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Abstract
We analyze the connections between the non-Markovianity degree of the most
general phase-damping qubit maps and their legitimate mixtures. Using the
results for image non-increasing dynamical maps, we formulate the necessary
and sufficient conditions for the Pauli maps to satisfy specific divisibility cri-
teria. Next, we examine how the non-Markovianity properties for (in general
noninvertible) Pauli dynamical maps influence the properties of their con-
vex combinations. Our results are illustrated with instructive examples. For
P-divisible maps, we propose a legitimate time-local generator whose all
decoherence rates are temporarily infinite.

Keywords: open quantum systems, quantum channels, Pauli channels, divisibil-
ity, non-invertible maps, non-Markovian evolution

1. Introduction

Quantum evolution with memory effects is a rapidly developing research area [1, 2] due to its
applications in quantum information processing and quantum communication [3-5]. Modern
experimental methods make it possible to observe new non-Markovian effects caused by the
interactions in the environment [6—9]. One can even quantify [10] and control [11, 12] the
degree of non-Markovianity through environmental states manipulation. Hence, it is impor-
tant to further develop the theory of open quantum system dynamics that goes beyond the
Markovian regime with emphasis on characterization and quantification [13, 14]. Two main
approaches are based on the divisibility [15] and information backflow [16].

*Author to whom any correspondence should be addressed.

Original content from this work may be used under the terms of the Creative Commons
Bv Attribution 4.0 licence. Any further distribution of this work must maintain attribution
to the author(s) and the title of the work, journal citation and DOI.

1751-8121/22/215201+15$33.00 © 2022 The Author(s). Published by IOP Publishing Ltd  Printed in the UK 1


https://doi.org/10.1088/1751-8121/ac65c0
https://orcid.org/0000-0002-1816-7242
mailto:kasias@umk.pl
http://crossmark.crossref.org/dialog/?doi=10.1088/1751-8121/ac65c0&domain=pdf&date_stamp=2022-5-11
https://creativecommons.org/licenses/by/4.0/

J. Phys. A: Math. Theor. 55 (2022) 215201 K Siudziriska

The evolution of open quantum systems is provided by dynamical maps, which are time-
parameterized families of quantum channels (completely positive, trace-preserving maps)
{A(®): t+ >0, A(0) =1} acting on the space B(H) of bounded operators on the Hilbert
space H. For an arbitrary initial state p, the evolved state is given by p(f) = A(®)[p]. It is evi-
dent that all the information about quantum dynamics, including its Markovianity, is encoded
in the properties of A(¢). In one of the most popular approaches, the Markovianity degree of
the evolution is related to the divisibility of the associated dynamical map [15, 17]. Recall that
A(z) is divisible if it can be decomposed into

A0 = V{1, 5)A(s), ey

at all times 7 > s > 0, where V(z,s) is a trace-preserving propagator. Now, if V(z,s) is com-
pletely positive, then the corresponding A(z) is CP-divisible, and hence the evolution it pro-
vides is called Markovian [15, 17]. If the complete positivity of the propagator is broken,
the evolution becomes non-Markovian. There exists a hierarchy of k-positive maps V(t, s)
that correspond to k-divisible dynamical maps [18]. For k = d, where d is the dimension
of the underlying Hilbert space, one recovers CP-divisible A(¢). On the other hand, k = 1
reproduces P-divisible A(z), for which V(z, s) is a positive map. The property of P-divisibility
relates to the classical definition of Markovianity for one-point probabilities in stochastic
processes [19]. Further distinctions exist, where the positive but not completely positive (PnCP)
V(t,s) is associated with PnCP-divisible dynamical maps. Such evolution is referred to as
weakly non-Markovian [18]. Every P-divisible evolution satisfies the Breuer—Laine—Piilo
condition for no information backflow from the system to the environment [16]. Moreover,
an essentially non-Markovian evolution arises from the dynamical maps that are not even
P-divisible [20].

If A(z) is invertible, then the propagator of quantum evolution is well defined, as equation (1)
gives V(1,s) = A(H)A~'(s). Moreover, in this case, the CP-divisibility of the dynamical map is
closely related to the properties of the time-local generator £(r) that enters the time-local master
equation

d
EAO) = L(OAD). 2)

Namely, A(7) is CP-divisible if and only if its generator has the standard time-dependent
Gorini—Kossakowski—Sudarshan—Lindblad form [21, 22]

L([p] = —i[H (D), p]

1 ) 3
+D 7@ (vaa)pVJ,(z) -5 Viovao, p}) ()

with the decoherence rates 7y,(#) > 0. The choice of the Hamiltonian H(f) as well as the
noise operators V,,, which are responsible for decoherence and dissipation phenomena, are
not constrained in any means.

However, if a dynamical map is noninvertible, then v, (f) > O is no longer necessary for
CP-divisibility [23]. In addition, the propagator itself can no longer be defined by the inverse
of A(?). Instead, one introduces a generalized inverse A~ (¢) of A(¢), so that V(t,s) = A()A™(s)
[24]. In general, A" (¢) is not uniquely defined, but for invertible maps it reduces to the stan-
dard inverse. Construction the P and CP-divisibility conditions for noninvertible dynamical
maps is a relatively new research topic that requires further study [23-25]. It is motivated by
the fact that many interesting physical evolutions are described by noninvertible dynamical
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maps, including a two-level atom driven by a phase noisy laser [26], a damped two-level atom
interacting with a single-mode field in the Jaynes—Cummings model [27-29], an amplitude
damping model on resonance with Lorentzian reservoir spectrum [30], and a quantum NOT
gate implementation [31]. An important class of quantum evolution, where the system under-
goes decoherence without dissipation, is provided by unital quantum maps [32]. The most
general form of unital qubit maps is provided by the Pauli channels [33, 34]. Non-invertible
Pauli dynamical maps follow for a two-level system in dissipative environment [1], a two-level
atom driven by a phase noisy laser [26], and a two-level quantum system interacting with an
environment possessing random telegraph signal noise [35].

This paper is the continuation of reference [36], where we analyzed convex combinations
of non-invertible dynamical maps. For the Pauli maps, we showed that mixing non-invertible
maps results in a shift, addition, or even removal of singular points. In particular, the con-
ditions for obtaining the Markovian semigroup were presented. The main goal of this paper
is to check how the divisibility properties of the maps influence the Markovianity of their
mixtures. The scope is limited to bistochastic qubit evolution due to their simple spectral
properties. Such analysis has so far been performed only for invertible Pauli maps, includ-
ing convex combinations of Markovian semigroups [37—-39] and CP-divisible dynamical maps
[40, 41]. Experimental investigation of mixing two phase damping Pauli channels has recently
been performed in a photonic setup [42]. In [43], the authors analyze convex combinations of
two Markovian channels that produce a non-Markovian evolution and vice versa. Also, it has
been shown that a combination of open quantum system dynamics with interferometry dis-
plays non-Markovian features, even when the system—environment interaction contains only
dephasing [44].

In the following sections, we recall the general properties of the Pauli channels and define
the Pauli dynamical maps A(f) that describe the evolution of open quantum systems. Next, we
use the results for image non-increasing dynamical maps to formulate the divisibility condi-
tions for A(7) that are in general noninvertible. Finally, we analyze the Markovianity properties
for mixtures of non-invertible Pauli dynamical maps. We illustrate our results with several
examples, showing that there are certain relations between the divisibility of maps and their
convex combinations. In particular, we propose a legitimate P-divisible dynamical map gener-
ated via £(r) whose all decoherence rates are temporarily infinite. In conclusions, we provide
a summary of our results and a list of open questions.

2. Pauli channels
Consider the mixed unitary evolution of a qubit given by the Pauli channel [45]

3

Alpl = padapoa, (4)

a=0

where p, denotes the probability distribution and ¢, are the Pauli matrices. Mixed unitary
channels arise from unitary evolution disrupted by classical errors, and they are also referred
to as random unitary evolution [46] or evolution under random external fields [47]. Notably, A
composed with unitary evolutions describes the most general bistochastic evolution of a qubit
[33, 34]. Alternatively, the Pauli channels are defined via their eigenvalue equations,

A[a(y] - )\ao(ya >\0 - 1, (5)
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where the (real) eigenvalues ), relate to the probability distribution p,, as follows,

3

Aa :PO‘FZP(M—Z[M, a=1,2,3. 6)
/=1

The inverse relation reads

1
po = 1(1 + A1+ A+ A3),

{ 3 (7
Pa=17 L4200 =Y A |, a=123.
B=1

The complete positivity conditions for A are given by the Fujiwara—Algoet conditions [34, 48]
3

—1< Y s <1+ 2minAg. ®)
=1 '

The evolution of open quantum systems is represented by dynamical maps A(¢). In case of the
Pauli dynamical maps, the time-dependence manifests itself in their eigenvalues A, (¢), whereas
the eigenvectors o, remain independent of time. An interesting class includes mixtures of legit-
imate qubit dynamics. One usually considers convex combinations of phase-damping channels

Au(Olpl = (A — p(O)p + p()oapoa, &)

with the eigenvalue equations
Aa(t)[aa] = Oq, Aa(t)[aﬁ] = )\(t)o—ﬁ’ ﬂ 7& «, (10)

where \(f) = 1 — 2p(r) € [—1, 1]. The resulting map reads

3 3
ADIP) =D xaha@lp) = (1 = pO)p + PO XaTapTa, (11)

a=1 a=1

and its eigenvalues )\, (¢) are related to \(¢) via
Aa(®) = xo + (1 = xa)AD). (12)

The choice of \(f) = exp(—rt) with positive r corresponds to the mixtures of Markovian
semigroups [49, 50]

3
A = xae e, (13)
a=1
where the semigroup generator

1
E(y[p] - E (O'(yPO'(y - P) . (14)
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This class includes the celebrated eternally non-Markovian evolution [37, 38]. A more gen-
eral case has been analyzed in references [40, 41], where the authors considered convex
combinations of CP-divisible dynamical maps

3
A(t) = Zxae"(”ﬂ“. (15)

a=1

Note that these maps follow from equation (11) for A(r) = exp[—r(¢)] with r(z) > 0. Finally,
in reference [36], even more general mixtures have been analyzed, where the phase-damping
channels are non-invertible (that is, A\(#) = O for some ¢ > 0).

3. Divisibility vs indivisibility of dynamical maps

A dynamical map A(z) is divisible if and only if it can be decomposed into a trace-preserving
map V(t,s) and itself at an earlier time, so that A(¢) = V(z, s)A(s). Actually, for A(¢) that are
invertible at all times ¢ > 0, one always finds the propagator V(¢, s) = AN~ (s). Therefore,
such maps are always divisible. Moreover, the P and CP-divisibility of invertible dynamical
maps has a full mathematical characterization.

Theorem 1 ([51]). An invertible dynamical map A(¢) is P-divisible if and only if
d
EHAO)[X]HI <0, (16)
t
and CP-divisible if and only if
d
a”“ @ AM[Y]]; <0, 17)

for all Hermitian X € B(H) and Y € B(H ® H), respectively.

The problem becomes more complicated when one relaxes the invertibility condition and
also allows for consideration of noninvertible maps. Recall that a map A(¢) is noninvertible if
there exists a time 7 > 0 for which A~'(z) is not well defined. In general, dynamical maps are
not necessarily divisible.

Theorem 2 ([23]). A dynamical map A(t) is divisible if and only if it is kernel non-
decreasing; that is,

Vocs<:  ker A(s) C ker A(). (18)

Note that every invertible map is divisible in a trivial manner, as ker A(s) = ker A(r) = {0}.
For the Pauli dynamical maps, equation (18) translates to the constraints on their eigenvalues
only, as will be seen later.

Now, consider the class of image non-increasing dynamical maps that satisfy

Vocs<r  ImA(r) C Im A(s). (19)

For such maps, there exists a generalization of theorem 1.
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Theorem 3 ([23]). An image non-increasing dynamical map A(t) is P-divisible if

d

EHA(I)[X]\h <0, (20)
and CP-divisible if

d

a”“ ® AMIY][ <0, 2D

for every Hermitian X € B(H) and Y € B(H ® H), respectively.

For qubit maps, theorem 3 provides the necessary and sufficient condition for CP-divisibility
[25] but not P-divisibility.

Note that not all kernel non-decreasing maps are image non-increasing, as equation (18)
does not imply equation (19) but instead dim Im A(r) < dim Im A(s). There are two natural
classes of image non-increasing maps [23]:

e Divisible normal maps; a map A(7) is by definition normal if AT(r)A(r) = A(r)AT(r), where
AT(7) is the dual map obtained via Tr(XTA(1)[Y]) = Tr(A'[XT]Y);

e Commutative maps (A(t)A(s) = A(s)A(¢) for any ¢,s > 0) that are diagonalizable; a
diagonal representation of A(7) is given by

d*—1

ADIX] = Aa(®F, TH(GIX), (22)

a=0

with a basis of A’s eigenvectors F,, and its dual basis G, (Tr(F!G3) = du3).

It turns out that divisible Pauli dynamical maps belong to both of the aforementioned cat-
egories. Indeed, it is straightforward to show that A(f) given by a time-dependent version of
equation (4) is self-dual (A'(r) = A(¥)) and hence normal. Additionally, it is commutative due
to

AMA$)[oa] = Aa(Aa(D]oa] = ASAD]o0]. (23)

Finally, A(¢) is unital, and so G, = F,, = o,,. Therefore, it can also be rewritten in the diagonal
form

3
ADIX] = Qo[X]+ Y Aa()0a Tr(aX), (24)
a=1

where ®y[X] = %]I TrX is the completely depolarizing channel.
For the bistochastic qubit evolution, we show that divisibility can be determined using only
the eigenvalues A, (7) of the corresponding Pauli channel.

Theorem 4. Any legitimate Pauli dynamical map A(t) is
(a) Divisible if and only if \,(t) > 0 and

Aa() =0 = A(t25)=0; (25)
(b) P-divisible if and only if it is divisible and

Aa() < 0; (26)
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(¢) CP-divisible if and only if it is P-divisible, satisfies

d d
2 — In[Au(D)] = — In[A (DDA (D], (27)
dr dr
whenever all \,(t) > 0, and never has exactly two non-zero eigenvalues \,(t) (o =
1,2,3) at any time t > 0.

The proof can be found in the appendix. Note that the conditions for divisibility and CP-
divisibility follow from the general results in theorems 2 and 3. However, the necessary and
sufficient conditions for P-divisibility are not known even for the qubit maps, and therefore
their derivation requires more attention.

As an example of an indivisible dynamical map, consider the depolarizing channel

3

A@Lpl = (1 = pO)p + pgt); TaPOas (28)

with the eigenvalues

4
Aa() =1 — gp(l) (29)

Note that this map is completely positive if and only if —1/3 < A, (¢) < 1. Hence, if we choose
Aa(?) = |coswi], then, by point (a) in theorem 4, A(¢) is indivisible. Indeed, A, (7 /2w) = 0 does
not imply A\, (r) = 0 forall r > 7/2w. However, this can be easily remedied if one modifies the
eigenvalues, so that

™
Ccos wt, < —,
w

Aalt) = (30)

7T
0, t>—.

The corresponding depolarizing channel is indeed divisible.

An instructive example of the Markovian qubit evolution described by a noninvertible Pauli
dynamical map was proposed in reference [23]. Let us take the qubit dynamical map generated
via

3
1
LO =D 70®La:  LalX]= (0aXoy —X). 31)

a=1
The solution of A(f) = L(r)A(7) is the Pauli dynamical map with eigenvalues
Aa(1) = exp[L'a () — Lo(0)], (32)

where vy = Zi:l% and ', (1) = fot%(r) dr. Note that A(¢) is invertible if and only if T, (7)
are all finite for finite times ¢ > 0. Now, if I'3(¢;) = oo at a finite time #;, then the eigenvalues
of the dynamical map A;(z;) = A\(¢;) = 0. Also, the divisibility property implies that () =
MAo(t) = 0 for t > 1. If there is a time t, > t; such that I',(z,) = oo, then one has \3(f) = O for
any t > . From now on, I'|(#) can be arbitrary, and the system stays in the maximally mixed
state. Therefore, one can conclude the general property for time-local generators. Namely,
a Pauli dynamical map is CP-divisible if and only if all ~y,(z) > 0 up to a time ¢ < ¢;, and
Yo, (t) = 0 for one fixed av. until t < #,.
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4. Mixtures of Pauli dynamical maps

A special class of evolution is given by convex combinations of legitimate quantum dynamical
maps. In our previous work [36], we analyzed the behavior of the singular points of the dynam-
ical maps after mixing, but we completely omitted the discussion of memory effects. In this
paper, our main goal is to find the relation between the divisibility (and hence degrees of non-
Markovianity) of the phase-damping channels A, (¢) given in equation (9) and their mixtures.
All the results are general unless stated otherwise.

First, let us analyze the properties of A, (f), which are a trivial case of mixing with x, = 1
and x3 = 0 for 8 # a. Obviously, these maps are invertible if and only if A() # O atall 7 > 0.
Now, from theorem 4, we see that A, (¢) are indivisible if and only if the eigenvalue \(7) does not
stay equal to zero after vanishing at some point in time. Good examples of \(¢) corresponding
to indivisible A, (¢) are

A(f) = cos wt, (33)
A(®) = | cos wi, (34)
i) = e # cos wt, (35)

with Z,w > 0 [36]. Due to the maps having only one free parameter \(¢), there are no A, (¢)
that are P-divisible but not CP-divisible. However, one can still produce interesting examples
for divisible but not CP-divisible maps after fixing a nonmonotonic function ().

Example 1. A divisible but not CP-divisible A, (7) follows from
1 t 1\2 t
- 1——) (f) b— , t<T,
(D) = c( T {“ T) Thr e (36)
0, t>T,
where the parameters a, b, ¢ are chosen in such a way that

b2 2 b b2
0<b<a, @+b) <o Tty
4da 3a

Finally, from theorem 4, we see that CP-divisible phase-damping channels A, (#) correspond
to monotonically decreasing A(¢), or equivalently \(¢) < 0.

(37)

Example 2. One gets a CP-divisible A,(¢) for

cos wt, t < l,
A1) = (38)
0, t> 2w

This way, we provide a full characterization of the divisibility properties for A,(f). Now,

we move our attention to their convex combinations A(7) = Zz:lxaAa(t). In reference [36],

it was proven that invertible maps do not produce noninvertible mixtures. Moreover, the

non-Markovianity of A(z) for invertible A,(¢) has already been analyzed in reference [40].

Therefore, our main focus and original results are the Pauli dynamical maps obtained from
noninvertible phase-damping channels.

Let us start with the mixtures of A, () that satisfy the most restrictive conditions, and then

move to the more general choices. This way, we are going to observe that the less constraints

8
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is put on A, (%), the wider classes of dynamical maps follow from taking their convex combina-
tions. First, let us provide a generalization of the results for mixtures of CP-divisible invertible
Pauli maps from reference [40].

Proposition 1. Mixtures of CP-divisible A, (t) always produce P-divisible A(1).

Proof. Recall that the eigenvalues of A(7) are givenby A\ (f) = xo + (1 — x4)A(?). Therefore,
the P-divisibility condition for A(f), which is

Aa(D) = (1 — x)A(1) <0, (39)

holds if and only if A(r) < 0. On the other hand, A(r) < 0 is only necessary for CP-divisibility
of A(1). O

Note that if all x, # 0, then the resulting A(?) is invertible. Now, one can also use CP-
divisible A, (#) to produce CP-divisible A(z).

Proposition 2. Mixtures of CP-divisible A, (t) produce CP-divisible A(t) if and only if
Xq Z0fora=1,2,3and

1 (i — x)(x; — xp)
N> (—xk+\/(1_xi)(1_xj)>, (40)

where {x;, xj, x¢} = {x1,x2,x3}. The resulting maps A(t) are always invertible.

Proof. First, let us show that A(7) is always invertible. We know that mixtures of invertible
dynamical maps always produce invertible dynamical maps [36]. For noninvertible A, (z), there
is a time 7, > 0 for which A(z,) = 0. Now, A, (¢) are divisible, so at any ¢ > ¢, the eigenvalues
of the mixture are \,(f) = x, + (1 — xo)A(#) = x,. If A(¢) is CP-divisible and noninvertible,
there have to be two x, = 0. However, this case corresponds to A(f) = A,(), so there is no
mixing. Hence, no CP-divisible noninvertible maps result from our mixtures.

Now, if A(¢) is invertible, then its CP-divisibility condition reads

3

2Xq XB
> -1, 41
Xo + (1 = x)A0) Z " Xp + (I = xp)A() “D
which is a direct consequence of condition (27), \(¢) > 0, and )\(t) < 0. After eliminating the
fractions, one gets
A P\z(l —x)(1 = x)(1 = x) + 201 — x)(1 — xj)x
(42)

— XiXj+ XX + XX — x,-xjxk] >0,

where {x;, x;, x,} = {x1, x2, x3}. The solutions of the quadratic equation are

1 _ (xi — x)(xj — xi)
Ai(z)_l_Xk< x"i\/(l—x,-)(l—xj)) (43)

Hence, equation (42) reduces to

AMA=ADA=A) = 0. (44)

Observe that A\(#) > Oand A\_(7) < 0, and therefore the above inequality holds for A(r) > A4 (¢),
which is exactly equation (40). (]
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If min,> A(f) = 0, then equation (40) reduces to the constraint that involves only x,,

1 (x; — xp)(xj — x1)
1—xk<““+¢<1—mxr—w>><0' )

This is equivalent to

XX X+ Xixj — XX — xixp <0, (46)

which is exactly the CP-divisibility condition for mixtures of Markovian semigroups obtained
in [38]. Therefore, propositions 1 and 2 show that the statements known for the convex combi-
nations of Markovian semigroups generalize to combinations of any legitimate Pauli dynamical
maps.

Example 3. For x, = 1/3, mixtures A(7) of CP-divisible A,(¢) are also CP-divisible.

Proposition 2 also provides a generalization of the theorem in reference [39] which states
that a mixture of two Markovian Pauli semigroups always results in a dynamical map that is
not CP-divisible.

Example 4. Letus take x; = x; = 1/2, x3 = 0, and

cos wt, t < 21,
() = . (47)
0, t>—
2w
The resulting map A(7) possesses the following eigenvalues,
1+c205 wt, < 21’
M) =X =1 | “
™
cos wt, t < 2
Aa(0) = B
0, t>_—.
2w

Observe that A(#) is not CP-divisible, as these is a time for which it has two non-zero
eigenvalues. However, it is P-divisible due to A, (7) < 0.

The dynamical map A(f) from the above example can be generated using a time-local
generator £(f) given by equation (14) with the decoherence rates

w T
— tan(wt), < —,

2
N0 = () = . w
0, t>—,
2w
(49)
w 1 — cos wt ™
—E tan(wt)li, t< 2—,
s(t) = - + cos wr w
0, t>—.
2w

10
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Interestingly, despite the rates being infinite at one point,

W(Z) ()= ()
their sums are finite,
(£)+%(;):”(i)+%(i)_“ D

This provides the first example of the time-local generator for a PnCP-divisible dynamical map
that is not invertible.

Next, we observe what happens if one mixes the Pauli maps A, (¢) that are not even P-
divisible. Such maps satisfy A(z.) =0 = A(r > 7,) = 0 but violate condition )\(t) <0. In
equation (39), we have already shown that )\(t) < 0 if and only if A (1) < 0, which is the
P-divisibility condition for A(z). Therefore, we prove the following proposition.

Proposition 3. Convex combinations of divisible but not P-divisible A (t) lead to divisible
but not P-divisible A(¢).

Ifevery x,, # 0, then the mixtures of divisible but not P-divisible A, () are always invertible.

There are also some interesting properties for mixtures of indivisible phase-damping chan-
nels. It was shown in [36] that such mixtures can produce CP-divisible maps. In this case, \(7)
is monotonically decreasing, even though it passes through zero. Actually, (1) < 0is a neces-
sary condition for a mixture of A,(¢) to be P-divisible. If we want to guarantee the divisibility
of A(7), then it turns out that there are easy-to-check necessary and sufficient conditions.

Proposition 4. Mixing indivisible A, (t) produces divisible A(?) if and only if

At) = —min (= i (52)

I — Xmin I — Xmin

fort > t, and Xpi, = min x,,.
«

The above constraint is a direct consequence of point (a) in theorem 4. Whenever condition
(52) is violated, the mixture of indivisible maps remains indivisible. Recall that all indivisible
Pauli dynamical maps are noninvertible.

5. Conclusions

In this paper, we analyzed the divisibility of Pauli dynamical maps that are in general nonin-
vertible. We provided the necessary and sufficient conditions for these maps to be divisible,
P-divisible, and CP-divisible in terms of their eigenvalues alone. Next, we considered the qubit
evolution given by legitimate mixtures of Pauli dynamical maps. We found the following inter-
esting connections between the divisibility properties of the most general phase-damping qubit
maps and their convex combinations.

Indivisible maps follow only from mixing indivisible maps.
Mixtures of divisible maps always produce divisible maps.

Convex combinations of CP-divisible maps are at least P-divisible.
Noninvertible CP-divisible maps cannot be obtained through mixing.

Time-local generators of noninvertible dynamical maps have decoherence rates that
become infinite for finite times.

e Indivisible dynamical maps can be mixed into maps with any degree of divisibility.

1
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We also provided examples of time-local generators for noninvertible dynamical maps,
including a legitimate generator with all decoherence rates infinite at a finite time ¢ > 0.

There are still many open questions regarding the divisibility of dynamical maps. Due to
the complexity of calculating the trace norms for high-dimensional systems, we were unable to
provide a satisfactory analysis for the generalized Pauli channels. It would be interesting to ana-
lyze the divisibility of mixtures of more involved Pauli maps [52] and noninvertible generalized
Pauli dynamical maps. One could even find relations between k-divisibility of channels [53]
and their convex combinations by considering something more general than phase-damping
maps.
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Appendix A. Proof to theorem 4
Any Pauli dynamical map A(7) is divisible if and only if A,(r) > 0 and

A =0 =A@ =5 =0, (A1)
which is a direct consequence of theorem 2. Assume the most general form of a divisible Pauli

dynamical map—namely, let the eigenvalues {\(r), \2(7), A3(D)} = {Xi(®), \j(2), \()} evolve
in such a way that

0<t<n: (D), A0, M) = (A1), (1), (1),
1<t <t (A0, Aj(0), A(0) = (A@), 1(1), 0),

St<nzr (A0, Aj(0), A1) = (A(0),0,0),
12130 (N0, A0, M(0) = (0,0,0),

153

where A\(7), n(t), p(t) > 0 are arbitrary functions for which A(z) is completely positive. In other
words, A(7) has three non-zero eigenvalues up to a time #;. Then, at 7 = ¢, one of the eigenval-
ues vanishes. As the dynamical map is divisible, any vanishing eigenvalues will not reappear at
later times. Next, the two remaining eigenvalues evolve up to t = #, > t;, when another eigen-
value vanishes. The final eigenvalue reaches zero att = t3 > f,. From then on, the system stays
at the maximally mixed state. Note that we allow 7; = # for j,k = 1,2, 3, and even # — oo,
which would mean that some of the eigenvalues do not vanish for finite times.

Now, consider the problem of finding the P and CP-divisibility conditions for A(¢) separately
for each range of time. Without a loss of generality, we assume that A(¢) is a solution of the
master equation A(f) = L(EA(F) with a time-local generator defined as in equation (31).

12
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First, we observe that for 0 < 7 < #; the dynamical map is invertible, and hence the divisi-
bility conditions coincide with the conditions for invertible maps. Recall that invertible Pauli
dynamical maps are P-divisible if and only if

Aa(t) <0, (A2)

and CP-divisible if and only if its time-local generator £(7) has all its decoherence rates v, (f) >
0 [54]. Note that the condition for the generator is equivalent to

d d
2 0] = - I OA0A3 (0], (A3)

due to equation (32) that connects A, (¢) with 7, (7).

Now, we still need to formulate the conditions for the times at which A~'(¢) is not well
defined. For this purpose, let us recall the divisibility properties for the Pauli channels A. From
definition, any quantum channel A is divisible if it can be decomposed into A = VA', where
A’ is also a quantum channel, and V is a positive, trace-preserving, non-unitary map.

Lemma 1. Noninvertible Pauli channels A are P-divisible if and only if
AA2)s = 0. (A4)

(Theorem 25 in [55] or theorem 2 in [56]) and CP-divisible if and only if there is only one
k € {1,2,3} such that

e # 0. (AS)

(Theorem 24 in [ 55]).

This lemma provides us with necessary conditions for P and CP-divisibility of Pauli dynam-
ical maps A(7). Indeed, if A(?) is P-divisible, then A(r) = V(z, s)A(s) for s < ¢ with a positive
propagator V(z, s). For fixed t and s, A(f) and A(s) are two Pauli channels—denote them by A’
and A, respectively. Analogically, for fixed times, V(z, s) = V is a positive map. Therefore, one
has A’ = VA, which is exactly the P-divisibility property for the Pauli channel A’. Analogical
reasoning follows for CP-divisible dynamical maps.

Corollary 1. If a Pauli dynamical map A(t) is CP-divisible, then for t; <t < 13 its eigen-
values are

(A0, A (), A1) = (M0, 0,0). (A6)

In other words, for CP-divisible A(f), one has #, = t3. Now, to see that 73 can in general be
finite, recall that for #; < ¢ < t3 the corresponding propagator V(z, s) defined by

Vol =1
R
V(ta S)[Ji] - %0—1, (A7)

V(t,$)lojl = V(t.9)low] = 0,

is completely positive and trace-preserving for any monotonically decreasing A(¢) > 0 [24].
This way, we prove the second part of theorem 4.

13
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To prove the first part, we consider the remaining time range, #; < t < t,, when there are
two non-zero eigenvalues and A(f) can be at most P-divisible. The associated propagator V(t, s)
satisfies the eigenvalue equations

v, ol =1,

V.o = 2Dy,
;
t

Vi, s)loj] = %0,‘,

V(t, $)[ox] = 0.
Now, V(t, s) is a Pauli map, so it is positive if and only if [57]

A ‘ )

<1 A9
A(s) 7(s) (A%

~

As the functions A(#) and 7)(?) are positive, the above condition is equivalent to a monotonical
decrease of A(7) and 7)(¢). Therefore, for P-divisible A(f), one has A\, () < 0 at all times ¢.
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