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Abstract

We shall review methods used in the description of decoherence on particle
probes in experiments due to surrounding media. This will include conventional
media as well as a model for space-time foam arising from non-critical string
theory.

1 The role of decoherence

Until recently in elementary particle physics the environment was not con-
sidered. Scatterings were calculated in a vacuum background and S-matrix
elements were calculated within the paradigm of the standard gauge theory
model. The latter is a successful theory overall. However, recently systems
which oscillate coherently have been investigated with increasing precision, e.g.
neutrino and neutral meson flavour oscillations. Clearly neutrinos produced in
the sun, on going through it, encounter an obvious scattering environment. In
laboratory experiments however there does not seem to be the need for such
considerations; of course there are uncertainties in determining time and posi-
tion which lead to features akin to decoherence 1). However, triggered again
by increased precision, the effect of fluctuations in the space-time metric due
to space-time defects such as microscopic black holes, and D branes in string
theory are being estimated. Given the smallness of the gravitational coupling
compared to the other interactions in the past the search for such effects was
regarded as optimisitc. Progress in experimental techniques is making such
effects more testable 2).

In this Handbook it was considered to be desirable to split the discussion
of decoherence between two chapters.This one will render a brief account of the
methods of decoherence that are used in the analysis of experiments given in
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the companion chapter 3). We shall demonstrate why there is a large univer-
sality class in the space of theories describing decoherence with most analyses
using models from this class. However we should stress that the universality
is for descriptions where the system-environment interaction is in some sense
conventional. Indeed when we introduce descriptions emanating from string
theory we can and do produce descriptions which can give qualitatively differ-
ent effects ). Such non-conventional descriptions are to be expected since it
is natural for quantum space-time to be somewhat different from the paradigm
of Brownian phenomena in condensed matter. Moreover the manifestation of
gravitational decoherence in a theory, which is diffeomorphic covariant at the
classical level, is not just restricted to fluctuation and dissipation. It is pivotal
in the breakdown of discrete symmetries such as CPT and more obviously T.
This is an exciting)role for decoherence because it gives rise to qualitatively
5

new phenomena which is being tested now and in the next generation of

laboratory experiments.
This paper will be divided into three sections:

¢ decoherence in a general setting with a discussion of how coherence is lost
and the implication for discrete symmetries

e generic treatment of system-reservoir interactions and the Lindblad for-
malism from Markovian approximations

e non-critical string theory and D-particle foam and the phenomenolgy of
stochastic metrics

2 General Features of Decoherence

The fact that an environment £ interacts with a system S and is affected by it
is obvious whether they interact classically or quantum mechanically. However
classically the measurement of £ can only locally affect S. This is in sharp
contrast to the quantum mechanical situation where non-local effects can take
place. The associated distinguishing property is that of entanglement. For the
compound system £S Schmidt bases allow us to write the state |¥) as

U) =D vbn |6n) |Pn)
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where the Hilbert space Hg of states |¢,,) are associated with S and the Hilbert
space Hg of states |, )are associated with £. In the Schmidt basis the states
for different n in the different spaces have to be mutually orthogonal i.e.

and the non-negative coefficients p,, satisfy >, p2 =1.
The corresponding density matrix is

P = Peclass. + Z \/pnpm |¢n> <¢m| @ |q>n> <q)m|

n#m

where pojass. = Y, Pn |Pn) (¢n] @ |Pr) (Pr|. The term p — peiqss. is known as
the entanglement. Clearly entanglement is a measure of the departure of the
compound system from a product state of states of S and £. A classic example
of a pure entangled state is the EPR state ( Einstein-Podolsky-Rosen) written
conventionally in terms of spin % systems

D1 =101
V2

which is clearly not factorisable. Now let us see how the interaction between S
and & leads to decoherence by considering a simple interaction

MHgs = |¢n) (bn| ® An

where En are operators on the He. For an initial pure unentangled state i.e. a
product state

) = ch |én) |©0)

n

(where |©g) can be expressed in terms of the |®,,)s) under time evolution

[60) 100) = ) exp (=i At ) [00) = 60) (00 (1))

The density matrix traced over the environment ps (¢) gives

ps () =D chen (Om (1) 00 (1)) |dm) (0]

n,m
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If the circumstances are such that (0, () |©,, (t)} — dmn as t — o0,
then asymptotically

rs (t) - Z |Cn|2 |¢n> <¢n| :

All coherences embodied by off-diagonal matrix elements have vanished, i.e.
6)

there is complete decoherence

We will now consider an associated aspect of the interaction of the sys-
tem with the environment, the lack of an invertible scattering matrix. Con-
sider schematically three spaces $1, 2 and $)3 where §); is the space of states
of the initial states, $)o is the state space for inaccessible environmental de-
grees of freedom (e.g. states inside a black hole horizon) and £)3 is the space
of final states. Within a scattering matrix formalism consider an in-state
>oa2a|Xa)10),10); (where the subscripts 1, 2 and 3 are related to the spaces
91, 92 and H3) this is scattered to 3 , SXCQCA |0}, ‘76>2 ‘7c>3 where the bar

above the state labels indicates the CPT transform ). ( On introducing the
operator # = CPT we have explicitly ‘Yb> = 0Y}) etc.) Now on tracing over

the inaccessible degrees of freedom ( in f)5 ) we obtain
7c> <7c

with the effective scattering matrix & given by

c d beg* b’
/SA A § :SA SA .
b,b’

|Xa) (Xal — > Si i

This does not factorise, which it would have to, for /S to be of the form
UUt.  Consequently evolution is non-unitary. This is generic to environmental
decoherence. Of course with space-time defects the inaccessible degrees of
freedom can be behind causal horizons.

For local relativistic interacting quantum field theories there is the CPT
theorem. Such theories show unitary evolution. A violation of CPT for Wight-
man functions ( i.e. unordered correlation functions for fields) implies violation
of Lorentz invariance ). However CPT invariance of course is not sufficient
for Lorentz invariance. For physical systems, which in the absence of grav-

ity show CPT invariance, the incorporation of a gravitational environment
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can lead to non-unitary evolution as we have argued. In fact we shall sketch
arguments from non-critical string theory which produce such non-unitary evo-
lution. There is then a powerful argument due to Wald which argues that an
operator € incorporating strong CPT invariance does not exist. The argument
proceeds via reduction ad absurdum. For strong CPT invariance to hold we
should have in states and out states connected by /& and € and their operations
commute in the following sense. For an in state p;, there is an out state p,y.
such that

Pout — ﬁpzn .

Also there is another out state p/,, = 0pi, associated with p;,. If the CPT
transforms of states have the same & evolution as the untransformed states
then there is strong CPT invariance. In such situations

0 SO Spin = pin

and so

0 60 5 =1,

i.e. A has an inverse. In most circumstances interaction with an envi-
ronment produces dissipation and so the inverse of /& would not exist. Hence

the assumption of strong CPT is incompatible with non-unitary evolution 9).

3 Particles propagating in a medium and master equations

Particles reaching us from outside a laboratory always travel through some
physical medium which can often be described by a conventional medium. For
the moment we will be general and call the medium £ and the particle S. We
are ignoring particle-particle interactions and so the approximation of a single
body point of view is appropriate. This bipartite separation can be subtle since
different degrees of freedom of the same particle can be distributed between £
and S. Initially (at ¢ = o) the state p of the compound system is assumed to
have a factorised form

p(to) = ps ® pe (1)
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with ps being a normalised density operator on the Hilbert space s of states
of & and analogously for pg . This condition may be not hold in the very
early universe and for an ever present meidum such as space-time foam; £ and
S would then always be entangled. Certainly for laboratory experiments the

10)

condition 1 is acceptable and the analysis is simplified. Write the total

hamiltonian H as
H=Hs+ Hg+ Hge

where Hgg represents the interaction coupling the system and environment.The
Heisenberg equation is

g ,
8—5 — i[Hs + He + Hse, p| = Lp (2)
and we will also find it useful to let —i[Hs, p] = Lsp, —i[Hg, p] = Lep and
—i[Hse, p] = Lsep. p evolves unitarily. For measuring with operators acting

on Hg it is sufficient to consider

ps =Trep (3)

but given a pg there is in general no unique p associated with it. Hence the
evoultion of pgs is not well defined. However by choosing a reference environ-
ment state pg satisfying

Legpe =0 (4)
we can associate with a ps a unique state ps ® pg of SE. In this way a well
defined evolution can be envisaged.

We will obtain a master equation for ps by using the method of projectors
11). Let us define

Pp=(Trep)® ps.

Clearly
P?p = [Trepe) (Trep) @ pe = (Trep) © pe = Pp

and so P is a projector. Also we define Q =1 — P. Acting on 2 with P gives

P% =PLp=PLPp+ PLQp. (5)
Similarly
dp
P — QLp— QLPp+ QLQp. (6)

ot
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These give two coupled equations for Pp and Qp. 6 can be solved for Qp on
noting that

7]
— —QL =QLP
( = —Q )Qp QLPp
and then on formally integrating

t a ’ t ’
/ = (e*QLt Qp(t/)) dt’ = / e QLY QLPp () dt!
o Ot 0

ie.

t
WGt = Qo)+ [ O QLPp () dr ()
0
This expression for Qp is substituted in 5 to give
dp Ips —QLt ' —QL(t—t")
Tre P% = = Tre [PLPpl+Trs |PL | e Qp0)+ | ¢ QL
0

and can be simplified further on noting that
PLgQp=PLe(p—Pp)=PLgp=0== PLs =0 (8)
owing to the cyclic properties of traces. Also

PLsQp=PLs(p—ps®ps)=LsPp—(Lsps)® ps =0=—= PLs = PLgP.
9)
Hence
Tre (PLsPp) = Tre(PLsp)
= Tre (T?”g (Lsp) & pg) =Tre (Lsp) = Lsps.

Also we assume that Hse = Vs ® Ve (which is standard for local quantum field
theory) and so

Tre(PLsePp) = Tre(PlLlssps ® pg)
= Tre[P(Vsps)® (Vepe) — P (psVs) ® (peVe)
= Tre[Vsps ® peTre (Veps) — psVs ® pelre (peVe))
= [Vs,ps]® pe (Tre (Vepe))
= Tre(Lseps) ps-
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The analysis would go through also when Hge is a sum of factorised terms.
Similarly on using 8 and 9

Tre (PLe?MQp(0)) = Tre (Lsee®"' Qp (0))
and
Tre (PLeQLt/QLPp (t — t/)) — Tre (LsgeQLt/QLps (t—t)® pg) .

In summary the master equation reduces to

G =L s O+ [ KOs -0+ 70 (o)
with
LY = Ls+Tre(Lsepe),
Kt)[ps] = Tre(Lsee®™QLps ® pel),

Jit)y = Tre (LsgeQLtQp (0))

In general it is an integro-differential equation with a memory kernel . Since
the evolution of p is unitary, the positivity of p is maintained. The partial trace
ps (t) of the positive operator p preserves the positivity. (10) is exact and so
guarantees a positive ps (¢). It is only when approximations (truncations) are
made that positivity may be lost. The Markov approximation occurs if there is
a timescale 7¢ associated with X (¢) which is much shorter than 75 the natural
time scale of the system S i.e. :—‘; — o0. This Markov approximation has to
be done carefully for otherwise positivity can be lost 12) Mathematically there
is another singular solution of this limit, 7s — oo with 7¢ finite 13) which leads
to )the phenomenonology of dynamical semi-groups and the Lindblad formalism
14

Definition 1 Time evolutions Ay with t > 0 form a dynamical semi-group if
a) Ay, o Ny = Ay 11y, ) Tr[Aepl = T [p] for all t and p and ¢) are positive

t.e map positive operators into positive operators.

There are other technical conditions such as strong continuity which we
will not dwell on. As far as applications are concerned the most important
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characterisation of dynamical semi-groups is that they arise from the singu-
lar limit mentioned above and are governed by the following theorem due to
Lindblad:

Theorem 2 If P($)) denotes the states on a Hilbert space $), and L is a
bounded linear operator which is the generator of a dynamical semi-group (i.e.
Ay = el ), then

Lol = —i[H, o] + %Z ([Vja Vf] + [Vj?pvﬂ)

where H (: HT) , Vi oand Zj VJTVJ are bounded linear operators on §).

This is the Lindblad form which has been used extensively in high energy
physics phenomenology. L [p], in the absence of the terms involving the Vs, is

the Liouville operator. H is the hamiltonian which generally could be in the

presence of a background stochastic classical metric 15) ( as we will discuss

later). Such effects may generally arise from back-reaction of matter within a

quantum theory of gravity 16)

which decoheres the gravitational state to give
a stochastic ensemble description. In phenomenological analyses a theorem

17) on the structure of L, the
14, 17)

due to Gorini, Kossakaowski and Sudarshan
generator of a quantum dynamical semi-group is of importance. This
states that for a non-negative matrix ¢y (i.e. a matrix with non-negative

eigenvalues) such a generator is given by

dp . 1
L= Lol = =ilH, o)+ 5> e ((Fup, ] + 10 pF])
k,l
where H = H' is a hermitian Hamiltonian, {Fy, k = 0, ...,n> — 1} is a basis in
M,,(C) such that Fy = <=I,,, Tr(F}) = 0 ¥k # 0 and Tr(F] ;) = 55 17)
applications we can take F; = % (where, for example, A; are the Gell-Mann
matrices) and satisfy the Lie algebra [Fj, I}] = i), fiulk, (i = 1,..8), fiji
being the standard structure constants, antisymmetric in all indices. It can
always be arranged that the sum over £ and [ run over 1,...,8. Without a

microscopic model, in the three generation case, the precise physical significance
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of the matrix cg; cannot be understood. Moreover a general parametrisation
of ¢y is too complicated to have any predictive power.

It is precise in formulation but gives no inkling of its S€ compound system

18) but nonetheless it has been useful in

progenitor. Therein lies its weakness
providing ‘test’ theories and estimating orders of magnitudes for the strength
of effects. If the strength of effects are in accord with a theoretical picture
then it has been customary to conclude that the source of the decoherence is
compatible with the theoretical picture. Recently it has been argued that this
may be too simplistic and it is necessary to delve into the background S€ to

be able to argue in favour of a picture.

4 Master Equations from (Non-critical) String Theory

When neutrinos from the Sun are produced ( e.g. from the nuclear p — p cycle)
and pass through it, the nature of £ and Lsg can be understood from the gauge

theories of the weak interactions 19)

. Consequently the programme outlined
in the previous paragraph with a perturbative evaluation of K (¢) is feasible in
principle. However in recent years there has been a debate on whether micro-
scopic black holes can induce quantum decoherence at a microscopic level. The
presence of quantum-fluctuating microscopic horizons, of radius of the order of
Planck length (1073° m), may give space-time a “foamy” structure, causing de-
coherence of matter propagating in it. In particular, it has been suggested 20)
that such Planck-scale black holes and other topological fluctuations in the
space-time background cause a breakdown of the conventional S-matrix de-
scription of asymptotic scattering in local quantum field theory.Hence when we
consider space-time foam we are on less firm ground for applying the Lindblad
formalism. Clearly gleaning an understanding of the nature of space-time itself
raises a huge number of foundational issues. String theory is one attempt to
address such questions but is still far from the goal of clarifying strong gravity.
There are some who even believe that gravity is an emergent feature and con-
sequently that an attempt to understand the quantum aspects of gravity may
be fundamentally futile. It is not appropriate to enter this debate here. As far

as experiments are concerned, both now and in the near future, it is reasonable
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to ask what the current theories have to say concerning quantum effects where
a nearly flat metric gravity is clearly reasonable.

The issue of quantum-gravity-induced decoherence is controversial and
worthy of further phenomenological exploitation. We shall restrict ourselves to

a specific framework for analyzing decoherent propagation of low-energy mat-

ter in foamy space-time backgrounds in the context of string theory 21, 22)7

the so-called Liouville-string 23) decoherence 24). One motivation for using
string theory is that it appears to be the best controlled theory of quantum
gravity available to date. At this juncture we should also mention that there
are other interesting approaches to quantum space-time foam, which also lead
to experimental predictions, e.g. the “thermal bath” approach advocated in
25)7 according to which the foamy gravitational environment may behave as a
thermal bath; this induces decoherence and diffusion in the propagating mat-
ter, as well as quantum damping in the evolution of low-energy observables,
features which are, at least in principle, testable experimentally. As we shall
see presently, similar behaviour is exhibited by the specific models of foam that

we study here; the D-particle foam model of 26, 27)

22)

may characterize modern
versions of string theory , and are based on point-like membrane defects in
space-time (D-particles). Such considerations have more recently again come
to the fore because of current neutrino data including LSND data 28). There
is experimental evidence, that the neutrino has mass which leads to neutrino
oscillations. However LSND results appear consistent with the dominance of
anti-neutrino oscillations 7, & ¥, over neutrino oscillations. In particular, pro-
vided LSND results turn out to be correct, which at present is quite unclear,
there is evidence for CPT violation. It has been suggested recently 5) that
Planck scale quantum decoherence may be a relevant contribution to the CPT
violation seen in the experiments of LSND. Other examples of flavour oscil-
lating systems with quite different mass scales are furnished by BB and KK
systems 29) The former because of the large masses involved provides a partic-
ularly sensitive system for investigating the Planck scale fluctuations embodied
by space-time foam. In all these cases, experiments, such as CPLEAR 30)7
provide very low bounds on CPT violation which are not inconsistent with
estimates from dimensional analysis for the magnitudes of effects from space-
time foam. These systems have been analyzed within a dynamical semigroup
approach to quantum Markov processes. Once the framework has been ac-
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cepted then a master equation for finite-dimensional systems ensued which was
characterized by a small set of parameters. This approach is somewhat phe-

nomenological and is primarily used to fit data 31, 32, 33)

. Consequently it is
important to obtain a better understanding of the nature of decoherence from

a more fundamental viewpoint.

Given the very limited understanding of gravity at the quantum level,
the analysis of modifications of the quantum Liouville equation implied by
non-critical strings can only be approximate and should be regarded as circum-
stantial evidence in favour of the dissipative master equation. In the context of

two-dimensional toy black holes 34)

and in the presence of singular space-time
fluctuations there are believed to be inherently unobservable delocalised modes
which fail to decouple from light (the observed) states. The effective theory
of the light states which are measured by local scattering experiments can
be described by a non-critical Liouville string. This results in an irreversible
temporal evolution in target space with decoherence and associated entropy

production.

The following master equation for the evolution of stringy low-energy

matter in a non-conformal o-model can be derived 24)

dip=ilp, Hl+: 8'Gij [¢7, 0] : (11)

where ¢ denotes time (Liouville zero mode), the H is the effective low-energy
matter Hamiltonian, ¢* are the quantum background target space fields, 5% are
the corresponding renormalization group § functions for scaling under Liouville

dressings and G;; is the Zamolodchikov metric 35, 36)

in the moduli space of
the string. The double colon symbol in (11) represents the operator ordering
: AB :=[A, B] . The index i labels the different background fields as well as
space-time. Hence the summation over 4,7 in (11) corresponds to a discrete

summation as well as a covariant integration [ dPt 1y /=g where y denotes a

set of (D + 1)-dimensional target space-time co-ordinates and D is the space-
time dimensionality of the original non-critical string.

The discovery of new solitonic structures in superstring theory 22) has
dramatically changed the understanding of target space structure. These new
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non-perturbative objects are known as D-branes and their inclusion leads to
a scattering picture of space-time fluctuations. Heuristically, when low energy
matter given by a closed (or open) string propagating in a (D + 1)-dimensional
space-time collides with a very massive D-particle embedded in this space-time,
the D-particle recoils as a result. Since there are no rigid bodies in general rel-
ativity the recoil fluctuations of the brane and their effectively stochastic back-
reaction on space-time cannot be neglected. On the brane there are closed
and open strings propagating. Each time these strings cross with a D-particle,
there is a possibility of being attached to it, as indicated in Fig. 1. The entan-
gled state causes a back reaction onto the space-time, which can be calculated

perturbatively using logarithmic conformal field theory formalism 37).

(@ (b) ©

e
N

t<0 t=0 t>0

‘ D—particle /String Scattering with recoil ‘

Figure 1: Schematic picture of the scattering of a string matter state on a D-
particle, including recoil of the latter. The sudden impulse at t = 0, implies a
back reaction onto the space time, which is described by a logarithmic conformal
field theory. The method allows for the perturbative calculation of the induced
space-time distortion due to the entangled state in (b).

Now for large Minkowski time ¢, the non-trivial changes from the flat

metric produced from D-particle collisions are

=l (12)

goi = Uy =
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where w; is the velocity and Ap; is the momentum transfer during a collision,
£7? is identified with ¢ and M p is the Planck mass (actually, to be more precise
Mp = My/gs, where g; < 1 is the (weak) string coupling, and M is a string
mass scale); so go; is constant in space-time but depends on the energy content
of the low energy particle and the Ricci tensor Ry = 0 where M and N are
target space-time indices. Since we are interested in fluctuations of the metric
the indices 7 will correspond to the pair M, N. However, recent astrophysical
observations from different experiments all seem to indicate that 73% of the
energy of the Universe is in the form of dark energy. Best fit models give the
positive cosmological constant Einstein-Friedman Universe as a good candidate
to explain these observations. For such de Sitter backgrounds Ry o Qgarn
with @ > 0 a cosmological constant. Alsoin a perturbative derivative expansion
(in powers of o/ where o/ = [2 is the Regge slope of the string and [, is the
fundamental string length) in leading order

Buy = &/ Ry = &/'Qgu (13)
and
Gij = 0ij. (14)
This leads to
dip=ilp, Hl+ o/ guw [0, p] - (15)
For a weak-graviton expansion about flat space-time, gasny = nary + hary, and
Ap;
ho; . 16
0 o (16)

If an antisymmetric ordering prescription is used, then the master equation for
low energy string matter assumes the form

atpMatter: { [pMatte*m H] - Q [h0j7 [h0j7pMatter]] (17)

( when o’ is absorbed into Q). In view of the previous discussion this can be
rewritten as

atpMatter: t [pMatte*m H] - Q [ﬂj7 [ﬂj7pMatter]] . (18)

thereby giving the master equation for Liouville decoherence in the model of a
D-particle foam with a cosmological constant.
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The above D-particle inspired approach deals with possible non-perturbativ
quantum effects of gravitational degrees of freedom. The analysis is distinct
from the phenomenology of dynamical semigroups which does not embody spe-
cific properties of gravity. Indeed the phenomenology is sufficiently generic that
other mechanisms of decoherence such as the MSW effect can be incorporated
within the same framework. Consequently an analysis which is less generic and
is related to the specific decoherence implied by non-critical strings is neces-
sary.It is sufficient to study a massive non-relativistic particle propagating in
one dimension to establish qualitative features of D-particle decoherence. The
environment will be taken to consist of both gravitational and non-gravitational
degrees of freedom; hence we will consider a generalisation of quantum Brow-
nian motion for a particle which has additional interactions with D-particles.
This will allow us to compare qualitatively the decoherence due to different
environments. The non-gravitational degrees of freedom in the environment (in
a thermal state) are conventionally modelled by a collection of harmonic os-
cillators with masses m,,, frequency w, and co-ordinate operator g, coupled
to the particle co-ordinate = by an interaction of the form °  ¢,7¢,. The
master equation which is derived can have time dependent coefficients due to
the competing timescales, e.g. relaxation rate due to coupling to the thermal
bath, the ratio of the time scale of the harmonic oscillator to the thermal time
scale etc. However an ab initio calculation of the time-dependence is difficult to
do in a rigorous manner. It is customary to characterise the non-gravitational

2
environment by means of its spectral density I (w) (=, 0 (w — wy,) 522 )

2 W
The existence of the different time scales leads in general to non-trivial time
dependences in the coefficients in the master equation which are difficult to

calculate in a rigorous manner 38)

. The dissipative term in (18) involves the
momentum transfer operator due to recoil of the particle from collisions with
D-particles (12). This transfer process will be modelled by a classical Gaussian
random variable r which multiplies the momentum operator p for the particle:
r
u; —p 19
- Vot (19)
Moreover the mean and variance of r are given by
(ry=0, and (r*) =o%. (20)

On amalgamating the effects of the thermal and D-particle environments, we

39)

have for the reduced master equation for the matter (particle) density
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matrix p (on dropping the Matter index)

8 - 1 ~2 A T~ s Y o~ o~ ey 2 [ [~
igep = 5= [0 p] —iM[E (&, pll + 5 (245, o] — i B, [P ] (21)
where A, ~v and € are real time-dependent coefficients. As discussed in 39) 4
possible model for € (¢) is
5 r
Q)=+ —— 22
O =%+ gt e (22)

where wy, ¥, a, [ and b are positive constants. The quantity % < 1 contains in-
formation on the density of D-particle defects on a four-dimensional world.The
time dependence of v and A can be calculated in the weak coupling limit for
general n (i.e. ohmic, » = 1 and non-ohmic n # 1 environments) where

2 n—1
I {w) = —myw {i] e /= (23)
T w

and w is a cut-off frequency. The precise time dependence is governed by
A(t)= [ dsv(s)andy(t) = [)dsv(s)s wherev (s) = [° dw I (w)coth (Bhw/2
For the ohmic case, in the limit hw < kgT followed by @ — oo, A and ~ are
given by mygkpgT and -y respectively after a rapid initial transient. For high
temperatures A and ~ have a powerlaw increase with ¢ for the subohmic case
whereas there is a rapid decrease in the suprachmic case.

5 CPT and Recoil

The above model of space-time foam refers to a specific string-inspired construc-
tion. However the form of the induced back reaction (12) onto the space-time
has some generic features, and can be understood more generally in the context
of effective theories of such models, which allows one to go beyond a specific
non-critical (Liouville) model. Indeed, the D-particle defect can be viewed
as an idealisation of some (virtual, quantum) black hole defect of the ground
state of quantum gravity, viewed as a membrane wrapped around some small
extra dimensions of the (stringy) space time, and thus appearing to a four-
dimensional observer as an “effectively” point like defect. The back reaction
on space-time due to the interaction of a pair of neutral mesons, such as those
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produced in a meson factory, with such defects can be studied generically as
follows: consider the non-relativistic recoil motion of the heavy defect, whose
coordinates in space-time,in the laboratory frame, are y* = y§ + w't, with o’
the (small) recoil velocity.One can then perform a (infinitesimal) general co-
ordinate transformation y* — z# 4 £ so as to go to the rest (or co-moving )
frame of the defect after the scattering. From a passive point of view, for one
of the mesons, this corresponds to an induced change in metric of space-time
of the form (in the usual notation, where the parenthesis in indices denote
symmetrisation) dg,.,, = 9(,€,y, which in the specific case of non-relativistic de-
fect motion yields the off-diagonal metric elements (12). Such transformations
cannot be performed simultaneously for both mesons, and moreover in a full
theory of quantum gravity the recoil velocities fluctuate randomly, as we shall
discuss later on. This means that the effects of the recoil of the space-time
defect are observable. The mesons will feel such effects in the form of induced
fluctuating metrics (12). It is crucial to note that the interaction of the matter
particle (meson) with the foam defect may also result in a “flavour” change
of the particle (e.g. the change of a neutral meson to its antiparticle). This
feature can be understood in a D-particle Liouville model by noting that the
scattering of the matter probe off the defect involves first a splitting of a closed
string representing matter into two open ones, but with their ends attached to
the D-particle, and then a joining of the string ends in order to re-emit a closed
string matter state. The re-emitted (scattered) state may in general be charac-
terised by phase, flavour and other quantum charges which may not be required
to be conserved during black hole evaporation and disparate space-time-foam
processes. In our application we shall restrict ourselves only to effects that lead
to flavour changes. The modified form of the metric fluctuations (12) of each
component of the metric tensor ¢g®? will not be simply given by the simple
recoil distortion (12), but instead can be taken to have a 2 x 2 (“flavour”)
structure 4):

9 ’=(- 1+7”4)1
V= g% — vl + 7101 + 1909 + 7303 (24)
gt =(1+7rs)1

b

where 1, is the identity and o; are the Pauli matrices. The above parametri-
sation has been taken for simplicity and we can also consider motion to be
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in the z- direction which is natural since the meson pairs move collinearly.
A metric with this type of structure is compatible with the view that the
D-particle defect is a “point-like” approximation for a compactified higher-
dimensional brany black hole, whose no hair theorems permit non-conservation
of flavour.(In the case of neutral mesons the concept of “flavour” refers to ei-
ther particle/antiparticle species or the two mass eigenstates). The detailed

application of this model to the w effect for neutral mesons can be found in 4).
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