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We propose a general-purpose, self-adaptive approach to construct a variational wave-function ansatz
for highly accurate quantum dynamics simulations based on McLachlan’s variational principle. The key
idea is to dynamically expand the variational ansatz along the time-evolution path such that the “McLach-
lan distance”, which is a measure of the simulation accuracy, remains below a set threshold. We apply this
adaptive variational quantum dynamics simulation (AVQDS) approach to the integrable Lieb-Schultz-
Mattis spin chain and the nonintegrable mixed-field Ising model, where it captures both finite-rate and
sudden post-quench dynamics with high fidelity. The AVQDS quantum circuits that prepare the time-
evolved state are much shallower than those obtained from first-order Trotterization and contain up to 2
orders of magnitude fewer CNOT gate operations. We envision that a wide range of dynamical simulations
of quantum many-body systems on near-term quantum-computing devices will be made possible through

the AVQDS framework.
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I. INTRODUCTION

One of the primary scientific quantum-computing
focuses has been to simulate the ground-state, excited-
state, and dynamical properties of spin and fermion sys-
tems [1—13]. The ultimate goal is to accurately model
physical systems of classically prohibitive size by effi-
cient encoding and manipulation of many-body states. For
ideal fault-tolerant quantum computers where deep circuits
can be executed, algorithms built on Trotterized adiabatic
state preparation and dynamics simulations, along with
quantum phase estimation, can address a wide class of
physical and chemical problems in and out of equilibrium
[3,4,7,10,11,13].

In the near term with noisy intermediate-scale quantum
(NISQ) computers [14], practical calculations on quantum
devices are limited to short circuits. To exploit the emerg-
ing NISQ technology, the variational quantum eigensolver
(VQE) has been developed and demonstrated to pre-
pare the ground state of a time-independent Hamiltonian
[15-20], or generally to minimize a static cost func-
tion with individual terms whose expectation values
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can be measured efficiently on quantum devices [21].
Preconstructed fixed-form variational ansatzes, such as
the unitary coupled-cluster ansatz [16,17,22], have been
employed in early VQE calculations of molecules on quan-
tum devices. However, the accuracy is often limited by
the form of the ansatz [23], and the number of variational
parameters and the circuit depth can grow as a high-order
polynomial as the number of orbitals and atomic sites
increases [16,24]. To alleviate these issues arising from a
fixed form of the variational wave function, several adap-
tive VQE methods have been proposed. These methods use
a form of the variational wave function that is adaptively
optimized for the specific problem [23,25,26], leading
to highly accurate results with much simpler variational
circuits.

Variational approaches to quantum dynamics simula-
tions (VQDS), including fast-forwarding methods, have
also been proposed and applied to quantum spin mod-
els [27-31], with proof-of-principle applications on real
devices [32]. The proposed variational wave-function
forms are described by a set of relatively shallow quan-
tum circuits, which are tailored for execution on NISQ
devices. The quality of variational quantum simulations is
tied to the ability of the variational ansatz in describing the
time-evolved wave function. For VQDS, the ansatz should
be flexible enough to represent the quantum state along
its time-evolution path. This is typically much more chal-
lenging than constructing an accurate variational ansatz
for the ground state, because the nature of the wave
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function can change significantly during time evolution.
Attempts to construct ansatzes of fixed variational circuits
for VQDS have been reported [32], but the simulation
accuracy quickly deteriorates as the system grows from
two sites to a few sites. This highlights the need for flex-
ible variational circuits that can adapt to the changes of
the wave function during time evolution, while still keep-
ing the circuit sufficiently shallow to be run on NISQ
quantum-processing units (QPUs).

Here, we propose a novel time-dependent adaptive vari-
ational method to perform accurate quantum dynamics
simulations of fermionic and quantum spin models. Going
beyond a variational approach with a fixed cost func-
tion, the proposed scheme constructs an efficient time-
dependent variational ansatz of the time-evolved wave
function. This directly addresses the challenge of con-
structing an efficient variational ansatz for dynamics simu-
lations. This is generally a difficult task as the time-evolved
wave function explores different, and a priori unknown,
regions of Hilbert space. The proposed adaptive varia-
tional quantum dynamics simulation (AVQDS) approach
is built on the McLachlan variational principle for real-
time quantum dynamics simulations [27,33], and automat-
ically generates and dynamically expands the variational
ansatz by minimizing the McLachlan distance L along
the time-evolution path. The form of the variational ansatz
is incrementally expanded by choosing optimal operators
from a predefined operator pool to construct additional
unitary gates, in the same spirit as in the (static) adap-
tive derivative-assembled pseudo-trotter ansatz (ADAPT)-
VQE method [23,25]. The crucial difference is that here
we optimize a time-dependent cost function, the McLach-
lan’s distance L?(¢) at time ¢. This allows the complexity
of the ansatz to increase as needed during the time evo-
lution in order to accurately represent the wave function.
It is worth noting that our key idea of adaptively gener-
ating variational ansatzes by minimizing a time-dependent
cost function for dynamics simulations is widely applica-
ble beyond the McLachlan approach. For example, it can
also be used to generalize the projected variational quan-
tum dynamics (PVQD) simulation method discussed in
Ref. [34] by replacing the McLachlan distance with the
step-infidelity function.

We apply AVQDS to study linear-ramp quantum
dynamics of the integrable Lieb-Schultz-Mattis (LSM)
spin model [35,36], and sudden quench dynamics of the
nonintegrable mixed-field Ising model (MFIM). In both
cases, we find that dynamical quantities of interest (such
as local observables, total energy, and the Loschmidt echo)
are described accurately with the adaptively generated
variational ansatz. Notably, the state preparation circuits
for the time-dependent wave function require 2 orders
of magnitude fewer two-qubit gates than first-order Trot-
ter dynamics simulations that achieve comparable accu-
racy. We demonstrate an initial time #-linear growth of

the number of CNOT gates N o ¢ in the AVQDS cir-
cuits, before N saturates after a critical time #,. The
saturation time ¢, is found to increase with system size
N. The system-size scaling of the saturated Ne(t > t)
changes from quadratic (o< N?) to higher order (o< N*
with & > 4) as the integrability of the model is broken.
In contrast, at fixed simulation times ¢ < #,, N scales
approximately linearly with large N > N.(¢#) (where the
circuits are in the presaturation regime). The crossover sys-
tem size N, grows slowly with ¢. This implies the practical
scalability of general AVQDS simulations over finite time
intervals.

The paper is organized as follows. The AVQDS
algorithm, calculation procedures, and important techni-
cal details are presented in Sec. II. For completeness,
the section also contains brief reviews of the Trotterized
dynamics and the previously introduced VQDS formalism.
Section III discusses results for the integrable LSM model
using a linear-ramp quench protocol and the observed gate
count scaling of the AVQDS method. AVQDS simulations
of quench dynamics in the nonintegrable MFIM are pre-
sented in Sec. IV. We summarize our results and give
concluding remarks in Sec. V.

II. AVQDS METHOD

A. Trotterized state evolution

For the convenience of later comparisons, we sum-
marize the quantum dynamics simulation method using
a discrete-time propagator based on the Trotter decom-
position [37,38]. For a system described by a generic
time-dependent Hamiltonian

HI =Y hl1, e
)23

the quantum state evolves by a fixed time step §¢ as

(Wle+80) = [ Te ™™ @), @

i
Here, e~ ®"ull is a unitary that can be efficiently imple-
mented on QPUs. Therefore, the Trotter circuit depth
grows linearly with the number of time steps, with the
incremental depth determined by the Hamiltonian terms
{fzu}. For calculations on quantum computers, each indi-

vidual term }Azu is a tensor product of Pauli operators. The
exponential of a Pauli term coupling p qubits scaled by an
imaginary number constitutes a general Pauli rotation gate,
which can be compiled to a series of one-qubit rotations
and 2(p — 1) two-qubit entangling gates for real quantum
device applications [38].

Although it is not feasible to directly compile a gen-
eral discrete-time Hamiltonian evolution operator in real
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quantum devices, on classical devices it can be more
efficient to calculate the discrete-time evolution accord-
ing to |W[t + 8£]) = e "1 |W[f]). This approach is more
tolerant to finite step sizes, and becomes exact for simu-
lations of sudden quench dynamics where the system is
evolved by a Hamiltonian that is piecewise constant in
time. We adopt this approach to get numerically exact data
for comparison with the simulation results to be discussed
later.

B. Variational quantum dynamics simulation

The formalism of VQDS has been systematically pre-
sented in Ref. [27]. To facilitate later discussions, we
summarize the main points of variational real-time dynam-
ics simulations based on McLachlan’s variational princi-
ple [33]. We work at the level of the density matrix p,
which eliminates the necessity of keeping track of the
global phase of the state |W). For a system in a pure
state evolving under a time-dependent Hamiltonian H, the
density matrix p = |W) (V] evolves according to the von
Neumann equation

dp

— = L[p], 3

” (o] 3)
with L[p] = —i [7:(, p]. In the variational quantum simula-

tion approach, the state |W[#]) is parameterized by a real
time-dependent variational parameter vector @[¢]. Unlike
variational quantum algorithms, which optimize a high-
dimensional static cost function through parameter learn-
ing, the variational parameters 0[¢] will be updated accord-
ing to the equations of motion derived by the McLachlan
variational principle. Because all the observables and the
related equations are implicitly time dependent in dynam-
ics simulations, we drop the parameter ¢ associated with the
variables for simplicity. The McLachlan variational princi-
ple amounts to minimizing the distance L, or equivalently
the squared distance, between the variationally evolving
state and the exact propagating state, which is defined as

= Mu8,6, =23 Vb + Tr{L(p)’].  (4)

Hv m

Here |pllz = +/Tr[pTp] is the Frobenius norm of the
matrix p. The matrix M is real symmetric and defined as

Mo =Tr [80[0] 8p[0]} P [8 (W[0]1 0 |w[6])
e 39, a0, | 30, a6,
o (we]l a (w[e]|
+ W |w[o]) BETE |‘I’[0])] ) (5)

which is equivalent to the quantum Fisher information
matrix associated with the state fidelity [39]. The vector
V is given by

V,=Tr [Re <8p[0]£[p]>}

30,
o Tawe]l 2 1w[0]) -
(6)

where (H)s = (¥[0]/H|¥[6]), and
THL(p)] = 2 (D)o — (F0F) =2 van[H1,  (7)

which describes the energy variance of H in the variational
state |W[#]). The second term in the bracket of Egs. (5) and
(6) originates from the global phase contribution [27]. In
the geometric picture of quantum evolution [40], the inte-
gral of energy variance with respect to time is independent
of the specific Hamiltonian and defines a distance along the
evolution path measured by the Fubini-Study metric [41].

The minimization of the cost function Eq. (4) with
respect to {éu} leads to the following equation of motion
for the variational parameters:

> My =V, ®)

The McLachlan distance L? of the variational ansatz W[@]
at optimal parameter values can then be calculated as

L =2varg[H] = > V.MV, 9)

7Y

As pointed out in Ref. [27], L? provides a natural measure
for the accuracy of quantum dynamics simulations.

C. Adaptive variational quantum dynamics simulation
approach
1. Algorithm and flow chart

The adaptive variational quantum dynamics simulation
method is illustrated in Fig. 1. The technique dynam-
ically constructs a variational ansatz of the following
pseudo-Trotter form:

Ng—1 .
(W[o) = [ e 1wy), (10)

u=0

where |W) is a reference state and {6,} (w =0,...,Np —
1) are the time-dependent variational parameters. A, is a
Hermitian operator. The set of Ny operators {A,,} will be
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FIG. 1.

Schematic illustration of the AVQDS algorithm. The flow chart of AVQDS is plotted in (a). The details of the MMD module,

which measures the McLachlan distance for a given variational wave function W[#] and time-dependent Hamiltonian ﬂt, are shown
in (b). The circuits to measure matrix M and vector /" can be found in Ref. [27] (see also Fig. 2). Note that in the ansatz adaptive
procedure, one only needs to measure the incremental elements in M and V, which are added in a given step.

dynamically expanded by including additional operators
from an operator pool to maintain the McLachlan distance
L%, Eq. (9), below a threshold L2 ,, if necessary, as the sys-
tem evolves. In practice, we find L2, = 1073 is enough to
get highly accurate results.

Without loss of generality, let the dynamics simula-
tion start at t = 0 with the system in a pure state py =
[Wo) (W], which we choose as the reference state of the
variational ansatz. More specifically, at t = 0 the varia-
tional ansatz |W[@]) = |¥,) has no variational parameters
(i.e., Np = 0). After an incremental time step ¢ = 6¢, the
Hamiltonian becomes 7:[,. The McLachlan distance L? is
measured with the previously obtained ansatz state |\W[6])
through the MMD module, which is specified in Fig. 1(b)
according to Egs. (5) and (7). In the initial case where the
variational ansatz has no parameters, the McLachlan dis-
tance is determined by the energy variance of H, only.
The energy variance is generally larger than zero, because
the ansatz state is not an eigenstate of H, as the system
evolves in time. The McLachlan distance L? is then com-
pared against the threshold L2, and the ansatz adaptive
procedure is triggered if L> > L? .

The adaptive procedure starts with evaluating the
McLachlan distance L?> with respect to a series of new
variational ansatzes. Each new ansatz, e~ Auly—o |W[0]),
is composed of the existing ansatz, multiplied by the
exponential of an generator flﬂ with a coefficient 6’ ini-
tialized to zero at the current time step. Although the
new ansatz with 0’ = 0 does not change the ansatz state,

the McLachlan distance L? can change due to nonvanish-
ing derivatives with respect to the additional parameter in
Egs. (5) and (6). Here, the choice of /Alu runs through all
the operators in a preconstructed (fixed) operator pool of
size N,.

For each operator e~ Au that is added to the ansatz,
the dimension of @ increases from Ny to Ny + 1. Accord-
ingly, the dimension of the symmetric matrix M, Eq. (5),
increases from Ny x Ny to (Ng + 1) x (Vg + 1), and the
dimension of the vector V, Eq. (6), increases from Ny to
Ny + 1. Because the additional parameter in the new ansatz
is always initialized to zero, the represented ansatz state
remains the same. Therefore, only the additional (Ny +
1™ row of the matrix M and the final element of ¥ need
to be evaluated. The obtained {LIZL} (n=0,...,N, = 1)

values are compared, and one selects the operator A,
for which L2 is minimal. The ansatz form is updated to
|W[0]) — e~ @Av |W[A]), with 6, initially set to zero and
the number of variational parameters Ny increased by one.
Note that setting 0y, 1 = 0 initially ensures that the wave
function is smooth during time evolution. The McLachlan
distance L? is then updated and compared with the thresh-
old L2,. For L* > L2 the ansatz adaptive procedure is
repeated until L? < L2 is satisfied. Only then the varia-
tional parameters are updated, § — 6 + &6, at current time
step according to

80 = 085t = M~ V. (11)
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In typical AVQDS simulations reported here, the number
of unitaries added to the ansatz at some initial time steps
can be as much as about ten per step to gain sufficient
expressibility, but quickly decreases to about one per step
if the McLachlan distance L? goes beyond the threshold
L2 ,,. Finally, the system evolves to the next time step and
the algorithmic procedure continues until the simulation

time period ends.

2. Initial state preparation

The AVQDS calculation starts with some initial state,
which may often be the ground state | V() of a Hamiltonian
7:(0 att = 0. A general efficient state preparation algorithm
for near-term quantum devices remains an open challenge
and has attracted much research effort, including adia-
batic state preparation [6], VQE [16], and quantum imag-
inary time evolution [42—44]. Naturally, one can replace
the original proposal of Trotter dynamics-based adiabatic
state preparation with the AVQDS approach. This corre-
sponds to first performing an AVQDS simulation starting
from a Hamiltonian with a tensor-product ground state
and evolving to the Hamiltonian Ho with ground state
|Wo) at a sufficiently slow quench rate. Alternatively, the
ground state of the initial Hamiltonian H, can be obtained
using (static) ADAPT-VQE [23,25], which can easily be
combined with AVQDS. More specifically, we use the
recently proposed qubit-ADAPT-VQE technique [25] to
prepare the ground state W of the initial Hamiltonian 7:[0.
Compared with AVQDS, which dynamically updates the
variational ansatz, Eq. (10), with the goal of minimizing
McLachlan’s distance along a time-evolution path, qubit-
ADAPT-VQE uses an adaptive scheme to optimize the
variational ansatz in Eq. (10) to minimize the expectation
value of a time-independent Hamiltonian. Note that when
encoding the initial state in this way, the initial number
of variational parameters in AVQDS is larger than zero.
The dynamical ansatz adaptive procedure can, of course,
be carried out in the same way as described above.

In the AVQDS simulations reported below, we focus
on the dynamics simulation part, where we dynamically
construct the variational ansatz and update the parameters
according to Eq. (11). Further details on state prepara-
tions using qubit-ADAPT-VQE and its combination with
AVQDS will be given in Sec. 11 D.

3. Important technical details

Let us discuss some important technical details in the
practical implementation of the AVQDS algorithm pre-
sented above, which can be used for dynamics simulations
of generic Hamiltonian systems, including fermionic and
spin systems. Since the system Hamiltonian will always
be transformed to a qubit representation for calculations
on QPUs, the operator pool {.flu} can be constructed from

a set of Pauli terms, i.e., tensor products of Pauli operators
at different spin-orbital sites. The pool can be made of a
complete list of Pauli terms up to some fixed length, or
involve only Pauli terms that appear in the system Hamil-
tonian H. Symmetries leading to conservation of particle
number and spin quantum numbers, time-reversal sym-
metry and point group symmetries, can be considered to
further reduce the pool size [48,49]. For fermionic systems,
the operator pool can also be constructed using fermion
operators, i.e., tensor products of fermion creation and
annihilation operators, subject to symmetry constraints,
before translating into qubit operators. This can poten-
tially reduce the size of the operator pool for simulations
of fermionic systems, at the cost that each operator maps,
in general, to a sum of several Pauli terms. In the numeri-
cal calculations of spin models that we present below, we
adopt the Hamiltonian pool, which is composed of Pauli
terms present in the Hamiltonian.

The AVQDS approach amounts to numerically integrat-
ing a system of ordinary differential equations, Eq. (8).
Within the well-known Euler method, the local truncation
error at a single time step is of order of (8£)* [50], where
8t is the step size. This leads to a global truncation error
over the total simulation period that scales linearly with
8t. Higher-order methods such as the Runge-Kutta tech-
nique yield more favorable scaling [50]. In the numerical
simulations presented here, we adopt the Euler method for
simplicity and a fair comparison with the first-order Trotter
dynamics simulations.

It is useful to contrast the change of the wave func-
tion that occurs during one timestep within Trotterized and
AVQDS simulations. Within Trotter dynamics, the size of
the timestep §¢ controls the change of the wave function
during a single step [see Eq. (2)]. In contrast, in AVQDS
the change is controlled by the change of the variational
parameters, §6 [see Eq. (11)]. This leads to an effective
way to stabilize AVQDS simulations by fixing a maxi-
mal step size §0p.x. In other words, the time step size
8t is dynamically adjusted at each time step such that
max,, (|66,|) < 86max. The dynamical time step size &t in
AVQDS is therefore set by §6max and the maximal abso-
lute value |0|max Of elements in the vector @ in Eq. (11).
When comparing AVQDS to Trotterized dynamics simu-
lations, §0m.x should be chosen to be the same as the fixed
time step size 8¢ in Trotter dynamics to achieve a similar
accuracy. An additional consequence is that 6 |max deter-
mines the total number of time steps required in AVQDS
calculations to reach a given final time.

We note that in the numerical simulations presented
below, we find that the evaluation of @ = M~'V at inter-
mediate time steps can involve a matrix M with large
condition number [51], which are often encountered in
numerical statistical analysis and machine learning [52].
The issue can be alleviated by adding a small diagonal
element (£ = 107%) to the matrix M before inversion
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FIG. 2. Quantum-circuit implementation of the AVQDS algorithm. The left column lists the unique terms to be evaluated in Egs. (5)
and (7) of VQDS, with the terms (a)—c) highlighted in red also involved in the ansatz adaptive procedure in AVQDS. The middle col-

umn specifies the expressions when the wave-function ansatz takes the pseudo-Trotter form of Eq. (10) with if,,k[o] = Hﬁ:j e~ OuAn

and |¥y) = |0) = ®].V:_01 |0) for an N-qubit system. Two types of quantum circuits are adopted: a green block for the direct mea-
surement circuit, and a blue block for a generalized Hadamard test circuit [27,45]. The direct measurement circuit includes optional

Hadamard gate H or Hadamard-phase gate HST when measuring X or Y-Pauli strings present in flﬂ, Ai, H, and H2. Accord-
ingly, U[0] can be Uy, 1 or Uyy,—1 as highlighted in the middle column. In the generalized Hadamard test, the expectation value
Re [(@mj (010740165 05[0164 0, [o]uo)] is given by 2Py, — 1, with Py, the probability that the ancillary qubit is in state 0). {/,[0]
can be Uo,;kl or f]o,,,,l [0] as dark red color encoded in the blue box of the middle column, with similar color encoding for the other

unitaries. 6 represents a Pauli string in AM or ﬂ, which is typically defined on one or two qubits for spin models. Therefore, the
controlled-o gate represents a controlled-single qubit or controlled two-qubit gate. Alternatively, the generalized Hadamard test circuit

can be replaced with direct measurement circuit [46,47].

following Tikhonov regularization, which effectively
penalizes the large magnitude of #. As a result, we find that
|6 max falls in the range of (1, 10) in the following calcu-
lations. For AVQDS calculations in the presence of noise
(both quantum mechanical shot noise and gate noise),
we expect that the regularization parameter & must be
increased in order to deal with the resulting fluctuations in
M and V' [42,53]. Alternatively, the matrix inversion in Eq.
(11) can be avoided altogether by solving the equation of
motion, Eq. (8), using optimization techniques, which may
also provide additional channels for gate error mitigation
[54].

AVQDS simulations reported here are carried out with
a classical implementation based on Quantum Toolbox in
Python (QuTiP) [55,56]. Because AVQDS relies on the
same set of measurements as regular VQDS with a fixed
wave-function ansatz, the quantum-circuit implementation
on NISQ QPUs follows that of VQDS discussed previ-
ously [27,45]. Specifically, Fig. 2 lists the unique terms
in determining the symmetric matrix M in Eq. (5), vec-
tor ¥ in Eq. (6) and scalars (7:()9, (7%2)0 listed in the
left column. The reduced expressions with the choice of

pseudo-Trotter form, Eq. (2), for the variational ansatz are
listed in the middle column, which can be measured by
direct measurement circuits (green) and generalized
Hadamard test circuits (blue), as shown in the right
column.

For an estimation of quantum resource of VQDS cal-
culations, let us consider a Hamiltonian composed of Ny
Pauli strings and Ny variational parameters in the wave-
function ansatz, Eq. (10). The upper bound of the number
of distinct direct measurement circuits and generalized
Hadamard test circuits is (Ny + 2)Ng + Ny + Nfl and
Nig(Ng — 1) + (Ng)(Ng — 1)/2, respectively. The ansatz
adaptive expansion procedure in AVQDS adds a marginal
overhead of quantum resources. The additional terms (a,
b, c¢) as highlighted in Fig. 2 are to be measured only
for unitaries to be appended in the variational circuit at
the same state of the current time step, as discussed pre-
viously. Specifically, with a Hamiltonian operator pool
composed of Hamiltonian terms as adopted in the follow-
ing calculations, no additional measurements are required
for terms (b, c) and part of terms (a), because all the con-
tributions have already been measured when evaluating

030307-6



ADAPTIVE VARIATIONAL QUANTUM DYNAMICS SIMULATIONS

PRX QUANTUM 2, 030307 (2021)

the expectation values of H and 2. Therefore, the addi-
tional measurements in AVQDS from the ansatz adaptive
procedure are for terms (a), Re{(d (¥[6]]/06,) (0 |W[0])/
06,)}, with v running through the Hamiltonian operator
pool and 0 < u < Ny — 1, which amount to Ny (Ng — 1)
generalized Hadamard test circuits. Each of the general-
ized Hadamard test circuits includes at most two controlled
two-qubit gates for spin models presented here, which can
also be replaced with direct measurement circuits [46,47].
For a system described by N qubits with Ny o< N7, such
as local spin models with Ny o« N, and Ny o N9, the
leading order of distinct measurement circuits scales as
N?max(p9) - with the circuit depth tied to Ny. The overall
measurement cost of the AVQDS approach due to finite-
sampling shot noise follows the analysis of general metric
aware variational quantum algorithms [53]. To keep the
shot-noise-induced error below €, the number of samples
generally scales as O(1/€%), where the prefactor can be
reduced by optimal measurement distribution [53,57].

I1II. LINEAR-RAMP QUANTUM DYNAMICS IN
THE LSM MODEL

A. Model and phase diagram

To demonstrate and benchmark the performance of
the AVQDS method, we perform a series of finite-rate
quantum-quench dynamics simulations of the integrable
N-site spin—% Lieb-Schultz-Mattis chain with open bound-
ary conditions, which describes an anisotropic XY Hamil-
tonian in a transverse magnetic field [35]

N-2 N—1

H=—J 3 [0+ 18k + 1 = ¥ifia] 032,
i=0 i=0

(12)

where X, ¥, and Z are single-site Pauli operators. The cou-
pling constant J is set to one as the energy unit. 4, is the
magnetic field strength. The anisotropy in the x-y plane
is controlled by the parameter y, and rotational symmetry
around the z axis is obtained with ¥ = 0. The ground-state
phase diagram of the model in the thermodynamic limit
(N — o00) is well known [36], and shown in Fig. 3. The
phase diagram is composed of two ferromagnetic phases
with magnetic moment in x direction (FM,) and y direction
(FM,)) and a paramagnetic phase (PM), along with multiple
phase boundaries and tricritical points.

B. Quench protocol and operator pool

We consider the linear-ramp protocol: y(f) =1 —
(2¢/T) with 0 < ¢t < T, as shown in Fig. 3. The longitudinal
magnetic field is set to 7, = —0.7 and 1.6 to avoid degen-
erate ground states that occur along the vertical line 4, = 0.
In the adiabatic limit, 7 — oo, and in the thermodynamic

(-07,1) ¢ (1.6,1) ®

PM FM, PM

e
(_21 0)

(-0.7,-1) e

RS S .
i=0 1 2 3 4

FIG. 3. Phase diagram of LSM model as a function of (%,
y) and the quench protocol. Two ferromagnetic phases (FM,,
FM, ) and a paramagnetic phase are present in the ground-state
phase diagram of the LSM model in the thermodynamic limit
(N — o0). The phase boundaries and tricritical points are also
shown. Below we present results of AVQDS simulations for the
two vertical parameter paths indicated here, which quenches the
system from the FM, to the FM, phase at finite speed, together
with postquench dynamics.

limit, N — oo, the system evolves from the FM, phase,
crosses a phase boundary and enters the FM,, phase. In the
following, we choose a finite quench speed of T’ = 3, such
that nontrivial spin dynamics is developed in the linear-
ramp process. System sizes N € [2,11] are considered.
We restrict the operator pool to Pauli terms that appear
in the Hamiltonian (12). The quantum gates to be applied
on the reference state |Wy), which are the exponentials
of the scaled Pauli terms appearing in Eq. (10), include
single-site and two-site Pauli rotation gates. Since the
Hamiltonian (12) only contains nearest-neighbor coupling
terms, an expanded operator pool, which includes a com-
plete set of two-site Pauli terms, has also been investigated.
Interestingly, we find that AVQDS with the expanded pool
generally produces longer variational circuits, although the
simulation results are of the same accuracy. The reason
can be attributed to the fact that the list of new McLach-
lan distances {L?}, see Eq. (9) and Fig. 1, often contains
almost degenerate minimal values among several opera-
tors. The “biased” choice of operators in the physical pool
shows some advantage due to direct connections with the
Hamiltonian, which governs the quantum dynamics of the
system.

C. Simulation results

To characterize the time evolution of the quantum state
[W(#)) under a quench with inverse speed 7 =3, we
calculate the instantaneous total energy and spin corre-
lation functions. Results are presented in Figs. 4(a)4(d)
for the LSM model with N = 8, where the system is
further evolved for an additional time period of T after

the linear ramp under the final Hamiltonian 7:((T), in
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FIG. 4. Variations of instantaneous total energy, spin correlations, and number of two-qubit gates for quantum-quench simulations
of the eight-site LSM chain model with open boundary conditions. The simulation is composed of a linear ramp with speed defined
by T = 3, and postramp dynamics for another period of 7. The results for 2, = —0.7 sites are shown in the upper panels, and that
for 7, = 1.6 in the lower panels. The exact results are shown in symbols, and AVQDS data in solid curves. The evolution of the
instantaneous energy from numerically exact calculations and AVQDS is shown in (a),(b), along with the adiabatic results plotted as
gray dotted lines for reference. The spin correlation function in (c),(d) includes xx and yy components for a pair of the first and second
site and a pair of the first and last site. Compared with linear circuit growth of Trotter dynamics simulations, AVQDS circuits are
much shallower, with a sublinear circuit growth rate that quickly decreases, as plotted in (e),(f). The ansatz at t = T is composed of
50 two-qubit Pauli rotation gates (100 CNOTs) for both cases, which slightly increases to 53 two-qubit gates at = 27. A multiplying
factor of 2 for CNOT gates is included, since each two-qubit Pauli rotation gate can be compiled to two CNOTSs along with single-qubit

gates assuming full connectivity [38]. Inset in (f): variation of Hamiltonian parameter y as a function of 7.

order to assess the flexibility of the variational ansatz in
describing the postquench dynamics. The upper (lower)
panels show results for system size 4, = —0.7(1.6). In
Figs. 4(e) and 4(f), we show a comparison of the number
of two-qubit gates in the quantum circuits that describe the
Trotterized dynamics and AVQDS. The AVQDS results,
shown as solid lines, are in excellent agreement with
the exact data indicated by symbols over the full time
range. At the end of linear ramp ¢ = 7, the ansatz fidelity
f = |(\If[é?(T)]|\IJexact(T))|2 is beyond 99.9%. Numeri-
cally exact results for reference are obtained by propa-
gating the state by matrix exponentiation, |W[z+ §¢]) =
e MUY |\ (1)), for a fine-time mesh with step size 8feyact =
5 x 107*. In the adiabatic limit, the results for the energy
and spin correlation functions are symmetric under the
transformation ¢t — 7' — ¢ for 0 <¢ < T, but the finite
quench speed breaks that symmetry. In the initial state,
the dominant spin correlations are S*S¥, as exemplified
by the correlations between the first and second site,
SyS1, and between the first and the last site, Sg,Sy_,.

During time evolution, these correlations decrease as the
parameter y decreases, which reduces the strength of the
S7S87,, interactions. Instead, the spin correlations among
the y components increases, as exemplified by S;S|. The
system energy increases and reaches a maximum close to
y = 0, where the phase transition occurs in the thermo-
dynamic limit. For y < 0, the energy begins to decrease
as the ]S7-spin correlations continue to grow. Due to
the nonadiabatic finite speed quench, the long-range cor-
relation S, SX,_I, which requires longer time to establish,
remains far from equilibrium value at ¢t = 7. Although
the dynamical spin correlations are remarkably distinct
between the two A, points of parameter space, the adaptive
variational circuits reach about the same complexity of 50
two-qubit Pauli rotation gates at the end of linear ramp.
The postramp dynamics in the following time period of T
slightly expands the ansatz by three two-qubit gates.

To compare the circuit complexity of AVQDS with the
Trotter approach, we perform Trotterized simulations with
a uniform time step 8¢ = 5 x 1073, applying a series of

030307-8



ADAPTIVE VARIATIONAL QUANTUM DYNAMICS SIMULATIONS

PRX QUANTUM 2, 030307 (2021)

one- and two-qubit Pauli rotation gates to the state. To
characterize the accuracy of the dynamics simulations, we

evaluate the standard deviation of an observable O along
the linear-ramp dynamical path for 0 < ¢ < T according to

5= \/ Ntl_ S (10— @0), )

t

where the summation is over the entire time mesh of
dimension N, for the simulations. Note that the expec-
tation value (O), at a specific time ¢ in the simulation
is calculated rigorously without any noise, which corre-
sponds to infinite repeated measurements of the observable
O on ideal fault-tolerant quantum computers. The stan-
dard deviation is 0.003 for both energy and the shown
spin correlation functions for a system size of N = 8. As
discussed previously in Sec. I C3, the maximum allowed
parameter step size 66nax 1S the proper controlling factor in
AVQDS, replacing &7 that is the relevant quantity in Trot-
ter dynamics simulations. To properly benchmark AVQDS
and obtain a reasonable comparison of the resulting circuit
complexities, we thus set 86, = 5 x 1073 equal to the
Trotter timestep 8¢ in the AVQDS simulations. This results
in a standard deviation of 0.003 for spin correlation observ-
ables, and 0.010 for the energy, which is nevertheless about
3 times bigger than the Trotter energy error.

The number of two-qubit gates is the defining factor for
practical quantum computing in the NISQ era. As shown
in Figs. 4(e) and 4(f), we compare the number of two-qubit
gates contained in the variational ansatz and in the Trot-
terized circuits as a function of time z. Importantly, the
AVQDS simulations require up to 2 orders of magnitude
fewer two-qubit gates than Trotter simulations. In contrast
to the linear growth of Trotter circuits, the AVQDS circuits
mainly grow in the initial quench stage, and approach a
plateau as the system evolves further. For N = 8, we find a
plateau value of about 100 CNOTs is sufficient to follow the
spin dynamics to the final simulation time, whereas Trot-
terized circuits require execution of about 10* CNOTs. This
implies that the variational circuit has gained sufficient
expressibility to represent the relevant manifold of the
Hilbert space for the linear-ramp dynamics studied here.

D. System-size scaling of circuit complexity

To reach the goal of performing scalable quantum
dynamics simulations on quantum devices, it is crucial to
estimate how the required quantum resources scale with
the system size N. Although this scaling depends on the
complexity of the dynamical problem studied and is there-
fore model dependent, it is instructive to investigate the
scaling of the required resources with system size N for
the LSM model. As shown in Fig. 5, the final number of
parameters of the variational ansatz in AVQDS simulations
scale with N2. Specifically, we find that the total number

1404 m Total -/
1204 @ Two qubit //
iy
1009 f V) ~ 1.4n2 Rl
[} ’
o 80 A
R P o
60 faq(N) ~ 1.0N? /,l g
40 - o
,=:,6
20 1 r:':’
0 '=*—
2 4 6 8 10
N

FIG. 5. Saturated number of variational parameters (Ny) as a
function of LSM model size N. The total number of variational
parameters for AVQDS simulations after saturation is reached
(blue squares) grows quadratically with the number of sites
N. The corresponding number of variational parameters associ-
ated with two-qubit Pauli rotation gates (red dots) also shows
quadratic scaling behavior o« N2, yet with a smaller prefactor.

of variational parameters, which are associated with single
and two-qubit Pauli rotation gates, scales as 1.16N2. The
number of variational parameters that are associated with
two-qubit Pauli rotation gates scales as 0.78N?.

The AVQDS approach utilizes an inherent Trotter-type
structure for the variational ansatz with unitaries con-
structed based on Hamiltonian Pauli terms. It is concep-
tually different from the random parameterized quantum-
circuit optimization approach, where the cost-function
gradients can become exponentially small with increas-
ing number of qubits [S8—60]. In the context of adiabatic
state preparation, AVQDS can lead the system to the
ground state without resorting to explicit high-dimensional
optimization or cost-function gradients. Therefore, barren
plateaus of cost functions associated with random vari-
ational circuits are unlikely to constitute a problem for
AVQDS simulations, but small energy gaps at avoided
level crossings may require (exponentially) small quench
speed. As further numerical evidence for absence of barren
plateaus, the elementwise maximal absolute value of the
vector V defined in Eq. (6), which is closely related to the
cost-function gradient, remains close to 0.28 in AVQDS
simulations of the LSM model as the number of sites is
increased from 4 to 8.

The above AVQDS calculations start with the ground
state W of the Hamiltonian ﬂo at t = 0 in the FM, phase.
Due to the finite transverse field 4., this state is not a
tensor-product state and preparation of the initial state is
therefore nontrivial. While it is convenient to initialize any
state vector in classical simulations, it is not straightfor-
ward to prepare an entangled state on quantum computers.
As discussed previously in Sec. 2, we here adopt the qubit-
ADAPT-VQE method [25] for the initial state preparation.
We use a reference product state with all spins aligned in
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FIG. 6. Quench dynamics of eight-site mixed-field Ising model with periodic boundary conditions. The time-dependent Loschmidt

echo, infidelity 1 — f =1 — [(W[0 (t)]|\IJexact(t))|2, and number of CNOTs N are plotted in the upper panels for 4, = 0 (integrable),
and the lower panels for 4, = 0.5 (nonintegrable). The Loschmidt echoes (return probabilities) in (a),(d) from AVQDS show excellent
agreement with exact calculations. The infidelity plots in (b),(e) further quantify the AVQDS accuracy with a fidelity > 99.5%. As
shown in (c),(f), Trotter circuits are about 2 orders of magnitude deeper than AVQDS circuits for similar simulation accuracies, shown
in (b),(e). At t = 3, N reaches 134 and 210 for the integrable and nonintegrable models, respectively.

0, = 1 and an expanded operator pool that includes all
one- and two-qubit Pauli terms. For system size N = 6,
we find that an ansatz with 20 variational parameters,
which are associated with two-qubit Pauli rotation gates,
is able to variationally represent |\W,) with unit overlap up
to the seventh decimal place. At the end of the AVQDS
simulation, the number of variational parameters associ-
ated with two-qubit Pauli rotation gates has increased to
45, which is slightly smaller than a rough estimation of
20 + 0.78N? ~ 20 + 28 for N = 6. Here 20 is the number
of variational parameters in the initial qubit-ADAPT-VQE
ansatz as mentioned above, and 28 is the number of
variational parameters added during time-evolution.

IV. SUDDEN QUENCH DYNAMICS OF THE
MIXED-FIELD ISING MODEL

To further benchmark the AVQDS approach for nonin-
tegrable dynamics, we perform sudden quench dynamics
simulations in the MFIM:

=

-1 N-1

ZiZi1 + Z (hx)?i + hzZi) ,
i=0

H=—J

i

(14)

Il
=)

with Zy = Z, for periodic boundary conditions. In the fol-
lowing, we measure energy in units of J/ = 1. This model is
integrable for 4, = 0, where it becomes the transverse-field

Ising model (TFIM), but is nonintegrable when both 4,
and /%, are finite. Initially, the system is prepared in the
ordered state |Wy) = |1 --- 1), which is a ground state of
the MFIM in the absence of magnetic fields 4, = 4, = 0.
We consider two sudden quench protocols: (A) quenching
to the TFIM with h, = —2.0 at t = 0, and (B) quenching
to the MFIM with A, = —2.0,4, = 0.5 at t = 0. Protocol
A has been used in the study of dynamical quantum phase
transitions [61,62]. Protocol B allows us to compare the
performance of AVQDS for integrable and nonintegrable
models.

The Loschmidt echo, defined as the probability of a
time-evolving system to return to its initial state, is a cen-
tral concept in the study of dynamical quantum phase
transitions [61,62]. The simulations presented here start
with the initial state |Wy) = |1 --- 1), and the Losghmidt
echo can be written as L(f) = ‘(llfole_iﬂf"llllo) . The
time-dependent Loschmidt echo calculated from AVQDS
is plotted in Fig. 6 for (a) the integrable TFIM and (d) the
nonintegrable MFIM. Both cases are in excellent agree-
ment with exact results. To better quantify the simulation
accuracy, the infidelity 1 — /' = 1 — [(W[0()]| Wexact())]?
is shown in (b) and (e), indicating that the fidelity f is
generally higher than 99.5%. To make a comparison with
naive Trotter dynamics, we perform Trotter simulations
with a time step size chosen to provide fidelities compara-
ble to those obtained with AVQDS [see green dashed lines
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FIG. 7.

Number of CNOTs Ny in the AVQDS circuits for the MFIM as a function of simulation time ¢ and system size N. (a) The

AVQDS circuit depth for MFIM initially grows linearly with ¢, followed by a slowdown toward saturation. Times up to ¢ = 12 are
considered for N < 8, with shorter final times shown for N = 9, 10. Clearly for N < 8, the circuit begins to saturate at a critical time
t; < 12. (b) Vertical cuts of (a) at constant times for 1 < < 7 and t = 12. Inset: quadratic scaling of the saturated N.x for AVQDS

simulations of the integrable TFIM.

in (b) and (e)]. In (c¢) and (f), we plot the number of CNOTs
Nex used in the Trotter and variational AVQDS circuits.
Consistent with the results of Sec. III, we find that Trotter
circuits have about 2 orders of magnitude more two-qubit
gates than the AVQDS circuits. A tendency towards cir-
cuit depth saturation becomes noticeable for the integrable
TFIM (h, = 0) for simulation times ¢ > 2. The parame-
terized circuit for |W[0(f)]) reaches 134 CNOTs at final
simulation time ¢ = 3, slightly larger the N = § LSM sim-
ulation result. Moving from the integrable TFIM to the
nonintegrable MFIM by introducing finite field 4, the
AVQDS circuit increases N modestly from 134 to 210
att = 3.

In Fig. 7, we consider the scaling of the number of
CNOT gates N in the AVQDS circuit with time ¢ (a)
and system size N (b). This is the number of CNOT gates
required to build the postquench state |W[@(¢)]) in the
MFIM. Importantly, we observe an initially linear growth,
Nex o t, that crosses over into saturation at a system-size-
dependent timescale #(N). The initial growth resembles
the behavior of the entanglement entropy in the postquench
regime [63]. Since the number of CNOTs in the circuit is
proportional to the number of variational parameters, this
(polynomial) growth is notably slower than the exponential
growth of the number of parameters needed in simulations
using matrix-product states (MPSs). This is a direct man-
ifestation of the complexity window, which describes the
phenomenon that quantum circuits can generate states with
high entanglement more efficiently, i.e., with less param-
eters, than MPSs [64,65]. More precisely, states in the
complexity window are highly entangled yet can be repre-
sented by a quantum circuit that grows only polynomially
in time [66]. Figure 7 thus shows that such efficient circuits
can be automatically generated within AVQDS.

Specifically, Fig. 7(a) shows N of the AVQDS circuits
for the MFIM at system sizes 2 < N < 10 with simulation

times up to ¢t = 12, except for N =9 and 10, which use
shorter final times. We observe that N, for N < 8 saturates
within ¢ = 12. The critical time ¢, for saturation increases
with N. Panel (b) depicts N as a function of system size
N for different fixed times ¢ [vertical cuts of the data in
(a)]. While the saturated circuit depth, as measured by Ny
at t = 12, appears to scale beyond quadratically (with )
for 2 < N < 8 due to the increased complexity of the non-
integrable model, the exact order of the scaling cannot be
obtained due to the small size of the data set. Similar qual-
ity of fitting is obtained using a power-law function aN*
with @ & 4.8 and an exponential function b(e"/# — 1) with
B ~ 1.4. Let us now consider the practically relevant ques-
tion of how the circuit depth grows with N for a sequence
of fixed simulation times 1 < ¢ < 7. Because the satura-
tion time ¢, increases rapidly with N, the equal-time cut
generally exhibits a crossover behavior of Ny from the ini-
tial superquadratic growth with small N to approximately
linear growth with large N > N.(¢) as the circuits cross
over into the presaturation regime [where ¢ < #,(N)]. The
crossover size N, (f) grows slowly with ¢. This suggests that
practical dynamics simulations of generic quantum mod-
els out to fixed final times within the AVQDS approach
remains scalable with increasing N. Finally, in the inset
of Fig. 7(b), we show that N after the saturation time ¢,
in the integrable TFIM grows approximately as N2, which
is slower than the N*® observed for the MFIM case. The
quadratic scaling is similar to the results for the LSM
chain shown in Fig. 5, suggesting that it is related to the
integrability of the TFIM and the LSM models.

V. CONCLUSION

We present a novel adaptive variational approach,
AVQDS, to perform quantum dynamics simulations in
many-body fermionic and spin models. It builds upon
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the theory of variational quantum dynamics according to
McLachlan’s variational principle. The key novelty of the
presented AVQDS method is to adaptively and dynami-
cally expand the variational ansatz during time evolution.
This allows to account for the changing nature of the time-
evolved wave function and results in highly accurate vari-
ational quantum dynamics simulations. Expansion of the
ansatz is controlled by setting a threshold of the maximum
allowed McLachlan distance L. This distance describes
the difference after one time step between the exact time
evolution of the variational state, as described by the
von Neumann equation, and the time evolution obtained
from classically propagating the variational parameters in
time. The AVQDS approach does not involve complex
optimization in a high-dimensional parameter space.

To benchmark and study the performance of the
approach, we use AVQDS to simulate spin dynamics in the
integrable LSM model under a finite-rate quantum quench,
and in the nonintegrable MFIM under sudden parameter
quenches. We consider system sizes up to N = 11 sites.
The AVQDS simulations are shown to be in excellent
agreement with numerically exact results for local observ-
ables, total energy, and wave-function overlaps. The depth
of the resulting AVQDS variational circuits, as character-
ized by the number of two-qubit CNOT gates Ny, is shown
to saturate to values smaller than Trotterized circuits by up
to 2 orders of magnitude for N = 8. We find that N4 after
saturation at the end of the linear ramp scales as Ny, o< N?
for both the LSM and the TFIM model, suggesting that
this polynomial scaling is linked to the integrability of
models. For quench dynamics simulations of the noninte-
grable MFIM, the saturated number of two-qubit gates in
the AVQDS circuits scales as a higher-order polynomial
Nex o< N° approximately, as expected from the increased
complexity of the model. For fixed times ¢ < #,(N), how-
ever, we observe that the number of two-qubit gates in the
AVQDS circuits reduces to approximately linear growth
Nex o N as system size increases, implying the scalabil-
ity of AVQDS simulations in practice. Finally, we find that
the complexity of the AVQDS circuits at fixed NV scales ini-
tially linearly with time Ny o ¢, showing that these circuits
can efficiently capture the rapid growth of entanglement
under nonintegrable dynamics in the system.

We envision that the AVQDS approach will have wide
applications in the growing field of quantum dynamics
and far-from-equilibrium physics. In addition to directly
simulating dynamics in other spin and fermionic mod-
els, AVQDS can be used as an impurity dynamics solver
for quantum embedding approaches for dynamics simu-
lations of large and infinite lattice models [67—70]. An
open question to further explore is the finite-size and finite-
time scaling of the AVQDS circuit depth and relating it
to the entanglement content of the time-evolved state. The
prospect of adaptively and automatically generating poly-
nomial depth circuits that generate highly entangled states

is intriguing and warrants further investigation. Another
important future research direction is to study the noise
resilience of the algorithm and noise mitigation strategies,
in particular when implementing AVQDS on NISQ QPUs.
For the preparation of the initial state of the dynamics
simulation, we explicitly show that AVQDS can be eas-
ily combined with the known qubit-ADAPT-VQE method.
Finally, AVQDS can be generalized from the real-time to
imaginary-time axis [71], which offers a novel efficient
approach to finding ground states of Hamiltonian systems,
or to a wider range of optimization problems of static cost
functions in the field of machine learning.
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