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Abstract
For performing regression tasks involved in various physics problems, enhancing the precision or
equivalently reducing the uncertainty of regression results is undoubtedly one of the central goals.
Here, somewhat surprisingly, the unfavorable regression uncertainty in performing the regression
tasks of inverse statistical problems is found to contain hidden information concerning the phase
transitions of the system under consideration. By utilizing this hidden information, a new
unsupervised machine learning approach was developed in this work for automated detection of
phases of matter, dubbed learning from regression uncertainty. This is achieved by revealing an
intrinsic connection between regression uncertainty and response properties of the system, thus
making the outputs of this machine learning approach directly interpretable via conventional
notions of physics. It is demonstrated by identifying the critical points of the ferromagnetic Ising
model and the three-state clock model, and revealing the existence of the intermediate phase in the
six-state and seven-state clock models. Comparing to the widely-used classification-based
approaches developed so far, although successful, their recognized classes of patterns are essentially
abstract, which hinders their straightforward relation to conventional notions of physics. These
challenges persist even when one employs the state-of-the-art deep neural networks (NNs) that
excel at classification tasks. In contrast, with the core working horse being an NN performing
regression tasks, our new approach is not only practically more efficient, but also paves the way
towards intriguing possibilities for unveiling new physics via machine learning in a physically
interpretable manner.

1. Introduction

In recent years, the artificial neural network (NN) based machine learning techniques have stimulated the
rapid development of automated data-driven approaches to investigate a wide range of physics problems
[1–3]. As one of the central classes of problems in condensed matter physics and statistical physics,
classifying phases of matter and identifying phases transitions is a major focus of applying both generative
machine learning [4–8] and discriminative machine learning [9–20]. Particularly, approaches utilizing the
power of NNs in performing classification discriminative tasks were developed and succeeded in providing
data-driven evidence on the existence of various phase transitions [9, 10], including the phase transitions
associated with nonequilibrium self-propelled particles [11, 12], topological defects [13–16], many-body
localization [17, 18], strongly correlated fermions [19, 20], etc. And besides the widely-involved classification
tasks, there is yet another fundamental class of discriminative tasks that machine learning can efficiently dealt
with, namely, regression tasks [21]. In fact, applying the machine learning techniques designed for regression
tasks to physics problems is now giving rise to a burgeoning field towards automated theory building, where,

© 2023 The Author(s). Published by IOP Publishing Ltd on behalf of the Institute of Physics and Deutsche Physikalische Gesellschaft

https://doi.org/10.1088/1367-2630/acef4e
https://crossmark.crossref.org/dialog/?doi=10.1088/1367-2630/acef4e&domain=pdf&date_stamp=2023-8-23
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://orcid.org/0000-0002-6629-1969
mailto:weichen.guo@m.scnu.edu.cn


New J. Phys. 25 (2023) 083037 W-C Guo and L He

for instance, the symbolic regression [22–24] was successfully applied to extract the equations of motion
[25], symmetries [26], and conservation laws [27] from various types of data of physical systems.

But despite the exciting development in this context, a quite natural application scenario of machine
learning techniques has received little attention so far, namely, classifying phases of matter and identifying
phases transitions by utilizing the power of NNs in performing regression tasks [28–31]. Currently, to detect
phases of matter with machine learning, the widely-used approaches usually train the NN to perform a
certain classification task [9, 10]. In spite of their successes, they could generally face the lack of
interpretability as the classes of patterns recognized by them are essentially abstract, and hence cannot
assume straightforward relation to conventional notions of physics [32–38]. For instance, the supervised
learning-with-blanking approach [9, 10] investigates phase transitions by examining the intersection of NN’s
binary classification confidences. But to relate this intersection, which separates two recognized classes, to the
actual phase transition point between two distinct phases of matter, it requires additional system-specific
knowledge, such as the number of existing phases, the absence or presence of phase separation and crossover,
etc. Similarly, the unsupervised learning-by-confusion approach [10] and the unsupervised scanning-probe
approach [39] investigate phase transitions by contrasting NN’s recognition performance in the binary
classification tasks with different assumed targets. Yet, relating the optimal target to a specific phase
transition still necessitates external physical information beyond the scope of these approaches. These
challenges persist even when one employs the state-of-the-art deep NNs that excel at classification tasks.
While for the NNs performing regression tasks, in contrast, the readily interpretable meaning of their
outputs can usually be traced back to the regression tasks themselves straightforwardly. Taking the NNs
designed for solving the inverse statistical problem (ISP) [40] for example, they are trained to perform
regression tasks of reconstructing certain system parameters from given samples of observed system
configurations, with their outputs naturally holding the same meaning as the system parameters they try to
reconstruct. In these regards, the power of NNs in performing regression tasks might shed new light on
automated detection of phases of matter. Introducing a novel regression-based approach offers opportunities
to complement the widely-used classification-based approaches by enhancing the interpretability of results
from a physical standpoint. This thus raises the fundamental and intriguing question of whether and how
phase transitions can be unsupervisedly revealed by NN-based regression.

Here, this question is addressed for the prototypical regression tasks in ISP performed by NNs. To date,
significant efforts have been made to apply machine learning techniques to ISP with a primary focus on
accurately and precisely inferring system parameters in various models, such as inferring the coupling
strengths in spins systems [40–46], in monomer-dimer systems [47], and in restricted Boltzmann machine
[48]. Other applications involved inferring the single-particle spectral density function from Green’s
functions [49], and inferring the disorder potential from quantum transport properties [50], etc. In these
previous investigations, enhancing the precision or equivalently reducing the uncertainty of the regression
results was regarded as one of the central goals. But somewhat surprisingly, this unfavorable regression
uncertainty is found to contain hidden information that can be utilized to reveal possible phase transitions.
In this work, these findings shall be demonstrated in the ferromagnetic Ising model and q-state clock models.
The former exhibits a second-order phase transition, whose critical temperature is TC = 2/ ln(1+

√
2)(J/kB)

[51]. The q-state clock models also exhibit this transition with small q (e.g. q= 3), while with slightly larger q
(e.g. q= 6,7), it exhibits two Berezinskii-Kosterlitz-Thouless (BKT) phase transitions with an intermediate
phase [52–54]. These many-body models of interacting spins are not only important in condensed matter
physics and statistical physics, but in recent years also typically employed to examine the ability of new
machine learning approaches [1–3].

Taking the ISP associated with the Ising model (also known as the inverse Ising problem [40–46]) for
instance, it asks the question of what the possible temperature is for a given spin configuration. For any spin
configuration generated probabilistically, it does not correspond to an unique temperature, which thus gives
rise to intrinsic regression uncertainty for the reconstructed temperatures (see equation (2) and the error
bars in the inset of figure 1(b)). As demonstrated in this work in the cases of the ferromagnetic Ising model
(see figure 1) and the three-state clock model (see figure 2(b)), the position of the non-trivial minimum of
regression uncertainty directly corresponds to the critical point of the continuous phase transition of the
system. It is further shown that the regression uncertainty for reconstructing temperatures of the six-state
and seven-state clock models (see figures 2(c) and (d)) assumes two non-trivial minima, respectively, which
can provide a new type of data-driven evidence on the existence of the intermediate phase in these systems.
These findings clearly suggest that the regression uncertainty in ISP generally contains non-trivial hidden
information. By utilizing this hidden information, an unsupervised machine learning approach was
developed in this work for automated detection of phases of matter, dubbed learning from regression
uncertainty (LFRU), which is distinguished from the various classification-based machine learning
approaches developed so far [9–20, 39, 55–58]. This is achieved by revealing an intrinsic connection between
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regression uncertainty and response properties of the system, thus making the outputs of this machine
learning approach directly interpretable via conventional notions of physics (noticing however that the
employed NNs themselves still remain not interpretable). Moreover, since the implementation of this
approach is robust against different choices of the NN architecture, it is expected that state-of-the-art
developments in the field of artificial intelligence and data science can be readily exploited to automatically
detect phases of matter in a physically interpretable manner via LFRU.

The rest of this paper is organized as follows: In section 2, the hidden information in regression
uncertainty is presented, the intrinsic connection between regression uncertainty and response properties is
discussed, the generic application of regression uncertainty in learning continuous phase transitions is
shown. In section 3, how phase transitions in systems with possible intermediate phases can be investigated
with the hidden information in regression uncertainty is further discussed, and its limitation is clarified. In
section 4, conclusions and outlooks are given.

2. Identify phase transitions from regression uncertainty

To see concretely how the regression uncertainty in ISP can be utilized to reveal possible phase transitions, let
us start with the ISP in the prototypical ferromagnetic Ising model H=−J

∑
⟨i,j⟩ sisj, where the Ising spins

si =±1 are located on a square lattice with linear size L and periodic boundary condition imposed. The
coupling strength J= 1 is set as the energy unit in the following.

As the inverse of generating spin configurations that satisfy the probability distribution exp(−H/T)/Z
(Z≡

∑
{si} exp(−H/T) and the Boltzmann constant kB is set to be 1) at a given temperature T, the ISP in

this case asks the question of what the possible temperature is for a given spin configuration (see figure 1(a)
for instance), hence naturally corresponds to a prototypical regression task. This regression task is performed
by training the NN as an L× L→ 1 map from the set of spin configurations to the set of reconstructed
temperatures denoted by TR. During the training process of the NN, a large number of its parameters are
optimized by minimizing a loss function. The mean square error (MSE) [21] is employed as the loss function
L here for instance, i.e.

L= ⟨(T−TR)
2⟩, (1)

where ⟨·⟩ denotes the average over all the samples in the training dataset (see appendices A and B for more
technical details concerning the data generation, NN training, the architecture of NN, and the loss function).

2.1. Hidden information in regression uncertainty
Due to the intrinsic statistical characteristic of ISP, for any set of spin configurations, i.e. samples, generated
at a given temperature T according to the probability distribution exp(−H/T)/Z, some of its spin
configurations can also appear in other sets of spin configurations generated at temperatures that are
different from T. As a direct result, the reconstructed temperatures TR for each spin configuration in the
same set generally does not assume the same value. This thus gives rise to an intrinsic uncertainty of the
regression results. Straightforwardly, one can use the standard deviation U(T) of well-trained NN’s outputs
to characterize this regression uncertainty at a given temperature T,

U(T)≡
√
⟨(TR −⟨TR⟩T)2⟩T, (2)

where ⟨·⟩T denotes the average over all the samples generated at T in the test dataset. For instance, as one can
see from the error bars and the range of the colored error band in the inset of figure 1(b), although the
regression uncertainty U(T) can be generally very small for the well-trained NN that assumes good
performance in reconstructing the temperature, it always exists.

Naturally, the regression uncertainty is unfavorable for reconstructing the precise temperature T from
given spin configurations. But somewhat surprisingly, this unfavorable regression uncertainty is found to
contain hidden information that can be utilized to identify the critical point TC of the ferromagnetic phase
transition of the system. As one can see from figure 1(b), the temperature dependence of regression
uncertainty U(T) assumes a non-trivial M-shape for reconstructing temperatures T ∈ [2.0,2.5] with the
temperature spacing∆T= 2× 10−2. In particular, one can find that its valley appears at T= 2.26± 0.01
(the resolution is determined by∆T, see appendix C for a finite-size analysis with a higher resolution), which
matches the critical temperature TC = 2/ ln(1+

√
2)≈ 2.269 [51] of the two-dimensional ferromagnetic

Ising model very well. This strongly suggests that the temperature dependence of regression uncertainty
U(T) contains non-trivial information, i.e. the position of the valley, which can be utilized to reveal possible
phase transitions.
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Figure 1. Learning the Ising transition from regression uncertainty. (a) Typical real-space configurations (samples processed
directly by the NN) of the ferromagnetic Ising model. (b) Temperature dependence of regression uncertainty U(T) for
reconstructing temperatures T ∈ [2.0,2.5] (∆T= 2× 10−2) of Ising model with L= 120 (corresponding to the red curve),
L= 140 (green curve), L= 160 (blue curve), L= 180 (purple curve), and L= 200 (cyan curve). The curve of regression
uncertainty U(T) assumes a non-trivial M-shape and the valley appears at T= 2.26± 0.01 which matches the critical
temperature TC = 2/ ln(1+

√
2)≈ 2.269, suggesting that it contains non-trivial information, i.e. the position of the valley,

which can be utilized to reveal possible phase transitions. The black curve corresponds to the temperature dependence of the
system’s heat capacity C(T) with L= 180. Inset: Regression results of a well-trained NN for the corresponding ISP with L= 120.
The reconstructed temperature TR is very close to the target T (the diagonal line represents the ideal regression results TR = T for
the ISP), but there always exists an intrinsic regression uncertainty U(T) as shown by the error bars and the range of the colored
error band. (c) Schematic illustration of the origin of the hidden information in regression uncertainty. In a simple scenario of
reconstructing two temperatures T1 and T2 (T1 < T2 < TC), which involves two sets of an equal number of samples (illustrated
by squares) generated probabilistically at T1 and T2, respectively, there can be n1 samples in the set of T1 with relatively high
energy that are essentially indistinguishable from n2 samples in the set of T2 with relatively low energy. To deal with these n1 + n2
indistinguishable samples (illustrated by red squares), a simple but still decent way for the NN to accomplish its regression task is
to associate them with their weighted average temperature. As a result, their TR tends to be closer to T2 rather than T1 due to
n2 > n1 since the heat capacity that characterizes the strength of thermal fluctuations satisfies C(T2)> C(T1) in this case, which
leads to U(T2)< U(T1). This indicates that the temperature at which the heat capacity C(T) reaches its maximum should match
exactly the temperature at which the regression uncertainty U(T) reaches its minimum as shown in (b).

2.2. Connection between regression uncertainty and response properties
To gain more intuitions for understanding the behavior of regression uncertainty shown in figure 1(b) and
see the possible origin of its non-trivial information concerning phase transitions, let us consider the training
process of the NN in a simple scenario where it is fed with only two sets of an equal number of samples
generated at temperatures T1 and T2 near the critical temperature TC with T1 < T2 < TC. Since the samples
(illustrated by squares in figure 1(c)) in these two sets are generated probabilistically, one expects that certain
amount of samples, say n1 samples, that correspond to relatively high energy in the set of T1 are essentially
indistinguishable from certain amount of samples, say n2 samples, that correspond to relatively low energy in
the set of T2 (illustrated by red squares in figure 1(c)). These essentially indistinguishable samples make it
impossible for any algorithm to perform the ISP regression perfectly (corresponding to L= 0).

To give a reconstructed temperature TR to these n1 + n2 indistinguishable samples, one can image that in
practice, the NN could adopt some oversimplified and crude ways if it is totally confused, e.g. associating all
with T1 (or T2) without distinction or just randomly guessing. Beyond these bad candidates, a simple but still
decent way for the NN to accomplish its regression task is to associate the n1 + n2 indistinguishable samples
with their weighted average temperature TR = (n1T1 + n2T2)/(n1 + n2). Indeed, the NN can learn better
ways by itself, but if its actual output TR largely departs from this weighted average, one can hardly expect an
overall good performance of ISP. Further noticing that in the data generation according to the probability
distribution exp(−H/T)/Z, stronger thermal fluctuations make those samples with their energy deviating
from the average energy of the set more easily to be accessed, one thus expects n2 > n1 since thermal
fluctuations at T2 are stronger than T1 for T1 < T2 < TC. Then the weighted average is closer to T2 rather
than T1, so is the reconstructed temperature TR. This thus gives rise to a smaller regression uncertainty at T2

compared to the one at T1, i.e. U(T2)< U(T1). Similarly, one expects the opposite for the case TC < T1 < T2,
i.e. U(T1)< U(T2). Moreover, the strength of thermal fluctuations at different temperature T can be
characterized by the response property of the system with respect to the temperature, i.e. by the heat capacity
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C(T) = (⟨H2⟩− ⟨H⟩2)/(NT2). This indicates that a larger heat capacity corresponds to a smaller regression
uncertainty, and in particular, the temperature at which the heat capacity C(T) reaches its maximum should
match exactly the temperature at which the regression uncertainty U(T) reaches its minimum. As shown by
the heat capacity curve in figure 1(b), the temperature of the peak of C(T) indeed assumes the same value as
the one of the valley of U(T). Actually, one can also see in the following that the valley position of regression
uncertainty U(T) generally show a consistency with the peak position of heat capacity C(T), not only in the
case of the ferromagnetic Ising model, but in the cases of three-, six-, and seven-state clock models as well,
supporting the above understanding on the origin of the hidden information in regression uncertainty. It is
worth mentioning that although the connection between U(T) and C(T) discussed above generally hold
true, in practical calculations, since the temperature region where the regression is performed is a finite
interval, the behavior of U(T) can also be influenced by the boundary effect of the region. This boundary
effect in fact gives rises to the maxima of U(T) shown in figure 1(b). Consider for instance the regime below
TC, one observes that as the temperature increases, the regression uncertainty U(T) increases, and reaches a
local maximum. The origin of this behavior can be understood by comparing the regression uncertainty at
the left boundary of the temperature region (T= 2.0) with the one at the temperature that is a bit away from
the left boundary (e.g. T= 2.02). U(T= 2.02) is larger than U(T= 2.0) in this case, since when the NN tries
to reconstruct the temperature at T= 2.02, it is confused by both the similar configurations that appear at
T= 2.0 and the ones that appear at temperatures higher than T= 2.02, while for reconstructing the
temperature at the left boundary T= 2.0, it is only confused by the similar configurations that appear at
temperatures higher than T= 2.0. As shown in more detailed investigations on this boundary effect
presented in appendix B (see in particular figure 4(b)), the maxima of U(T) depend on the choice of the
temperature region where the regression is performed, while in sharp contrast, the temperature that
corresponds to the non-trivial minimum of U(T) remains invariant at the critical temperature TC.

2.3. The generic application of regression uncertainty in learning continuous phase transitions
The above investigations on ISP in the ferromagnetic Ising model reveal an intrinsic connection between
regression uncertainty and response properties of the system. By utilizing this connection, a new type of
unsupervised machine learning approach LFRU was established for revealing possible phase transitions. To
further demonstrate LFRU as a generic tool for identifying continuous phase transitions, let us consider the
q= 3 case of the q-state clock model Hq =−J

∑
⟨i,j⟩ cos(θi − θj), where θi = 2πni/q denotes the q-valued

spin located at the lattice site i with ni = 0,1, . . . ,q− 1. The generic ability of deep NNs in image recognition
enables LFRU to be directly applied to this model with no additional design. Actually, the training and testing
processes are exactly the same in practice as the ones involved in studying the ferromagnetic Ising model.
Here, the NN is trained to perform the ISP regression for reconstructing temperatures T ∈ [1,2]
(∆T= 5× 10−2) of the three-state clock model, then test its performance and calculate the corresponding
regression uncertainty. As one can see from figure 2(b), the temperature dependence of regression
uncertainty U(T) in this case also assumes an M-shape. In particular, the valley position T= 1.500± 0.025
matches the critical temperature TC = 3/(2 ln(1+

√
3))≈ 1.492 [59–61] of the continuous phase transition

point of this system.
Remarkably, although the ISP regression algorithm itself is supervised since there are labels attached to

each sample, LFRU can still be regarded as an unsupervised approach since those labels (e.g. temperature T,
rather than phase A/B) do not provide the NN with any prior physical knowledge about the actual target of
LFRU, i.e. possible phase transitions. As already shown concretely in the ferromagnetic Ising model and the
three-state clock model, one directly trains the NN to perform regression tasks of the corresponding ISP and
then calculates the regression uncertainty of the well-trained NN afterward (see equation (2) for instance).
By the non-trivial minimum of regression uncertainty, the key information concerning possible phase
transitions is unsupervisedly revealed (see appendix D for a blank comparison with no phase transition
involved). For continuous phase transitions, the corresponding response functions diverge (reach the
maximum for finite-size systems) at the critical point, so the position of the non-trivial minimum of
regression uncertainty directly corresponds to the critical point of phase transitions (see figures 1(b)
and 2(b) for instance). In particular, when applying LFRU, one does not need to calculate the response
functions such as the heat capacity, hence LFRU can assume practical advantages over conventional
approaches in revealing possible phase transitions of the systems where directly calculating the heat capacity
or other relevant observables is highly non-trivial or even impossible, e.g. fermion or spin systems with sign
problems [19, 20, 62]. Moreover, noticing that LFRU does not assume the number of existing phases in the
system under consideration, one could directly use it to investigate complex physical systems with possible
intermediate phases [63–68]. As one shall see in the concrete example presented in the following, LFRU can
indeed reveal the key information concerning intermediate phases.
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Figure 2. Learning the q-state clock model from regression uncertainty. (a) Typical real-space configurations of the six-state clock
model for instance. (b) Temperature dependence of regression uncertainty U(T) for reconstructing temperatures T ∈ [1,2]
(∆T= 5× 10−2) of the three-state clock model with L= 100. The curve of regression uncertainty U(T) (red curve) also assumes
an M-shape and the valley appears at T= 1.500± 0.025 which matches the critical temperature TC = 3/(2 ln(1+

√
3))≈ 1.492,

suggesting that it also contains non-trivial information, i.e. the position of the valley, which can serve as a generic tool for
identifying continuous phase transitions. The black curve corresponds to the temperature dependence of the system’s heat
capacity C(T). (c) Temperature dependence of regression uncertainty U(T) for reconstructing temperatures T ∈ [0.2,1.4]
(∆T= 2× 10−2) of the six-state clock model with L= 100. The curve of regression uncertainty U(T) (red curve) assumes two
successive M-shapes in this case, indicating that the six-state clock model assumes three different phases, i.e. an intermediate phase
that is absent in its two-state (Ising) and three-state counterparts. The positions of the two minima of regression uncertainty
U(T) correspond to the two maxima of the system’s response function with respect to the temperature, i.e. the heat capacity C(T)
(black curve), hence not to the BKT transition points in this system. (d) Analogs of (c), but for the seven-state clock model.

3. Reveal intermediate phases from regression uncertainty

Let us now discuss how phase transitions in systems with possible intermediate phases can be investigated by
LFRU. To this end, the q= 6,7 cases of the q-state clock model are focused here for instance. These models
exhibit an intermediate vortex-antivortex condensed BKT phase between paramagnetic and ferromagnetic
phases [52–54], and hence in recent years are typically employed to examine the ability of new machine
learning approaches [15, 69–73].

To investigate the temperature-driven phase transitions in the six-state and seven-state clock models,
firstly, the NN is trained to perform the ISP regression for reconstructing the temperature T in these two
models, and then their respective regression uncertainty are calculated. As one can see from the temperature
dependence of regression uncertainty U(T) shown in figures 2(c) and (d), both the U(T) curves assume two
successive M-shapes. Such a structure with two non-trivial minima, instead of one, is in sharp contrast to the
ones presented in figures 1 and 2(b), indicating that the six-state and seven-state clock models assume three
different phases, i.e. an intermediate phase that is absent in their two-state (Ising) and three-state
counterparts. This thus provides a new type of data-driven evidence on the existence of the intermediate
phase in these two models, corroborating the results in previous investigations employing conventional
approaches such as the ones utilizing the helicity modulus [74, 75], the Fisher zeros [76, 77], the
entanglement entropy of the fixed-point matrix-product-state [78], etc.

At this stage one may incline to associate the two minima of regression uncertainty U(T) shown in
figure 2(c) or 2(d) with the two transition points of the six-state or seven-state clock model. But thanks to the
physical interpretability of LFRU’s outputs, it is clear that the two minima of regression uncertainty U(T)
should correspond to the two maxima of the system’s response function with respect to T, i.e. the heat
capacity C(T), which is indeed the case as shown by the vertical lines in figures 2(c) and (d). Noticing that
the phase transitions associated with the intermediate phase in these two models are of the BKT type,
i.e. driven by topological defects [78, 79], the positions of the two maxima of heat capacity C(T) in fact do
not exactly match the critical temperatures [78, 79], indicating that the positions of the two minima of
regression uncertainty U(T) in figures 2(c) and (d) should not be interpreted as the BKT transition points.
This on the one hand clarifies that quantitatively identifying critical points via LFRU is restricted to
continuous phase transitions, and on the other hand provides data-driven evidence that the transitions in
these systems are not of the Landau type, corroborating recent investigations [69, 77–79].
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Finally, another remarkable aspect of LFRU’s implementation to highlight is the robustness against
different choices of the NN architecture. All the machine learning results presented in figures 1 and 2 are
obtained by employing a widely-used NN that is known as ResNet [80]. In Appendix A, the same analysis is
performed employing another type of widely-used NN that is known as GoogLeNet [81]. Their
corresponding results agree very well with each other, suggesting that state-of-the-art developments in the
field of artificial intelligence and data science can be readily exploited to automatically detect phases of
matter in a physically interpretable manner via LFRU.

4. Conclusions

The ISP usually has a primary focus on accurately and precisely inferring system parameters, and thus the
uncertainty of regression results was naturally considered as unfavorable for performing such regression
tasks. However, this unfavorable regression uncertainty actually assumes an intrinsic connection to the
system’s response properties, making it accommodate crucial information concerning possible phase
transitions of the system under consideration. This enables the development of a fundamentally new type of
generic unsupervised machine learning approach LFRU for automated detection of phases of matter, which
is based on regression instead of classification and produces physically interpretable results, as manifested
concretely in the cases of Ising model and the three-, six-, and seven-state clock models. The working
mechanism of this approach is quite general, so its application is not restricted to temperature-driven
transitions investigated here. Moreover, noticing that NNs can easily deal with not only the data generated
from numerical simulations but also experimental data [82], including both the real optical imaging [83]
and preprocessed physical configurations such as snapshots of the many-body density matrix [84], hence
LFRU is expected to be available for analyzing actual experiments as well. In addition, various possible phase
transitions in a wide range of nonequilibrium complex many-body systems [3, 85–88], such as the active
matter systems described by the Vicsek model [89] consisting of self-propelled particles, can likewise be
investigated via this approach [90]. In these regards, we believe that our findings will stimulate further efforts
in both developing and applying physically interpretable machine learning approaches to unveil new physics
in both equilibrium and nonequilibrium complex many-body systems.
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Appendix A. Data generation and NN training

In this work, the data generation for the ferromagnetic Ising model was done by Monte Carlo simulations
using the Swendsen-Wang algorithm [91, 92] on the Ising Hamiltonian H with periodic boundary condition
imposed. For the ferromagnetic Ising model with each system size L= 120,140,160,180,200, there were
7× 103 samples of the steady state spin configuration generated at each temperature T in the temperature
region [2.0,2.5] with the temperature spacing kept as∆T= 2× 10−2, and in the temperature region
[2.25,2.30] with∆T= 2× 10−3, respectively. These samples were converted to images as shown in
figure 1(a), where the blue or red at each pixel represents the spin si on the ith lattice site, and then divided
into three categories in the ratio of 5:1:1 forming the training, validation, and test datasets [21].

The data generation for the q-state clock model was done by Monte Carlo simulations on the
Hamiltonian Hq with periodic boundary condition imposed. For q= 3 with L= 100, there were 7× 103

samples of the steady state spin configuration generated at each temperature T in the temperature region
[1,2] with∆T= 5× 10−2. For q= 6,7 with L= 100, there were 7× 103 samples of the steady state spin
configuration generated at each temperature T in the temperature region [0.2,1.4] with∆T= 2× 10−2,
respectively. These samples were also converted to images as shown in figure 2(a), where the cyclic color at
each pixel represents the planar angle θi on the ith lattice site, and then divided into three categories in the
same ratio as above forming the datasets.
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Figure 3. Analogs of figures 1(b) and 2(b)–(d), but obtained by employing GoogLeNet instead of ResNet. (a) Temperature
dependence of regression uncertainty U(T) for reconstructing temperatures T ∈ [2.0,2.5] (∆T= 2× 10−2) of Ising model with
L= 120 (corresponding to the red curve), L= 140 (green curve), L= 160 (blue curve), L= 180 (purple curve), and L= 200 (cyan
curve). The curve of U(T) assumes a non-trivial M-shape and the valley appears at T= 2.26± 0.01 which also matches the
critical temperature TC = 2/ ln(1+

√
2)≈ 2.269 very well. Inset: Regression results of a well-trained GoogLeNet for the

corresponding ISP, i.e. reconstructing temperatures T ∈ [2.0,2.5] (∆T= 2× 10−2) of Ising model with L= 120. The error bars
and the range of the colored error band represent the regression uncertainty U(T). (b) Temperature dependence of regression
uncertainty U(T) for reconstructing temperatures T ∈ [1,2] (∆T= 5× 10−2) of the three-state clock model with L= 100. The
curve of U(T) (red curve) also assumes an M-shape and the valley appears at T= 1.500± 0.025 which matches the critical
temperature TC = 3/(2 ln(1+

√
3))≈ 1.492 of the continuous phase transition of this system. (c) Temperature dependence of

regression uncertainty U(T) for reconstructing temperatures T ∈ [0.2,1.4] (∆T= 2× 10−2) of the six-state clock model with
L= 100. The curve of U(T) (red curve) assumes two successive M-shapes in this case, and the positions of the two minima of
U(T) correspond to the two maxima of the system’s heat capacity C(T) (black curve). (d) Analogs of (c), but for the seven-state
clock model. These two employed NNs, namely, ResNet and GoogLeNet, have very different designs for the feature extraction, but
their results match very well, manifesting that the implementation of LFRU is robust against different choices of the NN
architecture.

Using these datasets, two widely-used NNs are employed, namely, ResNet [80] and GoogLeNet [81], to
perform regression tasks of ISP. The results obtained by ResNet are shown in figures 1 and 2 in the main text,
and the results obtained by GoogLeNet are shown in Figure 3. These NNs are similarly trained by using the
Adam optimizer [93] traversing the training dataset for 10 epochs at a learning rate α= 10−3, together with
a validation at each epoch traversing the validation dataset. After that, the samples in the test datasets are
used to calculate the regression uncertainty U(T). All the machine learning results in this work are averaged
over 20 independent training and testing processes.

Appendix B. Loss function, and the maxima of regression uncertainty

In the main text, the MSE loss function L= ⟨(T−TR)
2⟩ was employed to train the NN for instance. Here,

for the sake of completeness, the same analysis is performed employing the mean absolute error (MAE) loss
function L= ⟨|T−TR|⟩, which is another widely-used loss function that is suitable for regression tasks.
Their results are presented in figure 4(a). For reconstructing temperatures T ∈ [2.0,2.5] (∆T= 2× 10−2) of
Ising model with L= 120, these two different choices of loss function give rise to similar behavior of
regression uncertainty. In particular, the corresponding valley positions of regression uncertainty U(T) are
numerically the same. This thus indicates that the signals generated by LFRU concerning possible phase

8



New J. Phys. 25 (2023) 083037 W-C Guo and L He

Figure 4. (a) Temperature dependence of regression uncertainty U(T) for reconstructing temperatures T ∈ [2.0,2.5]
(∆T= 2× 10−2) of Ising model with L= 120 obtained by using the mean square error (MSE) and the mean absolute error
(MAE) loss functions to train ResNet, respectively. Their valley positions of regression uncertainty U(T) are numerically the
same, suggesting that LFRU’s implementation is robust against different reasonable choices of the loss function. (b) Temperature
dependence of regression uncertainty U(T) for reconstructing temperatures T ∈ [2.00,2.40] (corresponding to the black curve),
T ∈ [2.00,2.46] (red curve), T ∈ [2.04,2.50] (green curve), and T ∈ [2.10,2.50] (blue curve), respectively, of Ising model with
L= 120,∆T= 2× 10−2. Maxima of regression uncertainty U(T) depend on the choice of the temperature region where the
regression is performed, while in sharp contrast, the temperature that corresponds to the non-trivial minimum of U(T) remains
invariant at T= 2.26± 0.01. These results suggest that the boundary effect of the parameter region only imposes noticeable
influences on the maxima positions of regression uncertainty, while as long as there exists at least two phases in the parameter
region where the regression is performed, the LFRU’s implementation and the valley positions of regression uncertainty, i.e. the
critical point predicted via LFRU, are robust against different reasonable choices of the parameter region.

transitions are robust against different choices of the loss function, as long as the NN trained with the loss
function can achieve a good performance in reconstructing the system parameter.

Moreover, to better understand the origin of the maxima of regression uncertainty, the boundary effect
of the parameter region where the regression is performed is investigated. It can be seen clearly from
figure 4(b) by comparing the behaviors of regression uncertainty U(T) for respectively reconstructing
temperatures T ∈ [2.00,2.40], T ∈ [2.00,2.46], T ∈ [2.04,2.50], T ∈ [2.10,2.50] of Ising model. Although the
valley of U(T) in these cases remains invariant at the critical temperature TC, the hills of U(T) are indeed
sensitive to such slight changes of the temperature region, hence their corresponding temperatures do not
assume a particular physical significance.

Appendix C. Finite-size analysis

Temperatures T ∈ [2.0,2.5] (∆T= 2× 10−2) of Ising model were reconstructed in figure 1(b) in the main
text. Here, a detailed check in the vicinity of TC with a higher resolution is performed. As one can see from
figure 5(a), for reconstructing temperatures T ∈ [2.25,2.30] with∆T= 2× 10−3, the temperature
dependence of regression uncertainty U(T) also assumes the M-shape. According to its valley, the predicted
critical temperature TC(L) for each system size is TC(L= 120) = 2.278± 0.001, TC(L= 140,160,180) =
2.276± 0.001, TC(L= 200) = 2.274± 0.001. The maximum position of C(T) shown in figure 5(b) shifts
among different system sizes due to finite-size effects, but the intrinsic connection between regression
uncertainty and response properties ensures that the position of the valley of U(T) in figure 5(a) keeps
matching the maximum position of C(T) irrespective of the system size. These finite-size data of TC(L)
are fitted as a function of 1/L as shown in the inset of figure 5(a), which leads to an estimation of
TC = 2.270± 0.001 (the resolution is determined by∆T) for the critical temperature in the thermodynamic
limit.

Appendix D. Blank comparison and the performance on ISP

For a blank comparison, LFRU is applied here on the ferromagnetic Ising model concerning solely the
low-temperature region [2.0,2.2] (∆T= 2× 10−2) employing both ResNet [80] and GoogLeNet [81],
respectively. As one can see in figure 6(a), the temperature dependence of regression uncertainty U(T)
assumes a single maximum and no non-trivial minimum, namely, only the boundary effect of the parameter
region exhibits signs. This is consistent with the fact that only one phase, i.e. the ferromagnetic phase, exists
with no phase transition in the temperature region [2.0,2.2]. Similar results are obtained concerning solely
the high-temperature region [2.3,2.5] (∆T= 2× 10−2) that corresponds to only the paramagnetic phase, as
shown in figure 6(b). These results verify that the non-trivial minimum of regression uncertainty in
performing regression tasks of ISP is indeed an unsupervised signal for revealing possible phase transitions of
the system under consideration.

It is also worth mentioning that the signals generated by LFRU concerning possible phase transitions are
based on the NN’s good performance on ISP. Such a performance is not guaranteed by an arbitrary NN.
Here, a poor performance is deliberately produced (see figure 6(d)) concerning the temperature region
[2.0,2.5] (∆T= 2× 10−2) on the ferromagnetic Ising model with L= 120. This is obtained by using a very
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Figure 5. (a) Temperature dependence of regression uncertainty U(T) for reconstructing temperatures T ∈ [2.25,2.30]
(∆T= 2× 10−3) of Ising model with L= 120 (corresponding to the red curve), L= 140 (green curve), L= 160 (blue curve),
L= 180 (purple curve), and L= 200 (cyan curve). The valley of U(T) appears at T= 2.278± 0.001 for L= 120, at
T= 2.276± 0.001 for L= 140,160,180, at T= 2.274± 0.001 for L= 200. Inset: Fitting of valley position TC(L) of regression
uncertainty U(T) as a function of 1/L, which leads to an estimation of TC = 2.270± 0.001 for the critical temperature in the
thermodynamic limit. (b) System’s heat capacity C(T) within [2.25,2.30] (∆T= 2× 10−3) with different system sizes. These
results indicate that LFRU is applicable for both the extensive search for phase transitions within a relatively large parameter
ranges (corresponding to relatively large∆T), as well as for the quantitative analysis within the vicinity of critical points
(corresponding to relatively small∆T).

Figure 6. (a) Temperature dependence of regression uncertainty U(T) for reconstructing temperatures T ∈ [2.0,2.2]
(∆T= 2× 10−2) of Ising model with L= 120. Only the ferromagnetic (FM) phase exists in this temperature region, so the curve
of U(T) assumes no non-trivial minimum. The solid curve and the dashed curve represent the results obtained by ResNet and
GoogLeNet, respectively. (b) Analogs of (a), but concerning the high-temperature region [2.3,2.5] where only the paramagnetic
(PM) phase exists. These results confirm that LFRU does not require prior system-specific knowledge about the number of
existing phases as a given condition. (c) Temperature dependence of regression uncertainty U(T) for reconstructing temperatures
T ∈ [2.0,2.5] (∆T= 2× 10−2) of Ising model with L= 120 obtained by using a very simple fully-connected NN that assumes a
deliberately produced poor performance on ISP. This curve of U(T) looks similar to the ones presented in (a) and (b) with no
phase transition involved, suggesting that the NN’s good performance on ISP is a prerequisite of LFRU for automated detection of
phases of matter. (d) Regression results corresponding to (c). The reconstructed temperature TR largely departs from the target
T (the diagonal line represents the ideal regression results TR = T for the ISP). The error bars and the range of the colored error
band represent the regression uncertainty U(T), but here the regression uncertainty no longer contain hidden information that
can be utilized to reveal possible phase transitions, since this NN fails to accomplish its regression task.

simple fully-connected NN, which consists of an input layer with 3L2 neurons (3 for RGB), a hidden layer
with L neurons (rectified linear unit as the activation function, batch normalization applied) [21], and an
output layer with only one neuron. It is worth mentioning that the fully-connected NN might also perform
well after fine-tuning, but a poor performance is needed here for technical discussions. As one can see from

10



New J. Phys. 25 (2023) 083037 W-C Guo and L He

figure 6(c), when the NN cannot well accomplish its regression task of ISP, the resulting behavior of
regression uncertainty U(T) looks similar to the ones presented in figures 6(a) and (b) with no phase
transition involved. However, the temperature region under consideration in figure 6(c) is indeed across TC,
suggesting that one cannot distinguish whether a single peak of U(T) is associated with a phase transition or
not merely by monitoring the regression uncertainty U(T) itself. A reasonable judgment is that any
investigation according to the information extracted from a poor performance will suffer from a lack of
legitimacy. Therefore, the NN’s good performance on ISP is a prerequisite of LFRU for automated detection
of phases of matter.

Appendix E. Comparison with the learning-by-confusion approach

Here in this appendix, LFRU is directly compared with the learning-by-confusion approach [10], which is
also an unsupervised learning approach for automated detection of phases of matter. As a concrete example,
let us consider identifying TC of the ferromagnetic Ising model with samples generated at temperatures
T ∈ [2.2,2.4] with the temperature spacing∆T= 2× 10−2. As illustrated in the right panel of figure 7, when
applying the learning-by-confusion approach, one shall first propose a possible critical point Ts. After that,
the samples satisfying T< Ts are accordingly labeled with (ỹA = 1, ỹB = 0) as phase A, and the samples
satisfying T> Ts are labeled with (ỹA = 0, ỹB = 1) as phase B. Then the NN is trained to perform an
NN-based binary classification between these artificial phases, outputting for each sample its confidences
(yA,yB) of identifying the sample as phase A or B. The loss function should be suitable for the binary
classification task, e.g. the cross-entropy function L ′ = ⟨−ỹA lnyA − ỹB lnyB⟩ [21], instead of the MSE or
MAE loss function for regression. After training, one obtains the classification accuracy P(Ts) that the NN
successfully matches the samples in the test dataset with their attached labels corresponding to the proposed
Ts. According to reference [10], one shall examine a series of different Ts, and the position of the maximum
of P(Ts) is considered the critical point TC predicted via the learning-by-confusion approach. Similar to
LFRU, the resolution of TC predicted via the learning-by-confusion approach is also determined by∆T. The
NN used by the learning-by-confusion approach and the NN used by LFRU only have slight differences in
their output layers, i.e. there are two neurons in the former for binary classification, but only one single
neuron in the latter for regression, and hence the time it takes to train these NNs traversing the same datasets
for an epoch is approximately the same. Figures 7(a) and (b) show that the convergence speed is also similar,
so they require similar numbers of epochs to give birth to a well-trained NN. However, a well-trained NN for
the learning-by-confusion approach can just give a single P(Ts), and if there arem different possible values of
Ts to be examined as TC (at leastm⩾ 3, and usually much larger), it requiresm well-trained NNs. In sharp
contrast, when applying LFRU, a complete curve of U(T) is directly obtained from one well-trained NN, and
the valley position of U(T) can be considered as the critical point TC predicted via LFRU. Therefore, the
approach developed in this work could be aboutm times faster than the widely-used learning-by-confusion
approach. The direct comparison of their results is presented in figures 7(c) and (d).

11



New J. Phys. 25 (2023) 083037 W-C Guo and L He

Figure 7. Comparison of LFRU and the learning-by-confusion approach. Left panel: Illustration of applying LFRU for identifying
TC of the ferromagnetic Ising model (L= 120) with samples generated at T ∈ [2.2,2.4] with∆T= 2× 10−2. Since LFRU’s
implementation is robust against different reasonable choices of the parameter region as already shown in figure 4(b), here the
temperature region [2.2,2.4] is typically presented for instance. Right panel: Illustration of applying the learning-by-confusion
approach for identifying the same TC with the same datasets. (a) The training process of the NN for reconstructing temperatures,
traversing the training dataset for 20 epochs. Different colors represent different independent trajectories of training. (b) The
training process of the NN for classifying phase A (T< Ts) and phase B (T> Ts), traversing the same dataset for 20 epochs. These
results show that comparing the implementation of LFRU and the learning-by-confusion approach, they require similar numbers
of epochs to give birth to a well-trained NN. (c) Temperature dependence of regression uncertainty U(T) obtained from the
well-trained NNs in (a), averaged over 10 independent trajectories. (d) Ts dependence of the classification accuracy P(Ts)
obtained from the well-trained NNs in (b), averaged over 10 independent trajectories. See figure 8 for their algorithm flowcharts
and Algorithms for their corresponding pseudo-codes, respectively.

Appendix F. Description of algorithms

To more clearly see the efficiency difference discussed in appendix E, here the flowcharts (see figure 8) and
pseudo-codes between LFRU and the learning-by-confusion approach (Algorithms) are presented. In
particular, the computational cost can be evaluated from the number of times one reinitializes an NN.
Throughout the algorithm of LFRU, one initializes an NN, train it, validate it, test it, and obtain the
prediction of TC straightforwardly. While as one can see in Algorithm 2 and the right panel of figure 8, for
the learning-by-confusion approach [10], the initialization of the NN (and its corresponding machine
learning processes of training, validation, and testing) appears in a non-trivial for-loop traversing a series of
possible Ts. To correctly locate a peak of P(Ts), one needs to examine at leastm= 3 different possible values
of Ts. And without any prior physical knowledge about the phases of matter in the system,m could be much
larger. This thus leads to LFRU’s efficiency advantage in the practical aspects.
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Figure 8. Flowcharts of LFRU (left panel) and the learning-by-confusion (right panel) approach. Throughout the algorithm of
LFRU, the NN is only initialized and used once, while for the learning-by-confusion approach, there is a for-loop traversing a
series of proposed possible critical point Ts. This thus leads to LFRU’s efficiency advantage in the practical aspects.

Algorithm 1. Pseudo-code of the LFRU approach. This algorithm is also illustrated in the left panels of figures 7 and 8.
It takes physical configurations that correspond to different values of a certain system parameter as inputs, trains the
NN to reconstruct the system parameter (for instance, temperature T), and the well-trained NN’s regression uncer-
tainty is found to contain hidden information that can be utilized to reveal possible phase transitions of the system
under consideration.

Prepare datasets
Label each sample from T
Initialize NN
for each Epoch in total training steps do
Input training samples, obtain NN’s outputs TR

Calculate training loss Ltrain = ⟨(T−TR)
2⟩

Optimize the NN towards minimizing Ltrain

Input validation samples, obtain NN’s outputs TR

Calculate validation loss Lval = ⟨(T−TR)
2⟩

end for
Load the well-trained NN which gives minimal Lval

for each T in the temperature region do
Input the testing samples at T, obtain NN’s outputs TR

Calculate the uncertainty U(T) =
√

⟨(TR −⟨TR⟩T)2⟩T
end for
Obtain T dependence of U(T) and find its valley
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Algorithm 2. Pseudo-code of the learning-by-confusion approach. This algorithm is also illustrated in the right panels
of figures 7 and 8.

Prepare datasets
for each proposed Ts in all possible values do
Label each sample satisfying T< Ts with (ỹA = 1, ỹB = 0)
Label each sample satisfying T> Ts with (ỹA = 0, ỹB = 1)
Initialize NN
for each Epoch in total training steps do
Input training samples, obtain NN’s outputs (yA,yB)
Calculate training loss L ′

train = ⟨−ỹA lnyA − ỹB lnyB⟩
Optimize the NN towards minimizing L ′

train

Input validation samples, obtain NN’s outputs (yA,yB)
Calculate validation loss L ′

val = ⟨−ỹA lnyA − ỹB lnyB⟩
end for
Load the well-trained NN which gives minimal L ′

val

Input all testing samples, obtain NN’s outputs
Calculate the classification accuracy P(Ts)
end for
Obtain Ts dependence of P(Ts) and find its peak
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