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Abstract

Complex phenomena in engineering and the sciences are often modeled by feed-forward

simulators that implicitly encode the likelihood function. Classical methods for constructing

confidence sets and hypothesis tests are poorly suited for such settings. While the field

of simulation-based inference has undergone a revolution in terms of the complexity of

problems that can be tackled, the development on the statistical methodology front has

fallen behind. Indeed, many techniques have been developed for learning a surrogate

likelihood using forward-simulated data, but these methods do not guarantee frequentist

confidence sets and tests with nominal coverage and Type I error control, respectively,

outside the asymptotic and low-dimensional regimes. In this thesis we introduce a series of

statistical tools for uncertainty quantification in a simulation-based inference setting.

In the first part of the thesis, we provide inferential tools with frequentist guarantees

for a high-dimensional simulator-based setting. We introduce a statistical framework that

unifies classical statistics with modern machine learning algorithms to achieve the following

goals: (i) confidence sets and hypothesis tests with finite-sample guarantees of coverage and

power, (ii) diagnostics for checking empirical coverage over the entire parameter space and

(iii) scalable and modular procedure which can also be used with other simulation-based

approaches. We showcase the applicability of this framework across a diverse range of data

and parameter settings.

In the second part of the thesis, we consider the problem of assessing the quality of fit

of approximate likelihood models. Approximate likelihood models are used in settings with

high-resolution and computationally intensive simulators for faster inference. We propose a

statistically consistent validation method that can pinpoint the locations in the parameter
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space where the fit is inadequate as well as provide insights as to how the high-resolution

simulator and approximate likelihood model di↵er.

In the third and final part of the thesis, we propose a new flexible method for

nonparametric conditional density estimation that can transform any neural network

regression architecture into a conditional density estimator. We demonstrate the versatility

of our approach for two applications with convolutional and recurrent neural networks,

respectively.
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Chapter 1

Introduction

Stochastic numerical simulators have become an essential tool to study complex phenomena

in many scientific domains. Simulations encode and chain together the underlying physical

or biological processes to generate synthetic realizations of such phenomena. Stochastic

simulators work in a feed-forward fashion: given input parameters ✓, both deterministic and

stochastic mechanisms are combined to produce synthetic data x. Examples of stochastic

forward simulators span the entire scientific spectrum at many di↵erent scales, including

high-energy physics (Sjöstrand et al., 2001), neuroscience (Lee et al., 2006), epidemiology

(Edlund et al., 2010), biology (Vázquez et al., 2003), climate science (Hurrell et al., 2013)

and cosmology (Smith et al., 2003) among others. One could regard forward stochastic

simulators as “black boxes” that implicitly encode the likelihood describing the relationship

between parameters (the input) and observable data (the output). Indeed, the generative

process of complex phenomena is often better understood and easier to encode than positing

a probability distribution on the simulated data as a function of ✓. Statistical inference

in such setting, i.e., determining which parameters are consistent with the observed data

without an explicit likelihood, is known as simulation-based inference (SBI) or likelihood-free

inference (LFI). Although the two terms are sometimes used synonymously in the literature,

in this thesis we use SBI as an umbrella term for inference methods relying on a simulator,

while LFI refers to settings in which the simulator is intrinsically stochastic (i.e., for which

the encoded processes are stochastic in nature) and that can be queried on the fly without a

significant computational overhead. As we note in Section 1.3, the LFI setting also extends
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to situations in which a stochastic emulator is fit to a high-fidelity computationally intensive

simulator to speed up probabilistic modelling.

While the field of simulation-based inference has undergone a revolution in terms of

the complexity of problems that can be tackled (see Cranmer et al. (2020) for a recent

review), the development on the statistical methodology front has fallen behind. Overall,

most of the attention in the likelihood-free inference literature has been directed to making

inference algorithms e�cient and scalable to high-dimensional data, and considerably less

so to the frequentist statistical properties of the resulting downstream inference. This

thesis aims to provide an arsenal of practical and flexible inferential tools that can be

used not only to construct inference with frequentist guarantees on validity and power,

but also to complement other frequentist LFI approaches which focus on estimating key

quantities like the likelihood or likelihood ratio function. In general, a recurring theme

within this thesis is marrying the high-capacity and computational e�ciency brought by

machine learning algorithms with the benefits of the cornerstones of classical statistics, such

as hypothesis testing and confidence sets (Chapter 2), two-sample tests (Chapter 3) and

conditional density estimation (Chapter 4).

1.1 Traditional Simulation-based Inference Approaches

Broadly speaking, the goal of LFI is to compare simulated and observed data to identify

parameter values compatible with the observed data. However, a direct comparison is not

always viable, especially when simulators often output high-dimensional or non-standard

data such as images and time-series. Traditional approaches hence rely on defining a set of

summary statistics for such comparison, which reduces the dimensionality of the problem

and allows one to incorporate domain scientific knowledge. The first example of deriving

scientifically informed summary statistics was proposed by Diggle and Gratton (1984) for

particle collisions experiments in high-energy physics. Their proposed scheme, consisting of

estimating the distribution of 1D photon counts via nonparametric histogram estimators,

would later become a key component in the discovery of the Higgs Boson (Aad et al., 2012).

The best known traditional LFI method is perhaps Approximate Bayesian Computation

(ABC). Loosely speaking, ABC methods provide a sample from the posterior distribution by
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first sampling from the parameter space and then rejecting all parameter values for which the

simulated data and observed data summary statistics are not su�ciently close. The notion

of “closeness” is defined based on a distance metric between summary statistics (usually

Euclidean) and a tolerance level. The latter provides a direct trade-o↵ in terms of accuracy

and e�ciency; smaller tolerance levels correspond to better posterior approximations but

longer computing times, as one needs to generate simulations which are close enough to

the observed data, and vice versa. The literature on ABC is vast and has resulted in

many successful applications, including in genetics (Beaumont and Rannala, 2004), biology

(Ratmann et al., 2007), ecology (Wood, 2010), economics (Peters and Sisson, 2006) and

cosmology (Lewis and Bridle, 2002); we refer the reader to Sisson et al. (2018), Karabatsos

and Leisen (2018) and Beaumont (2019) for extensive reviews.

Traditional frequentist LFI approaches rely on repeatedly querying the simulator, such

as Monte Carlo (MC) and Indirect Inference (II) methods. MC approaches construct the

distribution of summary statistics across the parameter space by repeated simulations at

each parameter value (Barlow and Beeston, 1993; Weinzierl, 2000; Schafer and Stark, 2009).

II methods do not rely on summary statistics but instead fit an auxiliary model (i.e., a

simple and possibly misspecified model) on the simulated data. For each simulation, they

record the correspondence between the parameters of the simulator and the parameters of

the auxiliary model. Inference is drawn by selecting the parameters associated with the

auxiliary model parameter values for the observed data over multiple simulation rounds

(Gourieroux et al., 1993).

1.2 Recent Developments in Likelihood-Free Inference

In recent years, LFI methods have taken advantage of the increase in e�ciency and capacity

brought by machine learning algorithms and modern computing power. This has resulted in

approaches that require fewer simulations and that can accommodate high-dimensional data

directly without the use of summary statistics or auxiliary models. Meaningful scientific

contributions of such methods include high-energy physics (Brehmer et al., 2018), cosmology

(Alsing et al., 2019) and neuroscience (Gonçalves et al., 2019) among others. Recent

LFI approaches can be roughly grouped based on whether they estimate (i) the posterior
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distribution, (ii) the likelihood or (iii) density ratios such as the likelihood over the marginal

or likelihood ratios.

Methods that estimate the posterior distribution directly include the use of random

forest (Marin et al., 2016), Gaussian copula (Chen and Gutmann, 2019), nonparametric

conditional density estimators (Izbicki et al., 2019), neural networks (Radev et al., 2020) and

neural density estimators (sequential neural posterior estimation, SNPE; Papamakarios and

Murray 2016; Lueckmann et al. 2017; Greenberg et al. 2019). Comparison with traditional

ABC methods has shown that SNPEs approaches can achieve the same accuracy in posterior

inference with orders of magnitude fewer simulations (Papamakarios et al., 2021).

Among approaches that focus on estimating the likelihood, a popular approach is to

approximate the likelihood via Gaussian synthetic surrogates (Wood, 2010; Meeds and

Welling, 2014; Wilkinson, 2014; Price et al., 2018; Fasiolo et al., 2018; Picchini et al., 2020),

which have been combined with active learning to minimize the simulation costs (Gutmann

et al., 2016; Järvenpää et al., 2019, 2021). Other approaches include the use of neural

density estimators (Lueckmann et al., 2019; Papamakarios et al., 2019; Wiqvist et al., 2021)

and variational inference techniques (Ong et al., 2017; M. Tran et al., 2017; Louppe et al.,

2019).

Finally, a separate stream of work has focused on density ratio estimation, with the first

nonparametric estimator provided by Izbicki et al. (2014). Most density ratio estimation

methods leverage the fact that density ratios can be learned via binary classification

(Sugiyama et al., 2012; Mohamed and Lakshminarayanan, 2016). In Bayesian inference,

posterior estimation can be achieved by approximating of the ratio between the likelihood

ratio and the marginal, using logistic regression Thomas et al. (2021) and neural networks

(Hermans et al., 2020; Durkan et al., 2020). In frequentist inference, Cranmer et al. (2015)

provide a likelihood ratio statistic estimator via binary classification, which can be made

more e�cient provided the joint likelihood ratio and joint score are available (Stoye et al.,

2018; Brehmer et al., 2020b).

In general, the main drivers behind the increase in both capacity and e�ciency in

LFI approaches have been flexible non-parametric machine learning algorithms, with the

most prominent example being neural conditional density estimators such as autoregressive

models (Uria et al., 2014, 2016; Oord et al., 2016; Oord et al., 2016) and normalizing
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flows (e.g., Kingma et al. 2016 and Papamakarios et al. 2017; see Papamakarios et al.

2021 for a review). Although most of the applications showcasing the benefit of such

approaches are in Bayesian inference, these are also applicable in a frequentist inference

framework. Indeed, surrogates of the likelihood or likelihood ratio function can be used

for frequentist inference, as in, e.g., Brehmer et al. (2020b). Notably, also the posterior

can be used as a tool for frequentist inference. For instance, Neiswanger and Ramdas

(2021) use the prior-posterior ratio fit by a Gaussian process to construct valid finite-

sample confidence sets, while Thornton et al. (2017) show the posterior computed via ABC

can provide asymptotically valid inference if a specific data-driven prior is used.

1.3 Connections to Deterministic Simulators

A further distinction within the simulation-based inference literature is based on the nature

of the simulator itself. As mentioned, LFI refers to settings in which the encoded processes

are stochastic in nature, such as in particle collisions experiments. However, there exists a

large literature for deterministic simulators, i.e., forward operators that associate a given

input x to a single output y = F (x). An example of this is the Community Earth System

model in climate science (CESM, Hurrell et al. 2013), in which each component of the

climate environment (e.g., atmosphere, land, river runo↵) is modeled with a separate set

of di↵erential equations which are run forward in time for prediction. Similarly, N-body

simulations in cosmology provide a high-fidelity representation of gravitational interactions

between particle pairs (Kacprzak et al., 2016; Abbott et al., 2019). In such applications,

characterizing the relationship between the input x and output y is known as an ill-posed

inverse problem (O’Sullivan, 1986; Evans and Stark, 2002). The notion of “ill-posedness”

comes from the fact that solutions in these settings are not stable — they do not vary

continuously with the observations — making a problem that is not mathematically well-

posed (i.e., in which a solution exists, is unique and stable). It is important to note that,

unlike the LFI setting, there is no uncertainty connected to deterministic simulators. More

specifically, using the same language as in Matthies (2007), there is no aleatoric uncertainty

in the simulator (that is, no intrinsic statistical uncertainty). In some cases, aleatoric
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uncertainty is added post-hoc to reflect measurement uncertainty, that is considering y =

F (x) + ✏, where ✏ is usually Gaussian noise.

Although ill-posed inverse problems have been approached from many di↵erent angles

in the literature, the most common strategy is to regularize the problem, i.e., impose

additional structure, so that a solution becomes identifiable. A potential approach to make

inference feasible is to fit an approximate likelihood or emulator model to the simulated

data, usually in the form of a Gaussian process (Rasmussen and Williams, 2005) where the

prior distribution acts as regularizer. Emulator models introduce epistemic uncertainty,

which is a source of error that depends on the finite amount of samples and simulation

runs available; unlike the aleatoric uncertainty, epistemic uncertainty could be reduced

given enough computational resources. A common approach in this setting is to design

a sampling strategy for input points x to run to minimize the emulator model predictive

variance, i.e., provide the best approximation possible with a limited budget of simulation

runs (Gramacy, 2020). Another solution is to run the simulator only for a few simulations in

a format of batches or ensembles, where an ensemble is a collection of multiple realizations

(e.g., corresponding to di↵erent initial conditions), and train an emulator model on such

ensemble runs. This method is routinely used in the climatology literature as an e�cient

consistency testing tool of new simulation runs (Baker et al., 2015b). Yet another approach

for ill-posed inverse problems aims to characterize F by discretizing the input space and

estimate a linear operator K such that F (x) = Kx. Since K is usually ill-conditioned (i.e.,

the singular values decay quickly due to the underlying problem being ill-posed), estimates of

x are obtained using regularization techniques such as the Tikhonov regularization (see e.g.,

Engl et al. (1996) and Kaipio and Somersalo (2007)). Such estimates can lead to inference

from both a frequentist (Stark, 1992) and Bayesian (Stuart, 2010) perspective, and has lead

to meaningful scientific contributions in scientific domains such as astrophysics (Connors

et al., 2006), climate science (Rodgers, 2000; Patil et al., 2020) and medical imaging (Weir,

1997). Finally, it is important to note that the aleatoric uncertainty structure in ill-posed

inverse problems is usually much simpler than the one in LFI settings, as the uncertainty

does not encode the randomness of the generative process, but rather the measurement

uncertainty on the output y. For this reason, LFI approaches might not be appropriate in

ill-posed inverse problem settings.
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1.4 Gaps in the Literature

While most of the attention in the simulation-based inference literature has been directed

towards e�ciency and scalability and less so towards statistical inference, frequentist

procedures have played an important role in many applications. In high energy physics,

for instance, classical statistical techniques (e.g., hypothesis testing for outlier detection)

have resulted in discoveries of new physics and other successful applications (Feldman

and Cousins, 1998; Cranmer, 2015; Tanabashi et al., 2018; Cousins, 2018). Even though

controlling type I error probabilities is important in these applications, most simulator-based

methods do not have theoretical guarantees on validity or power beyond low-dimensional

data settings and large sample theory assumptions (Feldman and Cousins, 1998). For

example, some recent LFI methods (Frate et al., 2017; Brehmer et al., 2018, 2020b) are

able to estimate likelihood functions for high-dimensional data, but these methods either

assume that the log-likelihood ratio has an asymptotic chi-squared distribution, or rely on

Monte Carlo samples at fixed parameter settings for inference (an approach that does not

scale to computations of frequentist confidence sets).

Additionally, in LFI settings where fitting an emulator to a high-fidelity computationally

intensive simulator is a key step for inference, there is no statistically consistent way of

quantifying the quality of the emulator fit. Existing approach only provide an overall

assessment of the quality of the fit. For instance, existing two-sample tests can only provide

a binary answer of the form “reject” or “fail to reject” (Lopez-Paz and Oquab, 2017; Kim

et al., 2021), and consistency checks based on the resulting posterior distribution which

have been used in the LFI literature (Cook et al., 2006; Talts et al., 2018) might fail

to identify clearly misspecified likelihood models as these tools were originally designed

for checking posterior models. Furthermore, in cases when the emulator fit is deemed

inadequate, diagnose the fit of the model is of primary importance. There are currently no

tools in the LFI literature that allow to locate where in the parameter space the fit is poor

and to determine the di↵erence in a potentially high-dimensional feature space between the

emulator and the high-fidelity simulator samples.
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1.5 Summary of Contributions

In this thesis, we develop statistical methodologies for quantifying uncertainty in simulation-

based inference and we demonstrate their applicability on a variety of settings.

• Chapter 2 develops a machinery for frequentist inference in a LFI setting to construct

and diagnose confidence sets and hypothesis testing. This novel inference machinery

(i) provide confidence sets and hypothesis tests with finite-sample guarantees of

coverage and power, (ii) o↵er rigorous diagnostics to checking empirical coverage over

the entire parameter space and (iii) present scalable and modular procedure that

existing simulation-based approaches can borrow;

• Chapter 3 introduces a framework to diagnose the fit of an approximate likelihood

model, which we apply to emulator models fit to high-fidelity computationally

intensive simulators in a LFI setting. The proposed framework can distinguish any

arbitrary misspecified model from the target likelihood, and in addition can identify

with statistical confidence the regions of the parameter as well as feature space where

the fit is inadequate;

• Chapter 4 contributes a new tool to the class of nonparametric neural conditional

density estimators. The proposed approach can re-purpose virtually any deep neural

network regression estimator into a conditional density estimator with minimal

computational overhead;

• Finally,Chapter 5 concludes with a brief summary and highlights potential directions

for future work.
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B. Lee in Dalmasso et al. (2020a) and Dalmasso et al. (2021). Chapter 3 is based on joint

work with Taylor Pospisil, Ilmun Kim, Chieh-An Lin, Rafael Izbicki and Ann B. Lee in

Dalmasso et al. (2020b), and Chapter 4 is based on joint work with Taylor Pospisil, Peter

E. Freeman, Alex I. Malz, Rafael Izbicki and Ann B. Lee in Dalmasso et al. (2020).

8



Chapter 2

Bridging Classical Statistics and

Likelihood-Free Inference

Hypothesis testing and uncertainty quantification are the hallmarks of scientific inference,

with a long history in statistics (Fisher, 1925; Neyman, 1935; Feldman and Cousins, 1998;

Chuang and Lai, 2000). Methods that achieve good statistical performance often rely on

being able to evaluate a likelihood function which relates parameters of the data-generating

process to observed data. However in LFI, forward simulators define a likelihood function

implicitly, meaning that the likelihood is not available analytically and cannot be evaluated.

While the field of likelihood-free inference has undergone a revolution in terms of the

complexity of problems that can be tackled (see Cranmer et al. 2020 for a recent review),

the development on the statistical methodology front has fallen behind. Indeed, a question

that has received little attention so far is whether one, in a high-dimensional simulator-

based setting, can construct practical inferential tools with finite-sample guarantees of

frequentist coverage. Frequentist procedures have undoubtedly played an important role

in many fields: In high energy physics (HEP), for instance, classical statistical techniques

(e.g., hypothesis testing for signal detection) have resulted in discoveries of new physics

and other successful applications (Feldman and Cousins, 1998; Cranmer, 2015; Tanabashi

et al., 2018; Cousins, 2018). Even though controlling type I error probabilities is important

in these applications, most simulator-based methods do not have theoretical guarantees on

validity or power beyond low-dimensional data settings and large sample theory assumptions
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(Feldman and Cousins, 1998). For example, some recent LFI methods (Frate et al., 2017;

Brehmer et al., 2018, 2020b) are able to estimate likelihood functions for high-dimensional

data, but these methods either assume that the log-likelihood ratio has an asymptotic

chi-squared distribution, or rely on Monte Carlo samples at fixed parameter settings for

inference (an approach that does not scale to computations of frequentist confidence sets).

Ideally, a unified LFI approach should

• be computationally e�cient in terms of the number of required simulations,

• handle high-dimensional data from di↵erent sources (without, e.g., predefined sum-

mary statistics),

• produce hypothesis tests and confidence sets that are valid; that is, have the nominal

type I error or confidence level,

• produce hypothesis tests with high power or, equivalently, confidence sets with a small

expected size,

• provide diagnostics for checking empirical coverage or for checking how well the

estimated likelihood fits simulated data.

In this chapter, we present a statistical framework for LFI that unifies classical statistics

with modern machine learning (e.g., deep generative models, neural network classifiers, and

quantile regression) to achieve the following goals:

(i) provide confidence sets and hypothesis tests with finite-sample guarantees of frequen-

tist coverage (nominal type I error) and power,

(ii) provide rigorous diagnostics for checking empirical coverage over the entire parameter

space, and

(iii) present practical, easily extensible procedures that scale with both feature and

parameter dimension.

At the heart of our proposed framework is the Neyman construction of confidence sets

(Figure 2.2) — a procedure that is widely known and cited, but which nevertheless
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has not translated to practical algorithms for complex data settings beyond asymptotic

approximations. The main bottleneck has been that the construction of confidence sets

requires one to consider the null hypothesis H0 : ✓ = ✓0 versus the alternative hypothesis

H0 : ✓ 6= ✓0 for every ✓0-value in the entire parameter space: The critical value (for Type I

control) and the p-value will depend on ✓0. On a similar note, scientists have long recognized

the importance of checking coverage of constructed confidence sets over all parameters but

computationally this has been a real challenge; see, e.g., Cousins 2018, Section 13, for a

discussion of evaluation of coverage with toy MC simulation.

This chapter introduces inferential and diagnostic tools that scale with both parameter

and feature dimension. Our main observation is that key quantities of interest in frequentist

statistical inference — test statistics, critical values, p-values and confidence set coverage

— are conditional functions of the (unknown) parameter, and generally vary smoothly over

the parameter space. As a result, one can leverage machine learning methods and data

simulated in the neighborhood of a parameter to improve estimates of quantities of interest

with fewer total simulations: We propose probabilistic classification for computing test

statistics, quantile regression for estimating critical values, and regression for computing

p-values and for checking empirical coverage.

Figure 2.1 shows our inference machinery. It has three main components, schematically

represented as three branches in the diagram: First, we simulate a sample T to train a

probabilistic classifier for learning a parametrized “odds function” (middle branch); as we

shall see, this function can be used to construct meaningful test statistics (Section 2.2).

We then simulate a second sample T
0
to estimate critical values or p-values (left branch)

for e�cient construction of confidence sets (Section 2.3). Finally, we create a third sample

T
00
to assess empirical coverage across the parameter space (right branch; Section 2.4).

Each component of our inference machinery is modular. Of particular note, is that (i) any

test statistic defined in an LFI setting can be used to construct confidence sets with finite

validity via the left branch, and (ii) our diagnostic procedures can provide insights to any

LFI inference method via the right branch.

In this chapter we provide two novel odds-based test statistics: the ACORE and BFF

test statistics. Both statistics are based on a parametrized odds function, but whereas

ACORE eliminates the parameter ✓ by maximization, BFF averages over composite hypotheses.
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Figure 2.1: Schematic diagram of likelihood-free frequentist inference. The simulator
provides synthetic observable data TB for learning a parametrized odds function via
probabilistic classification. The simulator also generates a separate sample T

0
B0 for learning

critical values or p-values as a function of ✓ 2 ⇥. Once data Dobs are observed, the BFF or
ACORE statistics can be used to construct hypothesis tests and confidence sets for ✓. Our
framework also provides diagnostics for computing the empirical coverage of constructed
confidence sets as a function of the (unknown) parameter ✓. The three main parts of
the inference machinery (critical or p-value estimation, odds estimation, diagnostics) are
separate modules. Each module leverages machine learning methods in the training phase
and is amortized, i.e., they perform inference on new data without having to be retrained.

When the odds function is well-estimated for every ✓ and x, the ACORE statistic is equal to

the likelihood ratio statistics, and BFF is equal to the Bayes factor (Je↵reys, 1935, 1961).

Although Bayes is included in the name of our test statistic, we here advocate for the use

Bayes factor as a frequentist test statistic in likelihood-free inference.
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2.1 Statistical Inference in a Traditional Setting

We begin by reviewing elements of traditional statistical inference that play a key role in

our framework for likelihood-free frequentist inference.

Equivalence of tests and confidence sets. A classical approach to constructing a

confidence set for an unknown parameter ✓ 2 ⇥ is to invert a series of hypothesis tests

(Neyman, 1937): Suppose that for each possible value ✓0 2 ⇥, there is a level ↵ test �✓0 of

H0,✓0 : ✓ = ✓0 versus H1,✓0 : ✓ 6= ✓0; (2.1)

that is, a test �✓0 where the type I error (the probability of erroneously rejecting a true null

hypothesis H0,✓0) is no larger than ↵. For observed data D = D, now define R(D) as the

set of all parameter values ✓0 2 ⇥ for which the test �✓0 does not reject H0,✓0 . Then, by

construction, the random set R(D) satisfies

P [✓0 2 R(D) | ✓ = ✓0] � 1� ↵

for all ✓0 2 ⇥. That is, R(D) defines a (1�↵) confidence set for ✓. Similarly, we can define

a test with a desired significance level from a confidence set with a certain coverage.

Likelihood ratio test. A general form of hypothesis tests that often leads to high power

is the likelihood ratio test (LRT). Consider testing

H0 : ✓ 2 ⇥0 versus H1 : ✓ 2 ⇥1, (2.2)

where ⇥1 = ⇥ \⇥0. For the likelihood ratio (LR) statistic,

LR(D;⇥0) = log
sup✓2⇥0

L(D; ✓)

sup✓2⇥ L(D; ✓)
, (2.3)

the LRT of hypotheses (2.2) rejects H0 when LR(D;⇥0) < C for some constant C.
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Figure 2.2 illustrates the construction of confidence sets for ✓ from level ↵ likelihood ratio

tests (2.1). The critical value for each such test �✓0 is C✓0 = sup {C : P (LR(D; ✓0) < C | ✓ = ✓0)  ↵}.

Figure 2.2: Constructing confidence intervals from hypothesis tests. Left: For each ✓ 2 ⇥,
we find the critical value C✓ that rejects the null hypothesis H0,✓ at level ↵; that is, C✓ is
the ↵-quantile of the distribution of the likelihood ratio statistic LR(D; ✓) under the null.
Right: The horizontal lines represent the acceptance region for each ✓ 2 ⇥. Suppose we
observe data D = D. The confidence set for ✓ (indicated with the red line) consists of all
✓-values for which the observed test statistic LR(D; ✓) (indicated with the black curve) falls
in the acceptance region.

Bayes factor. Let ⇡ be a probability measure over the parameter space ⇥. The Bayes

factor (Je↵reys, 1935, 1961) for comparing the hypothesis H0 : ✓ 2 ⇥0 to its complement,

the alternative H1, is a likelihood ratio of the marginal likelihood of the two hypotheses:

BF(D;⇥0) ⌘
P(D|H0)

P(D|H1)
=

R
⇥0

L(D; ✓)d⇡0(✓)R
⇥1

L(D; ✓)d⇡1(✓)
, (2.4)

where ⇡0 is the restriction of ⇡1 to ⇥0.

The Bayes factor is often used as a Bayesian alternative to significance testing as it

quantifies the change in the odds in favor of H0 when going from the prior to the posterior:

P(H0|D)
P(H1|D) = BF(D;⇥0)

P(H0)
P(H1)

.
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2.2 Test Statistics Based on Parameterized Odds

In the typical LFI setting, we cannot directly evaluate the likelihood ratio LR(D;⇥0), or

even the likelihood L(D; ✓). A simulator-based approach (ACORE or BFF; Figure 2.1) can

nevertheless lead to hypothesis tests and confidence sets with good frequentist properties.

The assumptions are access to (i) a “high-fidelity” forward simulator, also denoted by F✓,

that can simulate observable data, (ii) a reference distribution G with larger support than

F✓ for all ✓ 2 ⇥, and (iii) a probabilistic classifier that discriminates samples from F✓ and

G.

2.2.1 Parametrized Odds for Labeled Samples

We start by generating a labeled sample TB = {✓i,Xi, Yi}Bi=1 to compare data from the

simulator F✓ with data from the reference distribution G. Here, ✓ ⇠ ⇡⇥ (a fixed proposal

distribution over ⇥), the “label” Y ⇠ Ber(p), X|✓, Y = 1 ⇠ F✓, and X|✓, Y = 0 ⇠ G. We

then define the odds at ✓ and fixed x as

O(x; ✓) :=
P(Y = 1|✓,x)

P(Y = 0|✓,x)
.

One way of interpreting the odds O(✓,X) is to regard it as a measure of the chance that X

was generated from F✓ rather than from G. That is, a large odds O(✓,X) reflects the fact

that it is plausible that X was generated from F✓ (instead of G). We call G a “reference

distribution” as we are comparing F✓ for di↵erent ✓ with this distribution.

The odds O(✓,x) with ✓ 2 ⇥ as a parameter can be learnt with a probabilistic classifier,

such as a neural network with a softmax layer, suitable for the data X at hand. Algorithm 1

provides details on how to create the training sample TB for estimating odds. Out of

the total training sample size B, a proportion p is generated by the stochastic forward

simulator F✓ at di↵erent parameter values ✓, while the remainder is sampled from a reference

distribution G. Note that G can be any distribution that dominates F✓. If G is the marginal

distribution Fx, there is the nice property that the denominator of the BFF statistic is 1,

allowing us to bypass calculating the denominator term. For all experiments in this paper,

we use p=1/2 and G = FX, where FX is the marginal of F✓ with respect to ⇡⇥.
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Algorithm 1 Generate a labeled sample of size B for estimating odds
Input: stochastic forward simulator F✓; reference distribution G; proposal distribution ⇡⇥ over

parameter space; training sample size B; parameter p of Bernoulli distribution

Output: labeled training sample

1: Set T  ;
2: for i in {1, ..., B} do
3: Draw parameter value ✓i ⇠ ⇡⇥
4: Draw Yi ⇠ Ber(p)
5: if Yi == 1 then
6: Draw sample Xi ⇠ F✓i
7: else
8: Draw sample Xi ⇠ G
9: end if

10: T  T [ (✓i,Xi, Yi)
11: end for
12: return T = {✓i,Xi, Yi}Bi=1

Algorithm 2 Sample from marginal distribution FX

Input: stochastic forward simulator F✓; proposal distribution ⇡⇥ over parameter space

Output: sample Xi from marginal distribution

1: Draw parameter value ✓i ⇠ ⇡⇥
2: Draw sample Xi ⇠ F✓i
3: return Xi

For testing H0,✓0 : ✓ = ✓0 versus all alternatives H1,✓0 : ✓ 6= ✓0, we consider two

test statistics: ACORE and BFF. Both statistics are based on O(X; ✓), but whereas ACORE

eliminates the parameter ✓ by maximization, BFF averages over composite hypotheses.

2.2.2 ACORE by Maximization

The ACORE statistic for testing (2.1) is given by

⇤(D; ✓0) := log

Q
n

i=1O(Xobs
i

; ✓0)

sup✓2⇥
Q

n

i=1O(Xobs
i

; ✓)

= inf
✓12⇥

nX

i=1

log
⇣
OR(Xobs

i ; ✓0, ✓1)
⌘
, (2.5)

where the odds ratio

OR(x; ✓0, ✓1) :=
O(✓0;x)

O(✓1;x)
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at ✓0, ✓1 2 ⇥ measures the plausibility that x was generated from ✓0 rather than ✓1.

We use b⇤B(D; ✓0) to denote the ACORE statistic based on TB and estimated odds bO(✓0;x).

When bO(✓0;x) is well-estimated for every ✓ and x, the ACORE statistic b⇤B(D; ✓0) is the same

as the likelihood ratio statistic LR(D; ✓0):

Proposition 1 (Fisher Consistency). If bP(Y = 1|✓,x) = P(Y = 1|✓,x) for every ✓ and x,

then the ACORE test statistic (2.5) is the likelihood ratio statistic (Equation 2.3).

Proof of Proposition 1. If bP(Y = 1|✓,x) = P(Y = 1|✓,x), then dOR(x; ✓0, ✓1) =

OR(x; ✓0, ✓1). By Bayes rule and construction (Algorithm 1),

O(x; ✓) :=
P(Y = 1|✓,x)

P(Y = 0|✓,x)
=

f(x|✓)p

g(x)(1� p)
.

Thus, the odds ratio at ✓0, ✓1 2 ⇥ is given by

OR(x; ✓0, ✓1) =
f(x|✓0)

f(x|✓1)
,

and therefore

⌧(D;⇥0) = sup
✓02⇥0

inf
✓12⇥

nX

i=1

⇣
logdOR(xobs

i ; ✓0, ✓1)
⌘

= sup
✓02⇥0

inf
✓12⇥

nX

i=1

log
f(xobs

i
|✓0)

f(xobs
i

|✓1)

= sup
✓02⇥0

inf
✓12⇥

log

✓
L(D; ✓0)

L(D; ✓1)

◆

= ⇤(D;⇥0).

2.2.3 BFF by Averaging

Because the ACORE statistics in Equation 2.5 involves taking the supremum (or infimum)

over ⇥, it may not be practical in high dimensions. Hence, in this work, we propose an
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alternative statistic for testing (2.1) based on averaged odds:

⌧(D; ✓0) :=

Q
n

i=1O(Xobs
i

; ✓0)R
⇥

�Q
n

i=1O(Xobs
i

; ✓)
�
d⇡(✓)

. (2.6)

Let b⌧B(D; ✓0), or b⌧ for short, denote estimates based on TB and bO(✓0;x). If the

probabilities learned by the classifier are well estimated, then the averaged odds test statistic

is exactly the Bayes Factor:

Proposition 2 (Fisher Consistency).

If bP(Y = 1|✓,x) = P(Y = 1|✓,x) for every ✓ and x, then b⌧(D; ✓0) is the Bayes Factor

BF(D; ✓0).

Proof of Proposition 2. By Bayes rule,

O(x; ✓) :=
P(Y = 1|✓,x)

P(Y = 0|✓,x)
=

f(x|✓)p

g(x)(1� p)
.

If bP(Y = 1|✓,x) = P(Y = 1|✓,x), then bO(x; ✓0) = O(x; ✓0). Therefore,

b⌧(D; ✓0) :=

Q
n

i=1
bO(Xobs

i
; ✓0)

R
⇥

⇣Q
n

i=1
bO(Xobs

i
; ✓)
⌘
d⇡(✓)

=

Q
n

i=1
f(Xobs

i |✓0)
g(Xobs

i )
R
⇥

⇣Q
n

i=1
f(Xobs

i |✓)
g(Xobs

i )

⌘
d⇡(✓)

=

Q
n

i=1 f(X
obs
i

|✓0)R
⇥

�Q
n

i=1 f(X
obs
i

|✓)
�
d⇡(✓)

=
L(D; ✓0)R

⇥ L(D; ✓)⇡(✓)d✓

= BF(D; ✓0).

As a reminder, we are using the Bayes Factor as a frequentist test statistic. Hence, our

term Bayes Factor Frequentist (BFF) statistic for ⌧ and b⌧ .
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2.3 E�cient Construction of Finite-Sample Confidence Sets

Although the Neyman construction of confidence sets (Figure 2.2) is widely known, this

procedure has not translated to practical machine learning algorithms for complex data

settings. Here we address the question: “How do we e�ciently estimate critical values and

significance probabilities (p-values) of a test when we do not know the distribution of our

test statistic, and cannot rely on large-sample theory approximations?”

Simulation-based approaches are often used to compute rejection probabilities and

critical values in lieu of large-sample theory approximations. Typically, such simulations

compute a separate Monte Carlo simulation at each fixed ✓0 2 ⇥ on, e.g., a fine enough grid

in parameter space. That is, the convention is to rely solely on sample points generated at

fixed ✓0 to estimate the rejection probabilities. What we do instead is to treat the critical

value C or the p-value as functions that vary smoothly with the parameter ✓; we then

estimate the parametrized functions C✓0 and p(D; ✓0) for any ✓0 2 ⇥ via quantile regression

(Section 2.3.1) and regression (Section 2.3.2), respectively. We summarise the procedure of

constructing a confidence interval in Algorithm 3.

2.3.1 The Critical Value via Quantile Regression

Suppose that we reject the null hypothesis if the BFF test statistic (or ACORE , equivalently)

is smaller than some constant C. To achieve a test with a desired level of significance ↵, we

need (for maximum power) the largest C that satisfies

P (⌧(D; ✓0) < C | ✓)  ↵. (2.7)

However, we cannot explicitly compute the critical value C or the rejection probability as

we do not know the distribution of the test statistic ⌧ .

Simulation-based approaches are often used to compute rejection probabilities and

critical values in lieu of large-sample theory approximations. Typically, such simulations

compute a separate Monte Carlo simulation at each fixed ✓ 2 ⇥0 on, e.g., a fine enough

grid on ✓. That is, the convention is to rely solely on sample points generated at fixed ✓

to estimate the rejection probabilities P(⌧(D; ✓0) < C|✓). Here we propose to estimate the
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Algorithm 3 Construct confidence set for ✓ with coe�cient � = 1� ↵
Input: stochastic forward simulator F✓; proposal distribution ⇡ over ⇥; parameter p of Bernoulli

distribution; sample size B (for estimating odds ratios); sample size B0 (for estimating critical values

or p-values); probabilistic classifier; observed data D =
�
xobs
1 , . . . ,xobs

n

 
; desired level ↵ 2 (0, 1);

number of parameter values at which to evaluate confidence set ngrid; confidence set estimation

strategy eval (either p-values or crit-values)

Output: ✓-values in confidence set

1: // Estimate odds
2: Generate labeled sample TB according to Algorithm 1
3: Apply probabilistic classifier to TB to learn class posterior probabilities, bP(Y = 1|✓,X),

for all ✓ = (✓, ) 2 ⇥ and X 2 X

4: Let the estimated odds bO(X; ✓) =
bP(Y=1|✓,X)
bP(Y=0|✓,X)

5: // Test statistic ⌧
6: Define ⌧(D; ✓) ⌧(D; ✓) for every ✓
7: // Find parameter set for which the test �✓0 does not reject ✓ = ✓0
8: L⇥  lattice over ⇥ with ngrid elements
9: Set S  ;

10: if eval == crit-values then
11: Estimate critical value bC✓  bF�1

⌧ |✓ (↵ | ✓ ) for every ✓ (Algorithm 4)
12: else if eval == p-values then
13: Estimate p-value bp(D; ✓) bE [I (b⌧(D; ✓) < ⌧(D; ✓)) | ✓] for every ✓ (Algorithm 5)
14: end if
15: for ✓0 2 L⇥ do
16: Compute the observed profiled test statistic b⌧obs  b⌧(D; ✓0)
17: if eval == crit-values then
18: if b⌧obs > bC✓0 then
19: S  S [ {✓0}
20: end if
21: else if eval == p-values then
22: if bp(D; ✓0) > ↵ then
23: S  S [ {✓0}
24: end if
25: end if
26: end for
27: return

critical values C for all ✓ 2 ⇥0 and significance levels ↵ 2 [0, 1] simultaneously. At the heart

of our approach is the key observation that the rejection probability P(⌧(D;⇥0) < C|✓) is a

conditional cumulative distribution function, which in many settings varies smoothly as a

function of ✓ and C. Thus, similar to how we estimate odds for the ACORE and BFF statistic,

one can use data generated in the neighborhood of ✓ to improve estimates of our quantities
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of interest at any ✓. This is what a quantile regression implicitly does to estimate C (e.g.,

Meinshausen 2006; Koenker et al. 2017).

Algorithm 4 outlines the details of the procedure for estimating C. In brief, we use

a training sample T
0
B0 = {(✓i, ⌧i)}B

0
i=1 (independent of TB) to estimate the ↵-conditional

quantile c↵(✓) defined by P (⌧  c↵(✓) | ✓) = ↵. Let bc↵(✓) be the estimate of c↵(✓) from

a quantile regression of ⌧ on ✓. By (2.7), our estimate of the critical value C is bC =

inf✓2⇥0 bc↵(✓). As we shall see, even if the odds are not well estimated, tests and confidence

regions based on estimated odds are still valid as long as the thresholds are well estimated:

Theorem 2.1 shows that the sample size B
0
controls the type I error of the test, regardless

of the observed data sample size n.

To test a composite null hypothesis H0 : ✓ 2 ⇥0 versus H1 : ✓ 2 ⇥1, we use the cuto↵

bC⇥0 := inf✓2⇥0
bC✓. This cuto↵ leads to a valid test (control of type I error as B0

! 1)

regardless of whether the test statistic ⌧ is well estimated or not, and regardless of the data

sample size n.

Algorithm 4 Estimate the critical values C✓0 for a level-↵ test of H0,✓0 : ✓ = ✓0 vs.
H1,✓0 : ✓ 6= ✓0 for all ✓0 2 ⇥ simultaneously

Input: stochastic forward simulator F✓; sample size B0 for training quantile regression estimator; ⇡

(a fixed proposal distribution over the full parameter space ⇥); test statistic b⌧ ; quantile regression

estimator; desired level ↵ 2 (0, 1)

Output: estimated critical values bC✓ for all ✓ = ✓0 2 ⇥

1: Set T 0
 ;

2: for i in {1,. . . ,B’} do
3: Draw parameter ✓i ⇠ ⇡

4: Draw sample Xi,1, . . . ,Xi,n

iid
⇠ F✓i

5: Compute test statistic b⌧i  b⌧((Xi,1, . . . ,Xi,n); ✓i)
6: T

0
 T

0
[ {(✓i, b⌧i)}

7: end for
8: Use T

0 to learn parametrized function bC✓ := bF�1
b⌧ |✓ (↵|✓) via quantile regression of b⌧ on ✓

return bC✓0
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2.3.2 The P-Value via Regression

If the data D are observed beforehand, we can alternatively compute p-values for each

hypothesis H0,✓0 : ✓ = ✓0, that is,

p(D; ✓0) := PD|✓0,TB
(b⌧(D; ✓0) < b⌧(D; ✓0)),

where p(D; ✓0) can be used to test hypothesis and create confidence sets for any desired

↵. These p-values can be estimated by noticing that they are a regression E[Z|✓0] of

the random variable Z := I (b⌧(D; ✓0) < b⌧(D; ✓0)) on ✓0. Thus, we can as in Algorithm 5

generate a train sample T
0 = {(Z1, ✓1), . . . , (ZB0 , ✓B0)} and then estimate p-values for all

✓0 2 ⇥ simultaneously. An advantage of using a regression instead of a quantile regression

approach (as in Section 2.3.1) is that we can take advantage of the many existing regression

methods.

For testing the composite null hypothesis H0 : ✓ 2 ⇥0 versus H1 : ✓ 2 ⇥1, we use

bp(D;⇥0) := sup
✓2⇥0

bp(D; ✓)

with

bp(D; ✓) := bPD|T,✓0(b⌧(D; ✓0) < b⌧(D; ✓0)), (2.8)

where the odds statistic b⌧ is computed given train sample TB = T .

2.4 Confidence Sets and Diagnostics

After the parametrized ACORE statistic and the critical values have been estimated, it is

important to check whether the resulting confidence sets indeed are valid or, equivalently, if

the resulting hypothesis tests have the nominal significance level. We also want to identify

regions in parameter space where we clearly overcover. That is, the two main questions are:

(i) do the constructed confidence sets satisfy

P [✓0 2 R(D) | ✓ = ✓0] � 1� ↵,
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Algorithm 5 Estimate the p-values p(D; ✓0), given observed data D, for a level-↵ test of
H0,✓0 : ✓ = ✓0 vs. H1,✓0 : ✓ 6= ✓0 for all ✓0 2 ⇥ simultaneously.

Input: observed data D; stochastic forward simulator F✓; sample size B0 for p-value estimation; ⇡

(a fixed proposal distribution over the full parameter space ⇥); test statistic b⌧ ; regression estimator

m

Output: estimated p-value bp(D; ✓) for all ✓ = ✓0 2 ⇥

1: Set T 0
 ;

2: for i in {1,. . . ,B’} do
3: Draw parameter ✓i ⇠ ⇡

4: Draw sample Xi,1, . . . ,Xi,n

iid
⇠ F✓i

5: Compute test statistic b⌧i  b⌧((Xi,1, . . . ,Xi,n); ✓i)
6: Compute indicator Zi  I (b⌧i < b⌧(D; ✓i))
7: T

0
 T

0
[ {(✓i, Zi)}

8: end for
9: Use T

0 to learn parametrized function bp(D; ✓) := bE[Z|✓] via regression of Z on ✓ using
regression estimator m
return bp(D; ✓0)

or alternatively,

bR(D) = {✓0 2 ⇥ |bp(D; ✓0) > ↵}

for every ✓0 2 ⇥, and (ii) how close is the actual coverage to the nominal confidence level

1� ↵?

To answer these questions, we propose a goodness-of-fit procedure where we draw B00

new samples from the simulator given ✓, construct a confidence set for each sample, and

then check which computed regions include the “true” ✓. More specifically: we generate a

set T
00
B00 = {(✓01,D

0
1), . . . , (✓

0
B00 ,D0

B00)}, where ✓0i ⇠ r⇥ and D
0
i
is a sample of size n of i.i.d.

observable data from F✓0i . We then define

Wi := I
�
✓0i 2 R(D0

i)
�
,

where R(D0
i
) is the confidence set for ✓ for data D

0
i
. If R has the correct coverage, then

P(Wi = 1|✓i) � 1� ↵.

We can estimate the probability P(Wi = 1|✓i) using any probabilistic classifier; some

methods also provide confidence bands that assess the uncertainty in estimating this
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quantity (Eubank and Speckman, 1993; Claeskens et al., 2003; Krivobokova et al., 2010). By

comparing the estimated probability to 1�↵, we have a diagnostic tool for checking how close

we are to the nominal confidence level over the entire parameter space ⇥. See Figure 2.3 for

an example. Note that our procedure parametrizes the coverage of the confidence set as a

function of the true parameter value. This is in contrast to other goodness-of-fit techniques

(e.g., Cook et al. 2006; Bordoloi et al. 2010; Talts et al. 2018; Schmidt et al. 2020) that

only check for marginal coverage, i.e., n�1Pn

i=1Wi � 1 � ↵. In addition, as shown in

Theorem 2.1 the random set bR(D) has the nominal 1 � ↵ coverage as B0
! 1 regardless

of the data sample size n.

Finally, note that our diagnostic procedure relies on assuming that the confidence set

varies smoothly across the parameter space. This assumption might break down in cases

when the observable data are discrete, especially for small values of the true parameters.

The estimated coverage would then be an interpolated version of the true coverage across the

parameter space. Heinrich (2003, Section 4) show that likelihood-ratio based confidence sets

undercover the true parameter value for Poisson data when the true parameter is very small

(✓ < 2), and in general does not vary continuously across the parameter space. This issue

extends to other discrete distribution such as the binomial, hypergeometric and negative

binomial distribution (see Casella and Berger 2002, Section 9.5.2); Blaker (2000) provides

a solution to build valid confidence sets in these setting. For such reasons, one might prefer

constructing confidence sets using the BFF rather than ACORE test statistic in the presence

of low-count discrete data. Regardless of the test statistic used, our approach would still

be able to highlight under-coverage issues provided a large enough B, B
0
and B

00
; as an

example, see Figure 2.11 (bottom panel) for small values of the signal parameter S (see

Section 2.9.4 for more details). Alternatively, one could estimate coverage using a basis

function that can capture the discrete nature of the true coverage function, such as Haar

wavelets for instance (Haar, 1910).

2.5 Loss function

In our inference machinery, we use the cross-entropy loss to train probabilistic classifiers. In

what follows we show the close connection between cross entropy loss and estimates odds.
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Consider a sample point {✓,x, y} generated according to Algorithm 1, and the estimated

odds function g(✓,x) := bP(Y = 1|✓,x)/bP(Y = 0|✓,x) . Let p be a Ber(y) distribution, and

q be a Ber
⇣
bP(Y = 1|✓,x)

⌘
= Ber

⇣
g(✓,x)

1+g(✓,x)

⌘
distribution. The cross entropy between p and

q is given by

LCE(g; {✓,x, y}) = �y log

✓
g(✓,x)

1 + g(✓,x)

◆
� (1� y) log

✓
1

1 + g(✓,x)

◆

= �y log (g(✓,x)) + log (1 + g(✓,x)) . (2.9)

For every x and ✓, the expected cross entropy E[LCE(g; {✓,x, Y })] is minimized by g(✓,x) =

O(✓,x). Thus we can measure the performance of an estimator g of the odds by the risk

RCE(g) = E[LCE(g; {✓,X, Y })].

The cross entropy loss is not the only loss function that is minimized by the true odds

function, but it is usually easy to compute in practice. It is also well known that minimizing

the cross entropy loss between the estimated distribution q and the true distribution p during

training is equivalent to minimizing the Kullback-Leibler (KL) divergence between the two

distributions, as

KL(p||q) = H(p, q)�H(p),

where H(p, q) is the cross entropy and H(p) is the entropy of the true distribution. By

Gibbs’ inequality (MacKay, 2002), we have that KL(p||q) � 0; hence the entropy H(p)

of the true distribution lower bounds the cross entropy with the minimum achieved when

p = q. Hence, we can connect the cross entropy loss to the ACORE and BFF statistics.

Proposition 3. If the probabilistic classifier achieves the minimum of the cross entropy

loss, then the constructed ACORE statistic (2.5) is equal to the likelihood ratio statistic (2.3)

and the constructed BFF statistic (2.6) is equal to the Bayes factor (2.4).

Proof of Prop 3. The proof follows from Proposition 1 and 2, and the expected cross entropy

loss is minimized if and only if bO(✓,x) = O(✓,x).
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In addition, we show that the convergence of the class posterior implies the convergence

of the cross entropy to the entropy of the true distribution. This supports our decision to

use the cross entropy loss when selecting the probabilistic classifier and sample size B.

Lemma 2.0.1. If for every ✓ 2 ⇥

q := bP(Y = 1|✓,X)
P

�����!
B�!1

p := P(Y = 1|✓,X),

then H(p, q)
P

�����!
B�!1

H(p).

Proof of Lemma 2.0.1. We can rewrite the cross entropy H(p, q) and entropy H(p) as

H(p, q) = �
X

y2{0,1}

Z

X⇥⇥
p log (q) dP(x, ✓),

H(p) = �
X

y2{0,1}

Z

X⇥⇥
p log (p) dP(x, ✓).

In addition, for any (X, ✓), it also holds that |q|  1. The lemma follows by combining the

dominated convergence theorem with the continuous mapping theorem for the logarithm.

In the special case where G is the marginal distribution of F✓(x) with respect to ⇡ and

we in addition assume that x contains all observations (that is, X = D), the denominator

of the BFF statistic (2.6) is equal to one. The BFF test statistic then simply becomes the

integrated odds (2.11). Hence, in addition to the standard cross-entropy loss (2.9), we

propose an integrated odds loss function which is directly related to the BFF (integrated

odds) statistic:

L(bO,O) :=

Z ⇣
bO(x; ✓)�O(x; ✓)

⌘2
dg(x)d⇡(✓). (2.10)

In Section 2.6, Theorem 3, we show that the power of the BFF test statistic is bounded by

the integrated odds loss.
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2.6 Theoretical Guarantees

In this section we provide theoretical guarantees on the inference machinery presented in

this chapter. Section 2.6.1 shows that Algorithm 4 leads to valid hypothesis tests as long

as B0 is large enough (Theorem 2.1), and that the power of the test converges to the power

of the LRT as B grows (Theorem 2.2). Section 2.6.2 proves the consistency of the p-value

estimation method in Algorithm 5, while Section 2.6.3 provides theoretical guarantees for

the power of BFF.

2.6.1 Critical Value Estimation

We denote convergence in probability and in distribution by
P
! and

Dist
�����!, respectively.

We start by showing that our procedure leads to valid hypothesis tests (that is, tests that

control the type I error probability) as long as B0 in Algorithm 3 is large enough. In order

to do so, we assume that the quantile regression estimator used in Algorithm 3 to estimate

the critical values is consistent in the following sense:

Assumption 2.1. Let bFB0(·|✓) be the estimated cumulative distribution function of the test

statistic ⌧ conditional on ✓ based on a sample size B0, and let F (·|✓) be true conditional

distribution. For every ✓ 2 ⇥0, assume that the quantile regression estimator is such that

sup
t2R

| bFB0(t|✓)� F (t|✓)|
P

�����!
B0�!1

0

Under some conditions, Assumption 2.1 holds for instance for quantile regression forests

(Meinshausen, 2006).

Next we show that, for every fixed training sample size B in Algorithm 1, Algorithm 3

yields a valid hypothesis test as B0
! 1. The result holds even if the likelihood ratio

statistic is not well estimated.

Theorem 2.1. Let CB,B0 2 R be the critical value of the test based on the statistic ⌧ = ⌧B

for a training sample size B with critical value chosen according to Algorithm 3 for a fixed

↵ 2 (0, 1). Assume the quantile estimator satisfies Assumption 2.1, and further assume

either:

• |⇥| <1,
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• |⇥| is a compact subset of Rd, and the function g
B

0 (✓) = supt2R | bFB0(t|✓)� F (t|✓)| is

continuous in ✓ and strictly decreasing in B
0
,

then

CB,B0
P

�����!
B0�!1

C⇤
B,

where C⇤
B

is such that

sup
✓2⇥0

P(⌧B  C⇤
B|✓) = ↵.

Finally we show that as long as the probabilistic classifier is consistent and the critical

values are well estimated (which holds for large B0 according to Theorem 2.1), the power

of the ACORE test converges to the power of the LRT as B grows. Equivalent theorems also

apply to the BFF test statistics.

Theorem 2.2. Let b�B,CB (D) be the test based on the statistic ⌧ = ⌧B for a labeled sample

size B with critical value CB 2 R.∗ Moreover, let �C⇤(D) be the likelihood ratio test with

critical value C⇤
2 R.† If, for every ✓ 2 ⇥,

bP(Y = 1|✓,X)
P

�����!
B�!1

P(Y = 1|✓,X),

where |⇥| <1, and bCB is such that bCB

Dist
�����!
B�!1

C⇤, then, for every ✓ 2 ⇥,

P

⇣
b�
B, bCB

(D) = 1|✓
⌘
�����!
B�!1

P (�C⇤(D) = 1|✓) .

2.6.2 P-value estimation

We start by showing that the p-value estimation method described in Section 2.3.2 is

consistent. The results shown here apply to any test statistic. That is, these results are not

restricted to BFF.

We assume consistency in the sup norm of the regression method used to estimate the

p-values:

∗
That is, b�B,CB (D) = 1 () ⌧B(D;⇥0) < CB .

†
That is, �C⇤(D) = 1 () ⇤(D;⇥0) < C⇤

.
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Assumption 1 (Uniform consistency). The regression estimator used in Equation 2.8 is

such that

sup
✓

|bEB0 [Z|✓]� E[Z|✓]|
a.s.

�����!
B0�!1

0.

Examples of estimators that satisfy Assumption 1 include Bierens (1983); Hardle et al.

(1984); Liero (1989); Girard et al. (2014).

The next theorem shows that the p-values obtained according to Algorithm 5 converge

to the true p-values. Moreover, the power of the tests obtained using the estimates p-values

converges to the power one would obtain if the true p-values could be computed.

Theorem 1. Under Assumption 1, for every ✓ 2 ⇥,

bp(D;⇥0)
a.s.

�����!
B0�!1

p(D;⇥0)

and

PD,T 0|✓(bp(D;⇥0)  ↵)
B

0�!1
�����! PD|✓(p(D;⇥0)  ↵).

The next corollary shows that as B0
�! 1, the tests obtained using the p-values from

Algorithm 5 have size ↵.

Corollary 1. Under Assumption 1 and if F✓ is continuous for every ✓ 2 ⇥, then

sup
✓2⇥0

PD,T 0|✓(bp(D;⇥0)  ↵)
B

0�!1
�����! ↵.

Under stronger assumptions about the regression method, it is also possible to derive

rates of convergence for the estimated p-values.

Assumption 2 (Convergence rate of the regression estimator). The regression estimator

is such that

sup
✓

|bE[Z|✓]� E[Z|✓]| = OP

✓✓
1

B0

◆
r
◆
.

for some r > 0.

Examples of regression estimators that satisfy Assumption 2 can be found in Stone

(1982); Hardle et al. (1984); Donoho (1994); Yang et al. (2017).
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Theorem 2. Under Assumption 2,

|p(D;⇥0)� bp(D;⇥0)| = OP

✓✓
1

B0

◆
r
◆
.

2.6.3 Power of BFF

In this section we provide convergence rates for BFF and show that its power relates to the

loss function of Equation 2.10.

We assume that G(x) is the marginal distribution of F✓(x) with respect to ⇡(✓). We here

also assume that x contains all observations; that is, X = D. In this case, the denominator

of the average odds is

Z

⇥
O(x, ✓)d⇡(✓) =

Z

⇥1

f(x|✓)

g(x)
d⇡(✓) =

Z

⇥

f(x|✓)R
⇥ f(x|✓)d⇡(✓)

d⇡(✓) = 1 (2.11)

and therefore there is no need to estimate the denominator in Equation 2.6.

We also make the following assumptions:

Assumption 3 (Bounded odds and estimated odds). There exists 0 < M,m < 1 such

that for every ✓ 2 ⇥ and x 2 X , m  O(x; ✓), bO(x; ✓) M .

Assumption 4 (Bounded second moment of odds estimation error). Let

h(✓) =

Z
(O(x; ✓)� bO(x; ✓))2dG(x).

There exists M 0,m0 > 0 such that h(✓) M 0 and
R
h(✓)d⇡(✓) > m0.

Assumption 3 states that the odds and estimated odds are both bounded away from 0

and infinity, for all choice of parameters ✓ and features x. Assumption 4 states that the

second moment of the di↵erence between the true and estimated odds is bounded away

from 0 and infinity.

Finally, we assume that the CDF of the power function of the test based on ⌧ is smooth

in a Lipschitz sense:

Assumption 5 (Smooth power function). The cumulative distribution function of ⌧(D; ✓0),

F⌧ , is Lipschitz with constant CL, i.e., for every x1, x2 2 R, |F⌧ (x1)�F⌧ (x2)|  CL|x1�x2|.
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With these assumptions, we can relate the odds loss with the probability that the

outcome of BFF is di↵erent from the outcome of the test based on Bayes factor:

Theorem 3. Let �⌧ (D) = I (⌧(D; ✓0) < c) and �b⌧B (D) = I (b⌧B(D; ✓0) < c) be the testing

procedures for testing H0 : ✓ = ✓0 obtained using ⌧ and b⌧B. Under Assumptions 3-5, there

exists K 0 > 0 such that, for every 0 < ✏ < 1,

PD|✓,TB
(�⌧ (D) 6= �b⌧B (D)) 

K 0
·

q
L(bO,O)

✏
+ ✏

Theorem 3 demonstrates that the probability that hypothesis tests based on the BFF

statistic versus the Bayes factor lead to di↵erent conclusions is bounded by the BFF loss. This

result is valuable because the BFF loss is easy to estimate in practice, and hence provides us

with a practically useful metric. For instance, the BFF loss can serve as a natural criterion

for selecting the “best” statistical model out of a set of candidate models with di↵erent

classifiers, for tuning model hyperparameters, and for evaluating model fit.

Next, we provide rates of convergence of BFF to the test based on the Bayes factor. For

that, we assume that the chosen probabilistic classifier has the following rate of convergence:

Assumption 6 (Convergence rate of the probabilistic classifier). The probabilistic classifier

trained with TB, bP(Y = 1|x, ✓) is such that

ETB

Z ⇣
bP(Y = 1|x, ✓)� P(Y = 1|x, ✓)

⌘2
dH(x, ✓)

�
= O

⇣
B�↵/(↵+d)

⌘
,

for some ↵ > 0 and d > 0, where H(x, ✓) is a measure over X ⇥⇥.

Typically, ↵ relates to the smoothness of P, while d relates to the number of covariates

of the classifier�in our case, the number of parameters plus the number of features. Below,

we provide some examples where Assumption 6 holds, using well-established results for the

convergence rates of commonly used regression estimators:

• Kpotufe (2011) shows that kNN estimators are adaptive to the intrinsic dimension d

under certain conditions. When bP is a kNN estimator with P in a class of Lipschitz

continuous functions, Assumption 6 holds with ↵ = 2. More generally, with P in a
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Hőlder space with parameter 0 < �  1.5, Assumption 6 holds with ↵ = 2� (Győrfi

et al. (2006); Ayano (2012)).

• Kpotufe and Garg (2013) show that under certain conditions, when bp is a kernel

regression estimator with P in a class of Lipschitz continuous functions, Assumption

6 holds with ↵ = 2 and d the intrinsic dimension of the data. More generally, with

P in a Hőlder space with parameter 0 < �  1.5, Assumption 6 holds with ↵ = 2�

(Győrfi et al. (2006)).

• When bP is a local polynomial regression estimator with P in a Sobolev space with

smoothness �, Assumption 6 holds with ↵ = �, where d is the manifold dimension

(Bickel and Li (2007)).

Another noteworthy example outside of this category is the random forest regression

estimator, for which Gao and Zhou (2020) have recently provided an improved bound of

the order of O
⇣
B� 1

d+2 log(B)
1

d+2

⌘
. More examples can be found in Győrfi et al. (2006),

Tsybakov (2009) and Devroye et al. (2013).

We also assume that the density of the product measure G ⇥ ⇡ is bounded away from

infinity.

Assumption 7 (Bounded density). H(x, ✓) dominates H 0 := G ⇥ ⇡, and the density of

H 0 with respect to H, add “denoted by” h0, is such that there exists � > 0 with h0(x, ✓) <

�, 8x 2 X , ✓ 2 ⇥.

If the probabilistic has the convergence rate given by Assumption 6, the probability that

hypothesis tests based on the BFF statistic versus the Bayes factor goes to zero with the

rate given by the following theorem.

Theorem 4. Under Assumptions 3-7, there exists K 00 > 0 such that

PD,TB |✓(�⌧ (D) 6= �b⌧B (D))  2
p

K 00B�↵/(4(↵+d)).

Corollary 2 tells us that the power of the BFF test is close to the power of the exact

Bayes Factor test. Because in the Neyman-Pearson setting the latter test is equivalent to

the LRT, this implies that in this setting BFF converges to the most powerful test.
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Corollary 2. Under Assumptions 3-7, there exists K 00 > 0 such that, for any ✓ 6= ✓0,

PD,TB |✓(�b⌧B (D) = 1) � PD,TB |✓(�⌧ (D) = 1)� 2
p

K 00B�↵/(4(↵+d)).

2.7 Sources of Error and a Practical Strategy

When constructing confidence sets using our inference machinery there are three separate

sources of error that can a↵ect confidence set validity and power:

e1: Estimation error in learning the odds,

e2: Numerical error when computing the maximization or integration (in the denominator

for ACORE and BFF respectively), and

e3: Estimation error in learning the critical values or the p-values.

e1 and e2 are the main drivers for determining the power of the downstream confidence

sets. Even without odds estimation error (e1 = 0), an incorrect estimation of the

denominator of both test statistics can cause unwieldy fluctuations in the estimated values

of the test statistic. At the same time, poorly estimated odds could be arbitrarily

uninformative in identifying the correct region of the parameter space, even if one had

access to the true values of the maximum or the integral at the denominator (e2 = 0). As

a note, the one exception is the case in which n = 1 and the marginal is used as reference

distribution. Since the integral of the marginal in this case is 1 for any X, using the BFF

test statistic provides a clear advantage as it reduces the possible sources of error; see

Section 2.9.5 for an application to galaxy images in such setting.

While power is tied to all three sources of error, validity is mostly determined by e3, that

is learning the critical values or p-values correctly. Using a quantile regression algorithm

that can recover the critical value correctly as B
0
!1 would construct a valid confidence

set regardless of the quality of the test statistic approximation, as shown by Theorem 2.1.

Instead, the critical values estimation is dependent on the smoothness of the estimated

odds, which would impact the magnitude of the sample size B
0
. In addition, the critical or

p-value estimation task is always lower-dimensional than the odds estimation task, as the
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simulated data D = (X1, ...,Xn) are not included as features but are incorporated in the

test statistic ⌧(D; ✓).

In order to address all sources of uncertainty, a practitioner would need to decide on the

following five key components:

(i) a probabilistic classifier for learning the odds,

(ii) a training sample of size B for learning the odds,

(iii) a sample budget M for integration or maximization,

(iv) a quantile regression algorithm to estimate critical values or a probabilistic classifier

to estimate p-values, and

(v) a training sample size B
0
for estimating critical values.

We propose the following practical strategy to choose such components:

• Select (i) and (ii) according to which probabilistic classifier minimizes the cross-

entropy loss on a held-out simulation set,

• Use our diagnostic tools in Section 2.4 to determine which combination of (iv) and

(v) achieves the correct nominal coverage across the parameter space,

• Determine (iii) according to the current computational limitations, with the under-

standing that the higher M the better the approximation of the denominator of the

test statistic will be.

One could also use the odds loss (2.10) proposed in Section 2.5 to select the probabilistic

classifier for learning the odds. As we shall see in the Section 2.9, the proposed odds loss

is sensitive to the value of the estimated odds and can yield very large positive or negative

values across di↵erent training sample sizes B. On the other hand, cross entropy loss is

more stable and most classifiers are trained to minimize the cross entropy by default.‡

‡
One could also train deep neural networks to minimize the odds loss directly. See Section 5.1 for more

details.
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As a final note, throughout this chapter we set the proposal distribution over the

parameter space ⇡(✓) to be uniform. The proposal distribution determines the number

of samples in specific regions of the parameter space ⇥ for both odds and critical values

estimation (samples TB and T
0

B
0 , respectively). The more samples from the neighborhood

around the true value of the parameter (i.e., the parameter ✓ compatible with the observed

data D), the better the approximation of the test statistic and critical value where the test

statistic is the largest. Hence, a proposal distribution that places more probability mass

around the true value of the parameter would result in confidence sets with a higher power

and smaller sizes than when using a uniform proposal distribution. Conversely, a proposal

distribution that places little probability mass around the true parameter value would result

in lower power and larger size confidence sets, as quantile regression algorithms tend to be

conservative with low sample sizes. One could use problem-specific prior knowledge or

develop active learning strategies to inform the distribution of ⇡(✓) to be concentrated at

parameter values ✓ where the estimated test statistic b⌧(D; ✓) is largest.

2.8 Nuisance Parameters

In many applications, the parameter space can be decomposed as ⇥ = � ⇥  , where �

contains the parameters of interest and  contains nuisance parameters not of immediate

interest. Consider tests of the form H0,�0 : � = �0 versus H1,�0 : � 6= �0 for �0 2 �. Dealing

with a large number of nuisance parameters  is challenging from a numerical perspective:

the infima and suprema computation for ACORE can be numerically unwieldy (Zhu et al.,

2020), while the the Monte Carlo estimates for BFF might be computationally infeasible

(van den Boom et al., 2020).

In this work we approach nuisance parameters consistently with the definitions of

the ACORE and BFF test statistics in equations (2.5) and (2.6), respectively. For ACORE,

we propose to approximate these statistics via the hybrid resampling method, which is

essentially a form of likelihood profiling (Chuang and Lai, 2000; Sen et al., 2009; Feldman,

2000). In particular, we first compute

b � = argmax
 2 

nY

i=1

bO
⇣
Xobs

i ; (�, )
⌘
,
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which is an approximation of the maximum likelihood estimate of  based on the observed

data D at every value of the parameter of interest �. Note that if bP(Y = 1|✓,x) = P(Y =

1|✓,x), then the ACORE statistic is equal to the profiled likelihood ratio as defined by Murphy

and Van Der Vaart (2000) We then test H0,�0 : � = �0 by either computing the cuto↵

bC�0 := bF�1

⌧(D;(�0, b �0))
��(�0, b �0)

(↵)

where bF�1 is obtained via a quantile regression as in Algorithm 4 but using a training

sample T
0 generated at fixed b �0 , or by computing the p-value

bp(D;�0) := bPD
��
T,(�0, b �0)

⇣
b⌧
⇣
D;
�
�0, b �0

�⌘
< b⌧

⇣
D;
�
�0, b �0

�⌘⌘

where bP is obtained via a regression as in Algorithm 5 but with T
0 simulated at fixed

b �0 . This technique e↵ectively reduces the parameter space to ⇥0 :=
n�
�, ( b (�)

�
: � 2 �

o
,

which has lower dimension than ⇥. This makes it easier to estimate the key quantities of

interest: By profiling, we are e↵ectively computing our p-value regression or critical value

quantile regression in a lower-dimensional space, the space of ⇥0. Hybrid resampling does

not always control ↵, but it is often a good approximation that leads to robust results (Aad

et al., 2012; Qian et al., 2016). For BFF , we propose to integrate the odds over the nuisance

parameters, by using a reference distribution ⇡( ); in other words, under the presence of

nuisance parameter we define the following test statistic:

⌧(D;�0) :=

R
 

Q
n

i=1O(Xobs
i

; (�0, ))d⇡( )R
⇥

�Q
n

i=1O(Xobs
i

; ✓)
�
d⇡(✓)

. (2.12)

This is known in the high energy physics literature as the “hybrid Bayesian-frequentist

treatment of nuisance parameters”(Cousins and Highland, 1992). Algorithm 6 details our

construction of confidence sets in the presence of nuisance parameters for the ACORE test

statistic; the algorithm for BFF would follow the same steps but integrate over the nuisance

parameters (at Algorithm 6 line 6), passing only the parameters of interest as features for

estimating the critical or p-value at every � 2 �. For both ACORE and BFF confidence sets

we propose to use the diagnostic techniques in Section 2.4 to assess whether we obtain the

nominal coverage or not in practice.
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Algorithm 6 Construct confidence set for � with coe�cient � = 1� ↵, in the presence of
nuisance parameters  for the ACORE test statistic
Input: stochastic forward simulator F✓; proposal distribution ⇡ over ⇥ = � ⇥  ;
parameter p of Bernoulli distribution; sample size B (for estimating odds ratios); sample
size B0 (for estimating critical values or p-values); probabilistic classifier; observed data
D =

�
xobs
1 , . . . ,xobs

n

 
; desired level ↵ 2 (0, 1); number of parameter values at which to

evaluate confidence set ngrid; confidence set estimation strategy eval (either p-values or
crit-values)
Output: �-values in confidence set

1: // Estimate odds
2: Generate labeled sample TB according to Algorithm 1
3: Apply probabilistic classifier to TB to learn class posterior probabilities, bP(Y = 1|✓,X),

for all ✓ = (�, ) 2 ⇥ and X 2 X

4: Let the estimated odds bO(X; ✓) =
bP(Y=1|✓,X)
bP(Y=0|✓,X)

5: // Profiling for  
6: Define b �  argmax 2 bO(D; (�, )) for every �
7: // Profiled test statistic ⌧ 0

8: Define ⌧ 0(D;�) ⌧(D; (�, b �)) for every �
9: // Find parameter set for which the test ��0 does not reject � = �0

10: L�  lattice over � with ngrid elements
11: Set S  ;
12: if eval == crit-values then
13: Estimate critical value bC�  bF�1

⌧ 0|� (↵ | � ) for every � (Algorithm 4)
14: else if eval == p-values then

15: Estimate p-value bp(D;�) bE
h
I

⇣
b⌧ 0(D;�) < ⌧ 0(D;�)

⌘
| �
i
for every � (Algorithm 5)

16: end if
17: for �0 2 L� do

18: Compute the observed profiled test statistic b⌧ 0
obs
 b⌧ 0(D;�0) = b⌧(D; (�0, b �0))

19: if eval == crit-values then
20: if b⌧ 0

obs
> bC�0 then

21: S  S [ {�0}
22: end if
23: else if eval == p-values then
24: if bp(D;�0) > ↵ then
25: S  S [ {�0}
26: end if
27: end if
28: end for
29: return
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2.9 Experiments and Applications

This section includes a series of examples of constructing confidence sets in a LFI setting

spanning a range of di↵erent data and parameter settings. Section 2.9.1 considers two

parametric models (Poisson and Gaussian mixture model) with a one-dimensional parameter

and feature space. Section 2.9.1 showcases how ACORE and BFF scale to higher dimensional

parameter spaces, using a high-dimensional Gaussian example. Sections 2.9.3 and 2.9.4

consider two examples inspired by particle collision experiments in high-energy physics. In

particular, Section 2.9.4 showcases the use of ACORE and BFF for constructing confidence

sets under the presence of nuisance parameters. Lastly, Section 2.9.5 illustrates an example

in which the simulated data are 400-dimensional images.

2.9.1 One-Dimensional Parametric Models

We consider two examples where the true likelihood is known. In the first example, the

forward simulator F✓ follows a Pois(100 + ✓) distribution similar to the signal-background

model in Section 2.9.3. In the second example, we consider a Gaussian mixture model

(GMM) with two unit-variance Gaussians centered at �✓ and ✓, respectively. In both

examples, n = 10, the proposal distribution r⇥ is a uniform distribution, and the reference

distribution G is a normal distribution. Table 2.1 summarizes the set-up.

Poisson Example GMM Example
r⇥ Unif(0, 20) Unif(0, 10)
F✓ Pois(100 + ✓) 1

2N (�✓, 1) + 1
2N (✓, 1)

G N (110, 152) N (0, 52)
True ✓ ✓0 = 10 ✓0 = 5

Table 2.1: Set-up for the two toy examples.

First we investigate how the power of ACORE and BFF and the size of the derived

confidence sets depend on the performance of the classifier used in the odds ratio estimation

(Section 2.2) and the use of critical or p-values in constructing confidence sets (Section 2.3).

We consider three classifiers for odds estimation: multilayer perceptron (MLP), nearest

neighbor (NN) and quadratic discriminant analysis (QDA). We use gradient boosted

quantile regression for critical value estimation and a MLP classifier for p-values estimation,
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Poisson Model
CI Method Test Statistic B Classifier Cross Entropy Power CI Size Coverage

Crit. Values

ACORE 100
MLP 0.87 ± 0.27 0.24 75.9 ± 19.3 0.91
NN 0.76 ± 0.15 0.29 71.6 ± 19.7 0.91
QDA 0.66 ± 0.02 0.41 60.0 ± 15.6 0.90

BFF 100
MLP 0.87 ± 0.27 0.18 82.2 ± 17.6 0.94
NN 0.76 ± 0.15 0.27 72.9 ± 20.9 0.87
QDA 0.66 ± 0.02 0.49 52.4 ± 10.6 0.91

ACORE 500
MLP 0.69 ± 0.01 0.35 65.9 ± 20.4 0.91
NN 0.67 ± 0.01 0.38 62.9 ± 15.8 0.93
QDA 0.64 ± 0.01 0.47 54.2 ± 9.4 0.94

BFF 500
MLP 0.69 ± 0.01 0.35 66.0 ± 19.2 0.92
NN 0.67 ± 0.01 0.42 58.9 ± 14.2 0.87
QDA 0.64 ± 0.01 0.53 47.9 ± 7.0 0.87

ACORE 1000
MLP 0.69 ± 0.01 0.37 63.3 ± 19.7 0.91
NN 0.66 ± 0.01 0.44 56.9 ± 15.9 0.89
QDA 0.64 ± 0.01 0.50 51.3 ± 7.7 0.91

BFF 1000
MLP 0.69 ± 0.01 0.36 64.4 ± 20.0 0.93
NN 0.66 ± 0.01 0.42 58.7 ± 12.3 0.93
QDA 0.64 ± 0.01 0.53 48.4 ± 5.7 0.91

P-Values

ACORE 100
MLP 0.87 ± 0.27 0.26 74.8 ± 21.0 0.93
NN 0.76 ± 0.15 0.22 78.3 ± 19.9 0.96
QDA 0.66 ± 0.02 0.41 59.6 ± 17.4 0.91

BFF 100
MLP 0.87 ± 0.27 0.14 86.4 ± 18.5 1.00
NN 0.76 ± 0.15 0.27 74.0 ± 17.4 0.97
QDA 0.66 ± 0.02 0.45 56.4 ± 12.0 0.93

ACORE 500
MLP 0.69 ± 0.01 0.33 67.6 ± 21.9 0.89
NN 0.67 ± 0.01 0.37 63.6 ± 18.7 0.84
QDA 0.64 ± 0.01 0.50 51.3 ± 10.6 0.84

BFF 500
MLP 0.69 ± 0.01 0.25 75.7 ± 21.4 0.99
NN 0.67 ± 0.01 0.38 63.0 ± 15.5 0.91
QDA 0.64 ± 0.01 0.53 48.3 ± 7.0 0.91

ACORE 1000
MLP 0.69 ± 0.01 0.42 58.4 ± 21.3 0.88
NN 0.66 ± 0.01 0.39 62.1 ± 17.6 0.88
QDA 0.64 ± 0.01 0.49 51.8 ± 10.3 0.90

BFF 1000
MLP 0.69 ± 0.01 0.32 68.5 ± 21.8 0.96
NN 0.66 ± 0.01 0.41 59.5 ± 15.0 0.92
QDA 0.64 ± 0.01 0.54 47.3 ± 5.8 0.89

Exact LR - - - 0.64 ± 0.01 0.54 45.0 ± 4.9 0.90

Table 2.2: Results for Poisson example. The table shows the cross entropy loss, power
(averaged over ✓), size and coverage of confidence sets for di↵erent values of B and for
di↵erent classifiers. These results are based on 100 repetitions; the numbers represent the
mean and one standard deviation. The best results in each setting are marked in bold-faced;
we see that the classifier with the lowest cross entropy loss is linked with the highest average
power and the smallest confidence set. All confidence sets are valid at the nominal level.
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GMM Model
CI Method Test Statistic B Classifier Cross Entropy Power CI Size Coverage

Crit. Values

ACORE 100
MLP 0.39 ± 0.03 0.88 14.1 ± 4.7 0.87
NN 0.81 ± 0.31 0.42 58.4 ± 23.3 0.91
QDA 0.64 ± 0.02 0.15 85.3 ± 21.1 0.88

BFF 100
MLP 0.39 ± 0.03 0.88 13.5 ± 3.5 0.85
NN 0.81 ± 0.31 0.50 50.9 ± 24.0 0.86
QDA 0.64 ± 0.02 0.14 86.1 ± 19.9 0.91

ACORE 500
MLP 0.35 ± 0.01 0.90 12.1 ± 2.4 0.91
NN 0.45 ± 0.05 0.57 44.3 ± 24.1 0.95
QDA 0.62 ± 0.01 0.15 84.9 ± 19.9 0.92

BFF 500
MLP 0.35 ± 0.01 0.90 11.7 ± 1.9 0.91
NN 0.45 ± 0.05 0.72 29.7 ± 16.8 0.90
QDA 0.62 ± 0.01 0.12 88.0 ± 15.8 0.91

ACORE 1000
MLP 0.35 ± 0.01 0.90 12.1 ± 2.5 0.92
NN 0.41 ± 0.02 0.77 24.9 ± 15.9 0.84
QDA 0.62 ± 0.01 0.12 88.1 ± 18.0 0.93

BFF 1000
MLP 0.35 ± 0.01 0.90 11.6 ± 2.2 0.86
NN 0.41 ± 0.02 0.83 18.5 ± 9.1 0.87
QDA 0.62 ± 0.01 0.12 88.0 ± 15.7 0.94

P-Values

ACORE 100
MLP 0.39 ± 0.03 0.88 13.7 ± 4.0 0.89
NN 0.81 ± 0.31 0.51 50.2 ± 23.6 0.94
QDA 0.64 ± 0.02 0.17 83.6 ± 21.8 0.90

BFF 100
MLP 0.39 ± 0.03 0.88 13.6 ± 4.4 0.88
NN 0.81 ± 0.31 0.53 48.5 ± 22.0 0.89
QDA 0.64 ± 0.02 0.14 85.8 ± 20.7 0.87

ACORE 500
MLP 0.35 ± 0.01 0.90 11.9 ± 2.8 0.90
NN 0.45 ± 0.05 0.74 27.1 ± 17.4 0.92
QDA 0.62 ± 0.01 0.15 84.6 ± 19.3 0.88

BFF 500
MLP 0.35 ± 0.01 0.90 12.0 ± 2.3 0.87
NN 0.45 ± 0.05 0.74 27.2 ± 15.0 0.92
QDA 0.62 ± 0.01 0.12 88.1 ± 18.2 0.91

ACORE 1000
MLP 0.35 ± 0.01 0.90 11.4 ± 2.2 0.94
NN 0.41 ± 0.02 0.84 17.9 ± 9.4 0.95
QDA 0.62 ± 0.01 0.18 82.3 ± 22.9 0.89

BFF 1000
MLP 0.35 ± 0.01 0.90 11.7 ± 2.0 0.85
NN 0.41 ± 0.02 0.83 18.5 ± 9.6 0.96
QDA 0.62 ± 0.01 0.10 89.6 ± 16.6 0.92

Exact LR - - - 0.35 ± 0.01 0.92 9.5 ± 2.0 0.90

Table 2.3: Results for GMM example. The table shows the cross entropy loss, power
(averaged over ✓), size and coverage of confidence sets for di↵erent values of B and for
di↵erent classifiers. These results are based on 100 repetitions; the numbers represent the
mean and one standard deviation. The best results in each setting are marked in bold-faced;
we see that the classifier with the lowest cross entropy loss is linked with the highest average
power and the smallest confidence set. All confidence sets are valid at the nominal level.
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with B
0
= 5000. For di↵erent values of B (sample size for estimating odds ratios), we

compute the binary cross entropy (a measure of classifier performance), the power as a

function of ✓, the size of the constructed confidence set as a proportion of the parameter

space ⇥ and the coverage of the confidence set. Tables 2.9.1 and 2.9.1 summarize the results

based on 100 repetitions. Our results show that we for all cases achieve results in line with

the nominal confidence level.§ The last row of the table shows the best attainable cross

entropy loss (see Section 2.7 for more details), the confidence set size and power for the true

likelihood function.

For each setting with fixed B, the best classifier according to cross entropy loss achieves

the highest power and the smallest confidence set.¶ This trend is consistent in both ACORE

and BFF across confidence sets constructed using critical values and p-values. Moreover, as

B increases, the best values (marked in bold-faced) get closer to those of the true likelihood

(marked in red). The cross-entropy loss is easy to compute in practice. Our results indicate

that minimizing the cross-entropy loss is a good rule of thumb for achieving inference results

with desirable statistical properties. In addition, for these one-dimensional examples, BFF

seem to consistently achieve a slightly higher power than ACORE, although using the same

computational budget for maximization and integration (M = 1000).

Next we illustrate our goodness-of-fit procedure (Section 2.4) for checking the coverage

of the constructed confidence sets across the parameter space ⇥ with the ACORE test statistic.

To pass our goodness-of-fit test, we require the nominal coverage to be within two standard

deviations of the estimated coverage for all parameter values. Our goodness-of-fit procedure

shown in Figure 2.3 uses a set T
00

B
00 with size B

00
= 250 and logistic regression to generate

prediction bands. Figure 2.3 shows the estimated coverage with logistic regression for both

the Poisson and GMM example with B = 1000 (learning odds via a QDA and MLP classifier

respectively), over three di↵erent values of B
0
(the training sample size for estimating the

critical value C via gradient boosted quantile regression). As expected (Theorem 2.1), the

estimated coverage gets closer to the nominal 90% confidence level as B0 increases. We can

use these diagnostic plots to choose B0. For instance, here B0 = 500 in the Poisson example

§
The 95% CI of a binomial distribution with probability p = 0.9 over 100 repetitions is in fact [0.84, 0.95].

This interval includes the observed coverages listed in Tables 2.9.1 and 2.9.1.
¶
In traditional settings, high power has been shown to lead to a small expected interval size under certain

distributional assumptions (Pratt, 1961; Ghosh, 1961).
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Figure 2.3: Estimated coverage as a function of ✓ in the Poisson example (left) and GMM
example (right) for ACORE with di↵erent values of B0. The mean and one standard deviation
prediction intervals are estimated via logistic regression. Our diagnostics show thatB0 = 500
is large enough to achieve the nominal confidence level 1�↵ = 0.9 in the Poisson example,
while a B0 = 1000 is necessary in the GMM example. (We here use n = 10, a quantile
gradient boosted trees for critical value estimation, and a QDA and MLP classifier in the
Poisson and GMM example respectively.

is large enough for ACORE to achieve good coverage, while the GMM example requires

B
0
= 1000. In addition, the coverage for the GMM example shows a noticeable tilt in the

prediction bands for B0 = 100 and 500. However, as B0 increases, the estimation of critical

values becomes more precise and the estimated confidence intervals pass our goodness-of-fit

diagnostic at, for example, B0 = 1000.

Next we compare our goodness-of-fit diagnostic with diagnostics obtained via standard

Monte Carlo sampling. Figure 2.4 shows the MC coverage as a function of ✓ for the Poisson

example (left) and the Gaussian mixture model example (right). In both cases 100 MC

samples are drawn at 100 parameter values chosen uniformly. The empirical ACORE coverage

is computed over the MC samples at each chosen ✓. This MC procedure is expensive: it

uses a total of 10, 000 simulations, which is 40 times the number used in our goodness-of-fit

procedure. The observed coverage of the Poisson example (Figure 2.4, left) indicates that

B0 = 500 is su�cient to achieve the nominal coverage of 90%. For the Gaussian mixture

model example (Figure 2.4, right), we detect undercoverage for very small values of ✓. This

discrepancy is due to the fact that, at ✓ = 0, the mixture collapses into a single Gaussian,

structurally di↵erent from the GMM at any other ✓ > 0 and closer to the N (0, 52) reference

distribution.
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Sections 2.10.1 and 2.10.2 include a comparison between ACORE and Monte Carlo

Gaussian Process (MC GP) interpolation Frate et al. (2017) and calibrated neural nets

classifiers (CARL, Cranmer et al. 2015), respectively. Our results show that MC-based GP

interpolation provides a better approximation of the likelihood ratio when the simulated

data are approximately Gaussian (as in the Poisson example). However, when the

parametric assumptions are not valid (as in the GMM example), MC-based GP fails to

approximate the likelihood ratio regardless of the number of available simulations. For

both examples, CARL leads to lower power and larger confidence intervals than ACORE.

See Tables 2.7, 2.8, 2.9 and 2.10 for details.
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Figure 2.4: Observed ACORE coverage across the parameter space for the Poisson example
(left) and the Gaussian mixture model example (right). The coverage is computed with
Monte Carlo samples of size 100, each sampled at a ✓ chosen uniformly over the parameter
space. Odds ratios are computed with a QDA classifier for the Poisson example, and an
MLP classifier for the GMM example (as in Figure 2.3). We observe undercoverage at small
✓ for the GMM (right) due to the mixture collapsing into a single Gaussian as ✓ ! 0.

2.9.2 High-Dimensional Gaussian Model

In this section we analyse the behavior of ACORE and BFF confidence sets as the dimension

d of the parameter space increases using a Gaussian parametric model. Let X1, . . . ,Xn ⇠

N(✓, Id), where Id is the d-dimensional identity matrix and ✓ 2 R
d is an unknown parameter.

Given the sample mean X̄, the likelihood ratio for testing the null hypothesis H0 : ✓ = ✓0

vs. H1 : ✓ 6= ✓0 is equal to:

LR(X1, . . . ,Xn; ✓0) = 2 log
N(X̄; X̄, n�1Id)

N(X̄; ✓0, n�1Id)
, (2.13)
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which we use as a benchmark for ACORE throughout this section. As a benchmark for

BFF we also include the exact Bayes factor, for which we compute critical value via Monte

Carlo sampling.
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Figure 2.5: Top: Cross entropy loss and odds loss as a function of the sample size B
for quadratic discriminant analysis classifier (QDA) and multilayer perceptron (MLP), for
dimensions d = 1, 2, 5 and 10. As we increase B, the cross entropy loss decreases, suggesting
a more accurate odds estimation. QDA achieves the lowerst cross-entropy loss among the
classifiers we considered (of which MLP is an example, shown here for comparison). The
odds loss also show a decreasing trend as the sample size B increases, although significantly
more unstable. Bottom: When d = 2, BFF and ACORE confidence sets are of a similar size to
those constructed using the known LR. In these example confidence sets, the true parameter
is ✓0 = (0, 0) (indicated with a red star), n = 10 observations, ↵ = 0.1, B = B0 = 5000
samples for BFF and ACORE; all confidence sets are constructed using the critical value
estimation (Algorithm 4).

Firstly, as highlighted in our practical strategy in Section 2.7, we select the probabilistic

classifier and sample size B according to the lowest cross entropy loss value on a held-out set.

In Figure 2.5 (top) we show the cross entropy and odds loss for two probabilistic classifiers, a

multilayer perceptron (MLP) and quadratic discriminant analysis (QDA), across dimensions

d = 1, 2, 5 and 10. We include both MLP and QDA to show the di↵erence in terms of cross

entropy loss performance between the best performing classifier (QDA) against another
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classifier; for instance, in dimension d = 10, QDA achieves the same cross entropy loss as

MLP with a factor of 200 fewer training samples. We also include the results for the odds

loss, which mostly leads to similar conclusions as the cross entropy loss but is significantly

more unstable across the sample size B. Finally, note that in some cases increasing B

leads to diminishing marginal returns; identifying where the cross entropy loss plateaus can

inform the choice of sample size B.

We then investigate BFF, ACORE and exact likelihood ratio confidence sets in low

dimensions, using critical value estimation for confidence set construction in all three cases.

Figure 2.5 (bottom) shows three realizations of the confidence sets for the true parameter

✓0 = (0, 0) with an observed sample size n = 10, using B = B
0
= 5000, M = 1000 and

gradient boosted quantile regression trees. We see that BFF and ACORE confidence sets

are similar in size and variability to the likelihood ratio ones, pointing at both the odds

estimation error as well as maximization and integration numerical error to be small in

dimension d = 2.

Next, we explore the power of ACORE , BFF and known likelihood confidence sets as the

dimension d increases, fixing the true parameter ✓0 = 0. For the likelihood ratio, we notice

that in Equation 2.13, LR(X1, . . . ,Xn;✓0) ⇠ �2
d
. Therefore, as d!1 or nk✓k2 !1, the

power of the likelihood ratio test (LRT) converges to

�

 
d+ nk✓k2 � C↵,dp

2(d+ 2nk✓k2)

!
(2.14)

where C↵,d is the upper ↵ quantile of a �2
d
distribution and �(·) is the standard normal

CDF. As it is challenging to visualize power in higher dimensions, in this experiment we

first apply the Neyman inversion only on parameter values ✓ with equal coordinate values;

specifically on parameters ✓? =
⇣

cp
d
, ..., cp

d

⌘
, for di↵erent values of the parameter c such

that the L2 norm k✓?k22 2 [0, 30]. We then compute the power by counting the proportion

of times each parameter was included in the generated confidence set. Figure 2.6 shows

the power as a function of the L2 norm of the point considered in the Neyman inversion

(which is the distance from the true parameter) for the ACORE , BFF and known likelihood

confidence sets in dimensions d = 1, 2, 5, 10. Power and coverage are computed over 100

repetitions using a sample size n = 10. We use B = 10000, B
0
= 10000, M = 10000, a
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d=1 d=2 d=5 d=10
Coverage of ACORE 0.92 ± 0.03 0.92 ± 0.03 0.90 ± 0.03 0.90 ± 0.03
Coverage of BFF 0.94 ± 0.06 0.89 ± 0.03 0.91 ± 0.03 0.91 ± 0.03

Figure 2.6: In the LFI setting, where constructing confidence sets requires the estimation of
both odds and critical values, the curse of dimensionality significantly a↵ects the confidence
set power. Here, we test H0 : ✓ = 0 at level ↵ = 0.1 for varying values of the true L2-
norm k✓k2 of the unknown parameter (see text), with n = 10 observations, results averaged
over 100 trials, and using B = 10000 and B0 = 10000 samples to train the probabilistic
classifier and quantile regression in our method. Given the same computational budget for
maximization and integration respectively (M = 10000), both ACORE and BFF lose power at
higher dimension, with the e↵ect being more pronounced at d = 10.

QDA classifier for odds estimation and a gradient boosted quantile regression algorithm

for critical value estimation. We see that all three methods construct valid confidence sets

with very similar power at d = 1 and d = 2. Although ACORE and BFF confidence sets

have comparable power to their exact counterparts in low dimensions, the power degrades

as d grows. Nevertheless, confidence sets constructed with both test statistics consistently

achieve the nominal level 1 � ↵ coverage�. This suggest that in higher dimensions the

primary challenge in our framework is ensuring that confidence sets have high power. Note

that ACORE power degrades slower than BFF as a function of d, and that the same phenomena

can be observed for the exact LR and BF respectively as well. This is not surprising: in

�
The coverage falls within or above expected variation for 100 repetition, which is in the range [84, 95].
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Figure 2.7: Top: Odds classifiers trained on B samples, evaluated on 1000 test samples,
showing how QDA estimates the odds well for higher dimension d even with smaller sample
sizes B. Center and Bottom: BFF and ACORE test statistics at d = 5 and d = 10 using
the exact odds but using a budget of M = 30000 samples to estimate the denominator of
both test statistics. As d grows, the numerical estimation error becomes larger, leading to
an under-estimation of the denominator of both test statistics, hence to inflated values of
ACORE and BFF .

a setting with a Gaussian likelihood and known variance, the exact LR is the uniformly

most powerful unbiased tests for the Neyman construction null hypothesis, i.e., H0 : ✓ = ✓0

against HA : ✓ 6= ✓0 (Birkes, 1990).

To pinpoint the cause of the degradation in power in high dimension for ACORE and BFF,

we separate the error in estimating the odds from the numerical error in the maximization

or integration step in the test statistic (errors e1 and e2 in Section 2.7). Figure 2.7 (top
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panel) shows how QDA estimates odds well at both d = 5 and d = 10 (even at lower sample

sizes B), at least at the true parameter value ✓0. Combining this with the cross entropy

performance in Figure 2.5, it is safe to assume the odds estimation error is likely small. To

isolate the numerical error, Figure 2.7 (bottom panel) shows the estimated ACORE and BFF

using the analytical odds function at d = 5 and d = 10. Even a large budget of M = 10000

underestimate both the odds maximum and the integrated odds across the parameter space,

resulting in an over-estimation of the ACORE and BFF test statistics. Hence, we foresee both

ACORE and BFF benefit for more e�cient numerical approaches; see Section 5.3 for a review

of more e�cient approaches for both maximization and integration.

2.9.3 Signal Detection in High-Energy Physics

In this section we construct confidence sets in a model described in Rolke et al. (2005)

and Sen et al. (2009) for a high energy physics (HEP) experiment. In this model, particle

collision events are counted under the presence of a background process b. The goal is to

assess the intensity ⌫ of a signal (i.e., an event which is not part of the background process).

The observed data D consist of n = 10 realizations of X = (N,M), where N ⇠ Pois(b+ ⌫)

is the number of events in the signal region, and M ⇠ Pois(b) is the number of events

in the background (control) region. (We use a uniform proposal distribution r⇥ and a

Gaussian reference distribution G.) This model is a simplified version of a real particle

physics experiment where the true likelihood function is not known.

Figure 2.8 illustrates the role of B, B0, and our goodness-of-fit procedure when

estimating confidence sets. In the top left panel, we use the true LR statistic to show

that, even if the LR is available, estimating the critical value C well still matters. Our

goodness-of-fit diagnostic provides a principled way of choosing the best quantile regression

(QR) method and the best sample size B0 for estimating C. In this example, random forest

QR does not pass our goodness-of-fit test; it also leads to a confidence region quite di↵erent

from the exact one. Deep QR, which passes our test, gives a more accurate region estimate.

In the top right panel, we use ACORE to estimate both the odds ratio and the critical value

C (this is the LFI setting). If we choose B by identifying when the cross entropy loss levels

o↵, we would choose B = 100000. Decreasing B leads to a worse cross-entropy loss and, as
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Figure 2.8: Top Left : 90% confidence sets computed with the exact likelihood ratio
statistic. Estimating critical values can however be challenging, as highlighted by the
di↵erences in the results for two di↵erent quantile regression (QR) algorithms and sample
sizes: Random Forest QR at B0 = 1000 (green dotted) versus Deep QR at B0 = 25000
(blue dashed). Our goodness-of-fit procedure can be used to select the best method in a
principled way. (The red contour shows the exact LR confidence set, and the red star is at
the true parameter setting.) Top Right : 90% confidence sets when estimating both odds
ratios and critical values. This is the LFI setting. Our proposed strategy for choosing the
di↵erent components of our inference machinery selects a 5-layer deep neural network with
B = 100000; this yields a confidence set (dashed blue) close to the exact LR set (solid
red). Increasing B does not show a noticeable improvement (dash-dotted purple), whereas
decreasing B makes estimates worse (dotted green). Bottom: Heat map of the estimated
coverage for a confidence set that did not pass our goodness-of-fit diagnostic. The overall
coverage of the confidence set is correct (91.8% vs. the 90% nominal confidence level), but
the set clearly undercovers in low-signal and high-background regions.
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the figure shows, also a larger confidence region. Increasing B beyond our selected sample

size does not lead to substantial gains. The bottom panel illustrates how our goodness-

of-fit procedure can be used to identify regions in parameter space where a constructed

confidence set is not valid. The heat map refers to an example which did not pass our

goodness-of-fit procedure. While the overall (marginal) coverage is at the right value, our

diagnostic procedure (for estimating coverage as a function of ⌫ and b) is able to identify

undercoverage in low-signal and high-background regions. That is, for a valid confidence

set, one needs to better estimate the critical value C by, e.g., using a di↵erent quantile

regression estimator or by increasing B0 (either uniformly over the parameter space or by

an active learning scheme which increases the number of simulations at parameter settings

where one undercovers).

https://www.overleaf.com/project/5fd2b66ef24b695c2baa316f Figure 2.9 illustrates the

two steps in identifying the four components of our inference machinery. We first use a

validation set of 5, 000 simulations to determine which probabilistic classifier and training

sample size B minimize the cross entropy loss. Figure 2.9 (left) shows the cross entropy loss

of the best four classifiers as function ofB. The minimum is achieved by a 5-layer deep neural

network (DNN) at B = 100, 000 with a cross entropy loss of 58.509⇥ 10�2, closely followed

by QDA with 58.512⇥10�2 at B = 50, 000. Given how similar the loss values are, we select

both classifiers to follow-up on. In Figure 2.9 (right), the “estimated correct coverage”

represents the proportion of the parameter space that passes our diagnostic procedure. The

lowest B0 with correct coverage is achieved by the five-layer DNN classifier (for estimating

odds ratios) at B0 = 25, 000 with critical values estimated via a two-layer deep quantile

regression algorithm. None of the quantile regression algorithms pass a diagnostic test

with a nominal coverage of 90% at the one standard deviation level when using the QDA

classifier; we therefore do not include QDA in this example. Given the above, the following

components were chosen: (i) a five-layer DNN for learning odds ratios, (ii) B = 100, 000,

(iii) a two-layer deep quantile regression for estimating critical values, and (iv) B0 = 25, 000.
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Figure 2.9: Left: The cross entropy loss of the best four classifiers, shown as a function of B.
In order of increasing loss: 5-layer DNN ([512, 256, 64, 32, 32] neurons, ReLu activations),
QDA classifier, 3-layer DNN ([64, 32, 32] neurons, ReLu activations) and gradient boosted
trees (1000 trees with maximum depth 5). Because the first two classifiers (the 5-layer DNN
and QDA) achieve a very similar minimum loss, we consider both classifiers in the follow-up
step. Right : Proportion of the (⌫, b) parameter space where the best two classifiers pass
our goodness-of-fit procedure with a nominal coverage of 90%. Both the mean value curves
and the ± one standard deviation prediction bands are computed via logistic regression.
Critical values are estimated via a two-layer deep quantile regression ([64,64] neurons, ReLu
activations), which passed the diagnostic at the lowest sample size (B0 = 25, 000, with the
5-layers DNN). Based on the results, we choose the 5-layer DNN with B0 = 25, 000.

2.9.4 3D Mixtures in High-Energy Physics

In this section we illustrate the construction of confidence sets under the presence of nuisance

parameters using a HEP synthetic model from De Castro and Dorigo (2019). In this model,

particle collision events are counted under the presence of a background process b. The goal

is to identify the intensity of a signal s, i.e. an event which is not part of the background

process. The simulated data x = (x0, x1, x2) 2 R
3 come from a 3D mixture model, which

is defined as follows:

p(x|s, r,�, b) =
b

b+ s
fb(x|r,�) +

s

s+ b
fs(x), (2.15)

where:
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fb(x|r,�) = N

0

@(x0, x1)|(2 + r, 0),

2

45 0

0 9

3

5

1

A Exp(x2|�)

fs(x) = N

0

@(x0, x1)|(1, 1),

2

41 0

0 1

3

5

1

A Exp(x2|2),

with N indicating a Normal Gaussian distribution and Exp an exponential distribution.

In the likelihood above, b and s determine the mixture of background and signal, while

r and � control the mean of x0 and x2 for the background process respectively. The full

parameter space is ⇥ = (S ⇥ R ⇥ ⇤ ⇥ B) ⇢ R
4, with S = [0, 100], R = [�5, 5], ⇤ = [0, 10]

and B = [700, 1300].

De Castro and Dorigo (2019) use this 3D synthetic mixture example to showcase the

benefits of their proposed summary statistics, which are built to minimize the e↵ect of

nuisance parameters over the parameters of interest by minimizing a Poisson pseudo-

likelihood, against classification-based summary statistics. This example is interesting

because of the presence of multiple background-related nuisance parameters which are not of

interest (r, � and b) and a significant overlap between signal and background distributions.

Figure 2.10 shows the univariate and bivariate distributions of 50000 samples from the

mixture distribution, separated between signal and background. Here we will use the same

example to construct confidence sets for the intensity of the signal process s, using the

mixture defined in equation (2.15) as the forward simulator F✓. Note that this setup is

more challenging than the one in Section 2.9.3 for the closeness of the background and

signal distribution and the presence of nuisance parameters. We consider two di↵erent

settings:

(I) Estimating s with b, r,� as nuisance parameters (this corresponds to benchmark 4 in

De Castro and Dorigo 2019). Here ⇥(I) = ⇥ ⇢ R
4;

(II) Estimate s and r simultaneously while fixing b and � (this corresponds to benchmark

1 in De Castro and Dorigo 2019 with no nuisance parameters). Here ⇥(II) =

(S ⇥R⇥ {�0}⇥ {b0}) ⇢ R
2, with �0 = 3.0 and b = 1000.
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Figure 2.10: Univariate and bivariate distributions of 50000 samples for background (blue)
and signal (red) distribution from the 3D mixture in Equation (2.15), with (s, r,�, b) =
(50, 0, 3, 1000) (as in De Castro and Dorigo 2019, Figure 2).

For our constructed confidence sets, we consider the set average power, size and coverage

as performance metrics. The average power is defined as the proportion of the parameter

space outside of the true parameter value which is not covered by the confidence set. In

other words, it is a measure of the Type II error in terms of ratios of the parameter space;

the highest power would be 1.0 (the confidence set excludes all the values which are not the

true parameter), while the lowest would be 0 (the confidence set covers the entirety of the

parameter space). Confidence set size is on the other hand here defined as the proportion

of parameter space covered by the confidence set (inclusive of the true parameter value).

Finally, coverage indicates the proportion of times the true parameter value is included in

the confidence set.

For setting (I), we first select the best probabilistic classifier and sample B by evaluating

the cross entropy and the odds loss value across di↵erent sample sizes B over a held-out
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simulation set; as shown in Figure 2.11, top panel, the lowest values are achieved by a

gradient boosted trees classifier with tree depth equal to 5 and 500 trees at B = 100000.

Figure 2.11: Results and diagnostics for setting (I). Top: Cross entropy and odds loss over
a held-out simulation set for the best performing probabilistic classifiers for odds estimation
(see text and Section B.1 for more details). Center : Confidence set sizes distribution across
100 repetitions for all methods included in Table 2.4. BFF achieves smaller confidence sets
more consistently, although not performing as well as the exact likelihood ratio confidence
sets. Bottom: Estimated confidence sets across the signal parameter space using logistic
regression, while keeping the nuisance parameters fixed (see text). BFF and ACORE confidence
sets tend to under-cover for small values of the signal parameter, with the e↵ect being more
prominent for ACORE .
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Table 2.4 reports the confidence sets average power, size and coverage over 100

repetitions with an observed sample size of n = 25 (we use B
0
= 25000, deep quantile

regression and a budget for maximization/integration of 5000 samples). All methods

achieve valid confidence sets, with the coverage within or above the expected variability

over 100 repetitions (which is [0.84, 0.95]). The confidence sets estimated with the exact

likelihood ratio (LR) are included for comparison. As shown in Figure 2.11, center panel,

BFF using critical value estimation seem to achieve the smallest confidence set sizes among

all estimation methods. However, the variance in the size and power of ACORE is much more

significant. ACORE and BFF indeed approach nuisance parameters di↵erently by profiling (i.e.,

maximizing) and integration, respectively, which could explain the di↵erence in variability

across the two methods. Overall, the reported confidence sets are wide due to the sample

size, currently set to n = 25; with this observed sample size, one would observe very few

samples from the signal distribution fs ∗∗. Figure 2.12 shows how the confidence sets for

ACORE and BFF are smaller the larger the observed sample size n, but at a slow rate due to

both the overlap of the background and signal distribution and the few samples extracted

in proportion from the signal distribution.

Setting (I) – s parameter of interest, r,�, b nuisance parameters
Cuto↵ Type Test Statistic Average Power CI Size Coverage

Crit. Values
ACORE 0.102 ± 0.205 0.90 ± 0.20 0.91
BFF 0.121 ± 0.073 0.88 ± 0.07 0.90

p-values
ACORE 0.206 ± 0.255 0.84 ± 0.27 0.88
BFF 0.050 ± 0.011 1.00 ± 0.01 1.00

- Exact LR. 0.139 ± 0.117 0.86 ± 0.12 1.00

Table 2.4: Average power, size and coverage for ACORE and BFF confidence sets for setting
(I), using both critical value and p-value estimation over 100 repetitions with an observed
sample size n = 25. We use B = 100000, B

0
= 25000, a gradient boosted trees classifier

for odds estimation, a deep quantile regression for critical value regression and a multilayer
perceptron for p-value estimation. Confidence sets constructed with the exact likelihood
ratio included for comparison. BFF confidence sets with critical values provide the smallest
confidence sets consistently, while ACORE confidence sets show much more variability (see
text).

∗∗
Given that the true values for signal and background are 50 and 1000 in setting (I), only 50/1050 ⇡ 4.7%

of the observed samples come from the signal distribution fs. For n = 25 samples, this means 1 sample on

average.
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Figure 2.12: ACORE and BFF confidence sets for the signal parameter s in setting (I), with the
same setup as Table 2.4, but increasing the observed sample size to n = 100 (bottom) and
n = 500 (top). Both confidence sets decrease in size when increasing the observed sample
with respect to the results in Table 2.4 (with BFF more so than ACORE ) and include the
true parameter (red vertical line), but they remain relatively wide due to the characteristic
of the mixture model (see text).

Finally, Figure 2.11 (bottom panels) shows the estimated coverage for di↵erent signal

values using our diagnostic tools (prediction intervals are obtained via logistic regression).

Since in this setting the full parameter space ⇥(I) has dimension 4, for visualization purposes

we check our estimate across the one-dimensional signal space when setting the nuisance

parameter values at (r,�, b) = (0, 3, 1000) (that is, the same as in Table 2.4). For finite

B0 = 25, 000, both ACORE and BFF seems to be providing valid confidence sets only for larger

values of the signal, which includes s = 50 (the true parameter value for the experiment

shown in Table 2.4), with the e↵ect being more prevalent in ACORE .

For setting (II), we follow a similar procedure as in setting (I). Firstly, we select a

multilayer perceptron with two hidden layers to learn the odds values with a sample B =

100000, as shown in Figure 2.13, top panel. Table 2.5 reports the confidence sets average

power, size and coverage over 100 repetitions with an observed sample size of n = 25 (we

use B
0
= 25000, deep quantile regression and a budget for maximization/integration of

2000 samples), again adding the exact likelihood ratio confidence sets for comparison. As

in setting (I), all methods achieve valid confidence sets, with the coverage within or above

the expected variability over 100 repetitions ([0.84, 0.95]). Confidence sets constructed with
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both ACORE and BFF via critical value estimation seem to provide the smaller confidence sets

among estimated confidence sets, although not on par with the ones built using the exact

likelihood ratio, as illustrated in Figure 2.13 (bottom panel). Using p-values estimation

to construct confidence sets seems to lead to a degradation in performance, as p-value

estimation is negatively a↵ected by the uniform sampling from the simulated set T
0
B

0 over

a two dimensional parameter space.††

Setting (II) – s, r parameters of interest, no nuisance parameters
Cuto↵ Type Test Statistic Average Power CI Size Coverage

Crit. Values
ACORE 0.205 ± 0.192 0.80 ± 0.19 0.92
BFF 0.191 ± 0.107 0.81 ± 0.11 0.88

p-values
ACORE 0.205 ± 0.237 0.80 ± 0.24 0.86
BFF 0.091 ± 0.101 0.92 ± 0.10 0.99

Exact LR. 0.247 ± 0.155 0.75 ± 0.15 0.90

Table 2.5: Average power, size and coverage for ACORE and BFF confidence sets for setting
(II), using both critical value and p-value estimation over 100 repetitions with an observed
sample size n = 25. We use B = 100000, B

0
= 25000, a two-layer multilayer perceptron for

odds estimation, a deep quantile regression for critical value regression and a multi-layer
perceptron for p-value estimation. Confidence sets constructed with the exact likelihood
ratio included for comparison. BFF and ACORE confidence sets with critical values are the
most powerful, although not on par with exact likelihood ratio confidence sets (see text).

Figure 2.14 shows the upper limit of the prediction interval for estimated coverage across

the two-dimensional parameter space ⇥(II) for ACORE (top panel) and BFF (bottom panel).

The coverage is satisfactory, with the vast majority of the upper limit of the prediction

intervals being correctly above the nominal confidence level (here 1� ↵ = 90%). It is also

interesting to note the symmetry in coverage around r = �1, which is the value for which

the signal and background distribution achieve the same mean for the first dimension (see

equation 2.15).

††
See Section 5.2 for a potential solution to improve sampling e�ciency for both critical and p-value

estimation.
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Figure 2.13: Top: Cross entropy and odds loss over a held-out simulation set for the
best performing probabilistic classifiers for odds estimation in setting (II) (see text and
Section B.1 for more details). Bottom: Confidence set sizes distribution across 100
repetitions for all methods included in Table 2.4. ACORE and BFF confidence sets achieve
smaller confidence sets when using critical value for confidence sets as opposed to p-values
(see text for more details).

Figure 2.14: Upper limit (mean plus two standard deviations) of the predicted confidence
interval across the two dimensional parameter space ⇥(II) for setting (II) for ACORE (top)
and BFF (bottom) confidence sets. The nominal coverage level (90%) is correct across the
vast majority the parameter space for both ACORE and BFF (that is, below the upper limit
of the estimated prediction interval).
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2.9.5 Galaxy Images Inference

In this section we provide an example of constructing confidence intervals in a setting with

high-dimensional simulated image data. We use the open-source galaxy simulator GALSIM

(Rowe et al., 2015), which allows to generated realistic images of astronomical objects and

integrates real observational e↵ects such as pixelization and blurring. In our simulation

we consider globular galaxies, that is a spherical group of stars rotating around the galaxy

center, following the same setup as in Izbicki et al. (2014). We consider two parameters

✓ = (↵,�): the orientation with respect to the x-axis of the image ↵ and the axis ratio of

the galaxy �, resulting in the parameter space ⇥ = [�⇡,⇡]⇥ [0, 1] ⇢ R
2. We down-sample

the simulated galaxy images to a 20⇥ 20 resolution to mimic realistic observations.

In our experiment we construct a confidence set based on a single 400-dimensional galaxy

image (n = 1). We set the true parameter to be ✓? = (0, 0.5). Table 2.6 reports the ACORE

and BFF confidence sets average power, size and coverage of confidence sets constructed

with four di↵erent probabilistic classifiers for odds estimation — MLP, an adapted version

of Alexnet (Krizhevsky et al., 2012) and two residual networks (He et al., 2016) — as

well the cross-entropy and odds loss calculated over a separate validation set. Results are

reported over 25 repetitions, with B = 100000, B
0
= 250000,M = 2500, with all constructed

ACORE and BFF confidence sets being valid. Confidence sets average power and size are

computed in the same way as in Section 2.9.4. As illustrated by Table 2.6, the adapted

Alexnet architecture, which achieves the smallest cross entropy and odds loss, constructs

confidence sets with the higher power and smaller set size for both ACORE and BFF. This

remarks the importance of our practical strategy for choosing probabilistic classifiers, as

the higher capacity ResNet architecture actually overfit the training set, hence achieving a

worse cross entropy and odds loss on the validation set. When comparing ACORE and BFF

using the adapted Alexnet architecture, we note that the size of the BFF confidence sets

is significantly lower, as also shown in Figure 2.15. In this setup there are indeed fewer

sources of error for BFF than ACORE, as the denominator in the BFF test statistic with a

sample size n = 1 is identically one, which here translates in confidence sets with a higher

power and smaller size.
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Galsim 2D inference on ✓ = (↵,�) with n = 1
Test Statistic Classifier Average Power CI Size Coverage CE Loss Odds Loss

ACORE

Alexnet 0.171 ± 0.175 0.83 ± 0.17 1.00 0.6931 -1.0008
MLP 0.066 ± 0.014 0.93 ± 0.01 1.00 0.6933 -0.9985

Resnet34 0.134 ± 0.143 0.87 ± 0.14 1.00 0.6990 -0.9885
Resnet18 0.033 ± 0.077 0.97 ± 0.08 1.00 0.6985 -0.9762

BFF

Alexnet 0.337 ± 0.029 0.66 ± 0.03 1.00 0.6931 -1.0008
MLP 0.068 ± 0.024 0.93 ± 0.02 1.00 0.6933 -0.9985

Resnet34 0.009 ± 0.006 0.99 ± 0.01 1.00 0.6990 -0.9885
Resnet18 0.000 ± 0.001 1.00 ± 0.00 1.00 0.6985 -0.9762

Table 2.6: Average power, size and coverage for ACORE and BFF confidence sets for the
simulated galaxy image example, using critical value estimation and an observed sample
size of n = 1. Also included the cross-entropy and odds loss on a separate validation
set of simulations for the four classifiers used to learn the odds. We use B = 100000,
B

0
= 25000,M = 2500 and a deep quantile regression for critical value regression. The best

classifier (Alexnet) achieves the highest power and smallest size for BFF confidence sets, for
which the integration step is not needed since n = 1, as opposed to the ACORE test statistics
in which calculating the maximizer over the parameter space is still required (see text).

Figure 2.15: Confidence set size distribution given n = 1 400-dimensional simulated galaxy
image, in the setting described by Table 2.6. BFF confidence set require estimating fewer
quantities than ACORE when the observed sample size is n = 1, resulting in smaller and
more powerful confidence sets (see text).
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2.10 Comparison with Existing Methodologies

In this section we compare our proposed test statistics with two frequentist likelihood-free

inference approaches: Gaussian process interpolation and calibrated approximate ratio of

likelihood. We analyse the performance of both methods on the one-dimensional Poisson

and GMM example from section 2.9.1, and comparing them against the performance of the

ACORE test statistic. Given the very similar performance achieved by ACORE and BFF on such

toy examples (see Tables 2.9.1 and 2.9.1), as well as their identical computational runtime

in the current implementation (see Section 2.12), we only provide a comparison for ACORE.

2.10.1 Monte Carlo Synthetic Likelihood-Based Methods

In this section we compare the performance of ACORE with Monte-Carlo (MC) synthetic

likelihood-based methods, more specifically Gaussian process (GP) interpolation (Frate

et al., 2017). The latter method first simulates multiple sample points for a few di↵erent

values of ✓. For each fixed ✓, one fits a Gaussian synthetic likelihood function. The GP

likelihood model is then used to smoothly interpolate across the parameter space by fitting

a mean function m(✓) and a covariance function ⌃(✓). As a note, Cranmer et al. (2020)

point out that such MC methods are less e�cient than methods that estimate the likelihood

ratio directly because of the need to first estimate the entire likelihood.

For our comparison, we use the two toy examples described in Section 2.9.1 and

Table 2.1. To allocate B sample points for the GP interpolation, we use the following

strategy: For q 2 {5, 10, 25}, first choose ✓1, ..., ✓q on an evenly spaced grid across the

parameter space. Then, generate N = B/q sample points X1, ...,XN at each location ✓.

Tables 2.7 and 2.8 summarize the results. Unlike Section 2.9.1, we do not report the

cross-entropy loss because GP interpolation is not a classification algorithm; instead we

report the mean squared error in estimating the likelihood ratio across the parameter space.

Our results show that when the simulated data at each ✓ are approximately Gaussian, as

in the Poisson example, MC-based GP interpolation provides a better approximation of

the likelihood ratio due to its parametric assumptions. However, when the parametric

assumptions are not valid, as in the GMM example, MC-based GP fails to approximate

the likelihood ratio regardless of how large N or B are. In such settings, we do better
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with a fully nonparametric approach. As a note, MC-based GP uses the asymptotic �2

approximation by Wilks’ theorem to determine the critical values of the confidence sets.

In our experiments, using quantile regression for critical values instead led to a significant

increase in power for the GP likelihood models: from ⇡ 0.48 to ⇡ 0.51 for the Poisson

example, and from ⇡ 0.02 to ⇡ 0.2 for the GMM example. All fitted classifiers produce

valid 90% confidence sets for ✓ according to our diagnostics.

Poisson Example
B Classifier 90 % Mean Squared Average Size of

Error Interval Power Confidence Set [%]

100

MLP [2.14, 989.78] 0.27 72.8 ± 16.4
NN [4.14, 4074.65] 0.25 75.6 ± 23.2
QDA [0.41, 34.79] 0.41 60.1 ± 14.9

G.P. (5) [0.05, 4.09] 0.47 53.5 ± 9.2
G.P. (10) [0.06, 4.97] 0.48 53.2 ± 10.7
G.P. (25) [0.03, 6.54] 0.48 53.2 ± 10.8

500

MLP [0.86, 22.45] 0.38 62.2 ± 19.1
NN [1.95, 32.78] 0.37 64.2 ± 17.3
QDA [0.08, 6.95] 0.45 55.5 ± 10.8

G.P. (5) [0.01, 0.81] 0.49 52.4 ± 5.6
G.P. (10) [0.02, 0.85] 0.49 52.0 ± 5.4
G.P. (25) [0.01, 1.12] 0.48 52.5 ± 6.0

1,000

MLP [0.81, 21.44] 0.42 58.8 ± 17.0
NN [1.77, 17.88] 0.45 56.1 ± 16.2
QDA [0.06, 2.83] 0.49 52.1 ± 9.0

G.P. (5) [0.01, 0.48] 0.49 52.3 ± 5.0
G.P. (10) [0.01, 0.46] 0.48 52.5 ± 5.3
G.P. (25) [0.01, 0.45] 0.48 52.6 ± 5.5

- Exact - 0.54 45.0 ± 4.9

Table 2.7: Results for ACORE (MLP, NN, QDA) and Gaussian Process interpolation (GP
for q = 5, 10, 25; see text) for the Poisson example of Section 2.9.1. The table lists the
5th and 95th quantiles of the mean squared error (MSE) between the estimated and true
likelihood, the power (averaged over ✓) and the average and one standard deviation of the
size of confidence sets, for di↵erent values of B and for di↵erent classifiers. Best results
for each training sample size B are marked in bold-faced, which all classifiers achieve with
B = 1000.
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GMM Example
B Classifier 90 % Mean Squared Average Size of

Error Interval (⇥103) Power Confidence Set [%]

100

MLP [0.34, 1.46] 0.87 14.5 ± 4.5
NN [1.33, 11.77] 0.49 52.1 ± 24.7
QDA [2.88, 3.56] 0.16 84.0 ± 21.8

G.P. (5) [3.35, 3.82] 0.02 97.7 ± 8.8
G.P. (10) [3.34, 3.82] 0.03 96.9 ± 9.5
G.P. (25) [3.36, 3.82] 0.02 98.2 ± 6.1

500

MLP [0.44, 1.35] 0.90 12.1 ± 2.8
NN [0.99, 2.65] 0.57 44.0 ± 23.3
QDA [3.14, 3.73] 0.16 83.8 ± 22.2

G.P. (5) [3.39, 3.83] 0.00 100.0 ± 0.0
G.P. (10) [3.39, 3.83] 0.01 99.1 ± 5.5
G.P. (25) [3.38, 3.83] 0.00 99.8 ± 1.5

1000

MLP [0.53, 1.17] 0.90 12.1 ± 2.8
NN [0.57, 2.04] 0.71 30.2 ± 18.5
QDA [3.26, 3.94] 0.14 85.7 ± 20.1

G.P. (5) [3.39, 3.98] 0.00 100.0 ± 0.0
G.P. (10) [3.39, 3.98] 0.00 100.0 ± 0.0
G.P. (25) [3.39, 3.98] 0.00 99.9 ± 1.2

- Exact - 0.92 9.5 ± 2.0

Table 2.8: Results for ACORE (MLP, NN, QDA) and Gaussian Process interpolation (GP
for q = 5, 10, 25; see text) for the GMM example of Section 2.9.1. The table lists the
5th and 95th quantiles of the mean squared error (MSE) between the estimated and true
likelihood, the power (averaged over ✓) and the average and one standard deviation of the
size of confidence sets, for di↵erent values of B and for di↵erent classifiers. Best results for
each training sample size B are marked in bold-faced, which are achieved by ACORE using
an MLP classifier with B = 1000.

2.10.2 Calibrated Approximate Ratio of Likelihood Classifiers

In this section we compare the performance of ACORE with the calibrated approximate

ratio of likelihood (CARL) estimator by Cranmer et al. (2015). CARL approximates the

likelihood ratio ⇤(D;⇥0) = L(D; ✓0)/L(D; ✓1) by turning the density ratio estimation into

a supervised classification problem, where a probabilistic classifier is trained to separate

samples from F✓0 and F✓1 . As such, CARL classifiers are “doubly parameterized” by ✓0 and

✓1, whereas the ACORE classifier is parameterized by a single parameter ✓ in the definition

of the odds of F✓ versus G.
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In our study, we include three di↵erent CARL classifiers, implemented with the

MADMINER neural network-based software (Brehmer et al., 2020a): (a) a shallow perceptron

with 100 neurons (equivalent to the MLP used in Section 2.9.1), (b) a 2-layer deep network

with 20 neurons per layer, and (c) a 2-layer deep network with 20 and 50 neurons in the two

layers respectively.‡‡ To allocate B sample points for interpolation we devised two schemes:

(i) a uniform sampling, and (ii) a Monte Carlo sampling over the parameter space. For (i),

we uniformly sample B parameters and then generate a sample point X at each parameter

value. For (ii), we first select evenly spaced parameters ✓0,1, ..., ✓0,q and ✓1,1..., ✓1,q, for

the numerator and the denominator respectively. We set q 2 {10, 20, 30}, resulting in

N = B/q sample points X1, ...,XN at each ✓ location. Because the �2 approximation by

Wilks’ theorem did not yield valid confidence sets for CARL classifiers, we computed critical

values as in Algorithm 4. Tables 2.9 and 2.10 show the results of ACORE and CARL for the

synthetic data in Section 2.9.1 and Table 2.1. For both the Poisson and GMM examples,

CARL classifiers yield a higher mean squared error in estimating the likelihood ratio, as

well as lower power and larger confidence intervals.

As a final proof of concept, we analyse the statistical loss in e�ciency when learning

the odds ratio by using a doubly parametrized decision function s(X; ✓1, ✓2) rather than a

single parametrized decision function. Let x 2 X ⇢ R
d be the feature space of dimension d,

and ✓ 2 ⇥ ⇢ R
d✓ be the parameter space of dimension d✓. Let Z1 = (X ⇥⇥) ⇢ R

d+d✓ and

Z2 = (X ⇥ ⇥ ⇥ ⇥) ⇢ R
d+2d✓ . For simplicity, we use a nearest neighbor classifier to learn

the odds (Section 2.2). Assume the probabilities estimated in Algorithm 1 satisfy the weak

margin assumption Döring et al. (2017), so that for every 0 < t  1

P(0 < P(Y = 1|X, ✓)  t)  c? · t↵,

for some c? > 0 and ↵ > 0. (We assume the same ↵ holds for both ACORE and CARL.)

Generate an ✏-ball covering of the space Z1, so that S1 ✓
S

i
B✏(xi, ✓i); equivalently, let

S2 be the ✏-ball covering of Z2, so S2 ✓
S

i
B✏(xi, ✓0,i, ✓1,i). The covering number is of the

following order:

‡‡
Changing the number of neurons per layers did not seem to provide a significant di↵erence in performance

for the 2-layer deep networks. Number of epochs and learning rate were manually tuned (with a search in

the range [20, 200] and 10
{�6,...,�2}

respectively).
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|S1| = O

⇣
✏�d�d✓

⌘
, |S2| = O

⇣
✏�d�2d✓

⌘

Finally, assume that at any (x, ✓) 2 Z1, the probability P (Y = 1|x, ✓) can be evaluated

by smooth interpolation without error degradation if another point is placed within 2✏, for

some ✏ > 0 (same for Z2).

Lemma 2.2.1. Consider the setup above. Assume N = O
�
n✏�d�d✓

�
total samples, with

samples divided uniformly in each ball. The relative e�ciency between ACORE and CARL is

of the following order:

O

✓
n
� d✓(↵+1)

(d+d✓)(d+2d✓) · ✏
d✓(↵+1)
d+2d✓

◆
.

The first term degrades the e�ciency due to nearest neighbor convergence in Z2 rather

than Z1, while the second term for the larger number of ✏-ball in Z2. If d >> d✓, the relative

e�ciency is of the order:

O

⇣
n�1/d2

· ✏1/d
⌘

(2.16)

Proof. If samples are divided uniformly in each ball, then in Z1 each ball centroid is

estimated with O(n) samples. Equivalently, in Z2 each ball centroid is estimated with

O
�
n✏d✓

�
samples. The result is obtained by using the convergence rate for nearest neighbor

in (Döring et al., 2017, Theorem 1) and taking the ratio between the convergence rate of

ACORE over the convergence rate of CARL.
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Poisson Example
B Classifier 90 % Mean Squared Average Size of

Error Interval Power Confidence Set [%]

200

MLP [3.25, 1305.45] 0.17 82.7 ± 15.0
NN [2.88, 185.47] 0.34 66.9 ± 20.7
QDA [0.20, 25.16] 0.45 55.8 ± 13.2

MLP (MC) [2.51, 38.10] 0.24 76.1 ± 21.3
(20,20) DNN (MC) [2.53, 25.41] 0.19 80.9 ± 17.8
(50,20) DNN (MC) [2.76, 26.00] 0.19 81.3 ± 17.8

MLP (U) [2.03, 45.19] 0.19 81.3 ± 19.2
(20,20) DNN (U) [2.95, 19.76] 0.24 76.6 ± 19.8
(50,20) DNN (U) [2.43, 18.72] 0.23 77.8 ± 20.1

800

MLP [1.69, 450.81] 0.27 73.0 ± 20.1
NN [1.47, 19.32] 0.42 59.2 ± 15.9
QDA [0.04, 5.03] 0.49 52.0 ± 9.3

MLP (MC) [2.38, 24.50] 0.22 78.5 ± 21.0
(20,20) DNN (MC) [2.49, 21.49] 0.25 75.3 ± 18.8
(50,20) DNN (MC) [2.52, 18.13] 0.23 76.9 ± 20.1

MLP (U) [2.04, 23.24] 0.20 79.9 ± 17.4
(20,20) DNN (U) [2.48, 17.36] 0.22 77.9 ± 17.6
(50,20) DNN (U) [2.25, 17.87] 0.21 78.9 ± 20.0

1,800

MLP [0.81, 19.11] 0.37 63.7 ± 21.1
NN [1.09, 11.27] 0.44 56.9 ± 14.3
QDA [0.03, 1.60] 0.50 51.0 ± 6.6

MLP (MC) [2.13, 35.39] 0.18 82.4 ± 17.7
(20,20) DNN (MC) [2.74, 28.15] 0.20 80.3 ± 19.7
(50,20) DNN (MC) [2.62, 28.15] 0.18 81.9 ± 19.5

MLP (U) [2.15, 25.51] 0.19 81.4 ± 19.8
(20,20) DNN (U) [2.34, 15.93] 0.23 77.0 ± 22.6
(50,20) DNN (U) [2.38, 17.97] 0.19 81.6 ± 17.2

- Exact - 0.54 45.0 ± 4.9

Table 2.9: Results for ACORE (MLP, NN, QDA) and CARL or uniform (U) and Monte-Carlo
(MC) sampling schemes in the Poisson example of settings of Section 2.9.1. The table lists
the 5th and 95th quantiles of the mean squared error (MSE) between the estimated and
true likelihood, the power (averaged over ✓) and the average and one standard deviation of
the size of confidence sets, for di↵erent values of B and for di↵erent classifiers. The best
results for each training sample size B are marked in bold-faced, which is achieved by all
classifiers employed by ACORE with B = 1000 in terms of confidence size, and by ACORE with
QDA in terms of MSE.
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GMM Example
B Classifier 90 % Mean Squared Average Size of

Error Interval (⇥103) Power Confidence Set [%]

200

MLP [0.56, 1.69] 0.88 14.2 ± 8.2
NN [1.13, 4.17] 0.50 51.5 ± 24.8
QDA [3.05, 3.63] 0.12 87.6 ± 19.7

MLP (MC) [3.03, 3.61] 0.27 73.5 ± 20.5
(20,20) DNN (MC) [3.13, 3.70] 0.25 75.6 ± 20.0
(50,20) DNN (MC) [3.16, 3.67] 0.28 72.8 ± 19.6

MLP (U) [3.01, 3.72] 0.30 70.2 ± 21.2
(20,20) DNN (U) [3.18, 3.87] 0.24 76.3 ± 21.5
(50,20) DNN (U) [3.12, 3.92] 0.27 73.0 ± 21.2

800

MLP [0.89, 1.59] 0.90 12.1 ± 2.5
NN [0.78, 2.31] 0.69 32.0 ± 18.9
QDA [3.23, 3.66] 0.14 86.1 ± 20.4

MLP (MC) [3.02, 3.58] 0.30 70.8 ± 20.4
(20,20) DNN (MC) [3.10, 3.63] 0.27 73.6 ± 20.2
(50,20) DNN (MC) [3.03, 3.47] 0.30 70.5 ± 18.5

MLP (U) [3.01, 3.62] 0.26 74.7 ± 20.6
(20,20) DNN (U) [3.12, 3.64] 0.26 74.4 ± 19.2
(50,20) DNN (U) [3.00, 3.56] 0.29 71.8 ± 19.9

1,800

MLP [0.33, 1.55] 0.90 11.5 ± 2.6
NN [0.32, 1.57] 0.83 19.3 ± 10.3
QDA [3.29, 3.81] 0.16 83.7 ± 22.2

MLP (MC) [2.99, 3.54] 0.33 67.5 ± 19.6
(20,20) DNN (MC) [3.02, 3.54] 0.31 69.7 ± 19.3
(50,20) DNN (MC) [2.95, 3.51] 0.38 63.1 ± 15.9

MLP (U) [2.99, 3.45] 0.33 67.7 ± 17.0
(20,20) DNN (U) [3.02, 3.56] 0.33 67.3 ± 18.0
(50,20) DNN (U) [2.98, 3.41] 0.38 63.1 ± 15.3

- Exact - 0.92 9.5 ± 2.0

Table 2.10: Results for ACORE (MLP, NN, QDA) and CARL or uniform (U) and Monte-
Carlo (MC) sampling schemes in the GMM example of settings of Section 2.9.1. The table
lists the 5th and 95th quantiles of the mean squared error (MSE) between the estimated and
true likelihood, the power (averaged over ✓) and the average and one standard deviation of
the size of confidence sets, for di↵erent values of B and for di↵erent classifiers. The best
results for each training sample size B are marked in bold-faced, which are achieved by
ACORE using an MLP classifier with B = 1000.
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2.11 Runtime Analysis

In this section we provide a runtime analysis for constructing one ACORE confidence set for

the two examples in Section 2.9.1. We also provide a running time comparison with the

two methods described in Sections 2.10.1 and 2.10.2. This analysis was performed on a

8-Core Intel Xeon 3.33GHz X5680 CPU. The procedure for constructing confidence sets

with ACORE and BFF is outlined in Algorithm 3. In this analysis we break the computation

into 4 steps: (i) odds training as described by Algorithm 1, (ii) computing the test statistic

for the observed data, (iii) computing the test statistic in the B
0
sample as described by

Algorithm 4 and (iv) quantile regression algorithm training. Table 2.11 summarizes our

running times results. ACORE constructs one confidence set in less than 20 and 30 seconds

for Poisson and GMM examples respectively. The main computational bottleneck is step

(iii), while the computation time of step (i) increases with the sample size B. Figure 2.16

shows the results of comparing confidence set construction runtimes with MC GP and CARL

classifiers, which highlights how ACORE classifiers are comparable with GP interpolation in

terms of running times, while CARL classifiers tend to have significantly longer runtimes.
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Figure 2.16: Runtimes in seconds for constructing a confidence set for the Poisson example
(left panels) and GMM example (right panels). The best ACORE classifier runtime is
compared with Gaussian process interpolation (GP) for q = {5, 10, 25}, and the two smaller
CARL classifiers for both sampling schemes. See text for details. Confidence bars are built
with a one standard deviation interval around the mean.
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Running Times to Generate a Confidence Set (Seconds) – Poisson Example

B Classifier Odds Odds Calculate B
0
Test Quantile Regression Total Running

Training Prediction Statistics Training Time

100
MLP 0.38 ± 0.31 0.42 ± 0.10 10.40 ± 0.71 0.66 ± 0.28 11.86 ± 1.02
NN 0.03 ± 0.01 0.35 ± 0.12 9.83 ± 4.99 0.82 ± 0.67 11.02 ± 5.73
QDA 0.02 ± 0.01 0.18 ± 0.11 4.50 ± 2.65 0.58 ± 0.21 5.29 ± 2.96

500
MLP 1.62 ± 0.39 0.46 ± 0.04 11.49 ± 0.45 0.68 ± 0.09 14.26 ± 0.61
NN 0.13 ± 0.01 0.54 ± 0.03 13.28 ± 0.26 0.66 ± 0.04 14.60 ± 0.29
QDA 0.13 ± 0.01 0.16 ± 0.01 4.12 ± 0.09 0.65 ± 0.06 5.05 ± 0.14

1,000
MLP 2.65 ± 0.88 0.48 ± 0.08 11.93 ± 1.93 0.73 ± 0.06 15.79 ± 2.30
NN 0.24 ± 0.04 0.77 ± 0.21 17.90 ± 2.82 0.67 ± 0.10 19.59 ± 2.83
QDA 0.27 ± 0.08 0.17 ± 0.05 4.37 ± 1.02 0.64 ± 0.16 5.45 ± 1.29

Running Times to Generate a Confidence Set (Seconds) – GMM Example

B Classifier Odds Odds Calculate B
0
Test Quantile Regression Total Running

Training Prediction Statistics Training Time

100
MLP 5.89 ± 1.66 0.45 ± 0.18 10.79 ± 2.06 0.60 ± 0.21 17.74 ± 3.92
NN 0.03 ± 0.00 0.29 ± 0.06 8.60 ± 2.84 0.61 ± 0.18 9.53 ± 3.05
QDA 0.03 ± 0.01 0.14 ± 0.04 3.81 ± 1.38 0.52 ± 0.14 4.50 ± 1.57

500
MLP 9.89 ± 1.34 0.43 ± 0.06 11.64 ± 0.64 0.69 ± 0.06 22.64 ± 1.83
NN 0.17 ± 0.01 0.52 ± 0.04 13.11 ± 0.79 0.63 ± 0.07 14.43 ± 0.85
QDA 0.16 ± 0.01 0.15 ± 0.02 4.05 ± 0.26 0.59 ± 0.08 4.94 ± 0.35

1,000
MLP 13.40 ± 2.60 0.47 ± 0.09 11.76 ± 0.79 0.68 ± 0.11 26.31 ± 3.36
NN 0.34 ± 0.09 0.70 ± 0.11 17.15 ± 1.90 0.71 ± 0.17 18.90 ± 2.06
QDA 0.32 ± 0.05 0.17 ± 0.05 4.75 ± 1.26 0.62 ± 0.07 5.87 ± 1.36

Table 2.11: Runtimes in seconds for constructing a confidence set with ACORE for the
Poisson example (top) and GMM example (bottom). The procedure for constructing
confidence sets is outlined in Algorithm 3, and is split in 4 steps (see text). The rightmost
column shows total runtimes.

2.12 Computational Shortcuts

This section details some of expedients necessary to the computation stability of the ACORE

and BFF test statistics. The main points covered are computational complexity and stability.

In the current implementation, the maximization task in ACORE (2.5) is computed via

grid-search, while the integration in BFF (2.6) is obtained via Monte Carlo approximation.

Assuming the two operations use the same number of samples M , the complexity of both

algorithms in their current implementation is O(ngrid⇥B
0
⇥M), where ngrid is the number of

parameter values evaluated in the Neyman inversion procedure to construct the confidence

set and B
0
is the number of simulated samples used for critical values or p-values estimation.

To avoid a costly for loop, computing the odds for the test statistics is done for all the

sampled parameter values and simulated data at the same time by creating a matrix with

O(ngrid ⇥B
0
⇥M) of rows.

69



In addition, for both ACORE and BFF the product of the odds of the observed data
Q

n

i=1O(Xobs
i

; ✓) can quickly run into overflow/underflow. Dropping the observed notation

for simplicity, if one assumes m  O(Xi; ✓j) M for all Xi, ✓j , the product over n samples

can range from mn

Q

n

i=1O(Xi; ✓j)  Mn which could be below or above machine

precision depending on the values of m and M respectively. A solution to this issues

is running computations in log-space, which provides computationally stable calculations

even for large samples. For ACORE it is enough to note that the product of odds can be

written as the exponential of sum of odds, that is:

nY

i=1

O(Xi; ✓0) = exp

 
nX

i=1

log(O(Xi; ✓0))

!

The computations for BFF are more involved. By using the Monte Carlo approximation,

we obtain that:

⌧(D; ✓0) =

Q
n

i=1O(Xi; ✓0)R
⇥ (
Q

n

i=1O(Xi; ✓)) d⇡(✓)
⇡

Q
n

i=1O(Xi; ✓0)
1
m

P
m

j=1

Q
n

i=1O(Xi; ✓j)

=
exp

Pn
i=1 log(O(Xi;✓0))

1
m

P
m

j=1 exp
Pn

i=1 log(O(Xi;✓j))
.

Let  0 =
P

n

i=1 log(O(Xi; ✓0)) and  j =
P

n

i=1 log(O(Xi; ✓j)). Computing the log-space

version of the BFF test statistics then leads to

log(⌧(D; ✓0)) =  0
� log

0

@ 1

m

mX

j=1

exp j

1

A =  0 + log(m)� log

0

@
mX

j=1

exp j

1

A .

The above is computationally stable since the last term can be computed in a stable

manner using any of the “log-sum-exp” implementations available (such as in SciPy,

Virtanen et al. 2020).

70



Chapter 3

Validation of Approximate

Likelihood and Emulator Models

Approximate likelihood models are usually employed as an intermediate step for downstream

inference for posterior distribution. Prominent examples of this are the synthetic likelihood

approaches in Bayesian inference (Wood, 2010; Meeds and Welling, 2014; Wilkinson, 2014;

Price et al., 2018; Fasiolo et al., 2018; Picchini et al., 2020). Likelihood estimation has also

been used in frequentist statistics, most notably in the discovery of the Higgs Boson (Aad

et al., 2012) by estimating the likelihood of summary statistics as proposed by Diggle and

Gratton (1984). Indeed, an accurate estimation of the likelihood is key for the validity of

the downstream inference results. However, this is not the only setting in which likelihood

approximations play a pivotal role. There is a growing number of disciplines where accurate

analyses require highly realistic and computationally intensive simulations. In such cases, it

may not be feasible to repeatedly generate new simulations at di↵erent parameter settings as

generally required by ABCmethods. Instead, a common practice is to run the simulator only

for a few points in parameter space, in a format of batches or ensembles, where an ensemble

is a collection of multiple realizations (e.g., corresponding to di↵erent initial conditions) of

the same physical model (i.e. they all share the same ✓). For example, modern climate and

weather forecasting models (e.g., CESM (Hurrell et al., 2013)) often incorporate complex

representations of the atmosphere, ocean, land, ice, etc, on fine spatial and temporal

resolutions across the entire world. These models are commonly run as an ensemble of
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dynamical simulations with di↵erent initial conditions, where each simulation can take

weeks to compile on supercomputer clusters (see (Baker et al., 2015a; Kay et al., 2015)

and references within). Similarly, cosmological N-body simulations, which compute gravity

between particle pairs, are equally costly and often either created at a fixed cosmology

(parameter value ✓) (Abbott et al., 2016; Hildebrandt et al., 2017), or on a sparse grid of a

few carefully chosen parameter values (Kacprzak et al., 2016; Gupta et al., 2018).

Given the above scenario, a solution to make inference feasible is to replace the

computationally expensive simulator with a faster emulator model that can speed up

probabilistic modeling by several orders of magnitude. If the goal is to infer parameters

✓ of interest, then these emulators often forward-generate x given ✓, thereby providing an

explicit approximation to the likelihood.∗ Typically, machine learning-based LFI models

are assessed by computing built-in loss functions (e.g., Kullback-Leibler divergences in

autoregressive flows.) Such loss functions however only return a relative measure of

performance rather than a goodness-of-fit to simulated data; they do not answer the question

“Should we keep searching for better estimates for this problem or is our fit good enough?”.

Thus, an important challenge is that of validation: determining whether an approximate

likelihood or emulator model reproduces to the extent possible the targeted simulations in

distribution. If the model is deemed inadequate, then the question of diagnostics becomes

relevant. That is, pinpointing “how” and “where” the emulator di↵ers from the simulator in

a potentially high-dimensional feature space across di↵erent parameters; thereby providing

valuable information for further improvements of the emulator, and insights on which

simulations to run given a fixed budget. We propose a framework that can answer the

following questions in a statistically rigorous way:

1. if one needs to improve emulators for reliable inference from observed data, i.e.,

whether the di↵erence between the “truth” and the approximation learned with the

existing train data is statistically significant; this question is answered by our global

procedure (see Figure 3.4, left);

∗
Throughout this chapter we will use the terms emulator and approximate likelihood interchangeably to

denote generative models that directly imply a relationship between observable data x and parameters ✓.

72



2. where in parameter space one, if needed, should propose the next batch of

simulations; this question is answered by our local procedure (Section 3.1.2) and

provides insights as to which simulations to run given a fixed budget; and

3. how the distributions of emulated and high-resolution simulated data may di↵er in a

potentially high-dimensional feature space; this question is answered by our regression

test (see Section 3.1.3 and Figure 3.4, right) and o↵ers valuable information as to what

types of observations are under- or over-represented by the emulator and whether such

di↵erences are statistically significant. Such insights can guide decisions as to whether

it is necessary to improve the emulator model or generate more simulations.

We use a new regression-based two-sample test Kim et al. (2016, 2019) to first compare

the simulator and emulator models locally, i.e., at fixed parameters; these local tests are then

aggregated into a “global” goodness-of-fit test that is statistically consistent (see Theorem

5). Our framework can adopt any machine-learning regression method to handle di↵erent

structures in high-dimensional data. As Theorem 6 and Figure 3.2 show, this property

translates to high power (for a fixed computational budget) under a variety of practical

scenarios.

3.1 Validation via Local and Global Regression Test

Our validation approach compares samples from the simulator with samples from the

emulator, and can detect local discrepancies for a given parameter setting ✓0 2 ⇥ as well as

global discrepancies across parameter settings in ⇥. The validation procedure is as follows:

For each ✓0 2 ⇥, we first test the null hypothesis H0 : bL(x; ✓0) = L(x; ✓0) for all x 2 X .

This local test (Algorithm 7) compares output from the approximate likelihood/emulator

model with a “test sample” from the simulator/true likelihood (the latter sample can be a

held-out subset of a pre-generated ensemble at ✓0 which has not been used to fit bL(x; ✓)).

A challenging problem is how to perform a two-sample test that is able to handle di↵erent

types of data x, and which in addition informs us on how two samples di↵er in feature

space X ; in Section 3.1.2 and Algorithm 9 we propose a new regression test that addresses

both these questions. After the two-sample comparisons, we combine local assessments into
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a global test (Algorithm 8) for checking if bL(x; ✓) = L(x; ✓) for all ✓ 2 ⇥. The essence of

the global test is to pool p-values which, under the null hypothesis, are uniform. Unlike

many previous works on pooling p-values for multiple testing (e.g., Lorenz et al. (2016)),

the p-values in Algorithm 8 are independent by construction.

The next section provides theoretical guarantees that the global test for our LFI setting

is indeed consistent. These results apply for any sampling/weighting scheme r(✓) over ⇥ in

Algorithm 8, and for any consistent local test in Algorithm 7.

Algorithm 7 Local Test for Fixed ✓

Input: parameter value ✓0, two-sample testing procedure, number of draws from the true model,

nsim,0 and from the estimated model, nsim,1

Output: p-value p✓0 for testing if L(x; ✓0) = bL(x; ✓0) for every x 2 X

1: Sample S0 = {X✓0
1 , . . . ,X✓0

nsim,0
} from L(x; ✓0).

2: Sample S1 = {X⇤
1, . . . ,X

⇤
nsim,1

} from bL(x; ✓0).
3: Compute p-value p✓0 for the comparison between S0 and S1.
4: return p✓0

Algorithm 8 Global Test Across ✓ 2 ⇥

Input: reference distribution r(✓), B, uniform testing procedure (e.g. Kolmogorov-Smirno↵,

Cramér-von Mises)

Output: p-value p for testing if L(x; ✓) = bL(x; ✓) for every x 2 X and ✓ 2

⇥

1: for i 2 {1, . . . , B} do
2: sample ✓i ⇠ r(✓)
3: compute p✓i using Algorithm 7
4: end for
5: Compute p-value p for testing if {p✓i}

B

i=1 has a uniform distribution.
6: return p

3.1.1 Theoretical Guarantees for Global Test

Here we provide su�cient assumptions for the global test to be statistically consistent; i.e.,

to be able to detect a misspecified distribution (as in Example 1) for large sample sizes.

Definition 1. Define DB,nsim = {pnsim
✓1

, . . . , pnsim
✓B

}, where pnsim
✓1

, . . . , pnsim
✓B

are the p-values

obtained by Algorithm 7 using nsim,1 = nsim,2 = nsim, and ✓1, . . . , ✓B
i.i.d.
⇠ r(✓). Let

S(DB,nsim) be the test statistic for the global test. Also, denote by S(UB) the test statistic

when UB = (U1, . . . , UB), with U1, . . . , UB

i.i.d.
⇠ U(0, 1).
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Assumption 8. Let D =
n
✓ : µ bL(·;✓) 6= µL·(✓)

o
, where µ bL(·;✓) (µL(·;✓)) is the measure over

X induced by L(·; ✓) ( bL(·; ✓)). Assume that µr(D) > 0, where µr is the measure over ⇥

induced by r(✓).

Assumption 9. Assume that if ✓1 2 D, then the local test is such that pnsim
✓1

P
������!
nsim�!1

0.

Moreover, if ✓1 /2 D, then the local test is such that pnsim
✓1
⇠ U(0, 1).

Assumption 10. For every 0 < ↵ < 1, the test statistic S is such that F�1
S(UB)(1�↵)

B�!1
�����!

0.

Assumption 11. Under Assumptions 8 and 9, there exists a > 0 such that the test statistic

S satisfies S(DB,nsim)
P

��������!
B,nsim�!1

a.

Assumption 8 states that the set of parameter values where the likelihood function is

incorrectly estimated has positive mass under the reference distribution. Assumption 9

states that the test chosen to perform the local comparisons is statistically consistent and

that its p-value has uniform distribution under the null hypothesis. Assumptions 10 and 11

state that the test statistic for the global comparison in step 5 of Algorithm 8 is statistically

consistent, i.e., (i) it approaches zero under the null hypothesis when B increases, and (ii) it

converges to a positive number if the null hypothesis is false. Under these four assumptions,

we can guarantee statistical consistency.

Theorem 5. Let � be an ↵-level testing procedure based on the global test statistic S. If the

likelihood estimate and the local and global test statistics are such that Assumptions 8–11

hold, then

P (�S(DB,nsim) = 1)
B,nsim�!1
��������! 1

Corollary 3. Under Assumptions 8 and 9, the global tests for comparing likelihood models

based on Kolmogorov-Smirno↵ and Cramér-von Mises statistics are statistically consistent.

Lemma 1. Let bFDB,nsim
be the empirical cumulative distribution of the p-values in DB,nsim,

KS(DB,nsim) = sup
0z1

| bFDB,nsim
(z)� z|,
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be the Kolmogorov-Smirno↵ test statistic and

CVM(DB,nsim) =

Z 1

0

⇣
bFDB,nsim

(z)� z
⌘2

dz

be the Cramér-von Mises test statistic. Both KS and CVM satisfy Assumptions 10 and 11.

Proof of Lemma 1. Let U ⇠ U(0, 1). From the law of large numbers,

KS(UB) = sup
0z1

| bFUB (z)� z|
a.s.
�����!
B�!1

sup
0z1

|P(U  z)� z| = 0,

which proves the first statement of the theorem. Similarly, for every nsim 2 N,

KS(DB,nsim) = sup
0z1

| bFDB,nsim
(z)� z|

a.s.
�����!
B�!1

sup
0z1

|P(pnsim
✓1
 z)� z|. (3.1)

Now, Under Assumption 9, for every ✓1 2 D,

P(pnsim
✓1
 z|✓1)

nsim�!1
������! 1

uniformly over z 2 (0, 1). Thus, under Assumption 8, for every 0 < ✏z < 1� z, there exists

nsim 2 N such that, for every n0
sim > nsim,

P(p
n
0
sim
✓1
 z) = P(p

n
0
sim
✓1
 z|✓1 2 D)P(✓1 2 D) + P(p

n
0
sim
✓1
 z|✓1 /2 D)P(✓1 /2 D)

� (1� ✏z)P(✓1 2 D) + zP(✓1 /2 D)

= (1� ✏z + z � z)P(✓1 2 D) + zP(✓1 /2 D) (3.2)

= (1� ✏z � z)P(✓1 2 D) + z (3.3)

It follows from Equations 3.1 and 3.2 and by taking ✏z = (1� z)/2 that

sup
0z1

|P(p
n
0
sim
✓1
 z)� z| � sup

0z1
(1� ✏z � z)P(✓1 2 D)

� P(✓1 2 D) sup
0z1

(1� z)

2
=

P(✓1 2 D)

2
,
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and hence

lim
n
0
sim�!1

sup
0z1

|P(p
n
0
sim
✓1
 z)� z| �

P(✓1 2 D)

2
> 0,

which concludes the proof for the KS statistic. The proof for the CVM statistic is analogous.

Proof of Theorem 5. Assumption 9 implies that �S is such that

�S(DB,nsim) = 1 () S(DB,nsim) � F�1
S(UB)(1� ↵).

It follows that

P (�S(DB,nsim) = 1) = P

⇣
S(DB,nsim)� F�1

S(UB)(1� ↵) � 0
⌘

� P

⇣
|S(DB,nsim)� a� F�1

S(UB)(1� ↵)|  a
⌘

B,nsim�!1
��������! 1,

where the last line follows from Assumptions 10 and 11.

Proof of Corollary 3. It follows directly from Theorem 5 and Lemma 1.

3.1.2 Two-Sample Test via Regression

Traditional approaches to comparing two distributions (Thas, 2010) often do not easily

generalize to high-dimensional and non-Euclidean data. More recent non-parametric

extensions (see Hu and Bai (2016) for a review), e.g., maximum mean discrepancy (MMD,

Gretton et al. 2012), energy distance (ED, Szákely and Rizzo 2004), divergence (Sugiyama

et al., 2011; Kanamori et al., 2012), mean embedding (Chwialkowski et al., 2015; Jitkrittum

et al., 2016) and classification accuracy tests (Kim et al., 2021; Lopez-Paz and Oquab,

2017) have shown to have power in high dimensions against some alternatives, specifically

location and scale alternatives. These methods, however, only provide a binary answer of

the form “reject” or “fail to reject” the null hypothesis. Here we propose a new regression-

based approach to two-sample testing that can adapt to any structure in X where there is a

suitable regression method; Theorem 6 relates the power of the test to the Mean Integrated

Squared Error (MISE) of the regression. Moreover, the regression test can detect and

describe local di↵erences (beyond the usual location and scale alternatives) in bL(x; ✓0) and
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L(x; ✓0) in feature space X . We briefly describe the method below; see Kim et al. (2019)

for theoretical details, and see Section 3.2 for examples based on random forest regression.

Let P0 be the distribution over X induced by L(x; ✓0) and let P1 be the distribution over

X induced by bL(x; ✓0). Assume that P0 and P1 have density functions f0 and f1 relative a

common dominating measure. By introducing a random variable Y 2 {0, 1} that indicates

which distribution an observation belongs to, we can view f0 and f1 as conditional densities

f(x|Y = 0) and f(x|Y = 1). The local null hypothesis is then equivalent to the hypothesis

H0 : f0(x) = f1(x) for all x 2 X0 := {x 2 X : f(x) > 0}, which in turn is equivalent to

H0 : P(Y = 1|X = x) = P(Y = 1), for all x 2 X0.

We test H0 against the alternative H1 : P(Y = 1|X = x) 6= P(Y = 1), for some x 2 X0.

By the above reformulation, we have converted the problem of two-sample testing to

a regression problem. Depending on the choice of method for estimating the regression

function m(x) = P(Y = 1|X = x), we can adapt to nontraditional data settings involving

mixed data types and various structures. More specifically, let bm(x) be an estimate of

m(x) based on the sample {(Xi, Yi)}ni=1, and let b⇡1 = 1
n

P
n

i=1 I(Yi = 1). We define our test

statistic as

bT =
1

n

nX

i=1

(bm(Xi)� b⇡1)2 . (3.4)

Note that the di↵erence |bm(x) � b⇡1| for each particular value of x 2 X also provides

information on how well the emulator fits the simulator locally in feature space; high values

indicate a poor fit. To keep our framework as general as possible, we use a permutation

procedure (Algorithm 9) to compute p-values; one could alternatively use a goodness-of-fit

test via Monte Carlo sampling (see Section 3.4.1).

Theorem 6 shows that if bm, the chosen regression estimator, has a small MISE, the power

of the test is large over a wide region of the alternative hypothesis. What this means in

practice is that we should choose a regression method that predicts the “class membership”

Y well.
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Algorithm 9 Two-Sample Regression Test via Permutations

Input: two i.i.d. samples S0 and S1 from distributions with resp. densities f0 and f1; number of

permutations M ; a regression method bm
Output: p-value for testing if f0(x) = f1(x) for every x 2 X

1: Define an augmented sample {Xi, Yi}ni=1, where {Xi}
n

i=1=S0[S1, and Yi = I(Xi 2 S1).

2: Calculate the test statistic bT in Equation 3.4.
3: Randomly permute {Y1, . . . , Yn}. Refit bm and calculate the test statistic on the

permuted data.
4: Repeat the previous step M times to obtain

�bT (1), . . . , bT (M)
 
.

5: Approximate the permutation p-value by p = 1
M+1

⇣
1 +

P
M

m=1 I(
bT (m) > bT )

⌘
.

6: return p

Theorem 6. Suppose that the regression estimator bm(x) is a linear smoother satisfying

sup
m2M

E

Z

X
(bm(x)�m(x))2 dPX(x)  C0�n,

where C0 is a positive constant, �n = o(1), �n � n�1, and M is a class of regressions

m(x) containing constant functions. Let t⇤↵ be the upper ↵ quantile of the permutation

distribution of the test statistic bT 0 on validation data from sample splitting.† Then for any

↵,� 2 (0, 1/2) and n su�ciently large, there exists a universal constant C1 such that

Type I error: P0

⇣
bT 0
� t⇤↵

⌘
 ↵,

Type II error: sup
m2M(C1�n)

P1

⇣
bT 0 < t⇤↵

⌘
 �

against the class of alternatives M(C1�n) :=
n
m 2M :

R
X (m(x)� ⇡1)

2 dPX(x) � C1�n
o
.

For proof of Theorem 6 we refer the reader to Kim et al. (2019).

3.1.3 Local Test in Feature Space

Our regression approach can be used to identify and visualize locally significant di↵erences

between two multivariate distributions P0 and P1 defined over a “feature space” X ; we

denote samples from the respective distributions by S0 and S1. The goal would be to identify

†
The proof assumes sample splitting where (for simplicity) half of the data is used to estimate

the regression function and the other half is used to estimate the test statistic; i.e., bT 0
=

2n�1 Pn
i=n/2 (bm(Xi)� b⇡1)

2 , where bm is estimated using (X1, Y1), . . . , (Xn/2, Yn/2).
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with statistical confidence the regions in X which may be under- or over-represented in S1

(as compared to S0). Our approach is provided in Algorithm 10 and provides p-values for

testing the significance of di↵erence in |bm(Xj) � b⇡1|, for a given point Xj in the test set.

The key idea is to compute the following test statistic on each of the test points Xj :

b⌫(Xj) = (bm(Xj)� b⇡1)2,

and then obtain p-values using a permutation test for the distribution of bv. An example

of our local testing capabilities in provided in Figure 3.4, right, where S0 are the true sample

from the CAMELUS simulator and S1 the sample from a fitted Gaussian model. Our techniques

can also be used to validate and diagnose output from generative adversarial networks

(GANs) and other so-called implicit generative models Mohamed and Lakshminarayanan

(2016); e.g., this type of analysis could be relevant for recent GAN models of galaxy images

(Ravanbakhsh et al., 2017) and weak lensing convergence maps (Mustafa et al., 2019).

Algorithm 10 Local Test in Feature Space

Input: i.i.d. training data from two populations {Xi, Yi}
n
i=1; testing data {Xj}

J
j=1; number of

permutations M ; significance level ↵; a regression method bm
Output: p-values {pj}Mj=1 for testing significance of di↵erence |bm(Xj) � b⇡1| for every test

point

1: b⇡1 = 1/n
P

n

i=1 Yi;
2: Train regression method bm on training data {Xi, Yi}ni=1;
3: Calculate the test statistics on each of the test points

b⌫(Xj) = (bm(Xj)� b⇡1)2;

4: for k in 1, ...,M do
5: Randomly permute Y1, ..., Yn and train regression method on permuted data bm(k);
6: Calculate the test statistics on the permuted data {b⌫(k)(Xj) = (bm(k)(Xj)� b⇡1)2}Jj=1;
7: end for
8:

9: Approximate permutation p-values pj for every test point Xj :

pj =
1

M + 1

MX

k=1

⇣
1 + I(b⌫(k)(Xj) > b⌫(Xj))

⌘

10: Apply a multiple test procedure to control false discovery rate;
11: return {pj}Jj=1
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3.2 Comparison with Traditional Consistency Checks

Up to now, popular approaches to simulation-based validation (Cook et al., 2006; Prangle

et al., 2014; Talts et al., 2018) are valuable as consistency checks, but cannot always

identify likelihood models that are clearly misspecified (see Section 3.2.1 for an example).

Furthermore, as these tools were originally designed for checking posterior approximations

in Bayesian models, they do not capture all aspects of the estimated likelihood, and therefore

provide limited information on how to improve the estimates. In addition, there are

also close connections between classification accuracy tests (Kim et al., 2021; Lopez-Paz

and Oquab, 2017) and our regression test. The main di↵erence lies in the test statistic:

classification accuracy tests are based on “global” error rates. Hence classifier tests can tell

whether two distributions are di↵erent (i.e. they are two-sample tests) but these tests do

not per se identify locally significant di↵erences between two distributions with statistical

confidence; for that one needs to consider the regression or class-conditional probabilities

E(Y |x) = P(Y = 1|x) (where Y here is the indicator function that x was generated by

the emulator as opposed to the forward-simulator), which is the basis of our regression test

statistic (Equation 3.4).

We next use two synthetic examples to illustrate the advantages of our global and local

tests to state-of-the-art validation techniques, in terms of consistency and higher power

respectively.

3.2.1 Global Test and Existing Diagnostic Tools

One key property of our global goodness-of-fit test is that it can detect any misspecified

approximation of the likelihood function (Theorem 5). Diagnostic tools like the Posterior

Quantiles (PQ) technique (Cook et al., 2006) and Simulation-Based Calibration (SBC

Talts et al. 2018) are often used to validate approximate likelihood models (see, e.g.,

Papamakarios and Murray 2016) by checking whether a histogram of respective statistics

(posterior quantiles and ranks) is close to uniform. However, these tests are sometimes

not able to tell the di↵erence between the true model and a clearly misspecified model

as illustrated by the following toy example, where ✓i ⇠ Gamma(1, 1), i = 1, . . . , 500, and

x = x1, . . . , x1000|✓i ⇠ Beta(✓i, ✓i). The PQ test is based on the fact that, given a sample ✓̃
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from the prior distribution, the posterior quantile

q(✓̃) =

Z
f(✓|x)I(✓ < ✓̃)d✓

is uniformly distributed. Similarly, the SBC test relies on the fact that, given any ranking

function g(✓) and a posterior sample {✓1, . . . , ✓L}, the rank

r
⇣
g(✓1), ..., g(✓L), g(✓̃)

⌘
=

LX

l=1

I(g(✓l) < g(✓̃))

is uniformly distributed. Both PQ and SBC assess goodness-of-fit by checking if a histogram

of respective statistics (posterior quantiles and ranks) is close to uniform.

Figure 3.1, left, shows the distribution of the statistics computed for PQ and SBC

(along with confidence regions that describe what one would expect under uniformity) and

the distribution of our local p-values (recall that our global test is based on testing whether

the local p-values are uniformly distributed) for two di↵erent cases: In the top row, we

consider a case where bL(x; ✓) = L(x; ✓). All tests pass the model, as they should. In the

bottom row, we consider a case where bL(x; ✓) / 1, a poor approximation of the likelihood

function (see Figure 3.1, right, for examples.). Our global regression test, which is based

on uniformity of the local p-values, clearly rejects this model. PQ and SBC, on the other

hand, cannot distinguish between the true likelihood and the misspecified model as these by

construction have the same marginal distribution over ✓ in this toy example. Similar results

(Schmidt et al., 2020) have been found for diagnostic tests of conditional density estimates

when using quantities related to PQ and SBC (such as, PIT scores and QQ plots).

3.2.2 Local Test and Existing Goodness-of-Fit Tests

The power of our goodness-of-fit test will much depend on how we compare samples at

fixed ✓0 2 ⇥; that is, on how we test the local null hypothesis, H0 : bL(x; ✓0) = L(x; ✓0)

for every x 2 X . An advantage of the regression approach (Algorithm 9) is that we can

use any regression technique that e�ciently explores the structure of the data at hand; the

practical implications of Theorem 6 is that one should choose the regression method with

the smallest MISE (a quantity that can be estimated from data) to attain a higher test
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Figure 3.1: Left: Distribution of posterior quantiles, rank statistics and p-values for PQ,
SBC and our global regression test, respectively, for (a) the true model, and (b) a clearly
misspecified model. Only the global regression test correctly rejects the latter (bottom right
plot). (The grey ribbon represents the 99% confidence interval for the test of uniformity
used for PQ and SBC.) Right: The true likelihood for di↵erent values of the parameter
✓, compared to the approximation bL(x; ✓) / 1. The approximation is clearly wrong when
✓ 6= 1.

power (an unknown quantity). We illustrate these ideas with a synthetic example where

x 2 R
D, where D could be large. We consider three toy settings where the approximate

likelihood and the true likelihood only di↵er in the first dimension — that is, we test against

a sparse alternative; see Table 3.1 for details.

Settings True Likelihood L(x; ✓) Approx. Likelihood bL(x; ✓) ⇥ Space

(a) Bernoulli Bern(x1; ✓)
Q

D

d=2N (xd; ✓, 1)
Q

D

d=1N (xd; ✓, 1) (0, 1)

(b) Scaling N (x1; 0, ✓)
Q

D

d=2N (xd; 0, 1)
Q

D

d=1N (xd; 0, 1) (0, 1)

(c) Mixture of fm(x1; ✓, 1)
Q

D

d=2N (xd; 0, 1), where
Q

D

d=1N (xd; 0, 1) (�5, 5)

Gaussians fm(✓, 1) = 1/2N (�✓, 1) + 1/2N (✓, 1)

Table 3.1: The three toy settings. In each setting, the true and approximate likelihood di↵er
only in the first dimension, x1. (N (x;µ,�2) is a 1D Gaussian with mean µ and variance
�2; Bern(x; ✓) is a Bernoulli with parameter ✓.)

For each ✓ 2 ⇥, we compute a local p-value by comparing samples of size n = 100

from L(x; ✓) and bL(x; ✓), respectively (Algorithm 7). This procedure is repeated 100 times

to estimate the power function. We apply the local test for three di↵erent test statistics;

namely: (i) the test statistic in Equation 3.4 using random forest (RF) or nearest neighbor

regression (NN), (ii) the MMD test statistic (Gretton et al., 2012, Eq. 5) with a Gaussian

kernel, and (iii) the energy test statistic (Baringhaus and Franz, 2004; Szákely and Rizzo,
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Figure 3.2: Left: Local test power shown in the left column as a function of ✓ at D=100, and
shown in the right column as a function of the dimension D (averaged over ✓) for the (a)
Bernoulli, (b) Scaling, and (c) Mixture of Gaussians case. Note that distance-based tests
are more powerful at D = 1 (highlighted with circles in the right column), but their power
is severely a↵ected with increasing dimension. Our RF regression test achieves higher power
for large D by leveraging the advantages of random forest regression in high-dimensional
settings with sparse structure. Right: Test power at D = 100 (left column) and as a function
of dimension D (right column) in the same Example 2 settings, i.e., for (a) Bernoulli, (b)
Scaling and (c) Mixture of Gaussians. We include the results for our regression test with
random forests (RF) and nearest neighbors (NN), as well as the corresponding results using
the classification accuracy test of Lopez-Paz and Oquab (2017) with RF and NN (labeled
as C2ST-RF and C2ST-NN, respectively).

2004, Eq. 5) using the Euclidean norm. Figure 3.2, left, shows how the power function

varies with ✓ at dimension D = 100 (left column) and how the power, averaged over ✓,

varies with D (right column) for each setting. When D = 1 (highlighted with circles in the

right column) distance-based tests based on RF yield higher power, but their performance

quickly degrades with increasing D. On the other hand, our RF regression test is able to

achieve higher power in high-dimensional settings by leveraging some advantages of random

forest regression (as shown by the red curves); such as, the ability to select features, and the

ability to tell discrete versus continuous distributions apart. For instance, in the Bernoulli

case (top row, a) our regression test has higher power for small values of ✓, which is when

the distribution of the first coordinate is almost degenerate at 0.

Moreover, the practical implications of Theorem 6 are that for a two-sample test via

regression one should base the test on the regression method with the smallest mean

integrated squared error (MISE) so as to achieve a more powerful test. Table 3.2 illustrates
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this for the three settings random forest achieves a smaller MISE than nearest neighbor

(NN) regression across all settings and, as Figure 3.2 shows, it also consistently attains a

higher power.

Setting / Regression Method Random Forest NN
(a) Bernoulli 0.19 0.73
(b) Scaling 0.35 2.31

(c) Mixture of Gaussians 0.27 1.64

Table 3.2: Integrated mean squared error (MISE) for regression methods used for two-
sample testing in Figure 3.2. Random forest has the smallest MISE in regression; it also
yields the test with highest power, as implied by Theorem 6.

As mentioned above, classifier two-sample testing methods have also been used for two-

sample testing by dichotomizing the regression function and using the classification accuracy

as a test statistic. Such dichotomization might result in a loss of power with respect to the

respective regression test in certain settings (for more examples, see Kim et al. 2019). In

Figure 3.2, right, we consider the same settings as in Table 3.1, but now also computing

the power of the classification accuracy test from Lopez-Paz and Oquab (2017) for both

random forest and nearest neighbor classification. The regression test achieves comparable

results across the di↵erent settings, providing slight improvements in some cases, e.g., with

respect to the local power at D = 100 (left column). Note that our global procedure can

incorporate classification accuracy tests as well, but would then not be able to identify

locally significant di↵erences in feature space as in Section 3.1.3.

3.3 Application: Constraining Cosmological Parameters with

Weak-Lensing Peak Counts

In this section we focus on validating approximate likelihood models for cosmological

parameter inference with weak lensing peak counts. Weak lensing (WL) is a gravitational

deflection e↵ect of light by matter in the Universe that causes distortion in projected images

of distant galaxies along lines of sight. We can use this e↵ect to estimate parameters of the

⇤CDM cosmological model, the most well-supported model within Big Bang cosmology.

In particular we can estimate the dark matter density ⌦m and its clumpiness �8 through
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peak counts: the number of local maxima in the WL convergence map (a 2D image) binned

by the value of the peak (Dietrich and Hartlap, 2010).

In our data example, we use the CAMELUS simulator (Lin and Kilbinger, 2015) to generate

peaks. We provide results and insights with data obtained from the CAMELUS simulator,

comparing two parametric models, a Gaussian and a Poisson model, with a conditional

masked autoregressive flow (MAF; Papamakarios et al. 2017), again discretized to reflect

the integer-valued data. Our choice of parametric model is motivated by the fact that the

Gaussian model with a fixed covariance and varying mean is the current state-of-the-art

in cosmological parameter inference (Kacprzak et al., 2016). We consider a 2D parameter

space over ✓ = (⌦m,�8) and design a grid of 50 di↵erent cosmologies ✓ around a fiducial

(probable) cosmology ✓0 (see Appendix D). For each ✓-value, we simulate a batch of WL

maps (ntrain = 200, nsim = 200). The peak count data (i.e. histogram of peak intensities in

each map) is a vector x 2 N
D where D = 7 is the number of bins. Figure 3.3 shows the grid

of 50 parameters settings ✓ = (⌦m,�8) which we use for the CAMELUS batch simulations.

The blue shaded region represents the parameter regions from which the parameters are

sampled around the fiducial cosmology ✓0 (indicated by a red diamond).

0.25

0.50

0.75

1.00

1.25

0.00 0.25 0.50 0.75 1.00
ΩM

σ
8

Peak Count Simulation − Parameter Grid

Figure 3.3: Location of the 50 parameter values for the peak count data simulations using
CAMELUS, where the blue region indicates the parameter range values and the red diamond
indicates the fiducial point ✓0.
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To assess models, we first compute the Kullback-Leibler (KL) divergence loss for the

nsim = 200 test simulations at each ✓. The KL divergence for model comparison is estimated

by:

KL(L, bL) = �E
"
log

 
bL(x; ✓)
L(x; ✓)

!#
= �E

h
log
⇣
bL(x; ✓)

⌘i
+K ⇡ �

1

n

mX

j=1

njX

i=1

log
⇣
bL(xij ; ✓j)

⌘
+K

where K does not depend on bL; {✓j}mj=1 with m = 50 denotes the parameters used by

the simulator; {xij}
nj

i=1 (with nj = 200 for all ✓j) denotes the test simulations at ✓j ; and
P

m

j=1 nj = n is the total number of test simulations. According to the KL loss, the Gaussian

model performs best (Figure 3.4, left); however, these are only relative comparisons. We now

use a RF regression test to find out whether the Gaussian model actually fits the simulated

data well. As indicated in Figure 3.4 (left, top row), the local tests for the Gaussian model

reject the null hypothesis bL(x; ✓) = L(x; ✓) at every ✓; thus the global hypothesis is also

rejected. The Poisson and MAF models are rejected by the global test as well but have a

more uniform-looking distribution of local p-values. Now if we increase the the number of

train simulations to ntrain = 500 (while holding nsim = 200 fixed), the fitted MAF model

passes the global test whereas the Gaussian and Poisson models still do not as indicated by

the bottom row (these qualitative results stay the same for ntrain = 5000).

Finally, our local regression tests can provide insights into how the two distributions

bL(x; ✓) and L(x; ✓) di↵er in feature space X ; more specifically, by evaluating how the

estimate of the regression function bm(x) in Equation 3.4 varies with x for a fixed ✓ (a

significant di↵erence |bm(x) � b⇡1| is an indication that the model is not well estimated at

that location in feature space) We illustrate such an analysis for our fitted Gaussian model

for ntrain = 200 and ✓ = ✓0. According to the RF regression used to construct our test

statistic, the most influential variables correspond to bins with low counts. In Figure 3.4,

right, we visualize the fit on such a bin (variable x7) by a partial dependence plot (which

shows the marginal e↵ect of this variable on bm(x) Friedman (2001)). On the x-axis, we

mark the locations where the di↵erence |bm(x)� b⇡1| is statistically significant according to

a joint analysis in 7 dimensions (see Algorithm 10 for details). These locations coincide

with integer values of x7, showing that the regression test is distinguishing between the
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Figure 3.4: Left panel: Local goodness-of-fit for peak-count data with ntrain = 200 (top
row) and ntrain = 500 (bottom row). Although the Gaussian model is achieving the lowest
KL divergence, the estimates are rejected at almost all ✓; Poisson and MAF perform better
(more uniform-looking distributions of local p-values) but only MAF passes the global test
at ntrain = 500. Right panel: Partial dependence plot for variable x7 (low count bin) for
Gaussian model at ntrain = 200. The red crosses on the x-axis represent the locations
where the di↵erence |bm(x) � b⇡1| is statistically significant according to a joint analysis
in 7 dimensions; these locations coincide with integer values of x7 and indicate that the
regression test is distinguishing between the discrete true distribution of counts and the
fitted continuous Gaussian distribution.

discrete true distribution for bin counts and the fitted continuous Gaussian distribution

(these results also explain why the Poisson model may fare better).

3.4 Extensions

In this section we present two direct extensions of our presented approach. We first present

an alternative approach to goodness-of-fit testing when sampling from the simulator is

expensive but sampling from the emulator is not. The key idea is that one can instead of

the two-sample permutation test in Algorithm 9 perform a goodness-of-fit test via repeated

Monte Carlo sampling from the emulator. Secondly, we show how a validated approximate

likelihood model can be used for frequentist inference to construct p-values and confidence

regions.

3.4.1 Testing with an Inexpensive Approximate Likelihood Model

If the total number of test simulations from L(x; ✓0) is small, but the cost of drawing

samples from the emulator model bL(x; ✓0) is negligible, then we can instead of a two-sample
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permutation test perform a goodness-of-fit test, where we draw several independent Monte

Carlo (MC) samples of size ne from bL(x; ✓0) to produce a set of values { bT (m)
}
M

m=1 that are

used as a null distribution to test the hypothesis L(x; ✓0) = bL(x; ✓0). (See Algorithm 11

for details; here f(x) denotes the likelihood L(x; ✓0) of the simulator at ✓ = ✓0, and fe(x)

denotes the approximate likelihood bL(x; ✓0) of the emulator at the same parameter value.)

If the emulations are cheap, we can choose ne � nsim as well as a large number M. To cite

Friedman (Friedman, 2004, Section IV), the goodness-of-fit approach has “the potential

for increased power [compared to two-sample testing] at the expense of having to generate

many Monte Carlo samples, instead of just one”.

Corollary 4 states that our main result (Theorem 6) still holds for the repeated MC

sampling scheme. To simplify the proof, we again use sample splitting for fitting the

regression versus computing the test statistic.

Corollary 4. Suppose that the regression estimator bm(·) satisfies

sup
m2M

E

Z

X
(bm(x)�m(x))2dPX(x)  C0�n, (3.5)

where C0 is a positive constant, �n = o(1), �n � n�1 and M is a class of regression m(x)

containing constant functions. Given M such that ↵ > (M +1)�1, let us define the test via

Monte Carlo sampling by

�MC = I

(
1

M + 1

 
1 +

MX

i=1

I(bT (i)
split >

bTsplit)
!
 ↵

)
.

Then for fixed ↵ 2 (0, 1) and � 2 (1 � ↵) and su�ciently large nsim and ne, there exists a

constant C1 such that

Type I error: P0(�MC = 1)  ↵,

Type II error: sup
m2M(C1�n)

P1(�MC = 0)  �,

against the class of alternatives M(C1�n) =
�
m 2M :

R
X (m(x)� ⇡1)2dPX(x) � C1�n

 
.
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Note that here, in contrast to the permutation approach, we do not assume that the

regression is a linear smoother.

Proof of Corollary 4. We first prove the type I error control and then turn to the type II

error control.

• Type I error.

With slight abuse of notation, let us write

�MC(T ) = I

(
1

M + 1

 
1 +

MX

i=1

I(bT (i)
split > T )

!
 ↵

)
,

so that �MC(bTsplit) = �MC. By construction, it can be checked that

1

M

MX

i=1

�MC(bT (i)
split)  ↵.

Furthermore we know that bTsplit is equal in distribution to bT (i)
split for any i = 1, . . . ,M under

the null hypothesis. Thus

1

M

MX

i=1

E0[�MC(bT (i)
split)] = E0[�MC]  ↵,

which verifies the type I error control.

• Type II error.

For this part of the proof, we closely follow the proof of Theorem 2.2 in Kim et al. (2019).

We let denote the empirical distribution of Monte Carlo samples bT (1), . . . , bT (M) by

FM (t) =
1

M

MX

i=1

I(bT (i)
 t) for all t 2 R.
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Then, by letting ↵M = ↵(M + 1)/M � 1/M , we can see that �MC = 1 if and only if

FM (t) � 1� ↵M . In other words, we reject the null hypothesis if and only if

bTsplit � c1�↵M ,

where c1�↵M is the upper 1� ↵M quantile of FM . One can obtain an upper bound for this

quantile by applying Markov’s inequality as

c1�↵M 
1

↵M

 
1

M

MX

i=1

bT (i)
split

!
.

Having this observation in mind and putting �n = E[(m(X)�⇡1)2], let us define the events

A1,A2,A3 such that

A1 =

⇢
1

M

MX

i=1

bT (i)
split  3��1C0�n

�
,

A2 =

⇢
1

n

2nX

i=n+1

(bm(Xi)�m(Xi))
2
 3��1C0�n

�
and

A3 =

⇢����
1

n

2nX

i=n+1

(m(Xi)� ⇡1)
2
��n

����  �n/2

�
.

Then applying Markov’s inequality together with condition (3.5) yields P(Ac

1)  �/3 and

P(Ac

2)  �/3. Moreover, as shown in Kim et al. (2019), we have P(Ac

3)  4/(C1n�n).

Combining these via the union bound, we see that the type II error is bounded by

P

⇣
bTsplit < c1�↵M

⌘
= P

⇣
bTsplit < c1�↵M , A1

⌘
+ P

⇣
bTsplit < c1�↵M , A

c

1

⌘

 P

⇣
bTsplit < 3↵�1

M
��1C0�n

⌘
+ P(Ac

1)

 P

⇣
bTsplit < 3↵�1

M
��1C0�n

⌘
+
�

3
.
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For the last line, based on the inequality (x � y)2  2(x � z)2 + 2(z � y)2, we further see

that

P

⇣
bTsplit < 3↵�1

M
��1C0�n

⌘


 P

✓⇣ 1

2n

2nX

i=n+1

(m(Xi)� ⇡1)
2
�

1

n

nX

i=n+1

(bm(Xi)�m(Xi))
2
⌘
< 3↵�1

M
��1C0�n, A2 \A3

!

+ P (Ac

2 [A
c

3)

 P
�
�n < 6(1 + ↵�1

M
)��1C0�n

�
+
�

3
+

4

C1n�n
.

Then by taking C1 su�ciently large, the proof is complete.

Algorithm 11 Goodness-of-Fit Regression Test via Monte Carlo Sampling

Input: i.i.d. sample S of size nsim from distribution with density f ; emulator model with density fe;

size of Monte Carlo sample ne; number of additional Monte Carlo samples M ; a regression method

bm
Output: p-value for testing if f(x) = fe(x) for every x 2 X

1: Let n = nsim + ne.
2: Sample Se = {X⇤

1, . . . ,X
⇤
ne
} from fe.

3: Define an augmented sample {Xi, Yi}ni=1, where {Xi}
n

i=1=S [ Se, and Yi = I(Xi 2 Se).

4: Calculate the test statistic bT in Equation 3.4.
5: for m 2 {1, . . . ,M} do

6: Sample S
(m) = {X(m)

1 , . . . ,X(m)
nsim} from f , under the null hypothesis H0 :f = fe.

7: Sample S
(m)
e = {X⇤(m)

1 , . . . ,X⇤(m)
ne } from fe.

8: Define a new augmented sample {Xi, Yi}ni=1, where {Xi}
n

i=1=S
(m)
[ S

(m)
e , and Yi =

I(Xi 2 S
(m)
e ).

9: Refit bm and calculate the test statistic on the new augmented sample to obtain bT (m)

from the null distribution f = fe.
10: end for
11: Compute the Monte Carlo p-value by p = 1

M+1

⇣
1 +

P
M

m=1 I(
bT (m) > bT )

⌘
.

12: return p
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3.4.2 Approximate P-Values and Confidence Regions

Consider testing H0 : ✓ 2 ⇥0. Let �(x) be the likelihood ratio statistic for testing H0, i.e.,

�(x) =
sup✓2⇥0

L(x; ✓)

sup✓2⇥ L(x; ✓)
.

We estimate �(x) using the estimated likelihood:

b�(x) =
sup✓2⇥0

bL(x; ✓)
sup✓2⇥ bL(x; ✓)

.

The estimated p-value is then

bp(x) = sup
✓2⇥0

P✓(b�(X) > b�(x))

If ⇥0 = {✓0}, bp(x) can be estimated using data that are simulated under ✓ = ✓0. If |⇥0| > 1,

the distribution of the test statistic can be approximated using the �2 approximation for the

likelihood ratio test (Wilks, 1938). Confidence intervals may be obtained by inverting the

hypothesis tests (Neyman, 1937). Overall, as also noted by Cranmer et al. (2020), generating

confidence sets by estimating the entire likelihood is less e�cient than approaches which

estimate the test statistics directly such as the ones presented in Chapter 2 or Brehmer

et al. (2020b). Hence, one would expect confidence sets generated by estimating the entire

likelihood first to be equally or less powerful than the proposed alternative, keeping the

number of simulations the same across the two sets of methods.
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Chapter 4

Conditional Density Estimation

Conditional density estimation (CDE) refers to the task of estimating the probability density

function p(y|x) of a response variable y given (i.e., conditioned on) features x. Conditional

densities are a key component of Bayesian inference, where the posterior distribution

p(✓|x) is the conditional density of the parameter of interest ✓ after observing the data

x. CDE approaches have been successfully applied in LFI settings for estimating the

posterior distribution bypassing the likelihood function (Marin et al., 2016; Papamakarios

and Murray, 2016; Lueckmann et al., 2017; Chen and Gutmann, 2019; Izbicki et al., 2019;

Greenberg et al., 2019), as well as approximating the likelihood itself (Papamakarios et al.,

2019; Lueckmann et al., 2019; Wiqvist et al., 2021). CDE methods are also suitable for

prediction settings where heteroskedastic errors or multimodal response may occur, and

hence accounting for the full prediction uncertainty in the response y becomes necessary

in any downstream task. For example, in precision cosmology one needs to combine data

from di↵erent scientific probes, each a↵ected by unique sources of systematic uncertainty,

to produce samples from complicated joint likelihood functions with nontrivial covariances

in a high-dimensional parameter space (Krause et al., 2017; Joudaki et al., 2017; Aghanim

et al., 2020; van Uitert et al., 2018; Abbott et al., 2019). In such situations, CDE methods

that target a variety of settings and non-standard data (images, correlation functions, mixed

data types) become especially valuable. However, for any given data type, there is no one-

size-fits-all CDE method. For example, deep neural networks often perform well in settings

with large amounts of representative training data but in applications with smaller training
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samples one may need a di↵erent tool. There is also additional value in models that are

interpretable and easy to fit to the data at hand. In this chapter we follow Izbicki et al. (2014,

2019) to combine ABC and CDE by directly applying CDE techniques and loss functions

(Section 4.2.1) to simulated data. We first review a set of tools which leverage a large range

of machine learning algorithms for conditional density estimation: NNKCDE, RFCDE/fRFCDE,

which use a neighbor-based approach, and FlexCode, which approximates the posterior

distribution using an orthogonal series expansion. We also introduce DeepCDE, a CDE

tool which extends FlexCode to virtually any neural network architecture for regression

and can be extend to non-standard data such as images and time series. We conclude by

showcasing three applications of DeepCDE (i) wildfire size and duration prediction for the

continental United States, (ii) predicting orientation of simulated galaxy images using the

GalSim toolkit (Rowe et al., 2015) and (iii) prediction benzene concentration in the air using

time series measurements from chemical sensors.

4.1 Review: A Suite of Tools for Conditional Density

Estimation

We start by briefly describing the conditional density estimators in Tables 4.1 and 4.2.

Unless otherwise stated, we choose the tuning or hyper-parameters by minimizing the CDE

empirical loss in Equation 4.4 using cross-validation.

4.1.1 NNKCDE

Nearest-Neighbors Kernel CDE (NNKCDE; Izbicki et al. 2017, Freeman et al. 2017) is a

simple and easily interpretable CDE method. It computes a kernel density estimate of y

using the k nearest neighbors of the evaluation point x. The model has only two tuning

parameters: the number of nearest neighbors k and the bandwidth h of the smoothing

kernel in y-space. Both tuning parameters are chosen in a principled way by minimizing

the CDE loss on validation data.
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Method Name Summary Hyper-parameters

NNKCDE

Computes a KDE estimate of
Nearest Neighbor multivariate y using the nearest • Number of neighbors k

Kernel CDE neighbors of the evaluation point x • Kernel bandwidth h
in feature space.

RFCDE

Random forest that partitions
the feature space using a CDE loss. • Random forest hyperparams.

Random Forest CDE Constructs a weighted KDE estimate • Kernel bandwidth h
of multivariate y with weights
defined by leaves in the forest.

fRFCDE

RFCDE version suitable for functional • Random forest hyperparams.
functional Random features x. Partitions the feature • Kernel bandwidth h

Forest CDE space directly rather than • Partition parameter �
representing x as a vector.

FlexCode

Flexible Conditional Uses basis expansion of univariate y • Number of expansion coe↵s.
Density Estimation to turn CDE into a series of • Selected regression method

univariate regression problems. hyperparams.

DeepCDE

Uses basis expansion of univariate
Deep Neural y similar to FlexCode, but learns • Number of expansion coe↵s.
Networks CDE the expansion coe�cients • Selected deep neural network

simultaneously using a deep architecture hyperparams.
neural network.

Table 4.1: Naming convention, high-level summary and hyper-parameters of CDE methods,
along with references for further details and code examples.

Method Capacity (# Training Pts) Multivariate Response Functional Features Image Features
NNKCDE Up to ⇠ 105 X
(f)RFCDE Up to ⇠ 106 X X
FlexCode Up to ⇠ 106 X
DeepCDE Up to ⇠ 108 X X

Table 4.2: Comparison of CDE methods in terms of training capacity and compatibility
with multivariate response and di↵erent types of features, in descending order of capacity.
Capacities are estimated based on input with around 100 features and a standard
i5/i7/quad-core processor with 16GB of RAM. Note that less complex methods (such as
NNKCDE) tend to be easier to use, easier to interpret, and often perform better in settings
with smaller training sets, whereas more complex methods (such as DeepCDE) perform better
in settings with larger (representative) training sets.
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More specifically, the kernel density estimate of y given x is defined as

bp(y|x) = 1

k

kX

i=1

Kh

⇥
⇢(y,ysi(x))

⇤
, (4.1)

whereKh is a normalized kernel (e.g., a Gaussian function) with bandwidth h, ⇢ is a distance

metric, and si(x) is the index of the ith nearest neighbor of x. It is essentially a smoother

version of the histogram estimator proposed by Cunha et al. (2009) in that it approximates

the density with a smooth continuous function rather than by binning.

4.1.2 RFCDE and fRFCDE

Random forests (RFs, Breiman 2001) is one of the best o↵-the-shelf solutions for regression

and classification problems. It builds a large collection of decorrelated trees, where each

tree is a data-based partition of the feature space. The trees are then averaged to yield a

prediction. RFCDE, introduced by Pospisil and Lee (2018), is an extension of random forests

to conditional density estimation and multivariate responses. Like NNKCDE, it computes a

kernel density estimate of y but with nearest neighbor weightings defined by the location

of the evaluation point x relative to the leaves in the random forest. RFCDE inherits the

advantages of random forests in that it can handle mixed-typed data. It also does not

require the user to specify distances or similarities between data points, and it has good

performance while remaining relatively interpretable.

The main departure from other random forest algorithms is our criterion for feature

space partitioning decisions. In regression contexts, the splitting variable and split point

are typically chosen so as to minimize the mean-squared-error loss. In classification contexts,

the splits are typically chosen so as to minimize a classification error. Existing random forest

density estimation methods such as quantile regression forests by Meinshausen (2006) and

the TPZ algorithm by Carrasco Kind and Brunner (2013) use the same tree structure as

regression and classification random forests, respectively. RFCDE, however, builds trees that

minimize the CDE loss (see Equation 4.4), allowing the forest to adapt to structures in

the conditional density; hence overcoming some of the limitations of the usual regression

approach for data with heteroskedasticity and multimodality. In addition, RFCDE does

not require discretizing the response as in TPZ, thereby providing more accurate results
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at a lower cost for continuous responses, especially in the case of multivariate continuous

responses where binning is problematic. See Pospisil and Lee (2018) for further examples

and comparisons.

Another unique feature of RFCDE is that it can handle multivariate responses with joint

densities by applying a weighted kernel smoother to y. This added feature enables analysis

of complex conditional distributions that describe relationships between multiple responses

and features, or equivalently between multiple parameters and observables in an LFI setting.

Like quantile regression forests, the RFCDE algorithm takes advantage of the fact that random

forests can be viewed as a form of adaptive nearest-neighbor method with the aggregated

tree structures determining a weighting scheme. This weighting scheme can then be used

to estimate the conditional density p(y|x), as well as the conditional mean and quantiles,

as in quantile regression forests (but for CDE-optimized trees). As mentioned above, RFCDE

computes the latter density by a weighted kernel density estimate (KDE) in y using training

points near the evaluation point x. These distances are e↵ectively defined by how often a

training point xi belongs to the same leaf node as x in the forest (see Equation 1 in Pospisil

and Lee 2018 for details).

Despite the increased complexity of our CDE trees, RFCDE still scales to large data sets

because of an e�cient computation of splits via orthogonal series. Moreover, RFCDE extends

the density estimates on new x to the multivariate case through the use of multivariate

kernel density estimators (Epanechnikov, 1969). In both the univariate and multivariate

cases, bandwidth selection can be handled by either plug-in estimators or by tuning using

a density estimation loss.

fRFCDE (Pospisil and Lee, 2019) is a variant of RFCDE that can accommodate functional

features x by partitioning in the continuous domain of such features. The spectral energy

distribution (SED) of a galaxy is its energy as a function of continuous wavelength � of

light; hence it can be viewed as functional data. Another example of functional data is the

shear correlation function of weak lensing, which measures the mean product of the shear

at two points as a function of a continuous distance r between those points. Similarly, any

function of continuous time is an example of functional data. Treating functional features

(like spectra, correlation functions or images) as unordered multivariate vectors on a grid

su↵ers from a curse of dimensionality. As the resolution of the grid becomes finer the
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dimensionality of the data increases but little additional information is added, due to high

correlation between nearby grid points. fRFCDE adapts to this setting by partitioning the

domain of each functional feature (or curve) into intervals, and passing the mean values of

the function in each interval as input to RFCDE. Feature selection is then e↵ectively done

over regions of the domain rather than over single points. More specifically, the partitioning

in fRFCDE is governed by the parameter µ of a Poisson process, with each functional feature

entering as a high-dimensional vector x = (x1, . . . , xd). Starting with the first element of

the vector, we group the first Poisson(µ) elements together. We then repeat the procedure

sequentially until we have assigned all d elements into a group; this e↵ectively partitions

the function domain into disjoint intervals {(li, hi)}. The function mean values or smoothed

brightness measurements exi ⌘
R
hi

li
f(�)d� of each interval are finally treated as new inputs

to a standard (vectorial) RFCDE tree. The splitting of the smoothed predictors exi is done

independently for each tree in the forest. Other steps of fRFCDE, such as the computation

of variable importance, also proceed as in (vectorial) RFCDE but with the averaged values

of a region as inputs. As a result, fRFCDE has the capability of identifying the functional

inputs and the regions in the input domain that are important for estimating the response

y. Figure 4.1 shows schematically the di↵erences and similarities in construction between

standard RFCDE and its fRFCDE variant.

4.1.3 FlexCode

Introduced by Izbicki and Lee (2017), FlexCodeis a CDE method that uses a basis expansion

for the univariate response y and poses CDE as a series of univariate regression problems.

The main advantage of this method is its flexibility as any regression method can be applied

towards CDE, enabling us to tailor our choice of regression method to the intrinsic structure

and type of data at hand.

More precisely, let {�j(y)}j be an orthonormal basis like a Fourier or wavelet basis for

functions of y 2 R. The key idea of FlexCode is to express the unknown density p(y|x) as

a basis expansion

p(y|x) =
X

j

�j(x)�j(y). (4.2)
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Figure 4.1: A schematic diagram of RFCDE (top row) and fRFCDE (bottom row) applied to
a galaxy spectrum from Vanderplas et al. (2012). Top row : RFCDE treats the intensity xi at
each recorded wavelength �i of the spectrum as a feature or “input” to the random forests
algorithm — the blue vertical dashed lines indicate every 100th recorded wavelength. RFCDE
then builds an ensemble of CDE trees, where each tree partitions the feature space according
to the CDE loss, as illustrated in the top right figure for features x1 and x2. Bottom
row : fRFCDE instead groups nearby measurements together where the group divisions are
defined by a Poisson process with parameter µ (vertical green dashed lines, left figure).
The new smoothed features exi are computed by integrating the intensity over the grouped
wavelengths. A forest of CDE trees is then built using the same construction as in RFCDE

but with the smoothed features as inputs (bottom right figure).
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By the orthogonality property of the basis, the (unknown) expansion coe�cients {�j(x)}j

are then just orthogonal projections of p(y|x) onto the basis vectors. We can estimate

these coe�cients using a training set of (x, y) data by regressing the transformed response

variables �j(y) on predictors x for every basis function j (see Izbicki and Lee (2017) Equation

2.2, for details). The number of basis function nbasis is chosen by minimizing a CDE loss

function on validation data. The estimated density,
P

nbasis
j=1

b�j(x)�j(y), may contain small

spurious bumps induced by the Fourier approximation and may not integrate to one. We

remove such artifacts as described in Izbicki and Lee (2016) by applying a thresholding

parameter � chosen via cross-validation. FlexCode turns a challenging density estimation

problem into a simpler regression problem, where we can choose any regression method that

fits the problem at hand.

To provide a concrete application example, Schmidt et al. (2020) present the results of an

initial study of the LSST Dark Energy Science Collaboration (LSST-DESC) for photometric

redshift estimation or “photo-z”. In photo-zestimation, one attempts to constrain the

cosmological redshift (z) of a galaxy after observing the shifted spectrum using a handful of

broadband filters, and sometimes additional variables such as morphology and environment.

Their initial data challenge (“Photo-z DC 1”) compares the CDEs of a dozen photo-z

codes run on simulations of LSST galaxy photometry catalogs in the presence of complete,

correct, and representative training data. FlexZBoost, a version of FlexCode based on the

scalable gradient boosting regression technique by Chen and Guestrin (2016), was entered

into the data challenge because of the method’s ability to scale to massive data. In the

DC1 analysis, FlexZBoost was among the the strongest performing codes according to

established performance metrics of such PDFs and was one of only two codes to beat the

experimental control under a more discriminating metric, the CDE loss. For massive surveys

such as LSST, FlexCode also has another advantage compared to other CDE methods,

namely its compact, lossless storage format. Juric et al. (2017) establishes that LSST has

allocated ⇠100 floating point numbers to quantify the redshift of each galaxy. As is shown

in Schmidt et al. (2020), the myriad methods for deriving photo-z PDFs yield radically

di↵erent results, motivating a desire to store the results of more than one algorithm in the

absence of an obvious best choice. For the photo-z PDFs of most codes, one may need

to seek a clever storage parameterization to meet LSST’s constraints (Carrasco Kind and
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Brunner, 2014; Malz et al., 2018), but FlexCode is virtually immune to this restriction.

Since FlexCode relies on a basis expansion, one only needs to store nbasis coe�cients per

target density for a lossless compression of the estimated PDF with no need for binning.

Indeed, for DC1, we can with FlexZBoost reconstruct our estimate bp(z|x) at any resolution

from estimates of the first 35 coe�cients in a Fourier basis expansion. In other words,

FlexZBoost enables the creation and storage of high-resolution photo-z catalogs for several

billion galaxies at no added cost.

4.2 Review: Model Selection and Assessment

After fitting CDEs, it is important to assess the quality of our models of uncertainty. In

the LFI task, a key question is whether an estimate of the posterior distribution, bp(✓|xobs)

of the cosmological parameters is close enough to the true posterior p(✓|xobs) given the

observations xobs. First, we describe a CDE loss function that directly provides relative

comparisons between conditional density estimators or, equivalently, between a set of

models (for the same method) with di↵erent tuning parameters. Second, we describe visual

diagnostic tools, such as Probability Integral Transforms (PIT) and Highest Probability

Density (HPD) plots, that can provide insights on the overall goodness-of-fit of a given

estimator to observed data.

4.2.1 CDE loss

Here we briefly review the CDE loss from Izbicki and Lee (2016) for assessing conditional

density estimators and discuss it in the context of the cosmology LFI case.

The goal of a loss function is to provide relative comparisons between di↵erent

estimators, so that it is easy to directly choose the best fitted model among a list of

candidates. Given an estimate bp of p, we define the CDE loss by

L(bp, p) =
Z Z

[bp(y|x)� p(y|x)]2 dydP (x), (4.3)

where P (x) is the marginal distribution of the features x. This loss is the CDE analog to the

standard mean squared error (MSE) in standard regression. The weighting by the marginal
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distribution of the features emphasizes that errors in the estimation of y for unlikely features

x are less important. The CDE loss cannot be directly evaluated because it depends on

the unknown true density p(z|x). However, one can estimate the loss (up to a constant

determined by the true p) by

bL(bp, p) = 1

n

nX

i=1

Z
bp(y|xte

i )
2dy �

2

n

nX

i=1

bp(yte

i |x
te

i ), (4.4)

where
�
(xte

i
,yte

i
)
 
n

i=1
represents our validation or test data, i.e., a held-out set not used to

construct bp.

CDE loss for LFI. In LFI settings, we use a slightly di↵erent version of the CDE loss

in Eq. 4.3. Because the goal (in ABC) is to approximate the posterior density p(✓|xobs) at

fixed x = xobs, a natural evaluation metric is the integrated squared error loss

Z
[bp(✓|xobs)� p(✓|xobs)]

2 d✓ (4.5)

of the conditional density at xobs only. Estimating this loss can however be tricky as

only a single instance of data with x = xobs is available in practice. Hence, Izbicki et al.

(2019) approximates Equation 4.5 by computing the empirical loss bL(bp, p) in Eq. 4.4 over

a restricted subset of the validation data that only includes the xte

i
points that fall in an ✏-

neighborhood of xobs, where ✏ is the tolerance of the ABC rejection algorithm. The detailed

analysis of this approach can be found in Izbicki et al. (2019).

4.2.2 PIT and HPD diagnostics

The CDE loss function is a relative measure of performance that cannot address absolute

goodness-of-fit. To quantify overall goodness-of-fit, we examine how well calibrated an

ensemble of conditional density estimators are on average, over validation or test data
�
(xte

i
,yte

i
)
 
n

i=1
. For ease of notation, we will in this section denote xte

i
and yte

i
for a generic

i by xval and yval.

Given a true probability density p(y|x) = �0 of a variable y conditioned on data x, an

estimated probability density bp(y|x) = � cannot be well-calibrated unless � ⇡ �0. Built on
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the same logic, the probability integral transform (PIT; D’Isanto 2016)

PIT (xval, yval) =

Z
yval

�1
bp(y|xval)dy (4.6)

assesses the calibration quality of an ensemble of CDEs for scalar y representing the

cumulative distribution function (CDF) of bp(y|xval) evaluated at y = yval; this PIT value

corresponds to the shaded area in Figure 4.2, left. A statistically self-consistent population

of densities has a uniform distribution of PIT values, and deviations from uniformity indicate

inaccuracies of the estimated PDFs. Overly broad CDEs manifest as under-representation

of the lowest and highest PIT values, whereas overly narrow CDEs manifest as over-

representation of the lowest and highest values.

However, PIT values do not easily generalize to multiple responses. For instance, for

a bivariate response y = (z, ⌘), the quantity
R
zval

�1
R
⌘val

�1 p(z, ⌘|xval)dzd⌘ is not in general

uniformly distributed (Genest and Rivest, 2001). An alternative statistic that easily

generalizes to multivariate y is the highest probability density value (HPD; Izbicki et al.

2017, Appendix A):

⇠(xval,yval) =

Z

y:bp(y|xval)�bp(yval|xval)
bp(y|xval)dy. (4.7)

The HPD value is based on the definition of the highest density region (HDR, Hyndman

1996) of a random variable y; that is, the subset of the sample space of y where all points

in the region have a probability above a certain value. The HDR of y|xval can be seen

as a region estimate of y when x = xval is observed. In words, the set {y : bp(y|xval) �

bp(yval|xval)} is the smallest HDR containing the point yval, and the HPD value is simply

the probability of such a region. Figure 4.2, right, shows a schematic diagram of the HPD

value (green shaded area) and HDR region (highlighted segments on the y-axis) for the

estimated density bp(y|xval). The HPD value ⇠(xobs,yval) can also be viewed as a measure

of how plausible yval is according to bp(y|xval) and is directly related to the Bayesian analog

of p-values or the e-value (Pereira and Stern, 1999). One can show (Harrison et al., 2015)

that even for multivariate y, the HPD values for validation data follow a U(0, 1) distribution

if the CDEs are well-calibrated on the population level. Thus, these values can also be used
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Figure 4.2: Schematic diagram of the construction of the Probability Integral Transform
(PIT, left) and the Highest Probability Density (HPD, right) values for the estimated density
bp(y|x) at x = xval, where yval is the response at x = xval. In the plot to the right, the
highlighted segments on the y-axis form the so-called highest density region (HDR) of
y|xval. The PIT and HPD values correspond to the area of the tail versus highest density
region, respectively, of the estimate; here indicated by the blue versus green shaded areas.

for assessing the fit of conditional densities in the same way as PIT values. Additionally,

PIT and HPD values can be used for validating the coverage of conditional density models

at any level ↵ 2 [0, 1] (Zhao et al., 2021).

The PIT and HPD are not without their limitations, however, as demonstrated in the

control case of Schmidt et al. (2020). Because the PIT and HPD values can be uniformly

distributed even if p(y|x) is not well estimated, such as when using as conditional model the

marginal distribution of the data, they must be used in conjunction with loss functions for

method assessment. A popular way of visualizing PIT and HPD diagnostics for the entire

population is through probability-probability plots or P-P plots of the empirical distribution

of the (PIT or HPD) statistic versus its distribution under the hypothesis that bp(y|x) =

p(y|x); henceforth, we will refer to the latter Uniform(0,1) distribution as the “theoretical”

distribution of PIT or HPD. An ideal P-P plot has all points close to the identity line where

the “empirical” and “theoretical” distributions are the same. Note that HPD P-P plots, in

particular, are valuable calibration tools if our goal is to calibrate the estimated densities

so that the computed predictive regions have the right coverage.
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4.3 DeepCDE: Leveraging Deep Neural Networks for Condi-

tional Density Estimation

Recently, neural networks have reemerged as a powerful tool for prediction settings where

large amounts of representative training data are available; see LeCun et al. (2015) and

Goodfellow et al. (2016) for a full review. Neural networks for CDE, such as Mixture

Density Networks (MDNs; Bishop 1994) and variational methods (Tang and Salakhutdinov,

2013; Sohn et al., 2015), usually assume a Gaussian or some other parametric form of the

conditional density. MDNs have lately also been used for photometric redshift estimation

(D’Isanto and Polsterer, 2018; Pasquet et al., 2019) and for direct estimation of likelihoods

and posteriors in cosmological parameter inference (see Alsing et al. 2019 and references

within).

DeepCDEtakes a di↵erent, fully nonparametric approach to CDE. It combines the

advantages of basis expansions with the flexibility of neural network architectures, allowing

for data types like image features and time-series data. DeepCDE can be implemented with

both convolutional and recurrent neural network architectures, extending to both image

and sequential data; we showcase this with in Sections 4.4 and 4.4 respectively. DeepCDE is

based on the orthogonal series representation in FlexCode, given in Equation 4.2, but rather

than relying on regression methods to estimate the expansion coe�cients in Equation 4.2,

DeepCDE computes the coe�cients {�i(x)}
B

i=1 jointly with a neural network that minimizes

the CDE loss in Equation 4.3. Indeed, for an orthogonal basis the problem of minimizing this

CDE loss is (asymptotically) equivalent to finding the best basis coe�cients in FlexCode

under mean squared error loss for the individual regressions, as shown by the following

Lemma.

Lemma 2. Let � = {�i(x)}Bi=1 be the coe�cients of the FlexCode basis expansion in

Equation 4.2. Minimizing the CDE loss in Equation 4.3 is equivalent to minimizing the

mean squared errors of the basis expansion coe�cients, i.e.,

min
b�2RB

Z

X

Z

Y
(bp(y|x)� p(y|x))2dydP (x)() min

b�2RB
Ex

���b�(x)� �(x)
���
2
�
. (4.8)
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Proof. We prove the statement by showing that the two minimization problems are

equivalent.

First, considering the LHS of Equation 4.8, we have that:

min
b�2RB

Z

X

Z

Y
(bp(y|x)� p(y|x))2dydP (x)

() min
b�2RB

Z

X

Z

Y
bp(y|x)2dydP (x)� 2

Z

X

Z

Y
bp(y|x)p(x, y)dxdy

= min
b�2RB

Z

X

Z

Y

 
BX

i=1

b�i(x)�i(y)
!2

dydP (x)� 2

Z

X

Z

Y

 
BX

i=1

b�i(x)�i(y)
!
p(y|x)dP (x)dy

= min
b�2RB

Z

X

BX

i,j=1

b�i(x)b�j(x)
Z

Y
�i(y)�j(y)dydP (x)

� 2

Z

X

Z

Y

 
BX

i=1

b�i(x)�i(y)
!0

@
BX

j=1

�j(x)�j(y)

1

A dP (x)dy

= min
b�2RB

Z

X

BX

i=1

b�2i (x)dP (x)� 2

Z

X

BX

i=1

b�i(x)�i(x)dP (x) = min
b�2RB

BX

i=1

Ex

h
b�2i (x)� 2b�i(x)�i(x)

i
,

where the second equality follows from the fact that the set {�i(y)}Bi=1 is part of an

orthonormal basis, that is,

Z

Y
�i(y)�j(y)dy = �ij =

8
><

>:

1 i = j

0 i 6= j
.

Next, the RHS of Equation 4.8 reduces to:

min
b�2RB

Ex

���b�(x)� �(x)
���
2
�
= min

b�2RB

BX

i=1

Ex

⇣
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⌘2�
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BX
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Ex

h
b�2i (x)� 2b�i(x)�i(x).

i
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The value of this result is that DeepCDE with a CDE loss directly connects prediction

with uncertainty quantification, implying that one can leverage the state-of-the-art deep

architectures for an application at hand toward uncertainty quantification for the same

prediction setting. In addition, DeepCDE retains the same benefits as FlexCode in regards

to storage space, that is one would only need to store the basis expansion coe�cients for a

lossless compression of the conditional density estimate.

From a neural network architecture perspective, DeepCDE only adds a linear output layer

of coe�cients for a series expansion of the density according to

bp(y|x) =
BX

j=1

b�j(x)�j(y), (4.9)

where {�j(y)}Bj=1 is an orthogonal basis for functions of y 2 R. Like FlexCode, we normalize

and remove spurious bumps from the final density estimates according to the procedure in

Section 2.2 of Izbicki and Lee (2016). For most deep architectures, adding a linear layer

represents a small modification, and a negligible increase in the number of parameters. For

instance, with the AlexNet architecture (Krizhevsky et al., 2012), a widely used, relatively

shallow convolutional neural network, adding a final layer with 30 coe�cients for a cosine

basis only adds ⇠ 120, 000 extra parameters. This represents a 0.1% increase over the

62 million already existing parameters, and hence a negligible increase in training and

prediction time. Moreover, the CDE loss for DeepCDE is especially easy to evaluate, as

inserting the orthogonal basis expansion (Equation 4.9) into the CDE loss (Equation 4.3)

yields

L(p, bp) =

Z BX

j=1

b�2j (x)dP (x)� 2

Z Z BX

j=1

b�j(x)�j(y)dP (x, y)

⇡
1

n

nX

i=1

0

@
BX

j=1

b�2j (xte

i )� 2
BX

j=1

b�j(xte

i )�j(y
te

i )

1

A . (4.10)

The last expression represents our empirical CDE loss on validation data
�
(xte

i
, yte

i
)
 
n

i=1

and is easy to compute.
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4.4 Application: Correcting Galaxy Image Orientation

In this section we provide an example of estimating conditional density estimates when the

input is an image, which is a high-dimensional structured input. As in Section 2.9.5, we

use open-source galaxy simulator GALSIM (Rowe et al., 2015), which allows to generated

realistic images of astronomical objects and integrates real observational e↵ects such as

pixelization and blurring. For this simulation experiment we only consider symmetrical

globular galaxies, that is a spherical group of stars rotating around the galaxy center, with

an axis ratio equal to � = 0.4. We down-sample the simulated galaxy images to a 20⇥ 20

resolution to mimic realistic observations as in Izbicki et al. (2014).

We consider two di↵erent settings. In setting (A), we randomly select the simulation

galaxy orientation ✓ from the interval [0,⇡] (in radians), or [0�, 180�] (in degrees). In setting

(B), we select ✓ from the inteval [�⇡,⇡] (in radians), or [�180�, 180�] (in degrees). In both

settings we want to correct the galaxy image rotation, that is to estimate the conditional

density estimate of the galaxy orientation ✓ given the 400-dimensional galaxy image as

input. In setting (A) the rotation angle is unique as we are restricting the angle from

[0,⇡]. In this case, the conditional density estimate should be a peaked distribution around

the true rotation angle. In setting (B), however, given any rotation angle e✓ the angle

(e✓�⇡) would also be a valid rotation angle. In setting (B) the conditional density estimate

would identify this correspondence, showing a bi-modal distribution about the two potential

values. Figure 4.3 provides three examples of a simulated galaxy rotation, with the first two

figures showing the correspondence of setting (B): there is no di↵erence in the final image

if a galaxy is rotated by 16� or by �165�. In both settings we employ four di↵erent deep

neural network architectures: (i) a 3-layer multi-layer perceptron (MLP) or feed-forward

neural network, (ii) a simplified version of the AlexNet model (Krizhevsky et al., 2012),

with two convolutional layers and two linear layers, and two residual networks (ResNets,

He et al. 2016) with (iii) 18 layers (Resnet18) and (iv) 34 layers (Resnet34). We compare

the performance of all models against the marginal distribution, which passes the PIT and

HPD diagnostics as mentioned in Section 4.2.2, but does not represent a good model for the

conditional density. We explore the use of the Fourier cosine basis functions and the Haar

wavelet basis functions (Haar, 1910), both orthonormal basis functions. Finally, since in this
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specific the correct conditional densities are either a single peak or two-peaked distribution,

we will not consider HPD diagnostics, given that in the majority of the cases the highest

posterior density region would have zero mass by design.

Figure 4.3: Examples of simulated galaxy images at di↵erent rotation angles, downsampled
to 20 ⇥ 20 as in Izbicki et al. (2014). The left and center images show how angles that
are ⇡ apart produce identical rotations, which is explored as conditional density estimation
problem in setting (B) (see text).

Figure 4.4 provides the results for setting (A), in which the rotation angle ✓ 2 [0,⇡].

Figure 4.4, top, shows that all proposed models conditional estimation is significantly better

than the marginal distribution in terms of CDE loss. If only the CDE loss is considered, one

would choose the ResNet34 architecture using cosine basis functions as the best conditional

density estimate. However, when looking at the distribution of the PIT statistics in the

center panel of Figure 4.4, the PIT distribution for the three best models is not uniform. The

PP-plot shows significant distributions from the expected uniform distribution, and running

Kolmogorov-Smirno↵ two-sample test with a uniformly distributed sample (Stephens, 1974)

returns a p-value of p < 1 ⇥ 10�6. For the three best models the estimated conditional

densities are overly broad, which is indicated by the PIT values being concentrated around

0.5. This is a due to the cosine basis expansion; cosine basis functions concentrate less

sharply around the predicted angle than what the Haar basis does over the same interval.

For this reason, the PIT statistics for the ResNet34 network using Haar basis are not

broad, with the K-S test returning a non-significant p-value of p = 0.23. The bottom panel

of Figure 4.4 shows representative examples of the di↵erence between cosine and Haar

basis functions in this example when using the deep architecture with the most capacity,

ResNet34, with the true rotation angle indicated in red.
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Figure 4.5 showcases the results for setting (B), in which the rotation angle ✓ 2 [�⇡,⇡].

As mentioned above, this makes the problem of correcting the rotation of symmetrical

galaxies ill-posed (as two di↵erent angles can provide the same rotation), and so one would

expect the conditional density to be bimodal. As in setting (A), all models achieve a CDE

loss which is substantially smaller than the marginal distribution, with the models using

cosine basis functions achieving the best results (Figure 4.5, top). However, as shown

in the center panel of Figure 4.5, the PIT statistics for most models are not uniformly

distributed, indicating issues with the conditional density fit. This can be explained by the

tendency to overfit the CDE loss, which results in conditional density estimates which are

either flat or unimodal. An example of this is provided in the bottom panel of Figure 4.5,

where the ResNet18 model with a cosine basis function returns an uniformative conditional

distribution in the first test case and a single peak in the second test case (true rotation

angles indicated in red). The MLP model using the Haar basis, though not having the

same capacity as other models, manages to correctly identifying the bimodal structure in

the estimated conditional densities. In fact, the PIT statistics for the MLP model with Haar

basis functions pass the uniformity test, with a p-value of p = 0.11 for the K-S two-sample

test.
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Figure 4.4: In setting (A), models using the cosine basis functions achieve a smaller CDE
loss. However, the resulting conditional density estimates are too broad, with PIT statistics
not uniformly distributed. Using Haar basis produces higher CDE loss values but better
conditional density estimates. Top: Mean and 2 standard deviation values for the CDE loss
of all conditional density models. Center : PIT statistic distribution and PP-plot against
the expected uniform distribution. Bottom: Example conditional density estimates for the
Resnet34 architecture with both cosine and Haar basis functions, with the true rotation
angle indicated in red.
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Figure 4.5: In setting (B), higher capacity models achieve a smaller CDE loss. However, the
resulting conditional density estimations does not capture the bi-modal nature of the setting
(see text). Most models in fact estimate a conditional density with a single peak, while the
MLP with Haar basis correctly recovers the bimodal structure. Top: Mean and 2 standard
deviation values for the CDE loss of all conditional density models. Center : PIT statistic
distribution and PP-plot against the expected uniform distribution. Bottom: Example
conditional density estimates for the Resnet18 model with cosine basis (best CDE loss)
and MLP with Haar basis functions (only model for which the PIT statistic are distributed
uniformly), with the true rotation angle indicated in red.
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4.5 Application: Time-Series Prediction of Benzene Concen-

tration

In this section we provide an example of estimating conditional densities when the input is

a multivariate time series. We consider the problem of predicting the level of air pollution

given multi-sensor chemical measurements of the air quality. More specifically we focus on

the problem of predicting benzene concentration in the air, given the known link between

cancer and long exposure to benzene in the air (Mage et al., 1996). We use the multi-

sensors chemical measurements recorded in a polluted city in Italy by De Vito et al. (2008).

The data include hourly measurements of the levels of carbon monoxide, ozone, nitrogen

dioxide, generic nitrogen dioxides, benzene, as well as temperature and absolute and relative

humidity, over the course of a 13 month period (March 2004 to April 2005). In this section

we estimate the conditional distribution of benzene for a specific hour given the multivariate

time series of hourly measurements in the 30 days before the specific date. In other words,

the input to each model is a 7-dimensional time series with 720 time steps (once every hour

for a month). We use the first 10 months of the data as a training set, and the remaining

3 as a test set. In terms of neural architectures we explore feed-forward MLPs with up

to 3 hidden layers, as well as long-short term memory (LSTM) recurrent neural network

(Hochreiter and Schmidhuber, 1997), which are specifically designed to handle sequential

data. We consider a single LSTM layer, stacking two LSTM layers and a bi-directional

LSTM, in which the sequence is fed in both directions to the neural architecture (Schuster

and Paliwal, 1997). As in Section 4.4, we explore both the cosine basis and Haar basis

functions for the conditional density basis expansions.

Figure 4.7 shows the results for the CDE fit of the di↵erent models and basis functions.

In Figure 4.7, top, we see that all models achieve a CDE loss significantly lower than

the marginal distribution, with the bi-directional LSTM achieving the lower loss values

with both basis functions. However, when looking at the PIT and HPD diagnostics for

bi-directional LSTM in the center and bottom panels of Figure 4.7, there tends to be an

over-representation of low PIT and high HPD statistics, indicating an overly-narrow fit.

Indeed, bi-directional fit do not pass the K-S two-sample test for uniformity for either PIT

or HPD. On the other hand, a two-layers LSTM using cosine basis passes the uniformity
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test for both PIT and HPD, hence providing a well-calibrated conditional density estimate

for benzene concentration. Figure 4.6 provides two representative examples of the di↵erence

between a bidirectional LSTM (left panels) and two-layers LSTM (right panel), where the

true benzene value is indicated in red. The bidirectional LSTM tends to produce more

sharp density estimates that in some cases assign zero probability to the actual response,

while two-layer LSTM assign a non-zero probability to a larger region of the response space

and are hence better calibrated.

Figure 4.6: Examples of conditional density estimates for two test set hourly values (in red).
The bidirectional LSTM provides sharper conditional density estimates that can sometime
assign the true benzene concentration a probability zero, while the 2-layer LSTM is more
broad and hence better calibrated.
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Figure 4.7: In benzene concentration prediction the bidirectional LSTM models achieve
the lowest CDE loss, but the estimated conditional densities are overly narrow, as indicated
by the PIT and HPD statistics. On the other hand, 2-layer LSTM do not achieve quite
the same CDE loss, but provide better calibrated conditional densities. Top: Mean and 2
standard deviation values for the CDE loss of all conditional density models. Center : PIT
and HPD statistic distribution. Bottom: PP-plot of PIT and HPD statistics against the
expected uniform distribution.
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Chapter 5

Conclusions and Future Work

This thesis develops tools with frequentist guarantees for high-dimensional simulator-based

settings by leveraging machine learning algorithms. Firstly, we introduce a statistical

framework for constructing valid confidence sets and hypothesis tests with finite sample

guarantees. We provide two novel test statistics for likelihood-free frequentist inference

called ACORE and BFF, which approximate the likelihood ratio and Bayes factor, respectively.

We also develop practical and modular methods to estimate critical values and p-values, and

to evaluate the empirical coverage of confidence sets across the parameter space. Secondly,

we propose a statistically consistent approach for validating fitted approximate likelihood

models which can pinpoint the locations in the parameter space where the fit is inadequate

and provide insights as to how the high-resolution simulator and approximate likelihood

model di↵er. Finally, we contribute a neural density estimation tool that transforms

deep regression architectures in conditional density estimators with minimal computational

overhead. Di↵erent extensions are possible, and this chapter reviews the main ones for the

statistical framework presented in Chapter 2.

5.1 Hyper-Parameter Tuning and Model Selection

In the applications showcased in Section 2.9, confidence sets are constructed using di↵erent

probabilistic classification algorithms, which are then selected according to the lowest cross-

entropy loss on a separate validation set. As mentioned in Section 2.9, the estimation of the
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likelihood seems to a↵ect the power achieved by the test statistic significantly, especially

in high-dimensions. Hence providing an accurate odds is critical to the properties of

the downstream confidence sets. Overall, all algorithms are employed using their vanilla

implementation (that is, the built-in standard setting of, mostly, scikit-learn (Pedregosa

et al., 2011)), but one could use hyper-parameter optimization techniques to improve their

fit, especially for what concerns high-capacity probabilistic classification methods such as

deep neural network. Examples of potential hyper-parameter optimization algorithms are

Bayesian methods (Snoek et al., 2012) or bandit-based approaches (Li et al., 2018), as well

as more recent combinations of the two (Falkner et al., 2018), leveraging dedicated software

such as OPTUNA (Akiba et al., 2019) or SHERPA (Hertel et al., 2020).

In all experiments, the cross-entropy loss and the L2 odds loss proposed in Section 2.5

follow the same pattern in odds estimation with a large sample size (i.e., high values of

B): the better the fit, the smaller the loss. However, the odds loss appears unstable,

especially for small sample sizes (e.g., Figures 2.5 and 2.13), in which poorly estimated

odds can achieve significantly large values. Nevertheless, estimating odds would ultimately

provide good likelihood approximation, resulting in higher power for downstream inference.

One could train a probabilistic classifier to directly minimize the L2 odds, when feasible

(such as gradient-boosted trees and deep neural networks). Instabilities in training could

be handled by controlling training hyper-parameters such as learning rate and batch size

(Bengio, 2012; Masters and Luschi, 2018), using batch-normalization to mitigate potentially

disruptive weight initialization (Io↵e and Szegedy, 2015), as well as using gradient clipping

to avoid exploding gradients (Pascanu et al., 2013).

5.2 Guided Simulations For Critical and P-Values Estima-

tion

Critical and p-values estimation in the inference machinery described in Chapter 2 relies on a

separate simulation sample T
0
= {✓i, ⌧(D✓i ; ✓i)}

B
0

i=1 to determine the distribution of the test

statistic in di↵erent regions of the parameter space⇥. In current experiments, the parameter

space is explored uniformly in the T
0
sample, using a uniform proposal distribution r⇥

over the parameter space. However, this approach becomes quickly ine�cient with larger
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parameter spaces and higher observed sample sizes n. Roughly speaking, the higher

the dimension of the parameter space, the smaller in proportion the area around the

data-generating parameter value becomes. A uniform sampling approach over-samples

from regions of the parameter space where the distribution of the test statistic b⌧(D; ✓)

is very di↵erent from the test statistic at the observed data b⌧(D; ✓). Sampling from

such regions harms the estimation of critical values and p-values. For critical values,

the ↵-quantile would be over-smoothed for relevant areas of the parameter space. For

p-values, most of the indicator variables Z = I (b⌧(D; ✓0) < b⌧(D; ✓0)) would be zero, making

the probabilistic classification task significantly harder. Both of these e↵ects result in

over-covering confidence sets, with p-values empirically being a↵ected the most (see, e.g.,

Section 2.9.4).

To provide more e�cient sampling across the parameter space, one could define a data-

driven proposal distribution ⇡ over the parameter space ⇥. The key idea is to use the value

of b⌧(D; ✓), the estimated test statistic at each parameter value for the observed data, to guide

the sampling of parameter values ✓ for the T
0
sample. With perfectly estimated odds, ⌧(D; ✓)

would indeed be the largest at the true data-generating parameter ✓. Algorithm 12 shows

how the critical and p-values estimation algorithms would accommodate a guided simulation

scheme using a Gaussian proposal distribution ⇡. Firstly, we use a separate uniform sample

of the parameter space to compute the estimated test statistic across the parameter space.

Secondly, we normalize the test statistic values to define a discrete distribution over the

parameter space, which we approximate with a Gaussian. Finally, we define the Gaussian

approximation as the new proposal distribution ⇡ and use it to estimate critical and p-values

as in Algorithm 4. Note that in the current setup the guided simulation is not an active

learning strategy, as the Gaussian proposal distribution is estimated using a sample size K

chosen a priori. One could envision an extension in which the Gaussian approximation and

confidence intervals are constructed sequentially, which could tackled using the notion of

confidence sequences (Darling and Robbins, 1967; Lai, 1976; Howard et al., 2021).
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Algorithm 12 Estimate the p-values p(D; ✓0) or critical values C✓0 , given observed data
D, for a level-↵ test of H0,✓0 : ✓ = ✓0 vs. H1,✓0 : ✓ 6= ✓0 for all ✓0 2 ⇥ simultaneously using
Gaussian guided sampling.
Input: observed data D; stochastic forward simulator F✓; sample size K for guided strategy;
⇡ (a fixed proposal distribution over the full parameter space ⇥); test statistic b⌧ ; regression
estimator m; desired level ↵ 2 (0, 1): confidence set estimation strategy eval (either
p-values or crit-values)
Output: estimated p-value bp(D; ✓) or critical value bC✓ for all ✓ = ✓0 2

⇥

1: // Initial Sample from ⇥
2: Set a✓  ; and a⌧  ;
3: for k in {1, . . . ,K} do
4: Draw parameter ✓k ⇠ ⇡
5: Compute test statistic b⌧k  b⌧(D; ✓k)
6: Append to vectors a✓  a✓ [ {✓k} and a⌧  a⌧ [ {b⌧k}
7: end for
8: // Gaussian Approximation for b⌧(D; ✓) over ⇥

9: Normalize test statistics a⌧  
exp(a⌧ )P
k exp(a⌧,i)

10: Define discrete distribution ra✓ s.t. P(a✓,k) = a⌧,k
11: Set g✓  ;
12: for j in {1, . . . ,K} do
13: Draw parameter ✓j ⇠ ra✓
14: g✓  g✓ [ {✓j}
15: end for
16: Set µ = 1

B
0
1

P
j
g✓,j and ⌃ = 1

B
0
1

P
j
(g✓,j � µ)(g✓,j � µ)T

17: // P-Values or Critical Values Estimation
18: if eval == crit-values then
19: Estimated critical value bC✓0 via Algorithm 4 with ⇡ = N (µ,⌃)
20: return bC✓ for all ✓ = ✓0 2 ⇥
21: else if eval == p-values then
22: Estimated p-value bp(D; ✓0) via Algorithm 5 with ⇡ = N (µ,⌃)
23: return bp(D; ✓) for all ✓ = ✓0 2 ⇥
24: end if

5.3 E�cient Integration and Optimization

As mentioned in Section 2.7, one of the primary sources of error to the test statistic

power is the numerical error when computing the maximization or integration values at the

denominator of the ACORE and BFF test statistics, respectively. As a preamble, integration

and maximization have a strong connection, highlighted by the Laplace approximation (see
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Barndor↵-Nielsen and Cox 1989; Young et al. 2005 for a detailed summary). Suppose we

have a function h(x) : Rd
! R and we wish to evaluate:

hn =

Z

X
e�nh(x)dx,

for some n > 0. For large values of n, the largest contribution to the integral value will

be around the maximum of e�nh(x), or at the minimum of h(x) in X . Approximating the

integral with the maximum is an accurate approximation up to order O(n�1). This fact

is used in Bayesian inference to avoid explicit marginalization of variables in the posterior

distribution (integration task) by computing the maximum a posteriori (maximization task);

see (Bishop, 2006, Chapter 4) for a more detailed treatment.

In current experiments, maximization is computed by evaluating over an equispaced

grid in the parameter space, which is accurate to order O(n�1/d), while integration is

performed via Monte Carlo integration, which is accurate to order Op(n�1).∗ However,

there are a plethora of methods that could reduce the approximation error even further.

For maximization tasks, the Laplace approximation is applicable since the likelihood ratio

surface peaks exponentially at the true parameter value as a function of the observed sample

size n. In other words, one could use a Gaussian approximation of the estimated odds and

use the maximum likelihood estimator of the maximum in place of the integral, which

converges as Op(n�1/2) (assuming n� d). Laplace approximations might not, however, be

robust to estimation errors in learning the odds (e1 in Section 2.7). Another approach can be

borrowed from the hyper-parameter search literature for machine learning algorithms (see

Feurer and Hutter (2019) for an overview). For instance, kernel-based Bayesian optimization

can achieve an approximation of the order Op

✓q
dlog(n)

n

◆
(Kandasamy et al., 2015). For

integration tasks, more recent methods have improved the convergence rates of Monte Carlo

integration. For instance, adaptive methods achieved a convergence rate of Op

⇣
log(n)d

n

⌘

(Weinzierl, 2000), while Quasi-Monte Carlo methods provide a further improvement with

a convergence rate of the order Op

⇣
log(n)d

n2

⌘
(Dick et al., 2013). As a note, the Laplace

approximation could also be exploited in the opposite direction, hence using integration to

evaluate the maximum of a function.
∗
Note that this convergence rate is in probability, as Monte Carlo integration is stochastic, as well as

independent of the dimension d (Weinzierl, 2000).
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5.4 Approaches to High-dimensional Parameter Spaces

As shown in Section 2.8, one can approach high-dimensional parameter spaces by separating

the parameters in parameters of interest � and nuisance parameters  , that is, parameters

which are not of interest in the inference process, so that ⇥ = � ⇥  . However, nuisance

parameter profiling requires evaluating the maximum of the likelihood for any values of

� 2 �, which in frequentist likelihood-free inference is further complicated by the fact that

either the likelihood or the likelihood gradient is not known. In other words, profiling in

high-dimensional parameter spaces requires both (i) an e�cient maximization algorithm

and (ii) an accurate estimation of the likelihood or odds functions. In this section, we

provide a summary of observations and potential approaches to handle high-dimensional

parameter spaces.

The high-energy physics literature provides a series of relevant approaches to high-

dimensional parameter spaces. The goal is to de-correlate nuisance parameters and observed

data, reducing the e↵ect of nuisance parameters on observable data. In fact, in situations

where the nuisance parameter has a negligible impact on the observable data, one could

disregard the nuisance parameters or opt for more computationally friendly profiling

approaches, such as setting the nuisance parameters at the maximizer of the likelihood.

One approach to reduce nuisance parameter e↵ects is planing (Chang et al., 2018). Planing

is a data pre-processing techniques in which the training data are re-weighted so that they

attain the same probability distribution function across nuisance parameters. However, this

technique requires an exact knowledge or accurate approximation of the likelihood, and

might not scale e�ciently in higher-dimension. Another approach is to include an explicit

penalty term in the loss function used to estimate the likelihood to enforce insensitivity to

nuisance parameters (Stevens and Williams, 2013; Kasieczka and Shih, 2020). Such penalty

terms would also be applicable for learning the odds in Section 2.2. Another stream of

work employs adversarial schemes in order to train neural networks to develop likelihood

estimates that are de-correlated from nuisance parameters (Louppe et al., 2017) and could

be used as test statistics for frequentist likelihood-free inference.

Another potential approach for frequentist likelihood-free inference in problems with

a high-dimensional parameter space is to construct confidence sets to transform the
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parameters of interest h(✓) instead of the parameter ✓ itself. An example would be the

ill-posed inverse problem tackled by Patil et al. (2020), in which the quantity of interest

is the vertically integrated CO2 concentration can be expressed as a linear transformation

⇠ = wT ✓, with w being a vector of known weights and ✓ being the CO2 concentrations

at di↵erent altitudes. Constructing confidence sets would then require to sample di↵erent

values of ✓1, ...., ✓m ⇠ r⇥, generate the simulated data xi,1, ...,xi,n ⇠ F✓i and then associate

each simulated dataset with the integrated average ⇠i = h(✓i) as a new parameter value.

However, a caveat in this setting is that the new implicit likelihood L(x; ⇠) is not guaranteed

to be identifiable. In other words, if two parameter values ✓1, ✓2, such that ✓1 6= ✓2 and

F✓1 6= F✓2 , attain the same integrated average ⇠ = h(✓1) = h(✓2), the likelihood L(x; ⇠)

would not be a well defined function, leading to degeneracies and artifacts in the downstream

inferential results.

Finally, di↵erent approaches can be used to increase the e�ciency of maximization and

integration under the presence of nuisance parameters. For maximization tasks, one could

use gradient-free optimization techniques (see Conn et al. 2009 and references therein),

approximate the gradient by evaluating the simulators at closeby points, which can be

used within gradient-based optimization methods (see Boyd and Vandenberghe 2004 for a

review) or machine-learning specific optimization techniques mentioned in Section 5.3. For

integration tasks, one could include prior knowledge to separate the joint distribution of

nuisance parameters ⇡( ) into marginals and conditionals distributions, hence reducing the

high-dimensional integral into a series of nested integral calculations.

5.5 Application to Epidemiological Models

Compartmental models in epidemiology are used to study the evolution of a disease across

a population. Compartmental models can be cast either as a deterministic or stochastic

system, using ordinary or stochastic di↵erential equations, respectively. The most famous

compartment model is the SIR model (SIR; McKendrick 1925), which divides the population

into three di↵erent groups: susceptible (R), infectious (I) and removed (R). The sum of the

three groups is the total populationN = S+I+R, where N is usually a fixed, known number.

There are many extensions to the SIR model and many successful applications: see Keeling
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and Rohani (2008) and Hethcote (2000) for a more systematic reviews and Chang et al.

(2021) for a recent application on modeling COVID-19 spread dynamics. In this section,

we will focus on stochastic compartmental models as they fall within the likelihood-free

inference framework, as also shown in Radev et al. (2020).

Borrowing the same notation as in Greenwood and Gordillo (2009), let St, It and Rt

be the population in the three di↵erent categories at time t 2 T ; as a reminder, here

St + It + Rt = N for all t 2 T , so one can model St and It and fully characterize the

population considered. In the time interval [t+�t]:

• the probability that an individual is infected, so St = St�1 � 1 and It = It�1 + 1, is

equal to � SI

N
�t, where � is the infection rate. One can interpret this probability as

each infective individual potentially a↵ecting the susceptible population with a rate �.

(The denominator here can be changed to reflect inhomogeneous infections as shown

by Stroud et al. 2006);

• the probability that an individual recovers, so Rt = Rt�1 + 1 and It = It�1 � 1, is

�I⇤t, where � is a recovery rate.

Extending the above to a population level, each increment can be expressed as a sum

of the expected increment and a stochastic term, which can be written as:

�S =

✓
��

StIt
N

◆
�t+�Z1

�I =

✓
�
StIt
N
� �It

◆
�t��Z1 +�Z2

where ⇤Z1 and ⇤Z2 are Poisson distributions such that E[Z1] = E[Z2] = 0, while

Var[Z1] = � StIt
N
�t and Var[Z2] = �It�t. From a likelihood-free inference perspective, the

SIR model has two parameters ✓ = (�, �) and the observable data are a two-dimensional

time series {Xt} = (St, It)}Tt=1. Note that, although there are three subcategories, two

terms are enough to characterize the entire time series as St + It + Rt = N for all t 2 T .

Within our framework, one could estimate the odds by either (i) flattening the time series

and use the 2T values as tabular features in a probabilistic classifier (in, e.g., random forest
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or gradient boosted trees), (ii) extracting meaningful summary statistics as input to any

probabilistic classifier or (iii) using the 2-D time series directly as inputs to recurrent neural

networks such as LSTMs (Hochreiter and Schmidhuber, 1997). In cases when the time series

are not regular, such as sampled at di↵erent intervals or with di↵erent values of T , one can

rely on recent developments on recurrent neural ordinary equations (Rubanova et al., 2019)

to learn the odds.
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Devroye, L., Győrfi, L., and Lugosi, G. (2013). A Probabilistic Theory of Pattern

Recognition, volume 31. Springer Science & Business Media. 32

132



Dick, J., Kuo, F. Y., and Sloan, I. H. (2013). High-dimensional integration: The quasi-

Monte Carlo way. Acta Numerica, 22:133–288. 121

Dietrich, J. P. and Hartlap, J. (2010). Cosmology with the shear-peak statistics. Monthly

Notices of the Royal Astronomical Society, 402(2):1049–1058. 86

Diggle, P. J. and Gratton, R. J. (1984). Monte Carlo Methods of Inference for Implicit

Statistical Models. Journal of the Royal Statistical Society. Series B (Methodological),

46(2):193–227. 2, 71

D’Isanto, A. and Polsterer, K. (2018). Photometric redshift estimation via deep

learning-generalized and pre-classification-less, image based, fully probabilistic redshifts.

Astronomy & Astrophysics, 609:A111. 106

Donoho, D. L. (1994). Asymptotic minimax risk for sup-norm loss: solution via optimal

recovery. Probability Theory and Related Fields, 99(2):145–170. 29
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Appendix A

Chapter 2 Appendix

A.1 Section 2.6 Proofs

Proof of Theorem 2.1. If we assume |⇥| <1, then by the union bound and Assumption 2.1

we have that

sup
✓2⇥0

sup
t2R

| bFB0(t|✓)� F (t|✓)|
P

�����!
B0�!1

0.

If we assume instead that |⇥| is a compact subset of Rd, and the function g
B

0 (✓) =

supt2R | bFB0(t|✓)� F (t|✓)| is continuous in ✓ and strictly decreasing in B
0
, then we can use

Dini’s theorem to obtain the above.

It follows that

sup
✓2⇥0

| bF�1
B0 (↵|✓)� F�1(↵|✓)|

P
�����!
B0�!1

0.

The result follows from the fact that

0  |CB,B0 � C⇤
B| = | sup

✓2⇥0

bF�1
B0 (↵|✓)� sup

✓2⇥0

F�1(↵|✓)|  sup
✓2⇥0

| bF�1
B0 (↵|✓)� F�1(↵|✓)|,

and thus

|CB,B0 � C⇤
B|

P
�����!
B0�!1

0.
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Lemma A.0.1. If (bP(Y = 1|✓,X))✓2⇥
P

�����!
B�!1

(P(Y = 1|✓,X))✓2⇥ and |⇥| <1, then

⌧(D;⇥0)
P

�����!
B�!1

sup
✓02⇥0

inf
✓12⇥

nX

i=1

log
⇣
OR(Xobs

i ; ✓0, ✓1)
⌘

Proof. For every ✓0, ✓1 2 ⇥, it follows directly from the properties of convergence in

probability that

nX

i=1

log
⇣
dOR(Xobs

i ; ✓0, ✓1)
⌘

P
�����!
B�!1

nX

i=1

log
⇣
OR(Xobs

i ; ✓0, ✓1)
⌘

The conclusion of the lemma follows from the continuous mapping theorem.

Proof of Theorem 2.2. Lemma A.0.1 implies that ⌧B(D;⇥0) converges in distribution to

sup✓02⇥0
inf✓12⇥

P
n

i=1 log
�
OR(Xobs

i
; ✓0, ✓1)

�
. Now, from Slutsky’s theorem,

⌧B(D;⇥0)� bCB

Dist
�����!
B�!1

sup
✓02⇥0

inf
✓12⇥

nX

i=1

log
⇣
OR(Xobs

i ; ✓0, ✓1)
⌘
� C⇤.

It follows that

P

⇣
b�
B, bCB

(D) = 1|✓
⌘
= P

⇣
⌧B(D;⇥0)� bCB  0|✓

⌘

�����!
B�!1

P

⇣
sup
✓02⇥0

inf
✓12⇥

nX

i=1

log
⇣
OR(Xobs

i ; ✓0, ✓1)
⌘
� C⇤

 0|✓
⌘

= P (�C⇤(D) = 1|✓) ,

where the last equality follows from Proposition 1.

Proof of Theorem 1. Assumption 1 implies that, for every D,

0  |bp(D;⇥0)� p(D;⇥0)| = | sup
✓2⇥0

bp(D; ✓)� sup
✓2⇥0

p(D; ✓)|

 sup
✓2⇥0

|bp(D; ✓)� p(D; ✓)|
a.s.

�����!
B0�!1

0,
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and therefore bp(D;⇥0) converges almost surely to p(D;⇥0). It follows that bp(D;⇥0)

converges in distribution to p(D;⇥0). Conclude that

PD,T 0|✓(bp(D;⇥0)  ↵) = Fbp(D;⇥0)|✓(↵)
B

0�!1
�����! Fp(D;⇥0)|✓(↵) = PD|✓(p(D;⇥0)  ↵),

where FZ denotes the cumulative distribution function of the random variable Z.

Proof of Corollary 1. Fix ✓ 2 ⇥. Because F✓ is continuous, the definition of p(D; ✓) implies

that its distribution is uniform under the null. Thus PD|✓ (p(D; ✓)  ↵) = ↵. Theorem 1

therefore implies that

PD,T 0|✓(bp(D; ✓)  ↵)
B

0�!1
�����! PD|✓ (p(D; ✓)  ↵) = ↵. (A.1)

Now, for any ✓ 2 ⇥0, uniformity of the p-value implies that

PD|✓(p(D;⇥0)  ↵) = PD|✓

✓
sup
✓02⇥0

p(D; ✓0)  ↵

◆
 PD|✓ (p(D; ✓)  ↵)

= ↵.

Conclude from Theorem 1 that

PD,T 0|✓(bp(D;⇥0)  ↵)
B

0�!1
�����! PD|✓(p(D;⇥0)  ↵)  ↵. (A.2)

The conclusion follows from putting together Equations A.1 and A.2.

Proof of Theorem 2.

|bp(D;⇥0)� p(D;⇥0)| = | sup
✓2⇥0

bp(D; ✓)� sup
✓2⇥0

p(D; ✓)|

 sup
✓2⇥0

|bp(D; ✓)� p(D; ✓)|

= OP

✓✓
1

B0

◆
r
◆
,

where the last line follows from Assumption 2

Lemma 3. Under Assumption 4,
R
(O(x; ✓0)� bO(x; ✓0))2dG(x)  M

0

m0 L(bO,O).
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Proof. Let h be as in Assumption 4. Notice that

Z
(O(x; ✓0)� bO(x; ✓0))

2dG(x)  sup
✓2⇥

Z
(O(x; ✓)� bO(x; ✓))2dG(x)

M 0


M 0

m0

Z
h(✓)d⇡(✓)

=
M 0

m0 L(
bO,O),

which concludes the proof.

Lemma 4. Under Assumptions 3 and 4, there exists K > 0 such that

ED|✓,TB
[|⌧(D; ✓0)� b⌧B(D; ✓0)|]  K

q
L(bO,O).

Proof. For every ✓ 2 ⇥

E
2
D|✓,TB

[|⌧(D; ✓0)� b⌧B(D; ✓0)|] =

✓Z
|⌧(D; ✓0)� b⌧B(D; ✓0)| dF (x|✓)

◆2

=

✓Z
|O(x; ✓0)� bO(x; ✓0)| dF (x|✓)

◆2

=

✓Z
|O(x; ✓0)� bO(x; ✓0)|O(x; ✓)dG(x)

◆2



✓Z
(O(x; ✓0)� bO(x; ✓0)

2dG(x)

◆✓Z
O

2(x; ✓)dG(x)

◆
,

where the last inequality follows from Cauchy-Schwarz. Assumption 3 implies that

Z
O

2(x; ✓)dG(x) M2,

from which we conclude that

E
2
D|✓,TB

[|⌧(D; ✓0)� b⌧B(D; ✓0)|] M2
Z
(O(x; ✓0)� bO(x; ✓0))

2dG(x).

Conclude from Lemma 3 that

E
2
D|✓,TB

[|⌧(D; ✓0)� b⌧B(D; ✓0)|]  K2
· L(bO,O),
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where K = M
q

M 0
m0 .

Lemma 5. Under Assumptions 3-7, there exists C > 0 such that

ED,TB |✓ [|⌧(D; ✓0)� b⌧B(D; ✓0)|]  CB�↵/(2(↵+d)).

Proof. Let bp = bP(Y = 1|x, ✓) and p = P(Y = 1|x, ✓) be the probabilistic classifier and

true classification function, respectively, on the training sample DB. Let h(y) = y

1�y
for

0 < y < 1. A Taylor expansion of h implies that

(h(bp)� h(p))2 = (h(p) +R1(bp)� h(p))2 = R1(bp)2,

where R1(bp) = h0(⇠)(bp� p) for some ⇠ between p and bp. Also note that due to Assumption

3,

9a > 0 s.t. p, bp > a, 8x 2 X , ✓ 2 ⇥.

Thus,

ETB

Z
(h(bp)� h(p))2 dG(x)d⇡(✓)

�
= ETB

Z
1

(1� ⇠)4
(bp� p)2 dG(x)d⇡(✓)

�


1

(1� a)4
ETB

Z
(bp� p)2 dG(x)d⇡(✓)

�

=
1

(1� a)4
ETB

Z ⇣
bP(Y = 1|x, ✓)� P(Y = 1|x, ✓)

⌘2
h0(x, ✓)dH(x, ✓)

�


�

(1� a)4
ETB

Z ⇣
bP(Y = 1|x, ✓)� P(Y = 1|x, ✓)

⌘2
dH(x, ✓)

�

= O
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B�↵/(↵+d)

⌘
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It follows that

ED,TB |✓ [|⌧(D; ✓0)� b⌧B(D; ✓0)|] = ETB

⇥
ED|✓,TB [|⌧(D; ✓0)� b⌧B(D; ✓0)|]

⇤

 ETB


K
q
L(bO,O)

�

 K

r
ETB

h
L(bO,O)

i

= K

s

ETB

Z
(h(bp)� h(p))2 dG(x)d⇡(✓)

�

= O
⇣
B�↵/(2(↵+d))

⌘
,

where the second inequality follows from Lemma 4.

Proof of Theorem 3. It follows from Markov’s inequality that with probability at least 1�✏,

D is such that

|⌧(D; ✓0)� b⌧(D; ✓0)| 
K ·

q
L(bO,O)

✏
(A.3)

Now we upper bound P✓(�⌧ (D) 6= �⌧ (D)). Define A as the event that Eq. A.3 happens.

Then:

PD|✓,DB
(�⌧ (D) 6= �b⌧ (D))  PD|✓,DB

(�⌧ (D) 6= �b⌧ (D), A) + P✓(A
c)

 PD|✓,DB
(I (⌧(D; ✓0) < c) 6= I (b⌧(D; ✓0) < c) , A) + ✏

 PD|✓,DB

0

@c�
K ·

q
L(bO,O)

✏
< ⌧(D; ✓0) < c+

K ·

q
L(bO,O)

✏

1

A+ ✏

Assumption 5 then implies that

PD|✓,DB
(�⌧ (D) 6= �b⌧ (D)) 

K 0
·

q
L(bO,O)

✏
+ ✏

where K 0 = 2KCL, which concludes the proof.
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Proof of Theorem 4. It follows from Markov’s inequality that with probability at least 1�✏,

D is such that

|⌧(D; ✓0)� b⌧(D; ✓0)| 
CB�↵/(2(↵+d))

✏
(A.4)

Following the same reasoning as for Theorem 3, we obtain that

PD,TB |✓(�⌧ (D) 6= �b⌧ (D)) 
K 00B�↵/(2(↵+d))

✏
+ ✏

where K 00 = 2CCL. Notice that taking ✏⇤ =
p
K 00B�↵/(4(↵+d)) optimizes the bound and

gives the result.

Proof of Corollary 2. The result follows from noticing that

PD,TB |✓(�b⌧B (D) = 1) � PD,TB |✓(�⌧ (D) = 1)� PD,TB |✓(�⌧ (D) 6= �b⌧B (D))

� PD,TB |✓(�⌧ (D) = 1)� 2
p

K 00B�↵/(4(↵+d)),

where the last inequality follows from Theorem 4.
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Appendix B

Source Code and Implementation

Details

B.1 Chapter 2

For the examples in Section 2.9.1, we use the sklearn ecosystem Pedregosa et al. (2011)

implementation of the following probabilistic classifiers:

• multi-layer perceptron (MLP) with default parameters, but no L2 regularization (↵ =

0);

• quadratic discriminant analysis (QDA) with default parameters;

• nearest neighbors (NN) classifier, with number of neighbors equal to the rounded

square root of the number of data points available (as per Duda et al. (2001)).

For the examples in Sections 2.9.3 and 2.9.4, we construct confidence sets using the

ACORE test statistic. For learning the odds ratio, we compared the following classifiers:

• logistic regression,

• quadratic discimininant analysis (QDA) classifier,

• nearest neighbor classifier,

• gradient boosted trees using {100, 500, 1000} trees with maximum depth {3, 5, 10},
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• Gaussian process classifiers∗ with radial basis functions kernels with variance {1, .5, .1},

• feed-forward deep neural networks, with 2, ..., 6 deep layers, number of neurons

between 2{4,...,10} and either ReLu or hyperbolic tangent activations.

For estimating the critical values, we considered the following quantile regression

algorithms:

• gradient boosted trees using {100, 250, 500} trees with maximum depth {3, 5, 10},

• random forest quantile regression with {100, 250, 500} trees,

• deep quantile regression with {2, 3} deep layers, 2{4,..,6} neurons and ReLu activations

(using the PyTorch implementation Paszke et al. (2019)).

All computations were performed on 8-Core Intel Xeon CPUs X5680 at 3.33GHz. A

Python implementation of all experiments and construction of ACORE and BFF confidence

sets can be found on Github at Mr8ND/ACORE-LFI.

B.2 Chapter 3

For Section 3.2, MMD and Energy test statistics are implemented in R, using the energy

(Rizzo, 2021) and kernlab Karatzoglou et al. (2004) packages respectively. Random

forest and nearest neighbors algorithms for Section 3.1.3 are also implemented in R. The

random forest algorithm is vanilla implementation from the randomForest package(Liaw

and Wiener, 2002), while the nearest neighbor algorithm is taken from the caret package

(Kuhn, 2008), choosing the number of nearest neighbors as the square root of the total

number of points as in Lall and Sharma (1996).

The conditional MAF in Section 3.3 is implemented in Python3 in pyTorch (Paszke

et al., 2019). At both ntrain = 200 and ntrain = 500 we used 10% of the training data as

validation. During training we assessed validation loss and we stopped the training early

if the validation loss was not improving for 30 epochs. We explored architectures with

∗
GP classifiers were used only with sample sizes B below 10, 000, as the matrix inversion quickly becomes

computationally infeasible for larger values of B.
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{5, 10, 15, 20} autoregressive layers and 2{4,..,10} hidden units, with the best performing

having 10 autoregressive layers and either 512 or 1024 hidden units.

A barebone implementation of the two sample regression test for both R and Python

can be found on Github at Mr8ND/Emulator-Validation-LFI.

B.3 Chapter 4

DeepCDE has implementations for both Tensorflow (Abadi et al., 2015) and Pytorch

(Paszke et al., 2019), two of the most widely used deep learning frameworks. Implementa-

tions can be found at Mr8ND/DeepCDE.
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