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Article

Testing the Universality of Quantum Gravity Theories with
Cosmic Messengers in the Context of DSR Theories

Marco Danilo Claudio Torri

Dipartimento di Fisica, Università degli Studi di Milano and INFN Sezione di Milano, Via Celoria 16,

20133 Milano, Italy; marco.torri@mi.infn.it or marco.torri@unimi.it

Abstract: Recently there have been several studies devoted to the investigation of the fate

of fundamental relativistic symmetries at the foreseen unification of gravity and quantum

regime, that is the Planck scale. In order to preserve covariance of the formulation even if in

an amended formulation, new mathematical tools are required. In this work, we consider

DSR theories that modify covariance by introducing a non-trivial structure in momentum

space. Additionally, we explore the possibility of investigating both universal quantum

gravity corrections and scenarios where different particle species are corrected differently

within the framework of these models. Several astroparticle phenomena are then analyzed

to test the phenomenological predictions of DSR models.

Keywords: quantum gravity; DSR; LIV; weak equivalence principle; cosmic messengers

1. Introduction

In the attempt to formulate a complete quantum gravity (QG) theory, that can unify

the quantum realm with General Relativity (GR), one of the most active research sectors

concerns the fate of Lorentz symmetry at the Planck energy scale. Indeed, at this energy

scale of about ∼1019 GeV, the unification of the two physics realms is foreseen. Nowadays

the Lorentz invariance is universally recognized as one of the most important symme-

tries underlying the formulation of the physical theories, indeed, it is preserved in the

formulation of GR and quantum mechanics (QM).

Until now it has been impossible to test any theory at the Planck energy scale, but

in some theoretical scenarios, some departures from the Lorentz symmetry are predicted

as residual signatures of the physics described by a more fundamental theory [1]. The

first perturbative effect that can be investigated in the context of QG concerns the time

delay that particles of different energies may accumulate during propagation. In this

case, the QG perturbations are supposed equal for every particle species and influence the

particle velocity that acquires a nontrivial dependence on the energy. Searching for QG

phenomenological effects generated by such a fundamental and unified theory, one can

probe the universality of the kinematics for different particle species. Therefore, evidence of

a dependence of spacetime geodesics on the particle species can serve as a test of the validity

of the weak equivalence principle (WEP). In this work we will consider an operational

definition of the WEP, that is we will consider the universality of gravitational interaction. A

more complete discussion about the various formulations of the equivalence principle can

be found in [2], where some motivations for possible violations are furnished and analyzed.

In the context of QG phenomenology investigation, one must distinguish between

theories that predict a Lorentz invariance violation (LIV) such as the Standard Model

Extension (SME) [3,4] from the theories that introduce a modification of this symmetry,
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for instance deforming the Poincarè algebra [5,6], or modifying the momentum space

geometry [7], with a consequent deformation of the free particle kinematics.

In the case of SME, the search for new physics effects is not limited to QG, but it is

set in a more general beyond the Standard Model (SM) research framework. The SME

theory is formulated, including in the SM of particle physics, all the operators that preserve

the usual gauge symmetry SU(3)× SU(2)× U(1). The introduced perturbation operators

are constructed as renormalizable or super-renormalizable in the minimal SME, or not

renormalizable in the context of the non minimal SME. These perturbations are conceived

as not universal and species-dependent in order to pose under test even the universality

of the formulation of the physical theories. The SME is perhaps the most comprehensive

research framework for conducting this kind of investigation, introducing a remarkably rich

phenomenology that includes both high- and low-energy QG effects, while also exploring

other exotic physics possibilities, such as CPT violation. The experimental results analyzed

in the context of this research framework are used to pose constraints on the magnitude of

the supposed LIV perturbations [8].

The DSR is conceived as a fundamental theory that introduces a modification of the

Lorentz symmetry via a deformation of the fundamental symmetry algebra, that is the

Poincarè one, affecting the free particle kinematics [5,6]. In the context of DSR theories, there

are some theoretical reasons suggesting the necessity for introducing different relativistic

properties for different particle species [9,10], particularly in order to justify the different

behavior of composed and more massive particles if compared with their elementary

constituents. The induced phenomenology has not yet been deeply studied; besides only

the demonstration of the possibility of formulating a fully relativistic, and not universal

theory has been investigated.

Last but not least, the Homogeneously Modified Special Relativity (HMSR) [7] frame-

work introduces a modification of the momentum space geometry that affects the free

particle kinematics, and on the other hand, preserving a modified covariance formula-

tion and deforming the Lorentz symmetry as in the DSR theories. In this framework, the

QG-caused perturbations can acquire an explicit dependence on the particle species and

this allows the introduction of a reach phenomenology. The violation of universality is a

condition that underlies the possibility of introducing anomalous threshold energy effects,

such as for the GZK cut-off effect [11,12], even in a theory that modifies but does not violate

the covariance of the formulation [13–15].

In this work, we will explore the possibility of searching QG signatures as departures

from the predictions of the SM in the context of cosmic messengers [1,16], particularly

neutrino physics and ultra high energy cosmic rays (UHECR).

Neutrino physics is, in general, an ideal playground for the search for new physics

beyond the SM. Indeed, these particles furnish the first demonstrated example of physics

beyond the SM (BSM). In the framework of the SM of particle physics, neutrinos are

theoretically described as massless particles, but the well-established flavor oscillation

phenomenon requires the presence of different neutrino mass eigenstates in order to occur.

Therefore, neutrinos are interesting particles for searching for new physics effects and the

most relevant BSM scenarios that can be tested in the neutrino sector are non-standard

interactions (NSI) and QG perturbations. The proposed QG signature may manifest as

modifications to the free particle kinematics, affecting the dispersion relations. In the

context of QG perturbations common for every particle species, it is possible to detect

the time delay accumulated by particles with varying energies thanks to the velocity

dependence on the energy.

Furthermore, in a non-universal perturbation scenario, we demonstrate that modifica-

tions to the oscillation pattern, and the resulting survival probability, can be anticipated.
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In the following, we will explore the possibility of formulating some theoretical scenarios

that can induce QG-caused effects in the free propagation of the different neutrino mass

eigenstates. Indeed, if the formulated QG scenario foresees the possibility of non-universal

QG kinematical corrections for different particle species, the neutrino propagation pattern

can be affected by the modification of the survival probability.

In this work, we present a formulation of DSR theory that is fully relativistic, high-

lighting the non-universal character of the induced perturbations. We demonstrate that

within the context of DSR theory, modifications to the interaction threshold energies are

predicted while preserving the covariance of the theory, albeit in a modified form. In the

following, we discuss the QG effects expected during astroparticle propagation, which

result in time delays for particles of different energies. Finally, we show that even the

GZK phenomenon can be influenced by the perturbations predicted in non-universal DSR

theories. Cosmic rays (CR) can be a useful framework to test the validity of the universality

of quantum gravity-induced perturbations. The universe is opaque to the propagation of

UHECR since they interact with the cosmic microwave background (CMB). Through this

interaction process, named the GZK effect, a CR dissipates part of its energy. Different

particle species are involved in the GZK phenomenon. In fact, in the case of light CR

protons, photopions and CMB radiation play a role. Non-universal QG perturbations can

differently affect the species involved, altering this process and causing a dilation of the

UHECR propagation path [12–15]. Searching for a modification of the cut-off predicted

UHECR opacity sphere can be a candidate test for universality and the WEP.

2. Introduction to Relative Locality Scenario and DSR Theories

Generally speaking, in some of the most studied modified relativity theories, particle

kinematics is amended by the introduction of presumed QG perturbations [1]. The theo-

retical motivations for this approach are rooted in the idea that real physics takes place

in phase space, where the interactions of different particles can be described. The main

observations in physics concern the energies and momenta associated with particles, as

well as the times of interactions. Spacetime, in contrast, emerges as a construct derived

from the measurements made by local observers. Each observer builds their own spacetime

as a local projection of momentum space, reflecting the fact that physical effects can only

be detected in the vicinity of their measuring instruments.

This concept, referred to as Relative Locality in the context of DSR theories [5], at-

tributes presumed QG effects to a non-trivial curved phase space geometry, where the

non-linear composition rules of momenta encode the geometric structure. The geometric

properties of momentum space determine the modified kinematics of free-propagating or

interacting particles. Because the composition rules in Relative Locality are non-linear, the

spacetime probed by particles explicitly depends on the energy of the probing particle. In

contrast, Absolute Locality corresponds to a flat momentum space with trivial geometry and

composition rules.

The ultimate objective of DSR models is to generalize Lorentz covariance without

explicitly violating it. In these models, Lorentz symmetry is modified to account for the

curved structure of momentum space with the associated non-trivial composition rules

of momenta. In this context, the framework preserves generalized relativistic covariance,

at least locally. At the same time, the modified symmetry must remain compatible with

the standard formulation of Lorentz invariance in the low-energy limit, where QG effects

are suppressed. This leads to a generalization of Special Relativity (SR), motivated by the

broader attempt to unify quantum physics and gravity.
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In the following, we will introduce the most studied Relative Locality scenario, specifi-

cally focusing on the DSR theory based on the κ-Poincaré kinematic symmetry group [17],

and explore its implications for particle kinematics and symmetry.

3. Geometry of Curved Phase Space

In this kind of DSR theory, the constructed momentum space is curved with a non-

trivial geometrical structure. As proposed in [18,19] in the context of DSR theories, the

modified on-shell relations can be defined using the geodesic distance constructed in a

curved space, specifically the momentum space geodesic distance:

∫ 1

0

√
gµν(γ)γ̇µ(s)γ̇ν(s) ds = d(0, pµ) = m γµ(0) = 0, γµ(1) = pµ (1)

where gµν(p) is the metric of the curved phase space. From Equation (1) it is possible to

obtain the geodesic equation:

d2γµ

dτ2
+ Γ

αβ
µ

dγα

dτ

dγβ

dτ
= 0 (2)

where Γ
αβ
µ stands for the usual affine connection computed in the momentum space

as follows:

Γ
αβ
µ =

1

2
gµν

(
∂γαν

∂pβ
+

∂γνβ

∂pα
− ∂γαβ

∂pν

)
. (3)

Following the original geometric interpretation, proposed at first in [18,19] and then

used in [20], every point belonging to the curved momentum space P is connected to the

origin of the space through a geodesic curve σ(s) : [0, 1] → P . The whole momentum space

P is spanned by parametric surfaces σ(s, t) : [0, 1]× [0, 1] → P defined such that for any

couple of points P, Q ∈ P the geodesic curve σ(s, 0) is related to the first point P and the

curve σ(0, t) is related to the second point Q. The vector
dσ(s,t)

ds is parallel transported along

the tangent vector
dσ(s,t)

dt . As a result, at any point of the parametric surface, after defining

the covariant derivative associated with the affine connection Equation (3):

∇µ pν = ∂̇µ pν + Γ
µα
ν pα (4)

where ∂̇µ = ∂
∂pµ

stands for the partial derivative computed with respect to the momentum.

The following parallel transport relation is satisfied:

dσµ(s, t)

dt
∇µ dσν(s, t)

ds
= 0. (5)

The previous relation can be used to construct a modified composition rule of mo-

menta. The modified composition rule can be introduced as the extremal point of the

parametric surface:

p(P)⊕ q(Q) = σ(1, 1). (6)

The construction is compatible with the usual definition of the modified composition

rules used in DSR theories [5] and is ruled by another connection whose definition is strictly

related to translations:

Γ̃
αβ
µ = − ∂

∂pα

∂

∂pβ
(p ⊕k q)µ

∣∣
p=q=k=0

(7)

where the composition of momenta is translated to the point of coordinates k using the

opportune parametrical surface σk(s, t).
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As a consequence, the infinitesimal parallel transport relation for a momentum p,

which is strictly related to the composition of momenta and to infinitesimal translations,

can be obtained:

(p ⊕ dq)µ = pµ + τν
µ(p)dqν = pµ + qµ − Γ̃

αβ
µ pαqβ + . . . (8)

where the τ(p) term stands for the parallel transport coefficient. The non-commutativity

of the non-linear composition rules gives rise to torsion, which encodes the non-trivial

geometric structure of momentum space:

−T
µν
α =

∂

∂pµ

∂

∂pν
(p ⊗ q − q ⊗ p)α

∣∣∣∣
p=q=0

. (9)

On the other hand, the non-associativity of the composition rules of momenta de-

termines the momentum space curvature. In this case and related to the usual DSR

formulation, the curvature is found to be identically zero:

R
µνα
β =

∂

∂p[µ

∂

∂qν]

∂

∂kα
[((p ⊗ q)⊕ k)− (p ⊕ (q ⊕ k))]β

∣∣∣∣
p=q=k=0

= 0. (10)

4. The κ-Poincaré Algebra

The construction of the symmetry group related to the DSR formulation is obtained in

the context of Hopf algebras introducing a modification of the kinematics considering the

U(so(1, 3)) symmetry group together with the translation sector [21–24]. In this work, we

will consider the generalized κ-Poincaré structure introduced in [19]; the commutators of

the algebra commutators take the form

[Pµ, Pν] = 0, [Ri, Rj] = ϵijkRk, [Ni, Nj] = −ϵijkRk,

[Ri, P0] = 0, [Ri, Pk] = ϵijkPk, [Ri, Nj] = ϵijk Nk, (11)

[Ni, P0] = eϑλP0 Pi,

[Ni, Pj] = δij

(
e(2−ϑ)λP0 − e−ϑλP0

2λ
− λ

2
eϑλP0 |P⃗|2

)
+ (1 − ϑ)λeϑλP0 PiPj.

here Pµ, Nj, Rj are the translation, boost and rotation generators. λ is the usual deformation

parameter λ = 1/κ ∝ 1/MPl , on the other hand, ϑ ∈ [0, 1/2] parameterizes the different

κ-Poincaré bases. The usual time to the right k-Poincarè basis is obtained by choosing ϑ = 0,

whereas the time symmetric basis is derived for θ = 1/2.

The related Hopf algebra bicrossproduct structure is given by the following:

∆P0 = P0 ⊗ I+ I⊗ P0, ∆Pi = Pi ⊗ e−ϑλP0 + e(1−ϑ)λP0 ⊗ Pi,

∆Ri = Ri ⊗ I+ I⊗ Ri, ∆Ni ⊗ I+ eλP0 ⊗ Ni − λϵijkeϑλP0 Pj ⊗ Rk. (12)

The associated coalgebra antipodes S and the counits ϵ associated with the generators

{Pµ} are given by the following:

S(Pµ(p) = (⊖p)µ ⇒ S(E) = −E, S(P) = −e(1−ϑ)λE,

S(N) = −e(1−ϑ)λEP,

Pµ(0) = ϵ(Pµ) ⇒ ϵ(E) = ϵ(P) = ϵ(N) = 0. (13)
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Classically in DSR theories, the dispersion relations are constructed starting from the

Casimir operator of the algebra Equation (11), named mass Casimir:

(
2

λ

)2

sinh2

(
λ

2
P0

)
− |P⃗|2e2(1−ϑ)λP0 − m2 = 0. (14)

In this work we will consider the geodesic distance as the dispersion relation, as

illustrated in Section 3, and we will demonstrate that the two definitions coincide at least at

the leading order of the perturbative series in λ.

5. Specializing the Geometry

The modified composition rules of momenta determine the geometric structure of mo-

mentum space. As a consequence, the connection Equation (7), related to the composition

of momenta [18,19], can be computed as follows:

(p ⊕ q)0 = p0 + q0, (p ⊕ q)j = pje
ϑλq0 + e(1−ϑ)λp0 q0. (15)

Moreover, the induced translations in coordinate space are given by the following:

Γ̃
αβ
µ (p) = δ

j
µ

(
ϑλδα

0δ
β
j + (1 − ϑ)λδα

j δ
β
0

)
. (16)

To characterize the momentum space and construct the related phase space it can be

useful to determine the Killing vectors via the usual Killing equation:

∇µξν +∇νξµ = 0 (17)

where the covariant derivative is defined using the affine connection Equation (3) associated

with the metric used in the MDR definition: ∇µξν = ∂̇µξν + Γ
µν
ϑ ξϑ. The solutions are

given by the following:

ξν
µ(p) =




1 −ϑλp1 −ϑλp2 −ϑλp3

0 e(1−ϑ)λp0 0 0

0 0 e(1−ϑ)λp0 0

0 0 0 e(1−ϑ)λp0


. (18)

The Killing vectors can be used to define the vierbein related to the geometry of

the momentum space e
µ
ν(p) = ξ

µ
ν(p). Using this vierbein, the metric associated with the

momentum space can be computed by obtaining the following:

ds2 =e
µ
α(p)ηαβeν

β(p)dpµdpν =
(

1 − (ϑλp)2
)

dp2
0 + 2ϑλe(1−ϑ)λp0 p⃗ dp⃗ dp0

−e2(1−ϑ)λp0 dp⃗2. (19)

This result is compatible with that obtained from the time-ordered plane waves derived

from different choices of momentum space bases [19].

The coordinate space can be constructed, for instance, starting from the vectors

{χµ} defined such that they satisfy the canonical Poisson brackets together with the

momenta {pµ}:

{χµ, χν} = 0, {pµ, pν}, {χµ, pν} = δ
µ
ν . (20)

Moreover, the phase space coordinates can be constructed using the Killing vectors [19]:

xµ = e
µ
ν (p)χν = ξ

µ
ν (p)χν. (21)
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The resulting modified Poisson brackets between coordinates are as follows:

{x0, xj} = λxj, {xi, xj} = 0, (22)

demonstrating the non-commutativity of the obtained spacetime.

The remaining Poisson brackets are written as follows:

{pµ, pν} = 0, {p0, xj} = 0, (23)

{pj, x0} = (1 − ϑ)λpj, {pj, xk} = δk
j .

The resulting spacetime is no longer commutative and the commutators of the coordi-

nates are as follows:

[xµ, xν] = iζ
µν
α xα





ζ
µν
α = (1 − ϑ) for µ = 0, ν ∈ {1, 2, 3}

ζ
µν
α = 0 for the other index combinations.

(24)

6. DSR Action Including Boundary Translation Terms

Using the previous results on the formulation of spacetime coordinates, we can address

the construction of the action for both free-propagating and interacting particles. The

explicit action can be formulated as follows [5]:

S = ∑
j∈J

∫
dτ

{
− x

µ

(j)
ṗµ(j) +NjCj(p, m) + ζµKµ(p1(τ), . . . , pn(τ))

}
(25)

where Cj(p, m) is the dispersion relation obtained from the geodesic distance Equation (1):

Cj(p, m) = d(0, p)2 − m2 (26)

and N is a Lagrange multiplier enforcing the MDR in the action. Furthermore, the ζ are

the Lagrangian multipliers enforcing the preservation of translations, whose generators

K j encode the modified composition rules of momenta. From the variation of the action

Equation (25), the equations of motion can be obtained:

dx
µ

(j)

dt
= Nj

∂d(0, p)

∂pµ(j)
, (27)

dpµ(j)

dt
= 0. (28)

Also, the MDR and modified composition rules of momenta are obtained from the

variation in the action:

d2(0, p)− m2 = 0, (29)

Kµ(p1, . . . , pn) = 0. (30)

In this context, the coordinates of the interaction points can be computed, obtaining a

result compatible with the construction of the spacetime coordinates presented in Section 5:

x
µ

(j)
(0) = ζν ∂

∂pµ(j)
Kν(p1, . . . , pn). (31)
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Consequently, all interaction worldlines converge at a single spacetime point, and the

non-trivial geometric structure of momentum space gives rise to the concept of Relative

Locality [5].

The translations are generated using the Poisson brackets following the prescription:

δx
µ

(j)
= ϵν{Kν, x

µ

(j)
} = ϵµ − ϵαΓ̃

µν
α pν(j). (32)

Therefore, the non-trivial geometric structure of the momentum space affects the trans-

lations that acquire an explicit dependence on the probe energy, an explicit manifestation

of the Relative Locality idea.

7. Covariance of the Formulation

Since we are dealing with a DSR theory, we have to check that the formulation

preserves an amended form of covariance. It is straightforward to check that the on-shell

relation covariance is preserved in Equation (1). Indeed, the formulation of the geodesic

distance is invariant under the action of momentum space passive diffeomorphisms. For

instance, since the action of a diffeomorphism p̃ = f (p) on momentum space tangent

vectors is given by the following:

˜̇p =
∂ f (p)α

∂pν
ṗν (33)

and this transformation relation is valid for the curves defined in the momentum space

˜̇γ(τ) = ∂ f (γ(τ))α

∂γν(τ)
γ̇ν(τ), (34)

the diffeomorphism action on the metric is resumed by the relation

g̃µν( f (p)) =
∂ f (p)α

∂pµ
gαβ(p)

∂ f (p)β

∂pν
. (35)

As a result, the geodesic distance defining the on-shell relation Equation (1) results is

covariant and the geodesic Equation (2) preserves the covariance of the formulation.

An issue is caused by the presence in the action Equation (25) of the translation

generators Equation (32) and the necessity to guarantee the covariance of these terms. This

problem is extensively treated in [19] demonstrating that the translation generators can be

deformed by the action of diffeomorphisms, such that the resulting theory is not compatible

with the starting one. This point imposes some restrictions on the possibility to preserve

covariance and particular caution must be posed in obtaining modifications to the theory

under the action of coordinate transformations.

Now the invariance of the modified composition rules of momenta is checked. This

aspect of DSR theories is extensively analyzed in literature [18,19]. The DSR-amended

Lorentz transformations can be constructed requiring the condition of compatibility with

the modified composition rules of momenta:

Λ(p ⊕ q) = Λp ⊕ Λq. (36)

In order to preserve the composition rule covariance Equation (36), the action of the

Lorentz transformations must include the so-called backreaction [18,25,26]; indeed, if β
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is the Lorentz coefficient associated with the Lorentz transformation, the action on the

composition rule becomes the following:

Λ(β)(p ⊕ q) = Λ(β)p ⊕ Λ(β ◁ p)q (37)

and β ◁ p stands for the backreaction of the momentum p applied to the coefficient β for

the second transformation.

At this stage, it is important to underline that if it is possible to define symmetry trans-

formations that preserve the invariance in the composition rules of momenta Equation (34),

a momentum space connection can be defined through Equation (7).

8. Modified Dispersion Relation and Time Delay

As previously mentioned, the MDR can be constructed starting from the Casimir

operator of the modified algebra Equation (11), leading to the explicit form given in

Equation (14). In this work, we consider the MDR Equation (1) constructed using the

geodesic distance [19], resulting in an expression that depends on the choice of basis,

encoded by the coefficient ϑ ∈ [0, 1/2]:

1

λ
arcosh

(
cosh (λp0)−

λ2

2
e2λ(1−ϑ)p0 | p⃗|2

)
− m2 = 0. (38)

Both forms of the MDR Equations (14) and (38) can be approximated by the

following expression:

p2
0 − e2λ(1−ϑ)p0 | p⃗|2 − m2 ≃ p2

0 − (1 + 2λ(1 − ϑ)p0)| p⃗|2. (39)

The particle energy can be computed starting from the obtained MDR:

E ≃
√
| p⃗|2(1 + λ(1 − ϑ)p0) ≃

√
| p⃗|2(1 + δ/MPl(1 − ϑ)| p⃗|). (40)

In the last equality, the relation λ = δ/MPl is used, where δ encodes the magnitude

of the QG perturbation relative to the normalization factor given by the Planck mass MPl .

Applying the Hamilton equation to the computed energy, the particle velocity can then

be determined:

v⃗(E) =
∂

∂ p⃗
p0 ≃ p⃗√

| p⃗|2(1 + δ/MPl(1 − ϑ)| p⃗|3)
. (41)

The velocity explicitly depends on the particle energy, and its functional form is

determined by the choice of the δ parameter [20]. The intensity of QG effects depends

on the choice of basis in momentum space. Specifically, with the time to the right basis

(ϑ = 0), the effect is maximal, while its magnitude is minimized when the time symmetric

basis is used (ϑ = 1/2). As pointed out in [19], the description of physics depends on the

choice of basis in momentum space. In the case of a negative δ, superluminal neutrinos

could arise; however, this possibility is excluded, as such particles would lose energy

during propagation through pair production [27,28]. Conversely, a positive δ ensures

subluminal neutrinos, with their velocity decreasing as energy increases. Thanks to this

phenomenon, particles accelerated with different energies can present a different time

arrival, accumulating time delay during their propagation. This effect can be investigated

in the context of astroparticles [20], which provide the ideal playground for this search

due to their high energy and long propagation paths, allowing for the accumulation of the



Symmetry 2025, 17, 203 10 of 18

presumed tiny QG perturbations. The time delay can be easily computed in the context of

the DSR framework, obtaining the following:

∆t =
δ

MPL
E(z) =

δ

MPL

∫ z

0

(1 + ζ)E

H0

√
ΩΛ + Ωm(1 + ζ)3

dζ (42)

where E(z) is the energy depending on the redshift coefficient z related to the particles

source. H0, ΩΛ and Ωm denote the Hubble constant, the cosmological parameter and the

matter fraction, respectively.

In the astroparticle sector, gamma-ray bursts (GRBs) represent a suitable class of

phenomena for investigating this effect since they emit nearly simultaneous photons and

possibly neutrinos [29–34] with a range of energies. The prompt neutrino emission phase

in GRBs is not yet well understood; nevertheless, some studies predict the feasibility of

conducting this research. The results obtained so far appear promising, as there is good

agreement between observed data and theoretical predictions [35–39].

Another promising sector for investigating time delay is the detection of neutrinos

accelerated during a stellar collapse, followed by a supernova (SN) explosion [40,41]. As

discussed below, particles with varying energies may exhibit different times of flight from

the source to the detector. The associated time delay can be observed by analyzing the

emitted neutrino energy spectrum. A more comprehensive discussion on this topic can be

found in [20] and the references therein.

The scenario investigated in this section is based on the hypothesis of universal QG

perturbations, which affect all particle species in the same way. This demonstrates the

possibility of identifying physical phenomena that can be influenced by QG perturbations

without violating the universality of the interaction. Instead, in the following, we will

address the possibility of studying non-universal QG perturbations predicted in the context

of DSR theories and, as a consequence, the WEP.

9. Mixing Algebras in Particle Depending Theories

At this stage, we will introduce the idea necessary to ensure the possibility of inves-

tigating nonuniversal QG modifications in the context of DSR theories. In the following,

we will illustrate how it can be possible to combine the Hopf algebras related to different

spaces probed by different particle species.

In this work, we generalize the construction made in [9,10,20] by considering the

dependence on the choice of basis in momentum space. First, we present a method for

combining the algebras, followed by the definition of the corresponding mixed coproduct.

Then, we derive how to compose the four-momenta of different particle species within the

Hopf algebra framework. In this context, the application of the mixing of the coproduct

must be defined as the mathematical structure that generates the modified composition

rules for momenta from distinct algebras. For example, the coproduct of elements from dif-

ferent algebras Hj can be defined by introducing a support algebra H′ , which is associated

with a projection map for each algebra ϕj:

ϕj : Hj → H′. (43)

Below, we provide a concrete example of how the projection map can be defined

for the κ-Poincaré algebras underlying the symmetry groups of different particles. The

projection map ϕ can be constructed by relating the bicrossproduct basis generators of the

various algebras as follows:

ϕ(Pµ) =
λ′

λ
P′

µ, ϕ(Ri) = R′
i, ϕ(Ni) = N′

i (44)
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where {Pµ}, {Ri}, {Ni} are the four-momenta, the rotations and the boosts, respectively,

while λ denotes the characteristic coefficients of the different κ-Poincaré algebras.

Using the previous definitions it is now straightforward to obtain the relations

[ϕ(Pµ), ϕ(Pν)] =

(
λ′

λ

)2

[P′
µ, P′

ν] = 0 = ϕ([Pµ, Pν]),

[ϕ(Ri), ϕ(Rj)] = [R′
i, R′

j] = ϵijkR′
k = ϕ([Ri, Rj]),

[ϕ(Ni), ϕ(Nj)] = [N′
i , N′

j ] = −ϵijkR′
k = ϕ([Ni, Nj]),

[ϕ(Ri), ϕ(Nj)] = [R′
i, N′

j ] = ϵijk N′
k = ϕ([Ni, Pj]),

[ϕ(Ri), ϕ(P0)] =
λ′

λ
[R′

i, P′
0] = 0 = ϕ([Ri, P0]). (45)

Finally, the following relations can be verified by applying the previous results:

[ϕ(Ri), ϕ(Pj)] =
λ′

λ
[R′

i, P′
j ] = ϵijk

λ′

λ
P′

k = ϕ([Ri, ϕ(Pj)]),

[ϕ(Ni), ϕ(P0)] =
λ′

λ
eθλ′P′

0 P′
i =

λ′

λ
[N′

i , P′
0] = ϕ([Ni, P0]) (46)

and finally the relation

[ϕ(Ni), ϕ(Pj)] =

=
λ′

λ
δij

(
e(2−θ)λ′P′

0 − e−θλ′P′
0

2λ′ − λ′

2
eθλ′P′

0 |P⃗′|2
)
+ (1 − θ)λ′eθλ′P′

0 P′
i P′

j = (47)

= δij

(
e(2−θ)λ′P′

0 − e−θλ′P′
0

2λ
− λ

2
eθλ′P′

0 |P⃗′|2
)
+ (1 − θ)λeθλ′P′

0 P′
i P′

j = ϕ([Ni, Pj]).

As a consequence of the previous Equations (45)–(47) it is possible to state that H′ is a

Hopf algebra since the projection map preserves the commutation rules. Since the previous

relations are valid for every choice of algebra basis parameterized by the coefficient ϑ, this

statement is independent of the used basis, as is expected.

The mixed coproduct can be defined by combining the projection maps associated

with different algebras. For example, in the case of two distinct Hopf algebras, H1 and H2,

the corresponding projection maps ϕ1 and ϕ2 are as follows:

∆′ : H′ ⊗ H′ = ϕ1(H1)⊗ ϕ2(H2)

H′ ∆′
−−−−→ H′ ⊗ H′ ϕ−1

1 ⊗ϕ−1
2−−−−−→ H1 ⊗ H2. (48)

In the coalgebra sector, the following relations are valid for the coproduct:

∆′(P′
0) = ∆′(ϕ(P0)) =

λ′

λ
P′

0 ⊗ I+ I⊗ λ′

λ
P′

0 = ϕ ⊗ ϕ(∆(P0)),

∆′(P′
i ) = ∆′(ϕ(Pi)) =

λ′

λ

(
P′

i ⊗ e−θλ′P′
0 + e(1−θ)λ′P′

0I⊗ P′
i

)
,

∆′(R′
i) = ∆′(ϕ(Ri)) = Ri ⊗ I+ I⊗ Ri,

∆′(N′
i ) = ∆′(ϕ(Ni)) = N′

i ⊗ I+ eλ′P′
0 ⊗ N′

i −
λ′

λ
ϵijkeθλ′P′

0 P′
j ⊗ R′

k. (49)

To prove that the ϕ map is an isomorphism, we must verify its compatibility with

the antipodes and the counits. We check the compatibility with the antipodes using the

following relations:
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ϕ(S(P0)) = −λ′

λ
P′

0 = S′(ϕ(P0)),

ϕ(S(Pi)) = −λ′

λ
e−λ′P′

0 P′
i ,

ϕ(S(Ri)) = −Ri = S′(ϕ(Ri)),

ϕ(S(Ni)) = −eλ′P′
0 N′

i +
λ′

λ
ϵijkeλ′P′

0 P′
j R′

k = S′(ϕ(Ni)), (50)

where S′ represents the antipode map related to the algebra H′. The compatibility with

the co-unit is straightforward. The definition of the inverse map ϕ−1 : H′ → H is simply

obtained in the following form:

ϕ−1(P′
µ) =

λ

λ′ Pµ, ϕ−1(R′
i) = Ri, ϕ−1(N′

i ) = Ni. (51)

Now it is possible to state that ϕ : H → H′ is an isomorphism relating the κ-Poincaré

algebras H and H′.
As a final result, now we can introduce the momentum-modified composition rules

starting from the Equation (48):

p0 ⊕′
λ1λ2

q0 =
λ′

λ1
p0 +

λ′

λ2
q0,

pi ⊕′
λ1λ2

qi =
λ′

λ1
eθq0 pi +

λ′

λ2
e(1−θ)λ′p0 qi. (52)

By exchanging the deformation coefficients λ1, λ2 and λ′, the inverted maps and the

reversed order composition rules can be obtained.

10. Neutrino Oscillations

The possibility of mixing algebras associated with different particle species opens

up opportunities to investigate QG perturbations that lack a universal character [20].

The phenomenon of neutrino oscillation represents an ideal area for this type of

investigation [42–47], as different QG perturbations can affect the mass eigenstates in-

volved in neutrino propagation differently, resulting in a modified oscillation pattern.

The neutrino oscillation is ruled by the Schroëdinger equation and the solution is

expressed using the particle momentum. Starting from the MDR Equation (39) it is possible

to obtain the following relation:

| p⃗j| ≃
(

1 − δ

MPl
E

)
E +

m2
j

2E
(53)

valid for every j mass eigenstate. The oscillation phase related to the mass eigenstate can

be computed as follows:

ϕj ≃
(

δj

MPl
E2 −

m2
j

2E

)
L (54)

where the perturbation coefficient δj is related to the j-esim mass eigenstate mj. The

difference between two phases related to two different mass eigenstates is as follows:

∆ϕjk =

(
∆m2

jk

2E
−

δjk

MPl
E2

)
L, (55)
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where

∆m2
jk = m2

j − m2
k

δjk = δj − δk. (56)

The QG perturbation effect becomes noticeable if δjk is nonzero, meaning the correction

is not universal and varies for each particle species.

The impact of a nonuniversal correction in the oscillation phenomenon can be detected

in the atmospheric sector comparing the expected flux of different neutrino flavors with

the detected one. Here, we report the plot of the integrated survival probability of muonic

neutrinos Figure 1 within the energy range of 500 MeV–5 GeV:

Pµµ =

∫ Emax

Emin
ϕν(E)P(νµ → νµ)(E)dE
∫ Emax

Emin
ϕν(E)dE

(57)

where P(νµ → νµ)(E) is the survival probability and ϕν(E) is the expected neutrino flux as

a function of energy.

Figure 1. Comparison of the atmospheric neutrino survival probability, integrated over the energy

range: 500 Mev–5 GeV, as a function of the baseline: standard case (blue line) vs HMSR (red line).

11. Threshold Reaction Energy Modifications

The modification induced by QG can affect the threshold energy required for certain

physical phenomena to occur. Indeed, the proposed QG perturbations can impact particle

kinematics, introducing modifications such as the MDR. These kinematic perturbations

are encoded in the non-trivial geometric structure of the momentum space, which leads to

differences in the computations carried out within it. The threshold energy of a physical

phenomenon is related to the free energy or Mandelstam s variable. In the case of a

two-particle interaction, the free energy depends on the internal product defined in the

momentum space as follows:

s = ⟨p + q|p + q⟩ (58)
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where p and q are the four-momenta related to the particles interacting. The internal

product of Equation (58) can be defined so that its results are compatible with the MDR

Equation (39):

s =⟨p + q|p + q⟩ =
=p2

0 − | p⃗|2
(
1 + 2λ′(1 − ϑ)p0

)
+ q2

0 − |⃗q|2
(
1 + 2λ′(1 − ϑ)q0

)
+ 2p0q0

−2p⃗ · q⃗
(
1 + 2λ′(1 − ϑ)

√
p0q0

)
(59)

where λ′ is the parameter related to the support Hopf algebra, used to describe the different

particle interactions. This definition of free energy is covariant according to the definition

used in DSR theory. In fact, the Mandelstam s is defined starting from the MDR, which

is invariant by construction. Therefore, the threshold energy associated with physical

processes can be impacted by the introduction of DSR-predicted perturbations, which

preserve Lorentz covariance, even if in an amended formulation.

12. Impact on the Cosmic Rays Propagation

A first example of a physical process whose threshold energy can be impacted by DSR

predictions is the Greisen–Zatsepin–Kuzmin (GZK) effect [12–15], thereby influencing the

CR propagation. CR can be categorized as light particles, such as protons, and heavy ones,

such as bare nuclei. The Universe is opaque to the propagation of ultra-high-energy cosmic

rays (UHECR). During their propagation, UHECR can interact with the CMB, dissipating

energy. This energy dissipation occurs through pair production, photodissociation, and, for

the most energetic particles, the GZK effect. For example, protons with energy exceeding a

threshold of E∼5 ×1015 eV can interact with the CMB, resulting in the production of a ∆

particle resonance. This process generates a photopion and reduces the energy of the initial

CR proton:

p + γ → ∆ →





p + π0

n + π+.
(60)

In order to guarantee the possibility of the ∆ resonance necessary for the GZK phe-

nomenon, the free energy must satisfy the following relation:

s = ⟨pp + pγ|pp + pγ⟩ ≥ m2
∆. (61)

Using the definition Equation (59) in Equation (61), it is possible to obtain the following:

m2
p−2(λ′ − λp)(1 − ϑ)Ep| p⃗p|2 − 2(λ′ − λγ)Eγ| p⃗γ|2 + 2EpEγ

−2p⃗p · p⃗γ

(
1 + 2λ′(1 − ϑ)

√
EpEγ

)
≥ m2

∆ (62)

where λp, λγ are the QG parameters associated with the proton and the photon, respectively,

and λ′ is associated with the algebra used to set the interaction. In the previous relation, the

MDRs of the proton and the photon were used. In this case, as well, the predicted physical

effects are found to depend on the choice of basis in momentum space. By performing

the computation in a reference frame where the photon energy is negligible compared

to the UHECR proton energy (Eγ ≪ Ep), one can derive the following constraint from

Equation (62):

λ′ − λp <
Ep

2(1 − ϑ)| p⃗|2 (63)
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The difference between the correction to the proton and the correction related to the

algebra used to describe the interaction should be limited to λ′ − λp < 10−20 eV in order to

ensure that the GZK effect is not suppressed.

The magnitude of the QG correction can be evaluated considering the attenuation

length associated with the GZK effect. The attenuation length of a CR is defined as the

average distance a particle can travel through the CMB radiation before its energy is

reduced by a factor 1/e, (e is the Napier’s number, the base of the natural logarithm) due to

interactions. In the context of UHECR protons the main dissipation mechanism is the GZK

phenomenon and the inverse of the attenuation length can be defined as follows:

1

lpγ
=
∫ +∞

ϵthr

∫ π

−π
n(ϵ)

1

2
s (1 − µ) σpγ(s)K(s) dϵ d cos θ. (64)

Here, σpγ(s) is the proton–photon interaction cross-section as a function of the Mandel-

stam variable, s, n(ϵ) is the photon background density distribution and cos θ is the impact

parameter. K(s) is the reaction inelasticity, defined as the fraction of energy available for

secondary particle production during the reaction. The introduction of QG perturbations

affects the inelasticity, leading to an enlargement of the predicted GZK opacity sphere.

The computation is performed in the center-of-mass (CM) reference frame for simplicity,

assuming the creation of a pion from a proton. This reference frame is defined via the

relation p⃗ ∗
p + p⃗ ∗

π = 0 where the index ∗ denotes the physical quantities defined in the CM

reference frame. The four momentum associated with the pion in the CM can be expressed

as follows: p∗π = (E ∗
π , p⃗ ∗

π) = (
√

s − E∗
p, p⃗ ∗

p ). The energy required to produce a photopion

can be computed using the MDR as follows:

s = ⟨pπ |pπ⟩ = E2
π − (1 + 2λπ(1 − ϑ)Eπ) = m2

π . (65)

From Equation (65) and the definition of momenta in the CM frame, the following

equation, valid in the CM reference frame, can be derived:

E∗
p = F(s) =

s + m2
p − m2

π − 2(λπ − λp)(1 − ϑ)| p⃗ ∗
p |2E∗

p

2
√

s
. (66)

The high-energy limit, where Ep ≃ | p⃗,
p|, QG introduces a perturbation that increases

the predicted residual energy of the proton after the interaction, provided the condition

λp > λπ is satisfied. The final computation of the inelasticity in the high-energy limit gives

(1 − Kπ(θ)) =
1√

s

(
F(s) + cos θ

√
F(s)2 − m2

p + 2(λp − λπ)(1 − ϑ)| p⃗|2Ep

)
. (67)

The final form of the inelasticity is obtained by averaging over the direction

Kπ =
1

π

∫ π

0
Kπ(θ) dθ. (68)

From Equations (67) and (68), it is straightforward to deduce that the inelasticity

increases compared to the standard physics scenario. Furthermore, if the proton’s correction

is greater than that associated with the pion, the GZK opacity sphere expands.

13. Conclusions

In this research work, we analyzed the phenomenological predictions of DSR theories,

presenting several astroparticle scenarios in which to test them. Initially, we introduced

the models of DSR theories along with the corresponding modifications to the algebra



Symmetry 2025, 17, 203 16 of 18

of symmetry group generators, which are identified as κ-Poincaré. We illustrated how

to construct the mathematical foundation of the theory and how it can be set within the

framework of Hopf algebras. Starting from the modified momentum composition laws, the

non-trivial geometry of momentum space was constructed. We demonstrated how these

modifications impact particle kinematics, altering the dispersion relations. The MDRs were

introduced as the Casimir operator of the modified algebra, as well as through the geodesic

distance defined in momentum space. These modifications were derived in the context of a

universal framework, assuming that all particles are equally affected by the introduction of

QG. We then analyzed the first phenomenological effect arising from universal kinematic

modifications, showing that particle velocities acquire an energy dependence. As a result,

higher-energy particles can accumulate a time delay compared to lower-energy particles.

This effect can be observed in the context of neutrino physics related to SN and GRB.

Next, we demonstrated that for DSR theories defined within the framework of Hopf

algebras, it is possible to consider non-universal scenarios of QG-induced perturbations.

Specifically, it is feasible to associate different corrected algebras with distinct particles,

using a common algebra to define the interaction between different species via a projection.

Two areas were considered to test this presumed non-universality of QG perturbations. The

first area of investigation involves atmospheric neutrinos, where different corrections for

the various mass eigenstates involved in propagation can impact the neutrino oscillation

pattern. Thanks to the high energies involved, atmospheric neutrinos provide an ideal

framework for this research, allowing the accumulation of the small perturbations predicted

by the theory.

Through the MDR, it was possible to define how to determine the free energy required

for certain physical processes. It was shown that threshold energy modifications remain

invariant under the modified Lorentz covariance because they are constructed using the

MDRs, which are invariant by design. This result should be considered a generalization

of what was demonstrated in [48]. In that work, it was shown that it is not possible to

preserve covariance while modifying threshold energies for physical effects in universal

scenarios. However, by considering non-universal corrections, we have demonstrated that

it is possible to preserve the covariance defined for DSR theories while modifying threshold

energies. We then showed that a sector where this research can be conducted is the GZK

effect for UHECRs. The modifications induced by DSR models can expand the predicted

GZK opacity sphere, altering the kinematics and the resulting inelasticity of processes such

as photopion production.

As a final observation, all the analyzed scenarios were considered by introducing a

dependence on the choice of basis in momentum space. The predicted effects may vary in

intensity depending on the chosen basis. However, they are not completely suppressed.

This behavior aligns with the predictions made in [19].
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