

Measurement of the neutron capture cross-section of ^{238}U using the neutron activation technique

S.V. Surayanarayana¹, H. Naik², V. K. Mulik³, P. M. Prajapati⁴, B. S. Sivashankar⁵,
 K. C. Jagadeesan⁶, S.V.Thakare⁶, D. Raj⁴, S.C. Sharma¹, P.V. Bhagwat¹,
 S. D. Dhole³, S. Ganesan⁴ and V.N. Bhoraskar³

¹*Nuclear Physics Division, ²Radiochemistry Division Bhabha Atomic Research Centre, Mumbai -85, INDIA*

³*Department of Physics, University of Pune - 411 007, INDIA,*

⁴*Reactor Physics Design Division, Bhabha Atomic Research Centre, Mumbai-85, INDIA*

⁵*Department of Statistics, Manipal University, Manipal - 576 104, INDIA.*

⁶*Radiopharmaceutical Division, Bhabha Atomic Research Centre, Mumbai - 85, INDIA*

* email: naikhbarc@yahoo.com

Significant effort has been aimed at generating nuclear power based on the concept of fast reactor [1-2] and advanced heavy water reactor (AHWR) [3]. In AHWR ^{232}Th - ^{233}U in the oxide form is the primary fuel, whereas in the fast reactor ^{238}U - ^{239}Pu in the form of carbide is used as the primary fuel. The ^{239}Pu is first generated in a research reactor from $^{238}\text{U}(\text{n}, \gamma)^{239}\text{U}$ reaction and by successive two beta decays. Then the fissile material ^{239}Pu along with ^{238}U is used as a fuel in fast reactor for power generation. The ^{238}U is used as the breeding material to regenerate the fissile material ^{239}Pu . In the fast reactor, there is a fast neutron spectrum. Thus for the production of ^{239}Pu , it is necessary to have knowledge about $^{238}\text{U}(\text{n}, \gamma)$ reaction cross-section at various neutron energies. In the present work we have determined the $^{238}\text{U}(\text{n}, \gamma)$ reaction cross-section using the neutrons from $^7\text{Li}(\text{p}, \text{n})$ reaction and by activation technique followed by off-line γ -ray spectrometry.

The experiment was carried out using the 14UD BARC-TIFR Pelletron facility at Mumbai, India. The neutron beam for irradiations of U was obtained from the $^7\text{Li}(\text{p}, \text{n})$ reaction by using the 12 MeV proton beam of 400 nA at main line at 6 m above the analyzing magnet of the Pelletron facility. After irradiation and sufficient cooling, the γ -rays of fission/reaction products from the irradiated U sample were counted in an energy and efficiency calibrated 80 c.c. HPGe detector coupled to a PC-based 4K channel analyzer. From the observed photo-peak activity (A_{obs}) for 743.3 keV γ -line of ^{97}Zr the neutron flux (Φ) of $1.3 \times 10^7 \text{ n cm}^{-2} \text{ s}^{-1}$ was obtained by using Eq.1, as explained in ref. [4]. Eq.1 can be

used for estimating σ when Φ is known or vice versa.

$$A_{\text{obs}}(\text{CL/LT}) = N\sigma\Phi\alpha\epsilon(1-e^{-\lambda t})e^{-\lambda T}(1-e^{-\lambda CL})/\lambda \quad (1)$$

The neutrons from $\text{Li}(\text{p}, \text{n})$ reaction are not mono-energetic, and their energy spectra were obtained from literature as shown in ref. [4]. The contribution to the neutron flux from the tail region is 49 % at the proton energy of 12.0 MeV. The average energy of neutrons under quasi mono-energetic peak is 9.85 ± 0.38 MeV for 12 MeV protons after removing the tail of the spectrum.

The $^{238}\text{U}(\text{n}, \gamma)$ cross-section (σ) was calculated from the observed activity of 277.85 keV of ^{239}Np in the γ -ray spectrum of the un-separated sample, which is 2.333 ± 0.123 mb. The contribution from the tail region to $^{238}\text{U}(\text{n}, \gamma)$ reaction has been estimated using the ENDF/B-VII [5] and JENDL-4.0 [6] by folding the evaluated cross-sections with neutron flux distributions. The contribution from the above evaluation at $E_p = 12$ MeV are 1.023 and 0.614 mb from ENDF/B-VII and JENDL-4.0 respectively. The true value of $^{238}\text{U}(\text{n}, \gamma)$ reaction-cross section due to the neutrons from the quasi mono-energetic peak consisting of the n_0 and n_1 groups of the neutron spectrum is obtained by subtracting these average cross-section due to neutron tail region from the above measured total cross section data. Thus the actual experimentally obtained $^{238}\text{U}(\text{n}, \gamma)$ reaction cross-sections at average neutron energies of 39.85 ± 0.38 MeV corresponding to proton energy of 12 MeV is 1.42 ± 0.09 mb.

The present experimental $^{238}\text{U}(\text{n}, \gamma)$ cross-sections are within the range of evaluated data of ENDF/B-VII and JENDL 4.0. However, the evaluated value from JEFF-3.1 [7] and CENDL-3 [8] are not in agreement with the present experimental value. In order to examine this aspect, the $^{238}\text{U}(\text{n}, \gamma)$ reaction cross-sections from the present work and similar data from EXFOR [9] are plotted in Fig. 1. It can be seen from Fig. 1 that the $^{238}\text{U}(\text{n}, \gamma)$ reaction cross-section from present work at 9.85 ± 0.38 MeV is in agreement with the value of McDaniels et al taken from EXFOR. Further, the $^{238}\text{U}(\text{n}, \gamma)$ reaction cross-section decreases from 100 keV to 7 MeV. Thereafter it decreases from neutron energy of 7 MeV to 15 MeV. Beyond this, it increases suddenly from neutron energy of 17 MeV to 20 MeV. In order to examine this, the evaluated data from ENDF/B-VII [5], JENDL-4.0 [6], JEFF-3.1 [7], CENDL [8] and INDC (VN)-8 [10] were plotted in Fig. 1. Similar data based on activation technique from the review article of Ding et al [11] were also plotted in Fig. 1 which agrees with evaluations only at low energies. The $^{238}\text{U}(\text{n}, \gamma)$ reaction cross-section at different neutron energy beyond 1 keV was also calculated theoretically using computer code TALYS of version 1.2 [12] and shown in Fig. 1. The trend of evaluated $^{238}\text{U}(\text{n}, \gamma)$ reaction cross-section is well reproduced by TALYS. However, they are slightly higher than the experimental and evaluated data.

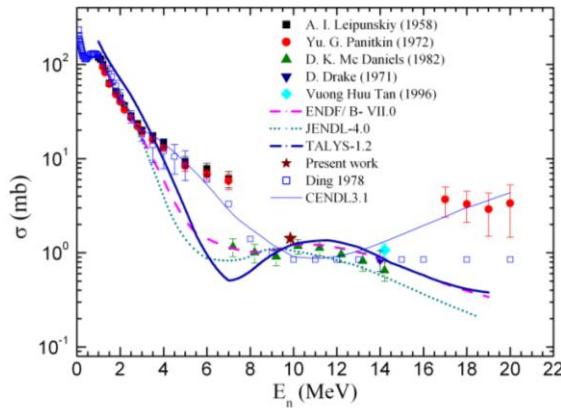


Fig. 1. Plot of experimental, evaluated and TALYS $^{238}\text{U}(\text{n}, \gamma)$ reaction cross-section as a function of $\text{E}_n = 1$ keV to 20 MeV.

Acknowledgement

The authors are thankful to the staff of TIFR-BARC Pelletron facility and to Mr. Ajit Mahadakar and Mrs. Dipa Thapa from target laboratory of Pelletron facility at TIFR, Mumbai.

References

- [1] Fast Reactors and Accelerator Driven Systems Knowledge Base, IAEA-TECDOC-1319: Thorium fuel utilization: Options and Trends.
- [2] T.R. Allen and D.C. Crawford, Science and Technology of Nuclear Installations, 97486 (2007).
- [3] R.K. Sinha and A. Kakodkar, "Design and Development of AHWR – The Indian Thorium Fueled Innovative reactor," Nucl. Eng. Des., **236**, 7-8, 683 (2006).
- [4] H. Naik, et. al., Eur. Phys. J. A **47**, 51 (2011).
- [5] M.B. Chadwick et al., "ENDF/B-VII.0: Next Generation Evaluated Nuclear Data Library for Nuclear Science and Technology," Nuclear Data Sheets, **107**, 2931-3060 (2006)
- [6] K. Shibata et al., "JENDL – 4.0; A New Library for Nucl. Sci. and Engineering," J. Nucl. Sci. Tech., 48(1), 1, (2011).
- [7] A. J. Koning, et al., "The JEFF evaluated data project," Proceeding of the International Conference on Nuclear Data for Science and Technology, Nice, 2007.
- [8] China Evaluated Nuclear Data Library CENDL-3.1, (2009).
- [9] IAEA-EXFOR Database, at <http://www-nds.iaea.org/exfor>.
- [10] Vuong Tan, Nguyen Canh Hai, Nguyen Trong Hiep, INDC (VN)-8 (1996).
- [11] Ding Da-Zhao, Guo Tai-Chang HSJ-77106, Review of U-238 capture cross-sections – $\text{E}_n = 1$ keV to 20 MeV (1978).
- [12] A.J. Koning et al., Proc. Int. Conf. Nucl. Data for Sci. and Tech. -ND 2004, AIP Vol.769, Ed. by R.C. Haight, et. al., (Santa Fe, 2005) p. 1154.