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Abstract We present a determination of the perturbative
QCD (pQCD) coupling using the V+A channel ALEPH t-
decay data. The determination involves the double-pinched
Borel-Laplace Sum Rules and Finite Energy Sum Rules. The
theoretical basis is the Operator Product Expansion (OPE)
of the V+A channel Adler function in which the higher
order terms of the leading-twist part originate from a model
based on the known structure of the leading renormalons of
this quantity. The applied evaluation methods are contour-
improved perturbation theory (CIPT), fixed-order perturba-
tion theory (FOPT), and Principal Value of the Borel resum-
mation (PV). All the methods involve truncations in the order
of the coupling. In contrast to the truncated CIPT method, the
truncated FOPT and PV methods account correctly for the
suppression of various renormalon contributions of the Adler
function in the mentioned sum rules. The extracted value of
the MS coupling is o (m%) =0.3116 £0.0073 [ax(M%) =
0.1176 £0.0010] for the average of the FOPT and PV meth-
ods, which we regard as our main result. On the other hand, if
we include in the average also the CIPT method, the resulting
values are significantly higher, o (m%) = 0.3194 £+ 0.0167
[ors (M%) = 0.1186 £ 0.0021].

1 Introduction

The physics of semihadronic 7 lepton decays is an impor-
tant area of QCD, because it describes QCD at relatively low
momenta Q < m; ~ 1 GeV and, at the same time, has high
precision experimental results. The latter are principally from
ALEPH Collaboration [1,3-5], where the spectral function
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w (o) was measured with high precision.! The extraction of
the value of the running QCD coupling o (0?) at such low
momenta Q2 A m% represents a test of QCD, especially
when comparing, via renormalisation group equation (RGE)
evolution, with the extraction of the running coupling from
experiments at higher energies Q% > m% where the pertur-
bative methods of evaluation work very well [6-8].

The theoretical framework for the calculation of the
QCD corrections r; to the t decay ratio R; « I'(t —
Ve hadrons),2 and of other related sum rules, is well-establi-
shed [11,12,14]. The perturbative part of the related quark
current correlator is known up to O(af) [16]. The nonper-
turbative corrections to r; are also well understood and were
shown to be small [14,17].

Nonetheless, the extraction of o from the 7-decay data
shows a significant ambiguity which has to do with the
way the (re)summations and subsequent truncations are per-
formed in the perturbative part of the decay width ratio and of
other related sum rules. These evaluations involve integration
of functions containing the QCD running coupling param-
eter a(Q?) = o,(Q3)/n along the circle in the complex
Q?-plane with the radius | Q2| = omax (~ m%). The integra-
tion is usually performed by Taylor-expanding the integrand
around Q2 = opmax > 0 (fixed order [FI]) or RGE-evolving
the integrand along the countour Q? = oyaxe’® (contour
improved [CIPT]) [18-20]. Since these two main methods

I w(0) o ImI(—0 —i€), where T1(Q?) is the polarisation function of
the quark current correlator. The related Adler function D(Q?) is pro-
portional to dT1(Q?)/d In Q2. We will use the notation Q% = —g? =
—-@°)* + >

2 The QCD V+A quantity r; = r"= 4+ 87, (myq # 0)+ Y poyg ri?
appears in the semihadronic strangeless V + A t-decay ratio R,
via the relation R; = 3|V,a|*Sew(l + Sgy + 7o), where Spw =
1.0198 £ 0.0006 [9] and ‘SI/EW = 0.0010 = 0.0010 [10] are elec-
troweak corrections, V,,4 is the CKM matrix element, and 6r; (my 4 #
0) ~ —8x2f2m2 /m* ~ —0.0026 (where f; = 0.1305 GeV), cf.
[11,12,14,15].
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involve truncations in powers of a, they give different results.
The CIPT method in general gives significantly higher value
of the extracted «; than the FOPT method, cf. [16,21,22].
In the work of [23], which is concentrated on the analysis of
the QCD duality violation effects in t-decays [24], a simi-
lar discrepancy is obtained, although the values of «; are in
general lower than those obtained from the FOPT and CIPT
approaches of Refs. [16,21,22].

This problem of FOPT vs CIPT was addressed in the
works [26,27]. There it was argued, on the basis of the large-
Bo (LB) approximation and on numerical evidence, that the
truncated FOPT method accounts for certain renormalon can-
cellations in riDzO) =r; (m%)(D =0 and in related Finite
Energy Sum Rules (FESRs), and that the truncated CIPT
method does not account for such cancellations.? Such argu-
ments necessarily involve an extension of the perturbative
part of the Adler function, d(Q?%)(p—o), beyond ~ & so as
to account for the theoretically expected renormalon struc-
ture. The resulting FOPT and CIPT (truncated) evaluations
of rﬁDzO) and of other related FESRs were then compared
with the evaluation of these quantities when the Adler func-
tion is calculated as the inverse Borel transformation (Borel
sum) and the renormalon ambiguity in the Borel sum is fixed
by the Principal Value (PV) prescription.

In this work, we perform a QCD analysis of various sum
rules related with the strangeless semihadronic t-decays, fol-
lowing in part the work of Ref. [22]. In order to discern the
role of the renormalon singularities, we use an extension of
the Adler function d( Qz)( p=0) beyond the order oef, based
on the renormalon-motivated construction of Ref. [29]. We
apply, in the theoretical Operator Product Expansion (OPE)
of various FESRs and of Borel-Laplace sum rules, the (trun-
cated) FOPT and CIPT methods and the Borel sum (PV)
method, and then we extract the corresponding values of
oy from the ALEPH experimental data. All the sum rules
are double-pinched, and the V+A channel of the ALEPH
data was used; we believe that these two aspects suppress
sufficiently the duality violating effects, cf. [22] (cf. also
[14,17,30-36]). We further argue (beyond the LB approx-
imation) that in the considered sum rules important renor-
malon contributions of the Adler function get cancelled in
the truncated FOPT approach, and that such a cancellation is
in general not expected in the truncated CIPT approach. The
Borel sum approach, on the other hand, is expected to sum
correctly in the sum rules the main renormalon contributions
of the Adler functions. The extracted values of « appear to
be consistent with these considerations; namely, they turn out
to be similar in the truncated FOPT approach and in the Borel
sum approach, and they are consistently higher in the trun-
cated CIPT approach. For these reasons, our main numerical

3 InRef. [28] this argument was extended beyond LB when a modified
Borel transform in a specific renormalisation scheme is used.
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results for oy are obtained from the combination of the FOPT
and Borel sum results.*

The paper is organised in the following way. In Sect. 2
we recapitulate the main elements of the QCD sum rules
in the context of the semihadronic t decays, and their rela-
tion to the Adler function. In Sect. 3 we resume the main
aspects of the renormalon-motivated extension of the Adler
function in the MS scheme, as constructed in Ref. [29]. In
Sect. 4 we present the specific sum rules (Sect. 4.1) to be
considered in the numerical analysis, and the methods of
evaluation of the Adler function extension: FOPT, CIPT and
Borel sum (PV) (Sect. 4.2). In the related Appendix we show
how certain renormalon contributions of the Adler function
get cancelled in the various considered sum rules (FESRs
and Borel-Laplace sum rule), at any loop level (i.e., beyond
the LB approximation) and in any renormalisation scheme. In
Sect. 5 we then present the numerical results for the extracted
values of the coupling o and of the low-dimension conde-
sates. In Sect. 6 we make conclusions, summarise our results
and make a brief comparison with the results of other works.

2 Sum rules and Adler function

The Adler function D(Q?) is a logarithmic derivative of the
quark current polarisation function I1(Q?)

dTi(Q?

2 A2
D(Q%) = 2>

ey

where IT( QZ) stands for the total (V+A)-channel polarisation
function

ne* =ny* +nlw» +n . )

These functions appear in the quark current—current correla-
tor

My (q) =i / d*x (T J,(x)J,(0)7)

= (quqv — &) (0% + ¢, 11V (0?),
3)

where ¢g> = —(Q? is the square of the momentum trans-
fer. Further, J,, are up-down quark currents, J, = uy,d and
uy,ysd for J =V, A, respectively. In the V + A sum (2), the
contribution 1'[9 ) (0%)is neglected since Im H&? ) (—o+ie) x
(mg — my,)?. Further, in our analysis we will not include cor-
rections (’)(miy 4) and (’)(mﬁ! ) for being numerically negli-
gible.

4 Our Borel sum of the Adler extension d (Qz)( Dp=0) consists, in addi-
tion, of a correction part in a form of a (truncated) perturbation series,
cf. Eq. (47) in Sect. 4.2.3.
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The polarisation function has a theoretical expression in
the form of OPE [37]

1 2
M (Q% p?) = —5— In (f ) + T1(Q%)(p=0)

2

k=2

(O2)v+a
( QZ): 1+ 0), )
where 112 is the squared renormalisation scale, and {O2x) v 44
are vacuum expectation values (condensates) of dimension
D = 2k (= 4). The O(a) terms in the Wilson coefficients
turn out to be negligible [38].> Using the OPE (4), the corre-
sponding Adler function is obtained using the relation (1)

drl 2
ZCAL(Q%) — (@) +1

k(Ox)v+a
4272
,; (02K

D) (Q?) = -2

&)

According to the general principles of Quantum Field The-
ory, the polarisation function H(Qz; uz), and thus the Adler
function D(Q2), are holomorphic (analytic) functions of Q2
in the complex Q2-plane with the exception of the negative
semiaxis, Q% € C\(—oo, —m%). The associated QCD sum
rules are obtained then in the following way. If g(Q?) is any
holomorphic function in the complex Q-plane, then the inte-
gration of the integrand g(Q?)I1(Q?) along the closed path
C1 + C> presented in Fig. 1 gives zero by Cauchy theorem,

f dQ*g(Q*)(Q%) =0, (6)
C1+Cr
which then leads to the g-function associated QCD sum rule
Om
/(; dag(_a)w(exp)(a)
= —im f dQ*g(QH) M) (7). )
|0%|=0m

Here, the integration on the right-hand side is in the
counter-clockwise direction in the complex Q2-plane, and
we denoted with w (o) the spectral function of IT( 0?%) (along
the cut)

(o) =27 ImT1(Q?% = —0 —ie), (8)

which was measured by OPAL [39,40] and ALEPH Col-
laborations [1,3-5] in strangeless semihadronic T decays.
We will use the ALEPH data as they have less experimental
uncertainty; these data are presented in Fig. 2.

In the sum rule (7) the theoretical polarisation function (4)
can be replaced by the Adler function (5) by application of

3 In Ref. [38] nonpinched Borel-Laplace sum rules were applied.
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Fig. 1 The closed contour Cy + C; for integration of 2(0HT1(0?),
where the contour radius is R = omax (= om) (< m3)
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Fig. 2 The spectral function w(o) for the (V+A)-channel, measured
by ALEPH Collaboration [1,3-5], without the pion peak. The pion
peak contribution 2772 f28(c — m2) has to be added (where we took
fr = 0.1305 GeV). In the sum rules we will take o, = 2.80 GeV?in
order to exclude the last two bins with large uncertainties

integration by parts

/O " 46 g(—0)w(exp) (©)

i dQ?
=—— —D G 9
27 Lo, O ) (QH)G(Q?), ©))
where, as in Eq. (7), the integration on the right-hand side is
in the counter-clockwise direction in the complex Q%-plane,
Dny (Q?) is given by the OPE expansion (5), and G(Q?) is

Q2 ! ’
G(0% =f dQ%g(0?. (10)

The Adler function D(Q?) as a (quasi)observable is a space-
like quantity, i.e., it is holomorphic in the complex Q2-plane
with the exception of the negative semiaxis. On the other

@ Springer



930 Page 4 of 32

Eur. Phys. J. C (2021) 81:930

hand, the quantities (9) are timelike observables, they are
functions of the squared energy o > 0 (= —Q?). In the
case of the sum rules (9), the timelike squared energy oy, is
in an intermediate range o, ~ m2 ~ 1 GeV? (we have here
om = 2.8 GeV?). There exist several other timelike quanti-
ties in form of integrals of D(Q?) that are phenomenologi-
cally important [41], among them: (a) the production ratio for
eTe™ — hadrons, R(s) [42,43], where the squared energy
|Q?% = s > 0 is in principle not constrained; (b) the lead-
ing order hadronic vacuum polarisation contribution to the
anomalous magnetic moment of 4 lepton, (g,,/2 — 1)Md(M
[45,46], where the dominant momenta Q2 of D(Qz) are in
the deep IR regime Q% ~ m?, (~ 0.01 GeV?) [47,48].

3 Adler function: renormalon-motivated extension

In the sum rule (9), the theoretical expression for the Adler
function is the OPE Eq. (5), where the leading-twist (D = 0)
QCD part is given by the perturbation expansion (pt)

d(0%)(p=0),pt = doa(Q?) + di (k) a(k 0*)*
+o b dy()a @) 4 (D)

where a(u?) = ay(u?)/7 is the pQCD coupling, dy = 1
in our normalisation, and we will work in the MS renor-
malisation scheme. Here, 12 = x Q2 is the renormalisation
scale (0 < « ~ 1 is the renormalisation scale parameter),
and the k-dependence of the coupling is determined by the
(five-loop) MS RGE [50]

d 2
% = —Boa(k 0% — Pra(k 0?3
4
= BjawkQ? 2, (12)
j=2

where Bo = (11 — 2Ny/3)/4 (= 9/4 for Ny = 3) and
B1 = (1/16)(102 — 38Ny /3) are universal (i.e., scheme
independent) in mass independent schemes, and 8; (j >
2) depend on the renormalisation scheme. We will always
use the five-loop MS RGE when varying the renormalisa-
tion scale, independent of the truncation index. The first
four terms in the expansion (11) (i.e., the coefficients d;,
j =0,1,2,3) are exactly known [16,51,54]. In Ref. [29],
a renormalon-motivated extension of this expansion to all
orders was constructed. It was based on the following con-
siderations. The perturbation expansion (11) in powers of a
can be reorganised in another expansion

d(0)(p=0y1pt = doa(Q?) + d (k) Tr(ikc %)
to o dy (O (kO + -, (13)

@ Springer

where @,y (le) are logarithmic derivatives

L =D d ",
@@ = o (—dln sz> a(Q?
n=0,1,2,...), (14)

which can be expressed in powers of a (by using the RGE)

dn1(Q%) = a(@"™ Y hn(n+ 1) a(@?)
m=>1

(15)
These relations can be inverted and have the form

a(@" = (@ + Y K+ D) Tup1m(Q2).

m>1

(16)

The relations (15) imply linear relations between the expan-
sion coefficients d,, and dj

n—1
dy (k) = dy (k) + Y ks(n+1—=5) dys (k)
s=1

n=0,1,2,...), (17)

where the coefficients kg(n + 1 — ) are (k-independent)
combinations of the beta-function related coefficients ¢; =
Bj/Bo [29]. We note that dy = 670 (= 1 in our normalisation).

If we formally replace in the expansion (13) the logarith-
mic derivatives by the corresponding powers, @,41(Q'%)
a(Q/z)"‘H, we obtain another associated quantity d

(0%; k) (p=0)

d(0%; k) (p=0y.pt = doa(Q?) + dy(K)a(k 0*)?
ot dy ) ae QN 4
(18)

which agrees with d(Qz)(D:()),p[ Eq. (11) only at the one-
loop level, and is k-independent only at the one-loop level
[a(UZ)(Q/z)"+1 = E,(ll_ﬂ (Q/z)]. It turns out that the exact k-
dependence of the coefficients d, (r) has the one-loop-type

form

d ~ ~
T dn () = nBodn—1(ic). (19)

As a consequence, the Borel transform Bld] of the power
expansion (18)

d, d,
LCOICO
1180 n!By

has the simple one-loop-type (or: large-By-type) k-depend-

ence

Bld](u; k) = do + g (20)

Bld(u; k) = " Bld] (). Q21

This would suggest that this Borel transformation has the
renormalon structure of the form of the the large-fy Borel
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transform of the Adler function , i.e., in terms of single or
multiple poles (and not noninteger-multiplicity poles)
1 1 1

~ 1
B[d](u,lc)’\'(z_u), G Gl A3 etc.

(22)

The ansatz as made in Ref. [29] includes these leading renor-
malon singularities, as well as the “zero”-multiplicity u = 2
infrared renormalon singularity ~ In(1 — u/2):

Bld1(u) = exp (Ku)
1 u
{d [(2_ )—{—oe( l)ln( 2)}

SR SR UV
d33 3y di
(1 +u)?

+ (23)

G-w? G-u

where k = 1 and the values of the parameters, for the MS
scheme case, are

K =05160;  dF =1.10826; & = —0.255;
4R = —0.481538; 4N = —0.511642;
dYy = —0.0117704. (24)

We refer to Ref. [29] for details on how these parameter val-
ues were obtained. We point out that the model, by construc-
tion, reproduces the first four exactly known expansion coef-
ficients (570 =1, d i, j = 1,2, 3). Further, the next unknown
expansion coefficient (at ¥ = 1, in MS) is predicted to be
ds = 338.19 (34 = 37.77); this prediction comes from con-
sideration of this approach in the lattice-related MiniMOM
scheme® where the number of adjustable parameters was one
less (i.e., without the term c}TR ). 7

The value of the parameter & was determined on the basis
of the knowledge of the subleading Wilson coefficient cD =4
of the D = 4 condensate. On the other hand, the values of
the other five parameters in the ansatz (23) were fixed by
the knowledge of the first five perturbation coefficients d;
(j=0,1,...,4; where dy = 338.19).

The expression (23) generates the -coefficients di
[cf. Eq. (20)]. Then, the coefficients d,, are obtained via the
relations (17). As shown in Ref. [29], the coefficients d,

© The MiniMOM B-function has been evaluated up to four-loops [56,
57,59]. In the work [60] it has been shown that the MiniMOM scheme, in
the Landau gauge, respects the S-function factorisation property of the
conformal symmetry breaking contribution to the generalised Crewther
relation.

7 The effective charge (ECH) method [61] gives the estimate (d4)gcH =
275 [16,63]. The estimate of Ref. [26] is 0 < ds < 642 [their preferred
value is: d4 = 283]. Recent estimates based on Padé approximants
give dy = 277 £ 51 [64], and on conformal mappings in the Borel
plane give dy = 287 £ 40 [65]. In Refs. [22,66] the estimate dy =
275 £ 400 was used. We will use for the uncertainty of d4 the range
ds = 338.19 £ 338.19.

obtained in this way then lead to the following Borel trans-
form of the quantity d(Q?) p—o Eq. (11)

Bld](u: « = ¢ )
B B I A R
2 —u)r Bo(» — 1)
e e S
B3 — D7 —2)

AR &P+t
e | Q@—u)+ -

Bo(2 —2)
ds’s
+(3 —u)+l I+

b +c)
Bo¥s
B+ +

c) i
— + -
FEAC TR }

B OO e RS S
G—wh [ fuGr—1n 0 }
(bi_z)-i- ( 2))

dUV
b ]
(1 +uwri+! (=Bo)v,

5 +C 2B + ) .
(+u)’+--- |1, (25)

2—u)

G —u)

(14 u)

(—/30)23/1(3/1 -1

where the main beyond-one-loop effects are contained in the
coefficients ¥ and 7,

~ C1 _ Cl

= 1+ P = 1_ > ( = 1’27 3)7 (26)
Vp pﬁo Vp p,30 p
the coefficients bED) are
b = 2,3 (c1 — ), (272)
béD) (b(D))Z — 4?(6‘1 2C1C2 + C3). (27b)

We recall that c;

coefficients Cﬁ) and the residue ratios dﬁ k /(7;(’ ¢ are given
here in Table 1 (cf. Ref. [29]).
Further, the coefficient « is

= B;/Bo. The numerical values of the

(A(4) (4))
B =1

where &Y = (7/6) — ¢ (= —11/18 when N; = 3)
is the known subleading Wilson coefficient of the D =
4 condensate of the V+A channel Adler function [a@ =
ot(d%Rl /c?R)(déRo/c?R) 1. The result (25) was obtained
from the expression (23) to a large precision, by generat-
ing first the coefficients d,, from the coefficients Z{k via the
relations (17) and going up to high n (nmax = 70). It is inter-

(28)

@ Springer
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Table 1 The coefficients C;_l,)() and the residue ratios d;(,k/g;);(,k in the MS scheme (¢; = 0 for j > 5), with Ny = 3. Note that D = 2p for IR

renormalons, and D = —2p for UV renormalons

Type C}z) Cé?{) d;(.k/chiz(_k

X=IR, p =2,SP(k =1) (—0.03 £ 0.02) (+1.7+£0.3) (+1.7995 £ 0.0001)
X=IR, p =2,SL(k =0) (+7.7£0.4) (+1.155 £ 0.005)
X-=IR, p =2,SSL(k = —1) (+17.£1.) . (2.00 £ 0.002)
X=IR, p = 3,DP(k = 2) (=72+£1.2) (4+20.£9.) (4+29.7£0.8)
X=IR, p =3,SP(k =1) (—0.07 £ 0.06) (4+3.0£0.8) (4+9.03 £0.01)
X=UV, p =1,DP(k =2) (=10.1 £2.1) (—83.£8.) (+1.056 +0.014)
X=UV,p=1,SP(k=1) (0.0 £0.0) (4+0.5. £0.1) (+5.0098 £ 0.0001)

esting that the form of the expression (25) is also expected
by the arguments of the theory of renormalons.

We can interpret the transition from the coefficients Ek
to the coefficients d, [the relation (17)], or equivalently, the
transition from the Borel transform Eq. (23) of the quantity
d (Q2; k) p=o to the Borel transform Eq. (25) of the quantity
d(Q?)p—o, as a procedure of “dressing” with the beyond-
one-loop effects. Nonetheless, we point out that the coef-
ficients d; contain all the information about the quantity
d(0*) p—o (to all loop levels), because they are in one-to-
one correspondence with the coefficients d,, cf. Eq. (17).
This in spite of the fact that the Borel transform Eq. (23)
of the quantity d (Q2; k) p—=o behaves under the variation of
the renormalisation scale parameter « as if it were the Borel
transform of the quantity d(Q?) p—¢ in the one-loop approx-
imation, cf. Eq. (21).

In Table 2 we present the values of some of the coeffi-
cients gn and d,, (for k = 1). In the Table we include the
ratios dy, /((n + 1)!(—Bo)") and d,, /J (1)), where J (n)X
(X=0, 1) describe the leading (~ 1) or next-to-leading (up to
~ 1/n) asymptotic behaviour factor of d, as follows from
the expression containing the UV (1 = —1) renormalon con-
tribution [i.e., the contribution to d,, from the term containing
dy in Eq. (25)]

Jm @ =T@, +1+n)(=py)",

TV =T, + 1+ n)(—po)" [1 + (b7 + i)

(29a)

1 1

* TR0 7 T n)] ' )
We see from the table that the two ratios ;fn/ (n+DN(=B)™)
andd,,/J (n)(V converge to specific values at large n (approx-
imately to —0.0221 and —0.0257, respectively), which con-
firms that the p = 1 UV renormalon contribution is really
the dominant contribution to these coefficients at large n. The
ratio involving d,, in the last column converges even faster if
we included the terms O(1/n2) in the asymptotic form (i.e.,
dn /T ().

We point out that the starting point for the construc-
tion of the higher order coefficients d, (n > 4) of an

@ Springer

extended Adler function in [29] (and here) was not the
Borel transform of the (D = 0) Adler function, B[d](u),
but a renormalon-motivated ansatz for the Borel transform
of the auxiliary quantity d, B[J](u), which has a partic-
ularly simple strucure of poles with integer multiplicity,
Eq. (23). On the other hand, the works [26,27] construct
and use a renormalon-motivated ansatz for the Borel trans-
form B[d](u) (which has poles of noninteger multiplicity)
in order to generate the higher order coefficients d,. The
authors of [65,67-69,71] generated the higher order coef-
ficients d,, by a combination of a renormalon-motivated
ansatz for B[d](u) and application of an optimal confor-
mal mapping in the Borel plane. For a classical review
on renormalons, we refer to [72], and for some recent
developments on the subject of renormalons we refer to
[73,76,78,80].

4 Methods of evaluation of Adler function, extraction of
g

In the previous section we described the renormalon-
motivated extension of the known truncated perturbation
series for the Adler function d (Qz)( p=0). We will use var-
ious methods of evaluation of this function in the sum rule
approach described in Sect. 2, and will use various weight
functions g(Q?) in the sum rules Eq. (6). In the analysis, we
will use the ALEPH experimental data, and will extract the
corresponding values of the (MS) QCD coupling o (m%).

4.1 Weight functions for sum rules

In order to suppress significantly the duality violation effects,
most of the chosen weight functions g(Q?) will have double
zero (double pinch) at the Minkowskian end Q2 = —Omax
(= —om) where the OPE expansion is not expected to work
[22] (cf. also [14,17,30-36]).

We will consider the FESRs with moments a>") asso-
ciated with the following weight functions g™ (n =
0,1,2,...):
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Table 2 The MS coefficients d, and d, (with x = 1) of the consid-
ered renormalon-motivated Adler function extension: the coefficients d,,
are generated by the Borel transform Eq. (23) of the extended auxiliary

quantity d ( QQ; «) Eq. (18), and the coefficients d,, are then generated by
the relations (17). The values of the first four coefficients (n = 0, 1, 2, 3)
coincide with the exactly known values. See the text for details

n dy dy dn/((n + DI(=Bo0)") du/J () © dn/J ()
0 1 1 1 1.09217 0.0657431

1 1.63982 1.63982 —0.364405 —0.657905 —0.177413
2 3.45578 6.37101 0.11377 0.514073 0.207056

3 26.3849 49.0757 —0.0965156 —0.548292 —0.27132

4 37.7719 338.19 0.0122817 0.398891 0.224305

5 1732.04 3799.99 —0.0417171 —0.382355 —0.234725
6 —9949.19 29672.9 —0.0152147 0.213687 0.139878

7 322129. 465315. —0.0273673 —0.206564 —0.142019
8 —5.1117 x 10° 3.21051 x 10° —0.0214458 0.0771547 0.0551451
9 1.28702 x 108 8.8993 x 107 —0.0239983 —0.103207 —0.0761233
10 —3.00623 x 10° 1.7999 x 108 —0.0226486 0.0090865 0.00687883
11 8.29374 x 10'0 2.86115 x 100 —0.0231423 —0.0572673 —0.044314
12 —2.38986 x 102 —2.42769 x 101 —0.0227982 —0.0176875 —0.0139451
20 —1.27389 x 10?3 —1.50938 x 1024 —0.0225496 —0.0297333 —0.025585
30 —6.7647 x 10% —5.72077 x 10*! —0.0223744 —0.0286077 —0.0258083
40 —9.11451 x 10% —6.06045 x 109 —0.0222845 —0.0279225 —0.0258185
50 —1.40187 x 1082 —7.74379 x 1080 —0.0222299 —0.0274841 —0.0258003
60 —1.52292 x 10'03 —5.72077 x 10*! —0.0221932 —0.0271776 —0.0257749
70 —8.47507 x 1024 —3.54627 x 10'23 —0.0221668 —0.0269503 —0.0257486

2
@mep2y _ (*F3 L( Q_2>
g (Q)—<n+l>am 1+

n Q2 k
x Y (k+ D=1k ( )
k=0

Om

B n+3 1 Q2 n+l
—<n+1)a[l‘<”“>(‘a)
Q2 n+2
+(n+1)(—0—) } = (30a)

1
+3) 02 ox\"*
G2m o2 = (" 2 1 (2
(@9 n+1) on Om
2\ n+3
+[1—<—f—) } (30b)
m
Om
oG om) = [ do ¢2V oo (@) =1 300
1 + )
afy " (om) = 5 / dp GO (ome'®) d
-

X (amei¢)
(D=0)

n+2
m

I (I’l +3> 27{2(—1)" {(n +2)<02n+4>
n+1 0

+n+1)

(02n+6> } (30d)

0,mn-i-?a

We recall that we assume that (Op) are Q2-independent.
The weight function G@M(Q?) is related with g™ (0Q?)
via the relation (10), and the theoretical expression (30d)
represents the right-hand side of the sum rule (9) (minus
unity) where for the entire Adler function D) (Q?) the OPE
Eq. (5) was used, and Q% = oy exp(ip) (—7 < ¢ < +m)
on the countour. The coefficient (n + 3)/(n + 1) appearing
in the weight functions was used so that the unity in the OPE
expansion (5) of the Adler function gives exactly the unity
in the contour integration on the right-hand side of the sum
rule (9).

We will use the sum rules with the above moments for
n = 5 £ 1, by assuming that the contributions of the high
dimension condensates in Eq. (30d) are negligible. This will
allow us to extract the values of o (m%) without consideration
of these condensates.

In addition to these sum rules, we will consider the sum
rules with the (double-pinched) Borel-Laplace transforms
B(M 2) (where M is a complex scale parameter)

@ Springer
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o (Og) (0Og) om>  (Os)
2\* 1 2 o 2 ) 33
gn2(0%) = (1 + Q—) 72 & p(Q ) = Gla) T2y < om2> 6(M2)* amz} 49

2 2 2 2\ 2
G2 (0% = {[(1 +Q—> 2M (1+Q—)+2<%) }
Om Om Om Om

X exp (%) -2 (fmz)zexp (—;In;)} , (31b)
Bexp(M%; o) = /0 ™ 4o gy (—0)(expy (0) = # /0 " 4o
x (1 - i)zexp (-13) e@n@.  (Blo)
B (M?%; o) = i _+7T d¢ Gy (Umei¢) Dith) (a,nei¢)
= |:<1 - 21%2) +2 (Zj)z (1 — exp (;;nz)):|
o [ ol [ s 20 (10 )

(1) Jow (Gme) 2 (22)
<o (=53) Ja () .

+ Z Bin(M?; 0m) (D=2)»
k>2

(31d)

where in Eq. (31d) the dimension D = 2k condensates con-
tribute to the Borel-Laplace

272 (O2x) M?
= 1)'(M2)’<|: +2k—-1)—

m

Bin(M?; o) (p=21) =

2

MZ
—> ] (32)
Om

In our application of these (double-pinched) Borel-Laplace
sum rules, we will use only the real part of the Borel-
Laplace, ReB(MZ; Oom), because in this way the D = 4
condensate contribution dominates over the D = 6 con-
densate contribution when M? varies along the ray M? =
| M2 exp(ir/6), and D = 6 dominates over D = 4 when
M? = |M? exp(im/ 4).8 Further, while including the (small)
D = 8 contribution, we will neglect higher dimension con-
tributions

+(k - Dk -2) <

4

Z B (M?; o) (D=2k)
k=2

o[ 1 (O6)
=2t o (2100 + 22
(O6)

(O4) +2——+ @>

1
oy ( om | om

8 When the Borel— —Laplace is not pinched, then Re B(M~; 2. o) is com-
pletely independent of (Og) for M? = |M?| exp(in/6), and completely
independent of (Oy4) for M? = |M2| exp(im/4), cf. Ref. [82].

@ Springer

In general, while smaller scales |M 2| tend to minimize the
duality violations they make the (higher) condensate con-
tributions larger [22]. Further, larger values of |M?| lead to
large experimental uncertainties [@(exp) (o) has larger uncer-
tainties at large o']. We consider as a reasonable range

0.9 GeV? < |[M?| < 1.5 GeV?, (34)

and we will use this range in our fits. Further, for ¥ =
Arg(M?) we will use the rays with ¥ = 0, /6 and 7/4
[we recall that, along the last two rays, specific condensate
contributions are suppressed in Re By, (M?; o).

4.2 Evaluation methods for the Adler function d (Qz)( D=0)
4.2.1 Fixed-order (FOPT)

The basis of the known fixed-order (FOPT) approach is the
application of the Taylor expansion to the D = 0 (leading-
twist) part d(Q?)(p=o) of the Adler function D) (Q?)

Eq. (5) on the contour Q2 = om exp(i¢) on the right-hand
side of the sum rule (9)

d(ome'?) p=0)

=d(om)(p=0) +i¢

1
X E(""”k(

d 2
amgr?? J0=0lg2,, +

k
) d(Q2)(D=0)|Qz:Um +---
(35)

dIn Q2

When appying this Taylor expansion to the expansion (13) of
d( Q2)( Dp=0) in logarithmic detivatives @, (k Qz), and using
the identity

(n+k)

Untkt1( Q2),

(36)

d k
(W) A1k 0% = (=)

which is a direct consequence of the definition (14), we obtain

d(ome'®)(p=0) = a(kom) + di($; ) (kom) + ...
oy (@5 1)1 (KOm) + - .., (37)

where the ¢-dependent expansion coefficients Jn (¢; k) are
the following combination of the coefficients d, (k) of the
expansion (13) of d(Q2)(D:0):

du(¢3 ) = (Z)(—iqsﬂo)kc?n_k(x), (do(kc) = 1).
k=0
(38)



Eur. Phys. J. C (2021) 81:930

Page 9 0of 32 930

We note that 57,1 (¢ = 0;1) = E,, (k). When inserting the
expansion (37) in the right-hand side of the D = 0 part of
the sum rule (9), where Q2 =omexp(i¢) (—7 < ¢ < m),
we obtain the expression

i dQ2 (FO,[N])
<_E 7|§Q2| o Q2 —-d(0*)(p-0)G(Q ))

~3G>a(mm> + 7@ (com) + - -

+rN I(K)aN(KGm) (39)

where the expansion coefficients ?;(1G) (k) are
" n
GIGEDY (n - E)BS LI (om)d (). (40)
=0

where EZVO (k) = 1 and the coefficients ICEIG_)[ (om) are the fol-
lowing contour integrals:

K (om) = % / " d¢(=ig)Gome'®). (41)

The expansion (39) represents the FOPT expansion in log-
arithmic derivatives @,41(k Q%) at Q> = op,, which we
denoted as (ﬁ)\ls’/l’). This expansion involves in practice a
truncation, say at dy (koy,), which we will denote with the
superscript (FO, [N]). This expansion can be reorganised in
terms of powers a(kom)k using the relations (15), and then
truncating at the power a(kom)V; this represent the usual
FOPT approach, and we will denote it with the superscript
(FO), and its truncated version with (FO; [N])

. 2 (FO,[N])
(—L 7§Q 92 1(0%)p-0)G(0Q ))

27 2| =0m Q2
= r(() a(kom) + r1 )(K)a(KO'm)2 +
+r @ ()atcom)V, (42)
where
n—1

(k) =7, + st(n +1—=8)T—sk) n=0,1,2,..)),
s=1
43)

in complete analogy with the relations (17). We point out
that, while the approaches (F/O\P’/I’) and FOPT give in prin-
ciple equal results, in practice it is not so due to the trun-
cation. Namely, both types of series are divergent due to the
renormalon-dominated growth of 7, and r,, coefficients when
n increases; a truncation is needed (at dy and a, respec-
tively), which then gives somewhat different results.

4.2.2 Contour-improved (CIPT)

The contour-improved method is represented by the direct
integration along the contour of the integrand d (Q2)< p=0)G
(0?) on the right-hand side of the sum rule (9) where
d (QZ)( p=0) has the form of the perturbation series (11) trun-
cated at a specific power a(k Q*)N

; sz (CLIND)
<‘Z f@l @m0t ))
1 .
=5/ d(ome'?; )(pLo) Glome'?),  (44)

where d( D=0):pt is the truncated series

d(Q% K)ploy o = a(QD) + di (k) a(k Q*)* +
+dy (1) ae Q)" (45)

Here, the renormalisation parameter «-dependence appears
because of truncation.

4.2.3 Principal-value (PV)

In this approach, the Adler function is evaluated as the Prin-
cipal Value (PV) of the inverse Borel transformation

o)

]B[d](u; k), (46)

d(0® (p=0)pv =

e [_ Boa(k 02)

where the paths Cy+ go from u = 0 to u = 400 within the
upper and lower half of the complex u-plane; application of
the Cauchy theorem shows that the details of these two paths
are irrelevant, because the Borel transform B[d](u; ) has
singularities only along the real axis. For example, we can
choose for C; the path going as straight line from u = 0 to
u = ie (for any ¢ > 0) and then parallel to the real axis from

= +ie to 400 + ie. Another example is the path from
u = 0 along aray u = |u|exp(i¢po) (|u| from zero to +00)
where ¢ is a fixed angle, 0 < ¢9 < /2. We note that in
the integration (46) in the sum rules, the value of Q2 is in
general complex nonreal [Q% = oy, exp(i¢h)].

In applying the integration (46), we use for the Borel trans-
form B[d](u; k) the expression (25), but now at a given gen-
eral k-parameter value, and truncated. In practice, this trun-
cation requires to include a polynomial correction form

5d(0M)(Q% K)pLy = ddo()ak Q%) + - -
+8dn_1()a(k QMY (47)

so that the full expansion coefficients d, (k) of the Adler
function are restored. The leading part of the renormalon
growth of the coefficients d, (k) is contained in the PV of
the inverse Borel integral of the truncated singular transform

@ Springer
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Bld](u; ). The latter transform, at a general «, is obtained
in the following way. The starting pomt is the Borel trans-
form of the auxiliary quantity d (Q k) (p=0), cf. Egs. (23)
and (21), which can be written for the general case of the
renormalisation scale parameter « as

BId1(u; €)sing

3% &)
Z”[[(z—u>+
SR~ u
+dR @2 —u)ln (1 — 5)}

@D (1-3)

a® | E® ] Thy® | a4 e
B-—u)? (B-—u I+uw)?  Q+w ||’
(48)
where
% =rexp(K) (~ 1.68 x «), (49a)
R® =02, dR®) =ady ®),
AR | (®) = (In®R)@dR, (K), (49b)
B @ =R B =7 (8~ nDBY).
(49¢)
dy ®) = %J{J , dYY® = nRDdPY®).  (49d)

These relations are obtained by using the k-dependence
Eq. (21) and the expression Eq. (23), performing the cor-
responding expansions of exp(u(lnk + K)) around u =
2,3, —1, and ignoring the terms ~ (2 — u)zln(l —u/2),
2 —uw) 3 —uw? (1 + u)°. This truncation means that
we include in the expression (48) only the singular contri-
butions. We note that for ¥ = 1 [k = exp(— K )] the values
of the residues d% (/c) reduce to the values dX given in
Eq. (24).

Then, according to the data of Table 1, the corresponding
truncated Borel transform of the Adler function is [in analogy
with Eq. (25)]

1 dIR (z) (b(4) +C (4))
;B[d](l/l, K)sing = { (22’1 |:1 ! 2—u)

—u)» Bo(r — 1)
b3 + b + (4))
s 2
BEGh — (3 —2) )]
dIR b(4) (4)
(x)ozl G MO P
2 —-ur Bo(¥> —2)

3 ®) d55 )
+(2 —u)n—2 +(3 — y)Ptl
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B—uw

(6)) 5
3_
RGN ”)]
AR @) ® +c
i) — 1 —
TE_wn +ﬂo(z—1)( "

dy ®) | ®7? +c5)
X +(1+u)1’1+1[ +

6 6
[1+ v 1)

Bo¥s
®P +c 9 +c

1
Choy, T

b5 e vl 2))(1+ )2]
P u
(=B0)*7 171 — 1)

de( ) (b( 2)+C( 2))
1 1 .
(1+u>yn[ M +“)“

(50)

The truncation here consists of not including the terms of
higher powers of (p — u) [(2 — u) 7213, (3 — u)~ %2 and
(14u)~71 2 and higher]. It is this (singular) Borel transform
contribution that we use in the evaluation of the PV of the
inverse Borel integration, Eq. (46). We recall that the power
indices y, and Yp(p = 12,..) are given in Eq. (26).
The values of the parameters C]( ) and the ratios dff A /dff
are given in Table 1 (cf. also Table II in Ref. [29]); the latter
ratios are independent of the renormalisation scale parameter
k (thus independent of ¥'). We will use the central values given
in Table 1. For example, d%Rl (K) = 1.7995 JIR (¥), etc.

The expression for the evaluation of the D = 0 part of the
Adler function in the described PV-approach thus acquires
the form

(PV,[N])
<d(Q2)(D:O))

;302</c+ / )d”exp[ ﬁoa(xQZJ

x Bld)(u K)sing + 8d (0% ). (51)

where the B[d](u; «)sing is given in Eq. (50) and the cor-
rection polynomial 8d(Q?; K)Ellv)]=0) is given in Eq. (47). In
practice, it turns out that the correction polynomial values
are large as are also the PV integral values in the expres-
sion (51). However, the two terms for the (D = 0) Adler
function give to the sum rules in general contributions with
opposite sign, and the sum of the two terms there is smaller
(by about two orders of magnitude) then each term. We point
out that the correction polynomial expression (47) appears in
the expression (51) because in the sums in the singular part
of the Borel transform, Eq. (50), truncations were made. To
understand this more clearly, the Borel transform B[d](u; «)
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Eq. (50), but in its nontruncated form, implies that the coef-
ficients d,, (k) have the form

dIR ~ n
dy () :{ ALCI (@)

T 22T (y2)

@ 4 o 1
X[1+(bl Cll)(ﬂ0>(72—1+n)

2
vttt ety (2)

1 1
- 1+mGa—2+n) +0<73>]

n
d?}l("z)a ~ Bo
)
@, ¢ 1 1
[”(b A )<ﬂo>(72—2+n) (7)]
a4y (®) Bo 1
T GR—2) 2T 2+")< ) [HO(Z)]
3% ®) Bo
{ mr()’i-i-l-i-n)( >

1

(6) (6) (6) (6) 1.(6)
1+ (b + C ) ( ) — + ( +Cy b
[ Bo) (5 +n) 127

e —
Bo) Gh+n)Gs—1+n) n’

dIR
e s (ﬂo) [1+ o

;. oIl

C<6>( )% o
&) G —1em ©

Py @ u

1 B
(= /30) ¥ +n)

[1+(b( ey
+eP h<—2>

+¢557)

1 1

O -
- /30)2 T A — 1+ (m)]
dUV( )
)

1 1 1
- — . 52
o) <71—1+n>+0<n2)]} 2)

The truncation consists of neglecting the indicated rela-
tive corrections O(1/n%) at the end of the brackets in
Eq. (52), which then gives us the “singular” parts d,, (k) —
(dy ())sing» and the correction coefficients 8d (k), = dy, (k) —
(dy ())sing appearing in the correction polynomial Eq. (47).
It turns out that the series in the brackets of Eq. (52), in inverse
powers of n, are relatively slowly converging for n < 10-
20, because of the relativey large values of the numerators
there. Therefore, the truncation effect and the correction coef-
ficients 8d(k), are relatively large for such n. Specifically,
when «k = 1, we have |8d,, (k) /d, (k)| ~ 10" for0 < n < 3,
and [8d, (x)/d, (k)| < 1 when 4 < n < 10. However, for

T, +n) (—po)" [1 + 0+ Ci,_lz))

very large values of n (n > 15), the coefficients dd;, (k)
in the correction polynomial (47) become relatively negligi-
ble: 8d,,(k)/d, (k) — 0 when n — 00.” Specifically, when
k = 1, we have |8d, («)/d, (k)| < 0.05 when n > 15, and
|6d,(k)/dy (k)] < 0.025 for n > 25. Despite the fact that
the first few terms in the polynomial (47) give large contri-
butions, the sum (47) [and thus the sum Eq. (51)] is better
behaved when the truncation index N there is N > 5, as it
does not have the leading parts of the renormalon contribu-
tions in its coefficients 8d,,.

5 Results
5.1 Double-pinched finite energy sum rules with high index

When we apply FESR with the moments a>™ (o), cf.
Eq. (30), we can see from Eq. (30d) that the D > 0 part of the
moment a>™ (o1,) depends only on two condensate values,
(O24+4) and (O7,46), which are of high dimension when n
increases. We will assume that these high-dimension conden-
sates give a negligible contribution (cf. also Ref. [22]) when
n is large. When equating the theoretical and the ALEPH
experimental values of these moments, we can extract the
QCD coupling value. It turns out that, when n increases, this
value appears to stabilise reasonably at n =~ 5 (however, see
the discussion at the end of this section). This is true for
each of the previously described evaluation methods (FOPT,
CIPT, PV). As a result, we extract the following values:

ay(m?)FO) = 0.3144 £+ 0.0036(exp) "5 0031

()0 0045 @) 1000 (N TGooeo ) (53)
= 0314470007 ~ 031479008, (53b)
ay (m?) D = 0.3282 + 0.0049(exp) 008
() 50,0060 (44) 10,6003 (V) L5010 (53¢)
= 0.328200087 ~ 0.328 10002 (53d)

s (mH)®Y) = 0.3189 £ 0.0041(exp) ) 0040

0.0040 0.0002 0.0026 0.0009
(1) {0.0043 (d4)io.0007 (N t)+o 0093 () 10,0010 (amb)
(53e)

= 031897000 ~ 0.319700%. (53f)

These values were obtained with the truncation orders N; =
9, 10, 10 for FOPT, CIPT, PV. The truncation order in the
PV approach refers to the maximum power ¢’ in the cor-
rection polynomial (47). The truncation order in CIPT and
PV approaches was chosen in the following way: it is such
order that, when we increase the truncation index from N; — 1
to V;, the variation of the theoretical moment at(lf ) 1S mini-

9 In fact, this is valid for each renormalon part (d, )§ of the contributions

t0 dy, such as (d,)]Y, etc.: (3, (k)% /(dn () — 0 when n — oo,
for X = UV1, IR2, IR3.
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mal.!® On the other hand, the choice of the truncation order
N; =9 in the FOPT approach was chosen by looking at the
stability of separate renormalon contributions (see below and
Fig. 3). In the results (53) we separated the various uncer-
tainties according to their sources. The symbol («) indicates
the variation when the renormalisation scale parameter x
(= n?/0?) is varied around k¥ = 1, up to kmax = 2 and
down to kpin, = 0.5. The symbol (&V;) indicates the variation
when the truncation number is varied around its central value
N; to N; £ 2; (n) indicates the variation when we extract o
from a®™ with n = 5 4 3 (variation of &y when n varies
is not weak, cf. Table 3, therefore we take én = =£3). On
the other hand, the symbol (ds4) in the results (53) indicates
the uncertainty due to the ds coefficient, where we vary the
coefficient d4 around its central value (as predicted by the
considered renormalon-motivated extension) ds = 338.19,
where we chose this variation tobe d4s = 338.194338.19; the
resulting variation of this type is obtained by using N; = 5,
i.e., when the last term in the truncation includes d4 and
keeping all the other parameters of the model unchanged.'!
Finally, the symbol (amb) in Eq. (53e) represents an estimate
of uncertainty due to the Borel integration ambiguity for the
Adler function.'?

We mentioned earlier, in the text after Eq. (24), how the
value d4s = 338.19 was obtained. We recall that the six
parameters (24) were then determined by requiring that the
expression B [J 1(u) Eq. (23) leads to the known values of the
five d; coefficients (j = 0, ..., 4) and to the correct value of
the subleading Wilson coefficient élD =4 When the coefficient
dy is varied as d4 = 338.19 +338.19, the uncertainties of the
extracted values of o (m%) in Eq. (53) [at the symbol ’(d4)’
there] would then be obtained by using the values ds = 0
and ds = 2 x 338.19 as input values for the determination
the six parameters (24) of the expression B [2 1(u), and then
repeating the entire analysis of extraction of the values of
o (m%) in these two new cases of the renormalon-motivated
model, again with N; = 9, 10, 10 for the FOPT, CIPT and
PV approaches. However, this requires a lot of work, for
each case of d4 new values of parameters (24) and possibly of
those of Table 1 would be extracted. Therefore, we decided to
estimate such uncertainties of o (m%) from the d4-variation
in the simpler way as described in the previous paragraph.
This means that we kept the (exactly) known coefficients d;
(j = 0,...,3) unchanged and took (artificially) N; = 5;
in PV approach the values of the parameters of the renor-

10 We evaluate the differences |at(h2 o (Ny) —a‘f ) (N;—1)| with increas-
ing Ny =4, 5, ...andlook for such N; where this difference is minimal.

! In the PV approach, we varied 8d of the correction polynomial (47)
(with N; = 5) around its central value by £338.19.

12 This variation was obtained from the variation of the Adler func-
tion (51) by £3d(Q%) = +(1/Qpoi)) (fo, = Jo_) - where the
integrand is the same as in Eq. (51) [cf. also Eq. (50)].
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malon model, Eq. (24) and Table 1, were kept (artificially)
unchanged, and in the correction polynomial (47) we took
(artificially) N; = 5 and the coefficient §dy = dy — (d4)sing
was varied via the variation of dy (i.e., by £338.19).

In Fig. 3a—d we present the various contributions to the
moment a > (o,) in the FOPT approach, for a fixed value of
O (m%), as a function of the truncation index N,: in Fig. 3a—
c the contributions of the # = 2 IR (IR2) renormalon part,
u = 3 IR (IR3) renormalon part, and u = —1 UV (UV1)
renormalon part of the Adler function, respectively.'® In
Fig. 3d we finally represent the entire a > (o7,) which is the
sum of these three contributions. While in the latter Figure
one might consider N; = 6 as the first possible case of relative
stability, Fig. 3a, b show that around this index (N, = 6+ 1)
we have partial cancellation of the strong instabilities from
the u = 2 and u = 3 IR renormalons. On the other hand,
N; = 9 is approximately the index where both of these con-
tributions give stationary points (minimum and maximum,
respectively). This is the reason why in FOPT approach we
chose N, = 9. The u = —1 UV contribution is suppressed in
a@> (om), as seen in Fig. 3c, and this behaviour is expected
on theoretical grounds as explained in the “Appendix 1.

Instead of the FOPT method Eq. (42), we could apply the

tilde-variant (ﬁ)ﬁ) method Eq. (39). The results are sim-
ilar to those of the usual FOPT method, Egs. (53a)—(53b):
as(m2)FO = 03147591, now with N; = 6 the optimal
truncation index (the # = 2 and u = 3 IR contributions have
local extremes at N; = 6, minimum and maximum, respec-
tively; the u = —1 UV renormalon contribution is negligi-
ble). The uncertainties are significantly larger, though, due
to the larger uncertainties of the type (k) and (ds).' This
has to do with the fact that for 02 ~ o (~ 1 GeV?) the
ratio @,(Q%)/a(Q%)" [= 1 + O(a)] becomes large!’ for
n > 4, and thus the series of terms d~n5n+1 behaves in pQCD
at such energies considerably worse than the power series

—~—

of terms dna”+l. For this reason, we will use the FOPT
method in this work only for illustrative and comparative

13 We separate these parts in the coefficients dy = lekz + é’jlm + J,[,J Vi
cf. Egs. (20) and (23).

14 This has to do primarily with the fact that d4 = 338.19 & 338.19
implies dy = 37.77 + 338.19, but the corresponding term a> ~ @s in

the Adler function d(oym)p=0 (With & = 1) in the FOPT approach is
dyds(om) ~ 4.9 x 10*5d4 while in the FOPT approach itis dsa (Um)5 ~
1073dy [we /tggli here a(oy,) = 0.1]. The effect of the variation of dj is
then in the FOPT of the Adler function by about a factor of 5 stronger.
Further, the fact that the central value of d4 (37.77) is much smaller
than the corresponding value of d4 (338.19) may indicate that the taken
uncertainty dds (= 8ds) = £338.19 of the coefficient dy is possibly too
large.

15 We believe that this is related with the vicinity of the Landau singu-
larities of the pQCD coupling a(Q?) at such low |Q?| ~ 1 GeVZ; such
numerical problems do not occur in holomorphic variants of QCD in
which the coupling a(Q?) has no Landau singularities, cf. Ref. [29].
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Fig. 3 The various contributions to the FESR moment a®9 (o) in
the FOPT ("FO’) approach, as a function of the truncation index Ny, for
s (m%) = 0.3144 (and k = 1): a the contribution from the u = 2 IR
renormalon part of the Adler function; b from the u = 3 IR renormalon

purposes. In Fig. 4a—d we present the result of the F/O\f"/[
approach, in analogy with the previous Fig. 3a—d which were
for the FOPT approach. We can see that the FOPT approach
gives the results which vary as a function of the truncation
index considerably more strongly than the FOPT approach,
although the extracted central value of o is almost the
same.

An important question that arises in this part of the work
is whether the described extraction of the numerical values
of oy from specific moments a®" (o) with high n (such
as n = 5 % 1), under the assumption that the correspond-
ing high-dimension condensate contributions are negligible
[cf. Eq. (30d)], is arealistic approach. For this reason, in Table
3 we present the values of o (m%) extracted from moments
a@" (g,)) (with the condensate contributions neglected) for
a wide range of n, in the FOPT, CIPT and PV approaches,
with the corresponding truncation indices N; = 9, 10, 10.

Only the experimental uncertainties are included in the
Table. We can see in the Table that the extracted values of o
continue to grow when n increases beyond n = 5. In the last
line of the Table we present the values of o (m%) extracted
in these approaches from the moment a©.9 (om), i.e., the
moment which has the weight function a simple constant

020

FO: a®9(IR3) (b)

—0.122f

-0.1245» ]
-oA126§ ]
—0.1285» A
-0.1305» ]
-0.1325» ]
_0_1345 as(m?)=0.3144 N,
S S

4 6 8 10 12 14
0188 T T T— T T— T T T 7T T T T T3

FO: a®9(all) (d)

0186 ]

0.184f
0.182f
0.180[

0178}

as(m?)=0.3144 N

0176

S S S S S S EE S S |

4 6 8 10 12 14

part; ¢ from the u = —1 UV renormalon part; d the sum of all three
contributions, i.e., the full theoretical FOPT value of a(2’5>(om); the
blue vertical lines in d represent the band of the experimental values

g% = 1/om

1 fom
ali) (om) = o~ /O do O@exp) (@) — 1 (54a)
(00)(0 ) = L/qub (1 +e®yd (U ei¢>)
S P " Jp=0)"
(54b)

This moment has no condensate contributions. In the Table
we can see that the values of o (m%) extracted from
a®™ (o) at very high n (> 20) appear to increase toward
the values extracted from the moment a(>-?) (6,,). This can be
understood in the following way. If we denote x = ¢2 /o, =
—Q2 /om, the weight function g(z'”) of the moment a®™,
Eq. (30a), in the limit n — oo and for |x| < 1 converges to
the constant 1/op, = g0

lim —(1 —x)? Z(k + Dxk = (55)

n—o0 g,

As we see, the double-pinch factor (1 — x)? in the weight
functions g™, which was there in order to suppress the
duality violation effects, tends to disappear in the large n
limit. This, together with the results in Table 3, indicates
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Fig. 4 Asin Fig. 3, but now for the FOPT (’tFO’) approach

Table 3 The extracted values of o (m%) from FESR moments
a"" (o) under the assumption of zero condensate contributions, in
the FOPT (FO), CIPT (CI) and PV approach, with the corresponding
truncation indices N; = 9, 10, 10. Only the experimental uncertainties

_009 T T T T T T T T T T T T T T T T T T T T T T
tFO: a®d(IR3) (b)
~0.10} ]
0| ]
—o12f ]
~0.13 ]
as(m?)=0.3144 Ny
_014 'l I I I 1 I I I 1 I I I 1 I I I 1 n n n 1 n
4 6 8 10 12 14
tFO: a®)(all) (d)

0181 ay(m?)=0.3144 Ny

(which are not dominant) were included. In the last column we present
the experimental values of these moments as extracted from ALEPH
data. For (m, n) = (2, 1), the CIPT approach cannot achieve the exper-
imental values of a1 (o) for any o

(m, n) ay(m?) (FO, N; = 9) ay(m?) (CI, N; = 10) ag(m?) (PV, N; = 10) aSs" (om)

(2,0) 0.289 -+ 0.001 0.290 -+ 0.001 0.300 £ 0.002 0.240 = 0.003
2.1) 0.300 + 0.002 - 0.310 = 0.002 0.206 = 0.003
(2.2) 0.308 = 0.003 0.315 + 0.002 0.310 = 0.002 0.196 = 0.003
2.3) 0.311 = 0.003 0.332 £ 0.005 0.317 £ 0.003 0.190 == 0.003
(2.4) 0.313 + 0.003 0.326 + 0.004 0.317 + 0.004 0.185 = 0.003
(2,5) 0.314 £ 0.004 0.328 £ 0.005 0.319 £ 0.004 0.182 £ 0.004
(2,6) 0.315 £ 0.004 0.328 + 0.006 0.320 =+ 0.005 0.180 = 0.004
2.7 0.316 % 0.005 0.329 £ 0.006 0.321 % 0.005 0.179 £ 0.005
(2.8) 0.317 £ 0.005 0.330 = 0.007 0.321 + 0.006 0.177 £ 0.005
(2,9) 0.318 £ 0.006 0.330 & 0.007 0.322 £ 0.006 0.176 = 0.005
(2,10) 0.318 £ 0.006 0.331 + 0.007 0.323 £ 0.006 0.176 =+ 0.005
(2,20) 0.322 £ 0.008 0.335 £ 0.010 0.327 £ 0.009 0.173 £ 0.007
(0,0) 0.324 £0.014 0.336 £ 0.019 0.329 £ 0.016 0.168 £ 0.012
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that the extracted values Eq. (53) at n = 5 should not be
regarded as reliable, and that the results at even larger val-
ues of n are not reliable because we lose the suppression of
the (unaccounted for) quark-hadron duality violation effects
there. Nonetheless, the results (53) are illustrative and useful
for comparison of the three applied methods (FOPT, CIPT,
PV), and will represent an important element for our conclu-
sions about the reliability of these three methods.

5.2 Double-pinched Borel-Laplace sum rules

In this section we fit of the values of «; and of the first few
condensates to the double-pinched Borel-Laplace sum rules
(for various truncation indices N;), using again the ALEPH
data. The truncation index N, of the applied evaluations is
then fixed by considering the relative stability of the resulting
first two double-pinched FESRs a?? (o) and ¢V (o)
under the variation of N;.

The (double-pinched) Borel-Laplace sum rules to the
ALEPH data, as described in Sect. 4.1, cf. Egs. (31)—(33),
take the form

ReBexp(M?; o) = ReB(M?; o), (56)

where in the theoretical part we included, in addition to
the D = 0 contribution, also the D = 4,6, 8 contribu-
tions, cf. Eq. (33). One of the advantages of using these
sum rules, in comparison to the (high-index) FESRs of the
previous Sect. 5.1, is that we have now an additional con-
tinuous complex parameter M>. As argued in Sect. 4.1,
the argument Arg(M?) = W of these parameters [M?> =
|M2| exp(iW)] is preferrably in the range 0 < ¥ < m/2,
and we use specifically W = 0, /6, 7/4, and |M?| in the
range [0.9, 1.5] GeV? [cf. Eq. (34)]. In practice, we cannot
ensure the equality (56) for a continuous set of values of M2
Therefore, we decided to minimise the following sum of the
squares of deviations between the theoretical and experimen-
tal values:

2
oY (ReBth<M§; Om) — ReBexp (M3 am)> e

ot 55(M2)

where M(f is a specific sufficiently dense set of points along
the rays with W = 0, 7/6, /4 and 0.9 GeV? < |[M|? <
1.5 GeV?. In practice, we chose 11 equidistant points along
each of the three rays, i.e., the sum (57) contains 33 terms.1©
Further, & B(Mozt) is the experimental standard deviation of
Bexp(Mozl; Om)- 17

16 The fit results are practically unchanged if the number of points M(%
is increased beyond 33.

17 The construction of & B(MOZ() involves the covariance matrix of the
ALEPH data and the weight function f(o;; M?) (where o = ojisin
the j’th bin of ALEPH data) corresponding to the Borel-Laplace sum
rule, as explained in “Appendix C” of Ref. [82]. In the present case of the

The theoretical expression Re By, (Mozl; om) now depends
on four different parameters: «s and (Op) (D = 4, 6, 8). The
minimisation is performed in the global sense, i.e., simulta-
neously with respect to all these four parameters. It turns out
that in many evaluation cases, the achieved minimum is very
small, X2 < 1073, i.e., the fits are good. The extracted values
for a; are

a5 (m2)FO) = 0.3075 + 0.0003 (exp) + 49936

() 0.0034(44) 10 0036 (Vo) (58a)
= 0.307579:996) A 0.308 + 0.006, (58b)
o (m) D = 0.3349 £ 0.0004(exp) £ 005
() 10 0035 (44) 50,0055 (Vo) (58¢)
= 0.334970:019% ~ 0.33570:919, (58d)
oy (m) ) = 0315755013 (exp) T 010
() 0035 (@4) 0051 (Vo) -0 0032 (amb)
(58¢)
= 0.315710 008 ~ 031670 008, (58)

The various uncertainties are of the same type as those
explained in the previous Sect. 5.1, Eq. (53). The trunca-
tion numbers N; were chosen in a somewhat similar way as
in Sect. 5.1. Namely, we consider the moments a®9 (om)
and a®V (o) as functions of N;, using in these moments,
at each NV, the corresponding «g and (Op) values obtained
from the mentioned global fits of Borel-Laplace sum rules
with the same N;. The optimal truncation index N, is then
determined to be such at which the best stability of these
moments is achieved (cf. also the discussion of Figs. 6, 7,
8 and 9 later on). This time the truncation numbers turn out
to be N; = 8,5, 6 for FOPT, CIPT, PV, respectively; and
the variation of N; around these values we take in general as
N, - N, +2.18

The various uncertainties are obtained in the same way
as in the previous section, with the exception of the exper-
imental uncertainty which can be regarded here only as an
estimate. Namely, for various values of MO%, the quantities
ReBexp (Mg; om) are correlated with each other in a compli-
cated manner, i.e., their covariance matrix is complicated and
its inversion becomes numerically unstable when the set of

Footnote 17 continued

real part of the double-pinched Borel transform, we have f(o;; M 2y =
Re g2(Q% = —0;) = Re[(1/M*)(1 — 0;/M?) exp(—0;/M?)].

18 For the FO method, we take N; = 8£2. For the CI method, we take
N; = Sﬁ; the case N; = 3 is not included as it does not use all the
exactly known coefficients d, and the corresponding extracted value of
a; is significantly higher than in the cases of higher N; > 3. For the PV
method, we take N; = Gf%; the case N; = 4 is not included because
the fit quality is much worse there (2 = 2.2 ~ 10%).
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the M2 values increases.'® This is also the reason why for the
minimisation we used the simple sum of squares Eq. (57) and
not a sum involving the inverse of the covariance matrix of the
Borel-Laplace sum rules. Therefore, for the estimate of the
experimental uncertainties, we proceeded in the following
way. We evaluated the sum of squares of the type of Eq. (57),
for a small number of points MO% (two points along each ray,
i.e., the initial and final; the sum has thus six terms), and var-
ied each of the quantities o5 and (Op) separately around the
value of the minimum of x2, until this value of x? increased
by unity. For example, x2((O4) & 8(Os)exp) = x2:, + 1
(& 1). The number of terms (six) in these sums of squares
was taken so low in order to not subestimate the experimen-
tal uncertainties. Nonetheless, as we can see, the estimates of
the experimental uncertainties obtained in this way are still
significantly lower than the various theoretical uncertainties.

In Table 4 we present the results for oy and the conden-
sates.”’ The final uncertainties in the condensate values are
obtained in the same way as for o (m%), i.e., by combining
various theoretical uncertainties and the experimental uncer-
tainty.

InFig. 5a, b, we present the quantities Re B(M?; oy, ) along
the rays M? = |M2| and M? = |M2| exp(imr/6). The grey
experimental band represents the values Re Bexp (M 2. om) £
8 (M?) and is rather narrow.

The FOPT (N; = 8) theoretical prediction (global fit)
is the red dashed line, which is virtually indistinguishable
from the central experimental line. The results for the ray
M? = |M?| exp(im /4) are similar.

In Figs. 6 and 7 we present the moments a>® and a1
[=r; ((rm)(D =07 as a function of the truncation index Ny, in
the CIPT and PV approaches. At each order N; we employed
the corresponding central values of the parameters oy and
(Op)v+a (D =4, 6, 8) obtained by the global approach (fit
by the Borel-Laplace at N;). E.g., for N, = 5 the correspond-
ing CIPT central values are those in Table 4.%!

In the figures we included, for comparison, the values of
these moments when the contributions of the condensates
are set equal to zero (but o values are those used in the full
moments). Further, the experimental band (based on ALEPH
data) is included. We can see that the full moments (i.e.,
those with the condensates included) are rather stable under
the variation of N, (especially at N; = 4-7) and are con-
sistent with the experimental values. In Figs. 6b and 7b we
can see that the relatively best stability of these results under

19 Cf. the discussion in “Appendic C” of [82], where unpinched Borel—
Laplace was used, in the context of a QCD with holomorphic coupling.
20 Instead of (O4)y4a we present the corresponding values for the
gluon condensate, (¢GG) = 6(O4)y+a + 6 f2m2, where 6 f2m2 ~
0.00199 GeV*.

21 We recall that ¢>9 depends on the condensates D = 4, 6 and a®b
on the condensates D = 6, 8, cf. Eq. (30d).

@ Springer

the variation of N; is at N; =~ 5 for CIPT and N; ~ 6 for
PV. On the other hand, the results without the condensate
contributions are unstable under the variation of N;, and in
general deviate significantly from the experimental band. We
point out that the values of o and of the condensate values
(Op)v+a (D = 4,06, 8) were obtained from a global anayl-
sis involving fits of the theoretical Borel-Laplace quantities
ReB(M 2. om) to the corresponding experimental bands, i.e.,
quantities with a significantly different structure than those
of the FESR moments a®™ (o).

The behaviour of the moments a %9 (o) and a®V (o)
in the case of the FOPT methods shows qualitatively similar
behaviour as in the case of the CIPT and PV methods pre-
sented in Figs. 6 and 7. Again, as in the previous Sect. 5.1,
we can apply here, instead of the FOPT approach Eq. (42),
the tilde-variant (lg(_)\l_ﬁ") Eq. (39). The results turn out to be
very similar to those of the FOPT approach Eqgs. (58a)—(58b):
o (m%)(m) = 0.307f8:8§‘1‘, and now N; = 6 is the optimal
truncation index (also N; = 5,7 appear to be acceptable).
Again, asin Sect. 5.1, the uncertainties are significantly larger
than in the FOPT method, principally because of the larger
uncertainty of the type (ds), cf. footnote 14. There, we will
use the (ﬁ)\l_’"/l") results only for illustrative and comparative
purposes.

The results for the moments ¢ and a>! as a func-
tion of the truncation index Ny, in the FOPT and FOPT
approaches, are presented in Figs. 8 and 9, i.e., the results
analogous to those of Figs. 6 and 7.

Figures 8(b) and 9(b) indicate that the stability is achieved
at N; ~ 8 for FOPT and N; ~ 6 for FOPT.

Concerning the (local) stability of the results for the
momenta a%9 (o) and ¢V (61,) under the variation of
the truncation index N;, one question that appears is whether
we get such a stability also when the values of the fit param-
eters (g and (Op)y4) are not fitted at each N; but are kept
fixed. For this, it is sufficient to consider the D = 0 contri-
butions ¢ %9 (om)(p=0) and a@b (om)(p=0) as a function of
N; at a fixed value of «;. In Figs. 10, 11 we present these
results, for the corresponding fixed central value of «j (m%)
which is chosen as the central value of each corresponding
method - cf. Table 4; and «; (m%) = 0.3074 for l?af’"/l" We
can see that these contributions in general show no local sta-
bility under the variation of N;, although Fig. 10(b) indicates
that N; & 6, 7 might be a reasonable value for the CI and PV
method, respectively.

We also notice that Figs. 6a, 7a, 8a and 9a show that the
condensate contributions (corrections) are numerically sig-
nificant in a9 (o1,) and a>" (o), which may cast doubt
on the (illustrative) analysis in Sect. 5.1 where the central
values of o (m%) were extracted from a5 (om) in Eq. (53)
when neglecting the condensate corrections. Nonetheless,
closer inspection of Figs. 6a, 7a, 8a and 9a reveals that the
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for the moment a(z*l)(am)uho). The QCD coupling is kept fixed this
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time, o (m

2) = 0.3349 and 0.3157 for CIPT and PV, respectively. The

experimental (ALEPH) values of a®M (o) (n = 0, 1) are denoted as

blue bands
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Table 4 The results for oy (m%) and the three condensates (Op)ya (D = 4,6, 8) as obtained by the Borel-Laplace sum rule. Included are the
optimal truncation numbers (NV,) and the values of the fit quality %2 [cf. the text and Eq. (57)]

Method ay(m3) (O4)v4a (10° GeVY) (O6)v+a (10° GeVO) (O)v+a (107 GeV®) N x*
+0.0052 +1.4 +0.2 -3
FOPT 03075100032 -2.8724 +2.1£0.6 ~0.879 8 4.% 10
CIPT 0.33491000% -2.6%1% +0.8%03 —0.8%94 5 2.x 1074
PV 0.315710 0083 -0.24% +2.9£0.7 —1.2%97 6 1. x 1073
0.6 ! L '(2 '0) T T T T i I T T T T T T T T T T
a“ (@) 1 oz a?" (b) -
0.5 » B t 1
[ 024} =—e— tFO (D=0) |
[ —e— tFO(D=0) - FO (D=0) 1
0.4 -~ FO (D=0) 4

0.3

0.2

0.22 B

0.18% y
n n n n n n n n n n n n n n n n 1 n n

4 6 8 10 12 14

Fig. 11 The same as in Fig. 10, but this time for the methods FOPT ("FO’) and l?af_"/l" (’tFO’). The fixed QCD coupling values are o (m%) =0.3075

and 0.3074, respectively

consensate corrections are in general significantly smaller
for a(z")(om) than for ¢@®9 (om) (the only partial excep-
tion being the PV approach). This indicates that high dimen-
sion condensates probably do not contribute significantly
[cf. Eq. (30d)], and that consequently a3 (64,) momen-
tum sum rule has only small corrections from condensates
(of dimension D = 14, 16).

We point out that the Borel-Laplace QCD sum rules were
first introduced in [37], and later applied in the literature,
e.g. in Refs. [82,83]; these Borel-Laplace sum rules had no
pinch factor (1 + 0?/om)". Part of the analysis in the work
of Ref. [22] uses single-pinched Borel-Laplace sum rules,
for M2 > 0; the condensate contributions are not included
(but they are included in FESRs), and the extraction of o
with the Borel-Laplace there is always for a specific chosen
value of M? > 0 at a time.

Concerning the described global fit with Borel-Laplace
sum rules, the following question may be raised. The IR
renormalon structure of the used extended Adler function
includes only the IR renormalons at # = 2 and u = 3,
but not u = 4, cf. Egs. (23) and (25). This would at first
suggest that only the first two condensates, (Op)v+a With
D = 4 and D = 6, should be used in the Adler function
to counter the corresponding renormalon ambiguities. But
we used the first three condensates (D = 4,6, 8) in the
Adler function for our global fit, i.e., one more. The main
reason is that the use of only D = 4 and 6 condensates is
not enough because of the simplifying assumptions that we

made for the OPE structure Eq. (5). Namely, we assumed
in Eq. (5) that the condensates are Qz—independent.22 How-
ever, for the condensate term with D = 6 (and those with
D > 8) this is not correct, as indicated by the structure of
the Borel transform of the Adler function in the LB approxi-
mation [72,85,86], B[d](u)®, where the IR poles at u > 3
are not single, but double poles. This is reflected also by
the double pole at u = 3 in the Borel B[E] (u) in Eq. (23),
and by the corresponding fact that in B[d](u) in Eq. (25) the
most singular pole structure at u = 3is ~ 1/(3 — u)3tl
[and not ~ 1/(3 — u)773]. In order to counter the renor-
malon ambiguity originating from such a singularity, the
corresponding D = 6 operator should have nonzero one-
loop anomalous dimension coefficient, —)/82 /Bo = —1(cf.
[29,72,87]), i.e., (06(Q%)) = (0”)/a(Q?) where (O)
is Qz-independent. The D = 6 condensate contributions to
the Adler function then have the form
<0'é”>}

(08

(0H(0%3 (0?3
which is_ different fr_om the D = 6 (k = 3) form in Eq. (5).
Here, (0é2>) and (Oél)) are Q%-independent. The first term

and the second term then counter the renormalon ambiguity
originating from the terms ZZERZ /(3 — u)? and ;lgRl /(3 —u)

d(0%) (p=¢) = 67> [a (59)

22 As far as we are aware, all numerical analyses of the semihadronic 7-
decays in the literature use these assumptions. Further, the O(a) terms
in the OPE (4) are considered negligible.
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in B[g](u) of Eq. (23), respectively [i.e., from the terms ~
dR,/(3—u)*! and ~ di} /(3 —u)”* in the Borel transform
of the Adler function, Eq: (25)]. There are indications that
the effects of the first term on the right-hand side of Eq. (59)
are reasonably well approximated in the sum rules by two
condensate terms (k = 3 and k = 4) of the simple OPE type
Eq. (5),i.e., by the Q%-independent condensate contributions
with D = 6 and D = 8. This is what we used in our global
fit.

On the other hand, if we use in the global fits with Borel—
Laplace sum rules only two condensate terms, D = 4 and
D = 6 (without D = 8) with Qz-independent condensates,
then it turns out that the (two) condensates do not stabilise the
resulting moment a®V (o) as a function of the truncation
index N;. In fact, they make the variation of a®V (o) with
N, even worse than for the pure D = 0 parts a@b (om)(p=0)>
in stark contrast with the results in Figs. 7 and 9.2 We recall
that a(z’l)(om) depends on D = 6 and D = 8 condensates
(when these condensates are considered QZ-independent),
and our Adler extension formally does not require D = 8§
condensate (which would counter the u = 4 IR renormalon
pole ambiguity effects). Therefore, the numerical results of
our global fits suggest that the D = 8 condensate (Q>-
independent) in our analysis simulates the role of the effects
of the running of the 1/ a(Q?) factor in the first term on the
right-hand side of Eq. (59), in the Borel-Laplace sum rules
andina®" (o). A global fit analysis using the more explicit
form (59) remains outstanding, but we expect it to give results
similar to those presented here.

These questions notwithstanding, our global fit analysis
with OPE with condensates assumed to be Q2—independent,
Egs. (4)—(5), can be repeated by including one more conden-
sate term, of dimension D(= 2k) = 10. This then gives us
the results presented in Table 5.

The values of index N; were kept unchanged in com-
parison to Table 4. If we determined N;, as in the previous
case of (O19)v+4 = 0, as the value at which the resulting
momenta a?%) (o) and a@®V (o) are least N;-sensitive,
then we would obtain in the present case (when (O19)y 44 is
varied): for FOPT N; = 8 (unchanged); for CIPT N; = 4-5,
and for PV N; = 5. Nonetheless, here we kept N; unchanged
(N; = 8,5, 6 for FOPT, CIPT, PV, respectively), so that the
comparison of the results of Tables 4 and 5 gives us the effects
of the OPE-truncation change only (Dpax = 8 — 10), with-
out interference of the effects of the N;-change. The resulting

23 On the other hand, a®? (o) does get reasonably stabilised as a
function of N; when only the D = 4and D = 6 Qz—independent
condensates of the Adler function are used in the global fit with
Borel-Laplace sum rules. We recall that, in the approximation of Q-
independent condensates, a>? (o) depends on the condensates D = 4
and D = 6 (but not D = 8), and the D = 4 condensate contribution
in a>% () is numerically probably more important than the D = 6
contribution.

@ Springer

uncertainties of the extracted values of a (m%) under the vari-
ation of N; are anyway similar in the two cases Dmax = 8
and Dpax = 10.24

Comparison of Tables 5 and 4 shows that the OPE-
truncation effects are moderate: the values of (m%) change
by less than the uncertainties given in Table 4, and even the
values of the condensates in most cases change by less than
50 percent. The values of condensates of dimension D = §
and D = 10 in Table 5 indicate that their contributions to
sum rules are small and tend to cancel each other.>> We can
estimate the OPE-truncation uncertainty in the extracted val-
ues of oy (m%) as the difference between the corresponding
central values in Tables 4 and 5, and add this uncertainty in
quadrature to the results of Eq. (58). This then gives us

ay(m2)FO) = 0307510007 + 0.0040

= 0.307570007% (~ 0.308 £ 0.007),  (60a)
ay(m?) Y =0.334975:91%5 1 0.0013

= 0.3349700091 (~ 0.335t8;8(1)2) : (60b)
ag(mH)®Y) = 03157100083 +0.0023

= 031570008 (~0.31650%08) . (600)

We can see that, due to the OPE truncation effects, the uncer-
tainty of o (m%) increases moderately in the FOPT case, and
remains practically unchanged in the CIPT and PV cases.

As in the case of Dp,x = 8, we can evaluate in the case
Dimax = 10 the FESR momenta a9 (o) and a®P (1)
as a function of Ny, and obtain results analogous to those in
Figs. 6, 7, 8 and 9. We will not present such Figures, but it
turns out that now the stability of these momenta under the
variation of N; is even stronger, and the agreement with the
experimental values is even better.

The behaviour of the extracted values of condensates
with increasing dimension D is qualitatively similar to that
in the work of [22] where various pinched FESRs were
applied to the ALEPH t-decay spectral functions. The depen-
dence on the OPE-truncation variation (variation of Dy,x) is
somewhat milder in our analysis, though. The fact that the

24 1n the case of Dmax = 8 these variations of extracted values of
o (m%) are given in Egs. (58a), (58¢), (58e), at the symbol *(N;)’. In the
case of Dpax = 10, these variations are: 0.0015 (FOPT, N, = 8+ 1);
L0006 (CIPT, Ny = 5 1); 00080 (PV, Ny = 6. £ 1).

25 The large variation (uncertainty) of (O19) v 44 into negative values in
Table 5 (and of (Og)y 4 in Table 4), in the PV and CIPT approaches,
exists due to the instability of these extracted condensates when the
renormalization scale parameter is varied from «k = 1 to x = 0.5. This
indicates that the RGE-running of the pQCD running coupling a(u?)
along the contour uz = 0.5 om exp(i¢) (where 0.5 o, = 1.4 GeVZis
low) is unreliable, due to the vicinity of the unphysical Landau singu-
larities of the pQCD coupling at such low values of |i£2|. We note that
in the PV approach, the polynomial correction part Eq. (47) is treated
as in the CIPT approach when integrated along the contour.
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Table 5 As Table 4, but now

2 2
(010)v 4.4 is included in the Method  ay(my) (O4)v+a (O6)v+a (08)v+a (010)v+a Ny X
global fit. The condensates +0.0051 a7 +1.0 5 1406 _5
(Op)vas are presented in units  TOPT 0.311575:9031 370 43350 21708 408+£03 8 6.x10
of 103 GeVv? CIPT 0336270002 —2.7790% 41002 —1afd3 402797 1.x 1073
PV 0318070005  —04M% 434737 —18%)) 404753 6  7.x107°

extracted values of condensates with D > 8 in our analysis
are small, or tend to cancel each other, is possibly related with
the fact that our D = 0 Adler function extension contains
the first two IR renormalons (¢ = 2 and u = 3), cf. Eq. (23)
[cf. also Eq. (25) and (50)]. However, also the FESR fit results
of [22], in the V + A channel, show a similar trend when
Dpax = 8 or 10.

The works of [23,88] (cf. also [89] where R,.(s) is used),
on the other hand, give for (sufficiently pinched) FESRs
the solutions of OPE with considerably larger absolute val-
ues of the condensates (Op)y44, for many terms (up to
D = 16).2° This shows that there are at least two very dif-
ferent sets of OPE solutions to the t-decay data, which cor-
respond to the same or approximately same spectral func-
tion w(o)y+4 (ALEPH) for (sufficiently pinched) FESRs.
The results of the works [22,23,88] suggest that the dual-
ity violations are well suppressed in the V + A channel for
FESRs which are at least doubly-pinched.?’ In our global fit
analysis, we used doubly-pinched Borel-Laplace sum rules,
whose weight functions g2 (0%, Eq. (31a), are additionally
suppressed in the timelike limit by the exponential factor
exp(cos(W) Q% /|M?|) — exp(—cos(W)om/|M?|) (where
we took: W = arg(M?) = 0, /6, w/4).

5.3 FESRs and Borel-Laplace sum rules with resummation
based on inverse Mellin transform

In Ref. [29] a resummation of the Adler function was per-
formed using an approach of characteristic functions (related
with the approach of [90]). It has the form

Yar =
d(0%) (D=0):res =f0 TG%)(t)a(te Kp?
© dt =
+,/1 TG(D-'—)(t)a(te_KQz)
Udr
+ /0 7Gg’”(z)

x[ate™ Y —ae K], @D

26 The works [22,23,88] use for the D = 0 Adler function the series
truncated at ~ a° (i.e., N, = 5), with dy = 283 + 283 [23,88] and
dq = 275 4+ 400 [22].

27 The n-pinched FESR weight functions g(Qz) behave in the timelike
limit, i.e., when Q2 — —0Op, as: g(Qz) ~(1+ Qz/am)”.

where the characteristic functions GS‘L) (t) and Gg’L) (1) are
inverse Mellin transforms of different parts of the Borel trans-
form B [67](14) Eq. (23); they involve simple positive or neg-
ative powers of ¢ and In¢ (cf. [29] for details). The main
difference between the FOPT, CIPT and PV methods, on
one hand, and this evaluation method, on the other hand,
is that this method does not involve truncation. However,
when this resummed version, d (amei¢)( D=0);res» 15 used in
the sum rules, e.g. in the contour integrals (30d) and (31d),
the integrations over t at 0 < ¢ < 1 involve the (pQCD)
coupling a(te K ope'?) at low momenta. For small ¢ ~ 0
and small ¢ this means that the integrations are performed
close to the Landau cuts of a(Q?) in the complex Q%-plane,
ie,at0 < Q% < Afan‘ (~ 0.1 GeV?), and this makes
the evaluation numerically unreliable. The extracted values
of the parameters also indicate this problem. Namely, the
central values of o, in the a‘>>-approach and in the global
fit approach with this resummation method are disparate,
o (m%) = 0.377 and 0.246, respectively. We will not use
these results, as they are significantly affected by the men-
tioned problem of Landau singularities.?® In this context, we
mention that this resummation approach works well when
the QCD coupling has no Landau singularities [29].

6 Summary of the results and comparison with
literature

The main results of the paper are in Eq. (60). For the purpose
of additional comparison of different methods (FOPT, PV,
CIPT), the results in Eq. (53) are also important.

We can argue that the FOPT and PV methods have the fol-
lowing feature in common: (a) the FOPT [or (l%\ﬁ")] pertur-
bation series for the sum rules, as argued in the “Appendix”,
explicitly have the leading renormalon contribution of the
Adler function d(Q?)p—o) suppressed in them;?’; (b) the
PV approach in the sum rules isolates the dominant parts of

28 A general discussion of the Landau singularity problems in pQCD
couplings is given, e.g., in [91].

29 We recall that the leading renormalon contribution is the double-pole
u = 1 UV renormalon in the perturbation series of the auxiliary quantity
E( 0%: k) (D=0), and its analog in the perturbation series of d(Qz)(D:O).
We point out that this suppression of the leading renormalon contribu-
tion in the sum rules is true not just in the large-By approximation, but
in the exact approach, as shown in the “Appendix”.

@ Springer



930 Page 22 of 32

Eur. Phys. J. C (2021) 81:930

the contributions from the renormalon singularities (UV and
IR) of the Adler function, and resums them with the PV con-
vention, while the perturbation series of the correction part in
this approach is largely free of the renormalon contributions.
On the other hand, the CIPT approach to the sum rules
keeps unchanged the entire coefficients d,, of the perturba-
tion series of the Adler function in the resummation of the
sum rules, thus importing the strong renormalon-dominated
divergence of d,,’s (when n increases) in the sum rule eval-
uation. It is true that the CIPT approach also transforms the
powers a(Qz)” [or the log derivatives a, (Qz)] of the Adler
function into different functions via contour integration with
specific weight functions, but this change in general does not
account for the renormalon cancellations which are neither
reflected in the (unchanged) expansion coefficients d,, of the
CIPT series. We believe that these aspects are the main rea-
son why the extracted values of «s from the (truncated) CIPT
approach differ significantly from the (truncated) FOPT and
PV methods (while the latter two methods give mutually
similar results). These conclusions are valid not just in the
analysis of Sect. 5.1 of the moments a®d (0m)(p=0) Where
the condensate contributions were neglected, but also in the
analysis of Sect. 5.2 where the first three condensates were
included. o
In the Appendix we argued that the FOPT (and FOPT)
expansion of the moments ag)’i)o) (with n large, suchas n =
5) has the UV renormalons (at u = —1, —2,...) as well
as some of the IR renormalons (at # > 2) suppressed by
one power, in comparison to the Adler function d( Qz)( D=0)-
Specifically for the first IR renormalon (atu = 2) of the Adler
function this implies that it is almost entirely supressed in the

FOPT evaluation of the moments a(%i)o) forn > 1.39

On the other hand, the FOPT (and the F/O\I_ﬁ“ ) expan-
sion of the Borel-Laplace sum rules ReB(M?) has only
the UV renormalons suppressed by one power, in compar-
ison to the Adler function d (QZ)(D:()); but the IR renor-
malons are not suppressed. Therefore, one might expect that
the FOPT (and the 1?(_)\?1“) global fit analysis with Borel—
Laplace sum rules would give us more unstable results and
less reliable value of the extracted o than such an analysis
with the moments a(%’l)o) (n = 5). However, the inclusion
of the condensate contributions (with D = 4, 6, 8) in such
an analysis takes care of the fact that the IR-renormalon con-
tributions of the Adler function are not suppressed in the
FOPT (and the l?afﬁ") Borel-Laplace sum rules [cf. also
the more detailed discussion around Eq. (59)]. Our analysis

30 This means, the renormalon contribution ~ 1 /(22— u)72 in the Borel
transform of the Adler function d( Qz)( p=0) is suppressedto ~ 1/(2—

14)’72*l in the Borel transform of a'*™ ) for n > 1, cf. also Egs. (25)

(D=0
and (50). We recall that in our considered renormalon-motivated Adler
function extension there are only renormalons UV1 (at u = —1), IR2

(atu = 2) and IR3 (at u = 3).
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with Borel-Laplace was indeed performed with the (low-
dimension) condensate contributions /ir_l\cEded. Therefore,
we can argue that the FOPT (and the FOPT) global fit with
Borel-Laplace sum rules gives us reliable extraction of the
values of «; (and of the condensates).

The PV global fit with Borel-Laplace sum rules and con-
densates is also expected to give reliable results, because
the renormalon structure of the Adler function is taken into
account correctly (in an isolated, resummed form) in such
sum rules.

However, the CIPT global fit with Borel-Laplace sum
rules and condensates is again expected to present prob-
lems, because the truncated CIPT approach does not suppress
the leading UV renormalon contributions and deteriorates in
a significant way the interplay between the IR renormalon
effects (in the D = 0 Borel-Laplace part) and the conden-
sate contributions. In this context, we recall that the truncated
CIPT is neither a perturbation power series nor does it rep-
resent a resummation of the evaluated quantity (because it is
truncated).3!

The numerical results presented in this work [principally
Egs. (53), (58), (60), Table 4] appear to confirm the argu-
ments given above. Namely, the extracted values of o are
closer to each other when the FOPT (and I*f(_)\P/T) and PV
evaluation methods are used, while the extracted value of «;
becomes significantly larger when the (truncated) CIPT eval-
uation method is used. This is true in the analysis of Sect. 5.1
where the high order moments a@" were considered, and in
the analysis of Sect. 5.2 where Borel-Laplace sum rules with
condensates were considered. Therefore, in our main predic-
tions for oy we will include the (truncated) FOPT and PV
evaluation methods, but not the (truncated) CIPT method.
Further, as argued at the end of Sect. 5.1, the results (53)
are not reliable because of the unaccounted nonperturbative
effects (from condensates and the quark-hadron duality vio-
lation effects). However, the results (53) serve principally as
an additional comparison of the three methods (FOPT, PV
and CIPT) as mentioned above.

Furthermore, we believe that the fact that we used a
renormalon-motivated extension of the coefficients d, (n >
4) of the Adler function does not introduce large model ambi-
guities. One reason is that the extension is motivated on the
known renormalon structure of the Adler function, and simul-
taneously reproduces correctly the first four coefficients d,,
(n = 0,1, 2, 3). The other reason is that our methods used

31 Somewhat related arguments for the preference of the FOPT meth-
ods over the CIPT methods, in FESRs of semihadronic t-decays, were
presented in Refs. [26-28,92].
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truncation indices N; (i.e., truncation at a™¥') which were
often low (N; = 5, 6).%

On the gounds mentioned above, our main results are rep-
resented by the global fit results (with the double-pinched
Borel Laplace sum rules) of the truncated FOPT and PV
approaches, Eqs. (60a), (60c). We obtain our central result
by averaging between these two results. This then gives the
following averaged results of the global fits:

ag(m?) = 03116 £0.0073  (FOPT + PV, global)

(62a)

= a;(M%) =0.1176 £ 0.0010. (62b)

It turned out that the central result of the Foﬁ approach is
practically equal to that of the FOPT approach, but the uncer-
tainties are higher. We did not include the FOPT approach
result in the average (62).

The uncertainty £0.0073 in Eq. (62a) was obtained by
adding in quadrature the deviation between the average value
0.3116 and the the central value 0.3075 of Eq. (60a), and the
minimal uncertainty +0.0061 of the two results Egs. (60a)
and (60c) (cf. a similar reasoning in Ref. [22]). The result
Eq. (62b), at the canonical scale Q2 = M% (and Ny =
5) was then obtained by RGE-evolution using the five-loop
MS g-function [50] and the corresponding four-loop quark
threshold matching [94].33

If, however, we included in the average also the CIPT
result (60b), the average central value and the uncertainties
would significantly increase

as(m?) = 0.3194 + 0.0167
(FOPT + PV + CIPT, global)
= a;(M%) =0.1186 % 0.0021.

(63a)
(63b)

In this context, we note that the relations and differences
between the FOPT and CIPT approach in FESRs of the semi-
hadronic t decays were investigated in the works [92] from
the point of view of Borel transforms and Borel sums. A Borel
transform was constructed for the CIPT of FESRs, by first
rewriting the CIPT series of such FESRs formally as a (FOPT-
type) series in powers of (o), ;’,(,Cl)a(crm)"+l , using for
the Adler function either the large-f( approximation [85,86]
or the renormalon-motivated model of Ref. [26].3* It was
shown that the resulting Borel transform has a significantly

32 We recall that the truncation index N; was determined in each method
in such a way that a relative stability of the full moments a9 () and
a®V (o) is achieved under the variation of N;.

33 The threshold matching was performed at the scales Qtzhr = Krhg

with « = 2, and my = my (n'1[2]) equal to 4.2 GeV (¢ = b) and 1.27
GeV (g = o).

34 We note that this sum > r,,(CD , strictly speaking, is not a
(8]

(FOPT-type) perturbation series, because each coefficient r,
sum is itself a series in powers of a(op, ).

a(om)11+l

in this

different structure of nonanalyticity than the Borel transform
of the FOPT FESRs (for the latter, cf. Appendix 1). For exam-
ple, in the large-f( approximation the # = 2 IR renormalon
of the Adler function is completely suppressed in the Borel
transform of the FOPT FESRs momenta a®™ (o) (with
n > l),35 while this is not the case for the u = 2 IR renor-
malon in the Borel transform of the CIPT FESRs momenta
a@n (0m). The Borel transforms of the CIPT FESRs do not
reflect the D > O structure of the OPE of the Adler function
Eq. (5), or equivalently, the corresponding OPE of the FESRs
Eq. (30d). This is in contrast with the Borel transform of the
FOPT FESRs which do respect this D > 0 OPE structure as
explained in Appendix 1. The authors of [92] suggest that the
CIPT FESRs would require different, nonstandard OPE cor-
rections, i.e., corrections which would not correspond to the
(D > 0) OPE corrections (5) and (59) of the Adler function.
In the present work, we did not try to implement such non-
standard OPE in the CIPT evaluations. For these reasons, and
for the reasons explained earlier in this section, we consider
it correct to include only the FOPT and PV results, leading to
Eq. (62), and not to include the values of «; extracted from
the CIPT evaluations Eq. (63). The question of how to treat
correctly the CIPT evaluations of the sum rules, in particular
the related nonstandard OPE corrections, is left open in this
work.

If we perform the truncation in all methods at the index
N; = 5 (~ a°),’® the central results do not change very
much; e.g., the average of the central values of the FOPT+PV
methods (and of FOPT+CIPT+PV methods) of the global
fits, when always N; = 5 is taken, is o (m%) =0.3172 (and
0.3231), respectively, not very far away from the respective
central value 0.3116 Eq. (62a) (and 0.3194), respectively.

For comparison, we present in Table 6 the values of
o (m%) extracted from ALEPH t-decay data by various
groups, using various sum rules and various methods of eval-
uation.

In the Table the results are presented to three digits. The
result of Ref. [71] is an update of the result of Ref. [68],
and uses a (PV) summation of a renormalon-motivated Borel
transform with a conformal mapping. The results from Ref.
[21] in the Table are given for their V+A channel analysis. We
can see in the Table that the results of the exhaustive analysis

35 In the large-Bo approximation, the same type of relations are valid
for the Borel transform of a®™ (oy) as in Eq. (A15) for the Borel
transform of @@ (o). Further, the u = 2 IR renormalon residue is
in our considered model numerically significant in B[d](u), Egs. (23)—
(24), as well as in B[d](u), cf. Egs. (25), (50) and Table 1 (first line,
last column).

36 This truncation was used in [22] (cf. also [96,97]) where N, = 5
FOPT and CIPT methods were used and dy = 275 4400 (at k = 1).
We use dy ~ 338 + 338, i.e., the central value d4 =~ 338 as suggested
by the described renormalon-motivated extension of the D = 0 Adler
function.
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Table 6 The values of o (m%), extracted from ALEPH t-decay data, as obtained by various groups applying sum rules and various methods. 'BL’
stands for (double-pinched) Borel Laplace, and ‘DV’ stands for a duality violation model

Group Sum rule FOPT CIPT 13% Average

Baikov et al. [16] a®b =, 0.322 +0.020 0.342 £0.011 - 0.332 £ 0.016

Beneke and Jamin [26] a®b =, - - 0.316 £ 0.016 0.316 £0.016

Caprini [71] a®b =, - - 0.314 + 0.006 0.314 4 0.006

Davier et al. [21] al:-d) 0.324 0.341 4 0.008 - 0.3324+0.012

Pich and Rodriguez-Sanchez [22] al:-d) 0.320 +0.012 0.33540.013 - 0.328 +0.013

This work BL 0.308 £0.007  0.33579010 0.3167990% 0.312 4 0.007 (FOPT+PV)
Boito et al. [23] DV in a®/) 0.296 4+ 0.010 0.310+0.014 - 0.303 +0.012

Pich and Rodriguez-Sanchez [22] DV in a®/) 0.298 4+ 0.031 0.312 4 0.047 - 0.302 4 0.032

of Ref. [22] gave a result for CIPT approach very similar to
ours, while their FOPT analysis gave a result significantly
higher than ours. The latter occurred principally because in
our case of FOPT evaluation the optimal truncation index
turned out to be relatively high (N, = 8) which indicates that
the (renormalon-motivated) extension of the Adler function
beyond the order a® (N; = 5) plays arole in our case of FOPT
evaluations. Nonetheless, we recall that the F/O\I_;F method in
our global fits gave alower index value N; = 6 and a similarly
low central value o (m%) = 0.307 (but higher uncertainties).
We can see in Table 6 that the duality violation analysis of
Ref. [23] (cf. also [40,88,98]) gives even significantly lower
values of «. On the other hand, it was argued in Ref. [22]
that the uncertainties in this DV-model should be larger.

In a recent work [99], the mentioned DV-model strat-
egy was used in FOPT-evaluated FESRs of semihadronic
T-decays, using an experimental spectral V-channel function
based on data from various experiments (ALEPH, OPAL,
BABAR, and supplemented by e*e~ — hadrons data), and
they obtained the result o (m%) = 0.3077 & 0.0075, which
is very close to our result o (m%) = 0.3075f8:8828 obtained
from Borel-Laplace sum rule global fit with FOPT method,
cf. Eq. (60a) and Tables 4 and 6.

In this context, we point out that our analysis used
the combined V+A channel of ALEPH data, and involved
double-pinched sum rules (¢®™ and double-pinched Borel—
Laplace). We believe that both of these aspects suppress sig-
nificantly the possible duality violation effects in our analy-
sis.

The Mathematica programs on which our calculations
were based are available from the www page Ref. [100].
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Appendix A: Renormalon structure of Adler function-
related sum rules

In this Appendix we will present relations between the renor-
malon structure of the Adler function d (Qz)(D:()) and the
considered FESRs a?" (o) and double-pinched Borel-
Laplace sum rules.

The (D = 0) parts of the theoretical side of the FESRs
a®"m (o), cf. Eqgs. (30b) and (30d), consist of the following
elements:

@ _ 1 dx , . o
8 n = d = —O0j —
N o £x=1 P o mX)(D=0)

1 + ) )
=(-1)"— / de ™ d(ome'?) (p=0)
W N

(n=0,1,...), (AD)

where x = ¢2/om = —0?/om = —e'?, and the perturbation
expansion of d(0?) (D=0) In powers a"tlis giveninEq. (11),
and in logarithmic derivatives a,, 11 in Eq. (13) [cf. Eq. (14)].
The auxiliary quantity d(0%; k) (p=0) is defined then via the
expansion Eq. (18) as expansion in powers a"*!. This aux-

iliary quantity is independent of the renormalisation scale
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parameter « only when a(k Q%) runs according to the one-
loop RGE, due to the (exact) identities (19).

On the basis of the sum rule quantity 8%) of Eq. (Al) we
define the corresponding sum rule quantity with d — d

~ i dx ~
8D (1) = 3 —x"d(Q* = —omx; 1) (p=0)
X|=
1 + . ~ .
=" / de " d(ome'?: k) (p=0).
(A2)

It is x-independent only in the case of one-loop running of
a(k 0?).

The Borel transform ofg(D:o), 8[67] (u; k) of Eq. (20), has
the exact xk-dependence as given in Eq. (21). The auxiliary
quantity 07( p=0) is obtained from the Borel transform B[J]
by the inverse Borel transformation

30% o —if+°°duex [_;]
0=0="g" ] P17 Boak 02)
Bld\(u; «) = doa(k Q%) + d (kK)a(k 0*)?

+. 4+ dy (a0 4. (A3)

Further, if we apply in g(amei‘i’; k) (p=0) in the sum rule (A2)
the one-loop (1¢) RGE running of a(kome'®) around ¢=0

1

a9 (kopel?) - a9 (ko)

u u .
X | ot = | i e | P
(Adb)

(Ada)

+iBop =

then the quantity 8)(;{) Eq. (A2), in this (1¢)-approximation,

turns out to be

~ 1 —+00
5)%’10 — _/ du exp I:_+:|
Bo Jo Boa1® (kom)

sin(mwu) 1

Bld\(u; k), (AS)
7  (u—n)
which means that the Borel transform of 8%; 10 437
g sin(wu) ~
B8 s 1) = Bld](u; «). (A6)
7  (u—n)

The expression (AS) was obtained by using in the definition
(A2) the (1¢€) version of the identity (A3)3®, exchange the
order of integration over du and d¢, and use the (1£)-identity
(A4b); the integration over d¢ is then trivial

/-+7r 4 0% — (_1yrHn sin(mru)

—n (n—u)’ A7

37 Cf. [28,64,65] where the notation is slightly different; cf. also [26,
87].

38 je.in Eq. (A3) we replace everywhere a(« Qz) — a0k Q2).

leading to the identity (A5). The quantity 8 ' Eq. (A5) is
k-independent because the Adler function auxiliary quan-
tity Eiv(ame"‘/’; k)(p=0)y in the integrand in Eq. (A2) is k-
independent when a(x Q%) runs according to the one-loop
RGE

~ 1 +00 ~
ALy = B /0 du exp [—7/3061(1;)‘(,( Qz)]s[d](u;w

= dpa" Q%) + -+ + Ay (1)a"0 (c Q) + -
(A)

We point out that the coefficients gn (k) remain unaffected
by this replacement a(x Q%) — a'® (k 0?), leading from
Eq. (A3) to (A8). We can see also explicitly that the expres-
sion Eq. (AS) is k-independent, because B[c?](u; K) =

~

k" B[d](u) [Eq. (21)] and therefore by Eq. (A6)

BI8Y0 (s 1) = exp(u In ) BI8L 01 w) (A9)
and
a9 (ko) = %(0m) (A10)

(1 +a(om)Bolnk)’

When combining Eqs. (A9)-(A10), we see that the integrand

on the right-hand side of Eq. (AS) [cf. also Eq. (A6)] is «-

5(5; 1¢)
xn

independent and thus is k-independent.

1. One-loop Borel transform of FESR auxiliary moments
@
a

Using the identity (A5) we can now obtain directly the one-
loop Borel transform of the (D = 0)-part of the FESR
moments a®>™. The (D = 0) part of a®™, at any loop
order, is [cf. Eq. (30d)]

+ )
a®" o)== 5 | dp GO (ome™®) d
—TT

x (ome®) (A1)
(D=0)
and the auxiliary (tilde) version is defined to be
a %" (om; k) (p=0)
1 +r . - .
= de G®M (ame’¢) d (amel¢; K) )
27 ), (D=0)
(A12)

in complete analogy with the definitions (Al) and (A2).
When taking into account the explicit expression (30b) for
the integrated weight function GZM(0?), we obtain

n+3
a®" (om)(p=o) = 89 — (—> 57

x0 n+1 x!
n+3\ @ )
+ <m) 8enrr =8, (Al3a)
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~ n+3
a2 (om; K)(p=0) = 8 D () — (—) 3<d>( )

+ 1
n+3 d d
+ <m) in}d( ) — 5(n)+3('€)'
(A13b)

When @41 (k Q%) terms in d(Q2, k) in Eq. (A12) evolve
according to the one-loop RGE from Q% = o, to Q% =
ome'? [cf. also Eq. (A8)], we obtain

~(2,n);(115) (CT )(D:O)

@10 n+3\ @10 n+3\ @i @10
=3, (m) S+ (m Sowra =8 ks -
(A14)

Using here the corresponding identities (A5)—(A6), the fol-
lowing one-loop Borel transform of the auxiliary (tilde)
FESR momentum 5(2’”)(am)( D=0) is obtained:

sin(wu)

Bld)(u; )
{1 <n+3) 1
X —_—
u n+1/) m—1)

n n+3 1
<n+1 (u—n-—2)

1

u—n-—23) } ’
where we recall that the (D = 0) auxiliary Adler function
J(Qz; K) = d(Q K)(D —o) was defined in Eq. (18) as a
power series, and B3 [d] (u; k) is given as expansion in Eq. (20)
and as the renormalon-motivated ansatz in Eq. (23). We point
out that the expansion of the expression (A15) in powers of u
generates the coefficients of the (one-loop) FOPT expansion
of the sum rule 5(2’”);(16)(%1), i.e., in powers of a9 (kom),
as implied by the relation (AS). We argue here (and later on)
that the superscript (1¢) on the left-hand side of the relation
(A15) can be omitted, because the coefficients of the (FOPT)
expansion in powers of a (ko) of the quantity @™ (o ; k)
are unchanged when in the expansion we replace a(komy) +—
a9 (ko) [and thus obtain @™ 10 (g,)], in complete
analogy with Egs. (A3) and (AS) for d and 19, Thus we
can write B[a@": 10 (g,01(u: k) = B[@a%™ (om)1(u; «).

We note that the identity (A15) implies, due to the fac-
tor sin(ru), that for all n > 0 we have suppression of the
leading UV u = —1 double-pole renormalon of B[J](u)
[cf. Eq. (23)] into single-pole renormalon in the Borel trans-
form B[@>™](u). Further, for n > 1 the leading IR u =
2 (single-pole) of B[g](u) [~ 1/(2 — u)] disappears in
Bla@m1.

The IR renormalons which do not get suppressed in
Bla@M]areu = (n+2)andu = (n+3). This is reflected in
the survival of the condensates (Op) with D = 2(n +2) and
D =2n+3)ina®" cf. Eq. (30d) where we assumed that

BIa®" " (om)1(u; ©) =

(A15)

@ Springer

the condensates in the OPE (5) are Q2—independent [how-
ever, see the related discussion around Eq. (59)].

2. One-loop Borel transform of auxiliary Borel Laplace b

We will denote the (D = 0) part of the Borel-Laplace sum
rule Bin(M?; om) as B (M?; om)(p=0) = b(M?; o), ie.,
the contour integral in Eq. (31d) involving d(ome'?)(p—o).-
The corresponding auxiliary (tilde) quantity is then obtained
by replacement d(p—g) — 57( D=0)

o 1 +
b(M?; k) = = d¢
T J-xn

x {[(1 + e"¢)2 - 21;4—; (1 + ei¢)
2 (2) Jon(gme
-2 (f_:)zeXp (_%) } J(Gmew; K>(D:0) ’

(A16)

In an analogous way as in the previous Sect. 1, we then obtain
the relation between the Borel transform of this quantity in
the one-loop case and the Borel transform of d(p—o)

BIHO(M?; o) 1(u; )

sm(nu) ad 1)"

R ()

{ 1 ( M2> 1

x{— (1=
(u—2—n) om ) u—1—n)
A NG S

+< ) E)(u—nﬁ (E) uGu—n |

(A17)

= Bld](u;

Again, as in Eq. (A15), we see that, due to the factor sin(mwu),
we have suppression of the leading UV u = —1 double-
pole renormalon of Bld1(u) [cf. Eq. (23)] into single-pole
renormalon in the Borel B [5(16) (M?)1(u). We point out that
the superscript (1¢) on the left-hand side of the relation
(A17) can be omitted, in analogy with the argument about
Eq. (A15) (in the paragraph after that equation), i.e., we have
BB (M 0m)1(u; 1) = BIB(M?; o)1 (w5 1€).

In order to obtain the identity (A17), the following inte-
grations over angle ¢ were performed [in addition to the
integration (A7) with n = 0]:

1 + ) )
TIn(u; A) = | d¢ Pl m—u)¢ exp (Aet¢)
T
1 An + .
=52 dg &m0 (A18)
m iz nl J 4
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wherem =0, 1,2, and A = am/M2 is a complex constant.
The resulting expressions for these integrals are

1

Tt ) = (-1 T 5 CU

= n! (u —m —n)
u>0&u#mm+1,...), (A19a)
1
ANV u=N=m,m+1,...)

(N —m)
(A19b)

The last identity (A19b) is obtained as the limit of the expres-
sion (Al19a) whenu = N +eande — 0 (with N > m
integer).

3. Relation with the full expansion coefficients

We will argue here that the results (A15) and (A17) give us
information about the full (i.e., beyond one-loop approxi-
mation) FOPT expansion coefficients of the (D = 0) sum
rule quantities a(z’")(am)(D:()) and By (M?; Om)(D=0) =
b(M?; 61y).3°

Here we will denote, for simplicity and generality, the
sum rule quantity as R(om)(p=0) = r(0om), i.e., this can be
a®™ (o) (p=0)y or any FESR moment a¥™ (6, (p=0), Or
Borel-Laplace sum rule b(M~; 2. gm). Further, we will denote
the corresponding aux111ary quantity as 7(om; ), in analogy
with the function d1 (0% k)(p=0)y Eq. (18) which is auxiliary
to the Adler function d(Qz)(D:()) Egs. (11)-(13).

Starting with the renormalon-motivated expression for the
Borel transform B[J](u) of Eq. (23) [cf. also Egs. (21) and
(20)], the relations (A15) and (A17) generate the coefficients
of the auxiliary quantity 7(om; k) which is related with the
original sumrule r (oy, ) in the same way as the auxiliary Adler
function d1 (Qz; k)(p=0) is related with the Adler function
d(Q*)(p=0) [cf. Egs. (11)~(18)]

10) e o Tl
BIF (om)1(us 1) = Fo + e g
= B[F(om)1(u; «), (A20)

where
719 (0m) = F0a" (kom) + F1(0)a'? (kom)? +

+70()a" (ko) T+ (A21a)
F(om; k) = roa(kom) + 71 (/c)a(/arm)2 + ...

+7, () alkom)" T + (A21b)

39 This is in contrast to the usual arguments in the literature which
refer to the large-Bp (LB) approximations of physical quantities. The
latter approximations give us information only on the LB-parts dl(\}“B)
of the full expansion coefficients d, (# d, (LB)) of the Adler function
d(Q? )(p=0), and on the LB-parts r(LB) of the full FOPT expansion
coefficients r,, (# r,(l B)) of the sum rule quantities R (oy,).

In Eq. (A21b) we explicitly wrote down the auxiliary quan-
tity 7(om; ) at any loop level, in order to point out that it
has identical coefficients as the one-loop version 710 (o) in
Eq. (A21a). These generated coefficients 7, (k) contain the
full (i.e., beyond one-loop) information about the original
sum rule quantity r (o) whose two variants of the perturba-
tion expansion [’Ipt’ and *pt’, in analogy with Egs. (13) and
(11) for the Adler function] are

r(om)ipt = roa(kom) + 71 (k)d2(kom) + . ...

+70 (K) a1 (kom) + -+, (A22a)
r(om)pt = roa(kom) + ri(k)alkom) + - -
+ra()aom)" T+ (A22b)

where we recall the definition (14) of the logarithmic deriva-
tives d,+1. Here, 7, (k) and r; (k) are interpreted as coeffi-
cients of the FOPT expansion and of the FOPT expansion
of the sum rule quantity (o, ), respectively, with the renor-
malisation scale parameter x. The two sets are related in the
same way Eq. (43) as the corresponding coefficients of the
Adler function expansion coefficients Eq. (17).

It can be checked that the described construction of expan-
sions (A22) represents the FOPT expansion and of the FOPT
expansion of the sum rules, by comparing the obtained coeffi-
cients with those obtained in the direct application (via Tay-
lor expansions) of the FOPT and the FOPT expansion as
described in Sect. 4.2.1, Eqgs. (39) and (42).

Furthermore, in order to understand better why the con-
struction, leading via Eq. (A20) to expansions Eq. (A22),
gives the usual FOPT and FOPT expansions, we note that the
logarithmic derivatives @, as defined in Eq. (14), although
being quantities which contain the information on the RGE
running to any chosen loop level, simulate in all Taylor expan-
sions the powers (a19)"*1 of the one-loop coupling because
of the relations [cf. Eq. (36)]

n+k)! -

= (=B T (K 0, (A23a)
d k n+1
(mge) (a"w0?)
= (BT (n-i- k)! ( (1@)(I{Q2))""’k+l
n,k=0,1,.. .). (A23b)

We can regard the powers (a'9)"*! in the construction

described in this Appendix as an instrument of provisional
replacement: (a) in the full physical quantities we replace
the (full) couplings @, 1: dpy1 > (@19)"F1; (b) thus the
Borel transforms of the auxiliary power series can be con-
structed and the simple one-loop RGE running can be used
in the relations involving such Borel transforms; (c) at the
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Table 7 The (MS) coefficients 7,, and r,, (with k¥ = 1) of the FOPT
expansion in powers of a(oy,) for the FESR r (o) = a(z’l)(om)< D=0)
[= re(om)®P=9], where the considered renormalon-motivated Adler

function extension was used. The values of the first four coefficients
(n =0, 1, 2, 3) coincide with the exactly known values. See the text for
details

n T " Tn/ (0! (=Bo)™) ra/ (T +n)(=Bo)") ra /(T +1+n)(=po)")
0 1 1 1 0.229221 1.09217

1 5.20232 5.20232 —2.31214 —2.52525 —2.0872

2 17.1174 26.3659 1.6906 47014 2.12745

3 27.7416 127.079 —0.405912 —4.55729 —1.41977

4 12.3144 645.972 0.0200203 3.20758 0.761917

5 753.119 4177.38 —0.108835 —2.18985 —0.420328

6 6687.87 34981.1 0.0715913 1.56435 0.251914

7 35360.5 353440. —0.0240331 —1.13123 —0.1569

8 —199635. 3.63992 x 10° —0.00753801 0.718154 0.0874744

9 3.45803 x 10° 3.76036 x 107 —0.00644797 —0.401639 —0.0436096
10 —7.23142 x 107 3.25358 x 108 —0.00599288 0.167699 0.0164252

11 2.05973 x 10° 3.28947 x 10° —0.00689679 —0.0738062 —0.00658403
12 —5.25891 x 1010 1.98763 x 1010 —0.00652182 0.0176815 0.00144813

13 1.56285 x 1010 5.80646 x 10! —0.00662621 —0.0188019 —0.00142332
14 —4.89715 x 1010 —1.45412 x 10'2 —0.00659144 —0.0015842 —0.000111486
15 1.65649 x 1013 3.06976 x 10'4 —0.00660619 —0.0104602 —0.000687724
20 —1.77596 x 10?3 —1.86613 x 10%? —0.00660174 —0.00742934 —0.000367609
25 6.52936 x 103! 5.81784 x 103 —0.0066018 —0.00750835 —0.000297834
30 —6.43869 x 10%0 —4.97698 x 10%° —0.00660179 —0.0075187 —0.000248882
end, the inverse replacements (a'9)"*! \— &, are made  pole (SP) u = —1 UV renormalon contribution (columns 4

[cf. Eqs. (A21a) and (A22a)].

The above arguments also show that the sum rules (which
are timelike quantities) have FOPT perturbation expansions
(A22b) for which the same renormalon-related arguments
[29] can be applied as for the perturbation expansions of
spacelike quantities such as the Adler function Eq. (11),
except that now, instead of in general complex (and non-
negative) 02, we have Q> = o, > 0.*0 Specifically, if
7(om) has a double-pole (DP) or a single-pole (SP) u = —1
UV renormalon, the ’Ipt’-expansion coefficients for large n
behave as: 7, ~ (n + 1)!(—fBp)" (DP) and 7, ~ n!(—pBy)"
(SP). And the usual perturbation expansion ('pt’) cefficients
r, behave as r, ~ I'(y; + 1 + n)(—Bo)"[1 + O(1/n)]
(DP) and r, ~ T'(y¥| + n)(—Bo)"*[1 + O(1/n)] (SP) where
v1 = 1—c1/PBo [cf. Egs. (26) and (29)]. To illustrate this, we
present in Table 7, which is analogous to Table 2 made for the
coefficients of the Adler function, the expansion coefficients
rp, for the FESR moment r (o1,) = a®V (o) at increasing n,
and we can see that at large n they are dominated by single-

40 In Ref. [29] these arguments were presented for spacelike quantities,
but are valid also for (FOPT expansion) of timelike quantities, as shown
here.

@ Springer

and 5), not double-pole (DP, column 6) where no convergence
of the corresponding ratio is seen when n increases.

For better visualisation of the behaviour of the various
contributions (X=UV1, IR2, IR3) to the expansion coeffi-
cients, we present in Table 8, for k = 1 the ratios of the
Ipt-coefficients g,)f /Zlvn and the pt-coefficients dz( /dy of the
renormalon-motivated Adler function extension d ( Q2)( D=0)»
and in Table 9 the corresponding ratios of the (ﬁ)\ﬁ“) Ipt-
coefficients 7X /7, and the (FOPT) pt-coefficients rX /r, of
the moment @V (o) (p=0).

The three types of the coefficients 32( are generated by
the corresponding X-parts of the Borel transform 5 [c?x](u)
of Eq. (23):

Bld™?|(u) = exp (I?u) nc’gﬁ

! G(—Dn(1-"~ A24
x|:(2_u)+a(—)n( —5)]( a)

FIR3 1% g;R2 %Rl
Bld ](u):exp(Ku)n|:(3_M)2+(3_u):|,
(A24b)
B[dYV! K at] A24
[d°Y ' (u) = exp ( u)nm. (A24c)
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Table 8 The ratios of (2‘ /;fn and dX /d, for the separate renormalon contributions X=UV1, IR2, IR3 (« = 1). See the text for details

n aMN'yd, ar2/d, d®/d, dN' /dy 42/d, 4, /d,

0 —0.0369777 1.74086 —0.703878 —0.0369777 1.74086 —0.703878

1 0.0751416 1.82491 —0.900055 0.0751416 1.82491 —0.900055

2 —0.227154 2.28546 —1.0583 —0.0888303 2.07472 —0.985892

3 0.257563 1.15757 —0.415136 0.0786098 1.61026 —0.688871

4 —1.97777 4.03101 —1.05324 —0.100583 1.75565 —0.65507

5 0.573134 0.526712 —0.0998467 0.0988345 1.31603 —0.414865

6 1.55361 —0.642222 0.0886165 —0.170178 1.57339 —0.403212

7 0.856263 0.159776 —0.0160393 0.170568 1.04224 —0.212812

8 1.08529 —0.0919885 0.0066947 —0.445023 1.72205 —0.277025

9 0.964573 0.0373903 —0.00196364 0.325567 0.771334 —0.096902

10 1.01747 —0.0181542 0.000684715 —3.6304 5.12945 —0.499046

11 0.992026 0.00819475 —0.000220967 0.56694 0.468045 —0.0349855

12 1.00378 —0.00385884 0.0000740791 1.81027 —0.859241 0.0489724

13 0.99823 0.00179409 —0.0000244279 0.795075 0.214165 —0.00924029
14 1.00084 —0.000844392 8.12647 x 10~° 1.17141 —0.177161 0.00574714

15 0.999605 0.000397336 —2.69455 x 107° 0.924117 0.0777677 —0.00188487
20 1.00001 —9.63217 x 107° 1.09306 x 1078 1.00407 —0.00409122 0.0000213327
25 1. 2.4567 x 1077 —4.45651 x 10711 0.999823 0.000177578 —1.80582 x 1077
30 1. —6.48368 x 107? 1.82225 x 10~ 13 1.00001 —7.25984 x 10~° 1.34644 x 1072

Table 9 The ratios of 7X /7, and rX/r, for the separate renormalon contributions X= UV1, IR2, IR3 (¥ = 1) to the expansion coefficients of the

moment a2V (om)(p=0)- See the text for details

n ;;EJVI /?n ?,IlRZ /?n 7,11R3 /7n }’EVI /rn r,Ile/}"n r,IlR3/rn

0 —0.0369777 1.74086 —0.703878 —0.0369777 1.74086 —0.703878

1 —0.0016366 1.76735 —0.765715 —0.0016366 1.76735 —0.765715

2 0.00115689 1.90818 —0.909336 0.000176997 1.85878 —0.858957

3 0.0292924 1.94063 —0.969924 0.00678763 1.88949 —0.896275

4 —0.336112 —9.25836 10.5945 0.00356353 1.68224 —0.685802

5 0.0544734 —0.674834 1.62035 0.00768777 1.06683 —0.0745162

6 —0.0935855 0.492648 0.600937 —0.00304746 0.433505 0.569543

7 0.276281 0.688188 0.0355313 0.00586736 0.132549 0.861583

8 0.874355 0.0718354 0.0538095 —0.0117557 0.134466 0.87729

9 1.02372 —0.149521 0.125801 0.0172694 0.245631 0.7371

10 1.1017 —0.0243494 —0.0773549 —0.044734 0.375478 0.669256

11 0.957225 0.0227348 0.0200405 0.100847 0.35506 0.544093

12 1.01226 —0.00625002 —0.00601012 —0.419918 0.484553 0.935364

13 0.996316 0.00154863 0.00213505 0.396335 0.177134 0.426531

14 1.00157 —0.00075326 —0.000818179 47062 —1.19453 —2.51167

15 0.999335 0.000372428 0.000292517 0.713473 0.108541 0.177986

20 1.00001 6.22701 x 10~° —1.53368 x 10~° 1.00816 —0.00481066 —0.00334754
25 1. 1.21648 x 1077 7.73617 x 10~° 0.99982 0.000145671 0.0000345216
30 1. —2.596 x 10~° —3.75139 x 1071 1. —4.50729 x 10=¢ —3.03692 x 1077
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The corresponding pt-coefficients d,)f were obtained by
ipplying the linear transformations (17) to 3,3( (instead of
dy).

The three types of the coefficients 7,),( of the moment
a®b (om)(p=0) are generated by the Borel transform (A15)
(for n = 1 there), where in the first factor on the right-
hand side of Eq. (A15) we apply the corresponding part
B[;ZX](u; k) (k = 1), and the coefficients r,z( are obtained
from 7,§’s by applying to them the linear tranformation (43)
[cf. Eq. (17)].

Inspection of the Tables 8 and 9 leads to the following
observations.

In Table 8 we see that the UV1 contribution becomes
dominant in the (Ipt-)coefficients gn forn > 7: 0.85 <
1dOV/d,| < 1.09; |dR2/d,| < 0.16; |d®3/d,| < 0.02.
On the other hand, the UV 1 contribution becomes dominant
in the (pt-) coefficients d,, for n > 13: 0.79 < |d}lN1/dn| <
1.17; |d®R?/d,| < 0.22; |d™R%/d,| < 0.01.

In Table 9 we see that the UV contribution becomes dom-
inant in the (FOPT) Ipt-coefficients 75, for n > 8: 0.87 <
[FOVI/F < L1 [FIR2 /7 < 0.15; 7R3 /7, < 0.13.
On the other hand, the UV1 contribution becomes domi-
nant in the (FOPT) pt-coefficients r,, for n > 15: 0.71 <
POV | < 1.24; [)R2 /| < 0115 7R3 /5, | < 0.18.

We point out that the IR2 renormalon contribution is not
cancelled exactly in the moment a? ])(am)( D=0), because of
the subleading IR2-term ~ In(1—u/2) in the Borel transform
B [57 ](u). Further, the aforementioned numerical behaviour of
the IR2-type ratios 7.R? /7, and El;lle /d, (as well as rR2/p,
and d,ng /dy) at high n might suggest that IR2 renormalon
is not suppressed in the moment r (o) = a(z’l)(am)( D=0)»
in contradiction with the conclusions coming from the iden-
tity (A15). However, we should keep in mind that the entire
coefficients 7, (r,,) at high n get significantly suppressed in
comparison with 47,1 (d,) (cf. also Tables 2 and 7), due to the
suppression of the dominant renormalon UV 1 in the moment
a@b (0m)(p=0): i.e., as explained earlier, at large n we have
Jn ~ (n+ 1)!(—Bo)"* and 7, ~ n!(—Bo)"; the corresponding
pt-coefficients are d, ~ I'(y¥| + 1 +n)(—po)"[1 + O(1/n)]
andr, ~ (¥ +n)(=po)"[1+ O1/n)].

In the work [101], similar renormalon-dominated asymp-
totic behaviour of perturbation coefficient was found for
spacelike and timelike quantities related with the scalar
current-current correlator; the analysis in [101] was per-
formed in the large-By approximation.
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