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Abstract: Superstring compactifications have been vigorously studied for over four decades,
and have flourished, involving an active iterative feedback between physics and (complex)
algebraic geometry. This led to an unprecedented wealth of constructions, virtually all
of which are “purely” algebraic. Recent developments however indicate many more
possibilities to be afforded by including certain generalizations that, at first glance at least,
are not algebraic—yet fit remarkably well within an overall mirror-symmetric framework
and are surprisingly amenable to standard computational analysis upon certain mild but
systematic modifications.

Keywords: Calabi—Yau manifolds; superstring compactification; generalized algebraic
varieties
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1. Introduction, Rationale, and Summary

For over a century, classical geometry of spacetime has been identified with solutions

to Einstein’s field equations, R, = 8rG

(8w —22108°"| Tpo, given here in the “trace-reversed
form”: Ry =Ry is the Ricci tensor and Tj,, the energy-momentum density tensor of
matter present in the region of interest. The geometry of empty spacetime (T, = 0) is,
thus, by definition Ricci-flat. This general qualification is remarkably persistent, through
higher-dimensional models and including string theory, where it insures quantum stability
to lowest order in string tension [1-4], and then also emerges in the full, oriented loop-
space reformulation [5-15]. Modulo additive total derivatives, Ry is the first Chern class
of the underlying spacetime, which links to topology and algebraic geometry and identifies
stringy spacetimes, 2, by the hallmark “Calabi-Yau” condition, ¢1(2°) =0 [15].

Models within this string theory framework that come close to reproducing the ob-
served world include “Calabi-Yau compactifications” [15,16] and their various generaliza-
tions, described by additional conditions involving higher Chern classes of 2 and of a vari-
ety of additional structures, typically defined over . For example, the “Hull-Strominger
system” [17-21] allows (geometric) torsion in 2 and with additional gauge-field fluxes
(possibly deforming its tangent bundle to higher-rank stable bundles) leads to more general,
non-Kéhler compactifications [22,23] (The underlying worldsheet formulation of string
theory pairs its ubiquitous antisymmetric abelian gauge 2-form with the metric into the
complex combination, BW—H' Quv, at least if the target spacetime (or a factor thereof) permits
a locally defined complex structure. The so-complexified metric structure on the target
space a priori permits the metric itself to degenerate at certain locations if balanced by a
non-degenerate By, there. This is the general mechanism that extends (analytically contin-
ues) GLSMs from a (familiar) “geometric” target space to various other “non-geometric”
descriptions [24,25]; subsequent analyses have then described those phases using some
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different geometry, such as stratified pseudo-manifolds turning up in [26] and discussed fur-
ther in [27], and perhaps even more general notions of geometry may be implied by the
inclusion of more general “defects” [28,29]). A survey of considered spacetime geometries
aiming also for the observed 3+1-dimensional asymptotically de Sitter spacetime, as given
in [30], indicates some of the complexities of our ultimate goal.

Since the pioneering works of Refs. [31,32], all algebraic constructions start from
some well-understood ambient (embedding) space, X, within which the desired geometries
are found as solutions of systems of algebraic equations, Z; := {x € X, f(x) =0}. To
this end, X is typically chosen to have some degree of (quasi) homogeneity [15], which
corresponds to a gauge symmetry in the underlying super-conformal quantum field the-
ory on the worldsheet swept by the superstring. With at least (0, 2)-supersymmetry and
U(1)" =% U(1;C)" = (C*)" abelian gauge symmetry on the worldsheet, this defines the
broad class of gauged linear sigma models (GLSMs) [24,25,33,34] and billions of catalogued
Calabi-Yau 3-folds [35-43]. Many of the half a billion convex reflexive polytopes [42,43]
admit distinct triangulations, leading to distinct toric varieties, and so, to distinct defor-
mation families of hypersurfaces in them. Each of these constructions admits additional
variations by deforming the tangent bundle of the hypersurface and extending it via addi-
tional line-bundles, ultimately leading to an astounding combinatorial wealth [44]. These
constructions are vigorously studied by physicists (mostly string theorists) and mathemati-
cians (mostly algebraic geometers) alike, owing to the inherent use of complex algebraic
and toric geometry [45-49].

The impressive body of work related to these complex algebraic toric geometry con-
structions notwithstanding, the original string theory requirements mentioned in the second
paragraph in fact mandate neither supersymmetry nor complex structure in the “target
spacetime”, 2. Indeed, neither of these structures is guaranteed in the requisite worldsheet
(0,1)-supersymmetric formulation; see [50-53] and much more recently [54] for another
foundational aspect. In this sense, target spacetime supersymmetry and complex structure
(at least in the compact factors of 2°) provide a robust and rigid framework affording a
very high degree of computability, a vast array of lampposts to illuminate the landscape
(This reminds of Danilov’s description of “frigid toric crystals” [46], §0.6, p. 100). However,
such models can at most be regarded as an approximation to describing the real world,
where supersymmetry is at most a broken symmetry. It is then very gratifying to find
that the transposition mirror model construction [55-58] does extend to the more general
spaces described in Refs. [59-63]—although many of the details (and possible limitations!)
of such extensions still remain to be determined, especially from the symplectic geometry
vantage point.

The primary objective of this article, then, is to serve as a descriptive and motivational
rallying exposition of these extensions, calling attention both to their established features
and to some of the key open questions. This aims to catalyze further research towards
a more robust (foundational, rigorous) and comprehensive understanding. To that end,
Section 2 presents and explores an infinite sequence of GLSMs, the ground states of which
form double deformation families of Calabi-Yau hypersurfaces in Hirzebruch scrolls; their
analysis is facilitated by being realized both in the (complex-algebraic) toric geometry
framework and as generalized complete intersections in products of projective spaces.
Section 3 presents how the transposition mirror construction extends to these models and
provides for a vast combinatorial array of multiple mirrors. Section 4 concludes by high-
lighting some open questions and concerns brought about by extending the construction
and computational framework to include embedding Calabi—Yau manifolds in non-Fano
algebraic varieties as well as non-algebraic torus manifolds, which will hopefully serve as a
challenge for future development.
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2. A Showcasing Deformation Family

Expanding on earlier work [59-62], I focus on a particular infinite sequence of construc-
tions corresponding to Calabi—Yau hypersurfaces in Hirzebruch scrolls, the rich mathemati-
cal history of the latter [45,47-49,64] affording their study from multiple different points of
view, including their realization within GLSM models [25]—which is where we start.

2.1. From GLSM to Toric
Let us begin with listing a collection of (chiral superfield) variables and their U(1)?-charges:

‘ xo‘xl X2 X3 X4 X5 Xp

-4 1 1 1 1 0 O 5
m—2|-m 0 0 0 1 1}11(1)

The fact that Q7(x() cancels (for each a = 1,2) the sum of charges of the other variables
guarantees that the U(1)? gauge anomalies cancel, and also that the product xq(x; . . . xg)

Ql (1)

QZ

is U(1)?-invariant, and so, admissible in the superpotential. xy may be thought of as a
quantum field theory generalization of a Lagrange multiplier [24,53,65-67]. Owing to its
ubiquitous importance in the algebraic geometry of the deformations of the superpotential,
ITx:=(T]; x;) has been dubbed the “fundamental monomial” [68]; see also [69].

The choice of the superpotential provides part of the defining equations for the
“ground state variety”, by definition of the potential energy:

OW 2 ¢
U(xi, 0a) = Z‘ axi’ +e§; ‘Zi Qfxi[* 4
1

2
+2 Y 7.0, Q7 QY% @)

a,b,i

where W(x) = xq f(x) is the general form of the superpotential, Q¢ := Q%(x;), and ¢* is
the (twisted-chiral superfield) variable corresponding to the a U (1) gauge group [24,25].
Supersymmetric ground states are zeros of (2), and the combined vanishing of the first (“F”)
and second (“D”) terms in (2) associate distinct r,-regions with the distinct U(1)?-orbits in
the x;-space. In particular, r, >0 provides the “geometric phase”, wherein the location:

{r1=-=x=0pU{xs =0=xe} 3)

is excluded; for details of the GLSM motivations and the other phases/options, see [24,25,60].
The remaining X-space is projectivized by the supersymmetry-complexified gauge symme-
try, ((C*)Z, specifying the Hirzebruch scroll, F,(,f ). Indeed, x1, ..., x¢ in (1) will be identified

with its Cox coordinates, and the Q*-rows specify its Mori vectors and Chern class [49],

2

(B =TT(1+ L Q) () =41+ 2-m)p, @

6
=1 a=1

so deg(f) = deg(x;...x¢)=(,* ) also guarantees the zero-locus, Z 7 C Fy, to be Ricci-flat.

2.1.1. The Superpotential

The general form of W(x) =x f(x) implies at the minimum of (2):

P s & agiorn
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This is highly singular for the simple choice f(x) = ITx, which we aim to smooth by
including other charge—(zfm) monomials, which are of the form:

X1 (X2 ®x3Dxy) { X5 P Xg 1y med or x5®x6 o, w3 |7 ..., 4 (6)

This at once shows that for m >3, the monomials (6) are either all proportional to x; or
involve negative powers of x5, xg. Standard practice in both quantum field theory and
algebraic geometry is to omit rational monomials, which crucially hobbles the intended
deformations: restricting to k=1, ..., 4 insures that all regular polynomial choices,

flx) =x1- (C = x (2 ®x3 D xg) ¥ F (x5 D xg) 7T, k=0,---,3>, (7)

necessarily factorize so that the zero-locus reduces: Zg={x; =0} U {C =0}, and the sin-
gular locus, Zf[ ={x1=0} N {C=0} is a Calabi-Yau 2-fold. The 3-fold Z is Tyurin degen-
erate [61] and deemed “unsmoothable”, as there are no regular monomials to render (7)
transverse.

In turn, setting k=0 in (6) identifies monomials that are x;-independent, and so, can
smooth (7) by deforming it away from {x;=0} C Z}.

To this end, compare the cj-degree monomials for Fl<2> and Féz), shown in Figure 1

2

for the two-dimensional surfaces (adjusting to degci (Fy;')] = (,%,,) and omitting x3, x4)

—m
for simplicity.
A(F?) x P A(EY)
.X'12XS3.X'62
XXX XXX XPXFXE X1 XX

¥ nid
@ (b)

Figure 1. Some of the c; (F,; )-degree monomials plotted to indicate (by colored lines) the “stripes”
discussed in the text; the fundamental monomial, x1x,x5x¢ is boxed. The left-hand side diagram (a)
displays anticanonical monomials for Flm, while the right-hand side diagram (b) shows those for Féz).

The plots in Figure 1 make evident that:

1. Monomials independent of a particular variable occur along a straight-line “stripe”
(hyperplane in higher dimensions). Therefore, each “stripe” is a suitable multiple of a
single x;-derivative, (d;I1x):

keZ ‘ x1-indep. xp-indep. xs-indep. x¢-indep.

gen. | (xaxdxg ™My (xxkxl ), (wkay FxlTm)as  (xka Kl tim)ae (8)

2. 1+k . 1—k—m

; 2 A+k, 1—k+m 1+k 11—k, 24+km 14k, 11—k, 24+km
stripe | x5x5 ' " Xg X1X5 ' Xg X1

Xy X X X, Xg
Since E)JZHx =0, each “stripe” acts as a boundary for that aj—deformation.

2. “Cornerstone” monomials at the intersection of two “stripes” are independent of
two variables; this hierarchy extends straightforwardly in higher dimensions. The
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tabulation (8) makes it clear that: (1) There is no x;- and x;-independent monomial.

(2) There is an x5- and x¢-independent monomial only for m=1,2, x2/x1 and x7,

respectively. (3) The “cornerstone” monomials are x?x£ 4", x?x@ 4", x2x£ ™™,

x#xZ~™, and are circled in the plots in Figure 1.

and

3. The above shows that deforming the fundamental monomial equips the system of
anticanonical monomials with the hierarchical structure of a poset:

x22x62—m x22x52—m X12x52+m
A _,—Y A
H < 1
H - 1 (9)
2., 1+k 1—k—m 1+k 11—k 2+km 1+k . 1—k 2+km 2 1+k ., 1—k+m
X2X5 " Xg XXy X XX X5 X1X5 " Xg
V'..,..a5 86’¢7
T s 0
2
Ilx

Being reachable by a simple (first) derivative from the fundamental monomial, I1x,
monomials on each x;-independent “stripe” are at a (deformation) distance of 1 from Ilx,
with the direction of the respective deformations indicated by the Euclidean lattice normals:

° ° 86
Z(

9> Y (10)
o (a) ® E); o ° (b) ® a; . o °

Each two-dimensional cone enclosed between two of these consecutive directions corre-
sponds to a (circled) corner monomial in Figure 1: <((dq,9s) ¢+ x7xs5, <(d2,05) <> x{2x5,
etc. The so-constructed fan of cones, £(F\;), in fact specifies the Hirzebruch scroll F};’ as a
toric variety [47-49].

The fans (10) have a natural dimension-ranked poset structure generated by the
inclusion of cones in the boundary of one-higher dimensional cones, and isomorphic to (9).
In (10), the central O-cone is within the boundary of the 1-cone d;, which is within the
boundary of the 2-cone <((01, d¢). This chain of relations is strictly (inclusion-reversing) dual
to the corresponding statements regarding the monomials in Figure 1; for example:

Display (10): O (center) C boundary of <((d;) C boundary of <((d1,0g)

11
Figure1: allmonom’s O xj-indep. monom’s DO xi,xg-indep. monom’s an

Also of note is the fact that the two-dimensional cones <(d1,02) and <(95, d¢) do not belong
to either of the two (posets) fans (10); this defines the so-called Stanley—Reisner ideal among
the linear vector (sub)spaces generated by 0; [49]. Dually in Figure 1, the two vertical
“stripes” (monomials without x; and without x;, respectively) never intersect, and the
horizontal (x5-omitting) “stripe” intersects the slanted (xs-omitting) “stripe”, either outside

the distance-1 convex polygon enclosing the universal monomial, Ilx, or at a non-lattice
2

m’
defines the so-called “irrelevant” ideal among the multiplicative ring of monomials [49].

location, (2, 1) for Fy;', where that distance-1 enclosing polygon self-intersects; this

2.1.2. The Transpolar Operation

The “stripe”-wise dual operation used above to map the monomial systems in Figure 1
to the fans (10) is a simple version of the transpolar operation (denoted by “ V”; see Section 3)
defined more formally in Refs. [60-62]. It implements the standard polar operation of
algebraic toric geometry [47-49] for each (convex subset of each) face of a polytope, then
reassembles the resulting elements using the canonical inclusion-reversing nature of any
duality. Moreover, the same iterative operation also works perfectly in reverse: The

Euclidean normal to the [95,0;] “stripe” in (10) is (1, —1) and indicates x5>x4 for Fl(z) and
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x2/x for Flm ; the normal to [d1,d¢) in (10,a) is (1,0) and indicates xz x5 for F?, while
the normal to [dq, 86} in (10,b) is (1, —2) and indicates x#/x5 for F;”, and so on. The
key distinction in A( ) between m=0, 1,2 (convex and flat) and m >3 (self—mtersectmg,
i.e., flip-folded) cases reﬂects the fact that the integral hull (lattice enclosure) of S(EY) is
convex for m=0, 1,2 but non-convex for m > 3.

This transpolar operation is markedly unlike the standard polar operation. (It was
highly amusing to learn that many active researchers in algebraic toric geometry, while
always citing the standard (global) polar operation, in practice often use variants of the
(local) “stripe”-wise dual (dubbed “transpolar” [60]) operation—the original invention of
which is “lost in the mists of time”; I thank Hal Schenck for communicating these tidbits.)
Defined globally over the entire polyhedral body at once, when starting from Z(F ') in (10),
the standard polar operation automatically replaces it with the convex hull, which obscures
the generator d;; the so-chosen monomial set in Figure 1b stops at the intersection of the
slanted and horizontal “stripes”, never reaching the right-hand side vertical (red) stripe
of monomials (which are indeed all rational). When starting from A(F ') in Figure 1b,
including also the right-hand side circled monomials, the standard polar maps only to
{01,02}. When omitting the right-hand side circled monomials, the right-most remaining
monomials include I'Tx and define a distance-0 “stripe”, which cannot define a Euclidean
normal: Not only is the standard polar operation not involutive, but it is ill-defined for F;’
when m > 3—which are non-Fano.

Comparing the two monomial plots in Figure 1 and their transpolar images in (10)
reveals several key features. Whereas the simple, flat fans in (10) evidently subdivide the
(enveloping) polygons that span them the arrangements of “stripes” present a non-trivial
distinction: The left-hand side A( %)) is a plain, flat trapezoid and has a simple subdividing
fan. In turn, A(F ) is subdivided by a fan-like structure (corresponding to a toric space) if it
is understood to be a flip-folded and multilayered multitope, which spans and is subdivided
by a multifan [70-77]; see also [78-81]. We will return to this in Section 3.

Corollary 1. For a list of (chiral superfield) variables and their U (1; C)"-charges as in (1), the most
general superpotential, W in (2), is an Xo-multiple of a deformation the fundamental monomial, ITx.
The lattice of all candidate monomials, A(X), has hyperplanes at 1-derivative distance from I1x, the
deformation directions of which span the (multi) fan, %.(X), that corresponds to the underlying toric
(ambient) space wherein the ground states minimize the potential (2).

The so-defined A(X) <% %.(X) mapping a priori and by definition selects the transpolar
extension [60-62] of the standard polar operation [47-49].

Remark 1. Curbing the I1x-deformations (as in Figure 1) to only the regular monomials (with only
non-negative powers) in the selected (Cox) variables (1) restricts the transpolar A(X) =5 £(X)
mapping so it agrees with the standard polar operation—but only provided “fractional”, non-lattice
locations are also included: In A(P ') in Fzgure 1, this is the (%, —1) intersection of the slanted and
horizontal “stripes”, which corresponds to 3/ x1xy. This is also beyond the standard practice in
complex-algebraic toric geometry (The radical monomial, 3/ x1x7, reminds us of similar factors that
were found to play the role of “twisted vacua” in Landau—Ginzburg orbifolds [82]. The self-crossing
region in the complete Newton multitope, A(FS,), for m > 2 corresponds to monomzals of the form
(B, (35)m i w2y - (B [ ' x)" 1 which depend only on the fiber coordinates in Fy’ =[Bi|| L] but
where the first, radical factor has degree ( )= deg[dyo dy1] of the volume-from of the base-P'. This
is indeed the “hallmark” quality whereby radical monomials enable representing “non-polynomial”

deformations [82]. For m >3, such radical deformations are still proportional to a positive power
of x1, and so, could not smooth the Tyurin-degenerate regular Calabi—Yau hypersurfaces.) The
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oft-required “reqularity” (non-negative powers) depends on the choice of variables, and is not as
unequivocal as may be expected; see (13) and (14) below.

Remark 2. The foregoing extends to systems of multiple defining constraints: complete intersec-
tions, certain non-complete intersections, and higher-rank constraints defined by exact sequences of
direct sums of line-bundles are straightforward (though tedious) [15]. Extensions to non-abelian
GLSM gauge groups, while also possible [83,84], are beyond our present scope.

Remark 3. Regarding the system of anticanonical monomials (as in Figure 1) as candidate
d;-directional (10) deformations of the fundamental monomial, 11x, shows that the distance-1
rational monomial deformations are all, a priori, “accessible”—by deforming in only one 9;-direction
at a time. In Figure 1b plot, the distance-1 monomials in the right-hand side vertical (red)
“stripe” form the boundary for d1-deformations. Among them, x2/xs is indeed inaccessible by
Os-deformations and x2/x¢ by dg-deformations; they are accessible as x, /x<xg- and x5/ xsx¢-
multiples of d1-deformations, wherein x,, x5, x¢ do not vary. The standard polar operation [47-49]
imposes such limitations all at once and is in this sense “global”. In contradistinction, the
“stripe”-wise transpolar operation [60,61] is “local”.

Remark 4. Conversely, the principal reason for including the rational sections such as x,2/xs and
x7/xg in Figure 1b is that the segment of “stripe” they form is transpolar to the d1-deformation,
which is a generator of the fan (10,b) that encodes FY; see also Figure 4, below. Omitting the
01-generator from (10, b) and its transpolar (rational) monomials encodes P%m;g) # F3()2>.

2.2. From Toric to Generalized Intersections

While ultimately interested in Calabi-Yau hypersurfaces in 4-folds, we note that
the two particular Hirzebruch scrolls defined by the fans (10) and equipped with the
anticanonical sections plotted in Figure 1 are well known to be diffeomorphic to each other;
they are the same real, smooth manifold equipped, however, with discretely distinct
complex structures. Nevertheless, there exists an explicit, continuous e-deformation family
of hypersurfaces, extending Hirzebruch’s original [64]:

P

1
{pe(x,y) = xoy0’ + 117> + e xoydyr =0, e€C} = [}pl
y

3 (12)

At the center, € = 0, is Hirzebruch’s original scroll, {po(x,y) =0} C P2 x IP’;,, herein denoted
Féz) ; extending P2 ~~ P? defines F. as the zero-locus of the same pc(x,y). Hirzebruch
scrolls have a hallmark submanifold, the directrix [45] with a maximally negative self-
intersection (—m), and which can actually be specified as an explicit hypersurface even
in the realization (12), using a recent construction [85]; see also [59,61,86] for an explicit
algorithm. The degree of the directrix (with respect to P2 XP;) must be (_é), which of
course cannot be holomorphic on all of P2 x IP’;. However, the equivalence class

X0 *1 pO(x/ y) +2;T% where n 7&01 with A = —|—1,
S x, = -~ = _
(x,y) [(]/13 ]/03) (yoy1)3} {_2;1 where yo£0, with A = —1;

(13)
3

is indeed holomorphic on F3(2) ={po(x,y)=0} C P2x IP’;: Each of the two representatives
is manifestly holomorphic over their respective (one-point-punctured) part of P}, and their
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difference on the overlap is a finite multiple of py(x, y), which vanishes on Féz) by definition.
Furthermore, the constant-Jacobian variable change

‘ X1=5 X2 X5=Yo X6=Y1
(xOI X1, Xz}]/orl/l) = (PO/sr x2;y0/yl) M} Ql 1 1 0 0 (14)
det[]] =4 Q*| -3 0 1 1

is a coordinate-level identification of this hypersurface with the toric rendition of F{”,
and where the components of the (Q” row-wise) Mori vectors are equal to the P2 XIP’;
homogeneity degrees.

Away from the center, when € #0, the directrix-defining Section (13) fails to be holo-
morphic, but is replaced by two that are holomorphic:

_ [(Xovo X1 X Pe(x,y) _ 1,

a1lry) = [(W yf +eylz) R | deg= (o) (1
_ (% xy’ X pe(x,y) 1

so(x,y) = [(yl " e—yo) +A o } deg= (_7)- (16)

The constant-Jacobian change of variables

‘ X1=51 Xp=S2 X5=lYo Xg=VY1
1 1 0 o (17)
) -1 1 1

(x0, X1, X2;¥0,v1) = (Pe, 51,5290, y1) E=%  Ql

det[]] =4e Q2

maps this (€#0)-family of hypersurfaces to a “cousin” of Hirzebruch'’s scroll, which one
might denote F(g )1). In the GLSM, the U(1)? charges (17) are trivially redefined:

‘ X1=8§1 Xp=52 X5=Yo Xe¢=VY1
1 1 0 0 (18)
-1 0 1 1

Ql
Q*+Q!

specifying the Mori vectors of the standard Fl(z)—consistent with the well-known diffeomor-
phism Fy) =g P'y(‘:LZk’ for k€ Z. It is tempting to conjecture [63] that the Segré-like change

of variables
P21 (xoye?, X197, X2y0y1; Yo, y1) = (&0, &1, E2510,11) P21 19
Pl|3 3 3 2 Pl 1 (19)
€#0 xoyo + x1y1° + €xoygyr — (So +€82)n0 + 111

provides for the F3(2> R Fl(z) diffeomorphism: Its Jacobian (det g%ig; = (yoy1)?) is non-constant

and vanishes (the inverse diverges) over the poles of P!, where it can be modified by parti-
tions of unity (“bump functions”) to make (19) a smooth but non-biholomorphic diffeomor-
phism. Although the foregoing discussion for simplicity focuses on simple two-dimensional
showcasing examples, generalizations to higher dimensions are straightforward, as a few
examples below will show.

Remark 5. The evidently self-consistent and effective use in the above context of sections that are
equivalence classes of Laurent polynomials in terms of ]P’; homogeneous coordinates, but regular
(Cox) variables in the toric reformulation, lends support to the concerns about the choice of variables
raised in Remark 1. One may wonder if a better choice of variables might render the Laurent
(rational-monomial) deformations, such as those encircled in the right-hand side vertical “stripe” of
the A(Féz)) plot in Figure 1b; this is revisited in Section 4.
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2.3. The Deformation Family Picture

Following the example in Section 2.2, consider now the explicit three-dimensional
double deformation family of Calabi-Yau hypersurfaces in Hirzebruch scrolls, themselves
defined as hypersurfaces in P xIP;:

first:  pe(x,y) =0, deg[pe] = (1}1) } ) [P4
: 1
then: ge(x,y) =0, deglge] = (2—1m) F

1| 4
mZm} (20)

The so-constructed smooth Calabi-Yau manifolds have h'! =2=b, and h*! =86, so b3 =174
and xg = —168. Introduced and dubbed “generalized complete intersections” [85], in such
deformation families, the second constraint polynomial, g¢(x, ), is defined as a holomor-
phic section only on the zero locus of the first, pe(x,y) and their choices are correlated.
This structure also has a well-defined scheme-theoretic formulation over IP’?C XIP’; [86] and
is amenable to a minor modification of the standard (co)homological algebra computa-
tions [59]. Here, we focus on the é-family of first hypersurfaces,

pe(x,y) = xoy0 + x1y7 + €22290'Y1 + €3x3Y0° Y1 + €axayiyr =0, (1)

which consist of various four-dimensional Hirzebruch scrolls [61,63]. Within these, we
then find correlated, deg = (_é), Calabi-Yau three-dimensional hypersurfaces, the defining
sections of which are closely related to the directrices (13) and (15)—e:dx2+1b.

¢ =(0,0,0):
At the center, the {po(x, y)=0} hypersurface has the single, degree-(_t) directrix,

o) = [(25-25) moa O] deg— (), @

By the constant-Jacobian variable change a la (14), this identifies {po(x,y)=0} = Fé4>:

‘ X1=61 X2 X3 X4 X5=lYo Xe=VY1
1 1 1 1 0 0 (23)
-5 0 0 0 1 1

Ql
QZ

and also defines the correlated family of degree—(_é) sections:

q0(x,y) = (P (x)yd + " (N)yoy1 + ¢ (1)yr) -s0(x, ), (24)

where ¢/ (x) provide 3x35=105 cubics that parametrize the deformation family of Calabi—
Yau 3-folds in F5(4). As evident from the explicit factorization of (24), all such Calabi-Yau
3-folds are Tyurin degenerate, deemed unsmoothable (by regular anticanonical sections),
but smoothed by the k=0, m =5 rational sections (6), (x2 ® x3® x4)* (xl—5 @ %6)3 They cor-
respond to the segment of the right-hand side vertical distance-1 “stripe” in Figure 1b
delimited by its intersections with the horizontal and the slanted “stripes” [60,61]. Tyurin
degeneration is characterized by the singular set

{q0=0}* = {s0=0} N {®(x)yd+c" (x)yoy1+c" (x)y2 =0} € [K

11 13
5| s 2] (25)

which is a K3 surface, a Calabi-Yau matryoshka within the degenerate Calabi—Yau 3-fold

{g0(x,y)=0}.
€ =(1,0,0):
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The system is now deformed to:

p1(x,y) = xoy0’ + x1y1° + X2y0'y1, (26)
_ (%Yo X1 X2 pi(x,y) o
= 51a(xr]/) - |:( ylS y04 +y14> mOd y04 y15 ]/ deg - (—4)/ (27)
4
X0 x1Yy1 X2 p1(x,y) 1
s1p(x,y) = || ——————=) mod ———=|, deg = (7). 28
woy) = | (5 5 y0) mod B g=(1- @9

By the constant-Jacobian variable change a la (17), this identifies {p;=0} = F<(:1)oo)5

‘x1:51u X2=51p X3 X4 X5=Y0o Xe=WY1

Q! 1 1 1 1 0 0 (29)
Q% -4 -1 0 0 1 1
and also defines the correlated family of degree—(fg) sections:
DY) = ¢ (<)yisial) + () [T moq PV 0)
Y1 Yo Y1
where, again, cé(x), cp(x) provide 3 x 35=105 cubics that parametrize the deformation
family of Calabi-Yau 3-folds in this “cousin” Hirzebruch scroll, F((i)loo)' Since (30) does

not factorize, this already deforms from the Tyurin degeneration in (24). Indeed, generic
choices of {g; =0} are expected to be singular at most at isolated points: q; ~ (cLy;)-51, +
cp-(s15/y1) is singular at nine points, {(ciy;), 514, ¢y, 51, =0}.

€ =(1,1,0):

The system is now deformed to:

p2(x,y) = x0y0’ + x1y1° + X2y0'y1 + X3y0 'y, (31)
2
Xoyg X1, X2Yo | X3 p2(x,y) 1
= sy,(x,y) = e +—=) mod *—=—=~|, deg = (_3), 32
2 (X, Y) [( ]/15 ]/03 y14 ]/13> y03y15 ] g=( 3) (32)

4
Xo X1yt X2 X3yq p2(x,y) 1
, = —_— _—— m di , d — \_-1)s 33
s y) [(]/1 y05 Yo yoz) © y&"m } e8 = 1) (33)

3
XoYo X1yr X2 X3 p2(x,y) 1
soc(x,y) = || —5— +—=——1] mod , deg = ( 7). 34
ZC( y) [( ]/12 ]/04 v yO) y04]/12} g ( 1) (34)

By the constant-Jacobian variable change a la (17), this identifies {p1=0} = F<(341)10):

‘ X1=5624 X2=5gp X3=52c X4 X5=Yo X6=VY1
1 1 1 1 0 0 (35)
-3 -1 —1 0 1 1

Ql
QZ

and also defines the correlated family of degree—(fé) sections:

) 8 s 0 [ 28

Y1 yo Y
s2c(%, ) p2(x,y)
+cc(x).[ o mod s } (36)

where, again, c,(x), ¢y (x), cc(x) provide 3x35=105 cubics that parametrize the deforma-

tion family of Calabi-Yau 3-folds in this “cousin” Hirzebruch scroll, F @

(3110)° Owing to the
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swapped sign of the x,-term, sy, /y1* and s,./yoy1 are independent from each other and
are also independent from sy,.

¢ =(1,1,1):

The system is now deformed to:

p3(x,y) = x0y¢’ + x1y1° + X2yo'y1 + X3yo Y1 + Xayyr, (37)
e O )
() = (- TUE 22T g P;Og y'jm deg = (), (0)
ssa(ry) = [(C24EE T2 X0 M) g BSOO) e (1), )

Y1 Y1 Y1 Yo

By the constant-Jacobian variable change a la (17), this identifies {p;=0} = F<(z41)11):
‘ X1=83; Xp=83p X3=83c X4=534 X5=lYo Xe=Y1

1 1 1 1 0 0 (42)
-2 -1 -1 -1 1 1

Ql
Q2

and also defines the correlated family of degree—(fé) sections:

355, y) = ca(x) -330(x,y) (1) {M mod (1))

Y1 vy
[selvy) L pa(xy) [sa(vy) - ps(xy)
+ce(x) [ o y05 }‘FCd(X) [ m: od Eyr }, (43)

where, again, c,(x),...,c;(x) now provide 4 x 35=140 cubics that overabundantly
parametrize the deformation family of Calabi—Yau 3-folds in this “cousin” Hirzebruch

scroll, Ja (2111)"

s3c/Yoy1 and s34/ yoz are independent sections.

Notice that owing to the swapped signs of the x,- and x3-terms, s3,/y,

2.4. The Deformation Family Picture, in Depth

Changing variables as in (14) and (17), the directrices are identified as Cox coordinates
(5000)” , (27) and (28)

) Here found as smooth hypersurfaces

in the toric realization of the sequence of Hirzebruch scrolls: (22) in Y

in F(4100 (32)—(34) in EY (3110)” and (38)—(41) in F(2111

in P} ><]P>1 along the exp11c1t deformation path, € = (0,0,0)~-(1,0,0)~(1,1,0)~(1,1,1),
they are diffeomorphic by deformation, and provide a textbook example of “the same real
manifold” with a complex structure that varies [87]—herein, discretely. Within each of these,
there is an effectively 86-dimensional family of Calabi—Yau hypersurfaces, parametrized by
the P%-cubics indicated in (24), (30), (36), and (43), among which only those in EY

(5000
be Tyurin degenerate; the other ones (moving leftward in the indicated explicit deformation

) must

path) acquire an increasing degree of Variation and inevitably become transverse.

(4) (4) g1t
5000)" F(4100) F(3110) and F(2111) of the “first” deforma-

,is also diffeomorphic to F\*) (1000 [88]. Indeed, the Segré-like mapping

The real manifold underlying F(

tion famlly, Pl ‘ ‘

(x0y04/ xl]/l4/ x2y03y1/ x3]/02y12/ x4]/0y13/' yO/ yl) i> (éOI ‘:1/ 62/ 63/ 64/ ’70/ 771) (44)
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converts

X0y +e22205Y1+€3x3Y0 YL +HEsxaydyT +x1y; — no(Cotertatesiatesls)+iim,  (45)

Pt
and so maps LP’I

UoR - FYe[h
Jacobian of the mapping (44) is non-constant: det[] = (yoy1)'* vanishes (and the inverse
diverges) over the poles of IP);. This can be smoothed without changing the topology by

ﬂ This of course is not a biholomorphism, as the

means of local “bump-functions”, thereby realizing the non-holomorphic diffeomorphism
F5<4) TR F1(4). The so-encountered variants of the Hirzebruch scrolls have their hallmark
holomorphic and so irreducible directrices of maximally negative self-intersection:

1. F(BOOO) has (22) with self-intersection
Trgy4 — [P4)j1] 1 1 1 1] — _
s 1 = [R5 L & L 3] =-15 (46)
2. F( 4100) has (27) with self-intersection
g4 — [P4)j1] 1 1 1 1] — _
s O =[5 [2 4 4 4 4] =1 (47)
3. (3110) has (32) with self-intersection
Ty — [P 1 1 1 1]
[5211 (O>] - Lp)l 5‘_3 3 _3 _3} - 7. (48)
4. P(2111) has (38) with self-intersection
T4 — [PH)j1] 1 1 1 1] — _
[53, (0))" = LP" 5‘72 -2 -2 72} =3 (49)

While identical as real, smooth manifolds, the maximally negative self-intersection
numbers (46)—(49) distinguish the F}; as complex manifolds. The degree-(fll) directri-
ces, (28), (33), (34), and (39)—(41), have standard, positive self-intersections equal to +1. The
last of the above-calculated, (49), is in fact identical to the self-intersection of the hallmark
holomorphic and so irreducible directrix of F.*,

sy o)t = [E1]|!

11 1 1] _ _
‘71 -1 -1 -1 3 (50)

which supports the claim that even as complex manifolds, F((?nl) e F1<4). Since F1(4) is Fano,
all its generic Calabi-Yau hypersurfaces are smooth.

2.5. The Deformation Family Picture, Layered

Consider now the €-path within the double deformation family of generalized com-
plete intersections (20):

_____ > K" (Ejhoo)) - - - - - > K" (Fig

4
(4100 5000))

¢ 4¢
)111 3)110 4100 /

s

(50

{% 0}...1...........,{672 0}...i...........,{ql_o}.................,{q =0} l
=(1,1,1) (1,1,0) (1,0,0) (0,0,0)

The deformation path in the é-space (bottom row, wavy arrows) carries along'

00) (51)

1. The sequence of (discrete) deformations among the Hirzebruch scrolls, F; (mlddle
row in (51), no arrows drawn to avoid clutter), as discussed above.
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2. The sequence of (likewise discrete) deformations (top row in (51), dashed arrows)
among the indicated anticanonical bundles, IC*(Fg)). This induces corresponding
deformations on the anticanonical sections, which provide candidates for the sequence
described next.

3. The sequence of discrete “leafs” in the double deformations of the defining Equations
(lower middle row in (51), dotted arrows) among the indicated Calabi—Yau hyper-
surfaces: the é-dependent anticanonical bundles provide sections for the “second”
deformation of anticanonical hypersurfaces, Péz) [c1].

The diagram (51) prominently features the correlated triple consisting of:

1. A well-understood embedding (“ambient”) space, X, chosen W in (51).
The anticanonical bundle, £*(X), and a collection of its sections, f € T'(KX*(X)).
3. The Calabi-Yau hypersurface—the zero locus, Z r of a selected anticanonical section.

Remark 6. This entire triple plays a prominent role in the definition and analysis of GLSMs [24,25]
and motivates in part the original proposal of Laurent deformations [60]. It is worth noting that
K*(X) is also a Calabi-Yau space, albeit non-compact. Also, between the non-compact (n+1)-
dimensional Calabi—Yau space, K*(X), and the compact (n—1)-dimensional Calabi-Yau zero
locus, Z, of a section of K*(X) is the embedding space X, which is not Calabi—Yau, but wherein
(XN Zy) is an n-dimensional non-compact Calabi-Yau space [89,90]. This last fact seems to have
been noticed only recently, and has so far not been explored.

2.6. Black Sheep in the Deformation Family

Exploring the diagram (51) now in the horizontal direction and knowing that all
variants of the embedding space, Fy;’, are in fact the sante smooth real manifold, it is vexing
to find that all anticanonical sections (24) on the far right of the diagram (51) factorize
(see (7) for the GLSM/toric rendition), so that their zero loci, Z,,, are Tyurin degenerate
Calabi-Yau varieties. They are deemed unsmoothable—since the deformations of go(x,y)
are routinely limited to regular monomials (with non-negative powers) in the original
variables (1). Indeed, omitted in (7) for m >3 are the k=0 monomials (6), which provide:

- 4
Laurent deformations : 61 (f(x) = qo(x,y)) = @:;02 %,

p (52)
X5 Xg

and are analogous to the monomials on the segment of the right-hand side vertical distance-
1 “stripe” in Figure 1b delimited by its intersections with the horizontal and the slanted
“stripe” [60,61]. Being independent of x; =5y, the deformation (52) moves the zero locus
away from the singularity Zjﬁfz o= {x1=0} N C(x). In the simpler notation of Section 2.1,
direct computation then verifies that the generic combinations of (6) and (52) are transverse.
For a simple example as in Section 2.2, consider the Calabi-Yau hypersurface in the family
F{?[c1], defined as the zero locus of

2 2
f3(x) = x2x3 + x2x8 + 51% + 52’;72, 51,6, 70 and 65 £57. (53)
5 6

Direct computation verifies that f,;(x) =0=df, ;(x) only when x; =0=x;, which
cannot happen in Fy;: The change of variables (14) implies that (sp=x1) =0=x, together
with F? = {po(x,y) =0} C P2 x}P’; is equivalent to requiring (xg, x1, x2) =(0,0,0), which
does not exist in ]P’,%. With the restrictions (53), the §; cannot be absorbed into xy, ..., x¢ by
their rescaling; the é; may be thought of as parametrizing a small deformation.

Having introduced rational-monomial deformations, the putative pole-locus must be
addressed, to which end Ref. [60] employed the L'Hopital-like “intrinsic limit”:
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Definition 1 (Ref. [60]). Away from {x5=0} U {xs=0}, the zero locus of f, ;(x) in (53) is well
defined, and allows solving, e.g., for xp =xp(x1, X5, X¢):

B x2x5x6 (x5 + x0)

x5£0: fiy()=0 = x'= Bixe + 0ot

(54)

Taking the x5, xg — 0 limits while restricting x> to hold the (54)-values preserves the vanishing of
f; 5 (x), defines (a closure/completion of) the zero locus, Z fisv and is called the intrinsic limit.

Remark 7. The pole-locus in (53) is &7 :={x5=0} U{x¢=0}, and the constraining condition (54)
of Definition 1 is clearly well defined except along the zero locus of its denominator. That, however,
intersects P only at % :={x5=0}N{x=0}, where L'Hopital’s rule again gives (54) a well-
defined value (zero). In general, such as when the requisite Laurent deformation has putative
pole locations of higher order, the “intrinsic limit” will require additional iterations of applying
L’Hopital’s rule. Although the pole locations will have a growing complexity and order in higher
dimensions and higher “twist” (m) in Fy,’, it would seem that the “intrinsic limit” resolution of the
ambiguity in defining the zero locus, Z, i.e., specifying its closure is a well-defined procedure with
a guaranteed finite completion. However, I am not aware of a proof.

Constrained (conditional) limits are far from novel in physics in general, making
the “intrinsic limit” of [60] the “obvious” physics-motivated resolution of the ambiguity
in defining the zero locus Z £ We return to this in Section 4. However, the use of the
(constrained) limiting procedure definition of the so-defined (closure of the) zero locus clearly
veers outside the usual framework of algebraic geometry.

Conjecture 1. Laurent-deformed Calabi—Yau hypersurfaces closed/completed by the “intrinsic
limit” (Definition 1) are not algebraic varieties; they are toric spaces, equipped with a maximal
U (1)"-action, and corresponding U(1)"- or even fully U(1; C)"-equivariant (co)homology.

Having veered outside the standard framework of complex algebraic (toric) geometry
in trying to smooth the “unsmoothable” Tyurin-degenerate models opens a whole host of
questions. For example, consider the preimage of Z,,; under the sequence of deformations,
all the way in the left-hand side of the diagram (51), where it has many (complex-algebraic,
regular-monomial) smoothing deformations. Since Z,, C F @ ) can be smoothed by

(5000
Laurent (rational-monomial) deformations, it is not unreasonable to propose:

Conjecture 2. The rational sections, 6qo, that smooth the Tyurin degenerate Zg, are (in the
diagram (51), rightward) deformation limits of reqular (not rational-monomial) sections of the
anticanonical bundles sufficiently (in the diagram (51), leftward) away from KC* (F((;)ooo) ).

3. Transposition Mirrors

The inclusion of spaces of which the construction veers outside of the routine complex-
algebraic (toric) geometry to include spaces that are not algebraic (such as the “intrinsic
limit”-completed/closed zero loci of Laurent defining polynomials) has rather novel conse-
quences via mirror symmetry.

3.1. Transposition as Multitope Swapping

Mirror symmetry was discovered over 30 years ago [91], considering so-called Fermat
defining equations, { fr(x) = ¥; xl.pi =0} C P4, where the weights @ of the quasi-projective
space are chosen so that each summand has the same total weight, p;w; = pjw; (no summa-
tion), foralli,j = 0,...,4. In a little over two years’ time, this was extended to the fifteen
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other types of transverse defining equations with five monomials (the same as the number
of variables, x;), { fe(x)= Zj 1L xigij = 0}, the mirror of which is found as a particular finite
quotient of the zero locus of the “transpose polynomial”, { £,1(y):= Yl yieﬁ =0}, found
by transposing the matrix of exponents, ¢;; — e;; [55]. Less than two years later, a vast gen-
eralization to all (complex-algebraic) toric hypersurfaces was found [92], readily applicable
to GLSMs, and closely related to the earlier notion of “transposition”, which then will be
used herein as a common descriptive identifier.

Following the above practice, consider for illustration a simple, two-dimensional
version of Greene-Plesser’s 1990 construction [91], a Fermat cubic in P? (see Figure 2),
where the (10)-like fan was redrawn in Figure 2b in the customary orientation and labeled
by the Cox coordinates, so powers of x; in the Newton polytope, A(P?) Figure 2a, grow in
the direction of the x;-arrow in ¥(IP?). This fan subdivides its “spanning polytope”, A(P?).
The “original” Calabi—Yau 1-fold is simply the zero locus of the Fermat cubic Figure 2 (top
left), fr(x). The Greene-Plesser mirror was then defined as a Calabi—Yau desingularization
of a Z3-quotient of the sane cubic in essentially the same P2

L) Eyd+yS+ys =0} C VP

POPE ESECE] oo

mirror
.
'S
N
<
i3

Pt
D)

(a) (b) (c) (d)

Figure 2. Combinatorial data for IP? as a toric variety, and for VP2: the Newton polygon A of (regular)
anticanonical monomials (a), in Cox coordinates specified by the spanning polygon A* and fan
% (P?), (b). Similarly, Newton polygon A("P?) in (c) and spanning polygon &*(YP?) and fan X("P?)
in (d). The colored lines in diagrams (a,c) indicate “stripes” of monomials as in Figure 1 and also
outline the respective Newton polygons, A(P?) and A(VP?).

In Figure 2b, this mirror quotient of the Fermat cubic is seen as the transpose (the
matrix of exponents is self-transposed), combining monomials from the Newton polytope,
A(VP?) Figure 2c, given in terms of a distinct set of variables, yj, specified by the fan of
a distinct embedding space, &("P?), depicted in Figure 2d. As should be clear from the
shapes in Figure 2, this implements mirror symmetry by swapping the roles of the spanning
polytope, A(X), and the Newton polytope, A(X). That is,

A(PX) == M(X), and  A("X) = A(X), (55)

where the “original” is an anticanonical hypersurface in X and its mirror is a corresponding
hypersurface in VX, which is specified by both A(VX) and A(VX), as defined in (55). This
in fact automagically incorporates the requisite quotient desingularization, as seen after a
brief toric précis (see Refs. [47-49,70-72] for rigorous and complete details).

Cox coordinates: Cox coordinates of a toric variety X [93] are assigned to the vertices of
A(X). Indeed, in Figure 2b, the homogeneous coordinates of P? are assigned to the
vertices of A(P?). On the mirrored right-hand side, the Cox coordinate of “P? are
assigned to the vertices of A*(P?) := A(IP?) depicted in Figure 2d.
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Chart: A toric variety, X, is covered by an atlas of chars, each corresponding to a top-
dimensional cone in the fan, £(X). The lattice degree of a cone, 0, is the dimension-
rescaled volume of the 0-apex pyramid generated by the cone’s lattice-primitive
generators: d(0) := (dim[6]!)Vol[«(6)].

MPCP-desingularization: Degree-d cones encode C" /Z;-like affine charts (C"/Z:=C"),
a maximal projective crepant partial (MPCP)-desingularization (blowup) [92] of which
is encoded by a subdivision into degree-1 subcones; each generator cone of the
subdivision encodes (part of) an exceptional locus of the MPCP-desingularization.

Charts and gluing: A toric variety, X is covered by an atlas of chars, each corresponding to
a top-dimensional cone in the fan, £.(X). Charts overlap where their (top-dimensional)
cones have a common facet (codimension-1 cone in the boundary), which then spec-
ifies how the charts are glued together. The so-defined poset structure in the atlas
of charts covering X is in direct 1-1 correspondence to the poset of cones in the fan
X(X). A complete fan (where each codimension-1 facet adjoins two top-dimensional
cones) corresponds to a compact toric space.

Multifan layers: In multifans (as used in Refs. [60-63]), a common facet (k—1)-cone, T,
adjoins two k-cones, 0, ¢’ that lie in distinct layers of a multifan that “flip-folds” at T,
so that N6’ =T contrary to appearances of a larger overlap. The hyperplane region
spanned by the lattice-primitive generators of a cone is its (base) face in the spanning
multitope of the multifan, which is assembled from the faces of all the cones and
with the same poset structure; a precise correspondence with the rich (and varied)
practices in the mathematical literature [70-81,94] remains to be determined.

Now, compare %(P?) in Figure 2b with %("P?) in Figure 2d. Each of the three top-
dimensional cones of %.(IP?) in Figure 2b has a degree of 1 [15]:

d(912) = det{%} =1, d(923) = det[%} =1, d(931) = det[%} =1, (56)

so each encodes the familiar C2-like chart, which jointly cover IP?. By contrast, each of the
three top-dimensional cones of £ ("P?) in Figure 2d has a degree of 3:

d(®12): det[j 7;} =3, d(@zg): det[f 2} =3, d(@31): det{f

12 ] -3 (57)

1-1
2 -1
They all encode identical C?/Z;3-like charts, which jointly cover “P?, thereby indicating
the global quotient, P? / Z3. Each chart requires two MPCP-desingularizing blowups, corre-
sponding to the dotted lines in Figure 2d: "P2 = Bl!pcp [P2/Z3).

This Figure 2d-encoded quotienting and MPCP-desingularization in D("P?) is “in-
herited” by the hypersurface {f{(y) =0} C YP?, where it precisely matches the complete
Greene-Plesser prescription [91]. Indeed, the Newton polytope A*(YP?) consists only of
monomials that are invariant under the Zs3 : (y1,y2,y3) — (w?y1,wys,y3) action (This
is precisely the analogue of the Greene—Plesser choice, and is obtained as follows. Start
with a generic diagonal action (x1, xp, x3) — (ax1, Bx2, Yx3), where the invariance of the
individual cubes requires a®> = %> =~%=1. The invariance of the fundamental monomial,
I1x, (oft-quoted as “the Calabi-Yau condition”) sets ¢ = &?B2. The overall projectivization
subsumes the f=a #1 choice, (#, a, ), leaving the equivalent choices, (1, «, a?), (a,1, 042),
and («, a2, 1) with a #1, as the remaining candidates).

Corollary 2. The zero locus of the transpose anticanonical section, { fT(y) =0} C VX, with the
toric space VX encoded by the fan that star-subdivides A(X) and f(y) by &(X), requires neither
further quotienting nor any desingularization: VX is already well prepared, including all requisite
MPCP-desingularization of all A(X)-encoded local quotient singularities.
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o1

X13+X23+X33

3.2. Simplicial Reductions

Generalizations of the Greene-Plesser construction to other types of transverse defining
Equations (with a minimal number of monomials) 4 la [55] is then depicted by simplicial
0-enclosing reductions of the Newton polytope, depicted for P? (and dually, for YP?) in
Figure 3, where the (bigger, pale blue) Newton triangle, A(P?), is depicted over the (smaller,
yellow) triangle, A“(P?). The thicker (green) triangles outline the Red A(P?) encode the
defining polynomial underneath it, with the Refs. [55,95]-styled depiction underneath that;
Arnold’s original classification [95] guarantees completeness.

°1 °1

Red A(PP?) Red'A(P?) Red"A(PP?) Red"'A(P?)

& (P?) ' \v\ ' \v\ ’ \v\ \"\
. [ | o ~ . . v o S . . / [] n . . / o

5

2 3 2 3 2 3 2 3

& . . . o . . . ¢ . . . ¢ .

x12x2+x23+x33 x12x2+x1x22+x33 x12x2+x22x3+x33 x12x2+x22x3+x32x1

POY PP &S0 ol

Figure 3. The distinct types of transverse cubics [95], classified as distinct simplicial 0-enclosing
reductions of the complete Newton polytope. The variously colored triangles and their relation to the
polynomials and graphs underneath are specified in the text, just above the figure.

The combinatorially generated collection of different possible simplicial reductions
evidently grows fast with the dimension and complexity of the considered polytope pairs,
(Red, A(X),Red; A(X)). Each of these specifies a mirror pair of Calabi—Yau manifolds.
They are related by the fact that varying the reduction Red A(X) corresponds to a defor-
mation of the chosen defining equation, i.e., to a deformation of the complex structure,
Zy ~» Zp—Dboth of which are mirrors to the “same Zr”, held “fixed” by not changing
Red A(VX) = Red A(X). Since A(X) of the embedding space, X, of the “original”, Z; C X is
the spanning polytope of the embedding space, VX, of the “transposition-mirror”, Z FTC VX,
varying Red A(X) then also corresponds to varying the Kéhler class (and also the symplec-
tic structure [96,97]!) of Z fTC VX, which are, thus, “held fixed” as a complex manifold—up
to Bridgeland stability issues that make the choice of the complex and the Kahler structures
subtly codependent [98]. In this sense, Corollary 3 holds.

Corollary 3. The original, unreduced polytope pair, (X(X), A(X)), may be regarded as encoding
a “generating machine” for (“multiple”) mirror model pairs.

3.3. Flip-Folded Layers

As the comparison of the two plots in Figure 1 indicates, extending the foregoing
description of the transposition-mirror construction to hypersurfaces in F\’ defines the
embedding space, VF;", of the mirror model by the defining identities (55). To this end, it
is of key importance that the relation between the Newton and spanning polytope, such
as A(Fy)) <& N (FY)), is constructed using the (GLSM-deformation motivated) “stripe”-
wise computed transpolar operation—rather than the algebraic-geometry standard, global,
polar operation. This “stripe”-wise local computation makes the transpolar operation
expressly sensitive to all forms of non-convexity, such as evident in (10, b)—which the
global computations in the standard polar operation obscure.

Abstracting from the plot in Figure 1b and adapting the diagram (10, b) to the toric
style of Figure 2 results in the double-duty diagrams in Figure 4.
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2 2
X X
f(x)=mx2xy +ayx2x) + a3 + tak

5 5
fTx) =byfys + biydyd + bByf3 + b4%

Figure 4. Combinatorial data for F}” and YEy: A(Fy”) = A(VE{") on the left, (a), and A(F{") = A(VES”)
on the right, (b); the transpose pair of “cornerstone” defining polynomials is given (top right) in
terms of Cox coordinates and monomials specified by the vertices.

In Figure 4, f(x) and fT(y) are limited to the “cornerstone” monomials corresponding
to the vertices of A(P3(2>) and A(VF3(2) ), respectively. The matrix of exponents of one is the
transpose of that of the other, and they are transverse polynomials provided ;a3 # 543
for f(x), and 16b,> # —3125bb2b* and by # 0 for f'(y). Relying on Corollary (2), this
produces a mirror-pair of zero loci:

FP o {fx)=0} <m0 {£T(y)=0} C Y. (58)

However, we still need to better understand the toric space corresponding to vF?()Z). To

this end, a few observations are in order, which are easy to generalize for all m > 3:

1.  The dotted lines in the A(E}) diagram indicate the MPCP-desingularizations, so VE
is a smooth manifold, but it does not stem from a global finite quotient. Corresponding
to the four big (vertex-generated) cones, the four distinct charts (starting from the
top-left vertex) correspond to the distinct MPCP desingularizations:

Uip~ Bl [P?/Zy 0], Unsm BL][P?/ 2], Ussm BL,_;[P?], Uy ~ BL[E?/Z,]. (59)

2. VI has a maximal toric C2-action and a (1)-like GLSM specification:

‘ Yo ‘ A Y2 Y3 Ya
—2(m+2) {m-2 0 m =2 :
—2(m+2) | 0 m-2 m =2 }U(l)

All other linear combinations with integral charges are, for m > 3, non-negative linear
combinations of Ql and Qz/ which are, thereby, the Mori vectors.

3. The gluing Ups #;,, Uzq and Uzy#,, Uy, are, however, non-standard. In Figure 4a, the
corresponding cones ©,3 and @34 (as well as @34 and ©41) seem to partially overlap.
This is a hallmark of multifans [70-72], which in general correspond to torus manifolds,

o1 (60)

QZ

and which are not algebraic varieties unless the multifan is in fact a (flat) fan.

4. The multifan defined by the collection of central cones over the facets (“stripes” of

anticanonical monomials that are independent of one of the Cox coordinates) is
well defined as a poset if the cone @34 is understood to flip-fold, into a (Riemann-
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sheet like) layer under ®@,3 and over the layer of @,;. This way, @3 N@34 =03 and
034N Oy =0, are 1-cones, consistently extending the “Separation Lemma” [48,49].

5. This flip-folded character of the multifan centrally spanned by the multilayered multig-
onal object A(F,Sf ) ), which it star-subdivides, is well encoded by the continuous orienta-
tion of the closed cycle of cones,

Goy _><®2_3’_>®3_4>_>®H) (61)

This is a key characteristic of the “generalized legal loops” [99], which in fact are
the two-dimensional so-called VEX multitopes [60-62], the latter defined so that the
transpolar operation acts within their class and always as an involution. Thereby, VEX
multitopes and their (local) transpolar involution generalize (in a GLSM-motivated
fashion) both (1) the (convex) reflexive polytopes [92] and their (standard, global)
polar operation to non-convex, flip-folded, and otherwise multilayered VEX multitopes,
as well as (2) the “generalized legal loops” and their (local) dual operation of Ref. [99]
to all higher dimensions.

6. Multifans do not uniquely encode torus manifolds, but it is not known how the
continuous orientation of multifans and multitopes (item 5, above), such as depicted
in Figure 4, correlates with various combinatorial data considered in the literature to
more precisely specify the available choices among (unitary) torus manifolds.

In general, unitary torus manifolds, multifans, and related combinatorial data correspond-
ing to multilayered multihedral complexes [70-77] (see also [78-81]) not only do not corre-
spond complex algebraic varieties, but need not admit even an almost complex structure.
The relatively simple, flip-folded multifans, such as the illustration in Figure 4a, may well
encode a “wrong” sort of a blowup. The blowup of P? at a (smooth) point is depicted in
toric geometry by the right-hand side subdividing operation:

. 2

In this (standard) blowup, depicted in (62, ¢), the subdividing generator (dashed arrow) in
the fan/spanning polytope lies within the cone being subdivided, here 0;,. Flip-folding
this into a multifan/multitope, depicted in (62, a), of the kind seen in Figure 4a effectively
moves the subdividing generator from “x” at (1,1) to “*” at (1, —1)—which is outside the
cone 81, that was being subdivided, and so, might be called a blowout. The 1-point blowup
of P2 may also be described as a connected sum P2 #@, where the orientation of the second
copy of P? has been reversed [100]. The toric diagram in (62,a) may then well correspond
to P2#P2, without which this reversal of orientation on the second copy does not admit a
global complex structure (I am indebted to Prof. M. Masuda for suggesting this possibility).
This is supported by the computation of the self-intersection of the divisors corresponding
to the star-labeled vertices [62]: (1) [Ds]? = —1, as standard for the exceptional divisor in
a standard blow-up; (2) [D%(]2 =41, which is opposite from the exceptional divisor in a
standard blow-up.

This mismatch in orientations causes the complex structure of the rest of P? to de-

“
*

generate in €; at the exceptional divisor (corresponding to the 1-cone ) and its local
neighborhood. The situation is then most suggestively analogous to the degeneration
of the symplectic structure in so-called “presymplectic manifolds”, the description of

which also uses flip-folded multigons [94]. This correlation with symplectic geometry is of
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course also motivated by the general notion that mirror symmetry swaps it with complex
geometry [96,97], but requires much more detailed analysis and comparison.

Conjecture 3. Given a Calabi-Yau hypersurface Zy C X in a non-Fano toric variety X of which
the spanning polytope, K (X), is non-convex, (1) the transposition mirror may be found as a (trans-
posed) hypersurface, Z £7, I a toric space, VX, corresponding to a flip-folded spanning multitope,
N (VX)) = (&(VX))" =A(X). (2) The toric space VX is precomplex, as may well be the mirror
Calabi-Yau hypersurface in it, Z rC VX, in that their complex structures degenerate at isolated
locations corresponding to the flip-folded elements of the spanning multitope, X(VX). (It may be
possible to find a Calabi-Yau hypersurface that avoids intersecting the complex structure obstruction
in VX; there is then no reason for Z FTC VX not to be complex).

Remark 8. The properly general class of Calabi—Yau spaces is rarely openly specified, but is in
fact certain to include stratified pseudo-manifolds and other “defects”; see, e.g., [26-29,101]. A
corresponding (co)homology theory that is consistent with mirror symmetry and conifold/geometric
transitions has been defined in Ref. [28]; see also Refs. [102-105] for a more recent discussion. In
the present context, a U(1)"- or even fully U (1; C)"-equivariant version seems to be required. The
“home” for such a structure is presumed to require the derived categories of coherent sheaves and
(special) Lagrangian submanifolds [98].

Let us conclude with the observation that the “flip-foldedness” is not “undone” by
straightforward algebro-geometric means, such as a blowdown, i.e., the corresponding
removal of one of the “offending” 1-cones while fixing all other features. For example, the
flip-folded cone ®,3 has @3 (at (1, —1)) as one of its generators, which may be thought of as
a (62,a)-styled “outside” subdivision of the cone <(((0, —1), (1, —2)), and so, a “blowout”,
as discussed below (62). Collapsing its exceptional divisor encoded by @3 (while holding
fixed all cones not adjacent to ®3) converts the flip-folded A(F:)()Z)) into a flat (simple,
single-layered) albeit non-convex polygon. However, its “stripe”-wise locally computed

transpolar is now flip-folded:
()7

(63)

L4
transpolar __.*
LI, - Pr e

That is, unfolding A(Féz)) ends up flip-folding A*(Pg)) via their transpolar relationship.
Corollary 4. The transpolar image of a non-convex region is a flip-folded region, and vice versa.

Here, the so-introduced edge, ®new =[(0, —1), (1, —2)], encodes the pair of anticanon-
ical monomials, {x XoX&, x22/x5}, which does not belong to any of the I1x-deformation
defined “stripes” nor does it otherwise relate to the GLSM. Dually, the direction dnew
in (63, ¢) does not indicate any of the characteristic deformations of the fundamental mono-
mial, Ilx, in the plot of monomials in Figure 1b. The analogous blowdown at ®; has
identical consequences. After hand modification, the pair (A, &%) corresponds to F”; they
encode some different toric spaces.

The above-motivated need to extend reflexive polytopes [92] so as to include flip-folded
and otherwise multilayered polyhedral objects (see also [106]) motivates a vast extension
of the existing GLSM-motivated applications of toric geometry to follow Definition 2.
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Definition 2 ([62]). An L-lattice VEX multitope, AC Lg :=(L®zR), is a continuously ori-
entable, possibly multilayered, multihedral n-dimensional body with every facet at unit dis-
tance [Def. 4.1.4] of [92] from 0€ L, and is star-triangulated by a O-centered multifan [72]:
A>Y.=(0y, =) is a facet-ordered poset of its O-centered cones, o, = <\(0x €OA), where ¢ <0 isa
facet: ¢ C oo and dim(¢) = dim(c)—1. Then, A= (64, <) has the same poset structure.

The toric geometry definition of “unit distance” perfectly corresponds to the Ix-
deformation definition of “distance-1”. VEX multitopes were originally introduced [60] in
tandem with the transpolar operation (Section 2.1), aiming to satisfy Conjecture 4.

Conjecture 4 ([62]). For an L-lattice VEX multitope, A: (1) A C Ly, is a VEX multitope;
(2) (AV)Y = A: the transpolar operation (Section 2.1) closes on VEX multitopes as an involution;
(3) The star-triangulation of A is L-primitive: lattice points of each star-triangulating simplex
are only 0€ L and in 0A; and, if A has a unit-degree triangulation, (4) AY has a corresponding
unit-degree (LV-)lattice triangulation, so both A and A’ correspond to smooth toric spaces.

4. Concerns and Conclusions

The explicit €-varying deformations within the double deformation families of Calabi-
Yau hypersurfaces in é-varying embedding spaces such as discussed in Section 2.3 insure
that the so-constructed embedding spaces (here, ;) are diffeomorphic to each other [107].
These deformation families also include non-Fano embedding spaces and their “unsmooth-
able” (here, Tyurin degenerate) Calabi—Yau hypersurfaces.

Our main concern here is whether there exists smoothings that preserve this diffeo-
morphism equivalence also at the level of the Calabi-Yau hypersurfaces (see [108,109] ) and
the anticanonical bundles, K*(F.’). The Laurent deformations and their non-algebraic “in-
trinsic limit” completion/closure discussed herein would seem to satisfy this requirement,
and is supported by a great deal of explicit computations, as reported earlier [60-63].

The main claims and statements are indicated throughout the foregoing discussion
as Corollaries 1-4 and Remarks 1-7. With regard to the smoothing of the “unsmoothable”
Tyurin-degenerate models, these all refer to the non-algebraic (and presumably complex-
structure degenerating) “intrinsic limit”. The admittedly less completely justified but
hopefully well-motivated statements are indicated as Conjectures 1-4, followed in contrast
by the decidedly algebro-geometric Conjecture 5 and ensuing questions.

One More Thing: An Algebraic Alternative

Contrasting the non-algebraic smoothing discussed above, let us close with a firmly
algebro-geometric alternative: Ref. [61] reported an FS(Z)-generalization of a fractional
mapping devised by D. Cox for IP%M) [5]; this generalization converts the entire system
of anticanonical sections of F3(2)—including the rational sections discussed here—into the
system of regular sections of a different algebraic variety. In fact, this can be generalized to
all F/?. Start with the toric specification 4 la (6), for m >3:

P )m_z. (64)

f(x) = x12(X3 Dxy)" 2 D x 1y (3B xy)? B x22 (— b —
X3 X4

The change of variables (selected to preserve the fibration nature of F;, from a very
wide range of choices)

(x1, X2, x3, X4) > (204/ (wow1)™ 2, Z1Wo" (wowr )™ =2, wy, wy) (65)
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converts (64) into a completely regular polynomial:
h(Z) _ 202 (womfz(wo o wl)m+2wlm72) ® 2021 (w02m72(wO oy wl)z wlmfz) (66)
2] le woz'”(wo @ wl)m_2,

which is a (1ot completely) generic O(5,% ,)-section of P xPL = 5 H(l)] =F; for example,

the z{2-term omits (wo @ wq )zm’lwlmfl factors. Unsurprisingly, this fractional change of
9(x)

a(zw)
poles of P} —very much like (44). However, very much unlike (44), the mapping (65) relates

variables has a non-constant Jacobian, =wy" (wowl)m_2 and is ill-defined over the
the Laurent, “intrinsic limit”-defined and transversal Calabi-Yau hypersurfaces Z¢ C FS(Z) to
regular, transverse hypersurfaces Z; C Féz) of general type: ¢1(Zy) = ( 4P3m), which is negative
over PL.. Owing to the appearance of both roots and powers in (65), the relationship between
Zs and Zj, must involve both multiple covers and (presumably a suitable desingularization
of) quotients. Any relationship between this “regularizing” change of variables (65) and
the geometry of hypersurfaces Z;, of general type on one hand and the Laurent-deformed
Calabi-Yau models discussed here would seem to be worthwhile. It is likely to provide new
information about the novel, Laurent-deformed Calabi—Yau constructions, and perhaps a
firmly algebraic reinterpretation of the “intrinsic limit” completion/closure of the Laurent-
deformed hypersurfaces.

The relative ease (and the wide degree of freedom) in generalizing Cox’s fractional
mapping to the anticanonical system of all F;’ motivates:

Conjecture 5 (Regularizing). All Calabi-Yau Laurent hypersurfaces encoded by VEX-multitopes
of anticanonical sections are also describable via suitable fractional transformations in terms of
general type complete intersections of hypersurfaces in projective spaces, with strictly regular
defining polynomials, i.e., sums of monomials with only non-negative powers.

By providing a strictly complex-algebraic bypass around the putative pole-singularity
issue in Laurent hypersurfaces, fractional mappings such as (64)-(66) raise obvious ques-
tions about the scope, differences, and possible overlap between the distinct logical pos-
sibilities (For string theory applications, this requires a (co)homology theory consistent
with mirror symmetry and conifold /geometric transitions including various associated
“defects” [26-29], akin to the framework developed in Ref. [28], but with the GLSM U(1)"-
or even full U(1; C)"-equivariance incorporated). (1) What is the (co)homological difference
from the “intrinsic limit”? (2) Do they remain in the same deformation class (51), or are
there “vanishing (or emerging) cycles”? That is, do the Betti or Hodge numbers differ, and
how? (3) How does the symplectic structure on these models (and homological mirror
symmetry) vary in the deformation process (51)? Eventually and if interested in string
theory application, one would need to know: (4) Do the Weil-Petersson-Zamolodchikov
metric-normalized Yukawa couplings (structure constants in the multiplicative H!(T) and
H!(T*) cohomology groups) differ, and how? However, answering this question would be
a tall order currently.
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Abbreviations

The following abbreviations are used in this manuscript:
GLSM  Gauged Linear Sigma Model (a class of worldsheet quantum field theories) [24]
MPCP  Maximal Projective Crepant Partial (desingularization) [92]
VEX mnemonic contraction for “not necessarily conVEX EXtension”;
see Definition 2, originally [60]
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