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Abstract: Isotopes at the limits of nuclear existence are of great interest for their critical role

in nuclear astrophysical reactions and their exotic structure. Experimentally, exotic nuclides

are challenging to address due to their low production cross-sections, overwhelming

amounts of contamination, and lifetimes of typically less than a second. To this end,

a Multiple-Reflection Time-of-Flight mass spectrometer at the TITAN-TRIUMF facility

was built to determine atomic masses. This device is the preferred tool to work with

exotic nuclides due to its ability to resolve the species of interest from contamination and

short measurement cycle times, enabling mass measurements of isotopes with millisecond

half-lives. With a relative precision of the order 10−7, we demonstrate why the TITAN

MR-TOF MS is the tool of choice for precision mass surveys for nuclear structure and

astrophysics. The capabilities of the device are showcased in this work, including new

mass measurements of short-lived tin isotopes (104–107Sn) approaching the proton dripline
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as well as 89Zr, 90Y, and 91Y. The last three illustrate how the broadband surveys of MR-TOF

MS reach beyond the species of immediate interest.

Keywords: mass spectrometry; proton dripline; time-of-flight mass spectrometry; ion traps;

radioactive ion beams; experimental nuclear physics

1. Introduction

The ratio of protons to neutrons as well as their total number determines the nuclear

properties of any nuclide. The limits of stability or the point of being nuclear unbound

are called the proton and neutron driplines. To understand the evolution of nuclear

structure, and therefore the subatomic forces at play, is an outstanding challenge of intrinsic

interest that also impacts studies of, for example, nuclear astrophysics. To approach the

driplines experimentally invokes a number of obstacles: low production cross-sections,

substantial contamination, and short half-lives. High-sensitivity, -purification, and -speed

methodologies are required. These traits characterize Multiple-Reflection Time-Of-Flight

Mass Spectrometers (MR-TOF MSs).

The MR-TOF MS [1,2] at TRIUMF’s Ion Trap for Atomic and Nuclear science

(TITAN) [3] facility was constructed to focus on mass surveys to benefit studies of

nuclear structure and nuclear astrophysics, where the required relative precisions are

10−6 and 10−7, respectively. In this quest, the TITAN MR-TOF MS has reached preci-

sions down to 9 × 10−8 [4], removed contamination up to 108 [1] times greater than the

species of interest, and achieved sensitivities of rates as low as 0.007 detected ions per

second [5]. Consequently, experiments focusing on driplines occur increasingly frequently

at the TITAN facility.

To this end, we detail an experiment aimed at exploring the nuclear structure of

neutron-deficient tin isotopes towards the proton dripline. Herein, we report mass determi-

nations of 104–107Sn, showcasing how the MR-TOF MS can be used to reduce contamination

and obtain meaningful precisions in less than ten hours of runtime. In addition, we docu-

ment simultaneous mass measurements of 89Zr, 90Y, and 91Y. These three were measured

due to the broadband (i.e., non-resonant) technique of the MR-TOF MS.

2. Experimental Overview

The TITAN MR-TOF MS is based on the established setup Giessen-GSI FRS

MR-TOF [6–8]. Similar devices are employed at, for example, RIKEN in Japan [9], CERN

in Switzerland [10], and GSI in Germany [6], with typical relative precisions of 10−7,

although better values can be achieved [11]. Recent exploits of the TITAN MR-TOF MS

include measuring exotic neon isotopes [12], neutron-rich scandium isotopes [13], neutron-

deficient ytterbium [14], and neutron-deficient nuclei in the Z = 70–82 region [15].

Radioactive ion beams (RIBs) are produced via the Isotope Separation On-Line (ISOL)

method, by impinging a 480 MeV proton beam onto a thick target, causing fragmentation

and spallation reactions. The radionuclides diffuse out of the ≈2000 ◦C target and are

ionized by one of three ion sources at ISAC-TRIUMF [16]. For the neutron-deficient tin

experiment, a proton beam current of 55 µA was used, incident on a tantalum target,

and the Sn isotopes were selectively ionized by TRIUMF’s Resonant Laser Ion Source

(TRILIS) [17]. The beam is then sent through a dipole magnet, with a resolving power

of approximately 2500 [16], eliminating species differing in their ratio of mass number to

charge state.
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The RIB is then transported to TITAN’s helium-gas-filled Radio Frequency Quadrupole

(RFQ) ion trap [18]. The beam is cooled via successive collisions with an inert buffer gas

with the RF field providing transverse confinement. An electrostatic gradient transfers the

ions into the bunching region, where the beam is accumulated and then extracted as ion

bunches, which are subsequently sent to the MR-TOF MS.

The MR-TOF MS [1] is composed of two main sections: a preparation section and an

analyzer section (see Figure 1). The preparation system is made of a series of helium-buffer-

gas-filled RFQs [19]. The bunched beam passes through the input RFQ ion guide, through

the RFQ switch-yard, past the transfer RFQ, and into the preparation trap (a linear Paul

trap), where it is re-cooled. Next, the beam emittance is shaped in the injection trap before

injection into the analyzer section.

Figure 1. Schematic of the TITAN MR-TOF MS, highlighting primary components including the

internal ion source, RFQ switch-yard, and analyzer. The unique combination allows the TITAN

MR-TOF MS to merge calibrants with RIB and to act as its own beam purifier.

The analyzer section is made of a pair of electrostatic mirrors, each with four cylindri-

cal electrodes, separated by a drift tube. A dynamic Time Focus Shift (TFS) is performed

with the electrostatic mirror electrodes to align the bunch’s time focus with the downstream

detector to maximize the temporal resolution. Each subsequent turn (i.e., after the first

TFS turn) is an isochronous turn (IT). For this experiment, the ions underwent between

385 and 398 ITs in order to most effectively separate the tin ions from isobaric contami-

nants. After completing their flight, the ions are ejected from the analyzer by opening the

mirror closest to the detector. An ETP MagneTOF™ (ETP Electron Multipliers Proprietary

Limited, Clyde, New South Wales, Australia) measures the time of flight (TOF) of the ions.

The measured TOF is used to deduce the mass via

m

z
=

c · (t − t0)
2

(1 + NIT · b)
(1)
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with z being the charge state, c, b, and t0 being calibration parameters, and NIT is the

number of isochronous turns. Tune-specific parameters c and t0 were determined prior

to the experiment with well-known, stable ions. For the described experiment, 133Cs+

from the MR-TOF MS thermal ion source was utilized and merged with the RIB via the RF

switch-yard. For the determination of b, a time-resolved calibration (TRC) [20] is performed

using a high-statistics reference peak, which corrects drifts in the Time-of-Flight spectra

caused by, for example, diurnal temperature cycles in the experimental hall. TRCs further

improve the achievable resolving power and, therefore, the separation of the ion of interest

(IOI) from the contamination inherent to RIB production.

To reduce contamination, ions can be mass-selectively retrapped [14]. Once ions are

temporally separated in the analyzer, the IOIs are retrapped in the injection trap while

the contaminants are deflected. The ions from the injection trap are re-cooled and re-

injected into the analyzer, complete another TFS and more ITs, and are ejected for mass

measurement. In the tin experiment, the dominant contaminants were atomic In+, Pd+,

and Ag+ as well as molecular Zr16O+, Sr19F+, and Y16O+, as seen in Figure 2, where the

detected rate was as low as 0.02 particles per second (pps) for 104Sn+.

Figure 2. Spectra showing the effects of in situ beam purification by retrapping (off: (A); on: (B,C))

and Sn-ionizing laser beams (blocked: (C); unblocked: (A,B)) at A = 104. Without retrapping,

the tin isotopes cannot be observed, while the lasers provide an additional elemental confirmation of

their identity.

In cases like this tin experiment, the elemental selectivity of TRILIS unambiguously

reaffirms the identity of the IOI by comparing spectra with the lasers on and off. In Figure 2
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panel C, the peak of 104Sn completely disappears in the absence of its resonant ionization

by lasers.

3. Data Analysis

The data analysis follows the procedure described in [20] and is performed in

two stages. First, TOF Control software [21] is used to obtain the time-resolved calibration.

Spectra are broken down into calibration blocks and the peak of a well-known species in

each block is fit with a Gaussian distribution and as a result, the time-dependent constant b

is determined for each block.

Second, a fitting package, emgfit [22], employs Exponentially Modified Gaussian

(hyper-EMG) distributions [20] for peak fitting. For each mass spectra, a well-resolved,

high-statistics peak was selected to be the peak shape calibrant. For this analysis, isobaric
gIn+ was chosen. Since the gIn+ peaks were broadened due to non-resolved isomers (mIn+),

the spacing between gIn+ and mIn+ was a fixed parameter in the fitting procedure [23].

The shape calibrant was individually fit using Pearson’s chi-squared statistic, minimizing

the χ2
P cost function. The shape-calibrant peak was fit with hyper-EMG distributions. Then,

all of the peaks in the spectra were fit with the Poisson maximum likelihood estimation

method (MLE). Here, MLE was preferred over chi-squared due to chi-squared biasing the

mean in instances of low counts whereas MLE remained unbiased by implicitly assuming

a Poisson distribution.

The ionic mass values, mion, were determined by

mion =
(m/z)cal,lit

(m/z)cal,MLE
· (m/z)MLE · z (2)

where (m/z)cal,lit is the literature mass obtained from AME2020 of the calibrant,

(m/z)cal,MLE is the fitted mass of the calibrant, (m/z)MLE is the fitted mass of the ion

of interest, and z is the charge state of the ion. The mass calibrants for this analysis are

specified as “Mass Calibrant” in Table 1. The electron binding energies are negligible (as

they are on the order of tens of electron volts) relative to the statistical uncertainty. Lastly,

the atomic mass excess ME was determined by

ME = mion + z · me − A · u (3)

where me is the mass of an electron, A is the mass number (total number of protons and

neutrons), and u is the atomic mass unit.

The mass uncertainties were determined by quadratically summing the uncertainty

from the fitting procedure to the systematic uncertainty. The systematic error, determined

offline to be δm/m = 3 × 10−7, was dominated by the (voltage) ringing of the detector-

side mirror’s electrodes, which could have affected the extraction potential towards the

detector. Any effect from ion–ion interactions inside the MR-TOF MS was negligible, as the

measurements were performed with one ion per cycle.

Table 1. Summary of the mass excess ME values determined in this work and comparison to literature

values obtained from AME2020 [24]. Number of detected events, calibrant species, and ionic mass

ratios are presented.

Nuclide Number of Events Ionic Mass Ratio * Mass Calibrant METITAN (keV) MEAME (keV) Difference (keV)

89Zr 448 1.00002898 (488) 89Y16O −84,883 (35) −84,878 (3) 5.2 (35)

90gY 370 1.000023135 (558) 90Zr16O −86,498 (40) −86,497 (0.4) 0.6 (40)

90mY 266 1.000030123 (563) 90Zr16O −85,805 (41) −85,815 (0.4) 10 (41)
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Table 1. Cont.

Nuclide Number of Events Ionic Mass Ratio * Mass Calibrant METITAN (keV) MEAME (keV) Difference (keV)

91gY 36,797 1.000015435 (464) 90Zr91O −86,351 (33) −86,351 (2) 0.7 (33)

91mY 9328 1.000021048 (476) 90Zr16O −85,797 (35) −85,796 (2) 1 (35)

104Sn 101 1.00018007 (624) 88Y16O −71,601 (50) −71,627 (6) 26 (50)

105Sn 626 1.000195519 (483) 89Y16O −73,349 (34) −73,338 (4) 11 (34)

106Sn 776 1.000164119 (546) 90Zr16O −77,327 (37) −77,354 (5) 26 (37)

107Sn 350 1.000141815 (476) 91Zr16O −78,511 (34) −78,512 (5) 1 (34)

* Ionic mass ratios were determined from mIOI/mcal.. For AY and AZr, since they were measured in molecular

form, this ratio was determined using the ionic mass of the molecule of interest divided by the ionic mass of

the molecular calibrant (e.g., m89Zr16O+/m89Y16O+ ). Errors in ionic mass ratios are given to their decimal place

e.g., 1.00002898 (488) = 1.00002898 ± 0.00000488.

4. Results

The mass values for exotic 104–107Sn are detailed in Table 1 and compared to the

AME2020 [24] values. The TITAN and evaluated [24] tin values are found to be in excellent

agreement (<1σ), with the latter based on Penning-trap mass determinations [25,26]. A com-

parison of the two ion-trap methodologies leads to two conclusions. First, the MR-TOF MS

achieves a superior speed, sensitivity, and dynamic range, as has been demonstrated at

TITAN (e.g., this work) and elsewhere (e.g., [27,28]). Second, while Penning trap mass spec-

trometry can achieve vastly superior precision, MR-TOF MS achieves sufficient precision

for nuclear structure and astrophysics investigations.

To demonstrate the precision required for nuclear structure studies, we calculated the

two-neutron separation energy S2n of the relevant tin isotopes:

S2n = M(Z, N − 2)− M(Z, N) + 2Mn (4)

where Mn is the mass of a neutron. In general, S2n ranges from zero (neutron dripline) to

tens of MeV (proton dripline), see e.g., Figure 3 of the tin region of interest. The typical

behavior of the S2n topology can be most easily understood through the nuclear shell

model [29], wherein dramatically more stability is found at certain occupation (or ”magic”)

numbers like neutron numbers N = 2, 8, 20, 28, 50, 82, and 126. Partially filled shells

manifest as a near-linear trend in S2n, a sharp discontinuity at closed shells, and more

complicated behavior for highly deformed nuclei. The uncertainties achieved in this TITAN

MR-TOF MS experiment (and all others) are adequate to probe nuclear shells and the

evolution of the nuclear structure towards the driplines.

Success in measuring highly exotic species towards or at the driplines depends on the

sensitivity of the MR-TOF MS. The lowest rate of detected ions in the tin experiment is

0.02 pps and in other TITAN experiments, down to 0.0007 pps [5]. This sensitivity is, in

large part, due to the in situ beam purification or retrapping method (described above),

which can, in milliseconds, remove decades of contamination. While TITAN practice is

to aim for at least 10 ions per IOI peak, as little as one ion suffices [27] and underscores

the importance single-ion sensitivity and methodologies in addition to beam purification.

As such, the MR-TOF MS can capture high RIB rates, purify the IOI (Figure 2), and then

perform the mass measurement without ion–ion interactions.

Contamination poses two obstacles: obscuring the IOI and introducing a systematic

shift in the measured mass due to ion–ion interactions. In the tin experiment, retrapping

reduced the maximum ratio of IOI to contamination from about 1:102 to, at most, 1:30 (e.g.,

see Figure 2A,B). For more typical retrapping scenarios, the dynamic range exceeds the
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space-charge limit of any precision Penning trap mass spectrometer [30] and can only be

matched by TOF spectrometers [31,32]. The former often relies on identifying contaminants

on-line and then cleaning them individually (see [30] and references therein). As such,

substantial time is lost to preparing (rather than measuring) the IOI. The latter can sustain

a high space charge, is broadband, and can be divided into so-called Bρ-TOF and storage-

ring-based measurements. Bρ-TOF can reach a single-ion sensitivity and precision similar

to those of MR-TOF; however, the complexity of the calibration, oftentimes requiring many

well-known masses, can pose a significant challenge. For TOF experiments in a storage ring

to achieve single-ion sensitivity and a precision comparable to that of MR-TOF, the required

beam cooling raises the lower limit of the half-life to the order of one second, about

200 times higher than that demonstrated in the TITAN MR-TOF MS, of 6 ms [4].

Figure 3. Surveys of the two-neutron separation energy S2n are a common method to examine the

evolution of nuclear structure; as the vertical axis scale indicates, the desired precision is less than

about 100 keV, well within reach of the MR-TOF MS. The TITAN values have been combined with

AME values in this plot, seen in green, with a variance weighted mean. Red circles indicate values

extrapolated from the mass surface by the authors of AME2020.

Capable of measuring species with half-lives of a few ms, the MR-TOF MS is well

suited to measurements approaching the driplines, although, in the neutron-deficient Sn

isotopes, the half-lives range from a few to tens of seconds due to their “magic” nature

(of the closed proton shell). The half-life (here, at least 21 s for 104Sn [23]) along with the

expected yield and contamination rate determine the MR-TOF MS duty cycle prepared for

each experiment. The short duty cycles and the sensitivity allow for fast measurements;

the duration of this experiment was about 10 h, with the complete data being collected in a

mere four hours.

5. Discussion on Direct and Indirect Mass Measurements

In the tin isotopes, the neutron-deficient isotope of 103Sn had only been measured

indirectly through its β-endpoint energy [33,34]. Both measurements have been discarded

by the AME2020 authors (see pp. 21–22 of [35] for the full discussion) because the trends

in the mass surface indicate 103Sn should be 120 keV more bound. In β-endpoint energy

measurements, systematic errors like the pandemonium effect [36] can be significant. This

example underscores the need for accuracy, typically best achieved by direct techniques.
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For this reason, we present herein the first direct mass measurements of 89Zr and 90,91Y,

with an example spectra seen in Figure 4.

In comparing the neighborhood of 89Zr and 90,91Y with that of 104–107Sn in Figure 5,

their simultaneous measurement may appear unlikely. However, the Zr and Y formed

oxide molecules and were delivered to TITAN as molecular ions; consequently, they were

isobars of the tin IOI. Their simultaneous measurement was enabled by the broadband or

non-resonant nature of MR-TOF MS. (The molecular bond is negligible relative to the statis-

tical uncertainty.) In all three cases, good agreement was found between the TITAN and

AME2020 values, and the TITAN 91Y value shows a modest improvement on future mass

evaluations. This experiment demonstrates how the contamination inherent to RIB produc-

tion may allow for additional measurements of nuclides, which were formerly known only

by indirect measurements (this work) or can anchor a chain of indirect measurements [15].

Surprisingly, many nuclides near stability have been measured only indirectly (see Figure 5)

despite their value in verifying trends in the mass surface and therefore our understanding

in nuclear structure.

Figure 4. Spectra at mass number A = 106 showing the first direct mass measurement of 90Y+,

along with the isotope of interest, 106Sn+. Orange and blue line shapes indicate the individual fits of

the ground and excited states of 90Y+ that were observed, with the summed line shape indicated

in red. This simultaneous measurement was achievable due to the broadband capabilities of the

MR-TOF technique.

Figure 5. The section of the chart of nuclides relevant to this article displayed by measurement type

listed in the AME2020 [24]; see text for more information. Tens of nuclides have had their masses

measured only indirectly (light gray) despite being adjacent to the so-called “valley of stability”.

Three of these—89Zr and 90,91Y—have been measured in this work (red circles), despite the focus on

the neutron-deficient tin isotopes. These measurements were possible due to the broadband nature of

the MR-TOF MS.
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6. Summary and Outlook

High-precision mass measurements of neutron-deficient tin isotopes as well as first-

time direct measurements of 89Zr and 90,91Y were performed at TITAN-TRIUMF using

the MR-TOF MS technique. All results confirmed the AME2020 values within 1σ in only

four hours of measurement time, a fraction of the time required for Penning trap mass

spectrometry, which was previously used to explore this region.

The experiment showcases the capabilities of the MR-TOF MS to meet the challenges of

surveying towards and along the nuclear driplines: duty cycles compatible with half-lives

of only a couple milliseconds; at TITAN, half-lives as low as 6 ms have been measured.

High resolving powers separate the species of interest from contaminants; at TITAN,

resolving powers up to 600,000 have been demonstrated [37] with ongoing efforts for

higher values. Finally, retrapping permits a dynamic range as large as 1:108 to measure

species with detected rates as low as 0.0007 pps. Finally, MR-TOF MS is a broadband,

non-resonant technique that can allow for the simultaneous mass cartography of nearby

regions of interest. These factors and a typical precision of ∼10−7 make the MR-TOF MS

an ideal instrument to survey the driplines. Such measurements are of the highest priority

to understand the evolution of nuclear structure and explosive nucleosynthesis, where

sensitivity, precision, and accuracy are critical.
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Abbreviations

The following abbreviations are used in this manuscript:

AME Atomic Mass Evaluation

EMG Exponentially Modified Gaussian

IOI Ion(s) of interest

ISOL Isotope Separation On-Line

IT Isochronous turn(s)

MLE Maximum Likelihood Estimator

MR-TOF MS Multiple-Reflection Time-of-Flight Mass Spectrometer

PPS Particles per second
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RFQ Radio Frequency Quadrupole

RIB Radioactive ion beam

TFS Time Focus Shift

TITAN TRIUMF’s Ion Trap for Atomic and Nuclear science

TOF Time-of-Flight

TRC Time-resolved calibration

TRILIS TRIUMF’s Resonant Ionization Laser Ion Source
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