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We perform a systematic analysis of models with GeV-scale dark matter coupled to baryons and leptons. 
Such theories provide a natural framework to explain the matter-antimatter asymmetry of the universe. 
We find that only a few baryonic dark matter models are free from tree-level proton decay without 
explicitly imposing baryon number conservation, provided that the dark matter particle is sufficiently 
heavy. We enumerate those cases and present a brief overview of their phenomenology. We then focus 
on a leptonic dark matter model for a more detailed discussion of the baryon asymmetry generation 
via leptogenesis, the symmetry restoration in the dark sector and the expected dark matter annihilation 
signals in indirect detection experiments.
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1. Introduction

The evidence for dark matter in the universe is indisputable. 
Not only its existence, but also its distribution and abundance are 
precisely determined from various measurements, including galaxy 
rotation curves [1], cosmic microwave background [2], gravitational 
lensing [3], etc. Nevertheless, the dark matter mass and its in-
teractions with Standard Model particles remain a mystery. It is 
not even known if dark matter consists of elementary particles 
or macroscopic objects. The mass of an elementary dark matter 
particle can be anywhere between ∼ 10−31 GeV (fuzzy dark mat-
ter) [4,5] and ∼ 1019 GeV (WIMPzillas) [6,7] (despite the unitarity 
bound [8]), while the mass of macroscopic dark matter objects 
ranges from ∼ 1017 GeV (dark quark nuggets) [9] to ∼ 1059 GeV
(primordial black holes) [10,11]. In most cases, the dark matter in-
teractions with the known particles are small; from a theoretical 
perspective such interactions can even be absent.

Interestingly, the ratio of the abundances of dark matter and 
ordinary matter is on the order of five. This suggests that the 
two sectors may be related and, perhaps, share a common origin. 
This is precisely the idea behind theories of asymmetric dark mat-
ter [12,13], in which an effective interaction between dark matter 
and Standard Model particles is established. The explanation of 
the matter-antimatter asymmetry of the universe in those theories 
relies on the asymmetries in the two sectors being generated si-
multaneously and the dark matter particles being at the GeV scale.
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In this letter, we systematically analyze scenarios in which dark 
matter couples to quarks and/or leptons. We study the possible 
effective operators describing such interactions up to dimension 
eight and analyze their particle model realizations. For a suc-
cessful baryogenesis or leptogenesis, those operators must have 
a nonzero baryon number contribution carried by the quarks or 
a nonzero lepton number from the leptons. The effective dark 
matter-Standard Model interactions require either scalar or vec-
tor mediators to be present at the particle level of each model. For 
dark matter coupled to baryons (baryonic dark matter) at least one 
mediator in each model is necessarily a color triplet. For dark mat-
ter coupled to leptons (leptonic dark matter) the mediators do not 
carry color.

We demonstrate that for baryonic and baryoleptonic dark mat-
ter the possible mediators are: the scalars (3, 1)−4/3, (3, 1)−1/3, 
(3, 1)2/3, or the vectors (3, 2)−5/6, (3, 2)1/6. Without imposing an 
additional symmetry, all of those particles, except for the scalar 
(3, 1)2/3, can trigger tree-level proton decay to Standard Model 
particles [14,15]. Thus the mass of those mediators is elevated 
above ∼ 1016 GeV by the stringent experimental constraints on the 
proton lifetime, limiting their capabilities of explaining baryogene-
sis and their experimental probes.

Such large mediator masses can be avoided by fine-tuning some 
of the couplings to be small or by explicitly imposing baryon 
and/or lepton number conservation. However, there is no strong 
theoretical argument to expect baryon or lepton number to be ex-
act symmetries of nature. In fact, both of them are already violated 
within the Standard Model itself at the non-perturbative level by 
the electroweak sphalerons. Guided by the requirement of proton 
stability without assuming a fine-tuning of couplings or imposing 
an additional symmetry, we focus on baryonic dark matter models 
 under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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involving only the scalar mediator (3, 1)2/3, as well as on leptonic 
dark matter models. The latter are naturally free from tree-level 
proton decay, since they involve the color singlet scalar mediators 
(1, 1)1 or (1, 2)−1/2.

We find that only some of the baryonic dark matter direct 
detection signatures considered in the literature are realized in 
models that do not suffer from tree-level proton decay to Stan-
dard Model particles. In particular, the dark matter-nucleon anni-
hilation, which is possible in such models, necessarily involves a 
kaon in the final state. This conclusion increases the importance of 
the Deep Underground Neutrino Experiment (DUNE) [16] in com-
plementing the efforts of Super-Kamiokande [17] in the search 
for baryonic dark matter. Regarding leptonic dark matter models, 
based on a concrete example, we analyze their potential for gener-
ating the matter-antimatter asymmetry through leptogenesis and 
highlight their unique feature of symmetry restoration in the dark 
sector, achieved when one of the dark sector particles is unstable 
on long time scales and decays to dark matter. Such a rebirth of 
symmetric dark matter leads to the possibility of enhanced an-
nihilation signals at present times, previously considered in the 
context of heavy dark matter [18–20] and oscillating dark mat-
ter [21–25], and results in signatures that can be searched for 
by the Fermi Gamma-Ray Space Telescope [26] and the future e-
ASTROGAM [27].

2. The models

In this section, we enumerate the possible particle physics 
models for the effective operators describing the interactions of 
dark matter with just the quarks (baryonic dark matter), both 
quarks and leptons (baryoleptonic dark matter), and with leptons 
only (leptonic dark matter), and briefly discuss their phenomenol-
ogy. We adopt the four-component Dirac spinor notation for the 
fermion fields, indicating with a subscript L or R their left- or 
right-handed chirality. The conjugate fields are denoted by a bar 
symbol. We focus on the operators which carry a nonzero baryon 
number contribution from quarks or a nonzero lepton number con-
tribution from leptons, since only those theories provide promis-
ing asymmetric dark matter frameworks. In particular, we do not 
consider operators of the type qq̄χχ̄ or ll̄χχ̄ , which arise, e.g., 
in certain theories with gauge bosons coupled to baryon or lep-
ton number [28,29]. In the following analysis, χ and χ̃ are Dirac 
fermions, whereas φ and � are complex scalars. Both χ and φ are 
Standard Model singlets.

Baryonic dark matter

The simplest effective operator describing the interaction of 
dark matter with quarks is the dimension six qqqχ , where q stands 
for Q L , dR or uR . The possible gauge-invariant realizations are 
uRdRdRχ and Q L Q LdRχ . There are three models one can write 
down for those operators, labeled as Models 1A–1C in Table 1. 
They involve the mediators: scalar (3, 1)2/3, scalar (3, 1)−1/3, and 
vector (3, 2)1/6, respectively. Among those particles, only the scalar 
(3, 1)2/3 in Model 1A does not give rise to tree-level proton decay 
to Standard Model particles, since the quantum numbers do not al-
low � to couple to a quark and a lepton [14,15]. This is in contrast 
to the other two cases, where the scalar (3, 1)−1/3 can have the 
couplings � uRdR and �∗uR eR , whereas the vector (3, 2)1/6 can 
couple via Xμ Q Lγ

μdR and X†
μLLγ

μuR , both leading to p → e+π0. 
For this reason, we focus on Model 1A below. An example of a di-
agram generating the operator qqqχ is shown in Fig. 1.

At dimension seven, the possible effective interactions are 
qqqχφ and qqqHχ , where H is the Higgs field. In this study, we 
do not consider operators involving the Higgs field and only focus 
on the ones in the first category. There are six particle models for 
2

Table 1
Effective operators describing the interaction of baryonic dark matter with 
quarks and their model realizations.

Baryonic dark matter

Model Interactions Mediators

qqqχ
1A �dR dR , �∗uRχ � = (3,1) 2

3

1B
(
� uR dR or � Q L Q L

)
, � = (3,1)− 1

3

�∗dRχ

1C Xμ Q Lγ
μdR , X†

μ Q Lγ
μχ Xμ = (3,2) 1

6

qqqχφ

2A �dR dR , �∗uR χ̃ , χ̃χφ � = (3,1) 2
3

χ̃ = (1,1)0

2B �dR dR , �∗χ̃χ , χ̃uRφ � = (3,1) 2
3

χ̃ = (3,1) 2
3

2C
(
� uR dR or � Q L Q L

)
, � = (3,1)− 1

3
χ̃ = (1,1)0

�∗dR χ̃ , χ̃χφ

2D
(
� uR dR or � Q L Q L

)
, � = (3,1)− 1

3
χ̃ = (3,1)− 1

3

�∗χ̃χ , χ̃dRφ

2E Xμ Q Lγ
μdR , χ̃χφ, Xμ = (3,2) 1

6
χ̃ = (1,1)0

X†
μ Q Lγ

μχ̃

2F Xμ Q Lγ
μdR , X†χ̃χ , Xμ = (3,2) 1

6
χ̃ = (3,2) 1

6

χ̃ Q Lφ

Fig. 1. Model 1A realization of the operator qqqχ .

Fig. 2. Model 2A realization of the operator qqqχφ.

the operator qqqχφ, denoted as Models 2A–2F in Table 1. They in-
volve the same scalar and vector mediators as introduced for the 
operator qqqχ . In addition, an intermediate fermion χ̃ is required 
(see, Fig. 2). We discuss in more detail Model 2A, since it does not 
suffer from tree-level proton decay to Standard Model particles.

At dimension eight, the operators are qqqχφ2, qqqHχφ and 
qqqH2χ . Again, we only consider the ones in the first category. 
Models for the operator qqqχφ2 can be constructed by introducing 
an additional scalar singlet field φe , replacing φ with φe in Mod-
els 2A–2F, and adding the interaction φ∗

e φ2. The particle φ is then 
automatically stable without imposing specific relations between 
the masses. The particle χ , on the other hand, may be unstable if 
sufficiently heavy.

Model 1A (qqqχ )

The Lagrangian for Model 1A is given by

−L1 ⊃ λab
q ε i jk�id

a
R jd

b
Rk + λa

χ �∗iχua
Ri + h.c. , (1)

where i, j, k are color indices and a, b are flavor indices. Due to 
the antisymmetric nature of the ε tensor, the coupling λab

q must 
be antisymmetric in flavor.

Although there is no tree-level proton decay to a final state 
consisting of only Standard Model particles, the model still suf-
fers from proton decay if mχ < mp − me = 937.761 MeV, since the 
proton can then undergo the dark decay p → χ̄ e+νe . The mass 
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range 937.761 MeV < mχ < 937.993 MeV is problematic as well 
– although the proton remains stable, the 9Be nucleus, known to 
be stable, can then undergo the nuclear dark decay 9Be → χ + 2 α
[30].

The mass range 937.993 MeV < mχ < 938.783 MeV is of partic-
ular interest, since then the proton, all stable nuclei and the dark 
matter χ remain stable, but the neutron can undergo the dark de-
cay n → χ̄ γ . This decay channel was proposed in [31] as a possi-
ble solution to the neutron lifetime discrepancy. It was shown that 
Model 1B allows the neutron to have a dark decay branching frac-
tion Br(n → χ̄ γ ) = 1%, which corresponds to m� ∼ O(100 TeV)

for order one couplings; see [32] for a detailed review of this 
proposal along with its experimental signatures. It was recently 
argued that within the framework of Model 1A, the neutron dark 
decay branching fraction is constrained to be Br(n → χ̄ γ ) < 10−6

[33].
In Models 1A–1C, the dark matter χ can annihilate with the 

neutron, leading to signatures such as χ n → γ + meson(s) at 
Super-Kamiokande and the future DUNE [34]. We will discuss this 
in more detail in the context of Model 2A below. Finally, in the 
case mχ > mp + me = 938.783 MeV the dark particle χ is unsta-
ble, since the decay channel χ → p̄ e+νe opens up kinematically. 
Although in this scenario χ is not the dark matter, it can still be 
produced in experiments and lead to detectable signatures in B
factories, e.g., missing energy signals from dark decays of heavy 
baryons and mesons [35].

Model 2A (qqqχφ)

The Lagrangian for Model 2A is given by a simple extension of the 
interactions in Eq. (1),

−L2 ⊃ λab
q ε i jk�id

a
R jd

b
Rk + λa

χ̃ �∗iχ̃ua
Ri + λφ χ̃χφ + h.c. . (2)

Once again, the coupling λab
q is antisymmetric in flavor. The stabil-

ity of the proton and all stable nuclei is guaranteed by the condi-
tion mχ + mφ > 937.993 MeV. In the special case 937.993 MeV <

mχ +mφ < mn = 939.565 MeV, the neutron can undergo the decay 
n → χ̄ φ∗ . This is the second neutron dark decay channel pro-
posed in [31] to solve the neutron lifetime discrepancy, and leads 
to unique signals in nuclear decays [30]. In contrast to Model 1A, a 
large mass of χ or φ does not necessarily lead to dark matter de-
cay; provided that |mχ − mφ | < mp + me = 938.783 MeV, both χ
and φ remain stable.

Upon including an additional heavy particle χ̃ ′ with the cou-
pling χ̃ ′χφ, non-trivial C P phases can lead to different decay 
probabilities for χ̃ → udd versus χ̃ → ūd̄d̄ through the inter-
ference between tree-level and loop-level decay channels. Model 
2A is then capable of explaining the matter-antimatter asymme-
try of the universe through the hylogenesis mechanism [36] if 
mχ + mφ ∼ 5 GeV.

This model also predicts striking signatures in direct detec-
tion experiments: χ N → φ∗ + meson(s), where N is a proton or 
a neutron. Such signals were studied in [37–39,34] and include: 
χ n → φ∗ π0, χ p → φ∗ π+ , χ n → φ∗ K 0 and χ p → φ∗ K + . In-
terestingly, not all of them are present in Model 2A. Given the 
antisymmetric structure of λab

q in Eq. (2), the scalar mediator does 
not couple to two down quarks, which implies that signatures in-
volving solely pions in the final state are not possible in Model 
2A.

In conclusion, we find that there is a specific prediction of 
baryonic dark matter models without tree-level proton decay to 
Standard Model particles: dark matter-nucleon annihilation leads 
to at least one kaon in the final state. This is an especially rele-
vant observation in light of DUNE’s expected exquisite sensitivity 
to kaons. In certain regions of parameter space, DUNE will be able 
to probe � masses up to m� ∼O(100 TeV) [34].
3

Table 2
Effective operators describing the interaction of leptonic dark matter 
with leptons and their model realizations.

Leptonic dark matter

Model Interactions Mediators

lll̄χ
3A �LL LL , �∗ �eRχ � = (1,1)1

3B �LL �eR , �∗LLχ � = (1,2)− 1
2

lll̄χφ

4A �LL LL , �∗ �eR χ̃ , χ̃χφ � = (1,1)1 χ̃ = (1,1)0

4B �LL LL , �∗χ̃χ , χ̃ �eRφ � = (1,1)1 χ̃ = (1,1)1

4C �LL �eR , �∗LL χ̃ , χ̃χφ � = (1,2)− 1
2

χ̃ = (1,1)0

4D �LL �eR , �∗χ̃χ , χ̃ LLφ � = (1,2)− 1
2

χ̃ = (1,2)− 1
2

Baryoleptonic dark matter

The simplest class of baryoleptonic dark matter models arises 
from dimension seven effective operators qqqlφ and qqql̄φ, where 
l is a Standard Model lepton representation. Minimal particle 
physics realizations of qqqlφ involve one of the scalar mediators 
(3, 1)−1/3, (3, 1)−4/3, or one of the vectors (3, 2)−5/6, (3, 2)1/6, 
whereas particle models for qqql̄φ require the scalar mediator 
(3, 1)−1/3 or the vector (3, 2)1/6. In models with only a single me-
diator, it has to couple to the bilinears qq and ql (or ql̄), resulting 
in tree-level proton decay which cannot be forbidden by any sym-
metry.

A possible way to overcome this issue is to introduce two medi-
ators, one coupled only to qq, and the other coupled only to ql (or 
ql̄) [35], or include an additional heavy fermion [40]. However, we 
will not consider those scenarios here, since they require impos-
ing baryon/lepton number conservation. A simple extension of this 
class of models, described by the effective operator qqqlφ2, i.e., re-
placing φ by φe and adding the interaction term φ∗

e φ2 to stabilize 
φ, provides a working mechanism for baryogenesis as in Model 2A 
and also exhibits nonstandard nucleon destruction signatures [40]. 
A more general analysis of the baryon asymmetry generation in 
those types of models was performed in [41].

Leptonic dark matter

In order to explain the matter-antimatter asymmetry through 
leptogenesis, operators carrying a nonzero lepton number contri-
bution from the leptons are needed. Those operators can generate 
an asymmetry in the lepton sector, which is then transferred to 
the baryon sector by electroweak sphalerons [42]. The dimension 
four and five operators ll̄φ and ll̄φ2 are not of interest to us since φ
does not carry lepton number. Also, as in the baryonic dark matter 
case, we will not consider operators involving the Higgs, e.g., the 
dimension four operator H LLχ .

The first operator of interest is the dimension six lll̄χ , where 
l can be either LL or eR . The only gauge-invariant realization is 
LL LL �eRχ . Note that the operator lllχ is not invariant under hy-
percharge. There are two particle models for the operator lll̄χ , 
denoted as Models 3A and 3B in Table 2. The corresponding me-
diators are the scalars (1, 1)1 and (1, 2)−1/2, respectively. They are 
colorless, thus they do not mediate proton decay. Because of the 
similarity between the two models, we write down the Lagrangian 
only for Model 3A. Its realization of the operator lll̄χ is shown in 
Fig. 3.

At dimension seven, the effective operator of interest is lll̄χφ, 
again with only a single gauge-invariant realization LL LL �eRχφ. The 
corresponding particle models are labeled as Models 4A–4D in Ta-
ble 2. An intermediate particle χ̃ is required. We focus on Model 
4A below for a quantitative discussion of its properties. The re-
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Fig. 3. Model 3A realization of the operator lll̄χ .

Fig. 4. Model 4A realization of the operator lll̄χφ.

alization of the operator lll̄χφ within this model is presented in 
Fig. 4.

Regarding other options, not involving the Higgs field, the di-
mension seven operator lll̄l̄φ does not carry nonzero lepton num-
ber, thus it cannot fit into the framework of asymmetric dark mat-
ter. At dimension eight, the only operator carrying lepton charge is 
lll̄χφ2. As in the baryonic dark matter case, models for this oper-
ator are obtained from Models 4A–4D by substituting φ with φe , 
and introducing the interaction φ∗

e φ2. This makes φ automatically 
stable, but offers no other advantages compared to the lll̄χφ case.

Model 3A (lll̄χ )

The Lagrangian for Model 3A is

−L3 ⊃ λab
l �(La

LεLb
L) + λa

χ �∗χ �eR
a + h.c. , (3)

where again a, b are flavor indices and the parenthesis denotes the 
contraction of SU(2)L indices. Because of the antisymmetric struc-
ture of the LL bilinear, the coupling λab

l must be antisymmetric in 
flavor.

This model is not phenomenologically attractive because it is 
hard to ensure the stability of the dark matter particle. Especially, 
without imposing any lepton flavor symmetry, χ can undergo the 
decay χ → νγ through a loop diagram. Thus, we do not consider 
this class of models further.

Model 4A (lll̄χφ)

A phenomenologically viable model which contains a dark mat-
ter candidate and can successfully explain the matter-antimatter 
of the universe is obtained by introducing an additional scalar par-
ticle φ. The resulting Lagrangian is a minimal extension of L3,

−L4 ⊃ λab
l �(La

LεLb
L) + λa

χ̃ �∗χ̃ �eR
a + λφ χ̃χφ + h.c. . (4)

The same symmetry arguments as for Model 3A apply, i.e., λab
l is 

antisymmetric in flavor. In addition, we imposed a Z2 parity in the 
dark sector, under which φ and χ are odd, so that the lighter of 
them remains stable and can constitute the dark matter. Model 4A 
is the subject of the subsequent section.

3. Phenomenology of leptonic dark matter

The crucial property of leptonic dark matter models is that they 
do not suffer from proton decay. Below we discuss the baryon 
asymmetry generation in Model 4A via leptogenesis, the symme-
try restoration in the dark sector and the signatures expected in 
indirect detection experiments. Our conclusions apply to Models 
4B–4D as well.
4

Fig. 5. Diagrams contributing to the decay χ̃ → eR �eL �νL .

Leptogenesis

The generation of lepton asymmetry within the framework of 
Model 4A is similar to the hylogenesis mechanism [36]. The pro-
cess starts immediately after inflation. Once the inflaton field �
falls into the potential minimum, it starts oscillating and leads to 
the reheating of the universe. We assume that during reheating the 
particles χ̃ and χ̃ are produced in equal amounts. As the temper-
ature drops, the particles χ̃ decay via the channels χ̃ → χ φ and 
χ̃ → eR �eL �νL , where �eL and �νL have different flavors. The antiparti-
cles χ̃ decay through conjugate processes.

In order to generate C P violation in the model, we introduce 
the particle χ̃ ′ with the following interaction terms,

−L′
4 ⊃ λa

χ̃ ′�∗χ̃ ′ �eR
a + λ′

φ χ̃ ′χφ + h.c. , (5)

and we take mχ̃ ′ � mχ̃ . The asymmetry between the decays of 
χ̃ and χ̃ arises from the interference between the tree-level and 
one-loop diagram shown in Fig. 5. If the leading decay channel is 
χ̃ → χ φ, the generated lepton asymmetry is1

�L = 
(χ̃ → eR �eL �νL) − 
(χ̃ → �eReLνL)

2
(χ̃ → χ φ)

≈ |λl|2 Im
(
λ∗̃
χλχ̃ ′λφλ′∗

φ

)
1536π3|λφ |2

m5
χ̃

m4
� mχ̃ ′

. (6)

In order to avoid the washout of the asymmetry by χ φ → eR �eL �νL

scattering, the reheating temperature, for couplings O(1), needs to 
satisfy [36]

T R � (11 TeV)

[ m4
�m2

χ̃

(1 PeV)6

]1
5

. (7)

Provided that T R is above the electroweak symmetry breaking 
scale, i.e., T R � 200 GeV, a portion of the created lepton asymme-
try will be converted into a baryon asymmetry by the electroweak 
sphalerons. Therefore, as long as the masses of � and χ̃ fulfill the 
condition

(m4
�m2

χ̃ )
1
6 � 40 TeV , (8)

the sphalerons efficiently transfer the asymmetry to the baryonic 
sector. We find that the final baryon asymmetry is

�B ≈ 28

79
�L . (9)

The exact relation between the baryon-to-photon ratio ηB and the 
baryon asymmetry depends on the model of reheating; up to O(1)

factors it is given by [43–45]

ηB ≈ �B T R

M�

, (10)

where M� is the inflaton mass. The observed value of the baryon-
to-photon ratio in the universe of ηB ≈ 6 × 10−10 [46] is obtained, 

1 In this calculation, we only consider the decay channel with one particular lep-
ton flavor choice. The rescaling can be easily done to include more flavor channels.
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Fig. 6. Annihilation of the dark matter symmetric component.

e.g., for O(1) couplings, m� = mχ̃ = 1 PeV, mχ̃ ′ = 5 PeV, M� =
20 PeV and T R = 8 TeV.

The sum of χ and φ masses is set by the observed ratio of 
the dark matter and baryon abundances. Since the generated dark 
matter asymmetry �DM = �L , one arrives at

mχ + mφ = mp
�DM

�B

∣∣∣∣ �B

�DM

∣∣∣∣ ≈ 1.8 GeV . (11)

Removing the symmetric component

To ensure the annihilation of the symmetric component of dark 
matter, it is sufficient to introduce one new particle, e.g., a vector 
V , lighter than χ and φ, with the interaction terms

−L′′
4 ⊃ gχ Vμ �χγ μχ + gφ Vμ φ ∂μφ∗

+ gV Vμ �eR
aγ μea

R + h.c. . (12)

This allows for the annihilation channels �χχ → V V † and φ φ∗ →
V V †, along with the subsequent decays V → l+l− . Diagrams cor-
responding to �χχ → V V † are shown in Fig. 6. We note that the 
cross section for the annihilation �χχ → l+l− through an s-channel 
V is suppressed due to stringent experimental constraints on the 
coupling gV [47].

The annihilation cross section σ�χχ is related to the symmetric 
component of the χ relic density as

�χh2 

(

9 × 10−11

GeV2

)
1

〈σ�χχ v〉√g∗
mχ

T f
, (13)

where g∗ is the number of relativistic degrees of freedom and T f

is the freeze-out temperature [48]. Given the observed value of 
the dark matter relic density �DMh2 = 0.12 [49], we find that for 
mV � mχ an efficient annihilation of the symmetric component of 
χ is achieved when

gχ � 0.01 . (14)

Similar arguments apply to the annihilation φ φ∗ → V V †. The de-
cays of V , such as V → e+e− , depending on its coupling and mass, 
can be a slow process. Thus a small coupling between V and lep-
tons is allowed, and can easily be consistent with all experimental 
constraints [47].

Another possibility is to introduce a light scalar φ′ , rather than 
the vector boson V , to remove the symmetric components of χ
and φ. The annihilation �χχ → φ′φ′∗ is a p-wave process, thus 
it is suppressed by the relative velocity. Such a velocity suppres-
sion does not significantly affect the annihilation of the symmetric 
components, since both χ and φ are still semi-relativistic during 
their freeze-out. However, it has interesting implications for the 
experimental constraints and signatures, which will be discussed 
below.

Symmetry restoration

Interestingly, within Model 4A the asymmetry in the dark sec-
tor is not preserved during the evolution of the universe. If mφ >

mχ , the interactions in Eq. (4) render the particle φ unstable, re-
sulting in the two-body decay φ → �χ �ν and the four-body decay 
5

Fig. 7. Diagram for the decay φ → �χ �ν .

φ → �χ �ν e+e− . The two-body channel is dominant and proceeds 
through the diagram shown in Fig. 7. The resulting decay rate is


(φ → �χ ν̄) ∼ |λl λχ̃λφ |2
4096π5

m2
τ mφ

m2
χ̃

(
1 − m2

χ

m2
φ

)2

. (15)

The observed dark matter relic density imposes a constraint on 
this rate. More explicitly, the decays φ → �χ �ν restore the symme-
try between χ and χ̄ in the relic abundance. Such a restoration 
must happen sufficiently late so that χ and �χ do not efficiently 
annihilate with each other to cause O(1) change to the dark mat-
ter relic abundance. We find that this requirement is met if the 
decay happens at temperatures

Tφ decay � 50 MeV (16)

or, equivalently, after tφ 
 O (10−4) s. This can be achieved if 
the mass splitting between χ and φ is small, i.e., mφ ≈ mχ ≈
0.9 GeV. For example, taking O(1) couplings, mχ̃ ∼ 1 PeV and 
(mφ − mχ )/mφ ∼ 10−3, the lifetime of φ is τφ ∼ 0.1 s. Since the 
decays of φ’s only produce slow-moving χ ’s and low-energy neu-
trinos due to the small mass splitting, the cosmological constraints, 
e.g., from Big Bang Nucleosynthesis, are easily evaded [50,51].

The restored symmetry in the dark sector revives �χχ anni-
hilation at present times in regions with large dark matter con-
centration, e.g., in the Galactic Center, which does not happen 
in standard asymmetric dark matter models. A similar scenario 
of symmetry restoration in the dark sector was proposed in the 
context of heavy dark matter [18–20] and oscillating dark matter 
[21–25]. In addition, late decays of the heavier dark matter com-
ponent, τφ ∼ 109 years, along with a small mass splitting between 
the components, are consistent with observation [52,53]. Such a 
late decay is also proposed as a possible solution to the missing 
satellites problem [54] and the core-cusp problem [55].

Indirect detection signatures

The symmetry restoration in the dark sector induces nontrivial 
dark matter indirect detection signals. For example, if the me-
diator V couples to leptons and its mass mV > 2mμ , the dark 
matter annihilation leads to final states involving four leptons, 
i.e., e+e−e+e− , e+e−μ+μ− or μ+μ−μ+μ− . Those leptons can 
further undergo inverse Compton scattering and bremsstrahlung, 
producing photons that can be measured in indirect detection ex-
periments.

The present-day cross section for the dark matter annihilation 
via �χχ → V V † → l+l−l+l− expected in Model 4A is 〈σ�χχ v〉 �
10−26 cm3/s and corresponds to the red region in Fig. 8. The min-
imum value for the coupling gχ in Eq. (12) leading to an efficient 
annihilation of the symmetric component of χ in the early uni-
verse is ∼ 0.01 (see Eq. (14)), which results in the cross section 
〈σ�χχ v〉 ≈ 10−26 cm3/s in the present epoch, denoted by the black 
dot.

The most stringent constraint on 〈σ�χχ v〉 arises from the mea-
surements of the Cosmic Microwave Background provided by the 
Planck satellite. The resulting bound [56] is shown as the brown 
curve in Fig. 8. For mχ ≈ 0.9 GeV, which is required in Model 4A 
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Fig. 8. Dark matter annihilation cross section in Model 4A expected in the present 
epoch when the annihilation is mediated by the vector V (red region) or by the 
scalar φ′ (orange and red regions). Overplotted are the exclusion limits: the green 
curve corresponds to the bound on �χχ → e+e− from Voyager [59], whereas the 
brown curve corresponds to the bound on �χχ → e+e−e+e− from Planck [56] ap-
plicable only when τφ � 105 years. The projected future e-ASTROGAM reach for 
�χχ → e+e−e+e− [61] is denoted by the blue curve. The black dot corresponds to 
the benchmark scenario gχ = 0.01.

due to Eqs. (11) and (16), the annihilation cross section needs to be 
〈σ�χχ v〉 � 7 ×10−28 cm3/s. However, this constraint can be evaded 
in two ways: (1) if φ or the light mediator V is very long-lived due 
to either a small mass splitting or tiny couplings, in which case the 
energy deposition to the Standard Model thermal bath only hap-
pens after the recombination, or (2) if the light mediator is a scalar 
φ′ , since the dark matter annihilation cross section is then largely 
reduced due to velocity suppression at late times.

In scenario (1), i.e., if τφ � 105 years, the Planck bound does 
not apply and the most stringent constraint on the annihilation 
cross section for mχ ≈ 0.9 GeV comes from the data collected 
by Voyager [57,58]. The green curve in Fig. 8 shows the Voyager 
bound assuming that the dominant annihilation channel is �χχ →
e+e− [59]. The bound on the cross section for �χχ → l+l−l+l−
(for mχ ≈ 0.9 GeV) has not been determined, but it is expected 
to be weaker, as demonstrated for heavier dark matter based on 
the Fermi Gamma-Ray Space Telescope data [60]. Therefore, most 
of the parameter space region shown in red in Fig. 8 remains phe-
nomenologically viable.

In scenario (2) the Planck bound does apply, however, due to 
velocity suppression, the dark matter annihilation cross section can 
be substantially smaller at present times compared to case (1), as 
indicated by the orange region in Fig. 8. The cross section can be 
as small as 〈σ�χχ v〉 ∼ 10−32 cm3/s. Although the parameter space 
above the brown line is excluded in this scenario, there still re-
mains a vast region below the Planck bound which has not been 
explored.

Interestingly, the entire parameter space for scenario (1), cor-
responding to the red region in Fig. 8, will be probed by the 
future e-ASTROGAM experiment, whose predicted reach is shown 
as the blue curve. For mχ ≈ 0.9 GeV, e-ASTROGAM is expected to 
be sensitive to dark matter annihilation cross sections 〈σ�χχ v〉 �
5 × 10−27 cm3/s [61].

4. Summary

The nature of dark matter, origin of the matter-antimatter 
asymmetry of the universe and proton stability are certainly 
among the greatest open questions in modern particle physics. 
Theories in which dark matter couples to quarks and leptons intro-
duce a natural framework for solving the first two of those puzzles. 
However, many of such models suffer from tree-level proton decay 
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to Standard Model particles unless a conservation of baryon and/or 
lepton number is imposed by hand.

In this letter, we chose proton stability as the primary criterion 
for a model’s naturalness. We demonstrated that this reduces the 
number of viable baryonic dark matter theories to just a few mod-
els involving the scalar mediator (3, 1)2/3 and a sufficiently heavy 
dark matter particle. This has an interesting impact on the poten-
tial experimental signatures – we found that for baryonic models 
naturally free from proton decay, the final state of dark matter-
nucleon annihilation necessarily involves a kaon.

We also considered a model of leptonic dark matter, which ex-
plains the matter-antimatter asymmetry of the universe through 
leptogenesis and predicts symmetry restoration in the dark sec-
tor. In this theory the dark matter annihilation may be enhanced 
at late times, providing signals that can be searched for in future 
indirect detection experiments.
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