bosonic string theory, which describes a
massless vector state of the open string. This extension is easy to find by
using superfields. Let us consider the expression:

Ip) = I dz d6:iD%, e
= j dz B iy, + 09,x,)e® (1 — ip- Wb):

- J dz:(i 8,x, + Y, ¥,)e? = (9.400)

This vertex operator describes a vector massless state again, since the
dimensionality of the integrand is given by:

A=p*+1=1;p2=0 (9.401)

By its construction, our vertex is supersymmetric. It is even under
reflection y, - — . Under fusion of two such particles the tachyon
(9.398) cannot appear because it is odd, and the “bosonic” tachyon
:¢'P"*: cannot appear since it is not supersymmetric. To be more precise,
in the operator product of two operators (9.400), the operator :e'?"*:
does appear, but on mass shell the coefficient in front of it is equal to
Zero, just as happens in (9.399).

We come to the conclusion that the fermionic string when restricted
to the sector even under y-reflection has no tachyons for 2 = 10, and
its ground state is the zero mass vector particle.

In the closed string case the vertex operator is given by a direct
product of two I', from (9.400), one depending on z and the other on Z.
It describes a massless tensor particle, which we discuss a little later.
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Massless vectors or tensors can interact without producing ghosts
(and we know that the ghosts are absent for 2 < 10 either from (9.390)
or from direct counting of states which we have done in the bosonic
case), only if their effective action is gauge invariant, being of Yang-
Mills type for vectors and Einstein’s for tensors. We shall postpone
explicit computation of this effective action, and point out here only one
manifestation of the gauge structure. In the operator product:

TP, 2)T(k,0) ~ 2221t (p, k)T, (p + k,0) (9.402)

an explicit computation shows that the quantity ¢, ,(p, k) coincides
with the triple Yang-Mills vertex. This is an important observation,
since we already know that structure constants in operator products are
just the residues of the poles in scattering amplitudes. A little later we
shall describe an efficient method for their computation.

Up to now, we have spoken of the fermionic string but, clearly, all
particles obtained from the vertex operators (9.400) are bosons.

It is most important that apart from them, the spectrum of the theory
contains fermions appearing as soliton excitations of the string. In
terms of functional integrals, solitons appear owing to special boundary
conditions applied on the fields. In our case, anomalous boundary
conditions have the following meaning. We are dealing with the world
sheet which is a sphere with omitted points, where the external particles
are injected. On such a punctured sphere we are free to chose different
spinor structures for the fields ¢ ,; that is we can consider double-valued
fields, which change sign when going round the injection point.

In order to understand why nontrivial spinor structures are related to
space-time fermions, we have to take a step back and return to the case
of particles. Let us recall, that we described spinors by the anti-
commuting fields , with the action:

S= Ju//,,l]/“ dr (9.403)

Why does this action describe a space-time spinor (while the variables
Y, are vectors)? To answer this question let us pass to the Hamiltonian
formalism. Assuming that the dimensionality of space-time is even we
can choose half of ¥, to be coordinates, while the other half are
conjugate momenta. So, let us introduce complex fields:

¢a=¢a+i¢a+9/2 a=l,~~-,9/2

Then the action takes the form:

©
S= J¢; g@, dt (9.404)
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This is the standard form describing 2/2 harmonic oscillators. The
Hamiltonian in this case is equal to zero, while the states are formed by
the “vacuum”

$,l0> =0 (9.405)
together with the “excited” states:
> =da 7,10 (9.406)
Since our operators are anticommuting,
[Gar #5 1s = 0un b2 =(4) =0 (9.407)

the number of independent states in (9.406) is 22/? (each a can be either
empty or occupied). All these states have zero energy and describe a
single particle with 2%/2 states. This is just the degeneracy of the spinor
representation of the O(2) group, and in fact, what we have done is just
to construct such a representation. Of course, to complete the job, one
has to construct the O(2) generators out of ¢,, and show that the
representation is nondegenerate. This is not hard, but we stop here,
since our task was just to see the connection between y, and spinors.

Returning to the string case, let us look at the y, part of the string
action on a cylinder:

o .0
§= J(d’uL(E —1 (%)W,‘_L
+ ¥, R(% +1i a%)%,g) drde (9.408)

Two spinor structures correspond to ¥, being periodic or anti-periodic
as we go around the cylinder. In the periodic case (which is called the
Ramond sector) ¢, has a s-independent component, so that the action
(9.408) is reduced (for each y, ; and ¥, g) to (9.403). We see that as we
integrate over the periodic case, the ground state of the string is a space-
time spinor. In the antiperiodic case we still have the states (9.406), but
now the Hamiltonian is nonzero (due to iy - 3,¥) and these states are
not degenerate. Actually, in this case the ground state is bosonic (in the
space-time sense).

Now we have to return to our punctured sphere and the operator
algebra. This is achieved by a conformal transformation which makes
an annulus out of the cylinder. Then, the limit of an infinitely long
cylinder will correspond to the limit, when the internal circle of the
annulus shrinks to a point while the external one goes to infinity. That
is, we shall get a sphere with an omitted point. Our task is to find what
happens to different spinor structures under this transformation.
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In order to solve this problem we notice that the conformal map we
are talking about is just

w=logz=r1+io

dw\ 12
Y,.(2) = <$> ¥, (w(2))
- (9.409)
dw\1/2 J—
Y, r(2) = (a) ¥, g(W(2)

(here z belongs to the punctured sphere and w to the cylinder; we have
recalled that the conformal spin of ¥, is 1/2).

The square root in (9.409) is rather important. It implies that y/,
periodic on the cylinder (Ramond sector) becomes antiperiodic as we
go to the z-plane. Vice versa, fields ¢, which were antiperiodic on the
cylinder (Neveu-Schwarz sector) transform into fields, which are
univalued in the z-plane.

So, we arrive at the following rule. When we integrate over fields
which are univalued in the whole z-plane, we describe bosonic states of
the string which comprise what is called the Neveu-Schwarz sector. If
we permit ¥ -fields, which change sign after going round the injection
point, then we have injected a space-time fermion.

How do we perform efficiently the functional integrals for non-trivial
spinor structures? In the case of point singularities which we are
discussing, the answer to this question is through the introduction of
the so-called spin operators.

Since we know that the ground state in the Ramond sector is a space-
time spinor, we expect that it corresponds to an operator S,(z, Z), where
a=1,---,9/2 s the spinor index. An operator product with i (z) must
be given by:

V(DSL0) = (22)712(7,)0S,(0) + -+ (9:410)

The factor z~ 2 reflects the non-trivial spinor structure at z =0

induced by 5,(0) and the coefficients (y,),, are just Z-dimensional
y-matrices. The fermionic state |a) of the string (a being a spinor index)
is given by:

la) = 5,0)|0> (9.411)

These spin operators have a very transparent physical meaning. Let us
recall that free Majorana fermions in two dimensions are equivalent to
the two dimensional Ising model, in the sense that their partition
functions are equal. A NRS-string can be imagined as a bosonic one,
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each piece of which carries a Z-dimensional spin operator. Now, by a
Jordan-Wigner transformation this system is transformed into the
usual Majorana fermions on the world surface. On the other hand, since
each piece of the string carries spin 1/2, we can have two sectors,
depending on whether we have an even or an odd number of spins.
These are the Neveu-Schwarz and Ramond sectors respectively.

The spin operator, which interchanges these two sectors, can be
expressed by Jordan-Wigner transformations through the fermionic
field y,.. This representation, involving exponents of bi-linears of ¥, is
rather clumsy, but fortunately is not needed since we shall show how to
compute S,-correlations directly.

Consider first one fermionic field ¥ and let us compute the correla-
tion function:

H = Y2 W(2)S(X)S()) (9.412)

(This is precisely the case of the Ising model.)

It appears that the analytic properties of % are sufficient for its
determination.

We know from (9.410) that it is an analytic function of z, and z,,
which has square root branch points at z, , = x, y. Also because of the
operator product relation

Y Wz =z + - (9.413)
it must have a simple pole as z, — z,. Hence, we can write:

P(z,,z5,x, )

X =
(zy — 2){(zy — XNz, — YNz, — XNz, — Y)}Uz

(9.414)

where P must be a polynomial in z, and z,. This polynomial must be
arranged so that the residue at the pole z, = z, is independent of z,
(because of the unit operator in (9.413). Hence:

P(zy, 2y, x, ) = Q(x, ¥z, — xK2zy — )) (9415)
Also, because of
S()S(y) > |x — y| ™44 + - (9.416)
we have the requirement:

P(zy, 25, %, ¥) = (2, — X}z, — X)

x—y
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The only possible form for the correlation function is therefore:

1 (2 = XNzz = ) + (21 — yN2z2 — %) 1

N = —
2z, — 2){(Gy — XNz, — YNz, — N2z — W} [x —

S 040

Now we are ready to find A.
The idea is the following. We first use the operator product

YEW(z) = 25T+ f2,T(z) + (9.418)

2120

where the constant f can be expressed through the dimensionality of ¥,
ie. 1/2. To find f we can substitute (9.418) into:

YWY O () (v)>
1 1 1 1 1 1
= — + _— -
Zu—v Z—uv Z—vu
- 1 1 u—v 0(s2
Z:O pym— +z )y + 0(z%) (9.419)

The first term is the contribution of the unit operator while the second
one comes from the energy-momentum tensor. The conformal Ward
identity fixes the normalization of T:

lu—vl

{TOW W) = 277 3 (9.420)
We see that in (9.418) f = 2. Of course, this could have been foreseen,
because we are dealing with free fermions for which

T(z) = —3yo,¢¥ (9.421)

and there is nothing more in our derivation than checking this fact. But,
in general, the method of operator products is applicable far beyond
free field situations.

The second step in finding A is to substitute (9.418) into (Y y¥SS).
Expanding (9.417) in z,, we obtain:

1 1

2120 Z12 1% — yl*

242 (x ~ y)? 1

+_
8 (z,— X)Xz, — W x —yi*

(9.422)
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The first term here again comes from the unit operator, while the
second is the energy-momentum contribution. Combining (9.418) and
(9.402) we get:

L (x—yp !
(T @)S(x)S(y)) = 16(z — x)%(z — p)? |x — y|*8

(9.423)

This is compatible with the conformal Ward identity (which, in
particular, says that the residue of the second order pole at z — x is
equal to A) provided that we chose A = 1/16. We see that conformal
algebra indeed determines the dimensionality of the spin operator, as
well as its correlation functions.

There is an important representation for (9.412). Take its y — o0,
x — 0 limit, which can be achieved by a projective transformation. We
obtain:
1z, +2z 1

et T 9.424
2(zy2)' %z, — 2, ( )

{8(o0) (2, )(z,)IS(0)) =

This formula has an interesting interpretation. Namely, since we have
introduced spins at 0 and oo the fields y(z) have become double valued
in the z-plane with a cut from 0 to co. We can expect that they have the
following mode expansion:

1 -3
V@) = 217<¢0 + Y (b2 +b] z")) (9.425)
n=1

and proper anticommutations of ¥ requires
YoVo} =25 =1
{Wo¥o} =205 9.426)
{l7lly b;} = 6'!"!

Let us now compute the correlation function:

1 1 &fnYl _1z+2z, 1
Yz W(z,)) = W{E + X (”) } = 3G, =z, (9.427)

n=1\?1

which is just what we got from (9.412). In the case when spin operators
and the cut are absent, the mode expansion would be

Y(2) = z‘”z[ fj (b,z™" + b} z")] (9.428)
n=1/2

and

1/2 o
(z42,)" n=1/2 \%1 2y —2;

1 © " 1
W)y = —5 (’2> =
as it should be.
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We see that the role of spin operators is to shift us from half-integer
modes in (9.428) to integer ones in (9.425). Moreover, the dimensiona-
lity of the spin operator, A = 1/16 has a natural interpretation as the
change of zero-point energies in the presence of the spin. Indeed, the
following relation is true:

1 o0 ©
A=— —< Yn- Y n)
2 n=1 n=1/2
1 1 1

where we have used the following formula for the regularized sums:

© ® 1
Y (—j- L n=—3jG+D
n=0 n=0

def (9.430)
Y w, = lim) we "

€e=0 n

In the 2 dimensional case the only difference which we encounter is
that we now have the dimensionality of the spin:

A=9/16 (9431)

since all , change their zero-point fluctuations, and also instead of
(9.425) we have:

Y, =2z ”2{%} + Yg+1 "; (b,z7"+ b z")} (9.432)
where y, and y, ., are the usual Dirac matrices.

Using these formulas it is easy to compute correlation functions,
involving two spin operators. Of course the mode expansion method is
inadequate when more spins are involved. In these cases methods based
on operator algebra have to be used. It is not hard to construct any
correlator of spins.

Let us recapitulate. We have started with the supersymmetric (on the
world sheet) action containing x, and ¥, fields. Loosely speaking we
had y-matrices () distributed on the world sheet. We have shown, that
there exist, apart from the ordinary, bosonic sector of such a string,
another, “soliton” sector described by antiperiodic boundary condi-
tions for ¥, at the injection points. As a result, each injection point
where the “soliton” is concentrated can be described by a spin operator,
which is a spinor in space time. This implies that the string has spinorial
excitations, apart from the bosonic ones.
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In principle it is possible to describe this string not by the y, fields,
but by the spin fields S, on the world sheet. In the case of particles this
corresponds to transition from the action (9.317) to (9.335). Unfortuna-
tely, since the S, have anomalous dimension 2/16 they are far from free
fields, and no practically useful description has yet been found. I am
sure it exists, however. The situation is somewhat easier for & = 10,
since then the light-cone gauge is possible and the effective dimensiona-
lity of the spin becomes (2 — 2)/16 = 1/2. In this case, as can be
expected, the spin fields are free and the fermionic string can be
described by the noncovariant Green-Schwarz action.

In the covariant formalism we have to construct the vertex operator
for emission of a space-time fermion. It must be something like

V, o~ S(Eei® =@ (9.433)

where a is a spinor index. However, (9.433) is not good by itself, since it
does not have the required dimension 1 for the vertex. The reason is
that, while S, has changed the spinor structure for the y-fields, it is
necessary to do the same job for the gravitino and ghost fields, which
enter into the functional integral. There are formal constructions for
completing this task, but an appealing derivation from first principles is
still lacking. Still we can compute, if we like, amplitudes containing two
fermions. For this we use bosonic emission vertices

Voo =10, x, + p,¥, ¥ )e? *:

and presume that ¥, has the mode decomposition (9.432). This just
means that we have spin operators at 0 and o and examine the
scattering of bosons (in arbitrary number) by one fermion. For several
fermions one has either to use the algebraic construction for the
fermionic vertex alluded to above or to pass to the light-cone gauge.
Hopefully, the situation will improve soon.

So in the critical dimension (2 = 10) the fermionic string has the
following properties. Its gound state is massless (being vector for the
open string case and tensor for the closed one) and supersymmetric in
the space-time sense, because the number of states in the Ramond
sector is equal to that in the Neveu-Schwarz sector.

This point must be clarified, since certain projections in both sectors
are needed to reach this conclusion. We have already mentioned them
in passing, but now we will discuss their meaning.

When we worked in the bosonic sector, without spin operators, we
considered only vertices which contain an even number of ¥, or in
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other words, we projected onto the sector even under y, - —y,. This
projection eliminated the tachyon with its vertex :(p,z,)e'? ' *:; also it is
clearly self-consistent. But what is its true origin?

Let us discuss first, how to make this projection in terms of functional
integrals. If we are interested in the partition function:

Z =Tre #ins = ZF. 78 = J@\II exp(—'[w - do dt)~Z" (9.434)

(where Hyg is the Neveu-Schwarz hamiltonian), then the integral in
(9.434) must be formulated on a torus, with time periodicity f and space
periodicity 2n. The usual boundary conditions will be antiperiodic in
both directions; we have already explained that space antiperiodicity
implies consideration of NS-excitations, while the time antiperiodicity
is the standard thing needed for the description of the partition
functions of fermions. We can write symbolically:

AR é) - (9.435)

Let us consider now the projection. It is easy to check that taking
periodic fermions in the time direction amounts to computing
Tr (—1)f exp(—BH), where F is the fermion number. Hence, the
projection onto even F will be achieved if we take:

Z= @ + @ (9.436)
. .

Adding the Ramond sector, we arrive at the simple rule. In order to
describe the projected NSR model we have to sum over all possible spin
structures. This gives the supersymmetric string theory. Presumably, for
higher genus surfaces the prescription must be the same.

We do not have a good derivation of this fact. However, some
explanation can be given. Let us show that only under the above
prescription is it possible to treat the system in terms of spin operators.
For that matter, take an Ising model on a surface with high genus. We
know that usually this model can be replaced by free fermions. Is this
still true? In fermionization of Ising spins a crucial role is played by
Kramers-Wannier duality (see the next chapter). Fermionic lines are
essentially the boundaries of drops containing reversed spins. However,
if the surface is homologically nontrivial, there are closed paths which
do not form boundaries of anything. We must ensure that fermionic
trajectories corresponding to these paths do not contribute. The way to
achieve this is just to sum over spin structures, since then each
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homologically nontrivial path will be cancelled by one of the opposite
spin structure.

We conclude, that the global introduction of spin operators requires
summation over spin structures. Space-time sypersymmetry must also
be explainable along the same lines, but it is not at the moment clear
how to do it.



CHAPTER 10
Attempt at a Synthesis

DOI: 10.1201/9780203755082-10

What is the use of string theories? What is their connection with the
physical problems described in the other chapters? There is no final
answer to these questions. In this chapter I shall describe reasons to
believe that string theories are important and perhaps present the
master-key to the most fundamental problems.

Three kinds of questions will be in the centre of our attention. We
begin with the project of grand unification on the string basis, then
describe the 3-D Ising model and conclude with 4-D chromodynamics.

10.1 Long Wave Oscillations of Strings in Critical Dimensions

We have seen in the previous chapter that string theories in critical
dimension contain massless spin 2 particles in their spectrum (and their
superpartners for superstrings). Since the only consistent interaction for
these particles is the gravitational one, these string theories must
contain within themselves a theory of gravity. While in the low energy
limit this theory will necessarily be Einstein-like, for high energies it will
have good regular behaviour because strings are extended objects.

The basic idea of unified theories is to presume that all our low-
energy world arises from massless string excitations which include
super-gravitons, gauge fields and matter fields. All massive modes of
strings are presumed to be very heavy (of the order of the Planck mass),
and therefore unobservable.

Let us explain how this idea can be implemented.

First of all, why and when do we have massless excitations in the
string theory? To find the partial answer to this question, let us recall
that an ordinary string has the action

$= J g'%g® d,x 8, x d%¢ (10.1)

253
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which was obtained from the Nambu action

S= j (det 8, x 8,x)1/% d%¢

= J {g"? + A%(0,x - 0px — gup)} d7¢ (10.2)

by presuming condensation of the Lagrange multiplier, A°®:
A%y = const. g'/2g®® (10.3)

Therefore, in the phase described by (10.3) we have to interpret g, in
(10.1) as an induced metric J,x*J,x.

Let us consider a scale transformation in space-time: x — Ax. It is
equivalent to a Weyl transformation on the world sheet:

9a(©) — A28 (10.4)

We have shown in the previous chapter that if the dimension 2 is
critical (2 = 26 for the bosonic case and 2 = 10 for the fermionic one)
then the Liouville mode decouples and the theory is Weyl invariant.

The only way to ensure scale invariance in space-time is to have a
massless dilaton in the string spectrum. It is indeed there. Perhaps,
along the same lines one can explain the graviton as well.

With all these massless modes at hand, one has to be able to compute
their effective action in the low energy approximation. In principle,
since we know the rules for computing the S-matrix through the
averages of vertex operators it is straightforward to go to the low
energy limit in these formulas. However, this direct way is very
cumbersome and not very illuminating. There exists an interesting
alternative which we describe now.

Let us consider the string theory in a curved background:

§S= % j Tw((E))g'2g™ () 0,x* B, x" d*¢ (10.5)

where 7,,(x) is some fixed metric tensor of the 2-dimensional space. We
are going to show, that the conditions for conformal invariance of the
action (10.5) give equations for the y,, (and some other fields) which
coincide precisely with the ones obtained from the S-matrix. Therefore,
the problem of the low energy limit reduces to the computation of the
p-functions for (10.5) treated as a nonlinear ¢-model.

Let us assume first, that the world sheet is flat, g, = d,,. Then, the
action

S= %J V(X)) 0, x* Dy x* d2E (10.6)
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is renormalizable in the following sense. Suppose, that we integrate over
fast components of the x-field, with wave vectors lying between A and
A. As we will show now, the result will again be an action of the form
(10.6) but with a renormalized metric tensor 7,,(x). So, the set of all
possible y,,(x) plays the role of the coupling constants in more ordinary
theories. In particular the nonlinear o-models, considered in the
beginning of the book, correspond to the special case when y,,(x) are
taken to have constant curvature (this constraint is reproduced under
renormalization). The coupling constants which we have introduced
before are nothing but the values of these constant curvatures.

The computation begins, as usual, with the decomposition into fast y
and slow x, parts of the field:

x(&) = x0() + ¥(%) (10.7)
Substituting (10.7) into (10.6) we obtain:
S(x) = S(xo) + Slxo, ) (10.8)

where S, (x,, ») is quadratic in y. Linear terms in y are absent, because
they are of the form:

S
Si(x, ) = J‘.V —d¥%¢ (10.9)

ox,

and while 8S/dx, contains wave vectors <A, wave vectors of y lie in the
range from A to A. Hence, with our accuracy, the integral (10.9) is zero.
As far as S;; is concerned it has the form:

Sy = _[ {37,(x0(8)) Oy* By

+ 6,'}"”(-‘0) anx‘(‘)ya 6ayv (1010)
+ % aa aﬂy‘w(xo) 6,,x5 6ax6ydyﬂ} dzé

In principle it is not hard to compute logarithmic corrections directly
from (10.10). However, since the expected answer must be covariant in
x-space, it is appropriate to recast (10.10) into an explicitly covariant
form. Again, there is a “brute force” way of doing it, but it is more
reasonable to perform the computations by using a slightly advanced
notation.

Let us notice first that if

(4,B) = f 42 7,,(x(D)A“(X(E)B"(x(¢)) (10.11)
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then its variation under x(&) - x(&) + (&) is given by:
6(A,B) = (V,A,B) + (4,V,B) (10.12)

where we have introduced a covariant derivative in the y-direction:
u A o4 “ gP
(V, Ay = (55 + T, 4 (10.13)

Using these relations, we compute first the first variation, S; of the
action S:

S, = (v,, V,0,)

(10.14)
vh =g, x*
Owing to the symmetry of I';, (absence of torsion) we have:
(Vo) = (Vy) =0, + %, 0,x*y* (10.15)

Varying once more, we find:
Sy = (v, Vo)
= (Vo) Voy) + (0, V,V,9)
= (Vay’ Va.V) + (Ua7 [V}H Va]y)

(where we have set to zero the Vv, term, which is the classical equation
of motion).
The commutator of two covariant derivatives is the curvature tensor R:

(va’ [Vy’ Va].V) = (Da, R(ys va).Y)

L] o (1016)
=jR[¢l]-[ﬂa]y 9, x*y? 8,x" d%¢&

So, going back to the usual notation, we have transformed (10.10) into
the form:

Sll = f%(?uv(xO(é))Vay”bev

+ Rauﬂv(xo(é))yayﬂ 3,4 0, x8)g"g'/? d2¢
Vo = 0" + (0,),y"

(wa)c = r‘v‘l anxg

(10.17)

(where we have reintroduced the omitted metric tensor of the world
sheet).

Notice, that in the case when y,, describes a sphere, (10.17) is
precisely (2.40) derived for the n-field.
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It is straightforward now to compute the cut-off dependence of the
one loop partition function.

First of all, the logarithmic correction to the effective action arise
from the second term in (10.17):

S& = J%R,,wv(xo(c)) 0,%8 0yxpg'2g™ (y*yP> d3¢

A
d%k

= J%Ruv(xo(é)) 0,X% 0px39" g™ dzfj W (10.18)

x

As a result, we have renormalization of y,,(x) in the form:

1 A
6‘y“v(x) = E log K Ruv[’V] (1019)

If the world sheet were flat, there would have been no other one loop
divergences. Counter-terms dependent on w, do not arise, since they
can appear only through

$2, = (3,00, — 0,0, + [,, ©,])

which is a dimension 4 operator.

However, in the case of a curved world sheet there is another type of
counter-term which must be taken into account (as noticed by Fradkin
and Tseytlin). It is clear, that we have a dimension 2 object composed of
the external field g,,—the curvature of the world sheet, R(£). So we can
expect counter terms, which do not depend on the derivatives of x, but
have the form:

§= J¢(x('f))R(€)g”2 d?¢ (10.20)

This kind of the logarithmic divergence already appears in flat space,
Vv = O, since the determinant of the Laplacian contains the term:

Trlog A ~ log A‘[Rg”2 d3¢ (10.21)

When we switch on y,, the coefficient in (10.21) gets modified. This
modification begins at the two loop order, for which we have to expand
the action (10.17) further. To give an idea of what happens, let us look
at the term (one of many) which appears in the expansion:

Sy ~ jy” 297 Ryup(Xo(E))Y*Y’ 0, 8y y” d*¢ (10.22)
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Averaging this term in y and using the formulas:
1
Yy = yaﬂ(xo(é))<ﬁ log A + finite part)

0.y 0,9") = v (xo(EN[k,A* + ky e7° 3%0()]) (10.23)
(gab = eq’éab)

we obtain a logarithmically divergent contribution to the effective
action:

W ~ log AJ R(xo(E)Ng(&)'1? d2¢ (10.24)

Quadratic divergence renormalizes the cosmological constant and does
not concern the massless sector.

As a result of these computations one has to add to (10.19) a
renormalization equation for the ¢-field, since we have shown that this
term is needed for the overall renormalizability. We have in the lowest
order (2 = 26):

1 A
5Yuv = ﬂ IOg K (Ruv[)}] + Cvuvy(b)
3¢ = (c,R(x) + ¢,(V,¢p(x))?
A
+¢3V2¢(x)) log % (10.25)

The origin of the ¢-dependent terms is simple: as we expand (10.20) in
y, we get:

Su = J%(V,Va¢(xo(€)))R(€)y"y"g” 2d%¢

+ J(V1¢(xo(€)))R(é)f(é)g" 1d¥% (10.26)

Using (10.23) and taking the second term in the second order we get the
structure (10.25).

It is not hard to compute all the coefficients, after which one obtains
the renormalization group equations:

. 0V 1
Vv = FlogA - x R,(x) -V, V., ¢
) (10.27,
P 2 __ g2 _
¢ =(Vd) o V¢ = R(x)
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These equations can be written in the form:

=8n 68"4’6 o
10.28
.1, er (1029
¢ =c-et
8n o
r=J 8""[ Vi — (V) + 1¢ zR(y):ly”z d?6x
T

A remarkable fact which we are now going to discuss is that this
effective action I is just the one which could be obtained by taking the
low energy limit of the string S-matrix. Moreover, if we proceed to
higher terms in the S-functions they would correspond to the higher
terms of the low energy expansion.

In order to clarify this amazing connection between the properties of
the world sheet of the string and the space-time into which it is
embedded, let us consider this problem in a slightly different context.

Let us suppose that we have a string, on the world sheet of which
“lives” some conformal field theory. Let us assume also, that in the set
of all operators of this conformal field theory there are operators {u,(¢)}
with dimension two. If the resulting theory has zero total central charge
(after summing contributions from the coordinate of the string, the
ghosts and the extra conformal theory), the vertex operators of the form

o = u,(£) PO (10.29)

describe scalar massless particles. We are going to demonstrate that the
effective action for these particles is related to the f-functions.
Let us look at the perturbed lagrangian:

L =Lo— ) Al (10.30)

The operators u, are supposed to satisfy the operator product expan-
sion:

u,(OHu,(0) = ‘2 Som(0) + less singular terms (10.31)

ICI“ e

(where f,,, are the symmetric structure constants of the operator
algebra which define the normalization of the three-point functions:

f;lml
18y = &1718, — &1718 — &4

U8 Jum(E2IulE3)) = E ) (1032)
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Now, let us examine the perturbation theory for the partition function:
Z= <exp j Y Ay up(€) d26> (10.33)

When we expand this expression in A we get different products of
u-operators, integrated over &-space. These integrals are divergent
because of the singularities in the operator product (10.31). Therefore,
we have to introduce a cut-off. The renormalization groups tells us how
we should change A, under a given change of the cut-off, so that Z
remains unchanged.

In order to find these conditions, we shall first of all discard all
quadratic divergences, coming from the first term in (10.31). Formal
justification of this lies in the fact that these divergences are absent if we
use a dimensional regularization scheme. The real reason is that they
are purely short-distance effect, contributing to Z but not to any
connected Green function. On the contrary, logarithmic divergences,
coming from the second term in (10.31) are physically important and
we are now going to analyse them. Let us take the Nth term in the
expansion for Z:

z00 = f G2, A (E1) -t EI Vo g (1034)

As, say, £; — &, this integral becomes divergent. Using (10.31) we find:

ZM > am Ay Any 27 Iog(%)
x J d*,... dzéN(“m(éZ)“n;(é}) cety (EN)D

+ finite terms (10.35)

where a is an ultraviolet cut-off. We derive from (10.35) that the change
in a: a — d can be compensated by a change of 4, if we choose:

Ao d = A+ fomAnk2R Iog(g) (10.36)

In other words we have computed (approximately), how A, must
depend on a so as to keep Z a-independent. The answer is contained in
the Gell-Mann-Low equation:

a, ;
dantog(/a) = P = ~JamAnk + O (10.37)
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We see from this formula that the g-function can be expressed in terms
of the structure constants of the operator algebra. In higher orders in 4
we would need structure constants of operator products involving
several u-operators.

Now let us return to the string theory. Scattering amplitudes in the
critical dimensionality are constructed out of simple vertex operators. If
a typical string resonance is described by the vertex operator V,(¢),
where p is the momentum, then on mass shell this operator has
dimension 2 and the scattering amplitude is given by:

APy, PN) = f d%¢, ...V, (&) .. Y (D (10.38)

This is almost the same expression as (10.34). The main difference is
that the short distance singularities governed by the operator product
expansion reveal themselves in the form of poles of & instead of
logarithmic divergences. The residues of these poles are precisely the
same structure constants which determine the p-functions. Let us
consider the effective action for these massless particles, I'(¢, ..., ¢,),
where {¢,} are the fields corresponding to them. We presume that {¢,}
are space-time independent, so that the particles carry zero momentum.
The expansion of I" in ¢ starts with the cubic term (since the quadratic
mass terms are equal to zero):

~T({¢}]) = $,0ndKVEOWV )V P(0)) + -+
= fomi®a®ufi + 0(8Y) (10.39)

We have recalled in the derivation of this formula what was always
implicitly assumed in the Koba-Nielsen integrals, that three integra-
tions out of N are consumed by factoring out the SL(2, C) group. So the
three point function does not have any integration at all.

We see from this formula that to this order the S-function is
connected with the effective action:t

or

and, therefore, the condition for stability 0I'/d¢, = 0 coincides with the
condition of conformal invariance 8,(¢) = 0.

+ Further conclusions arose in discussions with A. Zamolodchikov and partially use
his results.
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What happens in the next order? The effective action has the form:
_r({d’}) = j;lml¢n¢m¢l
+ ¢n¢m¢l¢k{£p'j d? C(u..(o)“m(l)“:(oo)“k(ﬁ)>} +0(¢%)  (1040)

where the symbol fp. means the finite part of the logarithmically
divergent integral. Why have we taken it? The reason is that the four
point function contains a pole term (which looks like a logarithmic
divergence in (10.40)) and a contact term produced by the exchange of
massive states. In the effective action the pole term must be omitted by
definition (and generated back when solving the equations of motion).
Thus we have (10.40), and analogous formulas to all orders in ¢.

In the fourth order it is easy to check that the conditions for
conformal invariance f, =0 again coincide with the equations of
motion 0I'/d¢, = 0. It seems very likely that this is true to all orders.
Indeed, the B-function is defined as the coefficient before the first power
of the logarithm in the expansion of the renormalized ¢,. As we have
seen from the previous discussion, renormalization in the order N is
obtained by replacing the N operators u(¢) in Z in (10.34) by a single
one, using the operator algebra:

U, (§1)... 4 (0) = C7\ M&psees En-1)un(0) (1041)

&~ 0

The renormalization of ¢™ is given by:

Som = fd’él...d’éN_,C,':‘l_”,,N(él,...,éN_,)d)'”...d)"" (10.42)

This integral contains multiple logarithmic divergences, appearing
because the fusion of any two ¢, and &, creates a factor |&,,| ™2 If we
subtract all these terms, then the only divergence comes from the
overall scale integration. This is by definition the p-function. (In
dimensional regularization we have to separate the first order pole from
(10.42).)

Now, let us compare this expression with 0I'/d¢™:

or

“am LY ¢""f-p-J|R|‘<um(R)un,(1)un(0)

X Uy (£3). .. upy (E3)) 4785 A2y Ipg (10.43)
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In this integral we can at first consider all |£;| < R. Then we can apply
the operator product expansion (10.41) and get:

J Clu(RYtty (D1 (0) ... 11, (E)) d7E ... A2

~ J~Cf,lm,m(1, 0,&5,..., En) d2E5 ... d2E N U (Ru(0)) .  (10.44)

The finite part of the first factor in this formula is precisely equal to the
coefficient of the first power of the logarithm in (10.42), i.e. to the §-
function. The second factor would be proportional to J,, if it had not
been for the contributions of £; ~ R in (10.44). These contributions lead
to

1 R
U RYU0)) o = R[* {gml(¢) + A,(¢) log % + } (10.45)

Separating the finite part we obtain the desired relation:

aaﬂ? = g $)B'(¢) (10.46)
¢

from which it follows that the equations of motion are equivalent to the
condition of conformal invariance. We have not given a complete proof
of these formulas (for the reason that it has not been completed) but it
seems not too difficult to obtain this proof along the lines sketched
above.

The meaning of these results is quite transparent. They imply that if
the conformal field theory, which lives on the world sheet is unstable
under perturbations, then the string theory is unstable under condensa-
tion of the fields corresponding to these perturbations. If the two-
dimensional theory tends to a fixed point, defined by "(¢) = 0, then the
original string theory will tend (after condensation of the fields) to a
new string theory, with a spectrum defined by the dimensionalities of
the operators at the fixed point. Stability in the sense of the renormali-
zation group turns out to be stability in the sense of the mass spectrum.
In particular, the mass matrix given by the second derivatives of I,
according to (10.46) coincides with the matrix of anomalous dimen-
sions, given by derivatives of §, as it should be.

The only question which we have not settled yet is the central charge
of the resulting theory.

To investigate this problem let us introduce S(¢) the trace of the
energy-momentum tensor, and consider the pair correlation function in
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momentum space, {S(k)S(—k)). This defines the reaction of the system
to a weak external gravitational field in the conformal gauge. In the
purely conformal theory this reaction is given by the Liouville action,
while in a renormalizable field theory we have:

(S(K)S(—K))y = C(p'(K), ..., P"(K)k? = C(k)k? (10.47)

where we have introduced running (along the renormalization group
trajectories) coupling constants. On the other hand, since a change of
the cut-off is coupled to S(¢) and owing to renormalizability it can be
compensated by a change of couplings, we have the well-known
identity:

a m
50 = % 5o e = 5 258 (1048)
If we recall that:
OBy = 22 ..

- (10.49)
<um(k)un(—k)> = gmn(¢) m <10g ) + -

we find that the term proportional to the first power of the logarithm in
C(k) is given by:

C(k?) = C = g ®IB™($)B"($)2n 10g i (10.50)
On the other hand, from (10.47):

C(k?) = C(¢*'(k)...¢"(k))
~ C<d>l — 2npY(¢) log%,..)

ac A
~ C(¢)— B — 54” 2n logI Xl (10.51)
Therefore, we get:
ac  ar
B"( Froa ¢,> =0 (10.52)

From this equation it follows, that along the renormalization group
trajectory we have:

C(k?) = c + T(p'(k)... " (k) (10.53)
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We see from this formula, that if the perturbation drives the system to a
new fixed point, the central charge C(k?) tends to some new constant
value. Incidentally, since the system relaxes towards smaller value of the
effective action I', this new central charge must be smaller than the
original one (Zamolodchikov theorem).

The situation is rather amusing. Suppose that we start from a string
theory in the critical dimension. Let us assume also, that there are
massless modes which tend to condense, leading us to a new string
theory. We see, that generically this new theory will have a noncritical
central charge. The implication is that the Liouville field, originally
absent, must somehow appear. The only exception to this rule is the
case when all g-functions are identically zero.

By the way, what goes wrong if we consider formally the dual
amplitudes for noncritical central charge without the Liouville mode?
The answer to this question is that nothing will be wrong at the tree
level (provided that C is less than critical—there will be ghosts
otherwise). However, as we consider unitarity corrections to the
amplitudes, or higher topologies, then we encounter unphysical
singularities in momentum space.

So, we have traced the connection between the f-functions and the
effective actions for the massless modes of the strings. Applying this
conclusion to the case of the s-model with the metric y,,(x) and the
dilaton ¢(x), we see that the low energy expansion of the S-matrix
elements can be obtained by the loop expansion of the f-functions.
Moreover, we see that the central charge is given by:

Cn=92—26+ I'(y,(x), P(x))
S= fF(vuv(x), d(x)Xdet y)V/? d?x

(here S is the action which generates the S-matrix) and, according to
previous formulas, the fields which minimize S have the property:

I'(yi(x), ¢°'(x)) = const. < 0

Let us explain now the qualitative origin of these results. We have
considered a string in the external fields and then minimized its effective
action. This seems to be a bizzare procedure. The true meaning of it is
the following. The string contains interacting massless modes. Let us
suppose that they tend to form nonzero condensates. Then the picture
of the random world-surface can be viewed as something like a sphere
on which branching polymers, consisting of the propagators of these
massless modes, grow. What we have really done, has been to prescribe
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some amplitude for each plant and to define it self-consistently. We can
say that the string is floating in its own condensate.

In principle there are corrections to the effective action, coming from
higher topologies of the world sheet. Their structure has at this time not
yet been investigated.

10.2 Possible Applications of Critical Strings

A unique property of the critical strings is that they describe gravitons.
Let us discuss possible ways to utilize this fact. First of all, the bosonic
strings, which we discussed in the previous section, are not totally
consistent, since they contain tachyons. This flaw is absent in the case of
fermionic strings, provided that we sum over spin structures on the
world sheet (meaning, as we showed in the previous chapter, that we
include space-time fermions into the spectrum).

According to the ideas of Sherk and Schwarz, such 2 = 10 Fermi-
strings can describe our world; provided that we compactify somehow 6
out of the 10 dimensions.

In this section we shall briefly describe the picture of the world which
arises in this way.

We begin from the 2 = 10 NSR string. As we know, it does not
contain a tachyon and its ground states are massless. These ground
states contain gravitons, dilatons, antisymmetric tensor fields, and their
super-partners (constructed out of spin operators). The conjecture to be
made is that the gravitons condense in such a way that the vacuum
expectation value of y,,(x) has the form:

<ymn(x)> = 6"”,7 m,n= 1, teny 4
DX = G (%%, ..., x1%), pv=5,...,10

where the G,, are to be determined by dynamics. Geometrically
speaking this formula means that the 2 = 10 space has the structure
M* x K® where M* is Euclidean space and K is some curved and
presumably compact manifold. At the moment we do not know what
was the reason for this condensation, and, in particular, what or who
has fixed 2 = 4 for our space. But, provided that it has happened, we
can easily derive consistency conditions on G,,,.

Let us change notation slightly, and write x™, m =5, ..., 10 as y™,
m=1,..., 6 presuming that now u, v = 1, ..., 4. The string action takes



ATTEMPT AT A SYNTHESIS 267

the form:
S = J gl/z[gab(aax” abx” + Gmn(y) aaym abyn)

+ €®B,,(y) 6,y™ 0,y"] d*¢ + fermionic part

In this formula we have added the antisymmetric tensor field B,
which we have forgotten before. It is one of the massless modes of the
string. In principle, it should have been taken into account in the f-
function considerations. However, due to parity considerations, the B-
modes can be omitted from the theory at the tree level, so we did not
really make a mistake. In another version of the string theory they can
be included. It is easy to realize, that these two options correspond to
our decision, whether or not to include into consideration non-
orientable surfaces. Their inclusion projects out the B-modes, since they
couple through the tensor ¢,, which is not defined in the nonorientable
case.

The first question to pose is under what conditions does the above
action include 2 = 4 gravity, among other things. As we have seen,
these conditions can be obtained by requiring the theory to be
conformally invariant with total central charge being zero.

First of all, this implies that the g-model, associated with the y-space
must be conformally invariant, that is its f-function must be zero. This
gives us equations for the metric of the compact space K, and the B-field
in this space. When the typical size of K is larger than the string
parameter M~ !, we can use the low energy expansion, which essentially
gives the Einstein equations for G,,,(y).

If we insist on starting with the 2 = 10 superstring, then in order to
preserve the central charge intact, the effective action must stay
unchanged along the renormalization group trajectory, or, in other
words, there must be a sequence of G,,.(y) which connect flat y-space
with the desired space K, such that the S-function is zero for all these
G,..(). To prove the necessity of this condition, it suffices to notice that
according to (10.52):

LN
a2niogh) - PP 5

Hence if " # 0 along the trajectory, but reaches a fixed point, the
central charge at this fixed point will be smaller than the original one
(Zamolodchikov’s theorem).

This condition would be impossible to satisfy without super-
symmetry, since the arguments of the Chapter 2 show that any compact

= —4um(®)B"F" < 0
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bosonic o-model in the strong coupling limit must have a finite
correlation length. When superpartners are included, the question
becomes more complicated and the answer is not known in general.
There are arguments to the extent that if K is Ricci-flat and has Kihler
structure, then the supersymmetric o-model has zero f-function pertur-
batively. If so, then we have an exact solution of the string equations in
the tree approximation, and are in a position to start string perturba-
tion theory. If it is not so, then one can either hope that string loop
corrections will correct the effective action in such a way that K
eventually will be a minimum, or we have to look for some other
solutions.

At this point it is worth noticing, that the effect of the compactified
dimensions is described by a conformal field theory on the world sheet,
such that the total central charge is zero. In principle it is not necessary
to insist that this field theory is just a g-model of the six dimensional
manifold. Any superconformal field theory will do, provided that it has
the correct central charge, no world sheet supersymmetry breaking and
stability (by stability we mean the absence of operators with dimensions
less than two, so it is just stability in the sense of the renormalization
group). Whether we should call these extra fields, living on the world
sheet, “extra dimensions” is actually a matter of convention.

The properties, which we have listed are sufficient for having
consistent four-dimensional gravity with some matter fields, including
fermions. One has to impose further conditions, that some of these
fermions are chiral, and also that there should be Yang-Mills fields in
the theory.

One way of getting Yang-Mills fields is to exploit an old idea of
Kaluza and Klein and to presume that K has some symmetry group
acting on it, represented by Killing deformations «™ which do not
change the metric tensor G,,,. The vectors k™(y) satisfy the equation:

V. + V=0

(where A labels the generators of the symmetry group).

In the Kaluza-Klein approach, the vector fi€lds were essentially the
mixed components (m, ) of the metric tensor. In the string context this
corresponds to the vertex operator for the Yang-Mills particle:

re = J d?& g'2g™ 0,x, 0,y km(N(&)) + fermionic part

One can show, that due to the Killing condition, this vertex describes
massless vectors.
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There are two problems in implementing this idea to the real world.
First, the minimal symmetry group must be SU(3) ® SU(2)® U(1) in
order to include known interactions. Such a group can act only on
manifolds of sufficiently large dimension. Namely, we must have one
dimension for U(1) two dimensions for SU(2) (which can act on the
two-dimensional sphere $2) and four dimensions for SU(3) (which acts
naturally on CP?). Adding four space-time dimensions we get the
minimal number of dimensions equal to eleven (the number obtained
by Witten) which is larger than the critical dimension of the fermionic
string.

A possible way out of this problem would be to find a s-model which
has a f-function with an isolated zero. In this case, as we have seen, the
resulting central charge is less than the number of y-dimensions. Hence
it is conceivably possible to begin with & > 10 (perhaps 2 = 11 is the
best) and to descend to 2 = 4 from there. One example of isolated
zeroes is given by the Wess-Zumino o-model, which has a nonzero
B, ,-background. In this case it is hard to preserve 2 =4 super-
symmetry, however. Other examples are o-models with a #-term at
0 = n, but they are poorly investigated at the moment.

The second problem in the Kaluza-Klein approach is that it is rather
hard to get chiral fermions (observed in nature), roughly because the
field G,,,(y), having even charge parity, does not distinguish opposite
chiralities. Perhaps B,,, will help here as well, but no concrete solution
has yet been found.

Another approach to the question of vector mesons and chiral
fermions rests on the heterotic version of the fermionic string (deve-
loped by Gross, Martinec, Harvey, Rohm) which we shall briefly
describe now. The major idea of the construction is to have world
sheet supersymmetry acting only among left-moving particles. The
lagrangian with such a property has the form:

L =139"2g"0,x, 0yx, + Y, s OV,
+A-Wus Oux, t &

Here . are the left-moving superpartners of x,, and y_ the right
moving gravitino; the term Z _ we shall discuss in a moment. The
difference between the heterotic and the NSR Lagrangian is that in the
latter case we have y,_-fields as well and x,, so that it is CP-
symmetric.

The main property of the heterotic Lagrangian is CP-asymmetry on
the world sheet. It can be formally obtained from the NSR-string by
setting xy, = ¢,_ =0.
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Now, repeating the analysis of the previous chapter we would find
that generally speaking this theory is anomalous. When we take
Gap =~ Og + hyy, we find that in general the effective action for h,, is of
the form:

3 K3
Wac, —h%_ +c_——h%, + possible local terms
K_ K,
where ¢, and c_ are the central charges of the left and right parts of the
theory. We have seen in Chapter 9 that for ¢, = c¢_ the local term can
be arranged so that W is gauge invariant. For c, # c_ this is not
possible any more. Hence, if we want to maintain general covariance we
have to equalize ¢, and c_.
To do this we recall that we have ghosts with ¢, = —15 (for the
supersymmetric part of the theory) and ¢_ = —26 for the ordinary
part. Therefore:

=32 -15+¢,
=D —26+¢.

We conclude that Z _ must describe a left-supersymmetric field theory
on the world sheet with é_ — &, = 9/2 + 11. The critical dimension is
given by 2., = 3(10 — 9). The simplest choice would be to take
2=10,¢, =0, ¢_ = 16 by adding 32 right moving fermions on the
world sheet. Then:
32
P=3 o1

A=1
Vector fields appear naturally through the vector vertex:
o =G0, x, +p¥, ¥, a2 a2 e®=

Right currents y4 x2 form the current algebra for the SO(32) group. We
can in principle reduce this symmetry by choosing different spinor
structures for different A, in which case it will be impossible to form
conserved charges by integrating currents over the string. However,
possible choices are strongly limited by an important condition of
invariance under “large” diffeomorphisms or, which is the same, under
the modular group.

Let us describe these large diffeomorphisms and show that lack of
invariance under their action on the world sheet would manifest itself as
gauge and gravitational anomalies in the space-time. Conversely, the
condition of modular invariance is equivalent to the condition of
cancellation of the above anomalies.
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In the case of the torus, we saw that a conformal gauge can be chosen,
provided that we represent this torus as a parallelogram, defined by
vectors @, = (1,0) and ®, = (Re 7, Im 1) where 1 is a complex para-
meter. Integration over all metrics was reduced to integration over the
Liouville field (absent in critical dimension and the integral | d*z. All
integrands as functions of T must be invariant under a specific discrete
group which we describe now. Therefore, to avoid repetitions one has to
integrate only over the fundamental region in t-space.

Let us take a torus and cut it along a circle, making a cylinder out of
it. Then twist one of the boundaries of this cylinder through the angle
2n and glue it back, obtaining a torus again. Clearly, this is a
diffeomorphism of the torus which is not homotopic to the identity. For
example a large circle of the torus will wind once around it after such a
diffeomorphism.

When we describe the torus by the parallelogram (®,, ,), the effect
of the two possible operations described above is the change:

(0, 0;) > (0,0, + 0y)
(0, ®;) = (0, + 0,,0,)

The first transformation is simply the shift t = 7 + 1. To find the effect
of the second one we have to return the parallelogram to its original
position. That will give us another transformation T — 1 + 1/1. These
two transformations generate the modular group. We can also describe
this group as

@ =A0, i k=172

where A, is a matrix with integer elements and with |det 4] = 1.
Therefore, our group is SL(2, Z). Similar considerations for arbitrary
topology lead to the simplectic groups with integer coefficients, but we
shall not need it here.

Our point will be to show that the lack of modular invariance on the
world sheet must lead to space-time anomalies.

The main idea is that we have to check the nonpropagation of the
spurious states on the torus. In the massless sectors, as we have seen,
these spurious states are just the longitudinal vectors and gravitons.
Hence, the absence of gauge and gravitational anomalies is equivalent
to the above-mentioned nonpropagation.

At the tree level we have checked this property by showing that
owing to the Ward identity {T(z)) on the world sheet is zero.

In the case of the torus, Ward identities are more tricky and here
modular invariance comes into play.



272 GAUGE FIELDS AND STRINGS

Let us derive Ward identities for the case of the torus. Let us recall,
that if we make an infinitesimal coordinate transformation ¢(z, z), then
the action change by the amount:

38 = f T(z) 0;¢(z, 7) d2z
while the fields transform as:
56 = (a(z, oy A(a,s)>¢
0z

If we choose ¢ to be a solution of:

Oze = 6Bz — w)
we obtain the desired Ward identity. The main difference from the
previous formulas is that ¢ is not strictly periodic and thus changes the

fundamental region. Namely, the solution of the above equation is
given by the Weierstrass { function:

1 1
€)=i-ws (@)=Y <‘+v+i2>

wl\Z—0 0 o

where L is a lattice formed by (®,, ®,). It is well known that:
{z+o)=0=2)+1n, a=12
and that the constants », satisfy the relation:
nw, — N0, = 2/ni

It is easy to check, using these relations, that the above conformal
transformation induces a constant change of 7 = w,/w,. The corre-
sponding Ward identity is given by:

KT(@P(zy) - Dzy)>

0
= 5= <B(z) -+ e

0
+ {z <—AC’(Z — )+l -2 5)}«»@, PR
k k

It should be stressed, that in this formula the averages are understood
without dividing them by the partition function, which itself depends
on .

The role of modular invariance is evident by now. When we check the
decoupling of the longitudinal states we have to integrate the Ward
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identity on z; and on 1, restricting the 7 integral to the fundamental
region. If the partition function violates modular invariance the term
d/0t will give a nonzero contribution, coming from the boundaries.
Thus a modular anomaly on the world sheet will manifest itself as a
gauge and gravitational anomaly in space-time.

The conclusion is that in heterotic string theories one has to check
modular invariance, which severely limits the possibilities. On the other
hand, in ordinary closed strings modular invariance is automatic, since
non-chiral determinants can be regularized in a manifestly covariant
way. Such theories, even when they contain chiral fermions in space-
time, are safe from anomalies.

Let us summarize. We see that we now have a consistent description
of quantum gravity and supergravity, and we have many options for
including chiral fermions and other particles into the scheme. This
approach explains the enigma of generations, the strange copying
which started with the muon. The number of copies now is determined
by the number of zero modes of the generalized Dirac operators, which
in turn is fixed by the topology of the background manifold. Actually it
is hard to obtain a small enough number in this approach.

At the same time, we cannot explain at the moment why compactifi-
cation took place, and most importantly, why the dimensionality of our
world is equal to four. Until these problems are solved, we cannot be
quite sure that we are on the right track. Still, there are many favourable
signs.

10.3 The Three-Dimensional Ising Modelt

It is well known that most of the phase transitions of the second kind
occurring in Nature are equivalent, as far as critical behaviour is
concerned, to the three dimensional Ising model. After Onsager’s
remarkable success with the two dimensional version of this model,
many people have tried to find its solution in 3d (private communica-
tion). No such solution has been found and we have a strong feeling
now that the model is not exactly solvable. At the same time, the total
solution is not actually needed, because only the critical behaviour of
this theory presents a universal interest. By this we mean that the

1 Some of the results of this section have been obtained in collaboration with V.
Dotsenko (1978).
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critical properties of the Ising model (such as the singularity in the
specific heat) are shared by many statistical systems in Nature. How-
ever if we are far from the phase transition point no lessons for other
systems can be extracted.

In the present section we shall try to argue that in the continuum
limit (i.e. in the vicinity of the phase transition point) the three-
dimensional Ising model can be reduced to an exactly solvable sys-
tem—the supersymmetric string. This result should allow in principle
the determination of the critical behaviour, but it is still an unsolved
problem.

In order to explain our ideas we have to recall the situation in the 2d
Ising model, solved by Onsager. There are two kinds of basic variables
in this model. First are spin variables ¢, (or order parameters) taking
the values =+ 1. Second, there exist disorder variables, u, first introduced
by Kadanoff and Ceva which are defined as the endpoints of dislocation
lines. These two sets of variables are dual to each other in the same way
as electric and magnetic charges. It is remarkable that although
equations of motion for o, and u, separately are complicated, the
product variable y = ou satisfies a linear equation. Moreover, in the
continuum limit (near the phase transition point) this linear equation is
reduced to the two-dimensiofial Euclidean Dirac equation, implying
that the y-variable describes a fermionic excitation. So, we can say that
the two-dimensional Ising model is equivalent to a system of relativistic,
noninteracting Fermi particles.

Let us turn now to the three-dimensional case. The basic difference
here is connected with the nature of the disorder variables. The
dislocation lines (surrounding the regions of the reversed spins) of the
two-dimensional model are now replaced by dislocation surfaces. The
boundary of these surfaces is now the argument on which the u variable
depends. So, instead of variables u(x) of the 2d model we have now the
contour variable y(C) (here C is a closed loop). Again, in order to
obtain simple equations, we have to form the product of u(C) and
I1; o(x;) where x; are the points adjacent to the loop C. If we draw small
normals to the loop C, connecting it with the points {x,}, we obtain a
string with pseudospins living on it, an object which resembles barbed
wire. These “barbed wire” variables satisfy a linear equation in the loop
space. The meaning of this equation is that each small piece of the
barbed wire propagates exactly as an Ising fermion of the two dimen-
sional model, if we consider the plane, orthogonal to the piece under
consideration. Just as a Fermi particle propagator can be represented
by a sum over all possible paths with a certain fermionic structure on
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them, described in Section 10.3.1, the solution of the loop equation is
found to be equal to a sum over surfaces with extra fermionic structure.
This is described in Section 10.3.2.

The strategy which follows will be to find a continuous string model,
such that the string moves piecewise as a free Dirac fermion. The
natural candidate is the Neveu-Schwarz-Ramond string.

10.3.1 The Dirac Equation in the Two-Dimensional Ising Model

The two-dimensional Ising model is described by the partition function:
Z = Yetéted

{ox)

(10.54)

J[o'x] = - Z 0,048
x,&

Here f is the inverse temperature, the points {x} belong to the two
dimensional rectangular lattice, 6, = +1, and {8} are the two possible
unit lattice vectors. Important physical information is condensed in the
correlation functions

Gulxy, ..., xy) = {o(x,) -+~ o(xy)> (10.55)

defined in the obvious way. It is possible to obtain a Schwinger-Dyson
chain of equations for Gy(x,, ..., xy). However, this way of proceeding
would obscure the exact solvability of the model. The appropriate way
is to introduce the so-called disorder variables. They are defined as
follows. Consider a point x, of the dual lattice (formed by the centres of
the faces of the original lattice) and draw some path P on the dual
lattice, leading from x, to infinity. Change the sign of # on all bonds
intersected by the path. Define the distorted partition function,
Z(x*, P). Then, the disorder variable pu(x,) (defined through its Green
functions) is given by:

Z(x,, P
{u(x)) = (xg ) (10.56)
Analogously one defines
Sy Ju(xz,) - pl(xn)) (10.57)

Now, a simple argument shows that (10.57) does not depend on the
paths leading from infinity to x,, but only on xg  themselves. To show
this, consider a closed path which surrounds some two-dimensional
region, (a “drop”) and change the sign of the coupling on all the bonds
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intersected by the path. Consider the modified partition function Z(P).
It is obvious now that Z(P) = Z, since to any given configuration
contributing to Z(P) corresponds a configuration of the same energy
contributing to Z. The latter configuration is obtained from the former
one by reversing all the spins lying inside the drop. From this relation it
follows that two different choices of the path in (10.56) and (10.57) give
the same result. Let us notice parenthetically that such a simple
definition of the disorder variable holds true for a lattice with simple
topology (such that each closed loop bounds a drop). Otherwise there
are different variables, classified by the first homology group.

In order to obtain linear equations let us consider the variable y
which is formed by the product of the order parameter ¢, and the
adjacent disorder variable. At each point of the original lattice x, we
have four adjacent points of the dual lattice @ = x + e, where the four
vectors e, have length 1/\/ 2 and are directed along the diagonals of the
original lattice. Let us consider the four component object:

Yo (x) =o()u(x +¢) a=1,234 (10.58)
The “tail” necessary for the definition of u is supposed to go horizon-

tally from x + e, to the left infinity. Now, we have a simple identity:

<w1(x)> = <6(x) I:I exp{ _2B(ox—n61ax—n81+52)}>

e— Jls_z ; _:‘ = (a(x) H exp{ _2ﬁ(ax—n5|ax—n51 +62)} exp{ _2ﬂaxax+62}>
2 1t n=1
8,
% :'“ = {a(x)u(x + e,)>(cosh(2B) — sinh(2B)(0,0, +5.))>

=== = y(x)) cosh(2B) — {Y5(x + 8,)) sinh(2p) (10.59)

In the derivation of equation (10.59) all we have used was the definition
of u (the product [ [, represents the change from B to — f along the
intersected bonds), the fact that ¢Z =1 and last but not least the
possibility to turn the tail of u(x,) if it does not intersect a spin variable.
Proceeding in the same fashion we get:

{Ya(x)> = cosh(2B) Yo+ 1(x))
— sinh(2B) ¥, 4 5 (x + 8,.41)> (10.60)

Here a = 1, 2, 3, 4. It is clear that {y,, ,> and {y,> are essentially the
same object but they are not identical. Namely <y, ,> is obtained by
27 rotation of the arrow e,. However, we must remember the horizontal
tail attached to the end of the arrow. In the process of the rotation it
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intersects once the point x, where the spin o, is placed. As a result the
object Y changes its sign (recall that we proved tail independence for a
pure u correlator, but if there are ¢ present and the tail crosses o the
correlator changes sign). We conclude that the equation (10.60) must be
augmented by the condition:

Vara(x) = =¥ (x) (10.61)

The phase transition point is determined from (10.60) by looking for an
x-independent solution; substituting:

Y, ~ etinald (10.62)
in order to guarantee (10.61) we obtain from (10.60)
sinh(28,) = 1, cosh(2,) = \/2 (10.63)

The other possible solution

'//a ~ ei3i1m/4 (1064)

would lead to unphysical 8,. The two dependences (10.62) and (10.64)
correspond to the spin 1/2 and spin 3/2 parts of the wave function. Near
the point (10.63) the mode with spin 1/2 becomes soft and the mode 3/2
remains hard. The equation (10.60) is invariant under n/2-rotations
with simultaneous rotation of the spin index a:

Yo(x) > Y, (I'x) (10.65)

(T is /2 rotation).

We may expect therefore that in the continuum limit, when only spin
1/2 propagates, we shall obtain the Dirac equation. This is indeed the
case as is seen by expanding

Y (x) = u (x)e™@T UV Ly (x)eTimar 1204
+ U+(x)e3in(a+ 1/2)/4 + U_(x)e—Sni(a+ 1/2)/4 (1066)

Substituting (10.66) into (10.60) and neglecting the v-terms, we obtain
(using the identity u,(x) =3 D, e~ ™M@+ 124y )
(0, +10,)u, =imu_
(10.67)
(0, —i0,)u_ =imu,
~ B - ﬂc
B.

m
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Equation (10.67) is precisely the two-dimensional Dirac equation with
the spinor u(x) transforming under rotations:

u(x) - e*2u(T(¢)x) (10.68)

(I'(p) is a rotation with the angle ¢.) The formula (10.68) is the
continuum analogue of (10.65). Up to now we have dealt with the single
field average (¥ (x)). If we have to consider more complicated Green
functions:

Foooa®p o X)) = g (x4)- Yo (20D (10.69)

we find that with respect to each argument they satisfy the same
equation (10.60) with the condition (10.61) but on the right hand side of
this equation we shall have contact terms as usual. These terms reduce
to the standard é-functions in the continuum limit. Let us demonstrate
finally how to find the critical singularity in the specific heat. We have
for the average energy density:

CE) = —220,0,.5,)
= 2, (W + 8,
= CW(X)a(x)
d’p 1
=T ) Gormiip

Ipl €1

=2 j 9P o 10.70

=2m GG + ) m og; (10.70)
where we have used the standard Dirac propagator. For the specific
heat we get:

KEY . 1B—B.

which is Onsager’s famous result.

10.3.2 The Three-Dimensional Case. The Loop Equation

The three-dimensional Ising model is defined again by equation (10.54)
only now x belongs to the three-dimensional cubic lattice. The order
variable o(x) is defined as before. A slight modification is needed for
the u-variables since now the “drops” with reversed spins are three
dimensional and their boundaries are formed by two-dimensional
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surfaces. Let us introduce the dual lattice which is formed by the centres
of the cubes of the original one. Consider a closed loop C on the dual
lattice and form an arbitrary surface S (on this lattice) bounded by this
loop. Define the distorted partition function Z(C, S.) by changing the
signs of all couplings on the original links intersected by S.. Then wu(C)
is defined by:

Z(C, S¢)

VA

uC)) = (10.71)
The definition (10.71) is a straightforward generalization of (10.56).
Here again it appears that (u(C)) does not depend on the choice of the
surface S¢, because a closed surface of dislocation does not change Z (it
is possible to reverse spins in the drop, bounded by S). Therefore we can
form loop Green functions like:

u(Cy)...l(Cy1 (10.72)

If also o(x) are present then these functions are defined up to a sign
which is physically irrelevant.

As in the 2d case, we shall obtain simple equations not for {u(C)) or
{a(x)> but for certain mixed objects which will be called “fermionic
string” or “barbed wire”.

Let us supply the middle of each link(s) of C with one of the vectors
e, (a; = 1, 2, 3, 4) which lie in the plane orthogonal to the link under
consideration. Let us consider the following object:

L
Y......a(C) = u(Cp) nld(«\fs +e,,) (10.73)
Here L is the length of the loop C and x; is the middle of the link s. In
order to obtain an equation most closely resembling equations (10.67)
it is convenient to notice that the average (¥, ., (C,)> can be
computed in two ways: first with the definition of the average by (10.54)
and p given above, but also the dual way of computation is possible. By
that we mean that we can define a dual Ising model by introducing
variables u, , = 1 attached to the links of the dual lattice and
considering the partition function:

z=x exp(ﬁ 2 u(aP)) (10.74)
Bz 14

Here we have denoted by P plaquettes of the dual lattice and by u(dP)
the product of u, , around the plaquette. The dual temperature B is
given by: .

e 2% = tanh g (10.75)
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Kramers-Wannier duality ensures that the partition functions (10.74)
and (10.54) are the same. The average of o(x) variables (which are
disorder variables with respect to (10.74)) is defined as follows. Attach
an infinite path to the point x and change the sign of § on all plaquettes
intersected by the path. Then:

Z(x, P,)

(o(x)) = —

(10.76)
After short meditation one concludes that (10.75), just as (10.56), does
not depend on the choice of the path P,. Indeed, let us consider a short
closed path intersecting a bunch of four plaquettes having one common
link. Changing the sign of the spin u on this link we get a new
configuration which is equivalent to the one in the model without the
path. Therefore for this small closed path the modified partition
function coincides with the old one. Since any large path can be
composed from small ones, we conclude that a closed loop of disloca-
tions does not change the system.

We are in a position now to obtain the desired equation for

¥,,.....o(C). Let us use the identities
e~ 2BHP) — cosh(2f) — sinh(2B)u(oP) (10.77)
#(0P) =1

and imagine a tail S attached to o(x, + e, ), which gives a contribution:

o(x, + e, ) ~ [[ e~ 2#HeP
s

(where the product goes along all the plaquettes intersected by the tail
S). Using (10.77) (which is analogous to 10.59) we obtain:

Y,

yerorlg, A5, 05+ 2,05+ 3,854 1,4, a,_(C + na,) (1078)

Here the loop C + I, is obtained from the original loop by removing
the link s and attaching instead the letter I oriented in the direction a;.
The loop C + I1,_ has length equal to L + 2, and on the two extra links
we place indices a; and a) + 3, so that the corresponding ¢ are both
placed in middle of the plaquette I1. Since 2 = 1 this does not affect
our relations.

We observe now a remarkable analogy between equation (10.78) and
equation (10.60). Indeed (10.78) implies that if we concentrate on some
link s then it propagates in the plane orthogonal to itself exactly as a
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particle excitation in the two-dimensional Ising model. That does not
mean of course that the 3d Ising string can be considered as a collection
of noninteracting 2d Ising particles. The difference is that in the process
of development the string does not break (as a consequence of gauge
invariance) and hence when some link moves it creates extra portions of
string, necessary for continuity. But this continuity is the only source of
interaction. Such a system will be called a free string.

Let us now summarize our conclusions. We have proved that the 2d
Ising model is equivalent to the problem of free particle propagation.
This particle carries internal index a, or, more geometrically, an arrow
e,, which will be finally identified with spin. In the process of propaga-
tion of the particle the spin rotates due to spin-orbit interaction, but the
total angular momentum is conserved. The classical vector e, on the
lattice does not correspond to any definite value of the spin but,
according to (10.66) and (10.67) only the spin 1/2 part of the wave
function has long range correlations in the critical region. It is not
surprising therefore that as a result we obtained the Dirac equation.

Turning now to the 3d case we discovered that the Ising model is
described by the propagation of a closed string with internal degrees of
freedom distributed on the links. These degrees of freedom are precisely
the same as in the previous case, so we can say that we have a spin
density distributed along the string. Our major result was the conclu-
sion that the string moves piecewise as a 2d-Ising particle, and there is
only implicit interaction following from continuity.

The most difficult problem now is to find a continuum limit for the
equation (10.78). In the 2d case such a problem was solved trivially, by
solving first the lattice equation (10.60) and taking the limit § — S_,.

Unfortunately the equation (10.78) on the lattice is completely
hopeless. The best thing we can do is to guess on physical grounds what
kind of system it describes in the critical region. We shall do this by
looking at things the other way around. Namely we discuss a contin-
uum string model, which behave piecewise as a free Dirac particle, and
has a very good chance to describe the critical region of equation
(10.78).

Let us consider the NSR-string, the wave functional of which is
annihilated by the supercurrent and energy momentum tensor. The
supercurrent condition can be presented as:

Y%, £ x)ld> =0
If we replace x, by (1/1)(6/6x,) and introduce:

R
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we obtain an equation:

o¢
(1) (2)
( () —— i (s) () >¢ 0 (10.79)
where

{y&(s), yOUs)} = 26%5,,8(s — 5)

Now, if we consider a very short piece of the string for which
|dx/ds|As = ¢, then we can replace As(é¢/dx,(s)) by an ordinary
derivative:

o0p 09
S 6x,(s) = 6—xu

and y{!(s) by an ordinary y-matrix. The term

1520s) S

anticommutes with

o
0x,(s)

1
y

and in the “short string” limit can be replaced by My, with some M. As
a result, the above equation becomes an ordinary Dirac equation

1 @
<v,, ax +Mv5>¢ 0 (10.80)

The same conclusion could have been reached by the mode expansion
in the Ramond sector and by noticing that in the short string limit only
zero modes are relevant (since other eigenvalues tend to infinity). We
conclude, that the NSR string moves piecewise as a collection of Dirac
particles connected only by continuity. This is the same picture which
we derived for the 3D Ising model. So, perhaps these two strings
coincide.

Needless to say, we have not proved it. But the intuitive arguments
given above make very tempting the problem of finding the critical
exponents of the NSR string, and comparing them with Ising ones.

This problem has not been solved yet. In the next section we shall
describe a general approach to it, together with a preliminary classifica-
tion of strings.
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104 Extrinsic Geometry of Strings

In this section we shall discuss critical exponents of strings—a subject
intimately connected with their extrinsic geometry. Again, this problem
is not solved and we can only show an approach to it, and describe
several options, which we have in string theory.

The most interesting critical exponent is defined as follows. We start
from the Nambu-Goto action (or its fermionic extension):

Lo A(S) = po jgllz d*
(10.81)
Gap = aax ' abx
and try to choose the bare surface tension y, in such a way that the
physical surface tension u can be defined by:

6O = exp(—uo o d%)
Sc

~ exp(—HAmia(C)) (10.82)
C-x

(here C is a boundary loop and A4,,(C) is an area of the minimal
surface bounded by this loop). The quantity pu(u,) is by definition the
physical surface tension. At the critical value of uq, uo., We expect that:

B~ (g — Hoer)

where « is the critical exponent to be determined. One can relate many
interesting quantities to this exponent.

What determines «? The answer is different for bosonic and fermionic
strings. Let us begin with the former. We have to ask ourselves at first,
whether the Nambu term in the action, which is a kind of a cosmologi-
cal term is the only relevant one in the continuum limit. One would
expect that the Einstein term can be important as well, since the
Newton constant is dimensionless in two dimensions. It is commonly
known, however, that in this case the Einstein term is just the Euler
character of the manifeld which is presumed to be fixed. Nevertheless,
for string theory a dimensionless term in the action does exist. It is
formed out of the extrinsic curvature of the surface and is defined as
follows. Let us introduce the second fundamental form K:, given by the
equation:

0,0,x =T,50,x + K,
(m;-n) = 6;5;(m;-0,x) =0 (10.83)

i=1...,9-2
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(here I',; is the usual Chistoffel symbol, »; normal vectors). Then the
intrinsic curvature R is connected with K by

R = (K%“)? — KiK't (10.84)

and is indeed a total divergence. However the separate terms in (10.84)
are not. Therefore we can write the following generalization of the
Nambu-Goto action:

S = J £g' d? + al J KiK?g'2 d2%¢ (10.85)
0

It is easy to check that the second term is the only possible one (up to
total divergences) invariant under scale transformation x — Ax.

Adding this new term to the action is not a caprice. Its influence in
the infrared region determines the phase structure in the string theory.
So, if we want to compute the critical behaviour of random surfaces and
their geometrical and physical characteristics, it is absolutely necessary
to include this term in the action.

Our first goal will be to investigate the relevance of extrinsic
curvature in the continuum limit. Let us notice, that (10.85) can be
rewritten in other forms (modulo total divergences):

jKi:KiZg‘/z dzé
- j 417" 0,8,,0,t,, 47

_ 1/2 2 42
—Jg (Ag)x)* d*¢ (10.86)

= ng/z gab(va”i)'(vb”i) d*¢

Here:

-1/2

M@y = - 0,g'7g 3,x

g—l/z
t, = . € 0,x, Opx,

nv

V. = 0,m + ¥*n, = — K% 8,x
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The last form is especially interesting. It shows that we are dealing
with a Grassman o-model, associated with the surface. The order
parameter lies in the homogeneous space

B SO(2)
T S0(2)® SO(2 - 2)

G o (10.87)

This is not an ordinary ¢-model, because not every field in G, ,
forms tangent planes to some surface. A certain integrability condition
must be satisfied. Still, the analogy with the s-model will be quite useful.
Namely, it permits one to compute the f-function for the coupling «
which determines its scale dependence. We shall not describe this
calculation here, but rather discuss its result and implications.

One finds for the momentum dependence of a(p):

This formula makes clear, first of all, that our Grassmanian s-model is
not an ordinary one. In the latter case the coefficient before the
logarithm would be D — 2 (recall the n-field) instead of D/2. This
difference comes from the integrability constraint on the Grassman
fields—they have to form tangent planes to some surface.

Of course, the behaviour described by (10.88) is true only until a(p)
becomes large. What happens then? There are several possibilities. First
of all, if the p-function has no zeros, then a(p) continues to increase as
we go to the infrared region. That means that the term (1/a) | K2g'/?
d?¢ becomes irrelevant, since « = . To describe the same thing in a
different language, let us introduce the Lagrange multiplier:

1
s=_ szg”z a2 + j (143, - 3y % — gup) + Hog™?) d*¢

We have seen in the previous chapters that asymptotic freedom in the
o-models leads to the condensation of the Lagrange multiplier, or,
which is the same, to creation of mass for the n-fields. In our case this
means the following. The effective action for A** develops a minimum so
that

(A% = Ag'lg™ (10.89)
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where dependence of g,,, is fixed by general covariance, while the value
of A is just the position of the logarithmic pole in (10.88) (since 4
represents an infrared cut-off):

1~ Ae™4n/9% (10.90)

If we do not have a special fine tuning, then a, ~ 1 and 1 ~ A, so in the
continuum limit we have the effective action

S=1 J(g”zg"" 0,%-0yx + pog'’?) d%¢ (10.91)

which we discussed in the previous chapters.

We see that in this case the critical exponent a = 0, because the
change of y, does not have any influence on 1. An attempt to make a
small surface tension in this case will be ruined by the violent infrared
fluctuations described by (10.91). From the geometrical point of view,
the Lagrange multiplier 1 plays the role of the inverse correlation length
for the normals of the surface. In the regime described this correlation
length is of the order of the cut-off. The surface is terribly creased.
Perhaps the bosonic tachyon is related to this creasing.

For QCD and for Ising models, creased strings with nonvanishing
surface tension are unacceptable. How can this undesirable property be
avoided?

It is clear, that in the purely bosonic case we have to find a version of
the theory with the f-function having a zero at some point a,. If we
succeed, then a generic a, will be attracted to a,, the correlation length
will be infinite (without a Nambu term in the action) and we will have a
scale invariant theory with anomalous dimensions, one of which will
determine the critical exponent. The creasing will be avoided in this
case.

In four-dimensions there is a good candidate for all that. In this case
we have a specific f-term which can be added to the action. At 0 ==
there are reasons to expect a scale-invariant theory. The term we are
talking about is the algebraic number of self-intersections, v(S) for our
two-dimensional surface S, immersed into four-dimensional space.
Analytically, it is given by:

1

S = o j d2E g'12gPem o g t,, Byt (10.92)

The partition function is given by:

Z = Y roAS(_ 1y (10.93)
(&)
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Perhaps, this string lies in the same universality class as the string of
large N QCD. This is a problem for the future.

In the case of Fermi strings dependence on extrinsic geometry comes
from the fermionic contributions on the world sheet which are perhaps
more relevant than the K? term. If so, the calculation of critical
exponents will be easier in this case. This is also a problem for the
future.
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