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In bosonic open string field theory, we construct numerical universal solutions in a-gauge
corresponding to “double brane” and “ghost brane” solutions in Siegel gauge in addition
to the tachyon vacuum solution, and evaluate their gauge invariants, which are energy- and
gauge-invariant observables. The a-gauge condition, which contains a real parameter a,
was introduced by Asano and Kato. In earlier works it has been applied to find the tachyon
vacuum solution with the level truncation method up to level 14. The “double brane” and
“ghost brane” solutions were constructed by Kudrna and Schnabl in Siegel gauge, which
corresponds to (a = 0)-gauge, up to level 28. Starting from these solutions, by varying a
little by little, we have constructed numerical solutions in a-gauge for various values of a
including a = ∞ up to level 20. Contrary to naive expectation, the gauge invariants of
“double brane” and “ghost brane” solutions in a-gauge seem to be non-constant for a. In
particular, although the normalized energy E of the “double brane” solution in a-gauge is
approximately two for a ∼ 0, we find that E becomes almost one for 0.5 < a < 1. The gauge-
invariant observable behaves similarly. This might imply that the “double brane” solution
varies to a single brane solution in such a-gauges.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Subject Index B26, B28

1. Introduction and summary
In bosonic open string field theory, where the action is given by

S[�] = − 1
g2

(
1
2
〈�, QB�〉 + 1

3
〈�, � ∗ �〉

)
, (1)

various solutions to the equation of motion,

QB� + � ∗ � = 0, (2)

have been constructed after the discovery of Schnabl’s analytic solution for tachyon condensa-
tion [1]. Before that, the numerical tachyon vacuum solution in Siegel gauge, b0|�〉 = 0, was
found by Sen and Zwiebach [2] with the level truncation method.1 Kudrna and Schnabl in
Ref. [5] numerically constructed “double brane” and “ghost brane” solutions in the twist-even
SU(1,1)-singlet state space, which is in Siegel gauge, in addition to the tachyon vacuum solution.
In a previous work [6] we generalized these solutions to those in theory around the Takahashi–
Tanimoto identity-based solution (TT solution). Roughly, “double brane” and “ghost brane”
solutions seem to be consistent with the usual interpretation of the TT solution, although
the numerical behavior is rather vaguer than the tachyon vacuum and perturbative vacuum

1See also Refs. [3,4].
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solutions [7–9]. We should note that the abovementioned numerical solutions are all in Siegel
gauge, and it is preferable to check these numerical solutions in other gauges in order to confirm
their physical interpretation.2

Asano and Kato defined the a-gauge [12],

(−2J+b0 + aQ̃b0c0)|�〉 = 0, (3)

with a real parameter a as a consistent gauge-fixing condition. Here, J+ and Q̃ are given from
the expansion of the Becchi–Rouet–Stora–Tyutin (BRST) operator with respect to the ghost
zero modes:

QB = c0L0 − 2J+b0 + Q̃. (4)

In the case a = 0, one can show that Eq. (3) is reduced to the Siegel gauge condition b0|�〉 =
0. On the other hand, in the case a = ∞, Eq. (3) becomes Q̃b0c0|�〉 = 0, which corresponds to
the Landau gauge in the massless sector.

Under the a-gauge condition, the tachyon vacuum solution has been investigated in earlier
works [13–15] up to level 14.3 We note that the condition in Eq. (3) does not mix the level of �,
and hence it is suitable for the level truncation method. Furthermore, we can restrict the space
of string fields to the universal space, which is spanned by the states made of (b, c)-ghost modes
and matter Virasoro generators on the conformal vacuum, for constructing solutions in a-gauge
because Eq. (3) is compatible with it. We also impose the twist-even condition, which implies the
state space is spanned by even-level states. In Siegel gauge, the solutions for tachyon vacuum,
“double brane,” and “ghost brane” were constructed in the twist-even universal space. Hence,
we can expect that the corresponding numerical solutions in a-gauge are in it. We notice that
we cannot impose the SU(1,1)-singlet condition in a-gauge (for a �= 0) due to incompatibility.

In this paper we explore three numerical solutions in a-gauge in the twist-even universal space
obtained from tachyon vacuum, “double brane,” and “ghost brane” solutions in Siegel gauge
up to level 20. We evaluate two gauge invariants, which are the energy E[�] and the gauge-
invariant observable E0[�] for the obtained solutions:

E [�] = 1 − 2π2g2S[�], E0[�] = 1 − 2π〈I|V |�〉, (5)

where |I〉 is the identity string field and V is a vertex operator cc̃V mat(z, z̄) for the on-shell closed
string state inserted at the midpoint of the open string.4 They are normalized as E = E0 = 0
for the tachyon vacuum, which corresponds to no brane, and E = E0 = 1 for the perturbative
vacuum, which is the trivial solution � = 0 and corresponds to a single brane.

In Figs. 1 and 2 we demonstrate the resulting evaluations of Eq. (5) for the above three
solutions. In general, E and E0 become complex because “double brane” and “ghost brane”
solutions in Siegel gauge do not satisfy the reality condition. We confirmed that the tachyon
vacuum exists for various values of a because we found that the numerical solutions, which are
constructed from the tachyon vacuum solution in Siegel gauge and satisfy the reality condition,
give E 	 E0 	 0 as in Figs. 1 and 2. In the case of the solutions constructed from the “double
brane” solution in Siegel gauge, E ∼ 2 and E0 ∼ 1.4 for a ∼ 0, but E 	 E0 	 1 for 0.5 < a < 1.
This might imply that the “double brane” solution seems to vary to a “single brane” solution by
varying the value of a. In principle, E[�] and E0[�] in Eq. (5) are gauge invariant and therefore

2We note that numerical solutions in Schnabl gauge, B0|�〉 = 0, were investigated in Refs. [10,11].
3The level is given by the eigenvalue of L0 + 1.
4E0[�] is also called the Ellwood invariant [16] or gauge-invariant overlap [17] in the literature. E0[�]

is expected to coincide with E[�] for a class of solutions to the equation of motion � [18].

2/22

D
ow

nloaded from
 https://academ

ic.oup.com
/ptep/article/2021/12/123B04/6414550 by D

ESY-Zentralbibliothek user on 23 January 2022



PTEP 2021, 123B04 I. Kishimoto

Fig. 1. Plots of the energy E, Eq. (5), of solutions for various a truncated up to level L = 6, 8, …, 20,
which are constructed from the tachyon vacuum solution (red), the “double brane” solution (blue), and
the “ghost brane” solution (brown) in Siegel gauge (a = 0). The upper and lower figures show the real
and imaginary parts of E, respectively. A darker color corresponds to a higher truncation level. The
imaginary part of E for the tachyon vacuum (red) is exactly zero, thanks to the reality of the solution.
Plots for each solution are given in Figs. 3, 5, and 7.

they should be constant with respect to the parameter a if solutions are physically equivalent.
Hence, the solutions might be in different branches for different values of a. In this sense, we
could not confirm that the “double brane” solution indicates a double brane in the literal mean-
ing. As for the solutions constructed from the “ghost brane” solution in Siegel gauge, E ∼ −2.5
and E0 ∼ −1.3 for a 	 0, and E and E0 vary to 0 for a ∼ 0.8. These solutions also might be in
different branches for different values of a if they are valid numerical solutions.

This paper is organized as follows. In Sect. 2 we explain our procedure for constructing nu-
merical solutions in a-gauge. In Sect. 3, we show plots of numerical results for three solutions
in various a-gauges. In Sect. 4 we present some concluding remarks on our numerical results.
Some details about our numerical calculations are shown in Appendix A.

2. Construction of numerical solutions in a-gauge
Here, we explain our procedure for constructing numerical solutions in a-gauge with the level
truncation method. We consider the twist-even universal space for numerical computation as
mentioned in Sect. 1, which is spanned by

Lmat
−l1 · · · Lmat

−lmb−n1 · · · b−nk c−m1 · · · c−mk c1|0〉, (6)
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Fig. 2. Plots of the gauge-invariant observable E0, Eq. (5), of solutions for various a truncated up to
level L = 6, 8, …, 20, which are constructed from the tachyon vacuum solution (red), the “double brane”
solution (blue), and the “ghost brane” solution (brown) in Siegel gauge (a = 0). The upper (lower) fig-
ures show the real (imaginary) part of E0. A darker color corresponds to a higher truncation level. The
imaginary part of E0 for the tachyon vacuum (red) is exactly zero in the same way as E. Note that the
ranges of the vertical direction in the above plots are half of those in Fig. 1. Plots for each solution are
given in Figs. 4, 6, and 8.

l1 ≥ · · · ≥ lm ≥ 2, n1 > · · · > nk ≥ 1, m1 > · · · > mk ≥ 0, (7)

m∑
j=1

l j +
k∑

j=1

n j +
k∑

j=1

mj = 0, 2, . . . , L, (8)

where L is the truncation level and is an even integer. In particular, we take a normalized
basis (ψ i, χb), where ψ i does not contain c0 and χb contains c0, and they are multiplied by
|bpz(Lmat

−l1
· · · Lmat

−lm
|0〉mat)Lm

−l1
· · · Lmat

−lm
|0〉m|−1/2 with m〈0|0〉m = 1 for the above form. Using this

basis, a string field � with ghost number 1 in the twist-even universal space truncated up to
level L is expanded as

� =
L/2∑
l=0

D1,2l∑
il =1

til ψil +
L/2∑
l=0

D2,2l∑
bl =1

ubl χbl , (9)

where ψil and χbl are states with level 2l. D1,2l and D2,2l are given in Table A1 in Appendix A.1.
The coefficients til and ubl are complex numbers in general, although they should be real if we
impose the reality condition for �.
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2.1 (a �= ∞)-gauge
In the case a �= ∞, imposing the a-gauge condition in Eq. (3) on Eq. (9), we have the following
relation among the coefficients:

−2Au + aÃt = 0, t =

⎛
⎜⎜⎜⎜⎝

ti1

ti2
...

tiD1,2l

⎞
⎟⎟⎟⎟⎠, u =

⎛
⎜⎜⎜⎜⎝

ub1

ub2

...
ubD2,2l

⎞
⎟⎟⎟⎟⎠ (10)

for each level 2l, where A is a D2,2l × D2,2l real symmetric matrix and Ã is a D2,2l × D1,2l real
matrix. They are given by the Belavin–Polyakov–Zamolodchikov (BPZ) inner products

〈χbl , J+b0χcl 〉 = [A]bl cl , 〈χbl , Q̃b0c0ψil 〉 = [Ã]bl il . (11)

Using the relation in Eq. (10), we have an expression for a string field �a in a-gauge:

�a =
L/2∑
l=0

D1,2l∑
il =1

ψil til + a
2

L/2∑
l=0

D2,2l∑
bl =1

χbl [A
−1Ã t]bl . (12)

Substituting the above into the action in Eq. (1), we have an equation of motion which is ob-
tained from a partial derivative of S[�a] with respect to til :〈

ψil + a
2

D2,2l∑
bl =1

χbl [A
−1Ã]bl il , QB�a + �a ∗ �a

〉
= 0. (13)

This gives a system of N1,L equations with N1,L variables til , where N1,L is given in Table A2 in
Appendix A.1. We solve the equation using Newton’s method. Linearizing Eq. (13), we have
an equation for �

(n+1)
a :〈

ψil + a
2

D2,2l∑
bl =1

χbl [A
−1Ã]bl il , QB� (n+1)

a + � (n+1)
a ∗ � (n)

a + � (n)
a ∗ � (n+1)

a

〉

=
〈
ψil + a

2

D2,2l∑
bl =1

χbl [A
−1Ã]bl il , �

(n)
a ∗ � (n)

a

〉
, (14)

with known �
(n)
a , and we solve it iteratively with an appropriate initial configuration �

(0)
a . If it

converges to a configuration in the large-n limit, �
(∞)
a gives a solution to Eq. (13).

2.2 (a �= 0)-gauge
In order to treat the case of large a-gauge numerically, the procedure in Sect. 2.1 is not appro-
priate. Here, we solve the a-gauge condition in Eq. (3) around a = ∞ by using the singular-value
decomposition of Ã defined in Eq. (11):

Ã = U �̂V T, �̂ = (�, O), (15)

[�]bl cl = λbl δbl ,cl , λ1 ≥ λ2 ≥ · · · ≥ λD2,2l > 0, (16)

for each level 2l, where U is a D2,2l × D2,2l real orthogonal matrix and V is a D1,2l × D1,2l real
orthogonal matrix. O in �̂ is a D2,2l × (D1,2l − D2,2l) zero matrix. Using these, we define a new
basis (ψ̂il , χ̂bl ):

ψ̂il =
D1,2l∑
jl =1

ψ jl [V ] jl il , χ̂bl =
D2,2l∑
cl =1

χcl [U ]cl bl , (17)
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and a string field of the form in Eq. (9) is rewritten as

� =
L/2∑
l=0

D1,2l∑
il =1

t̂il ψ̂il +
L/2∑
l=0

D2,2l∑
bl =1

ûbl χ̂bl , t̂il =
D1,2l∑
jl =1

t jl [V ] jl il , ûbl =
D2,2l∑
cl =1

ucl [U ]cl bl . (18)

Imposing the a-gauge condition from Eq. (3) on the above, we have the following relation
among the coefficients:

−2Âû + a�̂t̂ = 0, t̂ =

⎛
⎜⎜⎜⎜⎝

t̂i1

t̂i2
...

t̂iD1,2l

⎞
⎟⎟⎟⎟⎠, û =

⎛
⎜⎜⎜⎜⎝

ûb1

ûb2

...
ûbD2,2l

⎞
⎟⎟⎟⎟⎠ (19)

for each level 2l, where Â = U TAU is a D2,2l × D2,2l real symmetric matrix. In the case a �= 0,
we decompose t̂ as

t̂ =
(

w
v

)
, w =

⎛
⎜⎜⎜⎜⎝

w1

w2
...

wD2,L

⎞
⎟⎟⎟⎟⎠, v =

⎛
⎜⎜⎜⎜⎝

v1

v2
...

vD1,2l −D2,2l

⎞
⎟⎟⎟⎟⎠, (20)

and the relation in Eq. (19) can be rewritten as

w = 2â�−1Âû = 2â�−1U TAu, (21)

with â = 1/a. There is no constraint on vi′l (i′l = 1, 2, . . . , D1,2l − D2,2l ). From the above, for a
�= 0 we have an expression for a string field Ψâ in a-gauge:

Ψâ =
L/2∑
l=0

D1,2l −D2,2l∑
i′l =1

ϕi′l vi′l +
L/2∑
l=0

D2,2l∑
bl =1

(
χbl + 2â[φ�−1U TA]bl

)
ubl , â = 1

a
, (22)

ψ̂ = ψV = (φ, ϕ), φ = (ψ̂1, ψ̂2, · · · , ψ̂D2,2l ), ϕ = (ψ̂D2,2l +1, ψ̂D2,2l +2, . . . , ψ̂D1,2l ). (23)

In the case that a �= 0 and a �= ∞, we have the following relations among the coefficients of
Eqs. (12) and (22):

t = V

(
2
a�

−1U TAu
v

)
⇐⇒ v = (O, I )V Tt, u = a

2
A−1Ãt, (24)

by identifying �a with Ψâ=1/a. In the above v, O is the (D1,2l − D2,2l) × D2,2l zero matrix and I
is the identity matrix of size (D1,2l − D2,2l).

Substituting Eq. (22) into the action in Eq. (1), we have equations of motion which are ob-
tained from partial derivatives of S[Ψâ] with respect to vi′l and ubl :

〈ϕi′l , QBΨâ + Ψâ ∗ Ψâ〉 = 0, (25)

〈
χbl + 2â

D2,2l∑
cl =1

φcl [�
−1U TA]cl bl , QBΨâ + Ψâ ∗ Ψâ

〉
= 0. (26)

These give a system of (N1,L − N2,L) + N2,L = N1,L equations with N1,L variables (vi′l , ubl ),

where Ng,L is defined in Eq. (A10). Linearizing them, we have equations for Ψ
(n+1)

â for Newton’s
method: 〈

ϕi′l , QBΨ
(n+1)

â + Ψ
(n+1)

â ∗ Ψ
(n)

â + Ψ
(n)

â ∗ Ψ
(n+1)

â

〉
=

〈
ϕi′l , Ψ

(n)
â ∗ Ψ

(n)
â

〉
, (27)
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〈
χbl + 2â

D2,2l∑
cl =1

φcl [�
−1U TA]cl bl , QBΨ

(n+1)
â + Ψ

(n+1)
â ∗ Ψ

(n)
â + Ψ

(n)
â ∗ Ψ

(n+1)
â

〉

=
〈
χbl + 2â

D2,2l∑
cl =1

φcl [�
−1U TA]cl bl , Ψ

(n)
â ∗ Ψ

(n)
â

〉
; (28)

these have known Ψ
(n)

â , and we solve them iteratively with an appropriate initial configuration
Ψ

(0)
â . If it converges to a configuration in the large-n limit, Ψ

(∞)
â gives a solution to Eqs. (25)

and (26).

2.3 Validity of solutions
In general, the equation of motion for the action in Eq. (1) is given by Eq. (2). We should
note that Eq. (13) for a �= ∞ is only a part of the equation of motion in Eq. (2). In the same
sense, Eqs. (25) and (26) for a �= 0 are only a part of the equation of motion in Eq. (2). Hence,
we should confirm the remaining part of the equation of motion for numerical solutions to
Eq. (13) for a �= ∞ or Eqs. (25) and (26) for a �= 0. Here, we call such equations for the validity
of numerical solutions in a-gauge the out-of-a-gauge equations.5

In the case of solutions to Eq. (13) for a �= ∞, the out-of-a-gauge equations are

〈χbl , QB�a + �a ∗ �a〉 = 0. (29)

They consist of N2,L equations. In fact, Eqs. (13) and (29) imply the equation of motion in
Eq. (2): QB�a + �a∗�a = 0. In particular, the lowest level of χbl is 2l = 2, and there is only
one χb1 due to D2,2 = 1. We denote the left-hand side of Eq. (29) for χb1 as �a[�a].

Similarly, in the case of solutions to Eqs. (25) and (26) for a �= 0, the out-of-a-gauge equations
are

〈φbl , QBΨâ + Ψâ ∗ Ψâ〉 = 0. (30)

They consist of N2,L equations. Equations (25), (26), and (30) imply the equation of motion
in Eq. (2): QBΨâ + Ψâ ∗ Ψâ = 0. The lowest level of φbl is 2l = 2, and there is only one φb1 . We
denote the left-hand side of Eq. (30) for φb1 as �â[Ψâ].

The reality condition of the open string field is imposed for the reality of the action. However,
numerical solutions for the “double brane” and “ghost brane” in Siegel gauge are constructed
from complex initial configurations, and then the coefficients in Eqs. (12) and (22) become
complex in general.

In order to check the reality condition, we define Im/Rea[�a] for Eq. (12) and Im/Reâ[Ψâ] for
Eq. (22) using the Euclidean norm:

Im/Rea[�a] =
{∑L/2

l=0

∑D1,2l

il =1 (Im(til ))
2
}1/2

{∑L/2
l=0

∑D1,2l

il =1 (Re(til ))2
}1/2 , (31)

Im/Reâ[Ψâ] =
{∑L/2

l=0

∑D1,2l −D2,2l

i′l =1 (Im(vi′l ))
2 + ∑L/2

l=0

∑D2,2l

bl =1(Im(ubl ))
2
}1/2

{∑L/2
l=0

∑D1,2l −D2,2l

i′l =1 (Re(vi′l ))
2 + ∑L/2

l=0

∑D2,2l

bl =1(Re(ubl ))2
}1/2 . (32)

5In the case of the Siegel gauge, they were investigated for the tachyon vacuum solution in Ref. [19]
as the BRST invariance. In Ref. [5], they were called the out-of-Siegel-gauge equations, and their lowest
level was denoted �S and evaluated for various solutions in Siegel gauge.
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They should be zero if �a and Ψâ satisfy the reality condition.

3. Results of calculations
3.1 Initial configurations
We have constructed three solutions in various a-gauges starting from the tachyon vacuum so-
lution �T

a=0, the “double brane” solution �D
a=0, and the “ghost brane” solution �G

a=0 in Siegel
gauge, namely in (a = 0)-gauge. The initial configurations for each procedure of Newton’s
method were chosen as follows.

� We construct numerical solutions at a = 0, �T
a=0, �D

a=0, and �G
a=0, truncated up to level 20,

using Newton’s method level by level from the lowest. �T
a=0 is obtained from a unique

nontrivial real solution at level 0. �D
a=0 is obtained from one of the complex solutions at

the truncation level 2. �G
a=0 is obtained from one of the complex solutions at the truncation

level 4.
� At each truncation level, from solutions for a = 0, �T

a=0, �D
a=0, and �G

a=0, we construct so-
lutions to Eq. (13), �T

a , �D
a , and �G

a , varying a little by little up to a = ±1. We choose
an initial configuration as �

(0)
a+Δa = �

(∞)
a , where we adopt Δa = ±0.01 as a difference

of a.
� At each truncation level, after solutions for a = ±1 are obtained, we construct solutions

to Eqs. (25) and (26), Ψ T
â , Ψ D

â , and Ψ G
â , varying â little by little from solutions for â =

1
a = ±1, with the relations of coefficients in Eq. (24). We choose an initial configuration
as Ψ

(0)
â+Δâ = Ψ

(∞)
â , where we adopt Δâ = ∓0.01 as a difference of â.

The above calculations were terminated if iterations of Newton’s method did not converge for
particular values of a (or â) at each truncation level. In the numerical computations, we stopped
the iterations in Eq. (14) (or Eqs. (27) and (28)) if ‖� (n+1)

a − �
(n)
a ‖/‖� (n)

a ‖ < ε (or ‖Ψ (n+1)
â −

Ψ
(n)

â ‖/‖Ψ (n)
â ‖ < ε) with the Euclidean norm of (til ) (or (vi′l , ubl )), and we adopted �

(n+1)
a (or

Ψ
(n+1)

â ) as a solution to Eq. (13) (or Eqs. (25) and (26)): �
(∞)
a (or Ψ

(∞)
â ). We adopted ε = 5.0 ×

10−12 and the maximum number of iterations as 15 with the long double format in our C++
code. In the figures for plots of various quantities in this paper, the horizontal direction denotes
the value of a or â = 1/a, and adjacent data points for each truncation level are joined with
line segments.

3.2 Tachyon vacuum solution
The tachyon vacuum solution �T

a (or Ψ T
â ) in various a-gauges has been constructed from the

conventional �T
a=0 in the Siegel gauge as in Sect. 3.1. At the truncation level L = 20, which is

the highest one in our computation, �T
a was obtained for −1 ≤ a ≤ 0.79, and Ψ T

â , which was
constructed through the solution for â = 1/a = −1, was obtained for −1 ≤ â ≤ 0.23.6 Plots of
the gauge invariants E and E0 from Eq. (5) of the solutions Ψ T

â and �T
a are given in Figs. 3

and 4. For various values of a, both E and E0 approach 0 with increasing truncation level in a
similar way to those of the tachyon vacuum solution in Siegel gauge, which are shown at a = 0
in Figs. 3 and 4. respectively.

As in Fig. A3 in Appendix A.3, the lowest level of the out-of-a-gauge equations, �a[�T
a ] or

�â[Ψ T
â ], approaches 0 for −1 ≤ a ≤ 0.5 or −0.5 ≥ â = 1/a ≥ −1 respectively with increasing

truncation level. This implies that �T
a and Ψ T

â in these regions of a are valid as solutions to the
6See Table A3 in Appendix A.2 for lower levels.
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Fig. 3. Plots of the energy E from Eq. (5) of the tachyon vacuum solutions Ψ T
â=1/a (left) and �T

a (right),
truncated up to level L = 6, 8, …, 20. A darker line corresponds to a higher level.

Fig. 4. Plots of the gauge-invariant observable E0 from Eq. (5) of the tachyon vacuum solutions Ψ T
â=1/a

(left) and �T
a (right), truncated up to level L = 6, 8, …, 20. A darker line corresponds to a higher level.

equation of motion in Eq. (2). We note that �T
a and Ψ T

â satisfy the reality condition of the open
string field from the beginning.

From the above, we expect that �T
a and Ψ T

â represent the tachyon vacuum in a-gauge for
various values of a, except a ∼ 1 where we could not obtain solutions. Here, we notice that at a
= 1 the a-gauge condition in Eq. (3) becomes b0c0QB|�〉 = 0, which is not suitable for a gauge-
fixing condition in the free theory. In this sense, the (a = 1)-gauge might not be appropriate to
construct numerical solutions.

3.3 “Double brane” solution
The “double brane” solution �D

a (or Ψ D
â ) in various a-gauges has been constructed from the

conventional �D
a=0 in Siegel gauge as in Sect. 3.1. At the truncation level L = 20, which is the

highest one in our computation, �D
a was obtained for −1 ≤ a ≤ 0.83, and Ψ D

â , which was con-
structed through the solution for â = 1/a = −1, was obtained for −1 ≤ â ≤ 0.15 (Table A3).
Plots of the gauge invariants E and E0 from Eq. (5) of the solutions Ψ D

â and �D
a are given in

Figs. 5 and 6, where the real and imaginary parts of E and E0 are plotted separately. We should
note that E and E0 are complex in general because Ψ D

â and �D
a do not satisfy the reality con-

dition of the open string field in the same way as the “double brane” solution in Siegel gauge,
at least for the truncation level L ≤ 20.
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Fig. 5. Plots of the energy E in Eq. (5) of the “double brane” solution Ψ D
â=1/a (left) and �D

a (right),
truncated up to level L = 6, 8, …, 20. The upper (lower) figures show the real (imaginary) parts of E. A
darker line corresponds to a higher level. See also Table A3.

The imaginary part of E is nearly 0 for −0.1 < a < 1. For a ∼ 0 (near Siegel gauge), the real
part of E is approximately 2 as its name, “double brane,” suggests. However, E 	 1 for 0.5 < a
< 1 as in Fig. A1 in Appendix A.2, which implies that the solution represents a single brane. As
for 1 > â = 1/a ≥ −1, E varies significantly. Comparing Fig. 6 with Fig. 5, the gauge-invariant
observable E0 behaves similarly to the energy E qualitatively. This is consistent with the expec-
tation that E = E0 for the solutions �D

a and Ψ D
â , although this does not hold quantitatively

except for 0.5 < a < 1, where E0 approaches 1 as in Fig. A2 with the increasing truncation level
in the same way as E (Fig. A1).

The lowest level of the out-of-a-gauge equations �a[�D
a ] approaches 0 for −0.1 < a < 1 with

the increasing truncation level, as in Fig. A4 in Appendix A.3. This is consistent with the validity
of �D

a as a solution to the equation of motion in Eq. (2). However, �a[�D
a ] for −1 ≤ a < −0.5

and �â[Ψ D
â ] for 1 ≥ â = 1/a ≥ −1 do not seem to approach 0 for higher levels (Fig. A4), which

implies that the numerical solutions in these regions of a might be inconsistent.
From the ratio of the imaginary to real parts of the solution demonstrated in Fig. A6 in Ap-

pendix A.3, �D
a for a ∼ 0 (near Siegel gauge) seems to approach a real solution with increasing

truncation level, though �D
a tends to remain complex for 0.5 < a < 1.

These results might imply that, in the large-L limit, �D
a for a ∼ 0 becomes a real solution for

the double brane, and �D
a for 0.5 < a < 1 becomes a complex solution for the single brane.

By varying the value of a from 0 to 0.5, �D
a may move onto a physically different branch of

solutions.
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Fig. 6. Plots of the gauge-invariant observable E0 from Eq. (5) of the “double brane” solution Ψ D
â=1/a

(left) and �D
a (right), truncated up to level L = 6, 8, …, 20. The upper (lower) figures show the real

(imaginary) parts of E0. A darker line corresponds to a higher level. See also Table A3.

3.4 “Ghost brane” solution
The “ghost brane” solution �G

a (or Ψ G
â ) in various a-gauges has been constructed from the con-

ventional �G
a=0 in Siegel gauge as in Sect. 3.1. At the truncation level L = 8, �G

a was obtained
for −0.27 ≤ a ≤ 1 and Ψ G

â , which was constructed through the solution â = 1/a = 1, was ob-
tained for 1 ≥ â ≥ 0.95. However, at the truncation levels L = 10, 12, …, 18, the construction
of �G

a reached neither a = 1 nor a = −1. At the truncation level L = 20, which is the highest in
our computation, �G

a was obtained for −1 ≤ a ≤ 0.83. Moreover, Ψ G
â , which was constructed

through the solution for â = 1/a = −1, was obtained for −1 ≤ â ≤ 0.28 (Table A3).
Plots of the gauge invariants E and E0 of the solutions are shown in Figs. 7 and 8, where the

real and imaginary parts of E and E0 are plotted separately. We note that E and E0 are complex
in general, because Ψ G

â and �G
a do not satisfy the reality condition of the open string field in

the same way as the “double brane” solution for truncation levels L ≤ 18. At the truncation
level L = 20, �G

a for −1 ≤ a ≤ −0.17 and Ψ G
â for −1 ≤ â ≤ 0.28 satisfy the reality condition,

as shown in Fig. A7 in Appendix A.3. Namely, �G
a becomes real at a = −0.17 when the value

of a varies from 0 to −1.
The energy E is approximately −2.5 for a ∼ 0 (near Siegel gauge). The real part of E varies

from −2.5 to 0 for 0 < a < 1. The imaginary part of E seems to approach 0 with increasing
truncation level. Comparing Fig. 8 with Fig. 7, the real part of E0 behaves similarly to that of
E qualitatively, although they are rather different quantitatively. The behavior of the imaginary
part of E0 is somewhat similar to that of E.
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Fig. 7. Plots of the energy E from Eq. (5) of the “ghost brane” solution Ψ G
â=1/a (left) and �G

a (right),
truncated up to level L = 6, 8, …, 20. The upper (lower) figures show the real (imaginary) parts of E. A
darker line corresponds to a higher level.

As in Fig. A5 in Appendix A.3, the absolute value of the lowest level of the out-of-a-gauge
equations |�a[�G

a ]| is decreasing with increasing truncation level. This shows consistency of
�G

a with the equation of motion in Eq. (2). Although the ratio of the imaginary part to the
real one of �G

a is decreasing for a ∼ 0.5 with increasing truncation level as in Fig. A7, it may
not vanish for 0 ≤ a < 1 in the large-L limit. We note that, according to Ref. [5], �G

a=0 in Siegel
gauge does not satisfy the reality condition from the extrapolation to L = ∞. Because �G

a for
−1 ≤ a ≤ −0.17 at the truncation level L = 20 is real, as mentioned, �G

a might move onto a
branch of real solutions from that of complex ones when the value of a varies from 0 to −1 at
L = ∞.

4. Concluding remarks
We have constructed numerical solutions in a-gauge starting from the solutions in Siegel gauge
for tachyon vacuum, “double brane,” and “ghost brane.” We solved the equation of motion
obtained from the a-gauge fixed action in the twist-even universal space, and carried out calcu-
lations up to truncation level L = 20.

The solution for the tachyon vacuum in a-gauge, �T
a or Ψ T

â=1/a, has energy E 	 0 and the
gauge-invariant observable E0 	 0 for almost all a, as we expected from the known results. This
is consistent with the physical interpretation as the solution for no brane.

The solution for the “double brane” in a-gauge, �D
a , has E ∼ 2 for a ∼ 0 and E 	 1 for 0.5 < a

< 1, which we did not expect because E is gauge invariant. At least naively, we can interpret this
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Fig. 8. Plots of the gauge-invariant observable E0 in Eq. (5) of the “ghost brane” solution Ψ G
â=1/a (left)

and �G
a (right), truncated up to level L = 6, 8, …, 20. The upper (lower) figures show the real (imaginary)

parts of E0. A darker line corresponds to a higher level.

as �D
a representing a double brane near Siegel gauge and a single brane for 0.5 < a < 1. Namely,

we may be able to expect that, for a particular value ac, �D
a corresponds to a real solution for

the double brane in the range 0 ≤ a < ac and a complex solution for a single brane in the range
ac < a < 1 in the large-L limit. At a = ac, �D

a might jump to a different branch of solutions.
Alternatively, there might be a possibility that �D

a corresponds to a single brane for 0 ≤ a < 1,
taking into account the behavior of the gauge-invariant observable E0, because E0 ∼ 1.4 for a
∼ 1. Originally, such a possibility was mentioned in Siegel gauge in Ref. [5]. It is necessary to
investigate the theory around the solution �D

a to understand its physical meaning.7 As for the
other region of a, �D

a for −1 ≤ a < −0.5 and Ψ D
â for 1 > â = 1/a ≥ −1 seem to be inconsistent

with the equation of motion in Eq. (2).
The solution for the “ghost brane” in a-gauge, �G

a , has E ∼ −2.5 for a ∼ 0 and E ∼ 0 for a
∼ 0.8, which we did not expect in the same manner as the “double brane” solution. Although
�G

a seems to be complex for 0 ≤ a < 1 in the large-L limit, it becomes real for a ≤ −0.17 at L =
20. Physical interpretation of the “ghost brane” solution is more complicated than the “double
brane” solution.

In order to solve the equation of motion in a-gauge numerically, we divided the region of a
in two: −1 ≤ a ≤ 1 and −1 ≤ â = 1/a ≤ 1. We constructed solutions in a-gauge, (�T

a , �D
a , �G

a )

7The spectrum was investigated for the theory around the tachyon vacuum solution in Siegel gauge in
Refs. [20,21]. Such analysis may be useful for other solutions. Or, it is desirable to gain an insight from
analytic multi-brane solutions; see Refs. [22–24] and subsequent works.

13/22

D
ow

nloaded from
 https://academ

ic.oup.com
/ptep/article/2021/12/123B04/6414550 by D

ESY-Zentralbibliothek user on 23 January 2022



PTEP 2021, 123B04 I. Kishimoto

Fig. 9. Plots of E and E0 from Eq. (5) of Ψ T′
â=1/a, �

T′
a (red), Ψ D′

â=1/a, �
D′
a (blue), and Ψ G′

â=1/a, �
G′
a (brown),

truncated up to level L = 6, 8, …, 20. A darker color corresponds to a higher level.

and (Ψ T
â , Ψ D

â , Ψ G
â ), from known solutions in Siegel gauge, (�T

a=0, �
D
a=0, �

G
a=0), by varying the

value of a little by little (Δa = ±0.01 and Δâ = ∓0.01) at each truncation level L (Sect. 3.1).
Alternatively, we also constructed solutions as follows: we first construct solutions in a-gauge
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from a = 0 by varying the value of a little by little (Δa = ±0.01 and Δâ = ∓0.01) at the lowest
truncation level, and then we construct solutions level by level at each fixed value of a. Here, we
denote such solutions with a prime: (�T′

a , �D′
a , �G′

a ) and (Ψ T′
â , Ψ D′

â , Ψ G′
â ). Plots of the energy

and the gauge-invariant observable for them are shown in Fig. 9. There are many spiky points
in Fig. 9 because we could not obtain solutions from lower levels for some values of a. We note
that we joined adjacent data points, where solutions exist, with line segments at each truncation
level. Comparing Fig. 9 with Figs. 1 and 2, we can easily find that the values of E and E0 of
(�D′

a , �G′
a ) and (Ψ D′

â , Ψ G′
â ) are different from those of (�D

a , �G
a ) and (Ψ D

â , Ψ G
â ) in some regions

of a, respectively. The values of E and E0 for Ψ T′
â are also different from those for Ψ T

â at some
points of a, although they are approximately 0 for all a at higher truncation levels. (For example,
see Tables A4 and 5 in Appendix A.2.) In general, there is a possibility that (�T

a , �D
a , �G

a ) and
(�T′

a , �D′
a , �G′

a ) are in different branches of solutions at the same value of a except for a = 0
(Siegel gauge). Furthermore, it is more possible that (Ψ T

â , Ψ D
â , Ψ G

â ) and (Ψ T′
â , Ψ D′

â , Ψ G′
â ) are in

different branches at the same value of â. Therefore, it seems to be difficult to find a plausible
method for extrapolations to L = ∞ in a-gauge for a �= 0.

So far, we have investigated numerical solutions with reference to those in Siegel gauge. It is
an interesting problem to find other physically meaningful solutions in (a = ∞)-gauge or, more
generally, (a �= 0)-gauge.
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Appendix A. Some numerical data for solutions
A.1 State space dimension
In the (b, c)-ghost sector for the ghost number g at level �, we can take a basis of the form

b−n1 · · · b−nk c−m1 · · · c−mk′ c1|0〉g, n1 > · · · > nk ≥ 1, m1 > · · · > mk′ ≥ 0,

k′ − k + 1 = g,
k∑

i=1

ni +
k′∑

j=1

mj = �. (A1)

A generating function of its dimension d̃g,� is given by [5,25]

∑
g∈Z

∞∑
�=0

d̃g,� q�yg = y(1 + y)
∞∏

n=1

{
(1 + qny)(1 + qny−1)

}

=
∞∏

n=1

(1 − qn)−1
∑
g∈Z

ygq
1
2 (g−1)(g−2). (A2)
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In Siegel gauge, “m1 > · · · > mk′ ≥ 0” in Eq. (A1) is replaced by “m1 > · · · > mk′ ≥ 1,” and a
generating function of its dimension dg,� is

∑
g∈Z

∞∑
�=0

dg,� q�yg = y
∞∏

n=1

{
(1 + qny)(1 + qny−1)

}

=
∞∏

n=1

(1 − qn)−1
∑
g∈Z

yg
∞∑

k=0

(q
1
2 (|g−1|+2k)(|g−1|+2k+1) − q

1
2 (|g−1|+2k+1)(|g−1|+2k+2)). (A3)

Noting that
∞∑

�=0

(dg,� + d3−g,�)q�

=
∞∏

n=1

(1 − qn)−1
∞∑

k=0

(
q

1
2 (|g−1|+2k)(|g−1|+2k+1) − q

1
2 (|g−1|+2k+1)(|g−1|+2k+2)

+q
1
2 (|2−g|+2k)(|2−g|+2k+1) − q

1
2 (|2−g|+2k+1)(|2−g|+2k+2)

)

= q
1
2 (g−1)(g−2)

∞∏
n=1

(1 − qn)−1 =
∞∑

�=0

d̃g,�q� =
∞∑

�=0

d̃3−g,�q�, (A4)

we have relations

d̃g,� = d̃3−g,� = dg,� + d3−g,�. (A5)

In the matter sector of the universal state space at level �, we have a basis of the form

Lmat
−l1 · · · Lmat

−lm |0〉m, l1 ≥ · · · ≥ lm ≥ 2,

m∑
i=1

li = �. (A6)

A generating function of its dimension d� is
∞∑

�=0

d�q� =
∞∏

n=2

(1 − qn)−1. (A7)

We denote the dimension of the universal state space in Siegel gauge for the ghost number g at
level � as Dg,�, and it is given by

Dg,� =
�∑

k=0

d�−kdg,k. (A8)

In particular, the dimension of the universal state space in Siegel gauge for the ghost number 1
at level �, which does not contain c0, is D1,�, and the dimension of the remaining part of the
universal state space for the ghost number 1 is given by

�∑
k=0

d�−k(d̃1,k − d1,k) =
�∑

k=0

d�−kd2,k = D2,�, (A9)

where use has been made of Eq. (A5). We list d�, d1,�, d2,�, D1,�, and D2,� in Table A1 up to
level 20. The dimension of the twist-even universal state space in Siegel gauge truncated up to
level L for the ghost number g is

Ng,L =
L/2∑
l=0

Dg,2l . (A10)
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Table A1. The dimensions of the matter universal state space at level �, d� from Eq. (A7); the ghost
universal state space in Siegel gauge at level �, dg,� from Eq. (A3), for the ghost number g = 1, 2; and the
universal state space in Siegel gauge at level �, Dg,� from Eq. (A8), for the ghost number g = 1, 2.

� d� d1,� d2,� D1,� D2,�

0 1 1 0 1 0
1 0 0 1 0 1
2 1 1 1 2 1
3 1 2 1 3 2
4 2 3 2 6 4
5 2 4 3 9 7
6 4 6 5 17 12
7 4 8 7 25 20
8 7 12 10 43 32
9 8 16 14 64 51
10 12 23 19 102 79
11 14 30 26 150 121
12 21 42 35 231 182
13 24 54 47 333 272
14 34 73 62 496 399
15 41 94 82 709 582
16 55 124 107 1027 839
17 66 158 139 1448 1200
18 88 206 179 2060 1700
19 105 260 230 2866 2394
20 137 334 293 4010 3342

Table A2. Dimension of the twist-even universal state space in Siegel gauge truncated up to level L, Ng,L

from Eq. (A10), for the ghost number g = 1, 2.

L N1,L N2,L

0 1 0
2 3 1
4 9 5
6 26 17
8 69 49
10 171 128
12 402 310
14 898 709
16 1925 1548
18 3985 3248
20 7995 6590

The number of arbitrary coefficients of a string field with ghost number 1 in a-gauge, til in �a,
Eq. (12), or (vi′l , ubl ) in Ψâ, Eq. (22), is given by N1,L. The number of out-of-a-gauge equations,
Eqs. (29) or (30), truncated up to level L is N2,L. They are listed in Table A2.

A.2 Some detailed numerical data for solutions
We tried to solve Eq. (13) for −1 ≤ a ≤ 1, and Eqs. (25) and (26) for −1 ≤ â = 1/a ≤ 1, using
Newton’s method with the initial configurations chosen as in Sect. 3.1. We were able to obtain
solutions in a-gauge, �T

a , Ψ T
â for the tachyon vacuum, �D

a and Ψ D
â for the “double brane,” and

17/22

D
ow

nloaded from
 https://academ

ic.oup.com
/ptep/article/2021/12/123B04/6414550 by D

ESY-Zentralbibliothek user on 23 January 2022



PTEP 2021, 123B04 I. Kishimoto

Table A3. The ranges of â = 1/a and a where numerical solutions Ψâ or �a in Sect. 3.1 were obtained.
L is the truncation level. Except for Ψ G

â at L = 4, 6, 8, the Ψâ were constructed through â = 1/a = −1.

L Ψ T
â �T

a Ψ D
â �D

a Ψ G
â �G

a

2 0.65 ≥ â ≥ −1 −1 ≤ a ≤ 1 1 ≥ â ≥ −1 −1 ≤ a ≤ 0.99 — —
4 0.52 ≥ â ≥ −1 −1 ≤ a ≤ 0.97 1 ≥ â ≥ −1 −1 ≤ a ≤ 0.99 1 ≥ â ≥ 0.9 −0.34 ≤ a ≤ 1
6 0.35 ≥ â ≥ −1 −1 ≤ a ≤ 0.86 1 ≥ â ≥ −1 −1 ≤ a ≤ 0.99 1 ≥ â ≥ −1 −0.29 ≤ a ≤ 1
8 0.46 ≥ â ≥ −1 −1 ≤ a ≤ 0.91 0.96 ≥ â ≥ −1 −1 ≤ a ≤ 0.99 1 ≥ â ≥ 0.95 −0.27 ≤ a ≤ 1
10 0.24 ≥ â ≥ −1 −1 ≤ a ≤ 0.82 0.9 ≥ â ≥ −1 −1 ≤ a ≤ 0.98 — −0.25 ≤ a ≤ 0.89
12 0.41 ≥ â ≥ −1 −1 ≤ a ≤ 0.82 0.91 ≥ â ≥ −1 −1 ≤ a ≤ 0.98 — −0.23 ≤ a ≤ 0.92
14 0.2 ≥ â ≥ −1 −1 ≤ a ≤ 0.81 0.81 ≥ â ≥ −1 −1 ≤ a ≤ 0.96 — −0.22 ≤ a ≤ 0.84
16 0.44 ≥ â ≥ −1 −1 ≤ a ≤ 0.81 0.7 ≥ â ≥ −1 −1 ≤ a ≤ 0.97 — −0.21 ≤ a ≤ 0.85
18 0.11 ≥ â ≥ −1 −1 ≤ a ≤ 0.79 0.61 ≥ â ≥ −1 −1 ≤ a ≤ 0.87 — −0.17 ≤ a ≤ 0.8
20 0.23 ≥ â ≥ −1 −1 ≤ a ≤ 0.79 0.15 ≥ â ≥ −1 −1 ≤ a ≤ 0.83 0.28 ≥ â ≥ −1 −1 ≤ a ≤ 0.83

Table A4. The energy E from Eq. (5) of the tachyon vacuum solution Ψ T
â for â = 1/a = 1/4, 0,−1/2 and

�T
a for a = 0, 1/2, truncated up to level L. “—” corresponds to a solution which was not obtained as in

Table A3.

L a = 4 a = ∞ a = −2 a = 0 a = 1/2

2 0.114805 0.0867229 0.0652269 0.0406234 0.022964
4 0.0881147 0.0524154 0.031577 0.0121782 − 0.000301875
6 0.0755114 0.0390562 0.0201057 0.00482288 − 0.00458577
8 0.0710871 0.0314585 0.0144505 0.00206982 − 0.00548353
10 – 0.0261408 0.0110531 0.000817542 − 0.00551823
12 0.0429279 0.0160149 0.00874361 0.000177737 − 0.00530578
14 – − 0.002015 0.00703121 − 0.00017373 − 0.00503144
16 0.00584047 − 0.00730175 0.00567063 − 0.000375452 − 0.00475668
18 – − 0.00924349 0.00451818 − 0.000493711 − 0.00450181
20 – − 0.00816331 0.00347154 − 0.000562955 − 0.00427228

�G
a and Ψ G

â for the “ghost brane,” in respective ranges in −1 ≤ a ≤ 1 and −1 ≤ â ≤ 1 at each
truncation level L. We list them in Table A3.

We show explicit values of the energy E and the gauge-invariant observable E0 for the tachyon
vacuum solution in a-gauge for some values of a in Tables A4 and A5. They correspond to
updates of the results in Refs. [13,14], where ±(E − 1) and 1 − E0 were listed in tables. We
note that a different method from that this paper used here was adopted in Ref. [14] to solve
the equation of motion in a-gauge, which causes slight discrepancies in the resulting values. In
Tables A4 and A5, it may look curious that E and E0 for L = 10, 14 in (a = 4)-gauge are not
available, although those for L = 12, 16 exist. This is because we have constructed solutions
from those in Siegel gauge (a = 0) at each truncation level L as in Sect. 3.1. Moreover, we
constructed solutions for the tachyon vacuum level by level in (a = 4)-gauge and obtained
them up to truncation level L = 12. We found that such solutions, which we denote as Ψ T′

â=1/4,
give E [Ψ T′

â=1/4] = 0.071090 (L = 10) and 0.0742312 (L = 12), and E0[Ψ T′
â=1/4] = 0.0939597 (L =

10) and 0.0673891 (L = 12), where the values for L = 12 are different from those in Tables A4
and A5. This implies that Ψ T

â=1/4 and Ψ T′
â=1/4 are in different branches of solutions to Eqs. (25)

and (26) at L = 12. Except for them, the values in Tables A4 and A5 for the solutions constructed
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Table A5. The gauge-invariant observable E0 from Eq. (5) of the tachyon vacuum solution Ψ T
â for â =

1/a = 1/4, 0,−1/2 and �T
a for a = 0, 1/2, truncated up to level L. “—” corresponds to a solution which

was not obtained as in Table A3.

L a = 4 a = ∞ a = −2 a = 0 a = 1/2

2 0.101143 0.12419 0.120745 0.110138 0.100313
4 0.114702 0.114305 0.0912254 0.0680476 0.0568528
6 0.094224 0.0942222 0.0684689 0.0489211 0.0424566
8 0.100325 0.0939022 0.0599348 0.0388252 0.0339948
10 – 0.0860492 0.0509321 0.0318852 0.0293065
12 − 0.000986376 0.0332839 0.0469684 0.0274405 0.025918
14 – − 0.0156868 0.0420781 0.0238285 0.023602
16 − 0.0158189 − 0.0216262 0.0396338 0.0213232 0.0218065
18 – − 0.0308959 0.036239 0.0190955 0.0204342
20 – − 0.0253059 0.0339235 0.0174832 0.0193387

Fig. A1. Plots of the energy E from Eq. (5) of the “double brane” solution, �D
a , truncated up to level L

= 6, 8, …, 20. The left and right figures show the real and imaginary parts of E, respectively. A darker
line corresponds to a higher level. These are a magnified version of Fig. 5 for 0.5 ≤ a ≤ 1.

as in Sect. 3.1 coincide with those of solutions �T′
a and Ψ T′

â obtained level by level at each fixed
value of a, although we could not obtain Ψ T′

â=0 for L = 18, 20.
The solution for the “double brane,” �D

a , gives almost 1 for E and E0 in 0.5 < a < 1 as in
Figs. 5 and 6. We demonstrate plots of E [�D

a ] and E0[�D
a ] near 1 for 0.5 ≤ a ≤ 1 in Figs. A1

and A2, respectively.

A.3 The validity of solutions in a-gauge
As consistency checks of the solutions obtained in a-gauge, we evaluated the out-of-a-gauge
equations in Eq. (29) for −1 ≤ a ≤ 1 or Eq. (30) for −1 ≤ â = 1/a ≤ 1. Here, we show plots of
the absolute value of the lowest level of them, |�a[�a]| or |�â[Ψâ]|, in Fig. A3 for the tachyon
vacuum solution, Fig. A4 for the “double brane” solution, and Fig. A5 for the “ghost brane”
solution.

Although the solutions for the tachyon vacuum in a-gauge, �T
a and Ψ T

â , satisfy the reality
condition exactly, the solutions for “double brane”and “ghost brane” in a-gauge are complex in
general. Hence, we show plots of the ratio of the imaginary part to the real one of the solutions
obtained in a-gauge, Im/Rea[�a] from Eq. (31) for −1 ≤ a ≤ 1 and Im/Reâ[Ψa] from Eq. (32)
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Fig. A2. Plots of the gauge-invariant observable E0 from Eq. (5) of the “double brane” solution, �D
a ,

truncated up to level L = 6, 8, …, 20. The left and right figures show the real and imaginary parts of E0,
respectively. A darker line corresponds to a higher level. These are a magnified version of Fig. 6 for 0.5
≤ a ≤ 1.

Fig. A3. The absolute value of the lowest level of the out-of-a-gauge equations, Eqs. (30) or (29), for the
tachyon vacuum solutions |�â[Ψ T

â ]| (left) and |�a[�T
a ]| (right) for the truncation level L = 6, 8, …, 20. A

darker line corresponds to a higher level.

Fig. A4. The absolute value of the lowest level of the out-of-a-gauge equations, Eqs. (30) or (29), for the
“double brane” solutions |�â[Ψ D

â ]| (left) and |�a[�D
a ]| (right) for the truncation level L = 6, 8, …, 20. A

darker line corresponds to a higher level.

for −1 ≤ â = 1/a ≤ 1, in Fig. A6 for the “double brane” solution �D
a , Ψ D

â and Fig. A7 for the
“ghost brane” solution �G

a , Ψ G
â .
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Fig. A5. The absolute value of the lowest level of the out-of-a-gauge equations, Eqs. (30) or (29), for the
“ghost brane” solutions |�â[Ψ G

â ]| (left) and |�a[�G
a ]| (right) for the truncation level L = 6, 8, …, 20. A

darker line correspomds to a higher level.

Fig. A6. Im/Reâ[Ψ D
â ] from Eq. (32) (left) and Im/Rea[�D

a ] from Eq. (31) (right) for the truncation level
L = 6, 8, …, 20. A darker line corresponds to a higher level.

Fig. A7. Im/Reâ[Ψ G
â ] from Eq. (32) (left) and Im/Rea[�G

a ] from Eq. (31) (right) for the truncation level
L = 6, 8, …, 20. A darker line corresponds to a higher level.
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