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Abstract We carry out an analysis of the full set of ten
B — D™ form factors within the framework of the Heavy-
Quark Expansion (HQE) to order O (Ots, 1/mp, 1/ m%) ,both
with and without the use of experimental data. This becomes
possible due to a recent calculation of these form factors at
and beyond the maximal physical recoil using QCD light-
cone sum rules, in combination with constraints from lattice
QCD, QCD three-point sum rules and unitarity. We find good
agreement amongst the various theoretical results, as well as
between the theoretical results and the kinematical distri-
butions in B — D®{e~, u~}v measurements. The coeffi-
cients entering at the 1/ m? level are found to be of O(1),
indicating convergence of the HQE. The phenomenological
implications of our study include an updated exclusive deter-
mination of | V.| in the HQE, which is compatible with both
the exclusive determination using the BGL parametrization
and with the inclusive determination. We also revisit predic-
tions for the lepton-flavour universality ratios R, the T
polarization observables PrD (*), and the longitudinal polar-
ization fraction F . Posterior samples for the HQE parame-
ters are provided as ancillary files, allowing for their use in
subsequent studies.

1 Introduction

The decays B — D¢ vand B — D*¢ v withl =e, pu, T
are of great phenomenological interest for several reasons.
First, the decays with light leptons in the final states are used
to determine the CKM matrix element |V,,| in the Stan-
dard Model (SM). Second, New Physics (NP) scenarios —
model-independently defined through the means of an Effec-
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tive Field Theory (EFT) at low energies — are constrained by
both the light-lepton modes and the ones involving a T lepton.
Third, the interplay between two heavy quarks provides a lab-
oratory to study Heavy-Quark Effective Theory (HQET) and
the Heavy-Quark Expansion (HQE) of the relevant hadronic
matrix elements, to further our understanding of Quantum
Chromodynamics (QCD). Interestingly, there are presently
two tensions between theory predictions and the correspond-
ing experimental measurements: the so-called V., puzzle, i.e.
the difference between the value for |V,;| as extracted from
inclusive vs. exclusive modes, and a significant deviation
from lepton-flavour universality in ratios of T over © and e
modes [1].

The inference of phenomenological parameters such as
| Ve | or the EFT Wilson coefficients from experimental mea-
surements of branching ratios and kinematical distributions
in B — D®¢~ v decays requires knowledge of the rel-
evant hadronic matrix elements. The latter are commonly
described by a set of ten independent hadronic form factors,
which parametrize the strong-interaction dynamics in these
modes as functions of the four-momentum transfer ¢2. The
determination of these form factors requires nonperturbative
methods.

Until recently, the available theoretical calculations were
insufficient to fully determine these form factors indepen-
dently of experimental data; instead, the form factor shapes
and | V.| were fitted together to the light-lepton modes. How-
ever, this approach requires the assumption of absence of NP
in these modes; this does not seem appropriate, given the
anomalies not only inb — ctv data,butalsoinb — su™ ™
modes, since models accommodating both anomalies com-
monly also modify the couplings to light leptons in charged-
current transitions. Furthermore, these fits were based on
a HQE up to O(1/m. ). Recently, the determination of
B — D™ form factors has advanced, due to both exper-
imental and theoretical improvements: on the experimental
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side, the Belle collaboration has released three measurements
of the kinematical distributions of the modes in question,
including correlations between bins [2—4]. BaBar has per-
formed the first analysis of the four-fold differential rate [5],
however, these data are not yet available in a form that could
be used in our analysis. On the theory side, two lattice deter-
minations of two B — D form factors at finite recoil became
available [6,7]. In addition, a second lattice calculation for
one B — D* form factor at zero recoil was published [8].
Moreover, a recent light-cone sum rule (LCSR) calculation
[9] provides for the first time information on all form factors
parametrizing matrix elements of the basis of dimension-
six operators, including those appearing only in connection
with NP effects. This calculation is complementary to the
presently available lattice calculations in that it is applica-
ble at q2 < 0, while lattice calculations so far have been
carried out at ¢g> > 8 GeV?, and only for a subset of form
factors. For the B — D* form factor A;, the LCSR calcu-
lation therefore acts as an anchor for what would otherwise
be an extrapolation of the lattice data based on heavy-quark
symmetry relations. For all other B — D* form factors this
is the only direct calculation available. In view of the irre-
ducible systematic uncertainties of this method our analysis
should be revisited once precise lattice QCD results become
available for B — D* from factors.

The release of the unfolded Belle data has made it pos-
sible, for the first time, to analyze the spectra of B —
D™ ¢~ with different approaches for the form factors, while
most previous experimental analyses provided their results
in terms of parameters of the CLN parametrization, which
includes the aforementioned expansion up to O(1/m.). The
BGL parametrization, on the other hand, provides a model-
independent parametrization of form factors based on uni-
tarity and analyticity [10], neither expanding in 1/m . nor
in og. Assuming the convergence of the latter expansions,
clearly the results obtained from either approach should coin-
cide asymptotically. Analyses of the recent Belle measure-
ments using the BGL and CLN approaches yielded the fol-
lowing observations:

e BGL fits to the unfolded B — D data employing also
the recent lattice results work very well and yield a value
for | Vp| in perfect agreement with the value from inclu-
sive decays [11]. The CLN parametrization, while yield-
ing a similar value for |V,p|, is not sufficiently flexible
to accommodate the experimental and lattice data at the
same time, indicating the importance of higher-order cor-
rections [11].

e The B — D experimental and lattice data can be com-
bined in a HQE framework including consistently the
correlations due to the parameters in the leading and sub-
leading Isgur—Wise functions, at the cost of introducing
partial l/mf corrections [12,13].

@ Springer

e Comparisons between the BGL and CLN parametriza-
tions using the unfolded Belle 2017 data with hadronic
tag [3] show a surprisingly large difference between
the values for |V,p|, with the value extracted using the
BGL parametrization again compatible with the one from
inclusive decays [14—16]. The central values of such a
fit violate expectations based on heavy-quark symmetry
strongly [17], which is not the case, however, once infor-
mation from the (at the time available) LCSR calculations
[18] is included, at the price of a slightly lower increase
of |Vp| [14,19].

e No such parametrization dependence is found when
employing the recent untagged Belle results [4], but the
value of | V.| extracted from the combined 2017/2018
Belle data remains ~ 20 smaller than the one from inclu-
sive decays [20].

Given these results, it is fair to say the V., puzzle is reduced,
but not fully resolved yet. The difficulties in fitting the
B — D data and the large differences in the analysis of the
tagged Belle data strongly motivate an analysis of higher-
order corrections in the HQE framework.

The outline of this article is as follows: in Sect. 2 we
revisit the heavy-quark symmetry relations for B — D®)
form factors, with an emphasis on terms that have been gen-
erally omitted so far. In Sect. 3 we combine all available
theory information on these form factors, demonstrating the
necessity of including additional terms compared to previ-
ous treatments. We analyze various scenarios with different
classes of inputs in order to probe their mutual compatibil-
ity; we provide the fit results for form factors and quanti-
ties of interest like R(D™) in the viable scenarios. We also
apply our extracted form factors in fits to the available exper-
imental data in the context of the SM, and show how the
inclusion of the additional terms resolves the deviation in the
extracted values of |V,,| in previous fits using the BGL or
CLN parametrization. We summarize our results in Sect. 4.

2 Form factors for B — D™ transitions

The hadronic matrix elements for B(p) — D™ (k) semilep-
tonic transitions can be expressed in terms of ten indepen-
dent form factors, which are scalar functions of the four-
momentum transfer > = (p —k)?. A common basis of form
factors arises from the following definitions: For B — D,
one commonly defines

(D(k)| cy" b |B(p))
M2 — M?
= [(p + k)" — %q“} P
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M2 — M2
LR Rt Q)
(D(k)|Ea™b | B(p))
= L(k”p” — PHEY) fr(g®, 1) 2
Mp + Mp T

with o*V = %[y“, y"]. In the above, f is the vector form
factor, fr is the scale-dependent tensor form factor arising
only in NP scenarios (its definition corresponds to the one in
Ref. [21]), and fy doubles as the scalar form factor:

_ M2 _ M2
(D(k)| &b |B(p)) = % 1E7P@H. 3)

- Hie

The matrix elements of the remaining axial and pseudoscalar
currents are zero by virtue of QCD conserving parity.
For B — D*, one commonly defines

(D*(k, ;) cyHb |B(p))

2V (g%
— _Mvpo 4
€ 1, (k) pp ko Mgt My 4
(D*(k, m)| cy*ysb |B(p))
2
. qq” MpgM
=iny {2MD*A0(q2) ) + 16 AD*Alz(qz)
M3 — M2, +q?
[217“61” - =B Dt g
q
2AME+ M3, —q?)
+ (Mg + Mp+) A1 (g?) [g’“’ +—B AD* q"q”
2Mp — Mp. —q*)
-—L D Pha" |t ©)
A
(D*(k, )| co™b |B(p))
M% — M2,
= inteM sy {_ |:<(p+k)p _ Bq2qu) §%°
2 o PO 2
+—=p PPk | Ti(g")
q
2 M2 — M?
— [ S5pp"k" = —2—5"L24" 5" | Ta(q?)
q q
2
ME i3, pe PPk T3(q (©)

where 1 denotes the D* polarization vector, V the vector
form factor, and Aj 1» are the axial form factors. Note that
the relative sign between our Eq. (4) and the decomposition
in Ref. [22] arises from the different definition of the Levi-
Civita tensor: we use %123 — +1. Moreover, in the decom-
position above A1, correspond to longitudinal polarizations
of the emitted virtual W, which is more convenient (e.g. when

inferring form factors from lattice QCD) than parametriza-

tions involving the form factor A,, see e.g. [22]. The function
Ap doubles as the pseudo-scalar form factor,
n*-q

(D*(k,n)| Eysb |B(p)) = —2i Mpr ————
mp + me

Ao, )

whereas the matrix element of the scalar current vanishes by
virtue of QCD conserving parity.

Exactrelations at g> = 0 between some of the form factors
ensure the absence of unphysical singularities in Egs. (1) and
(5). These relations read:

fi@* =0) = folg® =0),

2 _ 2 _
Ap(g==0) = 2Mp- Al(q 0) (8)
MB — MD* 2
— A =0
. 2(q )

A further exact relation arises due to algebraic identities
involving the Lorentz structures o*¥ and o "' ys5 [22]:

11(0) = T2(0). C))

Further approximate relations arise from the HQE of the
hadronic matrix elements. These relations, the parametric
models involved, and theoretical inputs needed for the sub-
sequent statistical analyses are the subject of the remainder
of this section.

2.1 Heavy-quark expansion and models

The combination of heavy-quark spin symmetry and heavy-
quark flavour symmetry permits to relate B™(v) —
D™ (v') matrix elements with each other in a simultane-
ous expansion in the strong coupling o and the inverse pole
masses 1/m g, where Q = b, cis the quark flavour. The coef-
ficients of this HQE — up to kinematical and combinatorial
factors — are the Isgur—Wise functions, which depend exclu-
sively on the recoil parameter w = v - v'. For convenience,
the expansion is commonly expressed in terms of dimension-
less quantities e = A/ 2m g, where A arises in the HQE of
the heavy meson masses.

We begin by adopting the power counting &, ~ 83
ag/m ~ &2 for the HQE. Consequently, when expand-
ing up to O(?), we need to account for all leading-order
radiative and subleading-power corrections, as well as par-
tial subsubleading-power corrections. Higher powers in our
expansion or mixed terms are assumed to be negligible. The
HQE is well known, and we follow Ref. [12] closely in our
analysis. By virtue of our power counting, any form factor
F discussed in Sect. 2 can be expressed in terms of ten inde-
pendent functions: &, the leading Isgur—Wise (IW) function;
x2.,3 and 7, the subleading IW functions; and £ _g, the sub-
subleading TW functions at order &2 as introduced in Ref.
[23]; see also appendix B3 for more details. Each of these

~
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functions depends on the recoil parameter w. In the complex
half plane Rew > 1, the form factors, the HQET Wilson
coefficients, and the IW functions are free of singularities
due to QCD dynamics. Singularities of kinematical origin
can always be removed by redefining the form factors. Con-
sequently, for f being any of the ten IW functions considered
here, we expand it around w = 1:!

K o L
fy =3 = -1k (10)
k=0 ’

Following Ref. [10,24], we can further trade the variable w
for

«/1+w—\/§a
«/1+w+\/§a’

which correctly captures the analytic properties of the matrix
elements, i.e. it develops a branch cut corresponding to the
B™ D™ pair production at w < —1. While z(w) is a small
expansion parameter in the semileptonic phase space, in
absence of further modifications to the form factors as dis-
cussed in Ref. [10] we cannot generally expect small coeffi-
cients in an expansion in z. We proceed to expand each mono-
mial (w — l)k in Eq. (10) around z(1), where the maximum
order in z — z(1) depends on our concrete parameter models
discussed later. In this way, we keep the benefits inherent to
parametrizing in z, while conserving at the same time the
physical meaning of the fit parameters £ (1) as derivatives
of the IW functions at the zero-recoil point. In this setup, we
follow Ref. [13] closely.

Both HQET and the HQE of the heavy meson masses
provide us with some information on the parameters aris-
ing in the HQE of the hadronic matrix elements at hand. The
remaining ones need inferring from theoretical or experimen-
tal inputs. For our statistical analyses we define fit models,
which vary only in our choice of the order to which the differ-
ent Isgur—Wise functions are expanded in z. All our models
include all ten Isgur—Wise functions above; the expansion
upto 1/ mf is not only preferable from the point of view of
precision, but, as mentioned in the introduction, necessary,
given the available lattice data at w = 1. Employing the
recent LCSR results [9] allows to include all subsubleading
IW functions, which is an improvement compared to Ref.
[13], where only the functions £ 2 could be included. The
models used in this work are denoted as k/[/m, where the
numbers k, / and m have the following meaning:

zZ(w) = z(w, 1) with z(w,a) =

(11

k: the order to which the leading IW function is expanded
in z around z = 0;

1~ Note that the form factors are also commonly written as [24] f (w) =
Fwo)(1 = p? (w —wo) + c(w — wo)* +d(w —wp)* + - -), such that
f/(wo) = — f(wo)p?, f" = 2!f(wo)c, ete.
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[: the order to which the subleading IW functions are
expanded; and

m: the order to which the subsubleading IW functions are

expanded.

We keep all purely kinematical powers of w, i.e. terms that
arise when relating the form factors to the IW functions in
the HQE. Within the scope of this work we will discuss the
models 2/1/0 and 3/2/1.

We emphasize that increasing the maximum order in the
z expansion from one fit model to another can always be
expressed in terms of a non-zero shift to the new parameter
appearing in the higher-order term. As an example, consider
increasing the order of the z expansion from a 2/[/m to a
3/1/m model. The 2/1/m models can be recovered in the
3/1/m model by assigning §”'(1) = —&"(1)/2 —3&'(1)/64.

2.2 Theory constraints

With the definition of the models at hand we proceed to the
available theoretical calculations of the hadronic matrix ele-
ments as well as theoretical bounds on the parameter space
derived from dispersion relations [10,24]. The individual
pieces of theory information entering the likelihood are:

Lattice: For B — D the HPQCD and FNAL/MILC col-
laborations have, independently from each other,
determined the vector form factor f, and the
scalar form factor fj at several values of the recoil
parameter w > 1.2 We use correlated pseudo data
points from both studies: seven from [6] and five
from [7]. Note that at w = wpax, p the form fac-
tors fulfill an equation of motion that reduces the
number of data points per study.

For B — D* the HPQCD and FNAL/MILC col-
laborations have independently determined the
form factor hy, at w = 1 [8,25], averaged by
FLAG to ha,(w = 1) = 0.904 + 0.012 [26].
QCDSR: The subleading IW functions x23 and n have
been studied within three-point QCD Sum Rules
[27-29]. These sum rules have been used to infer
the normalization and slope of the subleading IW
functions at w = 1, yielding five data points in
total.
LCSR: At w > 1.5 the B — D™ form factor can be
accessed using LCSRs with B-meson Light-Cone

2 Note that both collaborations use subsets of the same MILC ensembles
in their analyses. However, the set of ensembles used in Ref. [6] is much
larger, leading to significantly smaller uncertainties in that study as well
as a decorrelation between the two results. An estimate of the remaining
correlation does therefore not seem necessary.
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Distribution Amplitudes (LCDAs) [18]. These
results have been superseded by an updated anal-
ysis [9], which includes for the first time all two-
particle and three-particle LCDAs in a consistent
twist-expansion up to twist 4 [30]. Moreover, the
recent analysis provides for the first time infor-
mation about the shape of the complete set of
B — D* form factors at four phase space points,
albeit with two caveats: the form factors are avail-
able only at w > wmax ~ 1.5 and the B — D
form factor fr could not be extracted as part
of the same approach as the other form factors.
The first point requires attention in the context
of the z expansion, since it increases the maxi-
mal value of |z| to values larger than encountered
in other studies. The second point dissuades us
from including fr in the analysis; instead, we
choose to predict fr within our approach and
compare it with the prediction of Ref. [9]. Follow-
ing the introductory discussion concerning exact
relations between some of the form factors, we
arrive at a total number of 33 data points.

Beyond the likelihood, we include further information on
the hadronic matrix elements. This additional information is
expressed as so-called unitarity bounds [10,24]. In the con-
text of the HQE, it is convenient to adopt the approach of
Ref. [24]. We consider the bounds for the currents Jy+ = ¢b,
Jo- = cysb, JIM, = cy"b, and in = cy"ysb. For all cur-
rents J; p we derive the bounds in terms of the full set of
ten independent IW functions present in our models. The
results of the perturbative OPE calculations for the bounds
are denoted as x;r and j;pr, where the tilde indicates sub-
traction of known one-body contributions [24]. Updated val-
ues for these four quantities have been recently provided in
Refs. [11,14,19] based on Ref. [31]. The general problem of
how to include positivity bounds in a Bayesian fit and our
approach to solve it is discussed in Appendix 1.

In the construction of the unitarity bounds, a choice must
be made to which order n in z the bound is formulated. Using
BGL-like form factors, this coincides with the order to which
the form factors are expanded. However, the treatment of the
unitarity bounds in the context of the HQE is non-trivial.
The reason for their complexity arises from the simultaneous
expansionin 1/mg, o, and z. As indicated above, we expand
the IW functions on different levels in the 1/m g expansion
to different orders in z, according to their combined power-
counting, i.e., a z> contribution might be relevant for the form
factors when entering the leading IW function, while such a
term in a subsubleading IW function is expected to be negli-
gible. Hence we choose generally k > [ > m. However, in a
BGL setup the unitarity bounds are written as quadratic forms
of the BGL coefficients without explicit factors of z. There-

fore the relative importance of higher-order contributions in z
is larger in these bounds than in the form factors themselves.
Consequently, the treatment of these higher-order contribu-
tions is important. Specifically, 1/ sz contributions are only
fully included for n < m, 1/m¢o contributions for n < [
and leading-order contributions for n < k. Since particularly
1/m contributions can be large, and the terms in the 1/m¢
expansion are not necessarily positive, the order n for the
unitarity bounds should be chosen to be at most n = [, with
[>1.

The combination of the described constraints allows to
include higher-order contributions in the HQE for the full set
of form factors. Within our determination of these contribu-
tions we pose the following questions:

e Are the various theoretical constraints mutually compati-
ble in the context of the HQE? If yes, what is the minimal
k/1/m model that achieves a good description?

e In case of a successful combined fit, what are the phe-
nomenological consequences with respect to | V| and
predictions for B — D™ 1y observables?

3 Statistical analyses

The numerical and statistical results presented in the follow-
ing have been obtained by means of two completely inde-
pendent implementations. One of these is publicly available
as part of the EOS software [32], which has also been used to
prepare all of the following numerical results and plots. The
posterior samples used to produce these results and plots are
available as ancillary files [33].

3.1 Fits to only theory constraints and SM predictions

The minimal model fulfilling all criteria laid out in the previ-
ous section is the 1/1/0 model. We find this model to provide
a bad fit to the available theory constraints, with X2 ~ 560
in the best-fit point for 39 degrees of freedom (dof). We
therefore proceed to fit the theory constraints with the 2/1/0
model, which yields an excellent fit with x> = 22.87 for
38 dof. This model therefore represents the minimal viable
fit model.? Following the discussion in the previous section,
it is important to account for systematic uncertainties inher-
ent to the HQE by increasing the order of the z expansions
by one. The corresponding model, 3/2/1, reduces the x? in
the best-fit point by ~ 13, at the expense of 10 additional
parameters. Details for these fits are given in Table 1.

3 Abandoning the requirement / > 1 leads to another model with an
excellent fit, 2/0/0, whose best-fit point essentially coincides with the
one of the 2/1/0 model.

@ Springer
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Table 1 Summary of the goodness of fit in terms of the 2 values at the best-fit point for all combinations of fit models and datasets. The largest
single pull arises from the QCDSR constraint on x5(1) in the 2/1/0 fit model with x2~4

Likelihood #pts #par
2/1/0 3/2/1 3/2/1 3/2/1 3/2/1
13 23 23 23 23
Lattice(D) 12 11.15 7.06 7.29 7.29 7.36
Lattice(D*) 1 0.00 0.01 0.00 0.01 0.00
QCDSR 5 4.58 0.04 0.04 0.01 0.02
LCSR 33 7.14 2.79 3.23 3.14 2.98
B — D{e ,u"}v 9) - - - - 6.75
B — D*{e~, u~}v 2017 9) - - 6.95 - 8.04
B — D*{e~, u~}v 2018 ) - - - 4.42 4.84
Total 51 22.87 9.91 - - -
(60) - - 17.51 14.88 -
(78) - - - - 30.00

Using samples of the posteriors of the fits to both mod-
els, we produce posterior predictive distributions for all
B — D® form factors, including fr. The median val-
ues and 68% probability envelopes for each form factor are
shown in Fig. 1, together with data points illustrating the
theory constraints where applicable. We make the following
observations:

e As expected, the uncertainty bands are systematically
broader in the 3/2/1 model.

e For the form factors fj, A; and 7> we observe that model
2/1/0 produces a local minimum for —15 GeV? <
q2 < 0, where the LCSR constraints are available. This
does not conform to the usual expectation in a disper-
sive picture: Far below the production threshold and
sub-threshold poles it should be possible to approxi-
mate the dispersive integrals for the form factors with
a single effective pole, leading to a monotonically falling
form factor with decreasing g2. Note, however, that this
behaviour is not statistically significant.

e Neither of the two models is able to simultaneously fit all
the nominal theory constraints plus the LCSR constraints
onthe B — D form factor fr,which have been excluded
from the nominal fit. This is not too surprising, given the
inability to determine the effective threshold parameter
for fr and subsequent approximation with the threshold
parameter of f as discussedin Ref. [9]. This approxima-
tion and the additional systematic uncertainty assigned
due to this approximation do not yield f7 results that are
compatible with the remaining form factors within the
HQE; we therefore do not consider the LCSR results for
fr reliable. We emphasize that f7 is the only form factor
affected by this issue and that the constraints on this form
factor do not enter any of our results.

@ Springer

e The unitarity bounds for the scalar and pseudoscalar
channels are essentially saturated for the central values
of our fits, implying that they are effective form factor
constraints. Due to the heavy-quark relations, they con-
strain all form factors, not just the (pseudo-)scalar ones.
On the other hand, since the posterior distributions for
these bounds are broad (the 68 % intervals include values
down to 0.28 and 0.31 for the scalar and pseudoscalar
bound, respectively), this observation does not imply any
significant tension with the physical bound, even when
allowing for additional intermediate states. The bounds
for the vector and axial-vector channels are not effective
in constraining the model parameters, since their poste-
rior intervals are safely below unity.

In addition, we use the posterior samples for the 3/2/1
fit model to produce posterior-predictive distributions in the
SM for the LFU ratios Rp and Rp+, the T polarizations PTD @
in B — D™t~ decays, and the longitudinal polarisation
fraction Fy in B — D*t~ v decays. We obtain

Rp =0.298+£0.003,  Rp: = 0.247 £ 0.006,
PP =032140.003, —P” =0488+0.018,  (12)

4

Fr, =0.470 £ 0.012.

The longitudinal D* polarisation for electrons is obtained as
F} = 0.540%0.013, which is well compatible with the Belle
measurement of 0.56+0.02 [34]. We also produce posterior-
predictive distributions for the B — D™{e~, u~}v branch-
ing ratios for both of our fit models. Their summaries in form
of mean value, standard deviations and correlations are col-
lected in Table 3. We emphasize again that these results are
independent of experimental data and improve on previous
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Fig. 1 The full set of B — D® form factors as a function of ¢ are of the respective fits. The lattice constraints used in the fits are shown

used to showcase our results for the nominal fit model 3/2/1 (orange as green data points. The LCSR constraints used in the fits are shown
lines and areas), in comparison to the minimal viable fit model 2/1/0 as purple data points. The superseded LCSR results not used in the fits
(light blue lines and areas). For both models we show the central values are shown as red data points for comparison, only

and 68% probability envelopes from posterior-predictive distributions
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Fig. 2 The four 1D kinematical probability distributions arising from
the full 4D differential decay rate B — D*{e™, 1™}V next to one of
the 1D kinematical distribution in B — D{e™, 1~ }v decays. We show
all available constraints published by the Belle collaboration along side

works using the HQE by including higher orders in 1/m,
and z explicitly, thereby providing a reliable error estimate.

3.2 Challenging measurements and extraction of | V|
We apply the form factors obtained in the previous subsec-

tion to the available experimental information to perform
phenomenological studies with high accuracy. Specifically,
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the 68% probability envelopes based on the two fit models fitted to only
theory inputs. Note that for the 2018 Belle results we have unfolded the
results ourselves; see the text for details

we confront our predictions with the measured spectral infor-
mation and extract | V|, assuming the SM. Our extraction
of | V| to subsubleading power in the HQE is the first of its
kind.

The publicly available experimental results are B —
D™ ¢~ kinematical distributions published by the Belle
collaboration [2-4] and the world averages for the branching
fractions [1]. The B — D¢~ v distribution Pp(w) from Ref.
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Table 2 Best-fit point for the parameters of the 3/2/1 model in a simul-
taneous fit to theory constraints and all available experimental mea-
surements. Uncertainty ranges presented here are meant for illustrative

purpose only, and should not be interpreted a standard deviations due
to non-Gaussianity of the joint posterior

Order Function f S () £ (1)
1/mf & +1.00 - —1.14  [-1.32,-0.93] +1.88 [+1.57,42.52] —3.29 [=5.13,—2.90]
1/mh i —0.06 [—0.08,—0.04] —0.00 [-0.02,+0.02] +0.06 [-021,+0.16] - -

e +0.00 - +0.04  [+0.02,+0.06] —0.05 [-0.16,—0.04] - -

A +0.60  [+0.44,+0.79] —0.02 [-0.18,40.18] —0.04 [—0.84,4+0.32] - -
1/m} & +0.12  [-0.10,+0.36] —5.78 [—12.5,—0.16] - - - -

I —1.89 [-2.26,—1.54] —3.14 [-9.53,+131] - - - -

i3 +0.86  [—8.29,+5.17]  4+0.06 [-2.96,+9.55] - - - -

iy —2.02 [-3.53,-075] —0.05 [—1.88,+171] - - - -

is +3.79  [+0.16,+5.20] —1.40 [-2.63,+3.26] - - - -

P +3.53  [-0.67,46.43] 4004 [—3.43,4+4.49] - - - -

Table 3 Posterior predictions for the branching ratios of B —
(D*, D*t}{e~, u~} decays in units of | V|2, as well as the values of
|Ven| extracted from the isospin-averaged branching ratios. Through-
out we use the HFLAV world averages [1] for the determination of
|Vep|. For the columns marked 2017 and 2018, the values in parenthe-

ses are obtained by using only the respective Belle measurements of
the branching ratios [3,4]. The row for the combined |V,| takes into
account correlations in the posterior predictions, but not the small and
unpublished correlations in the HFLAV world averages

Model Scenarios
exp. likelihood

2/1/0 3/2/1 3/2/1 3/2/1 3/2/1

- - 2017 2018 all exp.
B(B® — Dt{e, u=}0)/IVep|? 12.99 +0.35 13.48 £0.37 - - 13.56 +0.35
BB = D**{e™, u"}0/|Vep|? 32.33 +£1.28 33.16 £2.15 31.74 £ 1.46 32.19 £1.03 32.00 £ 1.03
Correlation 0.34 0.14 - - 0.10
[Vep| x 103 from B — D{e—, u~}v 415+1.2 40.7+1.2 - - 40.6 £ 1.1
[Vep| x 103 from B — D*{e™, u~}v 39.8+£1.2 393+1.7 40.1+1.3 39.8+1.0 40.0+ 1.1

- - (39.5+1.9) (39.0+1.3) -
[V x 103 combined incl. corr. 40.7 £ 1.0 40.2+1.0 - - 40.3+0.8

[2], and the four B — D*{~ v distributions Pp+(w), Pp+(x),
Pp+(cosOp+), and P(cos ;) from Ref. [3]* are unfolded of
detector effects by the Belle collaboration. The data presented
in Ref. [4] are still folded, and the necessary information for
the unfolding process is provided in the publication.

In a first step, we compare in Fig. 2 our posterior predic-
tions for the kinematical PDFs with the experimental results.
Both of our fit models yield visually indistinguishable pos-
terior predictions for the three angular distributions P(y),
P(cos ;) and P(cosfp+)in B — D*{e”, u~}v. The agree-
ment between our predictions and the experimental measure-
ments for P (cos 0y) is visibly worse than the excellent agree-
ment for the remaining two angular distributions. However,
we find that our predictions for these three distributions are

4 Note that these results are still preliminary and a new analysis of the
data is ongoing.

considerably more precise than the experimental results. We
therefore conclude that the latter do not further constrain the
form factor parameters within our two models; we hence
abstain from using them in the following. However, we find
that the results for the distributions Pp(w) and Pp+(w) do
have the potential to further constrain the form factor param-
eters.

In a second step, we fit the HQE expressions for the form
factors simultaneously to the previously discussed theory
constraints and different sets of publicly available experi-
mental results for Pp(w) and Pp+(w). These sets are: only
Pp+(w) from the 2017 data, only Pp+(w) from the 2018 data,
and the combination of all experimental results for Pp e (w).
For all these sets we find that the simultaneous fits show
excellent agreement between the theoretical constraints and
the experimental PDFs. A summary of the goodness of fit
in the best-fit points of all considered sets is presented in

@ Springer
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Table 1. Our nominal best-fit point, obtained in the 3/2/1
model, is presented in Table 2. Due to the non-Gaussianity
of the posterior we refrain from providing linear correlations.
We note that the slopes of the subsubleading IW functions
£;(1) are all compatible with zero at >~ 68% probability.

Our predictions forthe B — D)1~ observables includ-
ing the experimental information from the light-lepton modes
read:

Rp = 0.297 £ 0.003, Rp+ = 0.250 = 0.003,

PP =03214£0.003, —P” =0496+0.015,  (13)
Fr = 0.464 £ 0.010.

The predictions for B — Dt~ remain unchanged, which
is not surprising, given the high precision of the available
B — D form factor constraints. For the three B — D*7 ™D
observables we find a shift of ~ 0.5¢0" and a reduction in the
uncertainties by 0.003, which is particularly significant for
R(D*). Again these results improve on previous works using
the HQE by including higher orders in 1/m, and z explic-
itly. Furthermore, the latest experimental measurements are
included. As aresult, the uncertainties are on the same level as
some of the previous estimates using the HQE, while includ-
ing more conservative error estimates.

Finally, we produce posterior predictions for the integrated
branching ratios of B — D™ ¢~ decays in units of |V|?.
We choose to present our results for the B mode only. Our
results are listed in the top half of Table 3. We then proceed
to extract the value of |V, | from the isospin averages of the
respective branching ratios. Our results for | V| are listed
in the bottom half of Table 3. The isospin average of the
necessary branching ratios, expressed as branching ratios of
the B® mode, are:

B(B® — Dt{e™, u}p) = (2.24 + 0.07)%,

_ 14
B(B® — D*t{e™, u7}v) = (5.11 £ 0.10)%. (9

Our nominal result for the exclusive determination of | V.|,
obtained by combining all available theoretical and experi-
mental information, is:

veell = (40.3 40.8) x 1072, (15)

Ci

Its agreement with the individual values from B — D™ ¢~
is excellent. Averaging the two exclusive determinations with
the inclusive one [35], we find | V5| = (41.3 £0.5) x 1073,
where the three values are compatible at the 1.20 level.

4 Summary and outlook
In this work we carry out a comprehensive analysis of the full

set of B — D™ ¢~ form factors. The basis of our analysis
is the Heavy-Quark Expansion (HQE) up to O(¢?), where

@ Springer

our power-counting is defined as g, ~ 82 ~ oy ~ €2

By determining the coefficients of this expansion from all
available theoretical constraints we are able to predict the full
set of form factors with high precision. This allows for their
consistent and accurate use in a variety of phenomenological
applications without the assumption of absence of NP effects
inb — c transitions with light leptons. Our work focuses on
two applications: precision predictions for B — D™ 1~y
observables and accurate determinations of |V, | from B —
D™ {e~, u~}v decays.

We find excellent agreement between the various theo-
retical constraints on the relevant hadronic matrix elements.
The minimal viable fit model is found to be the 2/1/0 model,
where the numbers refer to the order in the z expansion of
the leading, subleading, and subsubleading Isgur—-Wise (IW)
functions, respectively. To account for systematic uncertain-
ties inherent to the HQE, we increase the order of the z expan-
sion for all three sets of IW functions, which defines our nom-
inal fit model. Within our analysis we pay particular attention
to the subsubleading terms in the HQE. In previous analy-
ses it turned out to be necessary to include at least two such
terms. Our analysis is the first to include the full set of IW
functions at the order O(1/ mg). We find that the expansion
in 1/m g is well-behaved, similar to what has been found in
a recent analysis of A, — A, form factors [36]. Based on
these findings we expect the terms at O(e3) to be negligi-
ble at the present level of precision. This assumption should
be revisited once more precise theoretical and experimental
information becomes available.

Our predictions for B — D®) ¢~ observables benefit
from the improved treatment of the HQE. This is reflected
by significantly smaller uncertainties compared to previous
analyses, while staying compatible at the 1o level. Predic-
tions with and without the use of experimental inputs are
given in Egs. (13) and (12), respectively.

Our determinations of |V, | from D and D* final states are
mutually compatible and also compatible with the inclusive
determination at the 1.2¢0 level. Unlike for CLN analyses, we
find no tension with the BGL determinations. Our nominal
result for |V, | using all exclusive experimental inputs reads

veell = (40.3 4 0.8) x 1072,

The upcoming lattice analyses of four of the B — D*
form factors at nonzero recoil [37-39] will benefit our
approach and help to determine the HQE parameters to even
higher precision.
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Appendix A: Statistical treatment of the unitarity bounds

We consider a positive semi-definite function B(é ), where 6
denotes the parameters of interest. In the context of our work,
B corresponds to any of the previously discussed strong uni-
tarity bounds. Moreover, we have B(é ) < xB- The proba-
bility density of the parameters 6 can then be expressed as

P@) = Lé) (A1)
C [d6N@)
where we use
- +oo -
NG = [ w1 [B@) = xu] POw. (A2)

In the above 1 denotes the indicator function, and P(xp) is
the probability density for the upper bound on B. For the case
that x p is precisely known, P (xp) can be approximated as a
Dirac delta and consequently P(é ) is given by the indicator
function. For our application, the upper bounds carry a sig-
nificant theoretical uncertainty, which we model as indepen-
dent Gaussian distribution for each bound, centered around
a value u p and with a standard deviation of og. In that case

we obtain:
B() < usp

2 (A3)
) otherwise

B@)—up
OB

_ n 0 ~
(

Appendix B: Form factor definitions
1.B—> D
The B — D form factors have been defined in Eqgs. (1)—(2).

Their translation to the heavy-quark matrix elements defined
in Ref. [12] reads

1

f+:2\/; [(1+r)h+—(1—r)h—], (BI)
1

=57 [ +r)h — (1 =r)hy], (B2)

14+r2 = 2rw
fo=f++Tf—, (B3)
1
fr=-Top, (B4)

NG
where r = Mp/Mp.
2.B — D*

The form factors for B — D* are defined in Eqgs. (4)—(6). The

factors in Eq. (6) have been chosen such that the conventions
of Ref. [22] for the following contractions are recovered:

(D*(k, n) éq"0ub | B(p))

= —2ieyupo ™ pPkO Ti(q?), (B5)
(D*(k, m)| ¢q"0vysb | B(p))
ok 2 2 o o 2
=g | Mg —Mp)g, —p " (p+k)u | T2(g”)
qz
0% |G =~ (p+ ) | T3(q%) (B6)
— MD*

2
MB

Translating again to the heavy-quark form factors in [12],
we find®

_1+r

V=
2r

hy, B7)

> Note again the different sign convention for the Levi-Civita tensor
used there.

6 Note the different convention for the behaviour under time reversal
in that article, which necessitates a factor of ’i’ in the comparison on
the side of the QCD form factors.
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1
Ay = ﬁ [(w—i— Dha, +(rw —Dha, + (r — w)hA3],
(B8)
1
A= ﬁl(jrw)hm, (B9)
Ay = Y~ Drha, — w — 1k
12 = W [(w—r)ha, — (w—Drha, — (w— Dhas],
(B10)
1
T1=—2ﬁ[(1—r)hT2—(1+r)hT]], (B11)
. 1 2r(w+1) 2r(w — 1)
T 2ﬁ|: 57 hr, — — hT2:|, (B12)
1
=5 [(1 — My — (L +r)hy + (1 —r2) hT3],

(B13)
where r = Mp+/Mp.
3. Details on the HQE for the form factors

A generic heavy-quark form factor 4 is expanded in oy /7,
gg = A/2mg, and 7 as follows:

h(z) = &w)h(w)
= E(w) <a + %b [é,- (w)] ¥epcp [ii(w)]

e [Liw)] +e2d [liw)]) (B14)

w=w(z)

where a = 1, 0, depending on whether the form factor van-
ishes in heavy-quark limit or is proportional to the leading
IW function &(w), and b, cp, ¢, and d represent linear func-
tionals of their arguments. The o corrections are written
in terms of the leading order results for the HQET Wilson
coefficients éi(w); see [40] for a review. The O (SQ) cor-
rections fulfill equations of motion that reduce the number
of independent functions L; from six to four. These four
are commonly denoted as x1 2 3(w) and 77(w), where heavy-
quark spin symmetry allows x| (w) to be absorbed into & (w).
Hence, only three independent functions remain [40]. Sim-

ilarly, equations of motion relate the functions at O (82Q)

with each other. However, the set of independent functions
is comprised by more than six functions [23]. Since we are
only interested in the 53 corrections, it suffices to define the

first six IW functions at O (82Q> as the six functions arising

at O (83) Finally, all functions are expanded in z according
to Eq. (10), to the order given in the corresponding model.
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