
University of Tennessee, Knoxville University of Tennessee, Knoxville 

TRACE: Tennessee Research and Creative TRACE: Tennessee Research and Creative 

Exchange Exchange 

Doctoral Dissertations Graduate School 

8-2024 

Quantum Computing and Information for Nuclear Physics Quantum Computing and Information for Nuclear Physics 

Chenyi Gu 
University of Tennessee, Knoxville, cgu4@vols.utk.edu 

Follow this and additional works at: https://trace.tennessee.edu/utk_graddiss 

 Part of the Nuclear Commons 

Recommended Citation Recommended Citation 
Gu, Chenyi, "Quantum Computing and Information for Nuclear Physics. " PhD diss., University of 
Tennessee, 2024. 
https://trace.tennessee.edu/utk_graddiss/10459 

This Dissertation is brought to you for free and open access by the Graduate School at TRACE: Tennessee 
Research and Creative Exchange. It has been accepted for inclusion in Doctoral Dissertations by an authorized 
administrator of TRACE: Tennessee Research and Creative Exchange. For more information, please contact 
trace@utk.edu. 

https://trace.tennessee.edu/
https://trace.tennessee.edu/
https://trace.tennessee.edu/utk_graddiss
https://trace.tennessee.edu/utk-grad
https://trace.tennessee.edu/utk_graddiss?utm_source=trace.tennessee.edu%2Futk_graddiss%2F10459&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/203?utm_source=trace.tennessee.edu%2Futk_graddiss%2F10459&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:trace@utk.edu


To the Graduate Council: 

I am submitting herewith a dissertation written by Chenyi Gu entitled "Quantum Computing and 

Information for Nuclear Physics." I have examined the final electronic copy of this dissertation 

for form and content and recommend that it be accepted in partial fulfillment of the 

requirements for the degree of Doctor of Philosophy, with a major in Physics. 

Thomas Papenbrock, Major Professor 

We have read this dissertation and recommend its acceptance: 

Thomas Papenbrock, Lucas Platter, George Siopsis, Lawrence Heilbronn 

Accepted for the Council: 

Dixie L. Thompson 

Vice Provost and Dean of the Graduate School 

(Original signatures are on file with official student records.) 



Quantum Computing and Information

for Nuclear Physics

A Dissertation Presented for the

Doctor of Philosophy

Degree

The University of Tennessee, Knoxville

Chenyi Gu

August 2024



© by Chenyi Gu, 2024

All Rights Reserved.

ii



Acknowledgments

I would like to express my sincere appreciation to my advisor and committee chair, Dr.

Thomas Papenbrock, for his invaluable contributions to my research. His mentorship,

unwavering support, patience, and the wealth of knowledge and academic experience he

shared during my PhD studies have been instrumental in shaping my academic journey. His

virtues of diligence, intellectual curiosity, respect, and cheerfulness are a beacon in my career

and life.

I am profoundly thankful to my collaborators, Dr. Alessandro Baroni, Dr. Gaute Hagen,

Dr. Alessandro Roggero, and Dr. Zhonghao Sun, for insightful discussions and immense help

that have significantly enriched my research. I also extend my gratitude to Dr. Lawrence

Heilbronn, Dr. Lucas Platter, and Dr. George Siopsis for serving on my PhD committee.

I’d like to recognize the valuable help that I received from Dr. Joseph Carlson, Dr. Eugene

F. Dumitrescu, and Dr. Titus D. Morris during my visits to National Laboratories.

I would like to express my heartfelt thanks to my office mates, Mohammad Al-Mamum,

Jose Bonilla, Evan Combes, Jifeng Fan, Chinmay Mishra, Daniel Odell, and Zichao Yang.

Their help and encouragement have been a source of strength and inspiration, and I will

always cherish the joyful conversations and the delightful working environment we shared. I

would also like to thank all staff members and professors in the Department of Physics and

Astronomy for their efforts in making graduate study a pleasant experience.

I want to express my special thanks to my best friends, Runqin Bi and Zhen Gong, for

being there for me and cheering me on. Finally, I am heartily grateful to my family for

their unconditional love and support. Thank you for encouraging me through the storm and

always believing in me. Thank you for being the constant in my life. Love you all!

iii



Abstract

Quantum computation and quantum information, hot topics with immense potential, are

making exciting strides in nuclear physics. The computational complexity of nuclear physics

problems often surpasses the capabilities of classical computers, but quantum computing

offers a promising solution. My research delves into the application of quantum computation

and quantum information in nuclear physics.

I am curious about how to approach nuclear physics problems on a quantum computer.

This dissertation studies how to prepare quantum states with quantum algorithms, as state

preparation is a crucial initial step in studying nuclear dynamics. Two different quantum

algorithms are studied: (i) the time-dependent method, which utilizes unitary evolution

operator exp(−iγÔ) for a relatively short time to approximate the target operator Ô, and

(ii) the Linear Combination of Unitaries (LCU) algorithm, which exactly conducts the action

of target operator. A toy model for n(p, d)γ reaction is studied using both techniques and

implemented on simulated and real quantum devices. The results show the practicalness

of both algorithms and show the LCU-based method is efficient even with noisy quantum

computers nowadays.

Entanglement is viewed as a resource for many quantum processes and is essential for

computational speed-up in quantum algorithms. Entanglement measurement and inspection

of physics systems are vital. One would expect entanglement entropy to hold an area law

(or with logarithmic correction) in lattice systems with local interactions. It is interesting

to study if nuclear many-body systems agree with this statement. This dissertation uses

the coupled-cluster method to study entanglement entropies between hole space (contains

single-particle states below the Fermi level) and particle space (complement to the former)

of nuclear many-body systems. The analytical results show that entanglement entropies
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are proportional to particle number fluctuation and depletion number of hole space for

sufficiently weak interactions, which indicates entanglement entropies in nuclear systems

fulfill a volume law instead of an area law. These results are confirmed by computing

entanglement entropies of the pairing model and neutron matter.

Keywords: quantum computing and quantum information, state preparation algorithm,

many-body nuclear physics, coupled-cluster method, entanglement entropy
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Chapter 1

Introduction

1.1 Why Quantum Computing in Nuclear Physics?

Complex many-body systems at different energy scales are of interest in many-body nuclear

physics, ranging from quark and gluon dynamics at the GeV scale to rotational bands of

deformed nuclei at the keV scale. In principle, the starting point for all these rich phenomena

can be the fundamental theory of quantum chromodynamics (QCD), while it is hard to

exactly solve the Schrödinger equation Ĥ |Ψ⟩ = E |Ψ⟩ for a given description of the physics

problem. Two challenges are confronted when calculating complex many-body problems

using QCD. First, one needs to find out what the Hamiltonian Ĥ is since describing a

nuclear system in terms of quarks and gluons is complex. Second, one needs to find efficient

methods to solve the Schrödinger equation since the Hilbert space grows exponentially with

an increasing number of nucleons.

The scope of this thesis is focused on the calculations on a low-energy scale, which

means the calculations do not consider the details on a higher-energy scale, that one can

build Hamiltonian with the help of renormalization group (RG) (Wilson, 1975; Lepage,

1997) ideas and effective field theory (EFT) (Georgi, 1993; Kaplan, 2005). To increase the

efficiency of the calculation at low energy, we focus on the relevant degrees of freedom in

low-energy many-body physics, construct and truncate Lagrangians at leading order (LO),

next-to-leading order (NLO), etc., based on the expansion in Q/Λ with the help of the
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power counting scheme introduced by Weinberg (Weinberg, 1979). Q is the energy scale of

the system, and Λ is the breakdown scale of EFT.

Provided with the Hamiltonian, the question that arises is how to solve the Schrödinger

equation to get the properties of the system. Over the past two decades, tremendous

progress has been made in the ab initio methods of many-body nuclear theory thanks to

the rapid development of computational resources. Ref. (Hergert, 2020) provides a review

of ab initio nuclear many-body theory; it describes various ab initio methods and their

applications. Methods like Quantum Monte Carlo (QMC) and full configuration interaction

(FCI) can best describe the system with the slightest uncertainty while the Hilbert space

grows exponentially with the system size. Methods like Coupled Cluster (CC) and in-medium

Similarity Renormalization Group method (IMSRG) scale polynomially.

Despite the fast growth of the ab initio calculation methods, it is still a big challenge

for today’s classical computer to solve many-body nuclear problems. For instance, even

though the calculation of heavy nuclei can be pushed to nucleon number A ∼ 140, there

are still huge blanks between magic number nuclei. Nuclei with magic numbers of nucleons

(2, 8, 20, 28, 50, 82, 126), or, say, closed-shell nuclei, are easy to describe because there is

a relatively large gap between two different shells. Dynamical correlations need to be

considered, and the CC method can efficiently solve closed-shell nuclei. However, the vast

majority of nuclei are open-shell nuclei, as neither protons nor neutrons have a magic number;

they are strongly correlated, and static correlations need to be accounted for. For these

problems, we consider using FCI, which carries an expensive computation cost and is most

likely to exceed classical computers’ abilities. Note here that correlation is the same word

as entanglement in the notation of quantum information.

The formal definition of static and dynamic correlations can be found in the paper

(Benavides-Riveros et al., 2017). Static correlations usually refer to possible states that

are nearly degenerate with the reference states. For example, open shell nuclei do not

have well-defined Fermi surfaces, for there are multiple reference states that have similar

energies. Dynamic correlations refer to situations where higher-order excited states need to

be considered. For example, closed shell nuclei only need a single reference state, for there

are relatively large gaps between two shells, and we only need to consider the excited states.

2



The above statements convey that it is hard to calculate nuclei, especially open-shell

nuclei, on classical computers. Also, see the review (Carlson et al., 2022), which demonstrates

the exascale computing requirements for diverse nuclear physics topics. The limitation of the

classical computer’s capability in nuclear physics is one of the reasons why people, including

me, explore the computing power of a quantum computer. In 1981, Feynman (Feynman,

1982) proposed the idea of using quantum computers to simulate quantum systems, delivered

the famous words: “Let the computer itself be built of quantum mechanical elements which

obey quantum mechanical laws.” This encourages scientists to study quantum simulators

(Johnson et al., 2014), which are used to simulate a quantum system with quantum

mechanical systems.

Two approaches of quantum simulators (Buluta and Nori, 2009) are analog quantum

simulation and digital quantum simulation. An analog quantum simulator uses the dynamics

of a quantum system to resemble the dynamics of another quantum system of interest. A

digital quantum simulator (Abrams and Lloyd, 1997) is a gate-based universal quantum

computer that translates evolutions in terms of elementary quantum gates implemented on

qubits (quantum bits). This dissertation will focus on the gate model quantum computers.

The great power of quantum computers comes from the superposition and entanglement

of qubits, which play central roles in quantum computation and allow qubits to encode

exponentially more information than classical bits. For example, suppose one wants to

simulate a n interacting spin system with the most general and highly entangled state,

which can be expressed as

|Ψ⟩ =
1∑

i1=0

· · ·
1∑

in=0

ci1···in |i1⟩ ⊗ · · · ⊗ |in⟩ , (1.1.1)

where |i⟩ can be states |0⟩ or |1⟩ in a two-dimensional Hilbert space. To express it, one needs

2n complex numbers ci1···in in classical computers and only requires n qubits in quantum

computers due to entanglement. Let alone simulating the dynamics of a quantum system.

This is one of the evidence shows that quantum computers hold huge potential in simulating

nuclear physics problems and outperform the capabilities of classical computers.
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The advantages of superposition and entanglement do not mean we can access all the

information hidden in the quantum state. Holevo’s theorem (Holevo, 1973) gives the upper

bound to accessible information: given n qubits, we can only retrieve n classical bits of the

information.

The quantum advantage in computation (Preskill, 2012; Bravyi et al., 2018; Maslov et al.,

2021; Daley et al., 2022; Herrmann et al., 2023), or quantum computational supremacy

(Harrow and Montanaro, 2017; Arute et al., 2019), attracts people to explore efficient

quantum algorithms about how quantum states are prepared, evolved, and solved on a

quantum computer. Even so, the scope of problems in which one has evidence for the

exponential advantage of quantum computing is still a question (Lee et al., 2023). Even

though we are now in the Noisy Intermediate-Scale Quantum Era (NISQ) (Preskill, 2018,

2021), we can not efficiently prepare such highly entangled quantum states and evolve

complex systems. Noise and the limited number of qubits still limit the size of the quantum

circuit and the performance of the near-term quantum processing units. People have

optimistic expectations over the utilization of quantum computers in the future and have

applied the NISQ quantum computers to nuclear physics (Zhang et al., 2021), quantum

computational chemistry (O’Malley et al., 2016; McArdle et al., 2020; Cao et al., 2019;

Kowalski and Bauman, 2023), condensed matter physics (Macridin et al., 2018; Backes et al.,

2023), and so on (also see the Ref. (Dalzell et al., 2023) about a broader survey of application

area).

The topic “quantum computing and simulation for nuclear physics” is a hot one, and

many works have been tackled on quantum computers in recent years (Kaplan et al., 2017;

Dumitrescu et al., 2018; Klco et al., 2018; Roggero and Carlson, 2019; Shehab et al., 2019;

Lu et al., 2019; Holland et al., 2020; Roggero et al., 2020b; Stetcu et al., 2022; Kiss et al.,

2022; Pérez-Obiol et al., 2023). This dissertation is about our projects (Roggero et al., 2020a;

Gu et al., 2023), which contributed to this topic. Next, I will briefly introduce how to map

nuclear physics problems onto a quantum computer.
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1.2 Mapping Nuclear Physics Problems onto a Quan-

tum Computer

This dissertation will not go into detail about basic knowledge of quantum computer concepts

and quantum algorithms. For the introduction to quantum computation and information, I

refer the readers to the textbook by Nielsen and Chuang (Nielsen and Chuang, 2010).

As introduced by Ref. (Deutsch, 1989), ‘the universal quantum gate, together with

quantum “unit wires”, is adequate for constructing networks with any possible quantum

computational property.’ Since the evolution of quantum systems is unitary, all quantum

gates are unitary. As described in Ref. (Deutsch et al., 1995; Barenco et al., 1995), all unitary

operations on arbitrarily many bits n(U(2n)) can be expressed as compositions of elementary

operations, and those elementary operations include all one-bit quantum gates (U(2)) and

the two-bit exclusive-or gate.

For gate-based quantum computers, the physics systems should be expressed in terms of

quantum gates. A series of unitary gates should be applied to a quantum register, a system

comprising multiple qubits. Intuitively, the circuit model of a quantum computer resembles

that of a classical computer. Similar to a classical computer, there are two states of a qubit,

| ↑⟩ and | ↓⟩ in a two-dimensional Hilbert space. A single qubit state is described as

|ϕ⟩ = α| ↑⟩ + β| ↓⟩ ,

where |α|2 + |β|2 = 1, and thought as a spin-1/2 state.

In nuclear physics, physicists usually start with a second-quantized Hamiltonian, written

as products of fermionic creation and annihilation operators. Quantum computers require us

to map fermionic creation and annihilation operators onto spin lowering and raising operators

(Pauli algebra) of qubits. The Jordan-Wigner (Jordan and Wigner, 1928) or Bravyi-Kitaev

(Bravyi and Kitaev, 2002) transformations are the most common ones. I refer the readers to

the Ref. (Whitfield et al., 2016; Setia et al., 2019; Steudtner and Wehner, 2019; Derby and

Klassen, 2020) for other recent mappings.
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In nuclear physics, a spin-up (down) state corresponds to an |0⟩ (|1⟩) state. For a chain

of spins in one dimension, the Jordan-Wigner mapping is described as,

f †
n → 1

2

[
n−1∏
j=0

−Zj

]
(Xn − iYn) ,

fn → 1

2

[
n−1∏
j=0

−Zj

]
(Xn + iYn) .

(1.2.1)

Here f †
n and fn are fermionic creation and annihilation operators for state |n⟩, and Xn,

Yn, Zn denote the corresponding Pauli matrix acting on qubit n. The phase
∏n−1

j=0 −Zj

accounts for the number of occupied fermionic modes for modes j < n to satisfy the fermion

anti-commutation relations. We have the number operator

nj ≡ f †
j fj =

1 − Zj

2
. (1.2.2)

The bilinear operator is expressed as

f †
q fp + f †

pfq =
1

2

[
p−1∏

j=q+1

−Zj

]
(XqXp + YqYp) . (1.2.3)

It is assumed that p > q. Therefore, the second quantized Hamiltonians can be expressed

as the linear combination of Pauli operator strings. For higher dimension spin-fermionic

mapping, see Ref. (Fradkin, 1989; Huerta and Zanelli, 1993), and see also Ref. (Ovrum and

Hjorth-Jensen, 2007; Coleman, 2015) for detailed Jordan-Wigner mapping for spin S = 1/2,

Ref. (Batista and Ortiz, 2001) for generalized Jordan-Wigner transformation for arbitrarily

spin S.

With these mappings, any unitary evolution can be represented as the products of one

and two-qubit operations, and quantum states can be represented as the states of n qubits.

After mapping, the simulation procedures are usually separated into three steps: initial state

preparation, evolution simulation over the initial states, and measurement via projections. I

refer readers to references (Ortiz et al., 2001; Somma et al., 2002) for details of the quantum

simulation procedures.
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Also, the next Chapter 2, in which I discuss two different algorithms for the excited state

preparation and show the detailed transformation of a nuclear physics problem into quantum

circuits, can be regarded as a prototypical example of quantum simulation in nuclear physics.

It is also an example that shows how to utilize Qiskit (Qiskit contributors, 2023), work with

quantum circuits on a quantum device, and apply error correction and mitigation procedures.

Error mitigations (Temme et al., 2017; Li and Benjamin, 2017; Endo et al., 2021) are needed

to obtain more reliable results since we are in the stage of NISQ.

1.3 Entanglement of Nuclear Many Body Systems

Quantum information science, which is a field that combines quantum mechanics with

information theory, ignites the “second quantum revolution” (Dowling and Milburn, 2003;

Atzori and Sessoli, 2019; Deutsch, 2020), in which stage the use of quantum physics principles

helps people to develop new quantum technologies.

Quantum information science is a vast field; one of the key concepts is entanglement.

Entanglement was first recognized by Einstein, Podolsky, and Rosen (EPR) (Einstein et al.,

1935) and Schrödinger (Schrödinger, 1935), it describes the phenomenon: the quantum state

|Ψ⟩ of a composite system, which can be separated into two subsystems A and B, can not

be factored as a product of subsystems’ states

|Ψ⟩ = |ϕA⟩ |ψB⟩ ,

which implies that even with a complete knowledge of the system, one may not understand

its parts. Quantum states described as this are called entangled states or separable states

otherwise.

Quantum entanglement (Horodecki et al., 2009) is considered a resource for many quan-

tum processes, such as quantum teleportation and quantum cryptography. Entanglement

can help with quantum error correction (Brun et al., 2006), which is essential to fault-tolerant

quantum computers.
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The power of quantum computation derives from entanglement; it plays an essential

role in computational speed-up in quantum algorithms (Ekert and Jozsa, 1998; Jozsa and

Linden, 2003). For more information, see Ref. (Jozsa, 2006; Van den Nest et al., 2007), which

discusses the range of quantum states and quantum circuits that can be efficiently classically

simulated. One needs a sufficient amount of entanglement for this speed-up (Vidal, 2003),

and universal quantum computation can be achieved with small entanglement (Van den

Nest, 2013). A randomly chosen state, like the state described in Eq. (1.1.1), can be too

entangled (Gross et al., 2009; Bremner et al., 2009) to be useful in measurement-based

quantum computation. Therefore, an entangled but not too entangled quantum state is

needed, in which sense, entanglement measurement and inspection of physics systems are

vital. An in-depth analysis can provide a new perspective on the nature of entanglement in

nuclear systems.

In a quantum context, Von Neumann entropy usually quantifies the quantum entangle-

ment. We assume that the Hilbert space H is decomposed as H = HA ⊗ HB in terms of

the Hilbert spaces of two subsystems A and B. The density matrix of the ground state

|Φ⟩ is ρAB = |Φ⟩⟨Φ|, and the reduced density matrix of the subsystem A is obtained by

tracing over the subsystem B, i.e. ρA = TrB ρAB. The density matrices ρA and ρAB are

Hermitian, non-negative (i.e., they have non-negative eigenvalues), and fulfill Tr ρ = 1. The

von Neumann entropy is given by

S = −Tr(ρA ln ρA) . (1.3.1)

The state ρA is entangled when it can not be represented by a pure state, i.e., Tr ρ2A < 1.

Also, the non-zero von Neumann entropy indicates the existence of entanglement. The

von Neumann mutual information is defined as

I(A : B) = S(ρA) + S(ρB) − S(ρAB) , (1.3.2)

which is usually used to measure the total correlations between the two subsystems of a

bipartite quantum system (Henderson and Vedral, 2001; Modi et al., 2010).

8



In this dissertation, the more general Rényi entropy (Rényi, 1961) is considered as well,

which compacts a one–parametric family of entanglement entropies with the parameter α ∈

(0, 1) ∪ (1,∞), and is defined as

Sα =
1

1 − α
ln Tr ραA . (1.3.3)

S0, S2, and S∞ are usually known as max-entropy, collision entropy, and min-entropy. The

von Neumann entropy arises as a limiting case of the Rényi entropy for α → 1, and it is

denoted as S1:

S1 = lim
α→1

Sα = −Tr(ρA ln ρA) , (1.3.4)

in this dissertation. When the parameter α gets larger, the Rényi entropy is more determined

by the events with higher probabilities (Müller-Lennert et al., 2013). The Rényi entropies

are monotonically decreasing for increasing α.

Entanglement is widely studied in different areas of quantum physics like quantum

chemistry (Eisert et al., 2010), condensed matter (Zeng et al., 2015; Laflorencie, 2016), and

entanglement is usually viewed as a tool to investigate wave function correlation properties.

In quantum chemistry, orbital entanglement and its application (Boguslawski et al., 2012;

Boguslawski and Tecmer, 2014; Stein and Reiher, 2017) help the measurement of single-

and multi-reference characters and dissect chemical reactions (Duperrouzel et al., 2015).

Entanglement helps the choice of orbitals (Szalay et al., 2015; Krumnow et al., 2016) in

tensor network states and active space optimization (Stein and Reiher, 2016; Ding et al.,

2023) by optimizing the entanglement structures.

In nuclear physics, expressions such as “wave-function correlations” or “fluctuations”

are often synonyms for entanglement and refer to strong or weak correlations in nuclear

systems. Recently, advances in quantum information science and quantum computing also

renewed interest in exploring entanglement in nuclear systems (Beane et al., 2019; Kruppa

et al., 2021, 2022; Bai and Ren, 2022; Lacroix et al., 2022; Bulgac et al., 2022; Johnson and

Gorton, 2022). A better understanding of entanglement could thus benefit both classical

and quantum computations of atomic nuclei. In shell-model calculations, understanding

entanglement helps when applying the density-matrix renormalization group (Legeza et al.,
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2015; Tichai et al., 2022). In Ref. (Robin et al., 2021), single-orbital entanglement entropy

and two-orbital mutual information were studied. They are found to be helpful in analyzing

the structure of nuclear wave functions and the choice of base states. In Ref. (Faba et al.,

2021), entanglement entropy is viewed as a metric for correlation.

Entanglement is necessary for non-locality (Buscemi, 2012) and essential in studying

the locality of interactions. The scaling law of entanglement entropy can be viewed as an

indicator of the locality. In lattice systems with local interactions, one often finds that the

entanglement entropy grows proportional with the area (times some logarithmic corrections)

when the system is partitioned into two subsystems (Eisert et al., 2010), and this leads to

an area law for entanglement entropy.

For the short-range interaction system, one would expect entanglement entropy S or

particle number fluctuation (∆N)2 of subsystem would obey area law Ld−1, i.e., the boundary

area of the subspace, where d is the dimension of the subsystem, and L is a linear dimension

of the subsystem. Works done in Ref. (Gioev and Klich, 2006) show a logarithmic correction

to the scaling S ∼ Ld−1 log(L) for free fermions systems. Reference (Gioev and Klich, 2006;

Klich, 2006) show (∆N)2 as upper and lower bound of S,

4(∆N)2 ≤ S ≤ O(logL)(∆N)2 . (1.3.5)

Reference (Leschke et al., 2014) conveys a rigorous proof about the scaling of Rényi

entanglement entropies Sα for the free fermi-gas ground state, which shows a logarithmically

enhanced area law as well. Entanglement entropies beyond the free case are studied (Barthel

et al., 2006a,b). Area law holds in work (Plenio et al., 2005). Logarithmic correction is

introduced in work (Wolf, 2006), which studied the fermionic tight-binding Hamiltonians.

The question arises whether area law (or with logarithmic correction) holds in nuclear

systems. The Ref. (Masanes, 2009) pointed out two conditions the system with finite range

interactions might hold to have (at most) an area law (with the logarithmic correction): “(i)

the state has sufficient decay of correlations and (ii) the number of eigenstates with vanishing

energy density is not exponential in the volume.” While the first condition is expected to be
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fulfilled for atomic nuclei, the second seems not. After all, nuclei are open quantum systems,

and resonant and scattering states are abundant.

On the first view, area laws should also be held in nuclear physics because the interaction

is short-ranged. However, some evidence shows entanglement entropies in nuclear systems

fulfill a volume law (Pazy, 2023). Also, for a more detailed discussion, see the Sec. II of

Ref. (Gu et al., 2023). This question is one of the main topics of this dissertation and will

be discussed in Chapter 3.

1.4 Scope of This Work and My Contributions

As discussed in Sec. 1.1, nuclear physics problems are hard to solve with classical computers,

and quantum computing holds much promise for low-energy nuclear theory. My research

topic is seeking the application of quantum computation and quantum information in nuclear

physics, and this dissertation is based on the published works (Roggero et al., 2020a; Gu

et al., 2023), which I co-authored.

Specifically, in the first project (Roggero et al., 2020a), my collaborators and I studied

excited states preparation algorithms involving (i) the time-dependent method, which uses

unitary evolution for a short time to approximate the action of an excitation operator,

and (ii) the Linear Combination of Unitaries (LCU) algorithm. These two techniques were

benchmarked on emulated and real quantum devices, using a toy model for thermal neutron-

proton capture. My contributions include designing and optimizing quantum circuits, writing

Qiskit codes, implementing jobs on quantum devices, analyzing read-out results and error

extrapolation, analyzing algorithm efficiency, and others.

Specifically, in the second project (Gu et al., 2023), my collaborators and I studied entan-

glement entropies between the single-particle states of the hole space and its complement in

nuclear systems. We calculated the analytical results of entanglement entropies based on the

coupled-cluster method. We found they were proportional to the particle number fluctuation

and the depletion number of the hole space for sufficiently weak interactions. This indicated

a volume law instead of an area law. We tested and confirmed these results by computing

entanglement entropies of the pairing model, neutron matter, and the depletion number of
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finite nuclei. My contributions include analytical derivation of results based on the coupled-

cluster method, numerical entanglement entropy calculation of the pairing model and the

neutron matter, analysis of results, and some others.

This dissertation is organized as follows. In Chapter 2, two excited states preparation

algorithms are presented, including the time-dependent method in Sec. 2.2, the LCU-based

method in Sec. 2.3, and their circuit implication details in Sec. 2.4. Section 2.5 and Sec. 2.6

provide the results for both methods on a simple excitation operator and on the n(p, d)γ

reaction operator, respectively.

In Chapter 3, the entanglement entropies of nuclear physics systems are studied.

Sec. 3.1 briefly introduces the background of nuclear physics and the concepts of quantum

information, which are necessary for this dissertation. In Sec. 3.2, I present analytical results

for the entanglement entropy in finite systems based on coupled-cluster theory. Sec. 3.3

provides the calculation results of the pairing model and the neutron matter.
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Chapter 2

Excited States Preparation

Algorithms for Nuclear Dynamics

This chapter is based on the published paper (Roggero et al., 2020a), which I co-authored.

My collaborators and I studied the quantum algorithms of excited states preparation, a

necessary step in studying quantum dynamics problems on a quantum computer.

In this chapter, I describe two different excited state preparation strategies. The first

strategy, which is denoted as the time-dependent method, approximates the Hermitian

excitation operator Ô by sin(γÔ)/γ, valid for small time parameter γ, using the time

evolution operator and one additional qubit. The second strategy, which is denoted as

the LCU-based method, performs the excitation operation in an exact way using the linear

combination of unitary (LCU) algorithm. These two strategies are applied to a toy version

of the thermal neutron-proton capture on emulated and real quantum devices, and results

will be shown.

2.1 Introduction

As discussed in Chapter 1, quantum computing holds a huge promise in nuclear physics

calculation. It is interesting to explore how to prepare, evolve, and solve for quantum states

on quantum computers. Inspired by the works of studying linear response function on a

quantum computer (Roggero and Carlson, 2019), I am interested in exploring the quantum

13



algorithms to efficiently apply the excitation operators to an initial state on a quantum

register, namely the preparation of excited states. Preparing the excited state is an essential

subroutine in most questions and is critical for the performance of quantum computation.

Usually, as the first step of a quantum problem, the effort used on the state preparation

quantum algorithms must be exponentially less than that used on the classical algorithms

to meet the exponential quantum advantage.

Given a Hermitian excitation operator Ô and an initial state of the quantum system as

|Ψ0⟩, I want to find a protocol to prepare the normalized excited state

|ΦE⟩ =
1

η
Ô |Ψ0⟩ with η =

∥∥∥Ô |Ψ0⟩
∥∥∥ . (2.1.1)

Here, the norm η is the vector 2-norm.

As described in Ref. (Barenco et al., 1995), all unitary operations on arbitrarily many

qubits n(U(2n)) can be expressed as compositions of elementary operations. Quantum

computers can apply a series of unitary gates to the quantum registers. Things become

more complicated for non-unitary operations (Terashima and Ueda, 2005) since, unlike

unitary operations, quantum computers can not directly apply non-unitary gates to the

quantum registers. The technique employed involves embedding non-unitary operations into

unitary operations, a process that allows us to produce a state |ΦA⟩ to approximate the

exact excited state |ΦE⟩ with a guaranteed fidelity F = |⟨ΦE|ΦA⟩|2 and a success probability

Ps. This chapter discusses two strategies for approaching this question.

Throughout this chapter, I use Qiskit (Qiskit contributors, 2023) and first implement the

relevant quantum circuits on the virtual machine (VM) QasmSimulator, which is a noisy

quantum circuit simulator backend, with the noise model, basis gates, and coupling map

mimicking an IBM Quantum (IBM Q) backend, a quantum cloud service released by IBM.

As well, I implement the circuit on the quantum processor unit (QPU) provided by IBM Q.

The QPU used in this chapter is the IBM Q backend Vigo (5qubit backed: IBM Q team,

2020), and its layout and connectivity are shown in Fig. 2.1.
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Figure 2.1: Qubits layout and connectivity of the IBM Quantum backend Vigo
(5qubit backed: IBM Q team, 2020). The circles with number labels are the qubits, and
the connection lines represent the connectivity between qubits. The figure is taken from
Ref. (Roggero et al., 2020a), which I co-authored.
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2.2 Time-dependent Method

This section introduces the time-dependent method, which uses a unitary evolution

Û(γ) = exp
(
−iγÔ

)
= cos

(
γÔ
)
− i sin

(
γÔ
)
, (2.2.1)

for a short enough time to approximate the associated excitation operator Ô. The “time”

parameter γ is a positive number. The outcome of this algorithm is producing the

approximate state

|ΨA(γ)⟩ ∝ sin
(
γÔ
)
|Ψ0⟩ = |ΦE⟩ + O(γ2) , (2.2.2)

to the target state |ΦE⟩, described in Eq. (2.1.1).

The quantum procedure can be represented with the quantum circuit as

H • X • H

|Ψ0⟩ / U(γ) U †(γ)
.

(2.2.3)

The first line is for the auxiliary qubit, or the “ancilla” register, and the second line is for

the target qubits or the quantum register. The slash on the second line represents a line

containing multiple qubits. The meter at the end represents a projective measurement.

Here and in what follows, the gates X, Y and Z represent the Pauli matrices σ̂x, σ̂y

and σ̂z, and gate H is the Hadamard gate, see Appendix A for the explicit definition. No

initial state is specified on the left-hand side of the ancilla register. Usually, without losing

generality, the ancilla qubit is prepared to be in state |0⟩ or |1⟩. The target qubits are

initialized to be in state |Ψ0⟩, which could be the ground state of a many-body Hamiltonian.

The main part is the controlled-U (U †) gate, a unitary gate controlled by the status of

the ancilla qubit. Equivalently in matrix representation, controlled-U is defined as

•
=

I 0

0 U

 .
U

(2.2.4)

where the Hilbert space is spanned by |0⟩⊗|Ψ0⟩ and |1⟩⊗|Ψ0⟩. Here and in what follows, the

operator I represents the identity operator. The black solid point represents the controlled-U
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applies the unitary operation Û to the target qubits when the ancilla qubit is in state |1⟩,

and does nothing when the ancilla qubit is in state |0⟩.

To be more clear, the unitary operation corresponding to the circuit (2.2.3) (apart from

the measurement) can be written as

V (γ) =

 cos
(
γÔ
)

i sin
(
γÔ
)

−i sin
(
γÔ
)

− cos
(
γÔ
)
 . (2.2.5)

If the ancilla qubit is prepared in the state |0⟩, the circuit produces the final state (before

the measurement) as follows:

|Ω(γ)⟩=V (γ) |0⟩⊗|Ψ0⟩

= |0⟩⊗cos
(
γÔ
)
|Ψ0⟩−i |1⟩⊗sin

(
γÔ
)
|Ψ0⟩ .

(2.2.6)

The part of interest, sin
(
γÔ
)

, is embedded in the second component. The technique is

postselecting those measurements when the ancilla qubit in the state |1⟩, then the quantum

register will turn out to be in the state

|ΨA(γ)⟩ =
−i√〈

Ψ0

∣∣∣sin2(γÔ)
∣∣∣Ψ0

〉 sin(γÔ) |Ψ0⟩ . (2.2.7)

To summarize, the function of the whole circuit (2.2.3) contains two parts: (i) the unitary

operation part (2.2.5), and (ii) the postselection part, which is denoted as the meter at the

end of the circuit (2.2.3). And due to its inherently stochastic measurements, it does not

promise us to obtain the final state (2.2.7) every measurement, but with a success probability

as

Ps = ⟨Ψ0| sin2(γÔ) |Ψ0⟩ = O
(
γ2
)
, (2.2.8)

and thus at least one needs measurements of order O (1/γ2) to obtain the state of interest.

To guarantee relatively large fidelity, it is required that the time parameter γ be small,

while small γ leads to a small success probability of postselection. It is necessary to consider
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the tradeoff between high fidelity and success probability of the final state, which is discussed

in the following subsection 2.2.1.

2.2.1 Fidelities and Success Probabilities Analysis

To quantify fidelities and success probabilities, I decompose the excitation operator Ô as:

Ô =
L∑

k=0

λkÛk λk > 0 , (2.2.9)

and denote the 1-norm of the coefficient vector as

Λ =
L∑

k=0

λk ≥ ∥Ô∥ , (2.2.10)

with ∥ · ∥ the operator spectral norm.

The bounds for the success probability Eq. (2.2.8) is derived as:

min
[
sin2 (γΛ) , γ2η2

]
≥ Ps ≥ γ2η2

(
1 − γ2Λ2

3

)
. (2.2.11)

Remember here that η is defined in Eq. (2.1.1) as the vector 2-norm of exact excited state

|ΨE⟩. The lower bound for the state fidelity is derived as

F (γ) = |⟨ΨE | ΨA⟩|2 =
1

η2
|⟨Ψ0|O sin(γO)|Ψ0⟩|2〈

Ψ0

∣∣sin2(γO)
∣∣Ψ0

〉
≥ 1

η2γ2
⟨Ψ0|O sin(γO)|Ψ0⟩

≥
(

1 − γ2Λ2

6

)
.

(2.2.12)

For the details of the derivation, I refer the readers to Appendix A in Ref. (Roggero et al.,

2020a), in which the upper and lower bounds for expectations ⟨sin(X)2⟩ and ⟨X sin(X)⟩ are

shown. Here, ∥X∥ ≤ π/2, and this requirement constrains the time parameter to a small

value γ ∈ [0, π/2Λ].
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If guaranteeing a minimum fidelity of the approximated state as

Fmin ≥ (1 − π2/24) ≈ 0.59 ,

where the value is obtained when γ = π/2Λ, the parameter γ should fulfill the limit

γ ≤
√

6 (1 − Fmin)

Λ
. (2.2.13)

The corresponding success probability is bounded by

η2

Λ2
(2Fmin − 1) ≤ Ps ≤ sin2

(√
6 (1 − Fmin)

)
. (2.2.14)

When the infidelity ∆f = 1 − Fmin is small, The upper bound of success probability can

be simplified as Ps ≤ 6∆f . The lower bound of success probability guarantees its minimum

value as 0.18η2/Λ2.

To clarify the analysis of fidelities and success probabilities, I show detailed calculations

based on an example of the simple operator

Ô(θ) = cos(θ)X + sin(θ)I , (2.2.15)

with θ ∈ [0, π]. The excited state vector 2-norm is η = 1 for any angle. The 1-norm of this

operator has a simple upper bound as

Λ(θ) = |sin(θ)| + |cos(θ)| ≤
√

2 ≡ Λmax . (2.2.16)

For simplification, the bound Λmax is used in the following analysis instead of Λ(θ). Therefore,

the constrain of time parameter is obtained from Eq. (2.2.13) as γ ≤
√

3∆f , and the

corresponding allowed values of γ is depicted in the lower panel of Fig. 2.2 as the gray

region.

The top panel of Fig. 2.2 gives estimated upper and lower bounds for the success

probability Ps, Eq. (2.2.11), versus the target infidelity ∆f . The upper-bound B is provided
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Figure 2.2: Estimated success probability Ps in subplot (a) and the allowed value for time
steps γ in subplot (b) versus the target infidelity ∆f . More details of success probability
values for small infidelity are shown in the inset of the top panel; note the log scale here.
The figure is taken from Ref. (Roggero et al., 2020a), which I co-authored.
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by the bound γ2η2, and the upper-bound A is provided by the bound sin2(γΛ), which is

smaller for most values of infidelity. To achieve large fidelity as well as sufficiently large

success probability, one can set γ = 0.3, which gives a high fidelity

F (0.3) ≥ 97% ,

and a relatively large success probability as

9% ≥ Ps(0.3) ≥ 8.46% .

A better analysis could be obtained using the tighter bound Λ(θ) instead of Λmax.

2.2.2 Imperfect Time Evolution

This subsection discusses the influence of the fact that the unitary gates U(γ) can not be

exactly implemented in practice and considers the situation only an approximated unitary

operation Ũ(γ) with some additive error δU can be obtained, and shows how this modification

will change the efficiency of this method. The derivation details are also shown in Appendix

B in Ref. (Roggero et al., 2020a).

With this approximated unitary operation Ũ(γ), the function of circuit (2.2.3) is written

as Ṽ (γ), instead of V (γ). The difference between these two unitaries is denoted as

∥∥∥Ṽ (γ) − V (γ)
∥∥∥ ≤ δV , (2.2.17)

with a total error δV ≤ 2δU . After implementation of Ṽ (γ), the state is obtained as

∣∣∣Ω̃(γ)
〉

= Ṽ (γ) |0⟩ ⊗ |Ψ0⟩

= cos(α) |Ω(γ)⟩ + sin(α) |ξ(γ)⟩ .
(2.2.18)
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Here, the normalized state |ξ(γ)⟩ is introduced to depict the orthogonal states to the error-

free vector |Ω(γ)⟩, given in Eq. (2.2.6). The difference is defined as

|E⟩ = |Ω(γ)⟩ −
∣∣∣Ω̃(γ)

〉
,

and the bound for its norm is given as

∥ |E⟩ ∥2 = ⟨i|
(
Ṽ † − V †

)(
Ṽ − V

)
|i⟩

≤ max
λ∈σ[(Ṽ †−V †)(Ṽ−V )]

λ

≡ max
si∈{singular values of Ṽ−V }

s2i

≡ ∥Ṽ − V ∥2 ≤ δ2V

here the initial state is written as |i⟩ = |0⟩ ⊗ |Ψ0⟩. The spectrum of the corresponding

operator is denoted as σ[·]. Also, the norm of this difference is written as

∥|E⟩∥2 = ∥(cos(α) − 1) |Ω(γ)⟩ + sin(α) |ξ⟩∥2

= (cos(α) − 1)2 + sin(α)2

= 2 |1 − cos(α)| .

Combining two results gives the lower bound for overlap as

cos(α) ≥ 1 − δ2V
2
,

sin(α) ≤ δV

√
1 − δ2V

4
.

(2.2.19)

The postselected state (after selecting ancilla qubit being in the state |1⟩) with faulty

implementation is ∣∣∣Φ̃A

〉
= |1⟩ ⊗

∣∣∣Ψ̃A

〉
=

Π1√
P̃s

∣∣∣Ω̃(γ)
〉
, (2.2.20)
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where Π1 =|1⟩⟨1|⊗I is the projector projects ancilla qubit onto state |1⟩, and the difference

between the modified success probability P̃s and the success probability Ps is defined as

∣∣∣P̃s − Ps

∣∣∣ =
∣∣∣〈Ω̃(γ)

∣∣∣Π1

∣∣∣Ω̃(γ)
〉
− ⟨Ω(γ)|Π1 |Ω(γ)⟩

∣∣∣
= |Tr(Π1ρ) − Tr(Π1σ)|

= |Tr (Π(ρ− σ))|

≤ D(ρ, σ) =
1

2
Tr |ρ− σ| = |sin(θ)| .

Here, ρ =|Ω̃⟩⟨Ω̃| and σ =|Ω⟩⟨Ω| are the density matrices, D(ρ, σ) is the trace distance.

Therefore, with Eq. (2.2.19), the modified success probability P̃s is constrained closely to Ps,

and is written as

Ps − δV

√
1 − δ2V

4
≤ P̃s ≤ Ps + δV

√
1 − δ2V

4
. (2.2.21)

The modified fidelity F̃ is given by

F̃ =
∣∣∣〈ΨE|Ψ̃A

〉∣∣∣2 =

∣∣∣〈ΨE |Π1| Ω̃(γ)
〉∣∣∣2

P̃s

.

After a similar process of analyzing the bound for F̃ , one get

∣∣∣P̃sF̃ − PsF
∣∣∣ =

∣∣∣〈Ω̃
∣∣∣Π ∣∣∣Ω̃〉− ⟨Ω|Π |Ω⟩

∣∣∣
≤ δ
√

1 − δ2/4 ,

where Π = |1⟩ ⟨1| ⊗ |ΨE⟩ ⟨ΨE|. Therefore, combining with results Eq. (2.2.11) and

Eq. (2.2.12), the bound for the fidelity is written as

F̃ ≥
PsF − δ

√
1 − δ2/4

P̃s

≥
γ2η2(1 − γ2Λ2

3
)F − δ

√
1 − δ2/4

γ2η2 + δ
√

1 − δ2/4

≥
(

1 − γ2Λ2

2

)
−
(

2 − γ2Λ2

3

)
δ

γ2η2
.
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Taylor expansion with respect to δ
√

1 − δ2/4 is applied in the third line.

To guarantee a fidelity of at least F̃min, let us take

γ ≤
√

1 − Fmin

Λ
. (2.2.22)

This ensures that the approximation error induced by the approximate time evolution is

bounded by

δV ≤ η2

4
γ4η2Λ2 ≤ η2

2Λ2
(1 − Fmin)2 . (2.2.23)

The error δU for the time-evolution unitary is

δU(γ) ≤ η2

8
γ4η2Λ2 ≤ η2

4Λ2
(1 − Fmin)2 . (2.2.24)

To make the imperfect time evolution analysis clear, I use the operator Ô(θ) = cos(θ)X+

sin(θ)I as an example (actually this example can be exactly implemented). The fidelity F

and success probability Ps are calculated in Sec. 2.2.1. The bound Λmax =
√

2 is used in the

following analysis. If we choose γ = 0.3, based on Eq. (2.2.23), we get

δV (0.3) ≤ 0.405% ,

and it is small that we ignore those higher order of δV in Eq. (2.2.21), i.e., P̃s(0.3) is a little

bit more loosely bounded than Ps(0.3) by 0.405%. While the new fidelity is guaranteed as

F̃ (0.3) ≥ 82% ,

which is less than the 97%. We can see that even for a small time interval γ, the time-

dependent method quickly becomes inefficient due to the imperfect implementation of

quantum gates.
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2.3 LCU-based Method

In this section, the LCU-based method is introduced. Performing the non-unitary operation

in Eq. (2.1.1) can be done non-deterministically in an exact way using the linear combination

of unitaries (LCU) technique in Ref. (Childs and Wiebe, 2012) whenever we can decompose

the excitation operator Ô as

Ô =
L∑

k=0

λkÛk λk > 0 , (2.3.1)

provided each Uk can be implemented efficiently on a quantum computer. The total number

of terms, L+ 1, grows as a low-order polynomial of the system size.

The quantum procedure of the LCU-based method can be depicted as follows:

|0⟩ / VP
VS

V †
P

|Ψ0⟩ /
,

(2.3.2)

the first line represents the ancilla register, and the second line represents the quantum

register. Unlike the time-dependent method, which only needs one ancilla qubit, the LCU-

based method requires many more ancilla qubits. The size of ancilla register is denoted as

M , and it depends on the number of unitaries L+1, with the relation as M = ⌈log2(L+ 1)⌉.

Here, the ancilla registers are initialized in the state |0⟩⊗M (written as |0⟩ for simplification),

and the quantum registers are initialized in the state |Ψ0⟩.

The circuit requires the implementation of two unitary gates. First, the prepare unitary

gate VP , which only acts on the ancilla register, is defined as

VP |0⟩ =
L∑

k=0

√
λk
Λ

|k⟩ , (2.3.3)

and second the select unitary gate VS is defined as

VS =
L∑

k=0

|k⟩⟨k|⊗Uk . (2.3.4)

Here |k⟩ ⟨k| projects ancilla qubits into state |k⟩.
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The function of the circuit (2.3.2) (before the measurement) is denoted as the operator

W , and the state after implementation of W is decomposed as (see, e.g., Refs. (Childs and

Wiebe, 2012; Childs et al., 2017))

|Ω⟩ = W |0⟩ ⊗ |Ψ0⟩ =
1

Λ
|0⟩ ⊗ Ô |Ψ0⟩ +

∣∣Φ⊥〉 . (2.3.5)

Here
∣∣Φ⊥〉 is introduced to depict the orthogonal states of |0⟩, i.e.,

(|0⟩⟨0| ⊗ I)
∣∣Φ⊥〉 = 0 . (2.3.6)

Then, after postselecting the measurements, of which the ancilla registers are in state |0⟩,

the final state (not normalized) is obtained as

(|0⟩⟨0| ⊗ I) |Ω⟩ =
1

Λ
|0⟩ ⊗ Ô |Ψ0⟩ =

η

Λ
|0⟩ ⊗ |ΦE⟩ . (2.3.7)

The fidelity of the LCU-based method is

F LCU = 1 ,

and the success probability is

P LCU
s =

η2

Λ2
. (2.3.8)

We have two methods at our disposal to obtain the normalized |ΦE⟩. The first involves

rescaling with the known norm Λ, which effectively mitigates the influence of statistical

fluctuations. The second method utilizes the empirical success probability to achieve the

same result. The latter one is more practical from an operational standpoint. Thus, we first

estimate empirically the success probability P LCU
s , and then compute the estimator

⟨ΦE|A|ΦE⟩ =
⟨Ω|I⊗ A|Ω⟩

P LCU
s

. (2.3.9)

Comparing the success probability presented in Eq. (2.3.8) with the success probability

bounds [see Eqs. (2.2.11) and (2.2.13)] for the time-dependent method, we can see that the
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LCU-based method has a higher success probability whenever the target infidelity satisfies

∆f ≤ 1/6.

2.4 Circuit Implementation Details

This section derives and presents the circuit implementation details for the time-dependent

method and the LCU-based method.

2.4.1 Time-dependent Method

Before delving into the details of circuit implementation, I will discuss the Euler decompo-

sition of a generic 2 × 2 unitary. Provided with a generic hermitian 2 × 2 matrix, which is

written as

Ô =
α + γ

2
I + β1X + β2Y +

α− γ

2
Z

=

 α β1 − iβ2

β1 + iβ2 γ

 .
(2.4.1)

In this dissertation, only excitation operators with real matrix elements are tested, i.e.,

β2 = 0, but the more generic case is considered in this discussion. The corresponding time

evolution can be written as

e−itÔ = e−itα+γ
2 e−iθθ̂·σ

= e−itα+γ
2

(
I cos(θ) − iθ̂ · σ sin(θ)

)
,

(2.4.2)

where

θ⃗ =

(
tβ1, tβ2, t

α− γ

2

)
,

θ =
t

2

√
4β2

1 + 4β2
2 + (α− γ)2 ,

θ̂ = θ⃗/θ =
(
θ̂x, θ̂y, θ̂z

)
.
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Using the Euler decomposition, the propagator can be expressed by using three angles and

a phase parameter written as

e−itÔ = e−iδRz(x1)Ry(x2)Rz(x3) , (2.4.3)

with δ = α+γ
2
t. Matching the coefficients, the parameters x1, x3 can be obtained via equations

θ̂z tan θ = tan x1+x3

2
,

θ̂x

θ̂y
= − tan x1−x3

2
,

and x2 can be therefore obtained.

Next, I present in detail how to decompose and implement the quantum circuits (2.2.3)

using the excitation operator Ô (2.4.1), which is a general 2×2 operator. After decomposing

the unitary as Eq. (2.4.3) into Euler rotation operators, with three angles x1, x2, x3 and a

phase parameter δ, the controlled unitary can be implemented using three controlled one-

qubit rotation gates and one controlled phase gate. A controlled Rz gate can be written

as

•

Rz(ϕ)
=

• •

R†
z(ϕ/2) Rz(ϕ/2)

=
• •

Rz(ϕ/2) R†
z(ϕ/2)

.

(2.4.4)

A controlled Ry gate can be written similarly to Eq. (2.4.4) by replacing Rz rotations with

Ry rotations. A controlled phase gate can be written as

•
eiδI

= E(δ)
,

(2.4.5)

with

E(δ) =

 1 0

0 eiδ

 . (2.4.6)
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The gate E(δ) is equivalent to the Rz(δ) gate as in Eq. (A.1), up to an overall phase.

Therefore, the controlled time-evolution operator is decomposed into one-qubit gates and

CNOTs.

A more efficient approach to decomposing controlled unitary is described in Ref. (Barenco

et al., 1995)(Lemma 5.1 and Lemma 5.2),

•

e−iγO

= E† • •

A B C

,
(2.4.7)

with

A = Rz

(
x3 − x1

2

)
,

B = Ry

(
−x2

2

)
· Rz

(
−x1 + x3

2

)
,

C = Rz(x1) · Ry

(x2
2

)
.

(2.4.8)

Use the same decomposition approach to deal with controlled-U †, with the Euler decompo-

sition of U † as

eiγÔ = eiδRz(−x1)Ry(x2)Rz(−x3) , (2.4.9)

the final circuit as circuit (2.4.10) is shown as

|0⟩ H • E† • X • E • H

|ϕ⟩ A B C D F
,

(2.4.10)

where

C = Rz

(
x1 − x3

2

)
· Rz(x1) · Ry

(x2
2

)
,

D = Ry

(
−x2

2

)
· Rz

(
x1 + x3

2

)
,

F = Rz (−x1) · Ry

(x2
2

)
.

(2.4.11)

Here gate A and B are given in circuit (2.4.7), gate E is given in Eq. (2.4.6).
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Implementing the circuit (2.4.10) requires at most 4 CNOTs, which could be more

optimal. The optimal quantum circuit for a general two-qubit gate has been studied that

only requires at most 3 CNOT gates and 15 elementary one-qubit gates; see, for example,

Theorem 5 in Ref. (Vatan and Williams, 2004).

2.4.2 LCU-based Method

This subsection provides a representative simple example of creating circuits with the LCU-

based method, using a simple operator introduced in Eq. (2.2.15). A similar procedure

can be generated for more complicated excitation operators. For a detailed description of

Hamiltonian simulation using the LCU-based method, I refer the readers to Ref. (Childs and

Wiebe, 2012).

The operator is a sum of two unitaries. Thus, we need one ancilla qubit and one qubit

for the target qubit. Examining how the circuit (2.3.2) works with this operator is simple,

and this will be shown as a demonstration. The prepare unitary from Eq. (2.3.3) can be

implemented using a single rotation Ry, i.e., VP = Ry(ϕ1), which gives the result as

|Φ1⟩a = Ry(ϕ1) |0⟩a = cos
ϕ1

2
|0⟩a + sin

ϕ1

2
|1⟩a ,

with the subscript a denotes ancilla qubit. Then the implementation of the select unitary

Eq. (2.3.4) onto the system gives the resulting state as

Vs (|Φ1⟩a ⊗ |Ψ0⟩) = cos
ϕ1

2
|0⟩a ⊗ U0 |Ψ0⟩ + sin

ϕ1

2
|1⟩a ⊗ U1 |Ψ0⟩ .

Assume that the quantum register is initialized in state |Ψ0⟩, which is not specified. Then

the implementation of the inverse of prepare unitary V †
P = Ry(−ϕ1) gives the final state as

Ry(−ϕ1) cos
ϕ1

2
|0⟩a ⊗ U0 |Ψ0⟩ +Ry(−ϕ1) sin

ϕ1

2
|1⟩a ⊗ U1 |Ψ0⟩

= cos2
ϕ1

2
|0⟩a ⊗ U0 |Ψ0⟩ − sin

ϕ1

2
cos

ϕ1

2
|1⟩a ⊗ U0 |Ψ0⟩+

sin2 ϕ1

2
|0⟩a ⊗ U1 |Ψ0⟩ + cos

ϕ1

2
sin

ϕ1

2
|1⟩a ⊗ U0 |Ψ0⟩ .
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After postselecting those measurements in which the ancilla qubit in state |0⟩a, the

resulting state of the whole circuit (2.3.2) is obtained as

∣∣∣f̃〉 = cos2
ϕ1

2
|0⟩a ⊗ U0 |Ψ0⟩ + sin2 ϕ1

2
|0⟩a ⊗ U1 |Ψ0⟩ ,

up to some normalization coefficient. Comparing with the wanted resulting state |f⟩ =

|0⟩a ⊗O |Ψ0⟩, we choose U0 = I, U1 = X and the angle

ϕ1 = 2 arcsin

(√
|cos(θ)|

|cos(θ)| + sin(θ)

)
. (2.4.12)

Then, the final state is written as

∣∣∣f̃〉 =
sin(θ)

|cos(θ)| + sin(θ)
|0⟩a ⊗ |Ψ0⟩ +

|cos(θ)|
|cos(θ)| + sin(θ)

|0⟩a ⊗X |Ψ0⟩ , (2.4.13)

up to some normalization coefficient.

Therefore, the complete state preparation circuit, in summary, is depicted as

|0⟩a Ry(ϕ1) • Zθ R†
y(ϕ1) |0⟩a

|Ψ0⟩
.

(2.4.14)

Here, the additional Zθ is necessary to account for the sign of the cosine for θ > π/2, its

matrix representation is

Zθ ≡
{ I for θ ∈ [0, π/2]

Z for θ ∈ [π/2, π]

=

1 0

0 1 − 2H(θ − π/2)

 .

(2.4.15)

Here H(x) is the Heaviside step function. More clearly, the select unitary is depicted as

|Φ1⟩ • Zθ

|Ψ⟩

.
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Next, I provide the circuit details for the excitation operator Eq. (2.2.15) in a second

quantized form, which is the operator used in Subsec. 2.5.2

Õ(θ) = sin(θ)(c†1c1 + c†0c0) + cos(θ)(c†0c1 + c†1c0) , (2.4.16)

which requires two qubits for the system register.

Beased the Jordan-Wigner transformation (Eq. (1.2.2) and Eq. (1.2.3)), we have

ck =
Xk − iYk

2
, c†k =

Xk + iYk
2

. (2.4.17)

The operator in terms of Pauli matrices is given as

Õ(θ) =
cos(θ)

2
(X0X1 + Y0Y1) + sin(θ)I . (2.4.18)

Here I denotes the 4 × 4 identity. The implementation needs two qubits for the quantum

register and two qubits for the ancilla register.

I use the following mapping for select unitary

|00⟩a → I , |10⟩a → X0X1 , |11⟩a → Y0Y1 . (2.4.19)

A more intuitive way to express the select unitary is

Vs = |00⟩a ⟨00|a ⊗ I + |10⟩a ⟨10|a ⊗X0X1 + |11⟩a ⟨11|a ⊗ Y0Y1 . (2.4.20)

The prepare unitary is depicted as

|0⟩a
VP

|0⟩a
=

|0⟩a Ry(ϕ1) •

|0⟩a H
, (2.4.21)

which gives the state

|Φ2⟩ = cos(ϕ1) |00⟩ + sin(ϕ1) |1⟩ ⊗
|0⟩ + |1⟩√

2
. (2.4.22)
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Note that the angle ϕ1 entering Eq. (2.4.22) coincides with Eq. (2.4.12).

With the select mapping (2.4.19), the corresponding circuit to the select unitary is

displayed as

A0 • • Zθ

A1 •

T0
X0X1 Y0Y1

T1

,

(2.4.23)

where A0 and A1 represent the first and second ancilla qubit and T0 and T1 represent the

target qubits. Here, Zθ (defined in Eq. (2.4.15)) accounts for the sign of the cosine for

θ > π/2. To simplify, we use the identity X0Z0X1Z1 = −Y0Y1, and obtain the select circuit

as

A0 • • • • • • Zθ •

A1 • • • • •

T0 •

T1 •

.

(2.4.24)

The last CZ gate (defined in Eq. (A.6)) is used to correct the sign of the Y0Y1 term.

After the decomposition of this circuit, according to the optimal decomposition presented

in Ref. (Shende and Markov, 2009), six CNOT gates per Toffoli are required. This is not

optimal that we can manually simplify the circuit. Notice that the state |01⟩a in the mapping

Eq. (2.4.19) is not in use, that the state |11⟩a can be recognized by only recognizing A1 to

be |1⟩a. Thus, the implementation of two CCZ gates is reduced to two CZ gates (remove

the controls on the first ancilla qubit) for the fifth and sixth gates. Furthermore, the second

and third gates in Circuit (2.4.24) commute. This gives us

A0 • • • •
A1 • •
T0

T1

=

A0 • •
A1

T0

T1

.
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Then the resulting circuit for select becomes

A0 • • Zθ •

A1 • • •

T0 •

T1 •

.

In summary, the full circuit needed for the LCU implementation of the operator in

Eq. (2.4.16) is as circuit (2.4.25)

A0 Ry(ϕ1) • • • Zθ • • R†
y(ϕ1)

A1 Ry(π/4) R†
y(π/4) • • • Ry(π/4) R†

y(π/4)

T0 •
T1 •

.

(2.4.25)

I use the identity Eq. (A.4) to decompose the two CH gates in prepare unitary and inverse of

prepare unitary. To change the implementation with CZ gates to the implementation with

CNOT gates, I use the identity (see circuit (A.7)) three times. The first line of circuit (A.7)

can be the target qubit T0 and T1 and ancilla qubit A0. Then, the simplified circuit is shown

as follows:

A0 Ry(ϕ1) • Zθ • • R†
y(ϕ1)

A1 Ry(π/4) Ry(π/4) R†
y(π/4) R†

y(π/4)

T0 •
T1 •

.

(2.4.26)

In total, the circuit (2.4.26) needs 7 CNOT gates and 7 rotations. Furthermore, I can

reduce one additional CNOT with another decomposition of the CH gate (second line of
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circuit (A.8)) and take the inverse. The full circuit is depicted as follows

A0 Ry(ϕ1) • Zθ • • R†
y(ϕ1)

A1 Ry(π/4) R†
y(π/4) • • Ry(π/4) R†

y(π/4)

T0 •
T1 •

.

(2.4.27)

The fourth CNOT gate can be eliminated. Let us look into the second line of circuit (A.8),

i.e., the circuit as follows

|0⟩ • • •

|0⟩ R†
y(π/4) Ry(π/4) •

.

Notice that after applying the circuit, the second qubit is in an eigenstate of the Pauli X

operator when the first qubit is in state |1⟩. This implies that adding another CNOT (to

cancel the second CNOT gate) is just changing a global irrelevant phase. The same is true

if one measures the projector in the second ancilla qubit state |0⟩ instead.

To be more clear, let us look at the last part of circuit (2.4.27).

• • R†
y(ϕ1) |0⟩

Ry(π/4) R†
y(π/4) |0⟩

=
• • R†

y(ϕ1) |0⟩

H |0⟩
.

(2.4.28)

The |0⟩ state on the right-hand side means postselecting the state being in state |0⟩. If one

applies this circuit onto a state a |00⟩ + b |01⟩ + c |10⟩ + d |11⟩, the result is

R†
y |0⟩ (a |0⟩ + b |1⟩) +R†

y |1⟩
(
c+ d

2
|0⟩ +

−c+ d

2
|1⟩
)
.

If omitting the first CNOT, the circuit becomes

• R†
y(ϕ1) |0⟩

H |0⟩
.

(2.4.29)
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The result becomes

R†
y |0⟩ (a |0⟩ + b |1⟩) +R†

y |1⟩
(
c+ d

2
|0⟩ +

c− d

2
|1⟩
)
.

For the reason that the measurement is postselecting the ancilla qubit being in the |00⟩, the

minus sign can be ignored for the second ancilla qubit when it is in state |1⟩. Finally, the

circuit is shown as follows

|0⟩ Ry(ϕ1) • Zθ • R†
y(ϕ1)

|0⟩ Ry(π/4) Ry(π/4) R†
y(3π/4) Ry(π/4)

T0 •
T1 •

,

(2.4.30)

which requires 6 CNOTs and 7 rotation gates.

2.5 Results of a Simple Excitation Operator

This section provides the implementation of both the time-dependent method and the LCU-

based method by using the simple excitation operator

Ô(θ) = cos(θ)X + sin(θ)I . (2.5.1)

Two different metrics are introduced to analyze the performance. Let us consider a set of

NO independent observables. The first metric is the chi squared, denoted as

χ2 =

NO∑
k=1

(
v
(e)
k − v

(t)
k

)2
(
ε
(e)
k

)2 , (2.5.2)

where v
(t)
k and v

(e)
k are the theoretical and experimental value for the kth observable, and ε

(e)
k

is the estimated error of computation models. We expect χ2 to be close to one to indicate

the experimental results are compatible with theoretical results within the estimated error.
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The second metric is the normalized sum of squared deviations (nssd),

nssd(r) =

√√√√√√
∑NO

k=1

(
v
(e)
k − v

(t)
k

)2
∑NO

k=1

(
rv

(t)
k

)2 , (2.5.3)

quantifies the accuracy of the calculation. The parameter r is tuned to control the percentage

of expected values as the reference, and in this dissertation, r = 0.1 is used, and nssd ≡

nssd(0.1) is used for simplicity. For good results, nssd is expected to be close to zero, which

indicates that the relative error is much smaller than 10% of the theoretical values. To

summarize, the χ2 and nnsd are used to evaluate the variability and accuracy of the results

with respect to the expected result.

2.5.1 Time-dependent Method

This subsection presents the results for state preparation of a simple excitation operator,

introduced as Eq. (2.5.1), with the time-dependent method. The time evolution operator is

defined as

e−iγÔ = e−iγ(cos(θ)X+sin(θ)I)

= e−iγ sin(θ)Rx [2γ cos(θ)] .
(2.5.4)

This time evolution operator can be implemented exactly on a quantum computer, and

I use the first method introduced in Sec. 2.4.1, i.e., the controlled time-evolution operator is

implemented by successive controlled rotation operators. Therefore, the controlled unitary

is expressed as

•

e−iγÔ
=

E†(δ) •

H Rz(2α) H

.
(2.5.5)

Here δ = γ sin θ, and α = γ cos θ. Here the identity Rx(θ) = HRz(θ)H is used to transform

implementation of Rx to Rz. Also, the controlled-H is ignored and replaced with gate H

since if the ancilla qubit is in state |0⟩a, then gates HH = I will be applied on the target
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qubit; and if the ancilla qubit is in state |1⟩a, then gates HRz(2α)H = Rx(2α) will be

applied, which works the same as controlled-Rx gate. This technique will be applied later

frequently. Here, the subscript a denotes ancilla qubits to avoid confusion with states of

target qubits.

Then we use the simplification (2.4.4) for controlled-Rz gate, and get the complete circuit

|0⟩a H • E†(δ) • X • E(δ) • H

|Ψ⟩ H R†
z(α) Rz(α) H

.
(2.5.6)

Looking into this circuit, we could find the simplification that

• X •
=

X

X
,

(2.5.7)

and simplify RzXR
†
z into two one-qubit gates, the same for EXE†, then the implementation

only needs two CNOTs and eight one-qubit gates. This simplification is not presented in

the Ref. (Roggero et al., 2020a), so the results in the main text are given with circuit (2.5.6)

only. Therefore, the full state preparation circuit (2.5.6) is implemented using four CNOT

gates, four Z-rotations, and five additional single-qubit gates.

In Sec. 2.2.1, I discussed the fidelity and success probability for this excitation operator.

Setting the time parameter as γ = 0.3, the corresponding fidelity and success probabilities

analysis is depicted in Fig. 2.2 and the bounds are obtained as 9% ≥ Ps(0.3) ≥ 8.46% and

F (0.3) ≥ 97%, and this is a relatively good balance between the success probability and

fidelity tradeoffs. Therefore, γ = 0.3 is used in the implementation.

The implementation of the circuit requires two qubits, and qubits 1 and 2 of Vigo (which

have full connectivity) are chosen; see the layout of the IBM Quantum backend Vigo in

Fig. 2.1. The computations are executed on both VM and QPU, and the results of success

probabilities Ps are given in Fig. 2.3. The green line denotes the exact results obtained

from Eq. (2.2.8), and the band represents the analyzed upper and lower bound for success

probability. The black circles and red squares represent the results with and without error

mitigation procedures, respectively.
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Figure 2.3: Success probability Ps for the time-dependent method versus the parameter
θ in excitation operator Eq. (2.5.1) with VM simulations (left panel) and QPU runs (right
panel). Results are given with (red squares) and without (black circles) full mitigation and
with exact analysis (green lines) from Eq. (2.2.8). The band gives the analyzed bound
9% ≥ Ps(0.3) ≥ 8.46%. The figure is taken from Ref. (Roggero et al., 2020a), which I co-
authored.
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The errors in the VM results are not random, and mitigation procedures help reduce

them. For the QPU results, the noise is significant, and mitigation procedures do not help

much. Quality metrics help show these more clearly. Tab. 2.1 gives the quality metrics for the

results on the success probability. Here, “bare” represents the result directly from runs, “RO

mit.” represents read-out (RO) error mitigated results (using readout correction), and “full

mit.” represents fully mitigated results (using readout correction and error extrapolation).

We see that VM results are improved by the error mitigation methods, both readout

correction and error extrapolation. For QPU results, the nssd results approximate 1, which

indicates that the QPU results differ from the exact results by 10%, with or without the

mitigation procedure. Error mitigation cannot improve the accuracy of results. Notice that

χ2 of those error mitigated values for the QPU calculation is reduced, which means the

read-out error correction and error extrapolation procedures help reduce the variability of

results.

To investigate the fidelity of the algorithm, an estimator is used, written as

Pt ≡ |⟨ΨA|1⟩|2

=
|⟨00|V (γ)|11⟩|2

|⟨00|V (γ)|11⟩|2 + |⟨00|V (γ)|01⟩|2

=
|⟨00|V (γ)|11⟩|2

Ps(γ)
,

(2.5.8)

which is the transition probability of initial state |0⟩ onto final state |1⟩. The unitary V (γ)

is given in Eq. (2.2.5), Ps(γ) is the empirical success probability. The state |n1n2⟩ is a

simplified form of |n1⟩a⊗|n2⟩, with the first digit representing the state for the ancilla qubit

and the second representing the target qubit. With this estimator, we can study the fidelity

of the prepared state |ΨA⟩ from Eq. (2.2.7). This ratio estimator for transition probabilities

is more error resilient to depolarizing noise (explained in Appendix G in Ref. (Roggero et al.,

2020a)).

The results of transition probability Pt with VM simulations and QPU runs are shown in

the left and right panels of Fig. 2.4, respectively. The quality metrics χ2 and nssd are shown

in Tab. 2.2. The exact results, denoted with green lines, are calculated from Eq. (2.5.8).
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Table 2.1: Quality metrics χ2 and nssd for success probability Ps with (a) VM simulations
and (b) QPU runs for the time-dependent method. The bare results (bare), results with
read-out error correction (RO mit.), and results with full error mitigation (full mit.) are
shown.

(a) VM

χ2 nssd
bare 2.08 0.765
RO mit. 1.46 0.656
full mit. 0.37 0.539

(b) QPU

χ2 nssd
bare 5.64 1.299
RO mit. 3.00 1.004
full mit. 1.47 1.052
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Figure 2.4: Transition probability Pt versus the parameter θ with VM simulations (left
panel) and QPU runs (right panel) for the time-dependent method. Results are given with
(red squares) and without (black circles) full mitigation and with exact analysis (green lines)
from Eq. (2.5.8). The figure is taken from Ref. (Roggero et al., 2020a), which I co-authored.
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Table 2.2: Quality metrics χ2 and nssd for the transition probability obtained from (a) VM
simulations and (b) QPU runs for time-dependent method. The bare results (bare), results
with read-out error correction (RO mit.), and full error mitigation (full mit.) are shown.

(a) VM

χ2 nssd
bare 2.80 1.259
RO mit. 0.87 0.757
full mit. 0.39 0.386

(b) QPU

χ2 nssd
bare 11.27 2.324
RO mit. 3.19 1.059
full mit. 0.65 0.718
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The black circles and red squares represent the results with and without error mitigation

procedures, respectively.

For QPU results, nssd ≈ 0.7 indicates mitigated results differ from the exact ones by 7%,

and χ2 drops and close to 1 indicates the mitigated results become more compatible with the

exact result within the estimated error. The mitigation procedures help improve the accuracy

and variability of QPU results. Overall, by combining the analysis of success probability, we

can see that the time-dependent method runs on QPU with reasonable efficiency.

2.5.2 LCU-based Method

For the simple excitation operator, Eq. (2.5.1), the state preparation procedure can easily

be implemented with the LCU-based method; see the circuit (2.4.14). This circuit is too

simple to evaluate the performance of the LCU-based method that an alternative excitation

operator is considered

Õ(θ) = sin(θ)(c†1c1 + c†0c0) + cos(θ)(c†0c1 + c†1c0) , (2.5.9)

which is the second quantization form of Eq. (2.5.1). After the Jordan-Wigner transfor-

mation, with Eq. (2.4.17), the second quantized operator is mapped to Pauli matrices as

Eq. (2.4.18).

The state preparation for this operator is implemented with circuit (2.4.30) (see in

Sec. 2.4.2 for a full derivation). Here, the ancilla qubits are initialized in state |0⟩a ≡ |00⟩

and postselected onto finial state |0⟩a. For practice, the quantum register is prepared in the

initial state of the quantum system, |10⟩, and is mapped to the final state of the quantum

system, |01⟩.

It is important to note the full connectivity of those four qubits in circuit (2.4.30). If we

assume an all-to-all connectivity quantum device, the implementation of the entire circuit

requires only six CNOT gates and seven single qubit gates. While the quantum device

Vigo (5qubit backed: IBM Q team, 2020) has limited connections, the implementation

requires SWAP gates (see Appendix A for definition) to interchange two qubits that make

the connectivity established. Apply a SWAP gate between the A0 ancilla qubit and the A1
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ancilla qubit, the circuit (2.5.2) with right connectivity is obtained, shown as follows

|0⟩a Ry(ϕ1) • • Ry(
π
4
) Ry(−3π

4
) Ry(

π
4
) |0⟩a

|0⟩a Ry(
π
4
) • Zθ • R†

y(ϕ1) |0⟩a

|1⟩ • |0⟩

|0⟩ • |1⟩

.

Then Vigo’s qubits 1, 0, 3, and 2 are used to execute the ancilla register A0, A1, and quantum

register T0, T1, respectively.

The results of success probability Ps obtained from VM simulations and QPU runs are

shown in the left and right panel in Fig. 2.5, and the quality metrics χ2 and nssd are shown

in Tab. 2.3. The comparison with Fig. 2.3 indicates that the LCU-based method has a

much higher success probability than the time-dependent method. For QPU results, error

mitigation significantly improves the variability of results, which reduces the χ2 by two orders

of magnitude.

Two estimators are designed for the transition probability Pt. The first estimator PA
t (θ)

is,

PA
t (θ) = Λ2(θ) Tr [|Ω⟩⟨Ω|Π0⊗|ψf⟩⟨ψf |] , (2.5.10)

which is the transition probability onto final state |ψf⟩ = |01⟩. Here, the state |Ω⟩ ≡ |Ω(θ)⟩

is given in Eq. (2.3.5), Π0 ≡ |0⟩a ⟨0|a is the projector operator for ancilar register. Λ(θ) is

the success probability as η = 1 in the success probability (see Eq. (2.3.8)). The second

estimator PB
t (θ) is given as

PB
t (θ) ≡ Tr [|Ω⟩⟨Ω|Π0⊗|ψf⟩⟨ψf |]

Tr [|Ω⟩⟨Ω|Π0 ⊗ I]
. (2.5.11)

Instead of rescaling with the theoretical success probability as in PA
t , PB

t is rescaled with

Tr [|Ω⟩⟨Ω|Π0 ⊗ I], i.e., the empirical success probability. If there are no systematic errors,

PA
t should be equivalent to PB

t .

The results of transition probability PA
t and PB

t are presented in the lower panel and

upper panel of Fig. 2.6. And quality metrics χ2 and nssd are shown in Tab. 2.4. Comparing
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Figure 2.5: Success probability Ps versus angle θ in operator Eq. (2.4.18), obtained from
VM simulations (left panel) and QPU runs (right panel) for the LCU-based method. Results
are given with (red squares) and without (black circles) full mitigation and with exact analysis
(green lines) from Eq. (2.3.8). The figure is taken from Ref. (Roggero et al., 2020a), which
I co-authored.

Table 2.3: Quality metrics χ2 and nssd of the success probability obtained from (a) VM
simulations and (b) QPU runs for the LCU-based method. The bare results (bare), results
with read-out error correction (RO mit.), and full error mitigation (full mit.) are shown.

(a) VM

χ2 nssd
bare 26.52 0.453
RO mit. 3.63 0.211
full mit. 0.44 0.118

(b) QPU

χ2 nssd
bare 112.56 1.190
RO mit. 70.17 1.085
full mit. 2.61 0.415
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Figure 2.6: Results for the transition probabilities PA
t (lower panel) and PB

t (upper panel)
versus the angle θ in excitation operator Eq. (2.4.18), obtained from VM simulations (left
panel) and QPU runs (right panel) and exact analysis (green lines) for the LCU-based
method. The figure is taken from Ref. (Roggero et al., 2020a), which I co-authored.

Table 2.4: Quality metrics χ2 and nssd of transition probabilities PA
t and PB

t obtained from
(a) VM simulations and (b) QPU runs for the LCU-based method. The bare results (bare),
results with read-out error correction (RO mit.), and full error mitigation (full mit.) are
shown.

(a) VM

χ2(PA
t ) χ2(PB

t ) nssd(PA
t ) nssd(PB

t )
bare 76.20 10.09 1.022 0.623
RO mit. 6.57 0.29 0.321 0.106
full mit. 0.29 0.12 0.129 0.053

(b) QPU

χ2(PA
t ) χ2(PB

t ) nssd(PA
t ) nssd(PB

t )
bare 251.70 23.00 2.367 1.151
RO mit. 109.78 4.51 1.661 0.487
full mit. 2.48 1.13 0.580 0.326
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these two estimators, PB
t has much better bare results, with smaller χ2 and nssd. This

indicates that the ratio estimator PB
t is more resilient to depolarizing noise (explained in

Appendix G in Ref. (Roggero et al., 2020a)). Also, error mitigation works significantly well,

especially for estimator PA
t . The bare QPU results are off by about 24% (nssd ≈ 2.4) but

full mitigation procedures bring the error to around 6% (nssd ≈ 0.6). Also, χ2 is reduced by

two orders of magnitude for the PA
t and down to values around one for the PB

t . As seen in

Fig. 2.6, the bare result at θ ≈ 0 and θ ≈ π are evidently improved by the error mitigation

procedures.

In this section, both the time-dependent method and the LCU-based methods are utilized

to execute excited state preparation for the first (Eq. (2.5.1)) and second quantization

(Eq. (2.4.18)) form of the simple excitation operator. The jobs are run on both VM simulators

and real quantum devices, and the results show that both techniques are efficient and useful

for state preparation. The LCU-based method is more efficient and resilient to error if we

use ratio estimators like Eq. (2.5.11).

2.6 Results of n(p, d)γ Reaction

This section shows the application of state preparation algorithms to a simple model for

n(p, d)γ reaction, which describes a process in which a proton captures a neutron to form a

deuteron and emits a photon. It is one of the most important nuclear syntheses and is a key

step in big-bang nucleosynthesis (Adelberger et al., 2011). The dominant process for this

reaction is from the continuum 1S0 state (with spin isospin T = 1, Tz = 0) to the deuteron

bound state (only consider the leading order as state 3S1 with spin isospin T = Tz = 0).

Thus, the electromagnetic transition is of M1 multipole order, and the excitation operator

[for the detailed explanation of operator construction, I refer readers to Appendix C in

Ref. (Roggero et al., 2020a)] is defined as

O(θ′) = αI + βX + γZ =

α + γ β

β α− γ

 , (2.6.1)
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which is in the basis of the state 1S0 (represented by state |0⟩) and the state 3S1 (represented

by state |1⟩). The three real constants are given by

α = sin(θ′)
gp + gn

4
µN ,

β =
µN

2
√

2
(gp − gn) cos(θ′) ,

γ = − sin(θ′)
gp + gn

4
µN .

The nuclear magneton µN is set as µN = 1 in the dissertation since the operator can be

rescaled with any constant. gp = 5.586 and gn = −3.826 denote the proton and neutron g

factors, respectively. Noted that

α = −γ ≥ 0

and

β

 ≥ 0 if θ′ ∈ [0, π/2]

< 0 if θ′ ∈ (π/2, π]
.

The second quantized form of Eq. (2.6.1) (use the face α + γ = 0) is given as

Õ = 2αc†1c1 + β(c†0c1 + c†1c0) . (2.6.2)

The creation (annihilation) operator c†0 (c0) creates (annihilates) the angular momentum

state 1S0. The creation (annihilation) operator c†1 (c1) creates (annihilates) the angular

momentum state 3S1. In this basis, the initial state of the nuclear system is |10⟩, and the

final state is |01⟩. After the Jordan-Wigner transformation Eq. (2.4.17), the operator is

transformed as a sum of Pauli strings, written as:

Õ = αI +
β

2
(X0X1 + Y0Y1) + αZ1

=


2α 0 0 0

0 0 β 0

0 β 2α 0

0 0 0 0

 .
(2.6.3)
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Note that another form is available

O = αI +
β

2
(X0X1 + Y0Y1) −

α

2
(Z0 − Z1)

=


α 0 0 0

0 0 β 0

0 β 2α 0

0 0 0 α

 ,
(2.6.4)

where we use the second quantization operator as Õ = αI + β(c†0c1 + c†1c0) + γ(c†0c0 − c†1c1),

then use the fact α + γ = 0. The seclect operator for Eq. (2.6.3) needs two ancilla qubits

and three ancilla qubits for Eq. (2.6.4). The reason we introduce (2.6.4) is that additional

ancilla qubits can help reduce the length of the circuit, and this will be discussed at the end

of Subsec. 2.6.1.

To increase the density of points in the region around π/2 where the cross section drops

to zero, we chose to implement instead the simpler operator

OM(θ) = sin(θ)I +
cos(θ)

2
(X0X1 + Y0Y1)

− sin(θ)

2
(Z0 − Z1) ,

(2.6.5)

for uniformly spaced values of the angle θ. The original excitation operator is then obtained

as

O =
√
α2 + β2 OM(ϕαβ) ϕαβ = arctan

(
α

β

)
. (2.6.6)

Note that since every observable we compute is independent on a global scale factor like√
α2 + β2, we only need to perform the change of variables in the angle.

The applications of the excitation operators with both the first quantization form and

the second quantization form (more scalable in a nuclear system) are considered. Next, I

show the circuit details for both quantization forms with the time-dependent method and

the LCU-based method.
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2.6.1 Circuit Implementation Details

This subsection provides the circuit implementation details for the nuclear excitation

operator in the first quantized form for both the time-depend method and the LCU-based

method, and the circuit implementation details for the second quantized form [OM(θ) in

Eq.(2.6.5)] for the LCU-based method.

First Quantized Case

First, consider using the time-depend method to approximate the action of the first quantized

operator

O(θ) = αI + βX − αZ . (2.6.7)

The corresponding time evolution operator and its Euler decomposition are given as

e−iγO = e−iδRz(x1)Ry(x2)Rz(x3) .

The three angles x1, x2, and x3, and phase δ are introduced in Sec. 2.4.1. I use the general

state preparation circuit (2.4.10),

|0⟩ H • E† • X • E • H

|ϕ⟩ A B C D F
.

(2.6.8)

Gate A and B are defined in Eq. (2.4.8). Gate C, D and F are defined in Eq. (2.4.11). And

gate E is defined in Eq. (2.4.6). Therefore, the circuit needs four CNOTs and ten additional

single qubit rotations.

Then, I show the circuit implementation details for Eq. (2.6.7) by using the LCU-based

method. The mapping for select unitary is shown as follows

|00⟩a → I |01⟩a → I |10⟩a → X |11⟩a → −Z . (2.6.9)
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For the case β ≥ 0, the full circuit is given as,

|0⟩a Ry(ϕ1) • R†
y(ϕ1)

|0⟩a Ry(ϕ2) • • R†
y(ϕ2)

T0 H̃ H̃

,

(2.6.10)

where H̃ = R†
y(3π/4)XRy(3π/4). The identity H̃XH̃ = −Z is used in the third line. The

angles are

ϕ1 = 2 arcsin

(√
α + |β|
2α + |β|

)
,

ϕ2 = 2 arcsin

(√
α

α + |β|

)
.

(2.6.11)

For the case β ≤ 0, the full circuit is given as

|0⟩a Ry(ϕ1) • Z R†
y(ϕ1)

|0⟩a Ry(ϕ2) • • R†
y(ϕ2)

T0 H H

.

(2.6.12)

the Hadamard gate H (modulo a phase) is defined as H = Ry(3π/4)XR†
y(3π/4), and the

identity HXH = Z is used. The gate Z is introduced to make up the negative sign in

Eq. (2.6.7). Combine both cases, and the final circuit is shown in the circuit (2.6.13),

|0⟩a Ry(ϕ1) • Zβ R†
y(ϕ1)

|0⟩a Ry(ϕ2) • • R†
y(ϕ2)

T0 Ry(Aβ) R†
y(Aβ) Ry(Aβ) R†

y(Aβ)

,

(2.6.13)

where similarly to Eq. (2.4.15) we use

Zβ ≡
{ I for β ≥ 0

Z for β < 0
, (2.6.14)
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and

Aβ =

{ 3π
4

for β ≥ 0

−3π
4

for β < 0
. (2.6.15)

Second Quantized Case

First, the detailed circuit implementation for the second quantized nuclear excitation

operator OM(θ), introduced in Eq.(2.6.5), with the LCU-based method is conveyed. As

OM(θ) is a summation of L = 5 unitaries, we need three ancilla qubits, and the corresponding

mapping is

|000⟩a → I |001⟩a → Z1 |011⟩a → −Z0

|100⟩a → X0X1 |110⟩a → Y0Y1 .
(2.6.16)

The number subscript of unitaries denotes the qubit they work on. The circuit of prepare

unitary is depicted in circuit (2.6.17)

|0⟩a Ry(2ϕ2) •

|0⟩a H H

|0⟩a H •

,
(2.6.17)

with the angle

ϕ2 = arcsin

(√
|cos(θ)|

2 sin(θ) + |cos(θ)|

)
. (2.6.18)

This circuit produces a state as

|Φ3⟩ =
cos(ϕ2)√

2

(
|000⟩ +

|001⟩ + |011⟩√
2

)
+

sin(ϕ2)√
2

(|100⟩ + |110⟩) .
(2.6.19)

52



After decomposing into rotation gates and CNOTs, an explicit implementation of the circuit

is depicted as

|0⟩a Ry(ϕ
′) • R†

y(π) •

|0⟩a Ry(π/4) R†
y(π/4)

|0⟩a Ry(π/4) R†
y(π/4) •

,

where ϕ′ = 2ϕ2 + π.

The select unitary corresponding to the mapping in Eq. (2.6.16) is depicted as

A0 • • • • Zθ

A1 • • • •

A2 • • •

T0 X0 Y0 •

T1 X1 Y1 •

,

(2.6.20)

with gate Zθ defined in Eq. (2.4.15) and used to account for the sign associated with cos(θ)

when θ ∈ [π/2, π], and to recover the relative sign difference between Z0 and Z1 in Eq. (2.6.5).

According to Ref. (Barenco et al., 1995), one triple controlled-NOT gate can be

decomposed into six CNOTs and seven controlled-unitary gates (which is not an optimally

efficient decomposition), one can look into other ways to simplify the circuit implementation

manually. Note that in Eq. (2.6.16), three states are not used, and this fact provides us the

potential to simplify this circuit further.

First, I use the identity X0Z0X1Z1 = −Y0Y1, transforming those triple controlled-Y gates

(the third and fourth gate) into triple controlled-X gates and triple controlled-Z gates. Then,

I combine four triple controlled-NOT gates into two CNOTs since we notice that we could

recognize states |100⟩a and |110⟩a by only recognizing the ancilla qubit A0 being in state
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|1⟩a, and obtain the select unitary as

A0 • • • Zθ •

A1 • • • • •

A2 • • •

T0 • •

T1 • •

.

(2.6.21)

The last CZ gate in circuit (2.6.21) accounts for the minus sign in the identity X0Z0X1Z1 =

−Y0Y1. A suitable choice of select state could efficiently reduce the number of quantum

gates.

The same trick can be used for gates in the dashed box in circuit (2.6.21), i.e., we recognize

those controlling states with ancilla qubits A1 and A2 only, then the circuit is given as

A0 • Zθ •

A1 • • • • • • •

A2 • • • • •

T0 • •

T1 • • • •

.

(2.6.22)

I add two redundant CCZ gates in the circuit (2.6.22), shown in the dashed box. Then, the

first four CCZ gates in circuit (2.6.22) can be simplified into two CZ gates. The select circuit

is obtained as

A0 • Zθ •

A1 • • • • •

A2 • • •

T0 •

T1 • • •

.

(2.6.23)
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Furthermore, the two CCZ gates in dashed box of circuit (2.6.23) can be simplify into CZ

gate, which gives circuit (2.6.24)

A0 • Zθ •

A1 • • • •

A2 • •

T0 •

T1 • •

=

• Zθ •

Ry(
π
2
) R†

y(
π
2
)

Ry(
π
2
) R†

y(
π
2
) •

•

•

,

(2.6.24)

where I use the identity (A.7) to decompose CZs to CNOTs and single-qubit gates. The

complete circuit is depicted as circuit (2.6.25), which only needs thirteen CNOT gates,

|0⟩a Ry(ϕ
′) • E† • Zθ • • E • R†

y(ϕ
′)

|0⟩a Ry(
π
4
) Ry(

π
4
) R†

y(
π
4
) R†

y(
π
4
)

|0⟩a Ry(
π
4
) R†

y(
π
4
) • Ry(

π
2
) R†

y(
π
2
) • • Ry(

π
4
) R†

y(
π
4
)

T0 •

T1 •

.

(2.6.25)

This circuit (2.6.25) can be further simplified. Two of the controlled-Z operations can

be absorbed by unpreparing the following flag state (slightly different from the previously

prepared state)

∣∣∣Φ̃3

〉
=

cos(ϕ2)√
2

(
|000⟩a +

|001⟩a − |011⟩a√
2

)
+

sin(ϕ2)√
2

(|100⟩a − |110⟩a) .
(2.6.26)
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Compared with the former flag state Eq. (2.6.19), applying Z gate to the ancilla qubit A1 is

the only difference. This flag state (2.6.26) can be produced by the circuit

|0⟩a Ry(ϕ
′) • R†

y(π) •

|1⟩a R†
y(π/4) Ry(π/4) R†

y(π)

|0⟩a Ry(π/4) R†
y(π/4) •

.

(2.6.27)

Here, the ancilla register A1 is initialized in |1⟩a. This scheme is very similar in spirit to the

asymmetric qubitization introduced in (Babbush et al., 2019). The total circuit is now given

as circuit (2.6.28)

|0⟩a Ry(ϕ
′) • R†

y(π) • • Ry(π) • R†
y(ϕ

′)

|0⟩a Ry(
π
4
) Ry(

π
4
) Ry(

π
4
) R†

y(
3π
4

)

|0⟩a Ry(
π
4
) R†

y(
π
4
) • Ry(

π
2
) R†

y(
π
2
) • Ry(

π
4
) R†

y(
π
4
)

T0 •

T1 •

,

(2.6.28)

which only needs eleven CNOTs. To meet the connectivity requirements for qubits, after

applying SWAP gates, the final circuit (2.6.29) is depicted as

|0⟩ Ry(2ϕ2) • • R†
y(

π
4
) • • Ry(

π
4
) Ry(

π
4
) R†

y(
3π
4

)

|0⟩ Ry(
π
4
) • • Q†

|0⟩ Q • • • Ry(
π
4
) • • R†

y(2ϕ2)

T0 •

T1 Ry(
π
2
) R†

y(
π
2
) •

,

(2.6.29)

which needs fourteen CNOT gates. Here, Q = Ry(π/4)X.

As I have discussed, the second quantized nuclear operator has another similar form as

Eq. (2.6.3), a linear combination of four terms that we need two ancilla qubits. Using the

following mapping for the select operation:

|00⟩ → I, |01⟩ → Z1, |10⟩ → X0X1, |11⟩ → Y0Y1 .
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After the circuit simplification, the circuit for the select is obtained as:

A0 • • •
A1 • • •
T0 •
T1 •

.

Therefore, the circuit only needs six CNOTs (for the simplification of the Toffoli gate)

plus four CNOTs, i.e., ten CNOTs in total. The select gate only needs seven CNOTs for

operator (2.6.5), which indicates that we can use additional qubits for less depth.

2.6.2 Results

Results for First Quantized Case

This section shows the results for the nuclear excitation operator in the first quantized

form Eq. (2.6.7) using both the time-dependent method with circuit (2.6.8) and the LCU-

based method with circuit (2.6.13). The circuit implementation details are provided in

Subsec. 2.6.1.

First, the necessary fidelity and success probability analyses of both methods will be

discussed. For the time-dependent method, like the procedure introduced in Sec. 2.5.1. We

use the upper and lower bound for success probability, shown in Eq. (2.2.11), and the lower

bound for fidelity, shown in Eq. (2.2.12), to carefully choose the time parameter as γ = 0.3

and obtain

F (0.3) ≥ 98.8% ,

73.8% ≥ Ps(0.3) ≥ 4.5% .
(2.6.30)

This is quite a reasonable value for parameter γ as it guarantees high fidelity and relatively

high success probability. For the LCU-based method, the fidelity is always 1, and the success

probability, shown in Eq. (2.3.8), is guaranteed to be

P LCU
s =

⟨1|O2(θ)|1⟩
Λ2

=
β2 + 4α2

4α2 + β2 + 4α|β|
≥ 0.5 . (2.6.31)
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Both algorithms were executed on the Vigo QPU (5qubit backed: IBM Q team, 2020)

using physical qubits (1, 2) (ancilla in 1 and system in 2) for the time-dependent method

and qubits (2, 3, 1) for the LCU-based method. In the latter case, qubits (2, 3) represented

ancilla qubits, and qubit 1 was the system. VM simulators are not in use because they are

not realistic enough to estimate real quantum devices, as shown in the previous section’s

results.

The results of success probability and the 1S0 → 3S1 transition probability are presented

in the left panel and right panels of Fig. 2.7, and quality metrics χ2 and nssd for transition

probability are shown in Tab. 2.5. The red empty circles in Fig. 2.7 denote those results

without self-consistent error extrapolation, and only read-out error correction is executed.

Note that this is the only situation in this work where this problem was present; this could

be either due to difficulties in executing our specific implementation or could simply be an

effect coming from the calibration of the device (the data for the time-dependent method

was collected on July 20, 2020, while the LCU data was generated on August 27, 2020). As

we can see from the plot, this flagged point does not show any discernible systematic error,

and it could also be possible that our flagging procedure is too conservative.

As shown in Fig. 2.7, the success probability for the LCU method is larger than the

success probability for the time-dependent method, which satisfies the result in Eq. (2.6.30)

and Eq. (2.6.31). The success probability of an algorithm influences the number of statistical

samples one can use in calculating the observables. In the region around θ = π/2 where

success probabilities are close to zero for the time-dependent method, the bare time-

dependent results for the transition probability are off by a factor of about 3, and the

mitigated results for the transition probability show larger fluctuations. While the LCU-

based method has more stable and accurate results for the transition probability, and this is

also indicated by Tab. 2.5, the metric nssd for the LCU-based method has a smaller value.

Results for Second Quantized Case

This section shows the results for the nuclear excitation operator in the second quantized

form as Eq. (2.6.5), which provides results with higher density around θ = π/2, using only

the LCU-based method with circuit (2.6.29), which meets the connectivity constraints. The
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Figure 2.7: Success probability (left panel) and transition probability (right panels) for the
excitation operator in Eq. (2.6.7) versus the angle θ, using both the time-dependent (TD)
method and the LCU-based method. QPU results with [subplot (c)] and without [subplot
(b)] error mitigation and with only read-out correction (red empty circles) are given. The
figure is taken from Ref. (Roggero et al., 2020a), which I co-authored.

Table 2.5: Quality metrics χ2 and nssd of 1S0 → 3S1 transition probability for thermal
neutron-proton using (a) the time-dependent (TD) method and (b) the LCU-based method.
The bare results (bare), results with read-out error correction (RO mit.), and full error
mitigation (full mit.) are shown. Results were obtained on the Vigo QPU (5qubit backed:
IBM Q team, 2020).

(a) TD

χ2 nssd
bare 11.77 1.198
RO mit. 6.04 1.013
full mit. 0.31 0.436

(b) LCU

χ2 nssd
bare 13.62 0.494
RO mit. 1.41 0.173
full mit. 2.19 0.253
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circuit implementation details are provided in Subsec. 2.6.1. The calculation was executed

on the Vigo QPU (5qubit backed: IBM Q team, 2020), and qubits 1, 4, and 3 are executed

for the ancilla qubits A0, A1 and A2, and qubits 0 and 2 are executed for the target qubits

T0, T1 respectively.

Note that the second quantized form contains non-commuting operators. To implement

the time-dependent method, one needs to implement an approximation of the evolution

operator instead of exact execution. The time-dependent method becomes relatively

inefficient due to the imperfect implementation, as shown in Subsec. 2.2.2. Therefore, only

the LCU-based method is used.

The results of success probability, transition probability, and error of transition

probability are given in panel (a), panel (b), and panel (c) (note the uniformly spaced index

for angle) of Fig. 2.8, respectively. And quality metrics χ2 and nssd for success probability

and transition probability are shown in Tab. 2.6. Black lines represent the exact results for

success probability, shown in Eq. (2.3.8), and transition probability in Eq. (2.5.11) (only the

ratio estimator considered since its big advantage). QPU results with (green squares) and

without (red circles) full mitigation procedures are shown.

From Fig. 2.8, we see that the transition probability has bare results with better quality

than the success probability because the ratio estimator applied. This is evidently shown

at θ = π, even the error of success probability bare result is more than 25%, the error

of transition probability bare result is only around 8%. In panel (c), around the angle

index as 10 (angle θ = π/2), bare results of transition probability show better quality

than those mitigated results, and full mitigation procedures fail. In Tab. 2.6, we see that

error extrapolation provides less help for transition probability than for success probability

(reduced by 2 orders of magnitude in metric χ2). This behavior is understood as the benefit

of utilizing a ratio estimator: the observables are less sensitive to noise.

2.7 Summary

This chapter shows the time-dependent and LCU-based methods, their success probability

and fidelity analysis, and the circuit implementation details. Both methods are applied
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Figure 2.8: Transition probability Pt (a) and success probability Ps (b) and error of
transition probability (c) for thermal neutron-proton capture as a function of angle θ. Results
are obtained by using the LCU-based method on the Vigo QPU 5qubit backed: IBM Q team
(2020). The figure is taken from Ref. (Roggero et al., 2020a), which I co-authored.

Table 2.6: Quality metrics χ2 and nssd of success probability (a) and transition probability
(b) for the excitation operator in Eq. (2.6.4) using the LCU-based method on the Vigo
QPU 5qubit backed: IBM Q team (2020). The bare results (bare), results with read-out
error correction (RO mit.), and full error mitigation (full mit.) are shown.

(a) Success Probability

χ2 nssd
bare 372.01 2.18
RO mit. 250.72 2.04
full mit. 3.81 0.52

(b) Transition Probability

χ2 nssd
bare 15.4 1.219
RO mit. 8.0 0.835
full mit. 5.8 0.928
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to prepare excited states on virtual machines and real quantum devices, using a simple

excitation operator (2.5.1) and a simple model for thermal neutron-proton capture to analyze

their accuracy and efficiency. The error mitigation procedures (both read-out correction

and error extrapolation) are utilized to reduce the read-out error and infidelity of gate

performance.

The results demonstrate that both methods are practicable and efficient for preparing

excited states and accurate for producing transition matrix elements. The LCU-based

method is better than the time-dependent method as it is more efficient and has a much

larger success probability. In contrast, the time-dependent method faces the tradeoff between

relatively large success probability and good fidelity. The LCU-based method is also

more resilient to depolarizing noise by utilizing ratio estimators, as ratio estimators could

exponentially suppress the relative error with the help of ancilla qubits.

Usually, when it is easy to add ancilla qubits, the LCU-based method is a better choice

for the state preparation algorithm. In contrast, sometimes the time-dependent method

would be better since it only needs one ancilla qubit. More qubits in use will need a

higher standard for qubit connectivity and quantum device performance. Note that these

considerations would change when considering fault-tolerant quantum devices that allow us

to perform the calculation of arbitrary length: the success probability Ps of a quantum

algorithm can be increased to 1 using O(1/
√
Ps) additional unitary gates using standard

amplitude amplification techniques.
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Chapter 3

Entanglement Entropy of Nuclear

Systems

This chapter is based on the paper (Gu et al., 2023), which I co-authored. My collaborators

and I are inspired by the fact that for a short-ranged correlated fermion system, the

entanglement entropy of the subsystems often grows proportional with the area (sometimes

times logarithmic corrections) (Eisert et al., 2010) when the system is partitioned into two

subsystems. And we are curious about how the entanglement entropy scales in a nuclear

many-body system. Because of the short-range interaction, one might expect that the

entanglement of nuclear many-body systems should also fulfill area laws. To examine whether

this is true, my collaborators and I separate the system into the hole space and the particle

space and study the entanglement entropy of subsystems. The analytical results demonstrate

that entanglement entropies are proportional to the particle number fluctuation and the

depletion of the hole space for sufficiently weak interactions, which indicates a volume law

instead of an area law. The numerical calculation of the pairing model, neutron matter, and

finite nuclei confirms these arguments.

This chapter provides a brief introduction to the coupled-cluster theory and partition

methods in Sec. 3.1, analytical results of entanglement entropies based on the coupled-

cluster method in Sec. 3.2, and numerical results of the pairing model and neutron matter

in Sec. 3.3.
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3.1 Introduction

This section briefly introduces the basic notions that are required in this chapter.

Subsec. 3.1.1 discusses the coupled-cluster theory. Subsec. 3.1.2 discusses partitioning the

Hilbert space when dealing with a finite system and the approach used in this dissertation.

Also, it provides some arguments that the volume law is fulfilled in a nuclear system instead

of an area law.

3.1.1 Coupled-cluster Theory

In 1960, Coester and Kümmel (Coester and Kümmel, 1960) first introduced cluster function

to describe ground state wave functions of a closed shell nucleus. In the late 1960s, C̆́iz̆ek and

Paldus (Č́ıžek, 1966, 2007; Č́ıžek and Paldus, 1971) introduced the coupled-cluster method to

quantum chemistry. Since then, the coupled-cluster method has been widely used in solving

many-body problems (Kümmel et al., 1978; Jansen et al., 2014; Sun et al., 2018), providing

highly accurate and computationally affordable calculations for many-body systems. The

standard coupled-cluster formulations (Shavitt and Bartlett, 2009; Bartlett and Musia l, 2007)

and an overview of its applications in physics (Bishop, 1991), especially in nuclear physics

(Hagen et al., 2014b) can be found.

Let us start with a Hamiltonian, which contains two-body interactions only, given as

Ĥ = Ĥ0 + ĤI =
N∑
i=1

ĥ (ri) +
N∑
i<j

v̂ (rij) . (3.1.1)

Here, N is the total number of fermions. Operator ĥ and v̂ represent the one-body and

two-body components of the Hamiltonian. A second quantized form is given as

Ĥ =
∑
pq

εpq â
†
pâq +

1

4

∑
pqrs

⟨pq||rs⟩â†pâ†qâsâr , (3.1.2)

with a set of single-particle states ψp(x) obtained from the Hartree-Fock theory. The operator

â†p creats an particle on the p-th single-particle state |ψp⟩ = â†p|0⟩. Here, εpq = ⟨ψp|ĥ|ψq⟩

represents matrix elements for one-body component, and ⟨pq||rs⟩ = ⟨ψpψq|v̂|ψrψs⟩ −
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⟨ψpψq|v̂|ψsψr⟩ represents the anti-symmetrized matrix elements for two-body part. The

ground state ansatz from the Hartree-Fock theory is given as

|Φ⟩ =
N∏
i=1

â†i |0⟩ . (3.1.3)

I introduce the reference state |Φ⟩ as the new vacuum and rewrite the Hamiltonian as its

normal-ordered form, given as

ĤN =
∑
pq

fp
q

{
â†pâq

}
+

1

4

∑
pqrs

⟨pq||rs⟩
{
â†pâ

†
qâsâr

}
= FN + VN ,

(3.1.4)

with

fp
q = εpq +

∑
i

⟨pi||qi⟩ .

Here, Ĥ = ĤN + Eref with Eref = ⟨Φ|Ĥ|Φ⟩ as the reference energy.

A coupled-cluster ansatz (exponential ansatz) for the ground state of a fermionic system

is defined as

|Ψ⟩ = eT̂ |Φ⟩ , (3.1.5)

with the cluster operator T̂ defined as

T̂ = T̂1 + T̂2 + · · · + T̂N , (3.1.6)

where T̂k is k-particle–k-hole excitation operator,

T̂k =
1

(k!)2

∑
i1,...,ik;
a1,...,ak

ta1...aki1...ik
â†a1 . . . â

†
ak
âik . . . âi1 . (3.1.7)

The coupled-cluster amplitudes ta1...aki1...ik
are left undetermined.

Based on the vacuum state |Φ⟩, the single-particle states are categorized into the particle

states (denoted with indices a, b, · · · ) and the hole states (denoted with indices i, j, · · · ), based

on whether they are unoccupied or occupied in the reference state. The whole Hilbert space
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is partitioned into the hole space (containing hole states) and the particle space (containing

particle states). This convention will be applied to the whole chapter. The operators â†ak

and âik create and annihilate a particle on the particle and hole states, respectively.

Each T̂k excites k particles in the hole space into the particle space and creates a k-

particle-k-hole excitation state, written as

∣∣Φa1...a2
i1...ik

〉
≡ â†a1 · · · â

†
ak
âik · · · âi1 |Φ⟩ . (3.1.8)

It’s notable that eT̂ is not unitary since generator T̂ does not contain de-excitation terms,

and the normalization coefficient in state |Ψ⟩ is left out.

The exponential operator can be expanded into a power series

eT̂ = 1 + T̂ +
T̂ 2

2!
+
T̂ 3

3!
+ · · · , (3.1.9)

which contains all possible correlations of single-particle states. If one truncates the cluster

operator, for example, to the order only containing single and double excitation operators,

CC still includes higher order excitations since the power series of T̂ . Let us compare

this exponential ansatz with the full configuration interaction (FCI) method, which is the

most straightforward method to exactly solve many-body problems that diagonalizes the

Hamiltonian on the basis of many-body states. The FCI state is written as

|ΨCI⟩ = c0 |Φ⟩ +
∑
ai

ca1i1
∣∣Φa1

i1

〉
+
∑

a1a2i1i2

ca1a2i1i2

∣∣Φa1a2
i1i2

〉
+ · · ·

=
(
c0 + Ĉ

)
|Φ⟩

(3.1.10)

which is an exact ground state written as a superposition of all the possible configurations.

The linear excitation operator is defined as

Ĉ =
∑
a1i1

ca1i1 â
†
a1
âi1 +

∑
a1a2i1i2

ca1a2i1i2
â†a1 â

†
a2
âi2 âi1 + . . . . (3.1.11)

One can find a relationship between the amplitudes of FCI and CC (Cremer, 2013). Without

truncation, both methods provide an exact ground state wavefunction.
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For practical computation implementation, to obtain the coupled-cluster amplitudes

ta1...aki1...ik
, we solve the amplitude equations

〈
Φa1a2...

i1i2...
|e−T̂ ĤNe

T̂ |Φ
〉

= 0 . (3.1.12)

Then, the energy is obtained via the energy equation

E =
〈

Φ|e−T̂ ĤNe
T̂ |Φ
〉
. (3.1.13)

Here, H̄ = e−T̂ ĤNe
T̂ is the similarity transformed normal order Hamiltonian, which is named

as the CC effective Hamiltonian. We can expand H̄ based on Baker-Campbell-Hausdorff

(BCH) expansion,

e−T̂ ĤeT̂ = Ĥ +
[
Ĥ, T̂

]
+

1

2!

[[
Ĥ, T̂

]
, T̂
]

+
1

3!

[[[
Ĥ, T̂

]
, T̂
]
, T̂
]

+ . . . , (3.1.14)

which is called as Hausdorff expansion. The advantage of this form is a simplification

would appear as an infinite series of nested commutators truncates naturally to a four-fold

commutator (see Chapter 10 in Ref. (Shavitt and Bartlett, 2009)). Also, this form provides

a more productive view of understanding CC theory as finding eigenstates of the effective

Hamiltonian (similarity transformed, which is not Hermitian) that exhibits no excitation

corrections on the left.

As mentioned in Ref. (Crawford and Schaefer, 2007), “the only nonzero terms in the

Hausdorff expansion are those in which the Hamiltonian, ĤN, has at least one contraction

with every cluster operator, T̂N , on its right”, Eq. (3.1.14) is further simplified as

H̄ = ĤN +
(
ĤN T̂

)
c

+
1

2

(
ĤN T̂

2
)
c

+ · · ·

=
(
ĤNe

T̂
)
c
,

(3.1.15)

generalized by Wick’s theorem.
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Coupled-cluster Double Approximation

In practical computation, the number of unknown amplitudes with full cluster operators

grows exponentially, just like the FCI method. The number of all possible Slater

determinants, as the dimension of Hilbert space, grows exponentially with the problem size.

Think about having A neutrons distributing in N different single-particle states; one will

have the number of possible configurations as N

A

 =
N !

(N − A)!A!
, (3.1.16)

due to the fermionic property, only one particle occupies the state at a time.

To manage this, people often truncate the cluster operator to a specific order, a strategy

that significantly reduces computational complexity. The simplest truncation is the coupled-

cluster doubles (CCD) approximation, which only executes two-particle–two-hole excitations,

i.e., T̂ = T̂2, then the ground state ansatz is written as

|ΨCCD⟩ = eT̂2|Φ⟩ . (3.1.17)

The coupled-cluster singles approximation, i.e., T̂ = T̂1, is not considered as a valid

approximation since eT̂1 is just transforming the Slater determinant |Φ⟩ into another Slater

determinants, based on Thouless Theorem; see Eq. (2) in Ref. (Thouless, 1960).

A further improvement of CCD is adding one-particle-one-hole excitations T̂1 and utilizing

the coupled-cluster singles and doubles (CCSD) approximation, i.e., T̂ = T̂1 + T̂2, with the

state ansatz as

|ΨCCSD⟩ = eT̂1+T̂2|Φ⟩ . (3.1.18)

Here, the excitation operator T̂1 will generate higher order excitations, like T̂1T̂2 and T̂1T̂1.
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Next, I provide a more detailed CCD calculation. The energy is given by

ECCD =
〈

Φ
∣∣∣(ĤNe

T̂2

)
c

∣∣∣Φ〉
=
〈

Φ
∣∣∣ĤN

(
1 + T̂2

)∣∣∣Φ〉
= Eref +

1

4

∑
abij

⟨ij||ab⟩tabij

= Eref + ∆ECCD ,

(3.1.19)

where ∆ECCD is the CCD correlation energy. The amplitudes ta1a2i1i2
obtained by solving

equations

0 =
〈

Φa1a2
i1i2

∣∣∣(ĤNe
T̂2

)
c

∣∣∣Φ〉
=

〈
Φa1a2

i1i2

∣∣∣∣ĤN

(
1 + T̂2 +

1

2
T̂ 2
2

)∣∣∣∣Φ〉 .
(3.1.20)

The matrix element H̄ab
ij is written as

H̄ab
ij = ⟨ab||ij⟩ + P (ab)

∑
c

f b
c t

ac
ij − P (ij)

∑
k

fk
j t

ab
ik

+
1

2

∑
cd

⟨ab||cd⟩tcdij +
1

2

∑
kl

⟨kl||ij⟩tabkl + P (ab)P (ij)
∑
kc

⟨kb||cj⟩tacik

+
1

2
P (ij)P (ab)

∑
klcd

⟨kl||cd⟩tacik tdblj +
1

2
P (ij)

∑
klcd

⟨kl||cd⟩tcdiktablj

+
1

2
P (ab)

∑
klcd

⟨kl||cd⟩tackl tdbij +
1

4

∑
klcd

⟨kl||cd⟩tcdij tabkl ,

(3.1.21)

and H̄ab
ij = 0 gives us amplitudes. Here P (ab) = 1 − P̂ab is the permutation operator. For

a more detailed derivation of Eq. (3.1.21) and derivation of CCSD amplitudes and energy

equations, I refer readers to Ref. (Shavitt and Bartlett, 2009).

The standard method to calculate this CCD amplitude equation is using iteration,

tabij = tabij +
H̄ab

ij

εabij
. (3.1.22)
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Here, εabij = εi + εj − εa − εb and εp = ⟨ψp|ĥ|ψp⟩. Then, one can obtain t(n+1) = f(t(n))

iteratively until the correlation energy converged. Here t is a shortening for tabij . The common

initial guess of amplitudes is written as

t(0) =
⟨ab∥ij⟩
εabij

, (3.1.23)

which only contains the first term in Eq. (3.1.21), and this is related to the second-order

many-body perturbation theory (MBPT2). For an introduction to MBPT and its connection

to CC theory, I refer the readers to Ref. (Shavitt and Bartlett, 2009). The zeroth correlation

energy is given as

∆E
(0)
CCD =

1

4

∑
abij

⟨ij||ab⟩⟨ab||ij⟩
εabij

. (3.1.24)

which is equal to second-order energy correction from MBPT2.

3.1.2 Subspace Structure and Entanglement Entropy

This subsection discusses different approaches to partitioning the Hilbert space when dealing

with a finite system and the approach used in this dissertation.

Given a Hilbert space H which is decomposed as H = HA ⊗HB in terms of the Hilbert

spaces of two subsystems A and B. Assume |ΦAB⟩ ∈ H is a pure state. The entanglement

entropy is usually given with Von Neumann entropy as S(ρA) = S(ρB).

In discussing the many-body quantum systems, mode entanglement is considered to

quantify the entanglement between one single-particle state and the complement states. The

one-mode entropy is given as Von Neumann entropy S(ρk) where ρk is one-mode reduced

density matrix, defined as

ρk ≡

 〈
a†kak

〉
0

0 1 −
〈
a†kak

〉
 ,

with
〈
a†kak

〉
=
〈

Ψ
∣∣∣a†kak∣∣∣Ψ〉 denoting the occupation probability of a particle in single-

particle state k. The summation over mode entropies
∑

k S(ρk) gives the total correlation

of the system corresponding to the single-particle basis (the value depends on the choice of
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basis). The minimum of total entanglement is obtained in the natural basis (Gigena and

Rossignoli, 2015), in which each single-particle states are disentangled.

In nuclear physics, mode entanglement is used. For example, the work (Legeza

et al., 2015) calculated the one-orbital (mode) entropy and two-orbital mutual information

(indicates how single-particle states are correlated) for 64Ge by applying DMRG. They show

that the entropy can indicate the importance of an orbital, in which sense, how much it

contributes to the correlation energy. The work (Robin et al., 2021) calculated entanglement

between single-particle states of 4He and 6He. They calculated the one-orbital and two-

orbital entanglement entropy (obtained from Von Neumann entropy of two-orbital reduced

density matrix, see Appendix B of Ref. (Robin et al., 2021)), two-orbital mutual information

and negativity based on various bases and discussed their entanglement structures.

In this dissertation, instead of calculating mode entanglement between one or two single-

particle states and the complement states, the entanglement is quantified by the entropy

between hole space and particle space with the full fermionic many-body wave function.

The hole space contains every single-particle state of the reference state, which is described

in Eq. (3.1.3), obtained from the Hartree-Fock method. This is a good indicator of the

correlation between reference states and other particle states, and it can showcase how those

particle states can help improve the precision of the model.

Here, I provide details about how to get the reduced density matrix of hole space. Every

configurations (3.1.8) are expressed as a product of hole space states |i−1
1 i−1

2 · · · ⟩ and particle

space states |a1a2 · · · ⟩, ∣∣Φa1a2...
i1i2...

〉
= |a1a2 · · · ⟩ ⊗ |i−1

1 i−1
2 · · · ⟩ . (3.1.25)

An arbitrary normalized state |Ψ⟩ can be written as the superposition of all configurations,

|Ψ⟩ = C0 |Φ⟩ +
∑
a1i1

Ca1
i1

∣∣Φa1
i1

〉
+
∑

a1a2i1i2

Ca1a2
i1i2

∣∣Φa1a2
i1i2

〉
+ · · ·

=
N∑

n=0

∑
i1...in
a1...an

Ca1···an
i1···in

∣∣Φa1···an
i1···in

〉
,

(3.1.26)
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with those coefficients undefined and can be obtained by the coupled-cluster method. n is

the number of particles that are excited from hole states to particle states, and n runs over

0 to N , which is the total number of particles in the nuclear system. The reference state |Φ⟩

is obtained when n = 0.

The density matrix ρ associated with each state is denoted as

ρ̂ = |Ψ⟩⟨Ψ|

=
N∑

n=0

N∑
m=0

∑
i1...in
a1...an

∑
j1...jm
b1...bm

Ca1···an
i1···in C

b1···bm
j1···jm

∣∣Φa1···an
i1···in

〉 〈
Φb1···bm

j1···jm

∣∣ . (3.1.27)

The hole space reduced density matrix ρ̂H is obtained by tracing over the particle space

states and is defined as

ρ̂H =TrPρ̂

=
N∑

n=0

∑
a1<a2<···<an

(
ÎH ⊗ ⟨an . . . a1|

)
ρ̂
(
ÎH ⊗ |a1 . . . an⟩

)
=

N∑
n=0

∑
a1<a2<···<an
i1<i2<···<in
j1<j2<···<jn

〈
Φa1...an

j1...jn

∣∣ ρ̂ ∣∣Φa1...an
i1...in

〉
(3.1.28)

×
∣∣j−1

1 . . . j−1
n

〉 〈
i−1
n . . . i−1

1

∣∣ ,
where ÎH is the identity in hole space. We can check that Eq. (3.1.28) represents a density

matrix.

Furthermore, the Rényi entropy Eq. (1.3.3) and von Neumann entropy Eq. (1.3.1) of ρ̂H

are calculated to quantify the entanglement of the hole space.

I have mentioned in Chapt. 1.3 that for the short-range interaction system, one would

expect entanglement entropy S or particle number fluctuation (∆N)2 of subsystem would

obey area laws Ld−1 (times some logarithmic corrections Ld−1 log(L)) (Eisert et al., 2010).

I have pointed out that area laws might no longer be held in nuclear physics.

For example, mode entanglement is used and modified in work (Pazy, 2023). It

separated the long and short-ranged physics by Similarity Renormalization Group (SRG)
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transformation, studied entanglement entropy in terms of the high momentum states, and

showed the total SRC entanglement entropy as

SSRC
A = −A

2

[
c ln

(
c

1 − c

)
+ ln(1 − c)

]
, (3.1.29)

which showcases that the entanglement entropy is proportional to nucleon number A, or,

say, the nucleus volume. Here, c is related to the eigenvalue of the one-mode reduced density

matrix.

Let’s consider the entanglement between hole space and particle space. Fig. 3.1 gives

a sketch of single-particle states in position space. The blue area represents the volume

where hole states spread out. The grey area, together with the blue area, represents the

single-particle space. The red points represent localized hole states with nearest neighbor

distance as around π/k−1
F . kF is the Fermi momentum. The black points represent localized

particle states with nearest neighbor distance as π/Λ−1, where Λ−1 is the momentum cutoff.

We can see that the particle states are more dense than the hole states and that every hole

state is correlated with particle states. This indicates that the entanglement entropy fulfills

a volume law instead of an area law.

In momentum space, unlike in Fig. 3.1, where particle and hole states spread out in the

blue area, particle states only spread out in the grey area, and the blue area can represent

the Fermi sphere instead. The scaling problem of the entanglement entropy in momentum

space is more apparent. It is expected to fulfill a volume law since the interactions are

long-ranged. Sec. II of Ref. (Gu et al., 2023) also provides the argument based on lattice

calculation, suggesting a volume law.

3.2 Analytical Results Based on the Coupled-cluster

Theory

This section provides the analytical results of the Rényi entropy in Subsec. 3.2.1, and

the particle number fluctuation and depletion of the hole space, and their relation in

Subsec. 3.2.2. The analytical results are obtained based on CCD approximation. In this
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Figure 3.1: Schematic diagram of nuclear volume (light blue area) and its complement
(gray area) for a finite spherical basis in position space. Red and black points represent
localized hole and particle states, respectively. The figure is taken from Ref. (Gu et al.,
2023), which I co-authored.
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dissertation, I will provide the numerical results for the pairing model and the neutron matter

and compare them with the analytical results in this section. The CCD ansatz (3.1.17) is

a valid approximation for the pairing model and the neutron matter since the Hamiltonian

of the pairing model only excites pairs of particles, and the momentum space is used in the

neutron matter calculation that one-particle-one-hole excitations are not allowed since the

conservation of momentum.

3.2.1 Approximate Entanglement Entropies

With the CCD ansatz (3.1.17), the density matrix is written as

ρ̂ =
|ΨCCD⟩⟨ΨCCD|
⟨ΨCCD|ΨCCD⟩

. (3.2.1)

The hole-space reduced density matrix ρ̂H is obtained by tracing the density matrix ρ̂ over

the particle states ρ̂H = TrPρ̂, the general form is given in Eq. (3.1.28). For clarity, the

matrix elements of ρ̂H are expressed as following:

⟨|ρH|⟩ = ⟨Φ|ρ̂|Φ⟩ ,〈
i−1
1 i−1

2 |ρH|j−1
1 j−1

2

〉
=
∑
a1<a2

〈
Φa1a2

i1i2
|ρ̂|Φa1a2

j1j2

〉
,

...〈
i−1
1 · · · i−1

N |ρH|j−1
1 · · · j−1

N

〉
=∑

a1<···<aN

〈
Φa1···aN

i1···iN |ρ̂|Φa1···aN
j1···jN

〉
.

(3.2.2)

The first line in Eq. (3.2.2) is obtained by tracing over the vacuum state |Φ⟩, and here state

|⟩ denotes zero-hole states. The second line is obtained by tracing over two-particle states

and so on. As the CCD approximation is in use, only those matrix elements related to

even-numbered particle states exist; otherwise, the matrix element will vanish.

All matrix elements in Eq. (3.2.2) are needed to calculate the entanglement entropies, and

the exact evaluation is challenging. We assume that T̂2 is small, and make the approximation
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as following:

|Ψ̃CCD⟩ ≈
(

1 + T̂2

)
|Φ⟩

= |Φ⟩ +
1

4

∑
abij

tabij |Φab
ij ⟩ .

(3.2.3)

Then, the density matrix is written as

ρ̂ = C−1|Ψ̃CCD⟩⟨Ψ̃CCD| , (3.2.4)

with the normalization coefficient

C ≡ ⟨Ψ̃CCD|Ψ̃CCD⟩

= 1 + t2 , (3.2.5)

with

t2 ≡ 1

4

∑
i1i2a1a2

ta1a2i1i2
ta1a2i1i2

. (3.2.6)

The approximation (3.2.3) is valid for t2 ≪ 1, and this quantifies in what sense T̂2 is small.

The hole space reduced density matrix is written as

ρ̂H =
1

C

(
|⟩⟨| +

∑
a<b

tabij t
ab
kl

∣∣k−1l−1
〉 〈
j−1i−1

∣∣)

=̇
1

1 + t2

1 0

0 ρ̂2

 .

(3.2.7)

The symbol =̇ denotes the operator is represented by a matrix. The reduced density matrix

is written as a block matrix in the second line. Here, ρ̂2 represents a two-hole-two-hole

matrix with matrix elements

ρklij =
∑
a<b

tabij t
ab
kl . (3.2.8)
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The indexes satisfy i < j and k < l. The dimension of matrix ρ̂2 is D ≡ N(N − 1)/2 for a

system with N fermions. As a check, we see that

Tr ρ̂2 =
∑
i<j

ρijij = t2 , (3.2.9)

and we indeed have Tr ρ̂H = 1. For what follows, I rewrite

ρ̂2 = t2σ̂ , (3.2.10)

where σ̂ is a density matrix, with Tr σ̂ = 1.

To quantify the entanglement of ρ̂H, the Rényi entropies Sα (1.3.3) and the von Neumann

entropy S1 (1.3.4) are used. The necessary part Tr ρ̂αH is obtained as

Tr ρ̂αH = Tr

 1

(1 + t2)α

1 0

0 ρ̂α2


= (1 + t2)−α

(
1 + t2α Tr σ̂α

)
.

(3.2.11)

From here on, the parameter α is restricted to α ≥ 1. Then,

Sα =
1

1 − α
ln
[
(1 + t2)−α

(
1 + t2α Tr σ̂α

)]
=
t2α Tr σ̂α − αt2

1 − α
+ O(t4) + O(t4α) .

(3.2.12)

The condition t2 ≪ 1 is used in the second line, that ln(1 + x) = x+ O(x2) with small x.

For α → 1, the L’Hopital rule is used and Eq. (3.2.12) becomes

S1 = t2
[
1 − Tr (σ̂ log σ̂) − log t2

]
+ O(t4) . (3.2.13)

The matrix σ̂ has dimension D. Thus, 0 ≤ −Tr(σ̂ log σ̂) ≤ logD. Here, the minimum arises

when all but one eigenvalue of σ̂ vanishes, while the maximum arises when all eigenvalues

are equal.
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For α > 1, Eq. (3.2.12) is further simplified as

Sα =
α

α− 1
t2 + O(t2α) + O(t4) for α > 1, (3.2.14)

for t2 ≪ 1. Here, as σ̂ is not a pure state density matrix, we have Tr(σ̂α) < 1. More precisely,

the bounds is given as D1−α ≤ Tr(σ̂α) ≤ 1 (Subramanian and Hsieh, 2021) for α > 1. We

see the omission of O(t2α) is valid for sufficiently large index α, then Rényi entropies become

independent of the matrix (3.2.10).

Furthermore, I apply the limit t2 → 0 to Eq. (3.2.12) and Eq. (3.2.13), with which the

interactions are arbitrarily small, and get the asymptotic behavior as

Sα →


−t2 log t2 for α = 1 and t2 → 0 ,

α

α− 1
t2 for α > 1 and t2 → 0 .

(3.2.15)

Note that the asymptotic results are independent of the matrix σ̂ in Eq. (3.2.10). The

derivation clarifies that the limits α → 1 and t2 → 0 do not commute. If we change the

order, matrix dependence will still exist.

3.2.2 Particle Numbers Fluctuation

The number operator for the particles in the hole space is

N̂H =
N∑
i=1

â†i âi

=̇

N 0

0 N − 2

 .

(3.2.16)

This matrix representation has the same structure and dimensions as the reduced density

matrix ρ̂H (3.2.7), with the basis as two-hole states in the second block and with the basis

78



state |⟩ in the first block. The expectation of the number operator is calculated as

⟨NH⟩ ≡ Tr(ρ̂HN̂H)

=
N + (N − 2)t2

1 + t2

= N − 2t2 + O(t4) ,

(3.2.17)

and the expectation of the number operator square is

⟨N2
H⟩ ≡ Tr(ρ̂HN̂

2
H)

=
N2 + (N − 2)2t2

1 + t2

= N2 − 4t2(N − 1) + O(t4) .

(3.2.18)

Here in the third line of (3.2.17) and Eq. (3.2.18), the expansion 1/(1 + x) = 1− x+O(x2)

for small x is used.

Then, the particle-number fluctuation is

(∆NH)2 ≡ ⟨N2
H⟩ − ⟨NH⟩2

= 4t2 + O(t4) ,
(3.2.19)

which gives a relation t2 ≈ (∆NH)2/4. Combine this relation with Rényi entropies (in

Eqs. (3.2.12) and Eqs. (3.2.13) and their asymptotic expressions (3.2.15)), we can see that

Rényi entropies are functions of the particle-number fluctuation. These expressions extend

the pioneering results (Klich, 2006) to finite systems of interacting fermions.

Also, let’s consider the depletion number of the reference state

δNH ≡ N − ⟨NH⟩

= 2t2 + O(t4) , (3.2.20)
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which is simple to calculate in many-body systems. We can find the relation between the

entanglement entropy and the depletion number as

1

4
(∆NH)2 ≈ 1

2
(δNH) ≈ t2 . (3.2.21)

The corrections to this relation are higher powers of δNH or (∆NH)2 or t2.

The proportionality between the entropy and the particle-number fluctuation breaks

down when one includes higher powers of T2 in the ground state. Our analytical

results (3.2.12), (3.2.13), and (3.2.15), combined with (3.2.21) generalize the result (Klich,

2006) to weakly interacting finite Fermi systems.

3.3 Entanglement in Nuclear Systems

This section provides the numerical results of the pairing model in Subsec. 3.3.1 and the

neutron matter in Subsec. 3.3.2. Both calculations are based on the CCD method, introduced

in Subsec. 3.1.1.

3.3.1 Pairing Model

The Hamiltonian of a pairing model is

Ĥ = δ
∑
pσ

(p− 1)â†pσâpσ

− 1

2
g
∑
pq

â†p+â
†
p−âq−âq+ ,

(3.3.1)

where the doubly degenerate orbitals are labeled with index p = 1, 2, . . . ,Ω/2 and spin states

σ = ±. Here Ω/2 is the number of orbitals. I restrict the model to a half-filled pairing model

in the numerical calculation, which means the total number of particles is Ω/2 as well (i.e.,

Ω/4 pairs). Each orbital is equally spaced, with the spacing parameter δ. In what follows,

δ = 1 is set without losing generality, and all energies (and the coupling strength parameter

g) are measured in units of δ.
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The Hamiltonian contains two parts: the kinetic energy of each particle and two-body

interactions that excite a pair of particles in the same orbital at a time. The pairing model

is exactly solvable (Dukelsky et al., 2004). Therefore, it is a wonderful test case for studying

entanglement. The exact results of eigenvalues and eigenstates can be obtained from directly

diagonalizing the Hamiltonian, for a relatively small basis. For a sufficiently small coupling

strength g, the CCD approximation can accurately solve the pairing model; see Fig. (1.5)

and Tab. (1.13) in Ref. (Lietz et al., 2017).

Following the standard procedures introduced in Subsec. 3.1.1, the amplitude equations

are given as Eq. (3.1.21). Following the code given in the Python notebook (T. Papenbrock,

2018), the amplitudes can be obtained iteratively.

After obtaining amplitudes from the CCD method with the ground state ansatz (3.1.17),

we then compute the reduced density matrix (3.2.7) (which is actually based on the approx-

imated CCD wavefunction (3.2.3)), the corresponding von Neumann entropy S1 (1.3.1), the

Rényi entropy S2 (1.3.3) and the particle-number fluctuation (∆NH)2 (3.2.19). The results

are shown in the Fig. 3.2.

Fig. 3.2 shows the relation bewteen entanglement entropies S1 (full markers) and S2

(hollow markers) with respect to (∆NH)2. And their analytical relation (given in Eq. (3.2.14)

and Eq. (3.2.15), combined with Eq. (3.2.21)) are shown as the dash-dotted and dashed lines.

Rényi entropy with different α shows a similar results pattern while monotonically decreasing

with respect to α, so only S1 and S2 will be shown in the results. Results with different

coupling strengths (g = 10−3, 0.01, 0.1, 0.2, 0.5) are denoted by differently colored and shaped

markers. Within a coupling strength g, the half-filled pairing models with one to twelve pairs

of particles are calculated, and the results are denoted by identical markers. The method to

identify the number of pairs for a specific marker, one can derive from the fact that Sα and

(∆NH)2 increase with an increasing number of pairs.

From the Fig. 3.2, one can see that the analytical results agree with numerical results

for sufficiently weak interactions (small t2), i.e., sufficiently small values of (∆NH)2. The

agreement is further examined in Fig. 3.3, which provides the absolute differences between

analytical results and numerical results (normalized by the numerical results) as a function

of (∆NH)2. We can see, for S1, the analytical result is probably only reached asymptotically
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Figure 3.2: Von Neumann entropies S1 (full markers) and Rényi entropies S2 (hollow
markers) of the reduced hole-space density matrix ρH versus the particle-number fluctuation
(∆NH)2 of the hole space for the half-filled pairing model, with δ = 1.0 and different couplings
g as indicated. The dash-dotted and dashed lines show analytical results for α = 1 and
α = 2, respectively, and they are valid for values of t2 as indicated. The color and shape
of the markers indicate the coupling strength, and for a given coupling, identical markers
show the results for one to twelve pairs. The entropy increases with the number of pairs and
with increasing coupling strength. The figure is taken from Ref. (Gu et al., 2023), which I
co-authored.
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Figure 3.3: Absolute differences between numerical and analytical Rényi entropies for S1

(full markers) and S2 (hollow markers), normalized by the numerical entropy, versus the
particle-number fluctuation (∆NH)2 of the hole space for the half-filled pairing model, with
δ = 1.0 and different couplings g as indicated. The color and shape of the markers indicate
the coupling strength, and for a given coupling, identical markers show the results for one
to twelve pairs. The figure is taken from Ref. (Gu et al., 2023), which I co-authored.
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for (∆NH)2 → 0. For S2, the value of the absolute difference is as predicted of order S2
2 ,

shown in Eq. (3.2.14). Here, I apply the argument that the order of S2 is similar to the

order of (∆NH)2 which is proportional to t2. We can see the deviations for S2 results when

(∆NH)2 → 0, and this is explained as a result of the machine precision limit.

As we can see, t2 is an important quantity as it links the relation between entanglement

entropy and particle-number fluctuation. Figuring out the scaling problem of quantity t2

will lead us to the scaling problem of entanglement entropy. Here, I provide the analytical

discussion about t2. For sufficiently small interaction, the CCD amplitudes tabij are well

approximated by the MBPT2 results, given as

tabij ≈ ⟨ab|v̂|ij⟩
εabij

. (3.3.2)

This approximation has been introduced in Subsec. 3.1.1 as a starting point for iteration

calculation of amplitudes.

Then we have,

t2 =
1

4

N
2∑

i=1

Ω
2∑

a=N
2
+1

g2

4δ2(i− a)2

≈ g2

16δ2

N
2∑

i=1

[∫ Ω
2

N
2
+1

1

(i− a)2
da

]

≈ g2

16δ2

∫ N
2

1

[
1

i− Ω
2

− 1

i− N
2
− 1

]
di

=
g2

16δ2
log

N(Ω −N)

2(Ω − 2)

≈ g2

16δ2
log

N

4
,

(3.3.3)

where N = Ω/2 for half-filled pairing model. In the second and the third line, the

Euler–Maclaurin formula
∑n

i=m f(i) ≈
∫ n

m
f(x)dx is used to estimate the sums by the

integrals. In the last line, the equation is valid when N ≫ 1. More precise analytical

results are given as

t2 =
g2

16δ2

[
2

N2
+

1

4(N − 1)2
− 1

N − 1
+ log

N2

4(N − 1)
+

5

4

]
, (3.3.4)
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by using
n∑

i=m

f(i) ≈
∫ n

m

f(x)dx+
f(n) + f(m)

2
.

Comparing both analytical results, the approximation (3.3.3) introduces an error of order

O(N0), which is negligible when N ≫ 1.

I introduce the relative error of t2 as

ε =

∣∣∣t2 − g2

16δ2
log N2

4(N−1)

∣∣∣
t2

, (3.3.5)

and show the result in Fig. 3.4. We can see that, for sufficiently small coupling strengths,

Eq. (3.3.2) is valid. For g = 0.1, the metric nssd for t2 is nssd(0.1) = 2.34 (nssd is defined

in Eq. (2.5.3), with v(e) as the numerical results of t2 and v(t) as the results calculated from

MBPT2), which means the difference is larger than 20%. Therefore, for α ≥ 2, we have

Sα ∝ log(N) for week interactions, and this agrees with expectations for a Fermi system in

one dimension (Leschke et al., 2014).

3.3.2 Neutron Matter

The Hamiltonian of neutron matter is defined as

Ĥ = Ĥ0 + ĤI =
N∑
i=1

t̂0 (ri) +
N∑
i<j

v̂ (rij) . (3.3.6)

This is a simple model of neutron matter with N neutrons, which only considers two-body

interactions. The Hamiltonian consists of the kinetic energy t̂0 and the Minnesota potential

v̂ (Thompson et al., 1977). The Minnesota potential has a repulsive term and attractive

short-range terms (in a exp(−r2) format with respect to radial coordinates).

We formulate the neutron matter in discrete momentum states |⃗k⟩ = |kx, ky, kz⟩ of a

cubic box with periodic boundary conditions. The discrete momentums are given as

kn =
2πn

L
, (3.3.7)
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Figure 3.4: Relative error of the approximated t2 value as a function of the number of
particles, with δ = 1.0 and g = 1e − 4, 1e − 3, 1e − 2, 1e − 1, 2e − 1, 5e − 1. The figure is
taken from Ref. (Gu et al., 2023), which I co-authored.
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with n = 0,±1, . . . ± Nmax. Here, the size of the box is L = (N/ρ)1/3 with ρ the density

of neutron matter. The density is set to be the saturation density ρ0 ≈ 0.08 fm−3 in this

calculation. Nmax indicates the maximum number of possible discrete momentum, then the

size of basis states grows as (2Nmax +1)3, with the spin degeneracy for each momentum state

as gs = 2.

With this basis, the reference

|Φ⟩ =
N∏
i=1

= â†i |0⟩

is obtained by filling out the basis with the lowest momentums (below the Fermi level), and

therefore the momentum space are partitioned into hole space (states below the Fermi level)

and particle space (states above the Fermi level). The normal ordered Hamiltonian based

on this reference is written as

ĤN =
∑
pq

fp
q

{
â†pâq

}
+

1

4

∑
pqrs

〈
k⃗pk⃗q|v̂|⃗krk⃗s

〉{
â†pâ

†
qâsâr

}
, (3.3.8)

with

fp
q =

〈
k⃗p|t̂0|⃗kq

〉
+
∑
i

〈
k⃗pk⃗i|v̂|⃗kqk⃗i

〉
,

The operators a†p and ap create and annihilate a neutron in momentum state |⃗kp⟩, respectively.

Reference energy is defined as

Eref =
∑
i

〈
k⃗i|t0|k⃗i

〉
+

1

2

∑
i,j

〈
k⃗ik⃗j|v|k⃗ik⃗j

〉
, (3.3.9)

In the two-body interaction term, the momentum is conserved, k⃗p + k⃗q = k⃗r + k⃗s that forbids

single-particle excitations. The calculation is based on the CCD method, and the neutron

matter systems with N = 14, 38, 54, 66, and 114 (magic numbers) are calculated.

Ref. (Hagen et al., 2014a) calculated the neutron matter with the CCD approximation,

which only uses the particle-particle and hole-hole ladders (CCDladd). It shows results from

CCDladd are less accurate but very close to the results from the CCD, and it shows a good
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agreement between results of CCDladd and virtually exact results from the auxiliary field

diffusion Monte Carlo (AFDMC) method. In this calculation, this simplified version is used,

and matrix elements of the effective Hamiltonian e−T̂2HNe
−T̂2 are

H̄ab
ij =

〈
k⃗ak⃗b|v|k⃗ik⃗j

〉
+ P (ab)

∑
c

f b
c t

ac
ij

− P (ij)
∑
k

fk
j t

ab
ik

+
1

2

∑
cd

〈
k⃗ak⃗b|v|k⃗ck⃗d

〉
tcdij

+
1

2

∑
kl

〈
k⃗kk⃗l|v|k⃗ik⃗j

〉
tabkl .

(3.3.10)

Compared to the amplitudes equation of the CCD in Eq. (3.1.21), Eq. (3.3.10) contains

only the first five terms. Solving the equation H̄ab
ij = 0 yields the amplitudes tabij and the

calculation follows the CCD calculations of neutron matter in Ref. (Lietz et al., 2017), with

the codes in Python notebook (T. Papenbrock, 2018).

Fig. 3.5 shows the correlation energy per neutron as a function of neutron number. The

correlation energy is defined as the difference between the CCD energy (3.1.13) and the

reference energy (3.3.9). Different colored and shaped markers denote the momentum space

sizes Nmax. We see that the correlation energy depends weakly on neutron number and

becomes approximately constant for large model space Nmax = 5. The results for N = 54

disagree with the statement and exhibit peaks. This results from the finite-size effects, which

can be reduced by using twist-averaged boundary conditions (Gros, 1996; Lin et al., 2001;

Hagen et al., 2014a).

For Nmax = 5, the CCD energies are 9.5, 8.2, 8.3, 9.1, 9.6 MeV for N = 14, 38, 54, 66,

114 respectively. These energies are close to results from more sophisticated theories with

three-nucleon forces included (giving 9-10 MeV per neutron) (Hebeler et al., 2013), and they

are very close to results from theory with nucleon-nucleon forces only (giving about 8.7 MeV

per neutron) (Hebeler and Schwenk, 2010).
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Figure 3.5: Correlation energy per neutron as a function of the neutron number N = 14,
38, 54, 66, 114 with different basis sizes Nmax. The figure is taken from Ref. (Gu et al.,
2023), which I co-authored.
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Tab. 3.1 gives the results of t2 Eq. (3.2.6) for different Nmax, that t2 ≪ 1 is only satisfied

for N ≲ 66. Since the analytical results are constrained to weak interactions, only those

neutron matter systems with N ≤ 66 are considered for entanglement entropy discussion.

Figure 3.6 shows Rényi entropies Sα of neutron matter as a function of the neutron

number N . Figure 3.7 shows the Sα as a function of the particle number fluctuations (∆NH)2

of the hole space. In both figures, Rényi entropies with α = 1, 2, 4, and 8 are given. The

size of momentum space is Nmax = 5. Entanglement entropies grow linearly with respect to

the neutron number (and N = 54 is again an outlier), which indicates entanglement entropy

satisfies a volume law for neutron matter in momentum space. Also, we can see the relation

between entanglement entropies, and particle number fluctuation is approximately linear.

3.4 Summary

This chapter studies entanglement entropies of many-body nuclear systems and their scaling

laws. The space partition separates the whole Hilbert space into hole space and particle

space. The former and latter contain states below and above the Fermi level, respectively.

The Fermi level is defined by filling the particles into single-particle states with the lowest

energies.

This chapter shows the analytical results of Rényi entropy Sα (1.3.3) (von Neumann

entropy (1.3.1) S1 as a special case of Rényi entropy), the particle number fluctuation of

hole space and the depletion number of the reference states. The analytical calculations

are based on CCD approximation (3.2.3). The analytical Rényi entropy S1 and Sα (with

α > 1), for weak interaction (t2 ≪ 1), are given in Eq. (3.2.13) and Eq. (3.2.14), respectively.

And their asymptotic behaviors when t2 → 0 are given in Eq. (3.2.15), which gives us

S1 → t2 log t2 and Sα ∝ t2 (with α > 1). The analytical results of particle number fluctuation

and depletion number of hole space are given in Eq. (3.2.19) and Eq. (3.2.20). The relation

is 1
4
(∆NH)2 ≈ 1

2
(δNH) ≈ t2. Therefore, the linear relation between Sα (with α > 1) and

(∆NH)2 is obtained, for systems with sufficiently small interactions.

This chapter shows the numerical results of the pairing model, based on the CCD method,

and the results are shown in Fig. 3.2, which shows the agreement with the analytical results
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Table 3.1: Numerical values for t2 for different neutron matter models N = 14, 38, 54, 66,
114 with different basis size Nmax.

N = 14 N = 38 N = 54 N = 66 N = 114
Nmax = 3 0.106 0.298 0.246 0.475 1.239
Nmax = 4 0.106 0.322 0.299 0.557 1.431
Nmax = 5 0.106 0.324 0.308 0.581 1.565

Figure 3.6: Entanglement entropy versus the neutron numbers N = 14 (triangle up),
N = 38 (circle), N = 54 (square), N = 66 (triangle left), Nmax = 5 of momentum space.
The figure is taken from Ref. (Gu et al., 2023), which I co-authored.
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Figure 3.7: Entanglement entropy versus the particle number fluctuation with N = 14
(triangle up), N = 38 (circle), N = 54 (square), N = 66 (triangle left), Nmax = 5 of
momentum space. The figure is taken from Ref. (Gu et al., 2023), which I co-authored.
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(∆NH)2 ∝ Sα. Also, the analytical discussion of the quantity t2 (3.3.3) is given based on

the MBPT2 (3.3.2). Its numerical results (shown in Fig. 3.4) indicate Sα ∝ lnN for α > 2,

which satisfies the area law for Fermi system in one dimension.

The numerical results of the neutron matter (with neutron number N = 14, 38, 54, 66,

and 114) are given. The neutron matter model is less realistic, as it only contains two-body

interactions using the Minnesota potential. The calculation is based on a CCD approximation

method (which only considers ladder diagrams) in momentum space. The results are shown

in Fig. 3.5 and Fig. 3.6, and they show that Sα is approximately proportional to the neutron

number and (∆NH)2. The latter results are less accurate than that of the pairing model.

This is because the size of the T̂2 amplitudes is sizable, i.e., the condition t2 < 1 is satisfied

but not the condition t2 ≪ 1. The results indicate that the entanglement entropy of neutron

matter scales as a volume law instead of an area law. Reference (Gu et al., 2023) also

provides the numerical calculation of finite nuclei (for closed-shell nuclei 4He, 16O, 40Ca, and

100Sn) with the CCSD method. The results show that the depletion number approximately

linearly grows with the mass number, which indicates a volume law.

To summarize, for a nuclear many-body system with sufficiently weak interactions, a

volume law is preferred to describe the scaling of entanglement entropy.
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Chapter 4

Summary and Outlook

In summary, this dissertation reports the preliminary application of quantum computing and

quantum information in nuclear physics in two specific aspects, including the excited state

preparation quantum algorithms and a discussion about the scaling laws of entanglement

entropies in nuclear systems.

In this dissertation, I show details of the time-dependent method and the LCU-based

method and their implementations on a quantum processor unit with a simple model

of n(p, d)γ reaction. The results show both methods are practicable and feasible. As

the efficiency of both methods is constrained by the success probability, I am interested

in utilizing the amplitude amplification technique, a general technique that can enhance

quantum algorithms, to increase the success probability of both methods by using O(1/
√
Ps)

additional unitary gates.

In this dissertation, the toy models are used to test the algorithms due to the limited

performance of quantum processors, and the physics systems studied are initialized in the

ground states. For further investigation, it is interesting to study more realistic physics

problems and to combine the state preparation algorithms with algorithms that help us

project the quantum systems to the ground states.

I also show the entanglement entropies of many-body nuclear systems and argue that

a volume law is preferred to describe the scaling of entanglement entropy for a nuclear

many-body system with sufficiently weak interactions. This dissertation focuses on the

spherical states of quantum systems. For future work, it is interesting to extend the study
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of deformed reference states, investigate how much entanglement the symmetry projection

would give, and further explore the potential of quantum information as a guiding tool in

our understanding of nuclear physics.
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A quantum informational approach for dissecting chemical reactions. Chemical Physics

Letters, 621:160–164. 9

Einstein, A., Podolsky, B., and Rosen, N. (1935). Can quantum-mechanical description of

physical reality be considered complete? Phys. Rev., 47:777–780. 7

Eisert, J., Cramer, M., and Plenio, M. B. (2010). Colloquium: Area laws for the entanglement

entropy. Rev. Mod. Phys., 82:277–306. 9, 10, 63, 72

Ekert, A. and Jozsa, R. (1998). Quantum algorithms: entanglement–enhanced information

processing. Philosophical Transactions of the Royal Society of London. Series A:

Mathematical, Physical and Engineering Sciences, 356(1743):1769–1782. 8

Endo, S., Benjamin, S. C., and Li, Y. (2018). Practical quantum error mitigation for near-

future applications. Phys. Rev. X, 8:031027. 117

Endo, S., Cai, Z., Benjamin, S. C., and Yuan, X. (2021). Hybrid quantum-classical algorithms

and quantum error mitigation. Journal of the Physical Society of Japan, 90(3):032001. 7

102



Faba, J., Mart́ın, V., and Robledo, L. (2021). Correlation energy and quantum correlations

in a solvable model. Phys. Rev. A, 104:032428. 10

Feynman, R. P. (1982). Simulating physics with computers. International journal of

theoretical physics, 21(6/7):467–488. 3

Fradkin, E. (1989). Jordan-wigner transformation for quantum-spin systems in two

dimensions and fractional statistics. Phys. Rev. Lett., 63:322–325. 6

Georgi, H. (1993). Effective field theory. Annual Review of Nuclear and Particle Science,

43(1):209–252. 1

Gigena, N. and Rossignoli, R. (2015). Entanglement in fermion systems. Phys. Rev. A,

92:042326. 71

Gioev, D. and Klich, I. (2006). Entanglement entropy of fermions in any dimension and the

widom conjecture. Phys. Rev. Lett., 96:100503. 10

Gros, C. (1996). Control of the finite-size corrections in exact diagonalization studies. Phys.

Rev. B, 53:6865–6868. 88

Gross, D., Flammia, S. T., and Eisert, J. (2009). Most quantum states are too entangled to

be useful as computational resources. Phys. Rev. Lett., 102:190501. 8

Gu, C., Sun, Z. H., Hagen, G., and Papenbrock, T. (2023). Entanglement entropy of nuclear

systems. Physical Review C, 108(5). xi, xii, xiii, 4, 11, 63, 73, 74, 82, 83, 86, 89, 91, 92, 93

Hagen, G., Papenbrock, T., Ekström, A., Wendt, K. A., Baardsen, G., Gandolfi, S., Hjorth-

Jensen, M., and Horowitz, C. J. (2014a). Coupled-cluster calculations of nucleonic matter.

Phys. Rev. C, 89:014319. 87, 88

Hagen, G., Papenbrock, T., Hjorth-Jensen, M., and Dean, D. J. (2014b). Coupled-cluster

computations of atomic nuclei. Rep. Prog. Phys., 77(9):096302. 64

Harrow, A. W. and Montanaro, A. (2017). Quantum computational supremacy. Nature,

549(7671):203–209. 4

103



Hebeler, K., Lattimer, J. M., Pethick, C. J., and Schwenk, A. (2013). Equation of state

and neutron star properties constrained by nucl. phys. and observation. The Astrophysical

Journal, 773(1):11. 88

Hebeler, K. and Schwenk, A. (2010). Chiral three-nucleon forces and neutron matter. Phys.

Rev. C, 82:014314. 88

Henderson, L. and Vedral, V. (2001). Classical, quantum and total correlations. Journal of

Physics A: Mathematical and General, 34(35):6899. 8

Hergert, H. (2020). A guided tour of ab initio nuclear many-body theory. Frontiers in

Physics, 8. 2

Herrmann, N., Arya, D., Doherty, M. W., Mingare, A., Pillay, J. C., Preis, F., and Prestel,

S. (2023). Quantum utility – definition and assessment of a practical quantum advantage.

In 2023 IEEE International Conference on Quantum Software (QSW). IEEE. 4

Holevo, A. S. (1973). Bounds for the quantity of information transmitted by a quantum

communication channel. Problemy Peredachi Informatsii, 9:3–11. 4

Holland, E. T., Wendt, K. A., Kravvaris, K., Wu, X., Ormand, W. E., DuBois, J. L.,

Quaglioni, S., and Pederiva, F. (2020). Optimal control for the quantum simulation of

nuclear dynamics. Physical Review A, 101(6). 4

Horodecki, R., Horodecki, P., Horodecki, M., and Horodecki, K. (2009). Quantum

entanglement. Rev. Mod. Phys., 81:865–942. 7

Huerta, L. and Zanelli, J. (1993). Bose-fermi transformation in three-dimensional space.

Phys. Rev. Lett., 71:3622–3624. 6

Jansen, G. R., Engel, J., Hagen, G., Navratil, P., and Signoracci, A. (2014). Ab

Initio coupled-cluster effective interactions for the shell model: Application to neutron-rich

oxygen and carbon isotopes. Phys. Rev. Lett., 113:142502. 64

Johnson, C. W. and Gorton, O. C. (2022). Proton-neutron entanglement in the nuclear shell

model. arXiv e-prints, page arXiv:2210.14338. 9

104



Johnson, T. H., Clark, S. R., and Jaksch, D. (2014). What is a quantum simulator? EPJ

Quantum Technology, 1(1):10. 3

Jordan, P. and Wigner, E. P. (1928). About the Pauli exclusion principle. Z. Phys., 47:631–

651. 5

Jozsa, R. (2006). On the simulation of quantum circuits. 8

Jozsa, R. and Linden, N. (2003). On the role of entanglement in quantum-computational

speed-up. Proceedings of the Royal Society of London. Series A: Mathematical, Physical

and Engineering Sciences, 459(2036):2011–2032. 8

Kandala, A., Mezzacapo, A., Temme, K., Takita, M., Brink, M., Chow, J. M., and Gambetta,

J. M. (2017). Hardware-efficient variational quantum eigensolver for small molecules and

quantum magnets. Nature, 549(7671):242–246. 116

Kaplan, D. B. (2005). Five lectures on effective field theory. 1

Kaplan, D. B., Klco, N., and Roggero, A. (2017). Ground States via Spectral Combing on

a Quantum Computer. ArXiv e-prints. 4

Kiss, O., Grossi, M., Lougovski, P., Sanchez, F., Vallecorsa, S., and Papenbrock, T. (2022).

Quantum computing of the 6Li nucleus via ordered unitary coupled clusters. Phys. Rev.

C, 106:034325. 4

Klco, N., Dumitrescu, E. F., McCaskey, A. J., Morris, T. D., Pooser, R. C., Sanz, M.,

Solano, E., Lougovski, P., and Savage, M. J. (2018). Quantum-Classical Computations of

Schwinger Model Dynamics using Quantum Computers. ArXiv e-prints. 4

Klich, I. (2006). Lower entropy bounds and particle number fluctuations in a fermi sea.

Journal of Physics A: Mathematical and General, 39(4):L85–L91. 10, 79, 80

Kowalski, K. and Bauman, N. P. (2023). Quantum flow algorithms for simulating many-body

systems on quantum computers. Phys. Rev. Lett., 131:200601. 4
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in two-nucleon systems. Journal of Physics G: Nuclear and Particle Physics, 48(2):025107.

9
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Whitfield, J. D., Havĺıček, V. c. v., and Troyer, M. (2016). Local spin operators for fermion

simulations. Phys. Rev. A, 94:030301. 5

Wilson, K. G. (1975). The renormalization group: Critical phenomena and the kondo

problem. Rev. Mod. Phys., 47:773–840. 1

Wolf, M. M. (2006). Violation of the entropic area law for fermions. Phys. Rev. Lett.,

96:010404. 10

Zeng, B., Chen, X., Zhou, D., and Wen, X.-G. (2015). Quantum information meets quantum

matter. Quantum Science and Technology. 9

Zhang, D.-B., Xing, H., Yan, H., Wang, E., and Zhu, S.-L. (2021). Selected topics of quantum

computing for nuclear physics*. Chinese Physics B, 30(2):020306. 4

111



Appendices

112



A Convention of Gates

This section briefly introduces the conventions of the quantum gates used in Chapter 2.

I utilize the one-qubit quantum gates X, Y and Z to represent the Pauli matrices σx, σy

and σz respectively. The one qubit rotation gates Rx, Ry and Rz are defined as

Rx(ϕ) ≡ e−iϕ
2
X =

 cos(ϕ/2) −i sin(ϕ/2)

−i sin(ϕ/2) cos(ϕ/2)

 ,

Ry(ϕ) ≡ e−iϕ
2
Y =

 cos(ϕ/2) − sin(ϕ/2)

sin(ϕ/2) cos(ϕ/2)

 , (A.1)

Rz(ϕ) ≡ e−iϕ
2
Z =

 e−iϕ/2 0

0 eiϕ/2

 .

The Hadamard gate, denoted with H, is defined as

H =
1√
2

1 1

1 −1

 . (A.2)

There are frequently used controlled single-qubit gates (two-qubit gates): CNOT

(controlled-X), CZ (controlled-Z), and CH (controlled-H). The CNOT gate is defined as

•
=

•
X

,
(A.3)

with the symbol in the first line as a solid circle. Here and in what follows, a solid circle in

the ancilla qubit means the target system is controlled by state |1⟩; a hollow circle means

the target system is controlled by state |0⟩. The CH gate and its decomposition are defined

as

•

H
=

•

Ry(π/4) R†
y(π/4)

, (A.4)
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where I use the identity

H = XRy(π/2) = R†
y(π/4)XRy(π/4) , (A.5)

and it only requires a single CNOT gate. The CZ gate is defined as

•
=

•
•
Z

.
(A.6)

Its decomposition to CNOT is defined as

•

Z
=

•

H H

=
•

Ry(π/2) R†
y(π/2)

.

(A.7)

Here, I use the identity HZH = X and use Eq. (A.5) in the second line. With Eq. (A.7)

and the identity H = ZR†
y(π/2), other decompositions for CH gate are available

•

H
=

• •

R†
y(π/2) •

=
• • •

R†
y(π/4) Ry(π/4) •

=
• • •

• R†
y(π/4) Ry(π/4)

.

(A.8)

The SWAP gate is used to change the states of two qubits. It is represented by the

symbol

×
×

,
(A.9)
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and described by the following unitary matrix

SWAP =


1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1

 , (A.10)

and can be decomposed into

SWAP =
I⊗ I +X ⊗X + Y ⊗ Y + Z ⊗ Z

2
. (A.11)

The Toffoli (CCNOT) gate, which is a three-qubit gate, is depicted as

•
•

, (A.12)

and compactly expressed as the following unitary matrix

T =


I 0 0 0

0 I 0 0

0 0 I 0

0 0 0 X

 , (A.13)

and decomposed into a linear combination

T = (I− |11⟩ ⟨11|) ⊗ I + |11⟩ ⟨11| ⊗X . (A.14)
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B Error Mitigation

This section briefly introduces the error mitigation procedures I employed in Chapter 2. For

more detailed information, I refer the readers to Appendix H of Ref. (Roggero et al., 2020a).

Two types of error mitigation procedures are employed: (i) readout error mitigation on the

measured distributions, and (ii) zero-noise extrapolation aims to correct gate noise.

First, I review the readout-error correction scheme (see also (Kandala et al., 2017)). For

each single qubit, one could design experiments and obtain the calibration matrix

P =

1 − e0 e1

e0 1 − e1

 , (B.1)

where the parameter e0 (e1) are defined as the probability to wrongly measure |1⟩ (|0⟩) when

preparing |0⟩ (|1⟩), respectively. The parameters e0 and e1 are zero in the limit of no noise,

and the calibration matrix is identity.

For n qubits, in principle, one needs to perform at least 2n measurements to build the

calibration matrix. Assume that readout errors are independent for different qubits. In that

case, the calibration matrix is represented as a matrix with n diagonal 2× 2 blocks, and the

cost of measurements can be reduced to only 2n. For each qubit, a read-out error mitigated

result p = (p,1− p) is obtained as

p = P−1 · pe . (B.2)

Here, p is the probability vector without read-out error, and pe = (pe, 1 − pe) is the

corresponding probabilities with read-out errors. The vector pe is what one gets from the

measurement of experiments. The inverse of the calibration matrix is

P−1 =
1

d

1 − e1 −e1
−e0 1 − e0

 , (B.3)

with d = 1 − e0 − e1.
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Next, I review the approaches utilized for zero-noise extrapolation. More information

can be found in Ref. (Dumitrescu et al., 2018; Li and Benjamin, 2017; Endo et al., 2018).

The zero-noise extrapolation consists of two steps. First, circuits with different noise levels

are implemented, and the corresponding data is collected. Second, a noise-free estimator is

extracted by using a parametrization of the noise corresponding to the noise levels. The

parametrization approaches consist: (i) Richardson extrapolation (Temme et al., 2017),

which expands the observable as a power series in the noise, (ii) polynomial extrapolation

(Li and Benjamin, 2017; Dumitrescu et al., 2018), which performs a polynomial fit, and (iii)

exponential extrapolation, which utilize a simple two-point exponential fit.

Assume that the two-qubit gates, like CNOT, are the primary noise resources. To obtain

results at higher noise levels, we design a series of circuits by adding pairs (the product of two

CNOTs is the identity) of redundant CNOT gates for every CNOT in the original circuit:

•

k = 1

−→
• • •

k = 2

−→
• • • • •

k = 3

−→ · · ·

where k indicates the noise levels. For kth circuit, the total number of CNOT is NC(k) =

(2k − 1)NC(1).

For every circuit, the observables and errors are obtained after running on the quantum

devices and denoted as (Ok, Ek). OF is denoted as the error-free extrapolate expectation

value. When every CNOT gates have a failure probability pε, the effective failure probability

will grow linearly with k, the error will grow as ϵ = NC(k)pε (with Richardson extrapolation

method as an example).

The observable O is expanded as a power series (or others for different extrapolation

methods) in error ϵ

O(ϵ) = OF +
M∑
j=1

cjϵ
j + O

(
ϵM+1

)
.

For an experiment with fixed M and k, the error-free observable OF is obtained by inverting

the polynomial expression.
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