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Optimal low-depth quantum
signal-processing phase estimation

Yulong Dong 1,2 , Jonathan A. Gross 1 & Murphy Yuezhen Niu1,3

Quantum effects like entanglement and coherent amplification can be used to
drastically enhance the accuracy of quantum parameter estimation beyond
classical limits. However, challenges such as decoherence and time-dependent
errors hinderHeisenberg-limited amplification.We introduceQuantumSignal-
Processing Phase Estimation algorithms that are robust against these chal-
lenges and achieve optimal performance as dictated by the Cramér-Rao
bound. These algorithms use quantum signal transformation to decouple
interdependent phase parameters into largely orthogonal ones, ensuring that
time-dependent errors in one do not compromise the accuracy of learning the
other. Combining provably optimal classical estimation with near-optimal
quantum circuit design, our approach achieves a standard deviation accuracy
of 10−4 radians for estimating unwanted swap angles in superconducting two-
qubit experiments, using low-depth ( < 10) circuits. This represents up to two
orders of magnitude improvement over existing methods. Theoretically and
numerically, we demonstrate the optimality of our algorithm against time-
dependent phase errors, observing that the variance of the time-sensitive
parameterφ scales faster than the asymptotic Heisenberg scaling in the small-
depth regime. Our results are rigorously validated against the quantum Fisher
information, confirming our protocol’s ability to achieve unmatched precision
for two-qubit gate learning.

Quantum metrology’s efficiency is fundamentally influenced by two
critical factors: the Heisenberg limit, which defines how accuracy
scales with quantum resources, and the coefficients of this scaling.
While a variety of quantummetrology strategies1–3 successfully adhere
to the Heisenberg scaling, the real challenge lies in achieving or even
addressing optimality in the scaling coefficients with realistic con-
straints. This aspect is particularly vital for applications in quantum
error correction, where achieving fault-tolerant thresholds demands
exceptionally high accuracy in quantum gate characterization. The
necessity for deep circuitry, a significant hurdle in practical applica-
tions, stems directly from the lack of optimality in these scaling coef-
ficients. This inefficiency is compounded by the challenges of finite
coherence times and the amplification of drift errors from low-

frequency noise or control fluctuations. Therefore, current quantum
metrology protocols, limited to accuracy levels between 10−2 and 10−3

radians2,3 for estimating gate angles, often fall short of the accuracy
( ~ 10−4) needed to verify the crossing of fault-tolerant error threshold
for quantum error correction and other near-term quantum
applications.

In quantum metrology for gate calibration, two primary approa-
ches are used: robust phase estimation (RPE) and randomized
benchmarking. RPE, along with its extensions like Floquet calibration,
can achieve theHeisenberg limit under ideal conditions and are robust
against state preparation andmeasurement (SPAM) errors across both
single and multi-qubit gates1–3. However, its practical implementation
is limitedby the need for deep circuits and resource-intensive, iterative
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black-box optimizations to ensure accurate calibration. Moreover, its
precision drops to between 10−1 and 10−2 radians when dealing with the
time-dependent drifts common in superconducting qubit systems.
Though recent progress4,5 refine the multiplicative overhead of RPE
cost, they focus on the asymptotic regime rather thanphysically short-
depth and noise-robust implementation. Meanwhile, the randomized
benchmarking approach, although general, forgoes Heisenberg scal-
ing. It also requires extensive circuit depth to accurately estimate
parameters and lacks sensitivity to coherent rotation errors6–9. As a
result, these prevalent quantum metrology techniques have not yet
achievedoptimal performance in practice for learning two-qubit gates.

The effectiveness of a quantum metrology scheme can be asses-
sed by the fundamental limits set by both classical and quantum
Cramér-Rao bounds10,11. To meet the classical Cramér-Rao bounds, the
inference subroutines that process measurements to estimate quan-
tum gate parameters must be optimal. Similarly, to achieve the quan-
tum Cramér-Rao bounds, the quantum measurement schemes,
characterized by any Positive-Operator-Valued Measurements, must
also be optimal11. Realizing optimality in both aspects requires refining
classical post-processing techniques and the quantum circuit designs
used in quantum gate calibration. In this work, we show that the RPE-
based multi-parameter phase estimation method requires an addi-
tional phase-matching condition: the diagonal elements of the gates
must share the same phase. If this condition is violated, the RPE-based
method will fail to achieve both Heisenberg scaling and the classical
Cramér-Rao bounds when there’s more than one phase to learn, even
in the absence of quantum noise.

In this work, we propose a metrology protocol that is, by design,
robust against realistic time-dependent errors and only requires shal-
low ( < 10) circuits to achieve up to two orders of magnitudes of
improvement over existing methods in the precision of gate-
parameter estimates.

Results
We harness the analytical structure of a class of quantum-metrology
circuits using a theoretical toolbox from classical signal processing12,13,
Quantum Signal Processing (QSP)14–16 and polynomial analysis17. QSP
allows us to treat the inherent quantum dynamics as input quantum
signals and perform universal transformations on the input to realize
targeted quantum dynamics as output. Classical signal processing
provides methods for analyzing these transformed signals to produce
robust estimations. We propose a general gate model, which we term
the U-gate model, that encapsulates two-level invariant subspace
structure in the native gate sets of superconducting, neutral atoms,
and ion trap quantum computers. We parameterize the subspace of
interest in our model U-gates with a set of angle parameters, and
provide a metrology algorithm for learning the swap angle θ and the
phase difference φ.

Our metrology algorithm, which we term Quantum Signal-
Processing Phase Estimation (QSPE), separates the estimation of the
parameter-free from time-dependent errors (θ) from that which is
affected by time-dependent drift (φ). Interestingly, the parameter φ
variance shrinks faster than Heisenberg scaling concerning circuit
depth in the pre-asymptotic low-depth regime of experimental inter-
est. We analyze the stability of our protocol in the presence of realistic
experimental noise and sampling errors. We prove that our method
achieves the Cramér-Rao lower bound in the presence of sampling
errors and achieves up to 10−4 STD accuracy in learning swap angle θ in
both simulation and experimental deployments on superconducting
qubits. We provide the evaluation of the metrology protocol’s quan-
tum Fisher information (QFI) and show that our approach is a factor of
two above the quantumCRLB (QCRLB). Furthermore, we demonstrate
an interesting transition of the optimalmetrology variance scaling as a
function of circuit depth d from the pre-asymptotic regime d ≪ 1/θ to
the Heisenberg limit d → ∞.

We summarize the main results of our metrology algorithm and
start by defining the metrology problem, the learning of a general U-
gate, followedby an analysis of theQSP circuit withU-gates used in our
algorithm. Building upon these closed-form results, we propose a
phase estimation method combining Fourier analysis with QSP to
separate the two gate parameters of interest in their functional forms.
Our estimation algorithm enables fast and deterministic data post-
processing using only direct linear algebra operations rather than
iterative black-box optimizations used in multi-parameter robust
phase estimation1,2. Moreover, separating the inference of θ and φ
enhances the robustness of the phase estimationmethod against time-
dependent errors that predominantly affect the gate parameter φ,
which arise from the time-dependent qubit frequency noise18–20. The
analysis andmodeling ofMonte Carlo sampling error also indicate that
our phase estimation method achieves the fundamental quantum
metrology optimality in a practical regime against realistic errors for
near-term devices. We also provide a comprehensive mathematical
analysis of methods based on robust phase estimation2,3, and prove
that the vulnerability of phase angle φ to time-dependent errors ulti-
mately renders the estimation accuracy of the swap angle θ expo-
nentially worse than the Heisenberg limit. In addition, we proposed a
noise-robust QSPE protocol that enables the estimation of gate para-
meters even when the gate angles fall outside the confidence regime
for phase estimation. Furthermore, we demonstrated QSPE experi-
mentally on 34 superconducting qubits using the Google Quantum AI
team’s hardware, achieving 10−4 two-qubit phase estimation accuracy
in practice, which improves by two orders ofmagnitude over standard
previous methods. Lastly, we include an empirical noise-robust QSPE
protocol that enables the estimation of gate parameters evenwhen the
gate angles fall outside of the approximation regime for phase
estimation.

General gate model with two-level system invariant subspace
Our QSPE technique applies to any gate that contains a two-level
invariant subspace B, such that states within B remain within B when
acted upon. Here, we define a general two-level unitary model, which
we term the U-gate model, around which we base our framework. We
parameterize this model gate when restricted to the subspace B as:

U θ,φ, χ,ψð Þ½ �B =
e�iφ�iψ cosθ �ieiχ�iψ sinθ

�ie�iχ�iψ sinθ eiφ�iψ cosθ

 !
ð1Þ

We refer to θ as the swap angle,φ as the phase difference, χ as the
phase accumulation during the swap andψ as the global phase present
in the entire gate. Note that χ cannot be amplified on the same basis as
θ and φ.

We emphasize that many quantum gates (including single- and
multi-qubit gates) can be reduced to the U-gate model and thus be
characterized by QSPE. For example, in our experimental deployment
on the Google Quantum AI superconducting qubits, we study Fer-
mionic Simulation Gates (FsimGates), which are native to super-
conducting qubit computers.We also remark that not all parameters in
our model are necessary for every gate.

The problem of calibrating U-gate is to estimate θ, φ, and χ for
some invariant subspace ofU against realistic noise given access to the
U-gate and basic quantum operations, which we now formalize:

Problem 1. (Calibrating U-gate). Given access to an unknown U-gate,
basic quantum gates and projective measurements, how to estimate
gate parameterswith bounded error and finitemeasurement samples?

Previous metrology methods1–3 based on optimal measurements11

for achieving the Heisenberg limit fall short of providing sufficient
accuracy in θ when θ ≪ 1. Two significant factors limit these tradi-
tionally regarded “optimal”metrology schemes. First, the accuracy in θ
depends on the amplification factor, i.e., maximum circuit depth. The
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relatively lowqubit coherence times of superconducting qubits render
randomization-based quantum gate learning techniques6,7,9 imprac-
tical due to their inefficient circuit depths. The finite low qubit
coherence times9 of superconducting qubits render randomization-
based quantum gate learning techniques6,7,9 impractical due to their
inefficient circuit depths needed to achieve the desired accuracy close
to the surface code threshold21. Techniques based on robust phase
estimation can require prohibitive depths to achieve a meaningful full
signal-to-noise ratio for small θ and require iterative black-box opti-
mizations for their estimators2 instead of fast, deterministic post-
processing for single-parameter phase estimation1. Second, time-
dependent unitary error inφ is prevalent in architectures like Google’s
superconducting quantum computers22, which invalidates basic
assumptions in traditionally optimal and Heisenberg-limit-achieving
metrology schemes.

Quantum signal-processing phase estimation (QSPE)
In this work, we provide a low-depth phase estimation method for
estimating the angles in some invariant subspace of an unknown U-
gate when the swap angle is small, of order below 10−3, while facing
realistic time-dependent phase errors in φ. The phase estimation
method leverages the structure of periodic circuits analyzed by clas-
sical and quantum signal processing and provides a framework to
engineer quantum metrology from the perspective of universal
quantum signal transformation.We call this type ofmetrologymethod
Quantum Signal-Processing Phase Estimation (QSPE). Let ω be a tun-
able phase parameter and f∣0‘

�
, ∣1‘
�g be the logical basis of the two-

level space of interest. Then, QSPE measures the transition prob-
abilities of the quantum circuits corresponding to logical Bell states
∣+ ‘

�
: = 1ffiffi

2
p ∣0‘

�
+ ∣1‘

�� �
and ∣i‘

�
: = 1ffiffi

2
p ∣0‘

�
+ i∣1‘

�� �
. The transition is

measured with respect to the logical basis state ∣0‘

�
. We depict the

quantumcircuit forQSPE in Fig. 1 with an exemplified two-qubitU-gate
for simplicity. In the example, the two-level subspace is set to the
single-excitation subspace with basis ∣0‘

�
= ∣01i and ∣1‘

�
= ∣10i. Then,

the logical Bell state coincides with the conventional Bell state. We
remark that the quantum circuit for QSPE can be generalized to multi-
qubit cases following the recipe outlined in this paragraph. Details and
the quantum circuit for QSPE in a general setup are provided in Sup-
plementary Note 2. The transition probability corresponding to the
logical Bell state ∣+ ‘

�
is denoted as pX(ω; θ, φ, χ), and that corre-

sponding to the logical Bell state ∣i‘
�
is denoted as pY(ω; θ, φ, χ).

The measurement probabilities can be viewed as the expectation
values of the logical Pauli operators:

hX ‘iðω;θ,φ, χÞ=2pX ðω;θ,φ, χÞ � 1, ð2Þ

hY ‘iðω; θ,φ, χÞ= 2pY ðω; θ,φ, χÞ � 1, ð3Þ

hðω;θ,φ, χÞ= 1
2

X ‘ + iY ‘

� �� �
ðω;θ,φ, χÞ= ha‘iðω;θ,φ, χÞ: ð4Þ

The physical meaning of the reconstructed function hðω;θ,φ, χÞ
coincides with the expected value of the logical annihilation operator
which gauges the magnitude of the coherent rotation error in the
single-excitation subspace. This observation qualitatively justifies the
potential of the candidate function in the proposed phase estimation
method.

As outlined in Supplementary Note 3, the reconstructed function
derived from measurement probabilities admits an approximated
expansion hðω; θ,φ, χÞ=Pd�1

�d + 1cke
2ikω andwhen dθ ≤ 1, the coefficients

are

ck � iθe�iχe�ið2k + 1Þφ with k =0, � � � ,d � 1: ð5Þ

Due to Fourier expansion, sampling the reconstructed function
on (2d − 1) distinctω points is sufficient to characterize its information
completely. For efficient processing with the Fast Fourier Transfor-
mation (FFT), we choose a set ofω points that are equally spaced. This
choice of equally-spaced sampling points not only ensures numerical
stability, as demonstrated in textbooks on numerical analysis23, but
also simplifies error analysis, as described in Supplementary Note 4.
The second important consequence of this result is that the depen-
dencies on θ and φ are completely separated into the amplitude and
the phase of the Fourier coefficients, respectively. The estimation
problems of θ and φ are then reduced to two independent linear
regression problems. As χ is not considered, we apply a sequential
phase difference to distill the angle φ:

Δ= ðΔ0, � � � ,Δd�2Þ>,Δk : = phaseðckck + 1Þ=2φ: ð6Þ

Considering the Monte Carlo sampling error due to the finite number
of measurements, we derive in Supplementary Note 4 the linear-
regression-based estimators of the relevant angles:

θ̂=
1
d

Xd�1
k =0

jck j and φ̂=
1
2
1>D�1Δ

1>D�11
: ð7Þ

Here, 1 is an all-one vector and D is a (d − 1)-by-(d − 1) constant
tridiagonal matrix which coincides with the discrete Laplacian of a
central finite difference form (see Definition 15 in Supplementary
Note 4 formore details). The structure ofD comes fromdifferentiating
experimental noises when applying sequential phase difference. To
obtain χ̂, we defer the task to themetrology circuit in [3, Fig. S5] and do
not useQSPE for the task. Themainworkflowof theQSPE is depicted in
Fig. 2 and the Algorithm displayed in Box 1.

Classical and quantum optimality analysis
The performance of the statistical estimators is measured by their
biases and variances. In Supplementary Note 4 B, we derive the per-
formance of QSPE estimators with the following theorem by treating
QSPE as linear statistical models. Furthermore, in Supplementary
Note 6, we show that QSPE estimators in Eq. (7) are optimal by satur-
ating the Cramér-Rao lower bound (CRLB) of the estimation problem.

Theorem 1. In the regime d ≪ 1/θ, QSPE estimators in Eq. (7) are
unbiased and with variances:

Varðθ̂Þ � 1

8d2M
and Varðφ̂Þ � 3

8d4θ2M
ð8Þ

whereM is the number of measurement shots in each experiment.
We note that the unbiasedness of these estimators holds up to a

high-order bias, which is negligible in the target regime. For further
details, please refer to Supplementary Note 3.

Fig. 1 | Quantum circuit for QSPE with an exemplified two-qubit U-gate. The
input quantum state is prepared to be Bell state in either ∣+ ‘

�
or ∣i‘

�
according to

the type of experiment. The quantum circuit enjoys a periodic structure of the
unknown U-gate and a tunable Z rotation.
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Comparison with Heisenberg limit. According to the framework
developed in ref. 24, the variance of any quantum metrology is lower
bound by the Heisenberg limit. It indicates that in our experimental
setup when d is large enough, optimal variance scales as 1/(d3M). This
seemingly contradicts Theorem 2, where the variance of QSPE φ-esti-
mator can achieve 1/(d4M). This counterintuitive conclusion is due to
the pre-asymptotic regime d ≪ 1/θ. In Supplementary Note 6, we ana-
lyze the CRLB of QSPE. The optimal variance given by CRLB is exactly
solvable in the pre-asymptotic regime d ≪ 1/θ.

The key reason behind such faster thanHeisenberg limit scaling in
pre-asymptotic regime depends on the unique structure of the QSPE
circuit: the measurement outcome (Supplementary Equation (7))
concentrates around a constant value regardless of the gate parameter
values. Yet when d is large enough to pass to the asymptotic regime,
measurement probabilities will take arbitrary values. Furthermore, the

analysis of the CRLB suggests that the optimal asymptotic variance
agrees with the Heisenberg limit when d is large enough. This non-
trivial transition of optimal variance is theoretically analyzed and
numerically justified in Supplementary Note 6. We summarize this
nontrivial transition of the optimal variance scaling of QSPE as a phase
diagram in Fig. 3 a. To numerically demonstrate the transition, we
compute the exact CRLB of QSPE when θ = 1 × 10−2 and θ = 1 × 10−3. In
Fig. 3 b, the slope of the curve in log-log scale exhibits a clear transition
before and after d = 1/θ, which supports the phase diagram in Fig. 3 a.
Detailed theoretical and numerical discussions of the transition are
carried out in Supplementary Note 6.

Optimality analysis using Cramér-Rao bounds. Analyzing Cramér-
Raobounds suggests theoptimality of a quantummetrologyprotocol or
the suboptimality leading to further improvement.Given an initialization
and measurement, the optimality lies in the analysis of the classical
CRLB, which investigates the most information one can retrieve from
measurement probabilities. As outlined in Supplementary Note 6 A, the
CRLBsare solvablewhend≪ 1/θ,whichexactly agreewith thevarianceof
our estimators derived in Theorem 2. The optimality of our estimator is
also validated from the numerical simulation depicted in Fig. 3 b. Such
agreement reveals the optimality of our data post-processing. Although
linear-regression-based estimators are used, this linearization does not
sacrifice the information retrieval in the experimental data. Furthermore,
in contrast to other iterative inference methods, our estimators directly
estimate angles using basic linear algebra operations, to which stability
and fast processing are credited.

Despite the informative indication by analyzing CRLB, it cannot
provide direct suggestions on improving initialization and measure-
ment. Such generalization demands the switch to quantum Cramér-
Rao lower bound (QCRLB), which requires upper bounding the
quantumFisher information (QFI). As a quantumanalog of the classical
Fisher information, QFI lies in the center of quantum metrology by
providing a fundamental lower bound on the accuracy one can infer
from the system of a given resource limit. According to the analysis in
ref. 25, the QFI is an upper bound on the Fisher information over all
possiblemeasurements. For brevity, we only consider the inference of
θ and hold all other unknown parameters constant in the analysis.
However, our analysis can be generalized to the multiple parameter

Fig. 2 | Flowchart of main procedures in QSPE. The experimental data are col-
lected from depth d quantum circuit experiments featuring equally-spaced phase
modulation angles ω, as shown in the left panels. Probabilities from each
experiment of different phase modulations are analyzed using Fourier

transformation. As illustrated in the right panels, the Fourier-space data are better
structured compared to real-space data. Gate angles are then derived using our
QSPE estimators.

BOX 1

Algorithm for inferring unknown
angles in U-gate with small swap
angle using QSPE

Input: A U-gate U(θ, φ, χ, ψ), an integer d (the number of applications
of the U-gate).

Initiate a complex-valued data vector h 2 C2d�1.
for j = 0, 1, ⋯ , 2d − 2 do

Set the tunable Z-phase angle as ωj =
j

2d�1π.

Perform the quantum circuit in Fig. 1 and measure the transition
probabilities pX(ωj) and pY(ωj).

Set hj  pXðωjÞ � 1
2 + i pYðωjÞ � 1

2

� �
.

end for
Compute the Fourier coefficients c=FFT hð Þ.
Compute estimates θ̂ and φ̂ according to Eq. (7).

Output: Estimators θ̂, φ̂.
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inference by adopting the multi-variable QFI in ref. 25. In Supple-
mentary Note 6 D, we derive that the average QFI is upper bounded by
an integral:

Fθ ≤
4
π

Z π

0

sin2ðdðω� φÞÞ
sin2ððω� φÞÞ

dω=4d: ð9Þ

Here, the integrand gauges the information contained in an experi-
ment with angle ω. The integral stands for the use of equally spaced ω
samples due to the absence of accurate information of φ. It is worth
noting that the integrand is sharply peaked at 4d2 when ω = φ which is
also referred to as the phase-matching condition. The missing
information of φ downgrades the average QFI from 4d2 to 4d.
However, as discussed in the following subsection, the lack of
information about φ in existing methods can potentially significantly
degrade the Fisher information to OðlogðdÞÞ, thereby severely imped-
ing the achievement of Heisenberg-limit scaling in estimation accuracy.
Furthermore, this also suggests a finer estimation of θ when some
rough information of φ is provided either as a priori or from some
preliminary estimation. This improvement is discussed in Supplemen-
tary Note 4 C. Consequently, the QCRLB of the QSPE formalism is

Varðθ̂Þ≥QCRLB≥
1

16d2M
: ð10Þ

Compared with Theorem 2, we see differentiation in a constant sub-
optimal factor of 2, which is explainable. Note that we use two logical
Bell states to perform experiments. The advantage is the experimental
probabilities of these two experiments form a conjugate pair to
reconstruct a complex function for the ease of analysis. This complex
function and its properties (see Theorems 7 and 9 in Supplementary
Note 3) eventually lead to a simple robust statistical estimator
requiring only light computation. In contrast, the data generated from
the initialization of one Bell state still contains full information on the
parameters to be estimated. However, the highly nonlinear and oscil-
latory dependency renders the practical inference challenging. Hence,
the factor of 2 is due to the use of a pair of Bell states. Although theQFI
indicates that inference variance can be lower by removing such
redundancy in the initialization, the nature of ignoring practical ease
makes it hard to achieve.

Advantage of QSPE over prior arts
The key behind the success of QSPE is the isolation of θ and φ esti-
mations in Fourier space. This enables the robustness of individual
angle estimation against the error and noise in another angle. A prior
art that is widely used in the gate calibration in Google’s super-
conducting platform is periodic calibration or Floquet calibration2,3.

Periodic calibration measures the transition probability between ten-
sor product states ∣10i and ∣01i of a periodic quantum circuit with dU-
gates inside. This differs from our QSPE method which initializes Bell
states, though the main body of the quantum circuit is the same. To
provide an estimation of angles, periodic calibration uses a black-box
optimization to minimize the distance between the parametric ansatz
and experimentally measured values. Periodic calibration is based on
RPE1–3 and generalizes RPE to the estimation of multiple angles.
Though RPE provably saturates the Heisenberg limit, the actual per-
formance of periodic calibration highly relies on the satisfaction of the
so-called phase-matching condition, namely, ω = φ. Previous experi-
ments suggest that the violation of the condition would lower the
estimation accuracy of θ angle by a few magnitudes2. Because the
phase angle φ is vulnerable to time-dependent drift errors, the
uncertainty of φ ultimately ruins the estimation accuracy of the swap
angle θ in periodic calibration. In Supplementary Note 9, we provide a
comprehensive mathematical analysis of periodic calibration and
prove that even without complex error and noise, the violation of
phase-matching condition makes the estimation variance of θ scale as
1=log2ðdÞ. This is exponentially worse than Heisenberg-limit scaling 1/
d2 when the phase-matching condition is satisfied as depth increases. A
formal statement can be found in Theorem 21 in Supplementary
Note 9. Moreover, the complex optimization landscape, detailed in
Supplementary Note 9 D, renders the estimation using periodic cali-
bration impractical. Though the periodic calibration with phase-
matching, i.e. RPE, has higher Fisher information than QSPE, the
hardness of satisfying the phase-matching condition due to finite
resource and time-dependent drift error renders the ideal high accu-
racy estimation challenging. In contrast, by averaging over ω points,
ourQSPE ismore robust against error by separating θ andφ estimation
processes. This is also empirically justified using real data derived from
quantum devices in Figs. 4 and 5 in later sections.

Robustness against realistic errors
We incorporate error mitigation against three different types of errors
in our quantum-metrology routine, whichwediscuss separately below.
1. Decoherence. Exploiting the analysis in the Fourier space pro-

vides a fruitful structure formitigating decoherence. To illustrate,
we propose a mitigation scheme for the globally depolarizing
error in SupplementaryNote 7A.Numerical simulation shows that
the schemecan accuratelymitigate the depolarizing error and can
drastically improve the performance of QSPE estimators.

2. Time-dependent noise.Wenumerically investigate the robustness
of the QSPE estimators against realistic qubit frequency-drift
error20 based on observation from real experiments. We show in
Supplementary Note 7 C that the QSPE estimators preserve their
accuracy in the presence of this error.

Fig. 3 | A nontrivial transition of the optimal variance in solving QSPE. The
theoretical analysis of the transition is in Supplementary Note 6. a Phase diagram
showing the nontrivial transition of the optimal variance in solving QSPE. QSPE
estimators attain the optimal variance in the pre-asymptotic regime. b Cramér-Rao

lower bound (CRLB) and the theoretically derived estimation variance. The single-
qubit phases are set toφ=π/16 and χ= 5π/32. Thenumberofmeasurement samples
is set to M = 1 × 105.
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3. Readout errors. In Supplementary Note 7 D, we make an explicit
resource estimation for sufficiently accurate mitigation of read-
out errors.

4. Initial state errors. In Supplementary Note 7 E, we analyze the
induced estimation error due to the error in the initial states. We
demonstrate that these induced estimation errors are negligibly
small in real experimental settings.

We deploy these error mitigation techniques to realize QSPE on a
real quantumdevice. The experimental results are given and discussed
in the following section.

Experimental deployment
In this section, we review the experimental deployment of our
metrology method and compare it against the leading alternative
methods. We consider learning small swap angles in FsimGates, which
are important for fermionic simulation and native to Transmon
superconducting qubits. FsimGates are two-qubit U-gates. The invar-
iant subspace, referred to as the single-excitation subspace, is spanned
by the single-excitation basis ∣01i and ∣10i. CZ gate is a special Fsim-
Gate with zero swap angle. Consequently, FsimGates with small swap
angles model the imperfect production of CZ gates whose angle
parameter estimation is crucial for applications of CZ gate, including
demonstrating surface code26. We refer to Supplementary Note 1 C for
details.

We use theGoogle QuantumAI superconducting qubits9 platform
to conduct the experiments described inthe Algorithm displayed in
Box 1 and Fig. 2.We apply our QSPEmethod to calibrate θ andφ angles
of seventeen pairs of qubits on which CZ gates act. Each CZ gate qubit
pair is labeled by the coordinates (x1, y1) and (x2, y2) of both qubits on a
two-dimensional-grid architecture.Weplot the statistics of the learned
gate angles in Fig. 4: the unwanted swap angle for most qubits are
small, of order below 10−2. In comparison, periodic calibration yields
unstable estimates with a highly variant standard deviation across
different runs (see Supplementary Fig. 2 in Supplementary Note 1 A), a
result of its sensitivity to time-dependent errors.

The performance advantage of QSPE over prior art lies in its
robustness against time-dependent noise in the single-qubit phase φ.
In traditional methods, such as XEB and robust phase estimation2, the
measurement observables are nonlinear functions of both φ and θ, so
if there is time-dependent drift in φ during each experiment, or over

Fig. 4 | Learning CZ gate with small unwanted swap angle. Each data point is the
average of 10 independent repetitions and the error bars in the top panels stand for
the standard deviation across those repetitions. The number of measurement

samples is set to M = 1 × 104. These columns display the estimated values of gate
angles θ, φ, and circuit fidelity α.

Fig. 5 | Comparison of the variance in learning swap angle θ of CZ gates over
seventeen pairs of qubits between QSPE and XEB each repeated for 10 times.
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different repetitions of the same experiment routine, the value of
inferred θ will be directly affected (see Supplementary Fig. 2 in Sup-
plementary Note 1 A). In comparison, QSPE is tolerant to a realistic
time-dependent error inφwhen estimating the swap angleθdue to the
analytic separation between the two parameters through signal
transformation, signal processing and Fourier analysis.

To validate the stability othe f QSPE method, we repeat the same
phase estimation routine on each CZ gate pair over 10 independent
repetitions. This allows us to bootstrap the variance of the QSPE esti-
matoronθ andφ.We showthemeasuredvarianceandmeanof theθ and
φ estimates on seventeen CZ-gate pairs over different circuit depths d
used inQSPE in Fig. 4. It is important to note that we apply the technique
discussed in Supplementary Note 7 A to mitigate globally depolarizing
errors using information from Fourier space. This error mitigation pro-
cedure estimates a globally depolarizing circuit fidelity α for each pair of
qubits onwhichCZgates act, as shown in the right-most columnof Fig. 4.
We observe that the circuit fidelity demonstrates a clear exponential
decay with increasing circuit depth, which is consistent with our theo-
retical analysis27. We show that on average the variance in θ estimates is
around 10−7 for adepth-10QSPE experiment. This corresponds to 3× 10−4

in STD,which is one to twoorders ofmagnitude lower than the valueof θ
itself. In comparison, we also performed the same set of experiments
using XEB and compared the results to QSPE in Fig. 5. The variance of θ
inferred by XEB is of order 10−4 (three orders of magnitude larger than
QSPE). Consequently, we show that XEB and periodic calibration are
insufficient to learn the value of θ in our experiments with a larger than
unity signal-to-noise ratio.

Generalization of QSPE for an extended range of swap angles
In earlier sections, we demonstrate the QSPE algorithm’s effectiveness
for estimating angles when the swap angle is of small magnitude. The
actual use of QSPE is not limited to this parameter regime. In this
subsection, we propose a generalization of QSPE for general swap
angles. Theoretical analyses in Supplementary Note 4 show that noise
in Fourier space is significantly reduced, which consequently suggests
the algorithm design using Fourier-transformed data. The key obser-
vation is that the exact expression of the amplitude of Fourier coeffi-
cients, which is referred to as Ak(θ), can be efficiently solved. Hence,
given a set of experimental data, we can estimate the swap angle θ by
aligning experimental amplitudes with theoretical expressions, effec-
tively solving systems of nonlinear equations. When using dU-gates
per circuit, as discussed in Supplementary Note 5, we outline an
empirical noise-robust algorithm estimating θ to error ϵ using
Oðd logðdÞϵ�1Þ classical operations. In the numerical results in Sup-
plementary Note 5, we demonstrate that the θ-estimation error
remains below 5 × 10−4 for general θ, even with only five U-gates.
Thanks to Fourier transformation, the angle φ is inferred from the
phases of Fourier coefficients, decoupling its estimation from θ. It also
allows the use of theQSPEφ-estimator in Eq. (7) for varied swap angles,
despite the signal-to-noise ratio varies with different swap angles. This
is analyzed in the numerical results in Supplementary Note 5.

Learning quantum crosstalk with QSPE
An important application of QSPE, thanks to its exceptional sensi-
tivity in measuring small rotations, is in learning quantum crosstalk
amplitudes. Quantum crosstalk errors arise from unintended quan-
tum interactions between qubits, which become more problematic
when gates operate together. These errors create correlations that
are either spatial or temporal, posing a challenge to achieving fault-
tolerant quantum computation. In the case of tunable super-
conducting transmon qubits28, interactions between two qubits are
facilitated by a third “coupler” qubit placed between each pair. This
setup allows for the two-qubit interaction to be controlled–turned on
or off—by adjusting the coupler qubit’s frequency. Yet, even with
control over the coupler qubit’s frequency, there remains a non-zero

amount of coupling between neighboring qubits’ different levels.
This coupling mimics the system’s Bose-Hubbard coupling Hamilto-
nian: Hcrosstalk = gcrosstalk â1â

y
2 + â

y
1 â2

� 	
, where âi denotes the bosonic

annihilation operator for the i-th qubit.
Furthermore, the main effect of quantum crosstalk in qubit sub-

space can be described by a rotation within the single qubit subspaces
span f∣10i, ∣01ig of the two qubits affected by crosstalk. Without any
gate operation, the crosstalk’s impact over a period Δt follows the
same pattern as shown in Supplementary Equation (4), where
θ = gcrosstalkΔt depends on the crosstalk strength and the duration of
crosstalk interaction. This insight allows for the learning of crosstalk
effects using QSPE by substituting the U-gate in Fig. 1 with an idle gate
for an appropriate duration Δt, ensuring that gcrosstalkΔt is sufficiently
large to be measurable, yet not so large as to compromise the
assumptions underlying QSPE. For example, by setting the circuit
depth to d = 5 and Δt to 200 ns, the precision inmeasuring gcrosstalk can
reach around 10 MHz, markedly surpassing the accuracy of state-of-
the-art results in similar systems, which are around 1 MHz9.

Discussion
Our proposed QSPE estimators leverage the polynomial structure of
periodic circuits through classical and quantum signal processing.
These analytics helped us to design an algorithmwhere the estimation
of the swap angle θ is largely decoupled from that of the single-qubit
phases φ and χ. When some constant phase drift is imposed on the
system, the inference is not affected, thanks to the robustness of the
Fourier transformation and sequential phase difference. We demon-
strate such robustness against realistic errors, including drift errors in
both numerical simulations and deployment on quantum devices.
Such robustness is essential in achieving a record level of accuracy not
demonstrated before in superconducting qubits. An additional error-
mitigation method against globally depolarizing error is further
achieved here using the difference in the Fourier coefficients.

Prior to this work, error mitigation routines had been largely
separated from quantum metrology protocols, preventing us from
achieving the ultimate limit permitted by physics. Our successful
combination of error mitigation with metrology hinges upon treat-
ing quantum metrology as a type of quantum signal processing:
amplifying a given quantum signal while de-amplifying the unwan-
ted experimental noise. Our work, therefore, opens directions for
using advanced quantum simulation techniques in the design of
quantum metrology algorithms in order to achieve properties
necessary for high-accuracy gate learning against realistic
environmental noise.

Our future work aims to generalize the optimality of the
metrology algorithm against more types of errors and schemes. First,
our proof of QSPE estimators’ optimality is based on analyzing the
Monte-Carlo sampling error. To fully optimize the design of statis-
tical estimators against all types of error in addition to sampling
errors requires modeling and studying the behavior and statistics of
all types of dominant realistic error using tools from classical sta-
tistics, Bayesian inference, and machine learning. Secondly, here we
do not optimize all possible state initialization and measurement
schemes. Although theoretical analysis and numerical simulation
prove that QSPE estimators are optimal in the given parameter
regime and the given state preparation and measurement scheme, it
remains an open question whether we can derive the optimal esti-
mators in the most generic setting in Problem 1 by optimizing circuit
structure at initialization and measurement steps. Thirdly, the QSPE
estimators are designed for the low-depth regime (d < 10). The
restriction to this finite-depth setting is tied in with our main
objective of mitigating the detrimental effect of time-dependent
noise where deeper circuit depths introduce more drift and deco-
herence error. A related work employing a dynamical-decoupling-
based scheme29 achieves similar accuracy; however, it is not effective
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in the low-depth limit of our algorithm and lacks optimality guar-
antees due to its reliance on decoupling sequences, necessitating
deeper circuits. This low-depth limit can be lifted if we can fully
mitigate various noise effects that kick in at deeper depth. Further-
more, generalizing a deterministic estimator from our work to a
variational one can also offer greater flexibility and optimality but
requires a deeper understanding of the landscape inherited from the
QSPE structure. Lastly, qubitization techniques15,30 and cosine-sine
decomposition31,32 provide powerful two-dimensional subspace
representations associatedwith any unitarymatrix. These techniques
could potentially generalize our estimation method to large systems
with a large number of qubits, which will be our future work.

Methods
Quantum experiments
Quantum experiments in our work are conducted using the Google
Quantum AI superconducting qubits9 platform. Our QSPE method is
detailed in the algorithm shown in Box 1 and Fig. 2. The details of the
XEB method, used in Fig. 5, are discussed in Supplementary Note 1 A.

Numerical simulations
All numerical tests are implemented in python. The numerical studies
in SupplementaryNote 4 E and SupplementaryNote 7C are conducted
using Cirq. The study of our method’s robustness against quantum
errors in Supplementary Note 7 C is performed using Cirq’s built-in
noisy simulator. Other numerical studies, which donot directly involve
quantum circuits, are performed using numpy.

Data availability
All data presented in this work are visualized in the figures and tables
within the main text and the Supplementary Information file.

Code availability
The codes that support the finding are available at33.
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