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Abstract

The RunlIb data sample recorded with trigger list version 15 at D@ has
been analyzed to search for Neutral Higgs bosons produced in association
with b-quarks at high tan 8 within the MSSM framework. The search has
been performed in the three b-quarks channel using multi-jet triggered events
corresponding to an integrated luminosity of ~ 1.6 fb~!. No statistically sig-
nificant excess of events with respect to the predicted background is observed.
Limits are set on the cross section times branching ratio in the mass range 90
to 260 GeV/c?. The result from this search is combined with that from the
RunlTIa search [1] and combined limits and exclusions in the MSSM parameter
space are set.
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1 Introduction

This note presents an update to the analysis in D@Note 5341 [1] using RunlIb
data. The analysis procedure remains fundamentally the same. An overview of the
updates and changes with respect to the pl17 analysis can be found in section 1.1
below.

1.1 Overview of Updates and Changes with respect to p17
e A total of 1.6 fb~! of data collected with trigger list v15 have been analyzed.
e New p20 Monte Carlo (MC) signal and background samples were used.
e All trigger parameterizations have been re-derived. See appendix A.

e The taggability corrections have been re-derived. The results are shown in
appendix E.

o b-tagging: The official b-ID ICHEP [2] tag rate functions (TRF's) were used to
model the data tagging rate on MC.

e MC was reweighted to match instantaneous luminosity profiles between data
and Monte Carlo.

e The background composition was updated (see sec. 4.2).

e The program collie [3] was used to calculate the limits at 95% C.L.

2 Data sample

The data sample used in this analysis is based on events from the 3JET skim [4]
comprising runs 221993 - 240743, recorded between June 2006 and March 2008 with
trigger list version 15. The data were reconstructed with the appropriate p20 ver-
sions of dOreco. The 3JET skim demands one uncorrected JCCB jet reconstructed
with pr > 20 GeV/c and two others with pr > 15GeV/c. From the 3JET skim,
CAFTrees were produced with p21 versions of the D@ software. The recommended
versions of jet energy scale (JES) and b-tagging were applied. The CAFTrees were
then processed through the higgs_hb package in p21.11.00.

2.1 Data quality

A bad luminosity block list (from dq_defs and Im_access run for the h9bb trigger) and
detector (Muon, Calorimeter, SMT, CFT) good run list (from caf dq) were used.
This selection rejected 14 % of the events. Flags rejecting events which are sub-
ject to known calorimeter issues significantly affecting the data quality were applied
event by event. An additional 6 % of the events were rejected by these. About 120
million events remained in the sample.



2.2 Trigger

The trigger used to collect the data was JT2_3JT15L_IP_VX. This trigger had four
separate Level-2 branches in trigger list v15. Only the L2 H7 and missing Hr based
branches were used to collect the events in the present analysis. Table 1 shows the
L1, L2 and L3 requirements of the trigger.

Level v1l5

L1 CSWIT(3,8,|n] < 3.2)CSWJIT(2,15,[n| < 2.4)CSWIT(1,30,]5] < 2.4)

L2 JT(1,30,]5] < 2.6) JT(2,15,]5] < 2.6) JT(3,8,)n] < X) HT(75,6) MJT(10,10) OR
JT(1,30,|n] < 2.6) JT(2,15./n| < 2.6) JT(3,8./n] < X) HT(100,6)

L3 JT(3,15,|n| < 3.6) JT(2,25,]n] < 3.6) |zpy| < 35 cm Proby,(0.4)

Name JT2_3JT15LIP_VX

Table 1: The trigger conditions for the h%bb trigger in the v15 trigger list. The
CSWIT(x,y,|n| < z) term corresponds to x L1 jets above y GeV and within |n| < z. The
JT(x,y,|n|] < z) term corresponds to x jets reconstructed at L2 or L3 with pp > y GeV/c and
In| < z. The HT(x,y) term is used only at L2 and requires that the sum of the transverse
momenta of L2 jets with pp > y GeV/c is above x GeV. The MJT(x,y) term corresponds
to a missing transverse energy > x GeV calculated from jets with Er > y GeV. The
Proby,(0.4) term is used only at L3 and corresponds to a cut of 0.4 on the probability for
the event to not contain a b-quark.

Starting with trigger list v16.00, a STT IP condition was added to the hObb trigger
at Level 2, these data will be added to the analysis at a later time.

The total integrated luminosity after exclusion of bad luminosity blocks was 1.614
b~ (1.222 fb™! and 0.392 fb™! of which was recorded before and after the 2007
shutdown respectively).

2.3 Jets

Jets were reconstructed with the Run II Improved Legacy Cone Algorithm and
required to pass selection cuts to eliminate fake jets and EM objects. The rec-
ommended p20 jet energy scale corrections from jetcorr p21-br-07 were applied to
all jets. Additionally, jets containing a medium muon (nseg = 3, |n| < 2.) within
AR(p, jet axis)< 0.5 were considered to originate from a semileptonic b-quark and
were corrected for the momentum carried away by the muon and the neutrino. The
JES correction applied to data is shown in Fig. 1.

Fig. 2 shows the properties of the jets in the data sample. There are neither signif-
icant spikes nor bumps in the pr and 7 spectra which would be signs of remaining
detector problems. The n — ¢ distributions of the jets after requiring various num-
bers of b-tagged jets in the event are also shown in Fig. 3. No irregularities are
observed.
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Figure 1: (a) The basic jet energy scale correction in data and (b) after additional cor-
rection of semileptonic b-jets.
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Figure 2: Basic jet distributions. For each plot, jets must pass quality cuts and taggability
requirements, each event must pass the hVbb trigger and have a primary vertex within +
35 cm.
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3 Monte Carlo samples

The Monte Carlo samples used in this analysis are listed in table 2.

M, (GeV/c?) Number of events  request ids
90 150000 88672
100 300000 88673, 88689
110 300000 88652, 88654
120 300000 88674, 88690
130 300000 88675, 88691
140 300000 88676, 88692
150 300000 88677, 88693
160 300000 88678, 83694
170 300000 88679, 88695
180 150000 88653
190 300000 88680, 88696
200 300000 88681, 88697
210 150000 88682
220 300000 88683, 88699
230 300000 88684, 88700
240 300000 88685, 88701
250 300000 88686, 88702
260 300000 88687, 88703

Backgrounds Number of events request ids

bbj exclusive 1000000 88493, 88494, 88495, 88496, 88497
bbjj inclusive 1000000 88472, 88473, 88474, 88475, 88476
bbbb inclusive 2000000 86852, 86853, 86854, 86855, 86856
ccj exclusive 200000 88498
ccjj inclusive 200000 88492
bbee inclusive 1248000 87414, 87415, 87416, 87417, 87418, 87419

Table 2: The number of events simulated for each signal and background process. Cur-
rently we are only using signal events up to myg = 220 GeV.

Signal and background events were generated using the p20.09.02/03 simulation
chain, including zero bias event overlay, followed by the production of CAF Trees [5].
The CAFTrees were then processed through the higgs_hb package in p21.11.00 with



the recommended version of p20 JES being applied. At the generator level, Pythia [6]
or ALPGEN [7] were run with the parton distribution function (PDF) set CTEQG6LI.

3.1 hb signal simulation

As the main difference between the MSSM Higgs bosons and the SM Higgs boson is
the enhanced production cross-section, the hb signal was simulated with the Monte
Carlo program Pythia using its process gb — hb [6]. However, this simulates only
the leading order production corrected by initial and final state radiation (ISR and
FSR). As the process gb — hb has been calculated at the next-to-leading order [8, 9],
this simulation needs to be corrected. MCFM [10] was used to compute the required
corrections. The details of this procedure and the corrections can be found in section
2.2.1 of [1]. The experimental acceptance of the simulated events was also corrected
by weighting each simulated signal event according to the kinematic parameters
(pr,n) of the leading b-jet which is not from the decay of the Higgs. The same
procedure as for the p17 analysis was used again.

3.2 Background simulation

The main backgrounds for high multiplicity final states with 3 b-tagged jets arise
from QCD multi-jet production processes (j stands for light parton):

L. pp — jji(j)
2. pp — bji(j)
3. pp — bbj(j)
4. pp — bbb(b)

The first process is difficult to simulate given the number of diagrams contributing
to the final state. The processes with b-quark production were simulated with ALP-
GEN [7], based on LO matrix elements. A summary of the cross-sections obtained
with ALPGEN;, as well as the kinematic cuts, is given in table 3. The larger cross
section for the bbcé sample compared to the p17 analysis is due to the 5 GeV/c lower
pr(b) cut in p20.

3.3 Corrections to full simulation

To account for the discrepancies between Monte Carlo and data the corrections
listed below were applied. These are fundamentally the same corrections which
were applied during the p17 analysis, but the actual functions were updated for the
p20 analysis.

e The b-tagging [11] rate (ICHEPO08) and taggability of jets which were derived
from data (see [12] for a description of the method) were applied as weight
factors to the simulated events. Details of the taggability can be found in
appendix E.



Process Cross-section (pb) Generator cuts (pr in GeV/c)

¢¢jj inclusive 5499 pr(j) > 15, pr(c) > 20 , |n| < 3, AR < 0.4
ccj exclusive 8187 pr(j) > 15, pr(c) > 20, |n| <3, AR < 0.4
bbjj inclusive 4710 pr(3) > 15, pr(b) > 20, |n| <3, AR < 0.4
bbj exclusive 7855 pr(j) > 15, pr(b) > 20 , |n| <3, AR < 0.4
bbbb inclusive 213 2 b’s with pr(b) > 20 , 3b’s with pr(b) > 15
bbee inclusive 630 2 b’s with pr(b) > 20, 3b/c’s with pr(b/c) > 15

Table 3: Cross-section for the generated background events. “X exclusive” means
exactly “X” in the final state. “X inclusive” means “X” plus an arbitrary number
of extra light jets in the final state.

e JSSR (Jet Smeared Shift and Removed) was used to correct for jet-id efficiency,
jet energy scale and resolution [13].
e Skimming cuts were simulated using the jetcorr package.

e Full trigger efficiencies have been measured and were simulated using the
higgs_hb package, see appendix A for full details.

e The luminosity profiles of the MC samples were reweighted to agree with the
profile from data. Details can be found in appendix F.

4 Analysis overview

This section describes the event selection, likelihood discriminant and background
modeling in the analysis.

4.1 Event selection

The event selection cuts were largely equivalent to the cuts used in the p17 analysis.

e The event was required to have fired the h°bb trigger.

Events had to pass a primary vertex cut of |zy| < 35 cm.

Between 3 and 5 good, taggable jets with JES corrected pr > 20 GeV/c within
In| < 2.5 were required.

At least 2 of these jets with pr > 25 GeV/c were required to pass a tight NN
b-tag criteria.

At least one additional tight NN b-tagged jet was required.



Number of events Fraction relative

to previous level

Events in 3JET skim (v15) 121,457,747 -

Pass hbb trigger 51,973,882 0.428

Pass z vertex cut 51,690,017 0.995
3/4/5 good taggable jets 26,606,009/6,558,214/876,572  0.515/0.127/0.017
2 NN tight b-tag jets (pr > 25 GeV/c) 211,177/72,127/12,473 0.008/0.011/0.014
3 NN tight b-tag jets 4,668/3,387/848 0.022/0.047/0.068

Table 4: The number of events and relative fraction of events in data passing each cut.
As we later split the data into 3-, 4- and 5 jet sub-samples, these numbers are reported
separately in the last 3 rows.

The data were split into separate 3, 4 and 5 jet channels for the analysis. A jet is
only counted if it is taggable and its pr is > 20 GeV/c and its |n| < 2.5. Table 4
shows the number of events in data at different levels of the event selection. For
all events in the selected sample the two leading jet pairs (i.e. jet 1 and 2, and jet
1 and 3) were considered as possible Higgs candidates. The AR for each such jet
pairing must be > 1.0, to remove jet pairs from gluon splitting.

The acceptance for MC signal events generated at masses of 100, 150 and 190 GeV
is reported in tables 5, 6 and 7. The numbers of events in these tables correspond
to the SM cross section normalized to the actual luminosity and assuming 100%
branching fraction to bb.

Number of events Fraction relative Fraction relative

to previous level to total
Initial number 16.5528
pass z vertex cut 13.8148 0.835 0.8346
3-5 good taggable jets 2.0023 0.145 0.1210
pass skimming cuts 1.4157 0.707 0.0855
pass trigger 0.4115 0.291 0.0249
pass 2 NN tight b-tag (pr > 25) 0.1738 0.422 0.0105
pass 3 NN tight b-tag 0.0444 0.255 0.0027
in separate channels:
3-jets 0.0274 0.619 0.0017
4-jets 0.0144 0.325 0.0009
5-jets 0.0025 0.057 0.0002

Table 5: For m4 = 100 GeV the number of events, and relative and total fraction of
signal events passing each cut.



Number of events Fraction relative Fraction relative

to previous level to total
Initial number 2.8418
pass z vertex cut 2.3659 0.833 0.8325
3-5 good taggable jets 0.6097 0.258 0.2146
pass skimming cuts 0.4909 0.805 0.1727
pass trigger 0.2531 0.516 0.0891
pass 2 NN tight b-tag (pr > 25) 0.1032 0.408 0.0363
pass 3 NN tight b-tag 0.0244 0.237 0.0086
in separate channels:
3-jets 0.0162 0.663 0.0057
4-jets 0.0069 0.284 0.0024
5-jets 0.0013 0.053 0.0005

Table 6: For my = 150 GeV the number of events, and relative and total fraction of
signal events passing each cut.

Number of events Fraction relative Fraction relative

to previous level to total
Initial number 0.8749
pass z vertex cut 0.7287 0.833 0.8330
3-5 good taggable jets 0.2673 0.367 0.3056
pass skimming cuts 0.2279 0.852 0.2605
pass trigger 0.1482 0.650 0.1694
pass 2 NN tight b-tag (pr > 25) 0.0581 0.392 0.0664
pass 3 NN tight b-tag 0.0131 0.225 0.0150
in separate channels:
3-jets 0.0086 0.655 0.0098
4-jets 0.0038 0.292 0.0044
5-jets 0.0007 0.053 0.0008

Table 7: For my = 190 GeV the number of events, and relative and total fraction of
signal events passing each cut.

4.1.1 Signal efficiency loss

There has been a notable loss in signal efficiency between the p17 and p20 analysis.
This loss is up to 47% at 100 GeV and 18% at 190 GeV. The vast majority of this
loss in signal efficiency can be attributed to the much tighter trigger requirements in
the L1 trigger. Tables 8 - 10 show the predicted p17 and p20 trigger efficiencies on



the 100, 150 and 190 GeV p20 MC signal samples respectively. There is a notable
loss in signal efficiency between the pl17 and p20 trigger which ranges from 35% at
100 GeV to 15% at 190 GeV.

Version Level 1 Level 2 Level 3 Total
pl17 0.869 0.833 0.504 0.435
p20 0.538 0.777 0.407  0.283

Table 8: The predicted pl7 and p20 trigger efficiencies on the m4 = 100 GeV signal
sample.

Version Level 1 Level 2 Level 3 Total
pl7 0.947 0.919 0.723  0.672
p20 0.759 0.892 0.644  0.532

Table 9: The predicted pl7 and p20 trigger efficiencies on the m4 = 150 GeV signal
sample.

Version Level 1 Level 2 Level 3 Total
pl7 0.971 0.951 0.82 0.786
p20 0.846 0.94 0.762 0.67

Table 10: The predicted pl7 and p20 trigger efficiencies on the m 4 = 190 GeV signal
sample.

4.2 Sample composition

The technique to derive the sample composition is described in detail in the p17
analysis note [1]. To first order the sample composition is derived on the 3 jet
sample considering the following backgrounds: jj7, ¢jj, ¢j7, cce, bjj, bbj, bee, bbe,
bbb. The fraction of each component is measured in bins of Hr = ) jets PT DY
comparing the MC samples to data, taking into account the b-tagging efficiency
and the cross-section of each process. To limit the number of unknown variables a
number of assumptions based on p17 studies have been made:

® 1y = Tejj and Ty = Tee; for events with Hy > 50 GeV.
® Tp. = Tppe = Tppy. From Alpgen.

® .. is negligible.

10



With updates to the MC generators, triggers and the introduction of Layer 0 we
expect the sample composition in Runllb to differ from Runlla. The results for
RunlIb are shown in Figs. 4, 5, 6 and 7 for the three jet channel and in Figs. 8, 9,
10 and 11 for the four jet channel.
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Figure 4: Composition of zero to three b-tagged three jet data samples.
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Process Composition %
0 Tag 1Tag 2 Tag 3 Tag
Jjjj+cjg+bjg 941 76.7 11.1 2.3

ccj 3.0 6.9 5.8 2.4
bbj 2.7 153 769 346
bbc + bee 0.2 0.8 3.2 14.0
bbb 0.1 0.3 3.0 46.7

Table 11: Contributions of different background processes to the 0, 1, 2 and 3 tagged
samples in the 3-jet channel.
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Process Composition %
0 Tag 1Tag 2 Tag 3 Tag
J37 +cjg+0bj5  90.5 68.6 10.0 1.9

ccj 4.8 9.5 6.3 2.4
bbj 4.4 207 7.3 33.3
bbc + bee 0.2 0.9 3.5 17.6
bbb 0.1 0.3 2.9 44.8

Table 12: Contributions of different background processes to the 0, 1, 2 and 3 tagged
samples in the 4-jet channel.
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Figure 8: Composition of zero to three b-tagged four jet data samples. Numerical
values for the each of the b-tagged samples are shown in table 12.
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mic scale. Numerical values for the each of the b-tagged samples are shown in table
12.
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4.3 Likelihood discriminant

The calculation of the likelihood discriminant is unchanged with respect to the p17
analysis. For each invariant mass pair with My, > 50 GeV a likelihood between 0
and 1, where 1 indicates signal using the variables in table 13 was determined. The
likelihood discriminant D, was calculated according to:

[T, ()
6 & 6 bk )
Hi:1 p; g(fi) + Hi:1 Y2 g(xi)
where p;

$19(p?%9) refers to the signal (background) probability density function (pdf)
for variable x;, and (x1, ..., z¢) is the set of measured kinematic variables for the jet
pair. The pdfs were obtained from triple b-tagged signal and background simula-
tion. Two likelihoods were built combining simulated samples in the 90 — 130 GeV/c?
(“Low-mass”) and 130 — 220 GeV/c? (“High-mass”) mass ranges, providing discrim-
ination at low and high masses, respectively. Studies from pl7 showed that this
division of the mass range gave the best discrimination. A cut was then placed on
the likelihood discriminant to increase the sensitivity of the analysis. We used the
cuts which were optimized for the p17 analysis.

D(l‘l,....,l’(j) = (1)

sig

A ¢p1p2 | Angle in ¢ between the two jets in the jet pair.
A N1 p2 Difference in 1 between the two jets in the jet pair.

Y, Jet pair rapidity.
pPl_pb2
pPT+pP?

acos(by.h) | Angle between leading jet in jet pair and the jet pair itself.

Momentum balance.

Sphericity | Sphericity of the event, calculated using jets with pr > 15
and |n| < 2.5.

Table 13: Kinematic variables used in the likelihood.

4.4 Background model

Several multijet processes contribute to the background and the uncertainty on the
cross sections is large. The bbb component may also contain a contribution that is
indistinguishable from a signal and cannot be normalized from the data. To model
the background we used the same method as in the pl7 analysis, which relies on
a combination of data and simulation. The distribution of the expected triple b-
tagged (3Tag) sample in the two-dimensional D and invariant mass (My,) plane,
5Tag (Ds M), is obtained from the double b-tagged (2Tag) data shape multiplied
by the ratio of the simulated (MC) shapes of the triple and double tagged events:

cx S3tas (Ds Mb) Cata
3T§g(D7 Mbb) = S%‘C%(D Mbb) Sngg(Da Mbb)' (2)
ag ’
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.. . . . . . SMC (D, M)

Many uncertainties affecting the simulation cancel in the ratio m.
2Tag ’

The 2D (M, D) histograms for data, background model and signal MC after 3 b-

tags are used as inputs to the collie limit setting program [3]. The limit setting

and the results are discussed in section 6.

4.5 Data/Background prediction comparison

Plots 12 -14 show a comparison between data and the predicted background for the
3 jets, 3 b-tag channel. The corresponding plots for the 4 and 5 jet channels and for
a Higgs mass of 120 GeV can be found in appendix B. Data/MC comparison plots
for both the 2 and 3 b-tag channels for 120 and 180 GeV Higgs mass points can be
found in appendix C. Figure 15 shows the flavour composition of the jet pairs as a
function of the dijet mass.
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Figure 12: Data predicted background comparison for 3 jets, 3 b-tag sample with a
180 GeV Higgs sample used as signal. Shown is the predicted background vs data
of the jet pr for the three jets with the highest py in the event.
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4.6 Likelihood Output Comparison

A Comparison between the 3Tag MC, predicted background and data is shown in
Fig. 16 for the low-mass likelihood case and in Fig. 17 for the high-mass likelihood
case.

4.7 Agreement in the low-likelihood region

The agreement in the low-likelihood region is shown for both the low and high-mass
likelihoods in Fig. 18 for the 3Tag/2Tag ratios and in Fig. 19 for the invariant mass
distributions.

4.8 Agreement in the high-likelihood region

The agreement in the low-likelihood region is shown for both the low and high-mass
likelihoods in Fig. 20 for the 3Tag/2Tag ratios and in Fig. 21 for the invariant mass
distributions.
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Figure 16: Three top plots: Comparison between 3Tag data and 3Tag MC likelihood
distributions (low-mass case). Three bottom plots: Comparison between 3Tag data
and 3Tag model (defined by Eq. 2) likelihood distributions (low-mass case). These
comparisons are evaluated using a Kolmogorov-Smirnov test with and without the
presence of a Higgs signal of 110 GeV/c? and tan3 = 90. Black points refer to
data, the blue histograms to the 3Tag models, the plain blue histograms to the bbb
background component and the red histograms to a Higgs signal of 110 GeV/c? and
tanB = 90.
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Figure 17: Three top plots: Comparison between 3Tag data and 3Tag MC likelihood
distributions (high mass case). Three bottom plots: Comparison between 3Tag data
and 3Tag model (defined by Eq. 2) likelihood distributions (high-mass case). These
comparisons are evaluated using a Kolmogorov-Smirnov test with and without the
presence of a Higgs signal of 180 GeV/c? and tan3 = 90. Black points refer to data,
the blue histograms to 3Tag models, the plain blue histograms to the bbb background
component and the red histograms to a Higgs signal of 180 GeV/c? and tans = 90.
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likelihood (top plot) and the high-mass likelihood (bottom plot).
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5 Systematic Uncertainties

The sources of systematic uncertainty are split into two categories: those applying
to the estimated signal acceptance and yield, and those affecting the shape of the
background model.

5.1 Signal Uncertainties

The signal normalisation is assigned a flat systematic uncertainty of 17%. The only
variation from the p17 analysis is that the luminosity component has been removed
and applied as a separate source of systematic uncertainty. This is to aid in the
combination of these results with other analyses (such as ® — 77) and has no effect
on the final result. A detailed breakdown the contributions can be found in the p17
analysis note [14]. The dominant contributions are from theoretical uncertainties
(including PDF uncertainties) at the level 12-13%, depending on the mass point;
b-ID 8-9% and the luminosity contributes a 6.1% uncertainty.

5.2 Background Uncertainties

In the p17 analysis 6 sources of uncertainty on the shape of the background were
considered.

e Composition : arising from the quality of the fit in the determination of the
background composition.

e b-efficiency : arising from varying the b-tagging TRF's within their errors.
e [3-IP : derived from the modelling of the L3 Impact parameter trigger.

e bres : derived by applying an additional 7% smearing to the b- and c-jet
response in the MC.

e bbb : derived by taking half the variation between the pure Monte-Carlo de-
scription of the background and that obtained by using the 3/2 ratio as a
scale-factor to the 2-tagged data sample.

e bbj : derived by comparing the variation in the shape of the contribution
from bbj like events between two samples derived from the 3/2 ratio from MC
applied to the 2-tagged data sample and a sample selected using a negative
tag.

While the method for deriving each of these systematics has not changed substan-
tially from the published pl7 analysis new values have been derived for the p20
analysis. In the following sections the deviations from the pl7 analysis will be
briefly described:
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5.2.1 b-tagging efficiency

In the p17 analysis the efficiency to tag b-jets was varied within the appropriate 1o
errors in a skewed fashion in order to produce a large and conservative systematic
effect. However, in the p20 analysis it has been decided to use a standard non-skewed
shifting by 410 since it is believed that the previous method is overly conservative
and non-standard when contrasted with other analyses at D@.

5.2.2 Monte-Carlo modelling

The systematic from the pl7 analysis described in [1] as either: “bbb vs bbj kine-
matics” or “MC-kinematics” has been dropped in the preliminary p20 analysis. It
is poorly motivated and is believed to have a large overlap with the composition
systematic. Furthermore, it essentially negates most of the benefit expected to arise
due to the use of the 3/2-ratio. We have introduced a new systematic to take into ac-
count variations in the 3tag-2tag ratio as follows: an alternative background shape,

SELHD (MY, is constructed:

grip gy — Set 0 (M) Sy " (M)
It bb) —

a Sé"JI‘gg_lOwLH(Mbb)/S%Sg_lOwLH(Mbb)

where SﬁégTA_lOWLH (M) and SﬁfggTA_lOWLH (M) are the di-jet invariant mass dis-
tributions for data selected with a likelihood discriminant cut of D < 0.25 for the 3-
tagged and 2-tagged samples respectively, and S?%Sg_lmLH (My,) and S%fg—loww (M)
are the equivalent distributions for the Monte-Carlo background sample. Spyq(Mpp)
is the nominal background distribution.

X Sprg(Myp), (3)

5.2.3 b-tagging fake rate

A systematic uncertainty was assessed in the p17 analysis related to the modelling
of the deformation of the shape of the M;; distribution for the bbj sample arising
from the b-tagging fake rate. At present, in the p20 analysis, this systematic is
undergoing further study but has been included when setting limits. The effect
is at the few percent level below 200 GeV/c?. In pl7 this error was evaluated by
comparing data with two b-tags and one negative tag to the bbj MC. Figure 22 shows
the same comparison between the negative tag sample and the bbj expectation for
p20.

5.3 Systematics

The relative contributions of the systematics can be seen for the 3-4- and 5-jet
channels in Figures 23, 24 and 25 respectively.

These uncertainties have been significantly reduced with respect to the previous
pl7 analysis. In particular, the uncertainty from the composition - which has been
reassessed using p20 Monte-Carlo - is approximately 30% smaller. Both the con-
tributions from the b-tagging efficiency and the Level 3 impact parameter trigger
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Figure 22: Top set of plots shows the 3Tag/2Tag ratio for the nominal background
shape (blue), the bbj shape expectation (plain histogram) and the negative tag
data sample (points with error bars). Note the relative difference between the bbj
only and the full background shapes and the agreement between negative tag data
and bbj expectation. The bottom set of plots displays the invariant mass for the

bbj expectation (plain histogram) and the
histograms are normalized one to another.

negative tag data sample (points), the
The lower panels show the difference

between the negative tag data and the bbj expectation. Reminder, the negative tag
is assumed to be dominated by bbj background (see text).
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Figure 25: Ratios of the different systematic shapes to the nominal background
model for the 5-jet channel.

modelling have also improved though even in the pl7 analysis they only had a
modest effect on the final limit.

6 Limit Setting

Limits are set at the 95% confidence level in the tan83 — M4 plane using the collie
package[3]. At present only the overall background normalisation is subject to pro-
filing and in this case it is simply allowed to float. This procedure has been shown to
be effectively equivalent to that used for the p17 analysis using hbbLimit and deals
with the unknown background normalisation. All the other systematics are dealt
with using Gaussian prior probability densities as in the “CLsyst” method provided
by the collie package.

In the simple enhancement scenario the Higgs is assumed to be narrow and the cross
section X branching ratio is taken to be 2 x 0.9 x tan/3? X (0 X Br)gys. In making the
combination across the 3-, 4- and 5-jet channels in the p20 analysis all the systematic
uncertainties are assumed to be correlated and similarly when combining across the
same channels in p17. When combining the 3 p17 channels with the 3 p20 channels
only the b-jet resolution systematic is assumed correlated between p20 and pl7.
Figures 26 and 27 show the observed and expected (with £+ 1 and 2 ¢ uncertainties
as the yellow and green bands respectively) 95% confidence level exclusion limits
for the p20 and combined pl17 and p20 analyses respectively. These results are
summarized numerically in Tables 14 and 15.

In a previous pass of the the p20 analysis in the mass region between 120 GeV and
160 GeV there appeared to be evidence for a downward fluctuation in the data above
the 20 level. Several crosschecks were made to ensure that there were no mistakes in
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ma/GeV/c*> TanB Obs. Tanf Exp. oxBr. Obs./pb oxBr. Exp./pb

90 83 71714 200.7 149.1+632
100 80 73118 121.7 103.8735¢
110 68 7071 58.9 64.2*35 5
120 60 66118 32.7 38.9%175
130 50 71718 15.8 3141156
140 61 78116 16.9 2747
150 64 83117 13.6 22.67103
160 57 75418 7.9 13.5+69
170 63 81716 7.1 11.6759
180 67 8718 5.9 9.973%
190 7 93119 6.0 8.8753%
200 90 100+22 6.2 7755
210 107 109+% 6.7 71783
220 125 117+% 7.2 6.3+32

Table 14: Observed and expected 95% C.L. limits in Tan( and cross section times
branching ratio for the 1.6fb~! analysis in the negligible width scenario.

ma/GeV/c*> TanB Obs. Tanf Exp. oxBr. Obs./pb oxBr. Exp./pb

90 67 55112 132.4 86.9%550
100 58 5614 65.6 60.17327
110 52 54112 35.1 37.6%101
120 49 5ol 21.9 24.617%°
130 44 5611 12.1 19.6757
140 57 63718 14.5 17.9755
150 69 70%15 15.4 16.17 7
160 73 71714 12.9 11.9733
170 86 778 13.1 10.47575
180 96 84717 12.3 9.575%
190 103 91+18 10.7 8.3153%
200 113 96+20 9.9 71733
210 124 10472 9.1 6.4129
220 137 111725 8.7 57128

Table 15: Observed and expected 95% C.L. limits in Tan( and cross section times
branching ratio for the 2.6fb~! analysis in the negligible width scenario.
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the analysis procedure which could be responsible for this effect (see appendix G).
With the addition of the fake-rate and new MC-modelling systematics and a small
correction to the limit setting procedure this effect has been reduced.

- DG Preliminary, L=1.6 fb'

Y
o
T 1T | T

20 1 I 1 1 1 I 1 1 1 I 1 1 1 I 1 1 1 I 1 1 1 I 1 1 1
100 120 140 160 180 200 220

M, [GeV/c?]

Figure 26: 95% CL exclusion limit in the (m4,tan ) plane using the simple en-
hancement 2 x 0.9 x tan3? x (o x Br)g for the p20 analysis. The red curve is the
observed limit. The black curve is the expected limit (in the no-signal hypothesis)
and the bands correspond to +10 and +2¢ variations around the expectation. (The
truncation of the 10 and +20 bands will be corrected.)

6.1 Exclusion limit within different MSSM scenarios

Radiative corrections at NNLO modify both the coupling and the mass relationships
between the Higgs bosons. The effects of these corrections depend upon the overall
(continuous) set of SUSY parameters so that it is nearly impossible to test every
possible scenario. Typical benchmark scenarios have been defined [15] in terms of
Msysy, the mass scale of squarks, u, the Higgs sector bilinear coupling, M, the
gaugino mass term, A;, the trilinear coupling of the stop sector, A,, the trilinear
coupling of the sbottom sector and my; the gluino mass term. The most tested
scenarios are:

max

1. The maximal-mixing or mj*** scenario (the parameters are chosen such that
the maximum possible Higgs-boson mass as a function of tan 3 is obtained):

Msysy = 1TeV, p=200GeV, My =200GeV,
X% =2 Mgusy (FD calculation), Xéw_s =6 Mgysy (RG calculation)
Ab = At, mg =0.8 MSUSY . (4)
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Figure 27: 95% CL exclusion limit in the (m4,tan ) plane using the simple en-
hancement 2 x 0.9 x tanf3? x (o X Br)gys for the combined pl17 and p20 analyses.
The red curve is the observed limit. The black curve is the expected limit (in the
no-signal hypothesis) and the bands correspond to £10 and £20 variations around
the expectation. Some mass points are missing in this plot due to failed limit setting
jobs.

max

2. The no-mixing scenario This benchmark scenario is the same as the mj}
scenario, but with vanishing mixing in the stop sector and with a higher SUSY
mass scale to avoid the LEP Higgs bounds:

MSUSY =2 TeV, n = 200 GGV, M2 = 200 Ge\/,
X: =0 (FD/RG calculation), A, =A4;, mz=0.8Msusy . (5)

In addition results are very dependent upon p so it is suggested in [16] to probe at
least its two possible signs.

This analysis is most sensitive in the case of the maximal-mixing ;1 < 0 scenario and
the results interpreted in this scenario are below. An interpretation of the results in
the other scenarios is currently in progress.

The exclusion limit for the maximal-mixing p < 0 case is displayed in Figs. 28 and
29 for the p20 and combined p17 and p20 analyses respectively. Figs. 30 and 31 show
the 95% C.L. exclusion obtained with the p20 and combined p17 and p20 analyses
respectively along with the exclusion limit from the LEP experiments in the m}**
u = —200 scenario.

38



£ 4 DD Preliminary, L=1.6 fb'
- gb — bo

120

100

80

60

40

20.I...I...I...I...I...I...
100 120 140 160 180 200 220

M, [GeV/c?]

Figure 28: 95% CL exclusion limit in the (m 4, tan 3) for maximal-mixing and p < 0
for the p20 analyses. The red curve is the observed limit. The black curve is the
expected limit (in the no-signal hypothesis) and the bands correspond to +10 and
+20 variations around the expectation.
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Figure 29: 95% CL exclusion limit in the (m4,tan ) for maximal-mixing and p <
0 for the combined pl7 and p20 analyses. The red curve is the observed limit.
The black curve is the expected limit (in the no-signal hypothesis) and the bands
correspond to 10 and £2¢ variations around the expectation.
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Figure 30: 95% CL exclusion limit in the (m4, tan 3) obtained with the p20 analysis
for the m;®*, u=-200 GeV scenario. The exclusion limit obtained from the LEP
experiments are also overlayed.
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Figure 31: 95% CL exclusion limit in the (mu, tan 3) obtained with the combined
pl7 and p20 analyses for the m** | u=-200 GeV scenario. The exclusion limit
obtained from the LEP experiments are also overlayed.
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A Trigger

A.1 L1 Jets

The L1 term requires one L1 jet with pr > 30 GeV, two with p; > 15 GeV and three
with pr > 8 GeV. The required turn-on curves are determined using muon triggered
events from the TOPJETTRIG skim. The events are required to have exactly three
offline jets with pr > 15 GeV and n < 2.5. Events where any jet pairing have dR <
1.0 are vetoed. Figures 32, 33 and 34 show the turn-on curves when requiring a L1
jet with a pr > 8, 15 and 30 GeV respectively.
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Figure 32: Level 1 Jet pr > 8 GeV Turn on curve.
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Figure 33: Level 1 Jet pr > 15 GeV Turn on curve.
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Figure 34: Level 1 Jet pr > 30 GeV Turn on curve.
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A.1.1 L1 Noise Jets

Any L1 jet not matched to an offline jet within dR < 0.5 is considered a noise jet. The
number of noise jets above each L1 jet pr threshold in each event is parameterised
as a function of Hp. This 2D distribution is used to model the probability that x
noise jets are present in an event as a function of offfine Hr. Figure 35 shows the
probability of x noise jets being present for two representative Hp values. Figures 36
and 37 show the angular distibution of the L1 noise jets.

A.1.2 L1 Closure

Closure tests are performed on events containing four and five jets. This sample
is orthogonal to the sample on which the turn-on curves were determined. The
probability for an event to pass the Level 1 jet condition is determined by calculating
the combining the jet probabilities as outlined in [14]. Noise jets are added by
combining the probability to have less than the required numbers of jets in the
event, with the probability to have greater than or equal to the required number of
noise jets:

P(Pass3L1jets) = P(> 3jets) + P(= 2jets) x P(> lnoisejet)+
+ P(= ljet) x P(> 2noisejets)
+ P(= 0jets) x P(> 3noisejets)

where P(> xjets) refers to the probability to have x or more jets present in the
event and P(= xzjets) refers to the probability to have exactly = jets present in
the event. Figure 38 shows the measured and predicted trigger rates for the L1
trigger simulation. The ratio of the predicted and measured trigger rates is shown
in Fig. 39.
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Figure 35: Probability for 0-5 L1 Noise jets for each trigger pr threshold for two
representative Hp values. The plots on the right are on a logarithmic scale.
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(c) pr > 30 GeV

Figure 37: Distriubtion of the L1 noise jets in the 7-¢ plane.
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requiring that the L1 trigger term has fired.
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A.2 Level 2

The L2 trigger consists of an OR of four terms. Only two are currently parameterised
and included in the analysis:

Top: 3 jets with pr >8 GeV, 2 jets with pr >15 GeV, 1 jet with py >30 GeV and
H7p >100 GeV

MEr: 3 jets with pr >8 GeV, 2 jets with pr >15 GeV, 1 jet with pr >30 GeV,
Hy >75 GeV and M Hy > 10 GeV.

The OR of these two terms is calculated by determining the efficiency of the M Er
term with respect to the case when the Top term has not fired. This allows the total
Level 2 efficiency to be calculated using the following formula:

P(L2Fired) = P(Top)+ (1 — P(Top)) x P(MEr|!Top) (6)

where P(x) corresponds to the probability of either L2, the M Er term or the TOP
term firing. The same data sample as the L1 trigger determination was used for L2,
with the added requirement that the L1 trigger term has fired.

A.2.1 L2 Jet

In the Run IIb trigger the L1 and L2 jet finding algorithms are very similar. The
L2 jet requirements are also a subset of the L1 requirements. This means that the
probability of the L2 jet terms firing, if the L1 term has fired, is effectively unity.
A parametrisation for the L2 jet terms is therefore not explicitly calculated and the
probability to pass these term is taken as unity. Figure 40 shows the probability to
pass the L2 jet term given that the L1 trigger has already fired.

A.2.2 L2 Top
The turn-on curve for L2Hr >100 GeV is shown in Fig. 41.

A.2.3 L2 MEr Term

The turn-on curves for the L2M Er trigger terms are calculated with respect to the
L2 Top trigger term not firing. The only L2 Top trigger requirement which could
not have fired and yet still allow the M Er trigger to fire is if Hy <100 GeV. The
MHy >10 GeV and Hr >75 GeV turn-on curves are shown in Figs. 42 and 43
respectively.

A.2.4 L2 Closure

Closure tests are performed on events containing four and five jets. This sample
is orthogonal to the sample on which the turn-on curves were determined. The
probability for an event to pass the Level 2 Top term is first calculated using the Hp
distribution. This is then combined with the probability for the M ET trigger M Hp
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Figure 41: Level 2 Hy > 100 GeV turn-on curve.

and Hr terms to have fired given that the Top trigger term did not fire. Figure 44
shows the actually and predicted trigger rates for the L1 trigger simulation. The
ratio of the predicted and measured trigger rates is shown in Fig. 45.

A.3 L3 Jets

The turn-on curves for Level 3 jets are determined on the mu-inclusive skim on events

that have passed the L1 and L2 requirements for the Higgs trigger (JT2_3JT15L 1P _VX).
The events are required to pass a muon trigger to avoid biases from the trigger selec-
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Figure 43: Level 2 M Hy > 10 GeV turn-on curve calculated for events where
L2Hr <100 GeV.

tion and the Level 3 jet tool (SC5JET_9) must have run. Furthermore the events are
required to contain exactly three jets and all jets must have a JES corrected pr >
10 GeV. All plots in this section are made using the higgs hb version p21-br-10.
Figures 46 and 47 show the turn on curves for a Level 3 pr cut of 15 and 25 GeV.
The closure tests are discussed in section A.4.
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Figure 44: The predicted and measured pr (left) and n (right) distributions for the
leading (top), 2nd (middle) and 3rd (bottom) jets in 4 and 5 jets events which have
passed the L1 and L2 trigger requirements.

A.3.1 L3 Noise Jets

The effect of noise jets, i.e. L3 jets that cannot be matched to a reco jet is determined
as a function of the number of jets in the event and sum of all jet pr. The results
are shown in figs. 48 and 49.

A.4 Closure Tests

Closure tests are done on events containing three, four or five jets separately, the
latter two samples being orthogonal to the sample the turn on curves where deter-
mined on. Noise jets are incorporated as an additional jet which fires the triggers
according to figs. 48, 49. The probability for an event to pass the Level 3 jet condi-
tion (two jets pr > 25 GeV, plus an additional jet with pr > 15 GeV) is determined
by calculating the probability for the three 'fail’ scenarios: 1) All jets fail the 25
GeV trigger. 2) Exactly one jet fires the 25 GeV trigger, all others fail. 3) Exactly
two jets fire the 25 GeV trigger, but all other jets fail the 15 GeV trigger. This takes
into account that a jet passing the pr > 25 GeV cut, will automatically also fire the
15 GeV trigger. Figures 50 and 51 show probability for an event to pass the trigger
cuts for 3,4 and 5 jets events, with and without the inclusion of noise jets.
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Figure 45: Ratio of the predicted and measured pr (left) and 7 (right) distributions
for the leading (top), 2nd (middle) and 3rd (bottom) jets in 4 and 5 jets events
which have passed the L1 and L2 trigger requirements.
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Figure 47: Level 3 25 GeV Turn on curve.
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as a function of event pr.
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Figure 49: Probability for a given number of jets to fire a 25 GeV Level 3 jet trigger
as a function of event pr.
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Figure 50: Closure plot for 3 to 5 jets events (excluding noise jets).
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Figure 51: Closure plot for 3 to 5 jets events (including noise jets).
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A.5 1IP Tagger at Level 3

For double tagged samples, the IP tag tool (IPTag6_JT10) has no turn-on curve and
is flat over the whole range of Hr (see fig. 52 (a)) when measured for events that
have passed the Levell, Level2 and Level 3 jet conditions. For untagged samples
(see fig. 52 (b)) there is a hint of a turn on at low Hr.

| b-tagged vs passing L3 jets | | b-tagged vs passing L3 jets |
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(a) 2 b-tags. (b) Untagged.

Figure 52: (a) Ratio of events passing L3 jet and L3 b-tag (Level3 Event b-tag < 0.05
for runs up to run 223343, 0.4 thereafter) vs events passing the Level3 jet condition
only. The selected events had 3-5 jets with a JES corrected pr of at least 20 GeV
and two offline NN (TIGHT) b-tags. (b) Ratio of events passing L3 jet and L3 b-tag
vs events passing the Level3 jet condition only. No offline b-tags were required.
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B Data Background Comparison

B.1 Low Mass Likelihood

Figures 53 - 61 show comparison plots between data and the predicted background
for the 3, 4 and 5 jet channels for a Higgs mass of 120 GeV.

B.1.1 3 jet events
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Figure 53: Data predicted background comparison for 3 jets, 3 b-tag sample with a
120 GeV Higgs Sample used as signal. Shown is jet pr for the three jets with the
highest pr in the event.
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Figure 54: Data predicted background comparison for 3 jets, 3 b-tag sample with
a 120 GeV Higgs Sample used as signal. Shown is jet n for the three jets with the
highest pr in the event.
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Figure 55: Data predicted background comparison for 3 jets, 3 b-tag sample with a
120 GeV Higgs Sample used as signal. Shown are the variables used to determine
the signal likelihood (see table 13).
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B.1.2 4 jet events
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Figure 56: Data predicted background comparison for 4 jets, 3 b-tag sample with a
120 GeV Higgs Sample used as signal. Shown is jet py for the three jets with the
highest pr in the event.
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Figure 57: Data predicted background comparison for 4 jets, 3 b-tag sample with
a 120 GeV Higgs Sample used as signal. Shown is jet n for the three jets with the
highest pr in the event.
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Figure 58: Data predicted background comparison for 4 jets, 3 b-tag sample with a
120 GeV Higgs Sample used as signal. Shown are the variables used to determine
the signal likelihood (see table 13).
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B.1.3 5 jet events
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Figure 59: Data predicted background comparison for 5 jets, 3 b-tag sample with a
120 GeV Higgs Sample used as signal. Shown is jet py for the three jets with the
highest pr in the event.

64



160 e T 160 P e e T
140F - 140 -
o e 4 - ™ 4
120 it 3 120F b .
E ! ] C ' ]
100F- ¥ = 100f- ¥ E
C =y e b ] C ' ]
80__ II nHra ! . - 80__ I.I! I_'| -
C . FH‘ i + ] C i ! —J- _]: i ]
= - = | - - - - - -
60F L ; 60F I "]‘ i .
: il L 1 : N :l‘. 1
40F : ] 40F 3
20F 208 1 -
955

05 0 05 1 15 2 25 05 0 05 1 15 2 25

40

20

Leading Jet n 2nd Jet
100__ R Signal: hb (m =120 GeV)
80;_ —|— Data
60; -------- Background: bbj+ccj+bbb

- Background: ccj+bbb

- Background: ccj

Figure 60: Data predicted background comparison for 5 jets, 3 b-tag sample with
a 120 GeV Higgs Sample used as signal. Shown is jet n for the three jets with the
highest pr in the event.
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Figure 61: Data predicted background comparison for 5 jets, 3 b-tag sample with a
120 GeV Higgs Sample used as signal. Shown are the variables used to determine
the signal likelihood (see table 13).

66



B.2 High Mass Likelihood

Figures 62 - 67 show comparison plots between data and the predicted background
for the 4 and 5 jet channels for the 180 GeV mass point.

B.2.1 4 jet events
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Figure 62: Data predicted background comparison for 4 jets, 3 b-tag sample with a
180 GeV Higgs Sample used as signal. Shown is jet pr for the three jets with the
highest pr in the event.
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Figure 63: Data predicted background comparison for 4 jets, 3 b-tag sample with
a 180 GeV Higgs Sample used as signal. Shown is jet n for the three jets with the
highest pr in the event.
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Figure 64: Data predicted background comparison for 4 jets, 3 b-tag sample with a
180 GeV Higgs Sample used as signal. Shown are the variables used to determine
the signal likelihood (see table 13).
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B.2.2 5 jet events
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Figure 65: Data predicted background comparison for 5 jets, 3 b-tag sample with a
180 GeV Higgs Sample used as signal. Shown is jet py for the three jets with the
highest pr in the event.
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Figure 66: Data predicted background comparison for 5 jets, 3 b-tag sample with
a 180 GeV Higgs Sample used as signal. Shown is jet n for the three jets with the
highest pr in the event.
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Figure 67: Data predicted background comparison for 5 jets, 3 b-tag sample with a
180 GeV Higgs Sample used as signal. Shown are the variables used to determine
the signal likelihood (see table 13).
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C Data Monte Carlo Comparison

C.1 Low Likelihood Sample

C.1.1 Three jet, two tag sample
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Figure 68: Data Monte Carlo comparison for 3 jets, 2 b-tag sample with a 120 GeV
Higgs Sample used as signal. Shown is jet pr for the three jets with the highest pp
in the event.
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Figure 69: Data Monte Carlo comparison for 3 jets, 2 b-tag sample with a 120 GeV
Higgs Sample used as signal. Shown is jet n for the three jets with the highest pp
in the event.
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Figure 70: Data Monte Carlo comparison for 3 jets, 2 b-tag sample with a 120 GeV
Higgs Sample used as signal. Shown are the variables used to determine the signal
likelihood (see table 13).
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C.1.2 Four jet, two tag sample
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Figure 71: Data Monte Carlo comparison for 4 jets, 2 b-tag sample with a 120 GeV
Higgs Sample used as signal. Shown is jet pr for the three jets with the highest pr
in the event.
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Figure 72: Data Monte Carlo comparison for 4 jets, 2 b-tag sample with a 120 GeV
Higgs Sample used as signal. Shown is jet n for the three jets with the highest pp
in the event.
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Figure 73: Data Monte Carlo comparison for 4 jets, 2 b-tag sample with a 120 GeV
Higgs Sample used as signal. Shown are the variables used to determine the signal
likelihood (see table 13).
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C.1.3 Five jet, two tag sample
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Figure 74: Data Monte Carlo comparison for 5 jets, 2 b-tag sample with a 120 GeV
Higgs Sample used as signal. Shown is jet pr for the three jets with the highest pr
in the event.
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Figure 75: Data Monte Carlo comparison for 5 jets, 2 b-tag sample with a 120 GeV
Higgs Sample used as signal. Shown is jet n for the three jets with the highest pp
in the event.
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Figure 76: Data Monte Carlo comparison for 5 jets, 2 b-tag sample with a 120 GeV
Higgs Sample used as signal. Shown are the variables used to determine the signal
likelihood (see table 13).
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C.1.4 Three jet, three tag sample
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Figure 77: Data Monte Carlo comparison for 3 jets, 3 b-tag sample with a 120 GeV
Higgs Sample used as signal. Shown is jet pr for the three jets with the highest pr
in the event.
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Figure 78: Data Monte Carlo comparison for 3 jets, 3 b-tag sample with a 120 GeV
Higgs Sample used as signal. Shown is jet n for the three jets with the highest pp

in the event.
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Figure 79: Data Monte Carlo comparison for 3 jets, 3 b-tag sample with a 120 GeV
Higgs Sample used as signal. Shown are the variables used to determine the signal
likelihood (see table 13).
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C.1.5 Four jet, three tag sample
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Figure 80: Data Monte Carlo comparison for 4 jets, 3 b-tag sample with a 120 GeV
Higgs Sample used as signal. Shown is jet pr for the three jets with the highest pr
in the event.
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Figure 81: Data Monte Carlo comparison for 4 jets, 3 b-tag sample with a 120 GeV
Higgs Sample used as signal. Shown is jet n for the three jets with the highest pp

in the event.
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Figure 82: Data Monte Carlo comparison for 4 jets, 3 b-tag sample with a 120 GeV
Higgs Sample used as signal. Shown are the variables used to determine the signal
likelihood (see table 13).
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C.1.6 Five jet, three tag sample
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Figure 83: Data Monte Carlo comparison for 5 jets, 3 b-tag sample with a 120 GeV
Higgs Sample used as signal. Shown is jet pr for the three jets with the highest pr
in the event.
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Figure 84: Data Monte Carlo comparison for 5 jets, 3 b-tag sample with a 120 GeV
Higgs Sample used as signal. Shown is jet n for the three jets with the highest pp
in the event.
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Figure 85: Data Monte Carlo comparison for 5 jets, 3 b-tag sample with a 120 GeV
Higgs Sample used as signal. Shown are the variables used to determine the signal
likelihood (see table 13).
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C.2 High Likelihood Sample
C.2.1 Three jet, two tag sample
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Figure 86: Data Monte Carlo comparison for 3 jets, 2 b-tag sample with a 180 GeV
Higgs Sample used as signal. Shown is jet pr for the three jets with the highest pr
in the event.
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Figure 87: Data Monte Carlo comparison for 3 jets, 2 b-tag sample with a 180 GeV
Higgs Sample used as signal. Shown is jet n for the three jets with the highest pp

in the event.
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Figure 88: Data Monte Carlo comparison for 3 jets, 2 b-tag sample with a 180 GeV
Higgs Sample used as signal. Likelihood.
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C.2.2 Four jet, two tag sample
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Figure 89: Data Monte Carlo comparison for 4 jets, 2 b-tag sample with a 180 GeV
Higgs Sample used as signal. Shown is jet pr for the three jets with the highest pr
in the event.
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Figure 90: Data Monte Carlo comparison for 4 jets, 2 b-tag sample with a 180 GeV
Higgs Sample used as signal. Shown is jet n for the three jets with the highest pp
in the event.
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Figure 91: Data Monte Carlo comparison for 4 jets, 2 b-tag sample with a 180 GeV
Higgs Sample used as signal. Shown are the variables used to determine the signal
likelihood (see table 13).
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C.2.3 Five jet, two tag sample
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Figure 92: Data Monte Carlo comparison for 5 jets, 2 b-tag sample with a 180 GeV
Higgs Sample used as signal. Shown is jet pr for the three jets with the highest pr
in the event.
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Figure 93: Data Monte Carlo comparison for 5 jets, 2 b-tag sample with a 180 GeV
Higgs Sample used as signal. Shown is jet n for the three jets with the highest pp
in the event.
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Figure 94: Data Monte Carlo comparison for 5 jets, 2 b-tag sample with a 180 GeV
Higgs Sample used as signal. Shown are the variables used to determine the signal
likelihood (see table 13).

99



C.2.4 Three jet, three tag sample
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Figure 95: Data Monte Carlo comparison for 3 jets, 3 b-tag sample with a 180 GeV
Higgs Sample used as signal. Shown is jet pr for the three jets with the highest pr
in the event.
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Figure 96: Data Monte Carlo comparison for 3 jets, 3 b-tag sample with a 180 GeV
Higgs Sample used as signal. Shown is jet n for the three jets with the highest pp

in the event.
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Figure 97: Data Monte Carlo comparison for 3 jets, 3 b-tag sample with a 180 GeV
Higgs Sample used as signal. Likelihood.
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C.2.5 Four jet, three tag sample
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Figure 98: Data Monte Carlo comparison for 4 jets, 3 b-tag sample with a 180 GeV
Higgs Sample used as signal. Shown is jet pr for the three jets with the highest pr
in the event.
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Figure 99: Data Monte Carlo comparison for 4 jets, 3 b-tag sample with a 180 GeV
Higgs Sample used as signal. Shown is jet n for the three jets with the highest pp
in the event.
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Figure 100: Data Monte Carlo comparison for 4 jets, 3 b-tag sample with a 180 GeV
Higgs Sample used as signal. Shown are the variables used to determine the signal
likelihood (see table 13).
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C.2.6 Five jet, three tag sample
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Figure 101: Data Monte Carlo comparison for 5 jets, 3 b-tag sample with a 180 GeV
Higgs Sample used as signal. Shown is jet pr for the three jets with the highest pr
in the event.
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Figure 102: Data Monte Carlo comparison for 5 jets, 3 b-tag sample with a 180 GeV
Higgs Sample used as signal. Shown is jet n for the three jets with the highest pp
in the event.
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Figure 103: Data Monte Carlo comparison for 5 jets, 3 b-tag sample with a 180 GeV
Higgs Sample used as signal. Shown are the variables used to determine the signal
likelihood (see table 13).
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D Likelihoods

The probability density functions (pdf) used in the likelihood functions are first
smoothed and then interpolated with the help of spline (order 3). Examples of
these pdfs are given in Figs. 104 - 106 for the low mass likelihood and in Figs. 107

- 109 for the high mass likelihood.

D.1 Low Mass Likelihood
D.1.1 3 jet events
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Figure 104: Fits to the kinematic variables in the 3-jet sample. The red (blue) curve
is the signal for a Higgs boson mass of 120 GeV/c? (background) pdfs after 3 tags.
Though the invariant mass of each pairing is not actually used in the likelihood

computation, it is displayed here.
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D.1.2 4 jet events
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Figure 105: Fits to the kinematic variables in the 4-jet sample. The red (blue) curve
is the signal for a Higgs boson mass of 120 GeV/c? (background) pdfs after 3 tags.
Though the invariant mass of each pairing is not actually used in the likelihood
computation, it is displayed here.
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D.1.3 5 jet events
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Figure 106: Fits to the kinematic variables in the 5-jet sample. The red (blue) curve
is the signal for a Higgs boson mass of 120 GeV/c? (background) pdfs after 3 tags.
Though the invariant mass of each pairing is not actually used in the likelihood
computation, it is displayed here.
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D.2 High Mass Likelihood
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Figure 107: Fits to the kinematic variables in the 3-jet sample. The red (blue) curve
is the signal for a Higgs boson mass of 180 GeV/c? (background) pdfs after 3 tags.
Though the invariant mass of each pairing is not actually used in the likelihood

computation, it is displayed here.
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Figure 108: Fits to the kinematic variables in the 4-jet sample. The red (blue) curve
is the signal for a Higgs boson mass of 180 GeV/c? (background) pdfs after 3 tags.
Though the invariant mass of each pairing is not actually used in the likelihood
computation, it is displayed here.
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Figure 109: Fits to the kinematic variables in the 5-jet sample. The red (blue) curve
is the signal for a Higgs boson mass of 180 GeV/c? (background) pdfs after 3 tags.
Though the invariant mass of each pairing is not actually used in the likelihood
computation, it is displayed here.

114



E Taggability

For a jet to be taggable the calorimeter jet must be matched to a track jet, which
in turn is built from ‘good’ tracks, i.e. tracks with p; > 0.5 GeV (plus at least one
track with pr > 1.0 GeV, at least one SMT hit and impact parameters of less than
0.4 cm in z and 0.2 cm (in xy). Generally the taggability in Monte Carlo tends to
be higher than in data, hence we apply the weighting factors show in figs. 110 - 115.
The taggability is parametrised in the product of |n;.| and z,,. If the product is
negative the jet will be pointing back to the centre of the detector and will usually
have good tracking information. For jets pointing outwards, the taggability is also
divided into two regions of |z,,| < 20 cm and 20 < |z,,| < 35 cm. (We discard
events with |z,,| > 35 cm.)

Figure 110: Taggability corrections for b-jets where |n;e| X 2, is negative.
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Figure 111: Taggability corrections for b-jets where |1;¢:| X 2, is positive and |z,,| <
20 cm

Figure 112: Taggability corrections for b-jets where |n;e:| X 2,, is positive and 20 cm
< |zp| < 35 cm.
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Figure 113: Taggability corrections for light jets where |n;e¢| X z,, is negative.

Figure 114: Taggability corrections for light jets where [n;e| X 2,, is positive and
|2p0| < 20 cm
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Figure 115: Taggability corrections for light jets where |;e:| X 2, is positive and 20
cm | |zpy| < 35 cm.
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F Luminosity Reweighting

The analysis requires data and Monte Carlo to have the same instantaneous lumi-
nosity profiles. For this purpose we determine the data and MC luminosity profiles
in our final samples (for an example see fig. 116) and derive an event weight (see
fig. 117). Fig. 118 shows the result of the closure test and Fig. 119 shows the ratio
of the data and MC instantaneous luminosity profiles after reweighting.
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Figure 116: Instantaneous luminosity profiles for data and bbb Monte Carlo.
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Figure 118: Closure plot for luminosity reweighting.
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G Deficit Crosschecks

Several crosschecks have been carried out into the deficit around 130 GeV. The
results of some of these investigations are shown here, specifically the likelihood and
jet variables in the:

e High likelihood region, represented by a likelihood cut > 0.5, see Section G.1.
e Mass window around the deficit, 120 < my, < 140, see Section G.2.1.

e High likelihood region and mass window around the deficit, 120 < my, < 140,
see Section G.2.2.

In addition to these crosschecks the effect of each variable in the likelihood was
tested by removing each variable in turn and retraining the likelihood. No significant
change in the likelihood or deficit was seen.

G.1 High Likelihood Region

The pr, n and likelihood distributions are shown in Figs. 120, 121 and 122 respec-
tively for the high likelihood region. Fig. 123 shows the residuals between the data
and predicted background likelihood variable distributions.
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Figure 120: Data predicted background comparison for 3 jets, 3 b-tag sample with
a 180 GeV Higgs Sample used as signal. Shown is jet pr for the three jets with the
highest pr in the event after a likelihood cut of > 0.5 has been applied.
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Figure 122: Data predicted background comparison for 3 jets, 3 b-tag sample with
a 180 GeV Higgs Sample used as signal. Shown are the variables used to determine
the signal likelihood (see table 13) after a likelihood cut of > 0.5 has been applied.
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Figure 123: Residuals between predicted background and data for 3 jets, 3 b-tag
sample with a 180 GeV Higgs Sample used as signal. Shown are the variables used
to determine the signal likelihood (see table 13) after a likelihood cut of > 0.5 has

been applied.
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G.2 Deficit Mass Region
G.2.1 All Likelihood Region

The pr, n and likelihood distributions are shown in Figs. 124, 125 and 126 respec-
tively for the full likelihood region in a mass window 120 < my, < 140. Fig. 127
shows the residuals between the data and predicted background likelihood variable
distributions.

140

120

100

80

60

40

20

Leading Jet P, [GeV]

40 60 80 100 120 140 160 180 200

Loaesalal]
100 120 140

2nd Jet P, [GeV]

100

80

60

40

20

OO

e Signal: hb (m, = 180 GeV)

—|— Data

-------- Background: bbj+ccj+bbb

- Background: ccj+bbb

10 20 30 40 50 60 70 80 90 10

3rd Jet P, [GeV]

Background: ccj

Figure 124: Data predicted background comparison for 3 jets, 3 b-tag sample with
a 180 GeV Higgs Sample used as signal. Shown is jet pr for the three jets with the
highest pr in the event after a mass window 120 < my, < 140 has been applied.
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Figure 125: Data predicted background comparison for 3 jets, 3 b-tag sample with
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Figure 127: Residuals between predicted background and data for 3 jets, 3 b-tag
sample with a 180 GeV Higgs Sample used as signal. Shown are the variables used to
determine the signal likelihood (see table 13) after a mass window 120 < myg, < 140
has been applied.
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G.2.2 High Likelihood Region

The pr, n and likelihood distributions are shown in Figs. 128, 129 and 130 respec-
tively for the high likelihood region in a mass window 120 < my, < 140. Fig. 131
shows the residuals between the data and predicted background likelihood variable
distributions.
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Figure 128: Data predicted background comparison for 3 jets, 3 b-tag sample with
a 180 GeV Higgs Sample used as signal. Shown is jet pr for the three jets with the
highest pr in the event after a likelihood cut > 0.5 and a mass window 120 < my, <
140 has been applied.
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Figure 130: Data predicted background comparison for 3 jets, 3 b-tag sample with
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Figure 131: Residuals between predicted background and data for 3 jets, 3 b-tag
sample with a 180 GeV Higgs Sample used as signal. Shown are the variables used
to determine the signal likelihood (see table 13) after a likelihood cut > 0.5 and
mass window 120 < my, < 140 has been applied.
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